

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	cockatiel 0.0.2 documentation

cockatiel

Cockatiel is a replicating file server for small-scale setups. It is intended
to be used e.g. for handling user-uploaded files to a web application
in a redundant way.

Features

	Uploading and deleting files

	Asynchronous replication across multiple nodes

	Automatic failure recovery

Documentation content

	Using cockatiel
	Requirements

	Installation

	Command-line options

	Running cockatiel as a service

	Adding new nodes to the cluster

	Using cockatiel for a Django application

	Design decisions
	Assumptions

	Implementation

	Failure modes

	HTTP API
	API methods

	Contribution guide
	Development setup

	Running the software

	Running the test suite

	Building the documentation

	Sending a patch

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	cockatiel 0.0.2 documentation

Using cockatiel

Requirements

	cockatiel requires Python 3.4 or newer

	cockatiel has only been tested in Linux so far

Installation

Installing cockatiel is really straightforward. We recommend that you set it up
inside a virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] in order to isolate its dependencies from other
python projects that you might use. Inside the Python 3 virtual environment you
can then just run:

$ pip install cockatiel

to obtain the latest release.

Warning

Before using cockatiel for your project, please make sure that
you read and understood the Assumptions that cockatiel
makes about your requirements.

Command-line options

Cockatiel is currently configured via command-line parameters. Logging is
performed via stdout.

Simple replicating file storage.

usage: python3 -m cockatiel [-h] [--port PORT] [--host HOST] --storage PATH
 --queue PATH [--url URL] [--node URL]
 [--proxy URL] [-v]

	Options:

	

	
--port=8080, -p=8080

		The port that this cockatiel server should bind to.

	
--host=0.0.0.0, -H=0.0.0.0

		The IP address of the interface that this cockatiel server should listen on.

	
--storage
	The path to the directory to store the actual files in. The cockatiel process needs permission to read and write files and create new subdirectories at this location.

	
--queue
	Path to a directory to store the retry queue. The cockatiel process needs permission to read, write and delete file at this location.

	
--url=
	The URL this service is publicly reachable at, e.g. http://10.1.1.1:8123/foo or https://mydomain.com/media, depending on your reverse proxy setup.

	
--node
	Specify this option once for every other node on your cluster. Every value should be a valid URL prefix like http://10.1.1.2:8012

	
--proxy=
	Use a HTTP proxy for outgoing connections. This is not recommended to use and is mainly used internally during testing to simulate flaky networks.

	
-v=False, --verbose=False

		Enable debugging output. Without this flag, only errors and warnings are logged.

Running cockatiel as a service

To automatically run cockatiel at system startup, you can register it as a
system service.

TBD systemd example

Adding new nodes to the cluster

If you’re system is growing and you’d like to add a new node to the cluster,
you’ll need to go through the following steps in the given order:

	Set up and start cockatiel on the new server, including all existing servers in
its cluster configuration.

	Add the URL of the new server to the cluster configuration on all other nodes,
then restart those nodes.

	Manually copy over the complete storage directory from one of the existing nodes
to your new node, e.g. using rsync.

Using cockatiel for a Django application

We have a Django storage backend for cockatiel available at django-cockatiel [https://github.com/raphaelm/django-cockatiel].

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	cockatiel 0.0.2 documentation

Design decisions

Cockatiel doesn’t try to be a CDN, but to implement the simplest
solution that fulfills our needs. Currently, cockatiel makes a number
of assumptions that are outlined below. If those assumptions do not apply
to your needs, you should probably be looking for a CDN-like solution
or for a proper distributed file system or block device.

Assumptions

All files are on all servers. Cockatiel currently does not implement any
kind of sharding and we do not plan to do so, so Cockatiel is designed for
file collections that can easily fit on a modern hard drive.

File names will be (partly) auto-generated. In order to avoid collisions,
cockatiel will insert a file’s SHA1 checksum and the current timestamp
into the filename. Therefore, the file will not be stored exactly at the
location the client specified. Please note that this might disclose when the
file was created.

Files get replicated asynchronously. If your network connection is slow
or flaky, this can lead to a delay between a file being on one server and a
file being distributed across all servers.

Files don’t change. It is not possible to change a file through cockatiel.
If you want to replace a file, just delete the old one and upload a new one
that will get a new name (due to the checksum that will be inserted into the
filename).

Adding or removing nodes may require manual intervention. There currently
is neither automatic service discovery nor cluster configuration management
during runtime.

Files are being served by a different webserver. Cockatiel does not
intend to be a high-performance web server. If your files get accessed a lot,
please use a proper web server like nginx and point it to the cockatiel’s
storage directory.

Implementation

	cockatiel is a stand-alone service implemented in Python using asyncio.

	The service exposes a very simple HTTP API that is used both for
the communication between a client and the service as well as for the
replication between the cockatiel nodes.

	Every operation gets inserted into a queue. This queue is persisted to a
directory on the file system. An operation stays inside the queue as long
as it has not been accepted by all neighbor servers.

	In order to resolve conflicts between creations and deletions, we keep a
log of all files deleted recently and any node will not accept replications
for a files in this log. Due to the time-based filenames, we can safely
assume that a file won’t be re-uploaded with the same name after it has
been deleted.

Failure modes

cockatiel is currently designed to automatically cope with the following
events:

Server downtime: If one node of the cluster goes offline, the other
servers will queue up all operations and retry them periodically. The
retrial interval is currently configured to increase from twice a second
two once every 30 seconds if the server is down for a longer period.
Therefore, once the server returns, the other servers will start pushing
all changes within 30 seconds.

Network corruption: If a file arrives corrupted after a replication,
e.g. the calculated SHA1 sums of the sender and the receiver mismatch,
the operation will be aborted and retried.

Network partition: If you have three nodes A, B, and C, and the network
between A and C gets interrupted, an operation performed on A will still
be propagated to server C.

Connection interruption: Any operation stays queued for replication
as long as the receiving server did not acknowledge it. Therefore,
if an operation is interrupted, it will be retried.

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	cockatiel 0.0.2 documentation

HTTP API

Cockatiel exposes a HTTP API that you can use to store, retrieve
and delete files from its storage. The same API is being used by
cockatiel for the communication between different nodes.

API methods

	
GET /(filename)

	Returns the file with the given filename.

	Request Headers:

		
	If-None-Match [http://tools.ietf.org/html/rfc7232#section-3.2] – A value that you obtained from the
ETag header of a response that you
still have in your cache.

	Response Headers:

		
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – The content type of a file, determined
by its extension

	ETag [http://tools.ietf.org/html/rfc7231#section-2.3] – A hash value specific to this file. You can
specify this in the If-None-Match request
header for cache validation.

	Cache-Control [http://tools.ietf.org/html/rfc7234#section-5.2] – Cache control instructions, normally
telling you that you can cache this for
at least a year.

	X-Content-SHA1 – The SHA1 hash of the transmitted file

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – if the file exists and can be read

	304 Not Modified [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5] – if you provided If-None-Match

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – if the file does not exist

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – on any internal errors

	
PUT /(filename)

	Creates a new file with the given filename. You are not
guaranteed that the file is actually created with the given name,
you should expect to get a new name in the Location response
header.

	Request Headers:

		
	X-Content-SHA1 – The SHA1 hash of the transmitted file (optional)

	Response Headers:

		
	Location [http://tools.ietf.org/html/rfc7231#section-7.1.2] – The relative or abosulte URL to the file
with the name that acutally has been used
when storing the file.

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – if the file did not exist on this server before

	302 Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3] – if the file already existed on this server previously

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – if you specified a SHA1 hash and it does not match the
hash calculated on the server

	408 Request Timeout [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9] – if data is coming in to slow

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – if the file is known to be already deleted

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – on any internal errors

	
DELETE /(filename)

	Deletes the file of the given name.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – if the file could be deleted successfully

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – if the file did not exist

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – on any internal errors

	
HEAD /(filename)

	Returns the meta data for the file with the given filename. This
behaves exactly the same as GET, it just does not return the
file’s content.

	Request Headers:

		
	If-None-Match [http://tools.ietf.org/html/rfc7232#section-3.2] – A value that you obtained from the
ETag header of a response that you
still have in your cache.

	Response Headers:

		
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – The content type of a file, determined
by its extension

	ETag [http://tools.ietf.org/html/rfc7231#section-2.3] – A hash value specific to this file. You can
specify this in the If-None-Match request
header for cache validation.

	Cache-Control [http://tools.ietf.org/html/rfc7234#section-5.2] – Cache control instructions, normally
telling you that you can cache this for
at least a year.

	X-Content-SHA1 – The SHA1 hash of the file

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – if the file exists and can be read

	304 Not Modified [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5] – if you provided If-None-Match

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – if the file does not exist

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – on any internal errors

	
GET /_status

	Returns status information on this node. This currently includes a
dictionary that contains one dictonary for every neighbor node. This
inner dictionary contains the current length of the replication queue,
i.e. the number of operations known to this node that have not yet been
sent to the respective other node.

Example response:

{
 "queues": {
 "http://localhost:9001": {
 "length": 4
 }
 }
}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – in any known case

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	cockatiel 0.0.2 documentation

Contribution guide

You are interesting in contributing to Cockatiel? That is awesome! If
you run into any problems with the steps below, please do not hesitate
to ask!

If you’re new to contributing to open source software, don’t be afraid
of doing so. We’ll happily review your code and give you constructive and
friendly feedback on your changes.

Development setup

First of all, make sure that you have Python 3.4 installed. We highly
recommend that you use a virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] for all of the following,
to keep this project’s dependencies isolated from other Python projects
you might use or work on.

To get startet, first of all clone our git repository:

$ git clone git@github.com:raphaelm/cockatiel.git
$ cd cockatiel/

The second step is to make sure you have a recent version of pip and all
our requirements:

$ pip install -U pip
$ pip install -Ur requirements.txt

There is no third step :)

Running the software

Running the cockatiel server is as easy as executing:

$ python3 -m cockatiel

within the root directory of the repository.

Running the test suite

Cockatiel’s tests are split up into two parts. The unit tests are testing
single, isolated components of the codebase, the functional tests are
performing end-to-end tests of the API and they run tests on whole simulated
cluster setups. Therefore, the unit tests tend to run really fast while
running the functional tests might take a longer period of time. You can
run them with the following commands:

$ py.test unit_tests
$ py.test functional_tests

While working on the project, it may come useful to run only part of the test
suite. You can either specify a specific test file or even filter by the name
of the test:

$ py.test unit_tests/test_queue.py
$ py.test functional_tests/test_queue.py -kdelete

Building the documentation

To build the documentation as HTML files, you need to issue the following
commands:

$ cd docs/
$ make html

You can then point your browser to <repo-path>/docs/_build/html/index.html.

Sending a patch

If you improved cockatiel in any way, we’d be very happy if you contribute it
back to the main code base! The easiest way to do so is to create a pull request [https://help.github.com/articles/creating-a-pull-request/]
on our GitHub repository [https://github.com/raphaelm/cockatiel].

Before you do so, please squash all your changes [https://davidwalsh.name/squash-commits-git] into one single commit. Please
use the test suite (see above) to check whether your changes break any existing
features. Please also run the following command to check for any code style
issues:

$ flake8 cockatiel unit_tests functional_tests

We automatically run the tests and the code style check on every pull request on
Travis CI and we won’t accept any pull requets without all tests passing.

If you add a new feature, please include appropriate documentation into your patch.
If you fix a bug, please include a regression test, i.e. a test that fails without
your changes and passes after applying your changes.

Note

If the tests fail on the Travis CI server but succeed on your local
machine most of the time, don’t panic. Due to the nature of some of the
functional tests, they are not completely deterministic.

Please note that we have a Code of Conduct in place that applies to all communication around the project.

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	cockatiel 0.0.2 documentation

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project maintainer at mail@raphaelmichel.de. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4/

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	cockatiel 0.0.2 documentation

 HTTP Routing Table

 /(filename) |
 /_status

 			

 		
 /(filename)	

 	
 	
 HEAD /(filename)	

 	
 	
 GET /(filename)	

 	
 	
 PUT /(filename)	

 	
 	
 DELETE /(filename)	

 			

 		
 /_status	

 	
 	
 GET /_status	

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	cockatiel 0.0.2 documentation

Index

 Copyright 2016, Raphael Michel.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

