

Coalesce

Coalesce’s documentation has moved!

You can find it at https://intellitect.github.io/Coalesce.

Index

Welcome to Coalesce’s documentation!

Coalesce is a framework based on ASP.NET Core that makes rapidly building awesome websites much easier. A project that would take a 3 months to complete now takes 1 month. We built this because we got tired of writing all the boiler plate code that is necessary to make amazing sites.

It does this by allowing developers to focus on the creative aspects of the solution. The more mundane parts are generated automatically. This means that you get to focus on data modeling, business logic and front-end development. Coalesce does the plumbing.

Here is a typical workflow

	Build an EF Core data model with business logic

	Coalesce generates controllers, TypeScript view models, API and view model documentation, and admin pages/examples

	Build an interactive and intuitive user experience

	Rinse and repeat

Core Features

	Built on the latest Microsoft ASP.NET Core

	Easy to learn

	TypeScript from the ground up

	Flexibility to use MVC patterns as required

	Admin pages for all your models are build automatically and include features like searching, sorting, and paging

	Robust documentation for the framework

	Automatically generated documentation for the API layer and TypeScript view models

	Feature rich TypeScript view models that can be easily extended

	Many extension points for customizations

	Abstraction that doesn’t require you know how everything works

	Security and data trimming by role is built in

	Flexibility about which data to return to the client

	Open source

Is Coalesce for Everyone and Every Project?

Coalesce was designed to create line-of-business applications. It provides a more customizable and maintainable alternative to off the shelf customizable products like SharePoint and Sales Force.

You should consider using Coalesce if your project:

	Is small to medium size (1-200 classes)

	Requires an interactive user experience

	Has data entry requirements, especially forms, tables, etc.

	Needs to get started quickly with functional prototypes that can become production software

Design Decisions and Limitations

Coalesce is specifically designed to meet the needs of web developers. However, there are lots of ways to do this. We have made a set of decisions which we believe makes for a great development experience

	ASP.NET Core: there is no intent to back port this to an earlier version

	EF Core for the object relational mapper

	Currently uses the full framework because .NET Core doesn’t supported the required functionality, yet

	Knockout for client-side data binding

	Business logic most easily lives in the model classes

	Coalesce is designed for relational databases. This might change in the future, but not until we have a compelling use case.

How Does it Work?

After you create your classes and the EF data context, Coalesce uses this information to generate code. When the Coalesce CLI (command line interface) is run, the following things happen:

	The model is validated to ensure that all the Coalesce specific requirements are met. This includes things like ensuring that all classes have a primary key assigned, validating that linked child objects have a key to their parent, etc. If issues are found, generation stops and the errors are displayed with advise to fix the issues.

	The core files needed for Coalesce are copied to the target project. This includes TypeScript base classes, customizable templates, and other files for extension points. Each file is copied twice, once as a file that can be modified in the project and once as an original file. This ensures that if any changes are made by the user these files Coalesce will not overwrite the your changes.

	The API controllers are generated. One is generated for each object. This includes methods that get a list of items, get a specific item, save an item, etc.

	The TypeScript view models are created. There are two view models for each object. One is a list view model which allows for getting an displaying lists of a type of object. This includes full functionality to sort, filter, search, page, etc. Additionally, a view model that represents the individual object is also created. This has all the properties and methods of the server side object. This is basically a client-side proxy object for representing and manipulating the object on the server side. These objects seamlessly use the API controllers to interact with the server.

	Next, the View controller are created. One is create for each model class and provide a tabular view, a card view (for mobile), an editor, and documentation.

	Finally, the CSHTML views for the controller are created. These are the actual CSHTML for the above controllers. These not only provide administrative view and editing features, but also serve as an example of how to use the framework

General Guidance

Here are a few things we have found helpful when using Coalesce

	Learn and embrace the Coalesce paradigm and work with it rather than trying to do things another way.

	Following what we refer to as the ‘well worn path’ is very helpful. Try to stick to standard ways to do things rather than trying to use esoteric features.

	Keep your models as consistent and straightforward as possible. Use relational modeling best practices.

	Remember that public methods on your class models are added to the client side view models and this makes calling business logic from the client really easy.

	Don’t be afraid to fall back to building parts of your site using traditional methods. Coalesce isn’t right for everything. But, honestly, we have only done this a few times, like 3.

The Story

Why Coalesce

In 2014 several developers from IntelliTect got together to talk about our craft. There were lots of different backgrounds, but recently we had all been writing web code in C#. We discussed things we enjoyed and things we dreaded. There was an underlying commitment to providing customers with great sites at a reasonable cost. However, those things often seemed at odds because of the complexity of web development.

The Problem

For example, writing AJAX drop down lists with type ahead takes quite a bit of plumbing. Layer onto this the need for view models that allow for validation and saving as the user moves from field to field. We absolutely want want to deliver visually pleasing sites with complex UI paradigms. However, all this excellence adds up: complex view models, complex APIs, data binding, ugh.

Then there is that sinking feeling when you have to add another class to the project knowing that you are going to need to create all this yet again and you consider taking short cuts. Will there really be more than about 20 items in this table, maybe we don’t need paging. Inevitably, the customer asks for admin screens. We consider giving them SQL Server Management Console and then consider using the built in ASP.NET list and editor pages. Better sense wins out and we end up spending two weeks building slick admin pages with paging, searching, sorting, etc.

The Path to the Solution

That evening we starting talking about the things we loved to do:

	Data modeling

	Figuring out and writing business logic

	Working with customers

	Making cool user interfaces

	Creating something new and awesome

We also lists things that we didn’t enjoy

	Writing the same controller again

	Creating a view model for a class that is similar but different from another one in the project

	Putting sorting and paging on every admin page

	Basically doing anything that feels repetitive or boilerplate

Over the next few months we talked about this issue, but couldn’t find the right abstraction. We talked about other solutions that solve parts of the problem and considered putting together something from several pieces. Nothing felt unified and we ended up with leaky abstractions. We needed some way to divide the problem so that we could build the fun stuff and have something generate the boring stuff. This solution needed to be robust enough to satisfy our customer’s needs and also be of use to developers without their needing to know the inner workings of the system.

Our Solution

What if we could build the models and business logic and have a tool build everything except the UI? There are great tools like Entity Framework for modeling and good tooling for minimizing duplicate code in user interfaces. And so Coalesce was born, a tool that would bring together the backend and front end development. ‘

Coalesce takes Entity Framework Core models and builds controllers, TypeScript view models, and admin pages automatically. These are built in a general way so that they can be applied to many different scenarios. There will always be pages that need to be written by hand and we intentionally don’t support many edge cases in order to keep things simple. There is nothing wrong with building something by hand.

How has it Worked?

We have been using Coalesce for many of our web projects with great success. Typically, a project is taking about 1/3 the time it was taking before once developers ramp up. The ramp up on Coalesce has typically been a couple of days. We realized that in order for Coalesce to be useful it need to be intuitive to use and easy to understand. We have intentionally used simple paradigms to minimize the learning curve. There are complex bits, but hopefully, those are well hidden and documented as needed.

Include Tree

When Coalesce maps from the your POCO objects that are returned from EF Core queries, it will follow a structure called an IncludeTree to determine what relationships to follow and how deep to go in re-creating that structure in the mapped DTOs.

[[toc]]

Purpose

Without an IncludeTree present, Coalesce will map the entire object graph that is reachable from the root object. This can often spiral out of control if there aren’t any rules defining how far to go while turning this graph into a tree.

For example, suppose you had the following model with a many-to-many relationship (key properties omitted for brevity):

public class Employee
{
 [ManyToMany("Projects")]
 public ICollection<EmployeeProject> EmployeeProjects { get; set; }

 public static IQueryable<Employee> WithProjectsAndMembers(AppDbContext db, ClaimsPrincipal user)
 {
 // Load all projects of an employee, as well as all members of those projects.
 return db.Employees
 .Include(e => e.EmployeeProjects)
 .ThenInclude(ep => ep.Project.EmployeeProjects)
 .ThenInclude(ep => ep.Employee);
 }
}

public class Project
{
 [ManyToMany("Employees")]
 public ICollection<EmployeeProject> EmployeeProjects { get; set; }
}

public class EmployeeProject
{
 public Employee Employee { get; set; }
 public Project Project { get; set; }
}

Now, imagine that you have five employees and five projects, with every employee being a member of every project (i.e. there are 25 EmployeeProject rows).

Your client code makes a call to the Coalesce-generated API to load Employee #1 using the custom data source:

 Includes String

Includes String

Coalesce provides a number of extension points for loading & serialization which make use of a concept called an “includes string” (also referred to as “include string” or just “includes”).

[[toc]]

Includes String

The includes string is simply a string which can be set to any arbitrary value. It is passed from the client to the server in order to control data loading and serialization. It can be set on both the TypeScript ViewModels and the ListViewModels.

 Attributes

Attributes

Coalesce provides a number of C# attributes that can be used to decorate your model classes and their properties in order to customize behavior, appearance, security, and more. Coalesce also supports a number of annotations from System.ComponentModel.DataAnnotations.

[[toc]]

Coalesce Attributes

Browse the list in the sidebar to learn about the attributes that Coalesce provides that can be used to decorate your models.

ComponentModel Attributes

Coalesce also supports a number of the built-in System.ComponentModel.DataAnnotations attributes and will use these to shape the generated code.

[Display]

The displayed name and description of a property, as well as the order in which it appears in generated views, can be set via the [Display] attribute. By default, properties will be displayed in the order in which they are defined in their class.

[DisplayName]

The displayed name of a property can also be set via the [DisplayName] attribute.

[Required]

Properties with [Required] will generate client validation rules. See [ClientValidation].

[Range]

Properties with [Range] will generate client validation rules. See [ClientValidation].

[MinLength]

Properties with [MinLength] will generate client validation rules. See [ClientValidation].

[MaxLength]

Properties with [MaxLength] will generate client validation rules. See [ClientValidation].

[ForeignKey]

Normally, Coalesce figures out which properties are foreign keys, but if you don’t use standard EF naming conventions then you’ll need to annotate with [ForeignKey] to help out both EF and Coalesce. See the Entity Framework Relationships [https://docs.microsoft.com/en-us/ef/core/modeling/relationships] documentation for more.

[InverseProperty]

Sometimes, Coalesce (and EF, too) can have trouble figuring out what the foreign key is supposed to be for a collection navigation property. See the Entity Framework Relationships [https://docs.microsoft.com/en-us/ef/core/modeling/relationships] documentation for details on how and why to use [InverseProperty].

[DatabaseGenerated]

Primary Keys with [DatabaseGenerated(DatabaseGeneratedOption.None)] will be settable on the client and will be appropriately handled by the Standard Behaviors on the server. Currently unsupported on the Knockout front-end stack.

[NotMapped]

Model properties that aren’t mapped to the database should be marked with [NotMapped] so that Coalesce doesn’t try to load them from the database when searching or carrying out the Default Loading Behavior.

 Behaviors

Behaviors

In a CRUD system, creating, updating, and deleting are considered especially different from reading. In Coalesce, the dedicated classes that perform these operations are derivatives of a special interface known as the IBehaviors<T>. These are their stories.

Coalesce separates out the parts of your API that read your data from the parts that mutate it. The read portion is performed by Data Sources, and the mutations are performed by behaviors. Like data sources, there exists a standard set of behaviors that Coalesce provides out-of-the-box that cover the most common use cases for creating, updating, and deleting objects in your data model.

Also like data sources, these functions can be easily overridden on a per-model basis, allowing complete control over the ways in which your data is mutated by the APIs that Coalesce generates. However, unlike data sources which can have as many implementations per model as you like, you can only have one set of behaviors.

[[toc]]

Defining Behaviors

By default, each of your models that Coalesce exposes will utilize the standard behaviors (IntelliTect.Coalesce.StandardBehaviors<T, TContext>) for the out-of-the-box API endpoints that Coalesce provides. These behaviors provide a set of create, update, and delete methods for an EF Core DbContext, as well as a plethora of virtual methods that make the StandardBehaviors a great base class for your custom implementations. Unlike data sources which require an annotation to override the Coalesce-provided standard class, the simple presence of an explicitly declared set of behaviors will suppress the standard behaviors.

::: tip Note
When you define a set of custom behaviors, take note that these are only used by the standard set of API endpoints that Coalesce always provides. They will not be used to handle any mutations in any Methods you write for your models.
:::

To create your own behaviors, you simply need to define a class that implements IntelliTect.Coalesce.IBehaviors<T>. To expose your behaviors to Coalesce, either place it as a nested class of the type T that your behaviors are for, or annotate it with the [Coalesce] attribute. Of course, the easiest way to create behaviors that doesn’t require you to re-engineer a great deal of logic would be to inherit from IntelliTect.Coalesce.StandardBehaviors<T, TContext>, and then override only the parts that you need.

public class Case
{
 public int CaseId { get; set; }
 public int OwnerId { get; set; }
 public bool IsDeleted { get; set; }
 ...
}

[Coalesce]
public class CaseBehaviors : StandardBehaviors<Case, AppDbContext>
{
 public CaseBehaviors(CrudContext<AppDbContext> context) : base(context) { }

 public override ItemResult BeforeSave(SaveKind kind, Case oldItem, Case item)
 {
 // Allow admins to bypass all validation.
 if (User.IsInRole("Admin")) return true;

 if (kind == SaveKind.Update && oldItem.OwnerId != item.OwnerId)
 return "The owner of a case may not be changed";

 // This is a new item, OR its an existing item and the owner isn't being modified.
 if (item.CreatedById != User.GetUserId())
 return "You are not the owner of this item."

 return true;
 }

 public override ItemResult BeforeDelete(Case item)
 => User.IsInRole("Manager") ? true : "Unauthorized";

 public override Task ExecuteDeleteAsync(Case item)
 {
 // Soft delete the item.
 item.IsDeleted = true;
 return Db.SaveChangesAsync();
 }
}

Dependency Injection

All behaviors are instantiated using dependency injection and your application’s IServiceProvider. As a result, you can add whatever constructor parameters you desire to your behaviors as long as a value for them can be resolved from your application’s services. The single parameter to the StandardBehaviors is resolved in this way - the CrudContext<TContext> contains the common set of objects most commonly used, including the DbContext and the ClaimsPrincipal representing the current user.

Standard Behaviors

The standard behaviors, IntelliTect.Coalesce.StandardBehaviors<T> and its EntityFramework-supporting sibling IntelliTect.Coalesce.StandardBehaviors<T, TContext>, contain a significant number of properties and methods that can be utilized and/or overridden at your leisure.

Properties

 Data Sources

Data Sources

In Coalesce, all data that is retrieved from your database through the generated controllers is done so by a data source. These data sources control what data gets loaded and how it gets loaded. By default, there is a single generic data source that serves all data for your models in a generic way that fits many of the most common use cases - the Standard Data Source.

In addition to this standard data source, Coalesce allows you to create custom data sources that provide complete control over the way data is loaded and serialized for transfer to a requesting client. These data sources are defined on a per-model basis, and you can have as many of them as you like for each model.

[[toc]]

Defining Data Sources

By default, each of your models that Coalesce exposes will expose the standard data source (IntelliTect.Coalesce.StandardDataSource<T, TContext>). This data source provides all the standard functionality one would expect - paging, sorting, searching, filtering, and so on. Each of these component pieces is implemented in one or more virtual methods, making the StandardDataSource a great place to start from when implementing your own data source. To suppress this behavior of always exposing the raw StandardDataSource, create your own custom data source and annotate it with [DefaultDataSource].

To implement your own custom data source, you simply need to define a class that implements IntelliTect.Coalesce.IDataSource<T>. To expose your data source to Coalesce, either place it as a nested class of the type T that you data source serves, or annotate it with the [Coalesce] attribute. Of course, the easiest way to create a data source that doesn’t require you to re-engineer a great deal of logic would be to inherit from IntelliTect.Coalesce.StandardDataSource<T, TContext>, and then override only the parts that you need.

public class Person
{
 [DefaultDataSource]
 public class IncludeFamily : StandardDataSource<Person, AppDbContext>
 {
 public IncludeFamily(CrudContext<AppDbContext> context) : base(context) { }

 public override IQueryable<Person> GetQuery(IDataSourceParameters parameters)
 => Db.People
 .Where(f => User.IsInRole("Admin") || f.CreatedById == User.GetUserId())
 .Include(f => f.Parents).ThenInclude(s => s.Parents)
 .Include(f => f.Cousins).ThenInclude(s => s.Parents);
 }
}

[Coalesce]
public class NamesStartingWithA : StandardDataSource<Person, AppDbContext>
{
 public NamesStartingWithA(CrudContext<AppDbContext> context) : base(context) { }

 public override IQueryable<Person> GetQuery(IDataSourceParameters parameters)
 => Db.People.Include(f => f.Siblings).Where(f => f.FirstName.StartsWith("A"));
}

The structure of the IQueryable built by the various methods of StandardDataSource is used to shape and trim the structure of the DTO as it is serialized and sent out to the client. One may also override method IncludeTree GetIncludeTree(IQueryable<Person> query, IDataSourceParameters parameters) to control this explicitly. See Include Tree for more information on how this works.

::: warning
If you create a custom data source that has custom logic for securing your data, be aware that the default implementation of StandardDataSource (or your custom default implementation - see below) is still exposed unless you annotate one of your custom data sources with [DefaultDataSource]. Doing so will replace the default data source with the annotated class for your type T.
:::

Dependency Injection

All data sources are instantiated using dependency injection and your application’s IServiceProvider. As a result, you can add whatever constructor parameters you desire to your data sources as long as a value for them can be resolved from your application’s services. The single parameter to the StandardDataSource is resolved in this way - the CrudContext<TContext> contains the common set of objects most commonly used, including the DbContext and the ClaimsPrincipal representing the current user.

Consuming Data Sources

 Methods

Methods

Any public methods you place on your POCO classes that are annotated with the [Coalesce] will get built into your TypeScript ViewModels and ListViewModels, and API endpoints will be created for these methods to be called. Both instance methods and static methods are supported. Additionally, any instance methods on Services will also have API endpoints and TypeScript generated.

[[toc]]

Parameters

The following parameters can be added to your methods:

Primitives, Scalars, & Dates

Most common built-in primitive and scalar data types (numerics, strings, booleans, enums, DateTime, DateTimeOffset), and their nullable variants, are accepted as parameters to be passed from the client to the method call.

Objects

Any object types may be passed to the method call. These may be existing Entity Models or External Types. When invoking the method on the client, the object’s properties will only be serialized one level deep. If an object parameter has additional child object properties, they will not be included in the invocation of the method - only the object’s primitive & date properties will be deserialized from the client.

Files

Methods can accept file uploads by using a parameter of type IntelliTect.Coalesce.Models.IFile (or any derived type, like IntelliTect.Coalesce.Models.File).

ICollection<T> or IEnumerable<T>

Collections of any of the above valid parameter types above are also valid parameter types.

DbContext db

If the method has a parameter assignable to Microsoft.EntityFrameworkCore.DbContext, then the parameter will be implicitly [Inject]ed.

ClaimsPrincipal user

If the method has a parameter of type ClaimsPrincipal, the value of HttpContext.User will be passed to the parameter.

[Inject] service

If a parameter is marked with the [Inject] attribute, it will be injected from the application’s IServiceProvider.

out IncludeTree includeTree

If the method has an out IncludeTree includeTree parameter, then the IncludeTree that is passed out will be used to control serialization. See Generated C# DTOs and Include Tree for more information. If the method returns an IQueryable, the out parameter will supersede the include tree obtained from inspecting the query.

Return Values

You can return virtually anything from these methods:

Primitives, Scalars, & Dates

Most common built-in primitive and scalar data types (numerics, strings, booleans, enums, DateTime, DateTimeOffset), and their nullable variants, may be returned from methods.

Model Types

Any of the types of your models may be returned. The generated TypeScript for calling the method will use the generated TypeScript ViewModels of your models to store the returned value.

If the return type is the same as the type that the method is defined on, and the method is not static, then the results of the method call will be loaded into the calling TypeScript object.

Custom Types

Any custom type you define may also be returned from a method. Corresponding TypeScript ViewModels will be created for these types. See External Types.

::: warning
When returning custom types from methods, be careful of the types of their properties. As Coalesce generates the TypeScript ViewModels for your External Types, it will also generate ViewModels for the types of any of its properties, and so on down the tree. If a type is encountered from the FCL/BCL or another package that your application uses, these generated types will get out of hand extremely quickly.

Mark any properties you don’t want generated on these TypeScript ViewModels with the [InternalUse] attribute, or give them a non-public access modifier. Whenever possible, don’t return types that you don’t own or control.
:::

ICollection<T> or IEnumerable<T>

Collections of any of the above valid return types above are also valid return types. IEnumerables are useful for generator functions using yield. ICollection is highly suggested over IEnumerable whenever appropriate, though.

IQueryable<T>

Queryables of the valid return types above are valid return types. The query will be evaluated, and Coalesce will attempt to pull an Include Tree from the queryable to shape the response. When Include Tree functionality is needed to shape the response but an IQueryable<> return type is not feasible, an out IncludeTree includeTree parameter will do the trick as well.

Files

Methods can return file downloads using type IntelliTect.Coalesce.Models.IFile (or any derived type, like IntelliTect.Coalesce.Models.File). Please see the File Downloads section below for more details

ItemResult<T> or ItemResult

An IntelliTect.Coalesce.Models.ItemResult<T>, or its non-generic variant ItemResult of any of the valid return types above, including collections, is valid. The WasSuccessful and Message properties on the result object will be sent along to the client to indicate success or failure of the method. The type T will be mapped to the appropriate DTO object before being serialized as normal.

ListResult<T>

A IntelliTect.Coalesce.Models.ListResult<T> of any of the non-collection, non-file types above, is valid. The WasSuccessful Message, and all paging information on the result object will be sent along to the client. The type T will be mapped to the appropriate DTO objects before being serialized as normal.

The class created for the method in TypeScript will be used to hold the paging information included in the ListResult. See below for more information about this class.

Security

You can implement role-based security on a method by placing the [Execute] on the method. Placing this attribute on the method with no roles specified will simply require that the calling user be authenticated.

Security for instance methods is also controlled by the data source that loads the instance - if the data source can’t provide an instance of the requested model, the method won’t be executed.

Generated TypeScript

See API Callers and ViewModel Layer (Vue) or TypeScript Method Objects (Knockout) for details on the code that is generated for your custom methods.

::: tip Note
Any Task-returning methods with “Async” as a suffix to the C# method’s name will have the “Async” suffix stripped from the generated Typescript.
:::

Instance Methods

The instance of the model will be loaded using the data source specified by an attribute [LoadFromDataSource(typeof(MyDataSource))] if present. Otherwise, the model instance will be loaded using the default data source for the POCO’s type. If you have a Custom Data Source annotated with [DefaultDataSource], that data source will be used. Otherwise, the Standard Data Source will be used.

Instance methods are generated onto the TypeScript ViewModels.

Static Methods

Static methods are generated onto the TypeScript ListViewModels. All of the same members that are generated for instance methods are also generated for static methods.

If a static method returns the type that it is declared on, it will also be generated on the TypeScript ViewModel of its class (Knockout only).

public static ICollection<string> NamesStartingWith(string characters, AppDbContext db)
{
 return db.People.Where(f => f.FirstName.StartsWith(characters)).Select(f => f.FirstName).ToList();
}

Method Annotations

Methods can be annotated with attributes to control API exposure and TypeScript generation. The following attributes are available for model methods. General annotations can be found on the Attributes page.

[Coalesce]

The [Coalesce] attribute causes the method to be exposed via a generated API controller. This is not needed for methods defined on an interface marked with [Service] - Coalesce assumes that all methods on the interface are intended to be exposed. If this is not desired, create a new, more restricted interface with only the desired methods to be exposed.

[ControllerAction(Method = HttpMethod, VaryByProperty = string)]

The [ControllerAction] attribute controls how this method is exposed via HTTP. Can be used to customize the HTTP method/verb for the method, as well as caching behavior.

[Execute(string roles)]

The [Execute] attribute specifies which roles can execute this method from the generated API controller.

[Hidden(Areas area)]

The [Hidden] attribute allows for hiding this method on the admin pages both for list/card views and the editor.

[LoadFromDataSource(Type dataSourceType)]

The [LoadFromDataSource] attribute specifies that the targeted model instance method should load the instance it is called on from the specified data source when invoked from an API endpoint. By default, the default data source for the model’s type will be used.

File Downloads

Coalesce supports exposing file downloads via custom methods. Simply return a IntelliTect.Coalesce.Models.IFile (or any derived type, like IntelliTect.Coalesce.Models.File), or an ItemResult<> of such.

Consuming file downloads

There are a few conveniences for easily consuming downloaded files from your custom pages.

 Properties

Properties

Models in a Coalesce application are just EF Core POCOs. The properties defined on your models should fit within the constraints of EF Core.

Coalesce currently has a few more restrictions than what EF Core allows, but hopefully over time some of these restrictions can be relaxed as Coalesce grows in capability.

Property Varieties

The following kinds of properties may be declared on your models.

Primary Key

To work with Coalesce, your model must have a single property for a primary key. By convention, this property should be named the same as your model class with Id appended to that name, but you can also annotate a property with [Key] to denote it as the primary key.

Foreign Keys & Reference Navigation Properties

While a foreign key may be declared on your model using only the EF OnModuleBuilding method to specify its purpose, Coalesce won’t know what the property is a key for. Therefore, foreign key properties should always be accompanied by a reference navigation property, and vice versa.

In cases where the foreign key is not named after the navigation property with "Id" appended, the [ForeignKeyAttribute] may be used on either the key or the navigation property to denote the other property of the pair, in accordance with the recommendations set forth by EF Core’s Modeling Guidelines [https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=data-annotations#manual-configuration].

Collection Navigation Properties

Collection navigation properties can be used in a straightforward manner. In the event where the inverse property on the other side of the relationship cannot be determined, [InversePropertyAttribute] will need to be used. EF Core provides documentation [https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=data-annotations#manual-configuration] on how to use this attribute. Errors will be displayed at generation time if an inverse property cannot be determined without the attribute. We recommend recommended that you declare the type of collection navigation properties as ICollection<T>.

Non-mapped POCOs

Properties of a type that are not on your DbContext will also have corresponding properties generated on the TypeScript ViewModels typed as TypeScript External ViewModels, and the values of such properties will be sent with the object to the client when requested. Properties of this type will also be sent back to the server by the client when they are encountered (currently supported by the Vue Stack only).

See External Types for more information.

Primitives, Scalars, & Dates

Most common built-in primitive and scalar data types (numerics, strings, booleans, enums, DateTime, DateTimeOffset), and their nullable variants, are all supported as model properties.

Getter-only Properties

Any property that only has a getter will also have a corresponding property generated in the TypeScript ViewModels, but won’t be sent back to the server during any save actions.

If such a property is defined as an auto-property, the [NotMapped] attribute should be used to prevent EF Core from attempting to map such a property to your database.

Other Considerations

For any of the kinds of properties outlined above, the following rules are applied:

Attributes

Coalesce provides a number of Attributes, and supports a number of other .NET attributes, that allow for further customization of your model.

Security

Properties will not be sent to the client and/or will be ignored if received by the client if authorization checks against any property-level Security Attributes present fail. This security is handled by the Generated C# DTOs.

Loading & Serialization

The Default Loading Behavior, any custom functionality defined in Data Sources, and [DtoIncludes] & [DtoExcludes] may also restrict which properties are sent to the client when requested.

NotMapped

While Coalesce does not do anything special for the [NotMapped] attribute, it is still and important attribute to keep in mind while building your model, as it prevents EF Core from doing anything with the property.

 [ClientValidation]

[ClientValidation]

The [IntelliTect.Coalesce.DataAnnotations.ClientValidation]
attribute is used to control the behavior of client-side model validation
and to add additional client-only validation parameters. Database validation is available via standard System.ComponentModel.DataAnnotations annotations.

These propagate to the client as validations in TypeScript via generated Metadata and ViewModel rules (for Vue) or Knockout-Validation [https://github.com/Knockout-Contrib/Knockout-Validation/] rules (for Knockout). For both stacks, any failing validation rules prevent saves from going to the server.

::: warning
This attribute controls client-side validation only. To perform server-side validation, create a custom Behaviors class for your types.
:::

[[toc]]

Example Usage

public class Person
{
 public int PersonId { get; set; }

 [ClientValidation(IsRequired = true, AllowSave = true)]
 public string FirstName { get; set; }

 [ClientValidation(IsRequired = true, AllowSave = false, MinLength = 1, MaxLength = 100)]
 public string LastName { get; set; }
}

Properties

Behavioral Properties

If set to true, any client validation errors on the property will not prevent saving on the client. This includes all client-side validation, including null-checking for required foreign keys and other validations that are implicit. This also includes other explicit validation from System.ComponentModel.DataAnnotations annotations.

Instead, validation errors will be treated only as warnings, and will be available through the warnings: KnockoutValidationErrors property on the TypeScript ViewModel.

::: tip Note
Use AllowSave = true to allow partially complete data to still be saved, protecting your user from data loss upon navigation while still hinting to them that they are not done filling out data.
:::

Set an error message to be used if any client validations fail

Validation Rule Properties

 [Coalesce]

[Coalesce]

Used to mark a type or member for generation by Coalesce.

Some types and members will be implicitly included in generation - for example, all types represented by a DbSet<T> on a DbContext that has a [Coalesce] attribute will automatically be included. Properties on these types will also be generated for unless explicitly excluded, since this is by far the most common usage scenario in Coalesce.

On the other hand, Methods on these types will not have endpoints generated unless they are explicitly annotated with [Coalesce] to avoid accidentally exposing methods that were perhaps not intended to be exposed.

The documentation pages for types and members that require/accept this attribute will state as such. An exhaustive list of all valid targets for [Coalesce] will not be found on this page.

 [ControllerAction]

[ControllerAction]

Specifies how a custom method is exposed via HTTP. Can be used to customize the HTTP method/verb for the method, as well as caching behavior.

Example Usage

public class Person
{
 public int PersonId { get; set; }
 public string LastName { get; set; }

 public string PictureHash { get; set; }

 [Coalesce]
 [ControllerAction(Method = HttpMethod.Get)]
 public static long PersonCount(AppDbContext db, string lastNameStartsWith = "")
 {
 return db.People.Count(f => f.LastName.StartsWith(lastNameStartsWith));
 }

 [Coalesce]
 [ControllerAction(HttpMethod.Get, VaryByProperty = nameof(PictureHash))]
 public IFile GetPicture(AppDbContext db)
 {
 return new IntelliTect.Coalesce.Models.File(db.PersonPictures
 .Where(x => x.PersonId == this.PersonId)
 .Select(x => x.Content)
)
 {
 ContentType = "image/jpg",
 };
 }
}

Properties

 [Controller]

[Controller]

Allows for control over the generated MVC Controllers.

Currently only controls over the API controllers are present, but additional properties may be added in the future.

This attribute may be placed on any type from which an API controller is generated, including Entity Models, Custom DTOs, and Services.

Example Usage

[Controller(ApiRouted = false, ApiControllerSuffix = "Gen", ApiActionsProtected = true)]
public class Person
{
 public int PersonId { get; set; }

 ...
}

Properties

Determines whether or not a [Route] annotation will be placed on the generated API controller. Set to false to prevent emission of the [Route] attribute.

Use cases include:

	Defining your routes through IRouteBuilder in Startup.cs instead

	Preventing API controllers from being exposed by default.

	Routing to your own custom controller that inherits from the generated API controller in order to implement more granular or complex authorization logic.

If set, will determine the name of the generated API controller.

Takes precedence over the value of ApiControllerSuffix.

If set, will be appended to the default name of the API controller generated for this model.

Will be overridden by the value of ApiControllerName if it is set.

If true, actions on the generated API controller will have an access modifier of protected instead of public.

In order to consume the generated API controller, you must inherit from the generated controller and override each desired generated action method via hiding (i.e. use public new ..., not public override ...).

::: tip Note
If you inherit from the generated API controllers and override their methods without setting ApiActionsProtected = true, all non-overridden actions from the generated controller will still be exposed as normal.
:::

 [CreateController]

[CreateController]

By default an API and View controller are both created. This allows for
suppressing the creation of either or both of these.

Example Usage

[CreateController(view: false, api: true)]
public class Person
{
 public int PersonId { get; set; }

 ...
}

Properties

 [DateType]

[DateType]

Specifies whether a DateTime type will have a date and a time, or only a date.

Example Usage

public class Person
{
 public int PersonId { get; set; }

 [DateType(DateTypeAttribute.DateTypes.DateOnly)]
 public DateTimeOffset? BirthDate { get; set; }
}

Properties

 [DefaultOrderBy]

[DefaultOrderBy]

Allows setting of the default manner in which the data returned to the client will be sorted. Multiple fields can be used to sort an object by specifying an index.

This affects the sort order both when requesting a list of the model itself, as well as when the model appears as a child collection off of a navigation property of another object.

In the first case (a list of the model itself), this can be overridden by setting the orderBy or orderByDescending property on the TypeScript ListViewModel - see TypeScript List ViewModels.

Example Usage

public class Person
{
 public int PersonId { get; set; }

 public int DepartmentId { get; set; }

 [DefaultOrderBy(FieldOrder = 0, FieldName = nameof(Department.Order))]
 public Department Department { get; set; }

 [DefaultOrderBy(FieldOrder = 1)]
 public string LastName { get; set; }
}

public class Person
{
 public int PersonId { get; set; }

 public int DepartmentId { get; set; }

 [DefaultOrderBy(FieldOrder = 0, FieldName = nameof(Department.Order))]
 public Department Department { get; set; }

 [DefaultOrderBy(FieldOrder = 1)]
 public string LastName { get; set; }
}

Properties

 [DtoIncludes] & [DtoExcludes]

[DtoIncludes] & [DtoExcludes]

Allows for easily controlling what data gets set to the client. When requesting data from the generated client-side list view models, you can specify an includes property on the ViewModel or ListViewModel.

For more information about the includes string, see Includes String.

When the database entries are returned to the client they will be trimmed based on the requested includes string and the values in DtoExcludes and DtoIncludes.

::: danger
These attributes are not security attributes - consumers of your application’s API can set the includes string to any value when making a request.

Do not use them to keep certain data private - use the Security Attributes family of attributes for that.
:::

It is important to note that the value of the includes string will match against these attributes on any of your models that appears in the object graph being mapped to DTOs - it is not limited only to the model type of the root object.

::: tip Important
DtoIncludes does not ensure that specific data will be loaded from the database. It only permits what is already loaded into the current EF DbContext to be returned from the API. See Data Sources to learn how to control what data gets loaded from the database.
:::

Example Usage

Server code:

public class Person
{
 // Don't include CreatedBy when editing - will be included for all other views
 [DtoExcludes("Editor")]
 public AppUser CreatedBy { get; set; }

 // Only include the Person's Department when `includes == "details"` on the TypeScript ViewModel.
 [DtoIncludes("details")]
 public Department Department { get; set; }

 // LastName will be included in all views
 public string LastName { get; set; }
}

public class Department
{
 [DtoIncludes("details")]
 public ICollection<Person> People { get; set; }
}

Client code:

 [Execute]

[Execute]

Controls permissions for executing of a static or instance method through the API.

For other security controls, see Security Attributes.

Example Usage

public class Person
{
 public int PersonId { get; set; }

 [Coalesce, Execute(Roles = "Payroll,HR")]
 public void GiveRaise(int centsPerHour) {
 ...
 }

 ...
}

Properties

A comma-separated list of roles which are allowed to execute the method.

The level of access to allow for the action for the method.

Enum values are:

	SecurityPermissionLevels.AllowAll Allow all users to perform the action for the attribute, including users who