
CodeFurther Documentation
Release 0.1.0.dev14

Danny Goodall

March 07, 2015

Contents

1 Contents 3
1.1 CodeFurther Installation . 3
1.2 top40 - UK Top40 Charts . 3
1.3 lyrics - Search for song lyrics . 19
1.4 directions - Google maps routes . 22
1.5 CodeFurther utils . 26
1.6 CodeFurther errors . 26
1.7 Change Log for CodeFurther . 27

2 CodeFurther 29
2.1 Modules in the Package . 29

3 Features 31

4 Installation 33

5 Documentation 35
5.1 Tests . 35
5.2 Changes . 35
5.3 Indices and tables . 35

Python Module Index 37

i

ii

CodeFurther Documentation, Release 0.1.0.dev14

Warning: This documentation is currently out of sync with the functionality in the CodeFurther package. In ad-
dition to the functionality described in this documentation, the following data sources have also been implemented:

• football
• weather

On top of this, the following means of sharing have been implemented:
• email
• twitter
• slack
• textmessage

Many of these services require the presence of a cf_setting.py script that contains the following settings:
• CF_TWITTER_APP_KEY
• CF_TWITTER_APP_SECRET
• CF_TWITTER_OAUTH_TOKEN
• CF_TWITTER_OAUTH_TOKEN_SECRET
• CF_SLACK_API_KEY
• CF_SMTP_SERVER
• CF_SMTP_PORT
• CF_SMTP_USERNAME
• CF_SMTP_PASSWORD
• CF_TWILIO_ACCOUNT
• CF_TWILIO_TOKEN
• CF_TWILIO_FROM
• CF_FORECASTIO_API_KEY

If this script file is not found, then the corresponding environment variable will be searched for.
The entire CodeFurther package is under development, so proceed

Contents 1

CodeFurther Documentation, Release 0.1.0.dev14

2 Contents

CHAPTER 1

Contents

1.1 CodeFurther Installation

CodeFurther can be found on the Python Package Index PyPi here. It can be installed using pip, like so.

pip install codefurther

1.2 top40 - UK Top40 Charts

1.2.1 Introduction

The Top40 module is part of the codefurther Python package, and is designed to be used in UK schools to provide
students with access to data that describes the UK Top 40 singles and albums.

Top40 is part of a wider initiative that I’m referring to as CodeFurther. The hope is that by providing simple interfaces
to information that is relevant to students, they will be able to relate to the data and imagine more ways in which they
could consume and use it in their code - and hopefully CodeFurther.

The data that Top40 accesses is provided by the excellent work by @Ben Major and his UK Top 40 Charts API.

The Top40 module is under active development as part of the CodeFurther package and licensed under the Apache2
license, so feel free to contribute and report errors and suggestions.

Note: The Top40 library is designed to be used in UK schools to provide programmatic access to data that describes
the UK Top 40 singles and albums. The hope is that by providing simple interfaces to access information that students
may have an interest in, they may be inspired to CodeFurther. This documentation will therefore most likely be
aimed at teachers and education professionals, who may not have a deep knowledge of Python.

Warning: Top40 is currently designed to work with Python version 3. I have recently carried out a small amount
of work to make it run on Python 2, but this does need to be more thoroughly tested that my current Nose tests
allow. If you encounter any issues, or you’d like to submit a pull request, please contact me on BitBucket.

1.2.2 Features

Top40 provides:

3

https://pypi.python.org/pypi/codefurther
https://twitter.com/benmajor88
http://ben-major.co.uk/2013/12/uk-top-40-charts-api/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
https://bitbucket.org/dannygoodall/codefurther/pull-requests
https://bitbucket.org/dannygoodall/codefurther/issues
https://bitbucket.org/dannygoodall/codefurther/issues
https://bitbucket.org/dannygoodall/codefurther/pull-requests

CodeFurther Documentation, Release 0.1.0.dev14

• a list of the current Top 40 UK singles using the singles property of the Top40 class.

• a list of the current Top 40 UK albums using the albums property of the Top40 class.

• a chart object relating to either singles or albums. The chart object contains the:

– date that the chart was published

– the date that the chart was retrieved from the server

– a list containing an Entry for each Top 40 single or album

• Top40 will also cache the results, so that once a result type (singles or albums) has been retrieved from the
remote server, it will be returned on subsequent requests from the cache without refreshing from the remote
server.

• The cache can be reset using the reset_cache() method, so that the next request for albums or singles
information will be forced to obtain it by connecting to the remote server.

1.2.3 Usage

Top40 exposes a very simple API to developers. It is accessed by importing the Top40 class into your module and
creating an instance of this class, like so:

from codefurther.top40 import Top40
top40 = Top40()

The top40 instance exposes a number of properties to the programmer. These include:

• top40.albums

• top40.singles

• top40.albums_chart

• top40.singles_chart

The example code below shows how you can use one of these properties to get a list of the current Top 40 albums.:

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist

)

This short program uses the albums property of the Top40 class to obtain the Python list of the current Top 40
UK albums. It then loops through this list, and at each iteration of the loop the variable album is set to the next album
entry in the list.

A print() function then prints the position, title and artist attributes of the album entry resulting in
something like this::

4 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/functions.html#print

CodeFurther Documentation, Release 0.1.0.dev14

1 Never Been Better BY Olly Murs
2 X BY Ed Sheeran
3 FOUR BY One Direction
4 In The Lonely Hour BY Sam Smith
5 The Endless River BY Pink Floyd
.
.
.
40 The London Sessions BY Mary J. Blige

I hope it’s pretty clear what is going on, but a more detailed discussion of what the program does on can be found in
the ExploringTheTop40DemoCode.

1.2.4 Exploring the Top40 Demo Code

Our example program

Let’s look at an example program, and examine in detail what it is doing and how it works.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.previousPosition,
album.numWeeks

)

Importing the PythonTop40 module

The first line in our program

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.previousPosition,
album.numWeeks

)

1.2. top40 - UK Top40 Charts 5

CodeFurther Documentation, Release 0.1.0.dev14

uses the Python import command to bring the Top40 class from the top40 module into our code.

This import command means that our program can now use the Top40 class, to get the list of Top 40 singles and
albums. The import command is how we tell Python that we want to use a feature that isn’t included in the Python
standard library.

Creating a Top40 instance

The next line in our program creates a variable called top40 which becomes the way we will talk to the remote server
where the lists of Top 40 singles and albums information is held.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.previousPosition,
album.numWeeks

)

Behind the Scenes

Technically speaking this code creates an instance of the Top40 class, and behind the scenes it is this that
manages the communication with the remote server that contains the list of singles and albums.
We don’t really need to worry about that, as all of this complexity is hidden from us. Instead we simply interact
with the data and capabilities that the top40 variable provides us.

We can think of the top40 variable as providing us with a number of ways to access the Top 40 charts for albums and
singles.

top40 does this through a number of properties that each returns different results to our program.

If we were to use the top40.singles property instead of the top40.albums property, then as you might expect
our program would receive a python list of singles instead of a list of albums.

Other properties that we could use are top40.singles_chart and top40.albums_chart which both return
a little bit more information about the chart itself - such as the date it was published and the date it was retrieved
from the server.

Retrieving the Top40 albums

The following line of code creates a variable called albums and assigns to it the value returned from the
top40.albums property.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

6 Chapter 1. Contents

http://docs.python.org/3.3/reference/simple_stmts.html#import
http://docs.python.org/3.3/reference/simple_stmts.html#import
http://docs.python.org/3.3/reference/simple_stmts.html#import
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list

CodeFurther Documentation, Release 0.1.0.dev14

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.previousPosition,
album.numWeeks

)

When this piece of code is executed, behind the scenes our top40 variable magically makes contact with a server
over the Internet, asks it for the list of the Top 40 albums, and returns this list list of information to our albums
variable.

The format of the returned data

If we could see the value returned to the albums variable in the above code, it would look something like this.

albums = [
Entry(

position = 1,
artist = "One Direction"
...

),
Entry(

position = 2,
artist = "Ed Sheeran"
...

),
Entry(

position = 3,
artist = "Sam Smith"
...

)
]

Note: The ... in the above example shows that there are more pieces of information in the Entry, but these are
not shown to make the example easier to understand.

The data is enclosed in [] square brackets, which tells us that we have a Python list of ‘things‘. But what are the
things in the list? Well, because we have a list of things, we can access the first (or 0 th item) in the list by placing ‘‘[0]‘ after
the name of a list.

print(albums[0])
Entry(postition = 1, artist = "One Direction"...)

1.2. top40 - UK Top40 Charts 7

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list

CodeFurther Documentation, Release 0.1.0.dev14

Behind the Scenes

Whilst you will never have to do this yourself, an Entry instance is created by passing named arguments to the
Entry class. If we were to manually create the Entry instance, it might look something like this.

entry = Entry(
position = 3,
previousPosition = 4,
numWeeks = 26,
artist = "Sam Smith",
title = "In The Lonely Hour",
Change(

direction = "up",
amount = 1,
actual = 1

)
)

If we then asked Python to print the position attribute of the entry variable, we would get the following result

print(entry.position)
3

Likewise if we wanted to see how many weeks this entry had been in the chart we could access it like this.

print(entry.numWeeks)
26

So you should be able to see that inside our Entry object, we have another object called Change. This means
that to access the Change object that is inside the Entry object, we would do the following.

print(entry.change)
<Change(

amount=1,
actual=1,
direction='up'

)>

And finally, to access the direction of the change since last week’s chart, we can see that we would have to
access the direction attribute of the Change object that is embedded in the Entry object. And to do that,
we could type the following.

print(entry.change.direction)
up

Accessing the information within each chart entry

This tells us that we have a list of things of type Entry. There is one Entry for every album in our Top 40 chart.
The example data above only shows the first 3 entries, but given that this is the Top 40 we are dealing with, we would
expect to see 40 entries in our list.

Each entry is represented by a Python object called Entry. The Entry class has been created as part of the Python-
Top40 project to hold the details of albums or singles in the chart.

As you’d expect from looking at the example code, the Entry class can hold information about the position of
this entry, the name of the artist, the title of the album or single.

In addition, the number of weeks the album or single has been in the chart is accessed via the numWeeks attribute
and the position that the entry occupied last week can be found by using the previousPosition attribute.

So in our original example, the next part the code loops through each of the album entries in the chart using the for

8 Chapter 1. Contents

http://docs.python.org/3.3/reference/compound_stmts.html#for

CodeFurther Documentation, Release 0.1.0.dev14

statement, and then inside the loop, the value of album is set to each of the albums in our list.

This means that we can use the print() function to print the position, title and artist of each of the albums in our
chart.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.previousPosition,
album.numWeeks

)

Printing extra information about the chart entry

If we wanted to extend our demo program to print the number of weeks that the album had been in the chart, as
well as the chart position it occupied in the previous week’s chart, we could do this by accessing the numWeeks and
previousPosition attributes respectively.

The following code would achieve that.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

album.position,
album.title,
"BY",
album.artist,
album.numWeeks,
album.previousPosition

)

If this code is run, it would result in something similar to this.

1 Never Been Better BY Olly Murs 1 0
2 X BY Ed Sheeran 23 2
3 FOUR BY One Direction 2 1
4 In The Lonely Hour BY Sam Smith 27 3
5 The Endless River BY Pink Floyd 3 4
6 Wanted On Voyage BY George Ezra 22 8
.
.
.
40 The London Sessions BY Mary J. Blige 1 0

1.2. top40 - UK Top40 Charts 9

http://docs.python.org/3.3/library/functions.html#print

CodeFurther Documentation, Release 0.1.0.dev14

Formatting the output columns

It’s not easy to see the information, but you can now see that there are two numbers at the end of each line that represent
the numWeeks and previousPosition attributes respectively.

So if we now wanted to make the formatting a little easier to read, we can make use of the format() function that
allows us to carry out formatting on a string. The description of the format() function is outside the scope of this
tutorial, but hopefully the following code will be relatively simple to follow.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

"{:5} {:50} by {:50} {:5} {:5}".format(
album.position,
album.title,
album.artist,
album.numWeeks,
album.previousPosition

)
)

When this code is run, it produces a column-based list of album entries that is much easier to understand.

1 Never Been Better by Olly Murs 1 0
2 X by Ed Sheeran 23 2
3 FOUR by One Direction 2 1
4 In The Lonely Hour by Sam Smith 27 3
5 The Endless River by Pink Floyd 3 4
6 Wanted On Voyage by George Ezra 22 8
.
.
.

40 The London Sessions by Mary J. Blige 1 0

Hopefully you can see that the format string features a series of place markers - represented by the {} braces, and that
each place marker brace corresponds with a data value in the list format() variables that follow.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

"{:5} {:50} by {:50} {:5} {:5}".format(
album.position,
album.title,
album.artist,
album.numWeeks,
album.previousPosition

)
)

10 Chapter 1. Contents

http://docs.python.org/3.3/library/functions.html#format
http://docs.python.org/3.3/library/functions.html#format

CodeFurther Documentation, Release 0.1.0.dev14

Again, it will probably be clear that the text inside each of the braces such as {:5} tells the format() function how
many columns that specific entry will take up.

So {:5} at the beginning of the format string, tells the format() function to use 5 columns for the first variable,
and as album.position is the first in the list of variables inside the format() function, the position of the album
in the chart will take up the first 5 columns.

The second {} brace contains {:50} which means it will occupy 50 columns, and the second variable is
album.title, so the album title will occupy the next 50 columns, and so on...

Notice that in amongst all those {} braces, the format string actually contains the word by, because it’s fine to put
other things in the format string alongside the {} braces - even spaces! If it isn’t a {} brace then it just gets produced
as is.

Accessing the change information

As mentioned above the album Entry object has a Change object embedded within it.

entry = Entry(
position = 3,
previousPosition = 4,
numWeeks = 26,
artist = "Sam Smith",
title = "In The Lonely Hour",
Change(

direction = "up",
amount = 1,
actual = 1

)
)

The Change object actually describes the change since last week’s chart in a little bit more detail. It provides access
to the following pieces of information about the chart Entry.

• The amount of change in position since last week’s chart. The is an absolute value - i.e. it describes the
amount of change, but not the direction. So unless it is zero, it is always positive.

• The actual amount of change in positions since last week’s chart. This can be negative, positive or zero.

• The direction of the change since last week. This is a :py:func‘str‘ and is either up or down.

Printing the change information

So if we wanted to alter our program so that we started printed a summary of whether the album had gone up or down
since last week, we could do so as follows.

from codefurther.top40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
print(

"{:5} {:50} by {:50} {:5} {:5} - {:4}({:4})".format(
album.position,
album.title,
album.artist,

1.2. top40 - UK Top40 Charts 11

http://docs.python.org/3.3/library/functions.html#format
http://docs.python.org/3.3/library/functions.html#format
http://docs.python.org/3.3/library/functions.html#format
http://docs.python.org/3.3/library/functions.html#abs

CodeFurther Documentation, Release 0.1.0.dev14

album.numWeeks,
album.previousPosition,
album.change.direction,
album.change.amount

)
)

You’ll see that we’ve added the following {} braces to the format string

"{:4}({:4})"

and we’ve also added two more variables to the format() function.

album.change.direction,
album.change.amount

These changes result in the following text output when the code is run.

1 Never Been Better by Olly Murs 1 0 - down(1)
2 X by Ed Sheeran 23 2 - none(0)
3 FOUR by One Direction 2 1 - down(2)
4 In The Lonely Hour by Sam Smith 27 3 - down(1)
5 The Endless River by Pink Floyd 3 4 - down(1)
6 Wanted On Voyage by George Ezra 22 8 - up (2)
.
.
.

40 The London Sessions by Mary J. Blige 1 0 - down(40)

Some finishing touches

Finally, we’ll make some significant changes to the program to add column headings, column formatting, and to alter
the text that describes the change since last week.

The output of the new program looks like this.

No.	Title	Artist	Weeks	Previous	Change since last week
1	Never Been Better	Olly Murs	1	0	**NEW ENTRY**
2	X	Ed Sheeran	23	2	
3	FOUR	One Direction	2	1	v by 2 places
4	In The Lonely Hour	Sam Smith	27	3	v by 1 place
5	The Endless River	Pink Floyd	3	4	v by 1 place
6	Wanted On Voyage	George Ezra	22	8	^ by 2 places
7	1989	Taylor Swift	5	7	
8	Listen	David Guetta	1	0	**NEW ENTRY**
9	Sonic Highways	Foo Fighters	3	5	v by 4 places
10	It's The Girls	Bette Midler	2	6	v by 4 places
11	Partners	Barbra Streisand	11	16	^ by 5 places
12	Love In Venice	André Rieu	4	11	v by 1 place
13	Hope	Susan Boyle	1	0	**NEW ENTRY**
14	Dublin To Detroit	Boyzone	1	0	**NEW ENTRY**
15	No Sound Without Silence	The Script	11	17	^ by 2 places
16	Forever	Queen	3	13	v by 3 places
17	Christmas	Michael Bublé	34	27	^ by 10 places
18	Motion	Calvin Harris	4	18	
19	Blue Smoke - The Best Of	Dolly Parton	25	26	^ by 7 places
20	Home Sweet Home	Katherine Jenkins	2	10	v by 10 places

12 Chapter 1. Contents

http://docs.python.org/3.3/library/functions.html#format

CodeFurther Documentation, Release 0.1.0.dev14

21	The Greatest Hits	Luther Vandross	2	22	^ by 1 place
22	Strictly Come Dancing	Dave Arch & The Strictly Come Dancing Band	1	0	**NEW ENTRY**
23	Melody Road	Neil Diamond	6	15	v by 8 places
24	A Perfect Contradiction	Paloma Faith	38	23	v by 1 place
25	Sirens Of Song	Jools Holland & His Rhythm & Blues Orchestra	1	0	**NEW ENTRY**
26	Chapter One	Ella Henderson	7	25	v by 1 place
27	Serenata	Alfie Boe	2	14	v by 13 places
28	My Dream Duets	Barry Manilow	1	0	**NEW ENTRY**
29	Aquostic (Stripped Bare)	Status Quo	6	29	
30	Nothing Has Changed (The Best of David Bowie)	David Bowie	2	9	v by 21 places
31	Love In The Future	John Legend	52	32	^ by 1 place
32	Stand Beside Me: Live In Concert	Daniel O'Donnell	2	20	v by 12 places
33	Royal Blood	Royal Blood	14	35	^ by 2 places
34	5 Seconds Of Summer	5 Seconds of Summer	22	39	^ by 5 places
35	Caustic Love	Paolo Nutini	33	38	^ by 3 places
36	Nostalgia	Annie Lennox	5	30	v by 6 places
37	No Fixed Address	Nickelback	2	12	v by 25 places
38	If Everyone Was Listening	Michael Ball	2	21	v by 17 places
39	+	Ed Sheeran	168	42	^ by 3 places
40	The London Sessions	Mary J. Blige	1	0	**NEW ENTRY**

And below is the complete program that produced the output above.

from codefurther.top40 import Top40

top40 = Top40()
format_string = "| {:5} | {:50} | {:50} | {:8} | {:8} | {:22} |"
up_arrow = "^ "
down_arrow = " v"

Print the column headings
print(

format_string.format(
" No.",
"Title",
"Artist",
" Weeks",
"Previous",
"Change since last week"

)
)

Print the heading underline
print(

format_string.format(
"-----",
"-----",
"------",
"--------",
"--------",
"----------------------"

)
)

albums = top40.albums

for album in albums:

1.2. top40 - UK Top40 Charts 13

CodeFurther Documentation, Release 0.1.0.dev14

Create the string that describes that change since last week
If the amount of change since last week's chart is 0, or previous position in the chart was 0 (i.e. it is a new
entry to the chart), then we should set the change_text to be empty.
if album.change.amount == 0:

change_text = ''
elif album.previousPosition == 0:

change_text = ' **NEW ENTRY**'
else:

We now know that there was a change in position since last week

We want to use the word place if there is only 1 place change, but if there is more than one place change
then we want to use the word places. To do this we will use a Python conditional assignment
places_text = "place" if album.change.amount == 1 else "places"

We want to use the up arrow text if the album has moved up since last week, and the down arrow text if it
has moved down. To do this we will also use a Python conditional assignment
arrow_text = up_arrow if album.change.direction == "up" else down_arrow

Now let's build the change_text variable from the three components
- The arrow text
- The amount of change since last week
- The place text - using the correct plural term
change_text = "{} by {} {}".format(

arrow_text,
album.change.amount,
places_text

)

Print the output using the same format string that we used for the heading and underline
print(

format_string.format(
album.position,
album.title,
album.artist,
album.numWeeks,
album.previousPosition,
change_text

)
)

It might be worth spending a little time looking at the program and the output that it produces, to see if you can see
which changes in the code produce which changes in the output.

1.2.5 Top40 API

Return the UK Top 40 Single and Album charts

class top40.Top40(base_url_param=None, cache_duration=3600, cache_config=None,
cache_prefix=’codefurthercache’)

Provides the programmer with properties that return the Top 40 chart data.

The programmer creates an instance of this object, and then uses the exposed properties to access the data about
the singles and albums charts.

Creates and returns the object instance.

14 Chapter 1. Contents

CodeFurther Documentation, Release 0.1.0.dev14

All results will be cached for the duration of the existence of this instance in memory. However, if
cache_duration is specified (not None), then results will be persisted to a local sqlite DB for the duration, in
seconds, or cache_duration. A config for requests cache can also be passed in cache_config too, or if None, the
default setting is used.

Parameters

• base_url (str) – The base url of the remote API before the specific service details are ap-
pended. For example, the base url might be “a.site.com/api/”, and the service “/albums/”,
when appended to the base url, creates the total url required to access the album data.

• cache_duration (int) – If None, then the persistent cache will be disabled. Otherwise the
cache duration specified will be used.

• cache_config (dict) – If None the default config will be used to pass to the
install_cache method of requests_cache, otherwise the config in this parameter will
be used. Any ‘expire_after’ key in the cache config will be replaced and the duration set to
cache_duration.

error_format
str

The format string to be used when creating error messages.

base_url
str

The base url used to access the remote api

cache_duration
int

The duration in seconds that results will be returned from the cache before a fresh read of the external API
will replace them.

cache_config
dict

A dictionary that describes the config that will be passed to the request_cache instance - allowing
different backends and other options to be set.

Returns Top40 – The Top40 instance.

Return type Top40

albums
A property that returns a list of album Entry types.

Returns list : A list of Entry instances. Each entry describes an album in the chart.

Raises

• Top40HTTPError (Top40HTTPError) – If a status code that is not 200 is returned

• Top40ConnectionError (Top40ConnectionError) – If a connection could not
be established to the remote server

• Top40ReadTimeoutError (Top40ReadTimeoutError) – If the remote server
took too long to respond

albums_chart
A property that returns the Chart object for the current Top40 albums

1.2. top40 - UK Top40 Charts 15

http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#dict
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#dict
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list

CodeFurther Documentation, Release 0.1.0.dev14

Returns Chart: The albums’ chart object - an instance of the Chart class containing the
album information and the and the issue and retrieval dates specific to this chart.

Raises

• Top40HTTPError (Top40HTTPError) – If a status code that is not 200 is returned

• Top40ConnectionError (Top40ConnectionError) – If a connection could not
be established to the remote server

• Top40ReadTimeoutError (Top40ReadTimeoutError) – If the remote server
took too long to respond

singles
A property that returns a list of single entries.

Returns list: A list of Entry instances. Each entry describes a single in the chart.

Raises

• Top40HTTPError (Top40HTTPError) – If a status code that is not 200 is returned

• Top40ConnectionError (Top40ConnectionError) – If a connection could not
be established to the remote server

• Top40ReadTimeoutError (Top40ReadTimeoutError) – If the remote server
took too long to respond

singles_chart
A property that returns the Chart object for the current Top40 singles

Returns Chart: The singles’ chart object - an instance of the Chart class containing the
singles information and the issue and retrieval dates specific to this chart.

Raises

• Top40HTTPError (Top40HTTPError) – If a status code that is not 200 is returned

• Top40ConnectionError (Top40ConnectionError) – If a connection could not
be established to the remote server

• Top40ReadTimeoutError (Top40ReadTimeoutError) – If the remote server
took too long to respond

class top40.Entry(**kwargs)
The Entry model that contains the details about the chart entry, a Change Model is embedded in each Entry
model.

Parameters

• position (int) – The position of this entry in the chart.

• previousPosition (int) – The position of this entry in the previous week’s chart.

• numWeeks (int) – The number of weeks this entry has been in the chart.

• artist (str) – The name of the artist for this entry.

• title (str) – The title of this entry.

• change (Change) – The embedded change model that describes the change in position.

• status (str) – NEW in dev6 The text status from the BBC chart - takes the format of “new”
¦ “up 3” ¦ “down 4” ¦ “non-mover”. Not used in Ben Major’s V1 API - optional

16 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

position
int

The position of this entry in the chart.

previousPosition
int

The position of this entry in the previous week’s chart.

numWeeks
int

The number of weeks this entry has been in the chart.

artist
str

The name of the artist for this entry.

title
str

The title of this entry.

change
Change

The embedded change model that describes the change in position.

status
str

NEW in dev6 The text status from the BBC chart - takes the format of “new” ¦ “up 3” ¦ “down 4” ¦
“non-mover”. Not used in Ben Major’s V1 API - optional

Returns Entry: The Entry model instance created from the arguments.

class top40.Change(**kwargs)
The Change model that describes the change of this entry since last week’s chart.

This class isn’t made publicly visible, so it should never really need to be initialised manually. That said, it is
initialised by passing a series of keyword arguments, like so:

change = Change(
direction = "down",
amount = 2,
actual = -2

)

The model does not feature any validation.

direction
str

The direction of the change “up” or “down”.

amount
int

The amount of change in chart position expressed as a positive integer.

1.2. top40 - UK Top40 Charts 17

http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

actual
int

The amount of the change in chart position expressed as positive or negative (or 0).

Returns Change: The Change model instance created from the passed arguments.

class top40.Chart(**kwargs)
The Chart model that contains the embedded list of entries.

Parameters

• entries (list of dict) – A list of Python dictionaries. Each dictionary describes each
Entry type in the chart, so the keys in the dictionary should match the properties of the
Entry class.

• date (int) – The date of this chart as an integer timestamp containing the total number of
seconds.

• retrieved (int) – The date that this chart was retrieved from the API server as an integer
timestamp containing the total number of seconds.

• current (bool) – Optional. A flag used in V2 of the API to signify if the last scheduled
read from the BBC’s server worked on not. A value True means that the returned chart is
the latest version that we have tried to read. A value of False means that the chart that is
being returned is old. In all liekliehood the chart is probably still in accurate as it is only
updated once per week, so this flag only means that the last scheduled read from the BBC’s
server did not work.

entries
list of Entry

A list of Entry types for each entry in the specific Chart. The entries are returned in the list with the
highest chart position (i.e. the lowest number - #1 in the chart) first.

date
int

The date of this chart as an integer timestamp containing the total number of seconds. This
value can then be converted to a Python datetime.datetime type by datetime_type =
datetime.datetime.fromtimestamp(chart.date) (assuming that the chart variable was
of type Chart).

retrieved
int

The date that this chart was retrieved from the API server as an integer timestamp containing the total
number of seconds. This can be converted to a datetime type in the same as described for date above.

current
bool

Optional. A flag used in V2 of the API to signify if the last scheduled read from the BBC’s server worked
on not. A value True means that the returned chart is the latest version that we have tried to read. A value
of False means that the chart that is being returned is old. In all liekliehood the chart is probably still in
accurate as it is only updated once per week, so this flag only means that the last scheduled read from the
BBC’s server did not work.

Returns Chart – The Chart model instance created from the arguments.

Return type Chart

18 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#dict
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/datetime.html#datetime.datetime

CodeFurther Documentation, Release 0.1.0.dev14

1.3 lyrics - Search for song lyrics

The Lyrics module is part of the codefurther Python package, and is designed to be used in UK schools to provide
students with access to data that describes the words to popular songs.

Lyrics is part of a wider initiative that I’m referring to as CodeFurther. The hope is that by providing simple interfaces
to information that is relevant to students, they will be able to relate to the data and imagine more ways in which they
could consume and use it in their code - and hopefully CodeFurther.

The data that Lyrics accesses is provided by Wikia and should be accessed as as part of its Lyrics Wikia site.

1.3.1 Features

Lyrics provides:

• Search for an artist on Lyrics Wikia

• Search for the lyrics of a song by a specific artist

• Search for all of the songs by a specific artist that are present on Lyrics Wikia.

1.3.2 Usage

Directions exposes a very simple API to developers. It is accessed by importing the Lyrics class into your module
and creating an instance of this class, like so:

from codefurther.lyrics import Lyrics
lyrics_machine = Lyrics()

To print out the lyrics to a song, the song_lyrics() method is used to to find the song, given the name of the artist
and the name of the song.:

lyrics_list = lyrics_machine.song_lyrics("billy bragg", "days like these")

The lyrics are returned as a list of str items, and be printed simply, like so.:

for line in lyrics_list:
print(line)

The Lyrics instance exposes a number of properties to the programmer. These include:

• Lyrics.song_lyrics

• Lyrics_artist_songs

• Lyrics_artist_search

The example code below shows how you can use these properties. This code, simply returns the lyrics to a song, given
the name of the artist and the name of the song.:

from codefurther.lyrics import Lyrics

lyrics_machine = Lyrics()

lyrics_list = lyrics_machine.song_lyrics("billy bragg", "days like these")

1.3. lyrics - Search for song lyrics 19

http://lyrics.wikia.com/Lyrics_Wiki
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

for count, line in enumerate(lyrics_list):
print(

"{}. {}".format(
count+1,
line

)
)

This results in the following output.:

1. The party that became so powerful
2. By sinking foreign boats
3. Is dreaming up new promises
4. Because promises win votes
.
.
.
31. Peace, bread, work, and freedom
32. Is the best we can achieve
33. And wearing badges is not enough
34. In days like these

The following code find all of the songs for a given artist.:

from codefurther.lyrics import Lyrics

lyrics_machine = Lyrics()

song_list = lyrics_machine.artist_songs("billy bragg")

for count, song in enumerate(song_list):
print(

"{}. {}".format(
count+1,
song

)
)

Resulting in the following output.:

1. The Milkman of Human Kindness
2. To Have and to Have Not
3. Richard
.
.
.
396. To Have And Have Not
397. Walk Away Renee
398. Youngest Son

This code allows the programmer to search for the exact name of an artist.:

from codefurther.lyrics import Lyrics

lyrics_machine = Lyrics()

artist_details = lyrics_machine.artist_search("Billy Bragg")

print(artist_details)

20 Chapter 1. Contents

CodeFurther Documentation, Release 0.1.0.dev14

If an exact match of the artist is not found, then the nearest match is returned.

1.3.3 Lyrics API

Return the lyrics given an artist and song.

class lyrics.Lyrics(base_url=’http://cflyricsserver.herokuapp.com/lyricsapi/’)
Provides the programmer with properties that return lyrics from the Wikia site.

The programmer creates an instance of this object, and then uses the exposed properties to access the data about
the lyrics.

error_format
str

The format string to be used when creating error messages.

bad_response
str

The text to be used in the raised error if the server response is unexpected.

artist_exists(artist)
Determines whether an artist exists in Lyrics Wikia USING THE SPELLING and puntuation provided.

Proceed with a little caution as I’m not completely sure that these results are accurate.

Returns True if the artist specified is found exactly. It may be that the artist is known by another, similar
name.

Parameters artist – (str) The name of the artist being searched for.

Returns (bool): If the artist was found exactly as named in the search results, then True is
returned, otherwise False is returned.

Return type result

artist_search(artist)
Returns the first result of a search for the given artist on Lyrics Wikia.

Proceed with a little caution as I’m not completely sure that these results are accurate.

Returns a string containing the search result. The actual string returned depends on what the search func-
tionality at Lyrics Wikia returns.

Parameters artist – (str) The name of the artist being searched for.

Returns (str): The result of the search. If the string contains a colon :, then it typically means
that an artist and song has been returned, separated by the colon. If a string is returned
without a colon, then it likely means that only an artist match was found, but the artise
returned should be checked to see if it is the same as the artist that was searched for.

Return type result

artist_songs(artist)
Returns a generator that yields song titles for the given artist.

If the all_details flag is set to True, then a dict is returned that contains. Returns an empty generator if
no songs were found for the specified artist.

Parameters artist – (str) The name of the artist for the song being looked up.

1.3. lyrics - Search for song lyrics 21

http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#dict
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

Returns (list): A list of str representing each song of the artist.

Return type song_list

Raises

• ValueError – If artist is None or "" (empty).

• ValueError – If the response from the server is not in the correct format.

song_lyrics(artist, title)
Return a list of string lyrics for the given artist and song title.

Parameters

• artist – (str) The name of the artist for the song being looked up.

• title – (str) The name of the song being looked up.

Returns (list) of (str) one for each lyric line in the song. Blank lines can be returned to
space verses from the chorus, etc.

1.4 directions - Google maps routes

The Directions module is part of the codefurther Python package, and is designed to be used in UK schools to provide
students with access to data that describes journeys from one point to another.

Directions is part of a wider initiative that I’m referring to as CodeFurther. The hope is that by providing simple
interfaces to information that is relevant to students, they will be able to relate to the data and imagine more ways in
which they could consume and use it in their code - and hopefully CodeFurther.

The data that Directions accesses is provided by Google as part of its Google Maps API.

1.4.1 Features

Directions provides:

• Simplified access to directions from a to b using Google Maps

• Place names can be vague, Google will do it’s best to decipher them

• Walking, cycling, driving and transit routes

1.4.2 Usage

Importing the module

Directions exposes a very simple API to developers. It is accessed by importing the GetDirections class into
your module and creating an instance of this class, like so:

from codefurther.directions import GetDirections
directions = GetDirections("southampton", "winchester")

22 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/exceptions.html#ValueError
http://docs.python.org/3.3/library/exceptions.html#ValueError
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#str
https://developers.google.com/maps/

CodeFurther Documentation, Release 0.1.0.dev14

GetDirections parameters

The GetDirections object is initialised with a starting location and an end location. It can also be initialised with
an optional mode parameter that describes the mode of transport to use.:

from codefurther.directions import GetDirections

driving_directions = GetDirections("southampton","winchester", "driving")
walking_directions = GetDirections("southampton","winchester", "walking)
bike_directions = GetDirections("southampton","winchester", "bicycling")
transit_directions = GetDirections("southampton","winchester", "transit")

GetDirections properties

The GetDirections instance exposes a number of properties to the programmer. These include:

• GetDirections.found

• GetDirections.heading

• GetDirections.footer

• GetDirections.steps

Example program

The example code below shows how you can use these properties to get directions from one place to another.:

from codefurther.directions import GetDirections

directions = GetDirections("Southampton, UK", "Winchester, UK")

if directions.found:
print(directions.heading)
for step in directions.steps:

print(step)
print(directions.footer)

When run, this code results in the following extract being printed to the display.:

These are the steps for the (walking) journey from Southampton, Southampton, UK to Winchester, Winchester, Hampshire, UK.
1. Head east (8 m / 1 min)
2. Turn left toward Brunswick Pl/A3024 (7 m / 1 min)
3. Turn right toward Brunswick Pl/A3024 (0.2 km / 3 mins)
.
.
.
39. Turn right onto Colebrook St (85 m / 1 min)
Map data ©2014 Google

It is possible to run the same code without first checking if the result was found. In that case, CodeFurther will simply
replace the header text with a message stating that the route could not be found, no direction steps will be returned,
and the footer will be blank too.:

from codefurther.directions import GetDirections

directions = GetDirections("123l123", "345345l34")

1.4. directions - Google maps routes 23

CodeFurther Documentation, Release 0.1.0.dev14

print(directions.heading)
for step in directions.steps:

print(step)
print(directions.footer)

When run, this code would produce the following output (returned by the GetDirections.heading property).

We couldn't find (walking) directions from: 123l123, to 345345l34.

The idea here is that when used in the classroom, the students will not be put off experimenting by having to remember
to check for the GetDirections.found property.

1.4.3 Directions API

Return the directions from a given start point to a given end point.

class directions.GetDirections(starting_point, end_point, mode=’walking’)
A wrapper for the gmaps Direction class to make it simpler to deal with in the classroom

The GetDirections class is inititialised with a starting point, an end_point and and optional transport mode.

>>> directions = GetDirections("southampton, UK","winchester, UK", mode="walking")

This returns an object that can then be interrogated for information about the route.

>>> if directions.found:
>>> print("Directions found!")
>>> else:
>>> print("Couldn't find a route.")

If a valid route was found, simplified and prettified text can be accessed through:

>>> directions.heading
>>> "These are the steps for the (walking) journey from Southampton, Southampton, UK to Winchester, Winchester, Hampshire, UK."

and:

>>> directions.footer
>>> "Map data ©2014 Google"

and the steps of the route can be accessed through the GetDirections.steps property, which returns a
list of str.

>>> directions.steps
>>> [
>>> "1. Head east (8 m / 1 min)",
>>> "2. Turn left toward Brunswick Pl/A3024 (7 m / 1 min)",
>>> "3. Turn right toward Brunswick Pl/A3024 (0.2 km / 3 mins)",
>>> "4. Turn right onto Brunswick Pl/A3024 (13 m / 1 min)",
>>> .
>>> .
>>> .
>>> "39. Turn right onto Colebrook St (85 m / 1 min)"
>>>]

The raw gmaps.Directions object can be accessed using:

24 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#list
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

>>> directions.raw

Once the object has been created, subsequent calls to the GetDirections.journey() method will create
new routes without the need to create a brand new GetDirections() object.

>>> new_directions = directions.new_journey("winchester, uk", "southampton, uk", "driving")

footer
Returns the text footer for this route.

Returns the text footer for this route which is usually a copyright notice - if valid. Or if not valid then a
null string is returned instead.

Returns _footer – A text copyright notice if it is valid, or a null string if the route is not valid.

Return type str

found
Reveals if the route specified was found.

Returns a boolean True if the route specified was found by Google, or False if the route could not be found.

Returns _found – True if the route was valid or False if the route was invalid.

Return type bool

heading
Returns the text heading for this route.

Returns the text heading for this route - if valid. Or if not valid then an appropriate message is returned
instead.

Returns _heading – A text description of the route if it is valid, or an appropriate message if the
route is not valid.

Return type str

new_journey(starting_point, end_point, mode=None)
Create a new journey, specifying start and end points and the mode of travel.

This method pretty much mirrors the GetDirections.__init__() method.

If the journey appears valid to Google Maps, then this method sets appropriate values
for the GetDirections.heading method, the GetDirections.footer and the
GetDirections.steps methods.

Parameters

• starting_point (str) – The text string that describes the starting point for the route

• end_point (str) – The text string that describes the end point for the route

• mode (str, optional) – Text string either “walking”, “driving”, “bicycling” or “transit”,
defaults to “walking”.

starting_point
str

The text string that describes the starting point for the route

end_point
str

1.4. directions - Google maps routes 25

http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

The text string that describes the end point for the route

mode
str

Text string either “walking”, “driving”, “bicycling” or “transit”. Note that transit doesn’t seem to be
widely supported outside of the US.

default_mode
str

The mode that was specified the first time the object instance was created.

Returns self – Returns an instance of the GetDirections object to allow for object chaining.

Return type GetDirections

raw
Provides access to the raw gmaps.directions.Directions class object.

Returns _directions – The raw Directions object.

Return type gmaps.Directions

steps
Returns a list of strings that describe the steps for this route.

Returns a list of strings or an empty list if the route is not valid.

Yields (str) : A generator of list of strings that describe the steps for this route, or an empty
list if the route is not valid.

1.5 CodeFurther utils

The utils module contains utility functions and classes used by the other modules in the suite.

utils.isolate_path_filename(uri)
Accept a url and return the isolated filename component

Accept a uri in the following format - http://site/folder/filename.ext and return the filename component.

Parameters uri (str) – The uri from which the filename should be returned

Returns file_component – The isolated filename

Return type str

1.6 CodeFurther errors

The errors module containing the exceptions that PythonTop40 uses

exception errors.CodeFurtherError
Base class for all exceptions

exception errors.CodeFurtherConversionError
This is raised when a conversion is specified, but causes an error

exception errors.CodeFurtherConnectionError
This is raised when a connection cannot be established to the remote server

26 Chapter 1. Contents

http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str
http://site/folder/filename.ext
http://docs.python.org/3.3/library/stdtypes.html#str
http://docs.python.org/3.3/library/stdtypes.html#str

CodeFurther Documentation, Release 0.1.0.dev14

exception errors.CodeFurtherReadTimeoutError
This is raised when an ongoing action takes longer than expected

exception errors.CodeFurtherHTTPError(message, return_code=0)
This exception is raised if an HTTP level error was experienced. i.e. no physical or connection error, but a web
server error was returned.

exception errors.CodeFurtherWeatherError
This is raised if a problem occurs when a weather forecast is being retrieved

1.7 Change Log for CodeFurther

1.7.1 v0.1.0.dev7 13th January 2015

• Still trying to optimize the requirements and (install_requires)

• Removed Munch requirement

• Removed nap requirement

• Added MarkupSafe requirement to install_requires

1.7.2 v0.1.0.dev6 13th January 2015

• Added Pull request from @msabramo SHA: cbcbafea74e1998e3740033e0271ab3cb11adc20 to remove addi-
tional restructured text chars that break the PyPI module

• Added dev requirement for restview so that I can test for the above

• Added setup requirement for python-gmaps (install_requires)

• Added setup requirement for requests-cache (install_requires)

1.7.3 v0.1.0.dev5 12th January 2015

• Tidied files in the MANIFEST.in

• Included NULL.rst in the MANIFEST.in

• Included requirements files in the MANIFEST.in - not sure if they should be there yet as I’m learning about
packaging Python modules

• Changes the MANIFEST.in to include codefurther/package_info.json

• Update CHANGES.RST

• Renamed CHANGES.rst to have lowercase extension

• Removed orphaned top40demo.py file from project route

1.7.4 v0.1.0.dev4 10th January 2015

• Minor fix to requirements files

1.7. Change Log for CodeFurther 27

CodeFurther Documentation, Release 0.1.0.dev14

1.7.5 v0.1.0.dev3 10th January 2015

• Minor fix to requirements files

1.7.6 v0.1.0.dev2 10th January 2015

• Merged PythonTop40 v0.1.6 (not 0.1.5 as the branch suggests)

• Added support for requests cache for top40

• Moved requests cache temp file to temp directory

• Made the test FileSpoofer class generic across multiple tests

• Added tests to check for malformed JSON in lyrics

• Removed some redundant tests

• Added code to test directions

• Added artist_exists() method for the lyrics module

• Changed the way lyrics handles HTTP errors

• Created helpers module for functions/classes across different modules

• Added PY2 / PY3 compatible code to several modules

ToDo:

• Add weather forecast support

• Add Premiership football leagues

• Add IMDB / Movie DB querying

• Lots of other ideas too

• etc.

28 Chapter 1. Contents

CHAPTER 2

CodeFurther

The CodeFurther library is designed to be used in UK schools to provide students with access to data that hope-
fully has some relevance for them. The hope is that by gaining access to meaningful data, they will be inspired to
CodeFurther.

CodeFurther is under active development and is licensed under the Apache2 license, so feel free to contribute and
report errors and suggestions.

Note: The CodeFurther package is designed to be used in UK schools to provide programmatic access to data that
describes the UK Top 40 singles and albums. The hope is that by providing simple interfaces to access information
that students may have an interest in, they may be inspired to CodeFurther. This documentation will therefore most
likely be aimed at teachers and education professionals, who may not have a deep knowledge of Python.

Warning: CodeFurther is currently designed to work with Python version 3. I have recently carried out some
work to make it run on Python 2 too, but this does need to be more thoroughly tested that my current Nose tests
allow. If you encounter any issues, or you’d like to submit a pull request, please contact me on BitBucket.

2.1 Modules in the Package

CodeFurther contains a number of modules that provide access to interesting data. Those modules are shown below:

Table 2.1: CodeFurther Modules

Module Description
top40 Provides access to the UK Top 40 charts for singles and albums.
lyrics Allows lyrics for a given artist and song title to be accessed within Python.
directions Allows Google Maps route directions to be accessed from within Python.

29

http://www.apache.org/licenses/LICENSE-2.0.html
https://bitbucket.org/dannygoodall/codefurther/pull-requests
https://bitbucket.org/dannygoodall/codefurther/issues
https://bitbucket.org/dannygoodall/codefurther/issues
https://bitbucket.org/dannygoodall/codefurther/pull-requests

CodeFurther Documentation, Release 0.1.0.dev14

30 Chapter 2. CodeFurther

CHAPTER 3

Features

CodeFurther provides:

• a list of the current Top 40 UK singles using the singles <top40.Top40.singles> property of the ~top40.Top40
class.

• a list of the current Top 40 UK albums using the albums <top40.Top40.singles> property of the ~top40.Top40
class.

• the ability to retrieve the lyrics for a given artist

• the ability to find all of the songs for a given artist

• the ability to search for a specific artist

31

CodeFurther Documentation, Release 0.1.0.dev14

32 Chapter 3. Features

CHAPTER 4

Installation

CodeFurther can be found on the Python Package Index PyPi here. It can be installed using pip, like so.

pip install codefurther

33

https://pypi.python.org/pypi/codefurther

CodeFurther Documentation, Release 0.1.0.dev14

34 Chapter 4. Installation

CHAPTER 5

Documentation

The documentation for CodeFurther can be found on the ReadTheDocs site.

5.1 Tests

To run the CodeFurther test suite, you should install the test and development requirements and then run nosetests.

$ pip install -r dev-requirements.txt
$ nosetests tests

5.2 Changes

See Changes <changes>.

5.3 Indices and tables

• genindex

• modindex

• search

35

http://codefurther.readthedocs.org/en/latest/index.html

CodeFurther Documentation, Release 0.1.0.dev14

36 Chapter 5. Documentation

Python Module Index

d
directions, 24

e
errors, 26

l
lyrics, 21

t
top40, 14

u
utils, 26

37

CodeFurther Documentation, Release 0.1.0.dev14

38 Python Module Index

Index

A
actual (top40.Change attribute), 17
albums (top40.Top40 attribute), 15
albums_chart (top40.Top40 attribute), 15
amount (top40.Change attribute), 17
artist (top40.Entry attribute), 17
artist_exists() (lyrics.Lyrics method), 21
artist_search() (lyrics.Lyrics method), 21
artist_songs() (lyrics.Lyrics method), 21

B
bad_response (lyrics.Lyrics attribute), 21
base_url (top40.Top40 attribute), 15

C
cache_config (top40.Top40 attribute), 15
cache_duration (top40.Top40 attribute), 15
Change (class in top40), 17
change (top40.Entry attribute), 17
Chart (class in top40), 18
CodeFurtherConnectionError, 26
CodeFurtherConversionError, 26
CodeFurtherError, 26
CodeFurtherHTTPError, 27
CodeFurtherReadTimeoutError, 26
CodeFurtherWeatherError, 27
current (top40.Chart attribute), 18

D
date (top40.Chart attribute), 18
default_mode (directions.GetDirections attribute), 26
direction (top40.Change attribute), 17
directions (module), 24

E
end_point (directions.GetDirections attribute), 25
entries (top40.Chart attribute), 18
Entry (class in top40), 16
error_format (lyrics.Lyrics attribute), 21
error_format (top40.Top40 attribute), 15

errors (module), 26

F
footer (directions.GetDirections attribute), 25
found (directions.GetDirections attribute), 25

G
GetDirections (class in directions), 24

H
heading (directions.GetDirections attribute), 25

I
isolate_path_filename() (in module utils), 26

L
Lyrics (class in lyrics), 21
lyrics (module), 21

M
mode (directions.GetDirections attribute), 26

N
new_journey() (directions.GetDirections method), 25
numWeeks (top40.Entry attribute), 17

P
position (top40.Entry attribute), 16
previousPosition (top40.Entry attribute), 17

R
raw (directions.GetDirections attribute), 26
retrieved (top40.Chart attribute), 18

S
singles (top40.Top40 attribute), 16
singles_chart (top40.Top40 attribute), 16
song_lyrics() (lyrics.Lyrics method), 22
starting_point (directions.GetDirections attribute), 25

39

CodeFurther Documentation, Release 0.1.0.dev14

status (top40.Entry attribute), 17
steps (directions.GetDirections attribute), 26

T
title (top40.Entry attribute), 17
Top40 (class in top40), 14
top40 (module), 14

U
utils (module), 26

40 Index

	Contents
	CodeFurther Installation
	top40 - UK Top40 Charts
	lyrics - Search for song lyrics
	directions - Google maps routes
	CodeFurther utils
	CodeFurther errors
	Change Log for CodeFurther

	CodeFurther
	Modules in the Package

	Features
	Installation
	Documentation
	Tests
	Changes
	Indices and tables

	Python Module Index

