

Code Style Guidelines

Check the sidebar for style guides for the different languages.

Python Style Guidelines

Style should follow PEP8 [https://www.python.org/dev/peps/pep-0008/] and PEP257 [https://www.python.org/dev/peps/pep-0257/] in cases where these guidelines
do not state a different preference.

Table of Contents

	Python Style Guidelines

	Line length.

	Numbers.

	Lists.

	Comprehensions.

	Function calls.

	Function and method definitions.

	Strings.

	Multi-line strings.

	Docstrings.

	Docstring markup.

Line length.

Line length should be at most 71 visible characters, so that it is
72 with newlines. This ensures that all lines obey PEP8 [https://www.python.org/dev/peps/pep-0008/] and that
all lines are the same length.

Numbers.

Numbers should always use separators.

number1 = 1_000
number2 = 100_000
number3 = 1_000_000

Lists.

list, set, dict objects should be defined
on a single line, if they fit.

some_list = [1, 34, 423, 12, 4, 10]
some_set = {1, 45, 233, 549}
some_dict = {'a': 10, 'b': 20, 'c': 10_000}

They should be defined on a line by line basis otherwise, with opening
and closing brackets on their own line. A comma should be used after
the last element too.

some_list = [
 some_very_long_list_element,
 some_other_very_long_list_element,
 some_even_very_very_long_list_element,
 and_so_on,
]

some_set = {
 some_very_long_set_element,
 some_other_very_long_set_element,
 some_even_very_very_long_set_element,
 and_so_on,
}

some_dict = {
 'some_long_key': some_very_long_set_element,
 'another_long_key': some_other_very_long_set_element,
 'key': some_even_very_very_long_set_element,
 'also_a_key': and_so_on,
}

Comprehensions.

Comprehensions should be done on a single line, if they fit.

list1 = [2*x for x in range(20)]
list2 = [2*x for x in range(20) if 2*x % 4 == 0]
set1 = {2*x for x in range(20)}
dict1 = {key: value for key, value in zip(range(10), (10, 20))}

If the the comprehension does not fit on a single line, try placing
the opening and closing brackets on separate lines.

some_very_long_variable_name = [
 some_element for some_element in some_long_container_name
]

some_other_very_long_variable_name = {
 key: value for key, value in zip(range(10), range(10, 20))
}

If the comprehension still does not fit, split it so that each
Python keyword begins on a new line, with the exception of
for and in which should be placed on the same line, if they
fit.

some_very_long_variable_name = [
 some_very_long_function_name(some_very_long_element_name)
 for some_very_long_element_name in some_long_container_name
 if some_very_long_element_name == 20
 and some_very_long_element_name % 2 == 1
]

some_other_very_long_variable_name = {
 key_name: value_name
 for key_name, value_name in zip(range(10), range(10, 20))
}

Function calls.

Function calls, with 3 or fewer parameters, may be done on a single
line without any parameter names.

some_variable = some_function(1, 2, 3)

They can also be done with parameter names, if they fit.

some_variable = some_function(param1=12, param2=32, param3=21)

Functions with more than 3 parameters must be called with each
parameter specified by name and on a separate line.

some_variable = some_function(
 param_name1=1,
 param_name2=2,
 param_name3=3,
 param_name4='4th',
)

This keeps everything readable and ensures that parameters are not
sensitive to order.

Function and method definitions.

Functions and methods should be defined so that they are on a single
line, if they fit.

def some_function(param1, param2, param3, keyword_param=10):
 return 12

If the function or method does not fit on a single line it should be
split so that each parameter is on a separate line. The closing
): is at the same indentation as the def keyword.

def some_function(
 some_very_long_parameter_name1,
 some_very_long_parameter_name2,
 some_keyword_parameter=12,
):
 return 12

Strings.

Strings should use ‘, unless ‘ needs to be a character in the
string.

some_string = 'abcdefg'

Multi-line strings.

Opening and closing brackets should be on separate lines and
spaces should be at the end of the line, not the start.

some_multiline_string = (
 'this is a '
 'multiline '
 'string.'
)

Docstrings.

Docstrings should open and close with three double quotes “”“.
The first line of a docstring should always be on the line below
the opening “”“. The closing “”“ always needs to be on its own
line and preceded by an empty line. The docstring must be followed by
an empty line.

def some_fn():
 """
 Do something.

 """

 foo()
 return bar(12)

Docstring markup.

Docstrings should use numpy style formatting [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html]. An explanation of
the markup is provided here [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#python-roles], and this is considered required reading.

The examples below also explain how the markup is used but it is not
a substitute for reading the linked documents.

def some_fn(param1, param2, param3, param4, param5=12):
 """
 Do something.

 There are two general rules. Use a period in front of a name
 to create a hyperlink to where that name is documented,
 for example :class:`.SomeType`. Use a ~ at the start of a
 name to remove any preceding names in the compiled
 documentation, for example
 :class:`~.module.submodule.SomeType` will only display
 "SomeType" in the compiled documentation. The modules are
 added in front of the name to resolve any ambiguity in
 name resolution, for example if two classes in your library
 have the same name but are found in different submodules.
 Periods should only be used in front of names which are part
 of your own library.

 When literal code values are specified they should be between
 two backticks, for example if I was to say that the default
 value of `param5` is ``12``. Argument names, such as
 `param5` or `param1` are surrounded by a single backtick.

 Simple code expressions, such as ``UserDefinedType(12) + 12``
 are also surrounded by two backticks. When multi-line or
 complicated code expressions are to be described, they
 should be performed in a code block.

 .. code-block:: python

 # This is a multi-line code example.
 variable_name = 'one two three'
 for i in range(10):
 print(i**2)

 Sometimes, when talking about an attribute in a class, we
 want to make it clear to the reader what attribute we are
 referring as well as the class, so the
 :attr:`.SomeTypeName.attr_name` syntax is used. However, as we
 continue to refer to the attribute, it is
 unnecessary to continue stating the class explicitly in the
 compiled documentation, so the :attr:`~.SomeTypeName.attr_name`
 syntax can be used. The ~ can be added to
 remove the class name from the compiled documentation. Use
 the ~ when appropriate to maximize the readability of the
 compiled documentation.

 Parameters

 param1 : :class:`int`
 When the type being described is a builtin type, such as
 :class:`int` or :class:`str`, it should have the form
 the :class:`type_name`.

 param2 : :class:`.UserDefinedType`
 When the type being described refers to a user defined
 type within the same library, make sure the type name
 is preceded by a period.

 param3 : :class:`other.UserDefinedType`
 When the type being described refers to a user defined
 type in another library, state the name of the library
 and name the type. If the type is in a submodule of the
 library DO NOT name the submodules. For example, we may
 want to document the use of a :class:`numpy.ndarray`.

 param4 : :class:`~.mod.submod.subsubmod.UserDefinedType`
 Sometimes there may be two user defined types in the
 same library with the same name but defined in different
 submodules of the library. If we want to refer to form a
 hyperlink, we have to add the the necessary submodule
 names in front of the user defined type's name, so that
 it is unambiguous which type is being referred to. The
 ~ means that the submodule names will be removed from the
 compiled documentation. This means that the ~ can be
 removed or kept, depending on what is less confusing to
 the reader.

 param5 : :class:`int`, optional
 When the parameter is optional, it should be stated as
 optional after the type declaration.

 Returns

 :class:`int`
 Returns a number.

 """

 return 12

class SomeType:
 """
 An example type.

 Note that class docstrings should not document the attributes
 defined in a parent class, unless there is something different
 about them.

 Attributes

 alpha : :class:`int`
 Attributes defined within this class are referred to by
 the :attr:`alpha` or :attr:`beta` syntax.

 beta : :class:`str`
 Attributes of a different class are referred to by
 preceding with a period and the type name, for example
 :attr:`.SomeOtherType.attribute_name`.

 """

 def __init__(self):
 self.alpha = 1
 self.beta = 'b'

C++ Style Guidelines

Function Declarations

Index

 nav.xhtml

 Table of Contents

 		
 Code Style Guidelines

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

