

Welcome to cnxman’s documentation!

Contents:

	API Documentation
	cnxman.basics

	cnxman.serial

Indices and tables

	Index

	Module Index

	Search Page

API Documentation

This is a simple framework for managing connections to things.

cnxman.basics

This module contains the base classes and basic utilities.

	
class cnxman.basics.Connection

	Bases: object

Extend this class to define a logical connection to something. The expectations we have of a connection are these:

	It can attempt create a connection and report on whether or not the connection was successful.

	It can (at least by all appearances) gracefully disconnect.

	It can release all its resources upon request.

	Seealso

	Connection.try_connect()

	Seealso

	Connection.disconnect()

	Seealso

	Connection.teardown()

	
class Signals

	Bases: enum.Enum

These are the used by connection objects.

	Seealso

	pydispatch.dispatcher()

	
RAISE_ALARM = 'raise-alarm'

	

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

	
disconnect()

	Override this method to take the steps required to gracefully disconnect.

	
raise_alarm()

	Raise the alarm to notify anyone who might be interested (like a ConnectionManager) that there is
trouble with the connection.

	
teardown()

	Override this method to release resources when requested.

	
try_connect() → bool

	Override this method to define the logic by which a connection is make.

	Returns

	True if and only if the connection attempt is successful, otherwise False.

	Return type

	bool

	
exception cnxman.basics.ConnectionException(message: str, inner: Exception)

	Bases: Exception

Raised when an error occurs within a connection.

	
__init__(message: str, inner: Exception)

	
	Parameters

	
	message (str) – the original message

	inner (Exception) – the exception responsible for the raising of this exception.

	
args

	

	
static from_exception(ex: Exception)

	This is a convenience method that can be used to create a connection exception from another exception, using
default logic to populate the constructor arguments.

	Parameters

	ex (Exception) – the original exception

	Returns

	a new connection exception

	Return type

	ConnectionException

	
inner

	This is the original exception responsible for raising this connection exception.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class cnxman.basics.ConnectionManager(connection: cnxman.basics.Connection)

	Bases: object

Extend this class to create your own object with the know-how to establish and maintain a connection to something.

	
__init__(connection: cnxman.basics.Connection)

	

	
connect

	An input for a L{MethodicalMachine}.

	
connected = MethodicalState(method=<function ConnectionManager.connected>)

	

	
connecting = MethodicalState(method=<function ConnectionManager.connecting>)

	

	
disconnect

	An input for a L{MethodicalMachine}.

	
disconnected = MethodicalState(method=<function ConnectionManager.disconnected>)

	

	
ready = MethodicalState(method=<function ConnectionManager.ready>)

	

	
recovering = MethodicalState(method=<function ConnectionManager.recovering>)

	

	
teardown

	An input for a L{MethodicalMachine}.

	
torndown = MethodicalState(method=<function ConnectionManager.torndown>)

	

cnxman.serial

Let’s manage serial port connections!

	
class cnxman.serial.SerialConnection(port: str, baudrate: int = 9600, bytesize: int = 8, parity: str = 'N', stopbits: int = 1, timeout=None)

	Bases: cnxman.basics.Connection

	
class Signals

	Bases: enum.Enum

These are the used by serial listener objects.

	Seealso

	pydispatch.dispatcher()

	
DATA_RECEIVED = 'data-received'

	

	
__init__(port: str, baudrate: int = 9600, bytesize: int = 8, parity: str = 'N', stopbits: int = 1, timeout=None)

	

	
disconnect()

	Disconnect from the serial port.

	
logger = <Logger cnxman.serial.SerialConnection (NOTSET)>

	

	
raise_alarm()

	Raise the alarm to notify anyone who might be interested (like a ConnectionManager) that there is
trouble with the connection.

	
teardown()

	Release the serial port entirely.

	
try_connect() → bool

	Attempt to connect to the serial port.

	Returns

	True if and only if the connection attempt is successful, otherwise False.

	Return type

	bool

	
class cnxman.serial.SerialListener(serial: serial.serialposix.Serial)

	Bases: threading.Thread

This is a thread object that listens for incoming data from a serial connection.

	
class Signals

	Bases: enum.Enum

These are the used by serial listener objects.

	Seealso

	pydispatch.dispatcher()

	
DATA_RECEIVED = 'data-received'

	

	
READ_ERROR = 'read-error'

	

	
__init__(serial: serial.serialposix.Serial)

	

	
daemon

	A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

	
getName()

	

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

	
isDaemon()

	

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
run()

	Start listening for data on the serial connection.

	
serial

	This is the serial object we’re monitoring.

	Return type

	pyserial.Serial

	
setDaemon(daemonic)

	

	
setName(name)

	

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
terminate()

	Terminate the listener.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cnxman	

 	
 	
 cnxman.basics	
 These are the base classes and basic utilities.

 	
 	
 cnxman.serial	
 Let's manage serial port connections!

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | J
 | L
 | N
 | R
 | S
 | T
 | W

_

 	
 	__init__ (cnxman.basics.Connection attribute)

 	__init__() (cnxman.basics.ConnectionException method)

 	(cnxman.basics.ConnectionManager method)

 	(cnxman.serial.SerialConnection method)

 	(cnxman.serial.SerialListener method)

A

 	
 	args (cnxman.basics.ConnectionException attribute)

C

 	
 	cnxman.basics (module)

 	cnxman.serial (module)

 	connect (cnxman.basics.ConnectionManager attribute)

 	connected (cnxman.basics.ConnectionManager attribute)

 	
 	connecting (cnxman.basics.ConnectionManager attribute)

 	Connection (class in cnxman.basics)

 	Connection.Signals (class in cnxman.basics)

 	ConnectionException

 	ConnectionManager (class in cnxman.basics)

D

 	
 	daemon (cnxman.serial.SerialListener attribute)

 	DATA_RECEIVED (cnxman.serial.SerialConnection.Signals attribute)

 	(cnxman.serial.SerialListener.Signals attribute)

 	
 	disconnect (cnxman.basics.ConnectionManager attribute)

 	disconnect() (cnxman.basics.Connection method)

 	(cnxman.serial.SerialConnection method)

 	disconnected (cnxman.basics.ConnectionManager attribute)

F

 	
 	from_exception() (cnxman.basics.ConnectionException static method)

G

 	
 	getName() (cnxman.serial.SerialListener method)

I

 	
 	ident (cnxman.serial.SerialListener attribute)

 	inner (cnxman.basics.ConnectionException attribute)

 	
 	is_alive() (cnxman.serial.SerialListener method)

 	isAlive() (cnxman.serial.SerialListener method)

 	isDaemon() (cnxman.serial.SerialListener method)

J

 	
 	join() (cnxman.serial.SerialListener method)

L

 	
 	logger (cnxman.serial.SerialConnection attribute)

N

 	
 	name (cnxman.serial.SerialListener attribute)

R

 	
 	RAISE_ALARM (cnxman.basics.Connection.Signals attribute)

 	raise_alarm() (cnxman.basics.Connection method)

 	(cnxman.serial.SerialConnection method)

 	
 	READ_ERROR (cnxman.serial.SerialListener.Signals attribute)

 	ready (cnxman.basics.ConnectionManager attribute)

 	recovering (cnxman.basics.ConnectionManager attribute)

 	run() (cnxman.serial.SerialListener method)

S

 	
 	serial (cnxman.serial.SerialListener attribute)

 	SerialConnection (class in cnxman.serial)

 	SerialConnection.Signals (class in cnxman.serial)

 	SerialListener (class in cnxman.serial)

 	
 	SerialListener.Signals (class in cnxman.serial)

 	setDaemon() (cnxman.serial.SerialListener method)

 	setName() (cnxman.serial.SerialListener method)

 	start() (cnxman.serial.SerialListener method)

T

 	
 	teardown (cnxman.basics.ConnectionManager attribute)

 	teardown() (cnxman.basics.Connection method)

 	(cnxman.serial.SerialConnection method)

 	
 	terminate() (cnxman.serial.SerialListener method)

 	torndown (cnxman.basics.ConnectionManager attribute)

 	try_connect() (cnxman.basics.Connection method)

 	(cnxman.serial.SerialConnection method)

W

 	
 	with_traceback() (cnxman.basics.ConnectionException method)

 nav.xhtml

 Table of Contents

 		
 Welcome to cnxman’s documentation!

 		
 API Documentation

 		
 cnxman.basics

 		
 cnxman.serial

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

