
CNFgen Documentation
Release 0.7.3

Massimo Lauria

Aug 28, 2018

Table of contents

1 Exporting formulas to DIMACS 3

2 Exporting formulas to LaTeX 5

3 Reference 7

4 Testing satisfiability 9

5 Formula families 11
5.1 Included formula families . 11
5.2 Command line invocation . 32

6 Graph based formulas 35
6.1 Directed Acyclic Graphs and Bipartite Graphs . 36
6.2 Graph I/O . 37
6.3 Graph generators . 38
6.4 References . 38

7 Post-process a CNF formula 39
7.1 Example: OR substitution . 39
7.2 Using CNF transformations . 39

8 The command line utility 41

9 Adding a formula family to CNFgen 43

10 Welcome to CNFgen’s documentation! 45
10.1 The cnfformula library . 45
10.2 The cnfgen command line tool . 46
10.3 Reference . 46

11 Indices and tables 47

Bibliography 49

Python Module Index 51

i

ii

CNFgen Documentation, Release 0.7.3

The entry point to cnfformula library is cnfformula.CNF, which is the data structure representing CNF for-
mulas. Any string (actually any hashable object) is a valid name for a variable, that can be optionally documented
with an additional description.

>>> from cnfformula import CNF
>>> F = CNF()
>>> F.add_variable("X",'this variable is the cause')
>>> F.add_variable("Y",'this variable is the effect')
>>> F.add_variable("Z") # no description here

Clauses are represented as lists of literals, where positive and negative literals are represented as (True,
<varname>) or (False, <varname>), respectively. The user can interleave the addition of variables and
clauses.

>>> F.add_clause([(False,"X"),(True,"Y")])
>>> F.add_variable("W")
>>> F.add_clause([(False,"Z")])

The CNF object F in the example now encodes the formula

(¬𝑋 ∨ 𝑌) ∧ (¬𝑍)

over variables 𝑋 , 𝑌 , 𝑍 and 𝑊 . It is perfectly fine to add variables that do not occur in any clause. Vice versa, it
is possible to add clauses that mention variables never seen before. In that case any unknown variable is silently
added to the formula (obviously without description).

>>> G = CNF()
>>> list(G.variables())
[]
>>> G.add_clause([(False,"X"),(True,"Y")])
>>> list(G.variables())
['X','Y']

Note: By default the cnfformula.CNF.add_clause() forbids a clauses to contain the same literal twice,
or to have two opposite literals (i.e. a negative and a positive literal on the same variable). Furthermore, as
mentioned before, it allows to add clauses with unknown variables.

It is possible to make change this behavior, for example it is possible to allow opposite literals, but simultaneously
forbid unknown variables. See the documentation of cnfformula.CNF.add_clause() for further details.

Furthermore it is possible to add clauses directly while constructing the CNF object. The code

>>> H = CNF([[(True,"x1"),(True,"x2"),(False,"x3")], [(False,"x2"),(True,"x4")]])

is essentially equivalent to

>>> H = CNF()
>>> H.add_clause([(True,"x1"),(True,"x2"),(False,"x3")])
>>> H.add_clause([(False,"x2"),(True,"x4")])

Table of contents 1

CNFgen Documentation, Release 0.7.3

2 Table of contents

CHAPTER 1

Exporting formulas to DIMACS

One of the main use of CNFgen is to produce formulas to be fed to SAT solvers. These solvers accept CNf
formulas in DIMACS format1, which can easily be obtained using cnfformula.CNF.dimacs().

>>> c=CNF([[(True,"x1"),(True,"x2"),(False,"x3")], [(False,"x2"),(True,"x4")]])
>>> print(c.dimacs(export_header=False))
p cnf 4 2
1 2 -3 0
-2 4 0
>>> c.add_clause([(False,"x3"),(True,"x4"),(False,"x5")])
>>> print(c.dimacs(export_header=False))
p cnf 5 3
1 2 -3 0
-2 4 0
-3 4 -5 0

The variables in the DIMACS representation are numbered according to the order of insertion. CNFgen does not
guarantee anything about this order, unless variables are added explicitly.

1 http://www.satlib.org/Benchmarks/SAT/satformat.ps

3

http://www.satlib.org/Benchmarks/SAT/satformat.ps

CNFgen Documentation, Release 0.7.3

4 Chapter 1. Exporting formulas to DIMACS

CHAPTER 2

Exporting formulas to LaTeX

It is possible to use cnfformula.CNF.latex() to get a LaTeX2 encoding of the CNF to include in a doc-
ument. In that case the variable names are included literally, therefore it is advisable to use variable names that
would look good in Latex.

>>> c=CNF([[(False,"x_1"),(True,"x_2"),(False,"x_3")],\
... [(False,"x_2"),(False,"x_4")], \
... [(True,"x_2"),(True,"x_3"),(False,"x_4")]])
>>> print(c.latex(export_header=False))
\begin{align}
& \left({\overline{x}_1} \lor {x_2} \lor {\overline{x}_3}
→˓\right) \\
& \land \left({\overline{x}_2} \lor {\overline{x}_4} \right) \\
& \land \left({x_2} \lor {x_3} \lor {\overline{x}_4} \right)
\end{align}

which renders as

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) (2.1)
∧ (𝑥2 ∨ 𝑥4)(2.2)
∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)(2.3)

Instead of outputting just the LaTeX rendering of the formula it is possible to produce a full LaTeX document by
setting the keyword argument full_document to True in the call to cnfformula.CNF.latex(). The
document is ready to be compiled.

2 http://www.latex-project.org/

5

http://www.latex-project.org/

CNFgen Documentation, Release 0.7.3

6 Chapter 2. Exporting formulas to LaTeX

CHAPTER 3

Reference

7

CNFgen Documentation, Release 0.7.3

8 Chapter 3. Reference

CHAPTER 4

Testing satisfiability

To test the satisfiability of the CNF formula encoded in a cnfformula.CNF instance we can use the
cnfformula.CNF.is_satisfiable() method. Testing satisfiability of a CNF is not at all considered
to be an easy task. In full generality the problem is NP-hard1, which essentially means that there are no fast
algorithm to solve it.

In practice many formula that come from applications can be solved efficiently (i.e. it is possible to rapidly
find a satisfying assignment). There is a whole community of clever software engineers and computer scientists
that compete to write the fastest solver for CNF satisfiability (usually called a SAT solver)2. CNFgen does not
implement a SAT solver, but uses behind the scenes the ones installed in the running environment. If the formula
is satisfiable the value returned includes a satisfying assignment.

>>> from cnfformula import CNF
>>> F = CNF([[(True,'X'),(False,'Y')], [(False,'X')]])
>>> F.is_satisfiable()
(True, {'X': False, 'Y': False})
>>> F.add_clause([(True,'Y')])
>>> F.is_satisfiable()
(False, None)

It is always possible to force CNFgen to use a specific solver or a specific command line invocation using the
cmd parameters for cnfformula.CNF.is_satisfiable(). CNFgen knows how to interface with several
SAT solvers but when the command line invokes an unknown solver the parameter sameas can suggest the right
interface to use.

>>> F.is_satisfiable(cmd='minisat -no-pre')
>>> F.is_satisfiable(cmd='glucose -pre')
>>> F.is_satisfiable(cmd='lingeling --plain')
>>> F.is_satisfiable(cmd='sat4j')
>>> F.is_satisfiable(cmd='my-hacked-minisat -pre',sameas='minisat')
>>> F.is_satisfiable(cmd='patched-lingeling',sameas='lingeling')

1 NP-hardness is a fundamental concept coming from computational complexity, which is the mathematical study of how hard is to perform
certain computations.

(https://en.wikipedia.org/wiki/NP-hardness)
2 See http://www.satcompetition.org/ for SAT solver ranking.

9

https://en.wikipedia.org/wiki/NP-hardness
http://www.satcompetition.org/

CNFgen Documentation, Release 0.7.3

10 Chapter 4. Testing satisfiability

CHAPTER 5

Formula families

One of the most useful features of CNFgen is the implementation of several important families of CNF formulas,
many of them either coming from the proof complexity literature or encoding some important problem from
combinatorics. The formula are accessible through the cnfformula package. See for example this construction
of the pigeohole principle formula with 10 pigeons and 9 holes.

>>> import cnfformula
>>> F = cnfformula.PigeonholePrinciple(10,9)
>>> F.is_satisfiable()
(False, None)

5.1 Included formula families

All formula generators are accessible from the cnfformula package, but their implementation (and documen-
tation) is split across the following modules. This makes it easy to add new formula families.

5.1.1 cnfformula.families.counting module

Implementation of counting/matching formulas

class CountingCmdHelper
Command line helper for Counting Principle formulas

Methods

build_cnf(args) Build an Counting Principle formula according to
the arguments

setup_command_line(parser) Setup the command line options for Counting Prin-
ciple formula

static build_cnf(args)
Build an Counting Principle formula according to the arguments

Arguments: - args: command line options

11

addfamily.html

CNFgen Documentation, Release 0.7.3

description = 'counting principle'

name = 'count'

static setup_command_line(parser)
Setup the command line options for Counting Principle formula

Arguments: - parser: parser to load with options.

CountingPrinciple(M, p)
Generates the clauses for the counting matching principle.

The principle claims that there is a way to partition M in sets of size p each.

Arguments: - M : size of the domain - p : size of each class

class PMatchingCmdHelper
Bases: object

Command line helper for Perfect Matching Principle formulas

Methods

setup_command_line(parser) Setup the command line options for Perfect Match-
ing Principle formula

build_cnf

static build_cnf(args)

description = 'perfect matching principle'

name = 'matching'

static setup_command_line(parser)
Setup the command line options for Perfect Matching Principle formula

Arguments: - parser: parser to load with options.

class ParityCmdHelper
Bases: object

Command line helper for Parity Principle formulas

Methods

setup_command_line(parser) Setup the command line options for Parity Princi-
ple formula

build_cnf

static build_cnf(args)

description = 'parity principle'

name = 'parity'

static setup_command_line(parser)
Setup the command line options for Parity Principle formula

Arguments: - parser: parser to load with options.

12 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

PerfectMatchingPrinciple(G)
Generates the clauses for the graph perfect matching principle.

The principle claims that there is a way to select edges to such that all vertices have exactly one incident
edge set to 1.

Parameters

G [undirected graph]

5.1.2 cnfformula.families.coloring module

Formulas that encode coloring related problems

class ECCmdHelper
Bases: object

Methods

build_cnf
setup_command_line

static build_cnf(args)

description = 'even coloring formulas'

name = 'ec'

static setup_command_line(parser)

EvenColoringFormula(G)
Even coloring formula

The formula is defined on a graph 𝐺 and claims that it is possible to split the edges of the graph in two parts,
so that each vertex has an equal number of incident edges in each part.

The formula is defined on graphs where all vertices have even degree. The formula is satisfiable only on
those graphs with an even number of vertices in each connected component [1].

Returns

CNF object

Raises

ValueError if the graph in input has a vertex with odd degree

References

[1]

GraphColoringFormula(G, colors, functional=True)
Generates the clauses for colorability formula

The formula encodes the fact that the graph 𝐺 has a coloring with color set colors. This means that it
is possible to assign one among the elements in ‘‘colors‘‘to that each vertex of the graph such that no two
adjacent vertices get the same color.

Parameters

G [networkx.Graph] a simple undirected graph

colors [list or positive int] a list of colors or a number of colors

5.1. Included formula families 13

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Returns

CNF the CNF encoding of the coloring problem on graph G

class KColorCmdHelper
Bases: object

Command line helper for k-color formula

Methods

build_cnf(args) Build a k-colorability formula according to the ar-
guments

setup_command_line(parser) Setup the command line options for k-color for-
mula

static build_cnf(args)
Build a k-colorability formula according to the arguments

Arguments: - args: command line options

description = 'k-colorability formula'

name = 'kcolor'

static setup_command_line(parser)
Setup the command line options for k-color formula

Arguments: - parser: parser to load with options.

5.1.3 cnfformula.families.graphisomorphism module

Graph isomorphimsm/automorphism formulas

class GAutoCmdHelper
Bases: object

Command line helper for Graph Automorphism formula

Methods

build_cnf(args) Build a graph automorphism formula according to
the arguments

setup_command_line(parser) Setup the command line options for graph auto-
morphism formula

static build_cnf(args)
Build a graph automorphism formula according to the arguments

Arguments: - args: command line options

description = 'graph automorphism formula'

name = 'gauto'

static setup_command_line(parser)
Setup the command line options for graph automorphism formula

Arguments: - parser: parser to load with options.

class GIsoCmdHelper

14 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Bases: object

Command line helper for Graph Isomorphism formula

Methods

build_cnf(args) Build a graph automorphism formula according to
the arguments

setup_command_line(parser) Setup the command line options for graph isomor-
phism formula

static build_cnf(args)
Build a graph automorphism formula according to the arguments

Arguments: - args: command line options

description = 'graph isomorphism formula'

name = 'giso'

static setup_command_line(parser)
Setup the command line options for graph isomorphism formula

Arguments: - parser: parser to load with options.

GraphAutomorphism(G)
Graph Automorphism formula

The formula is the CNF encoding of the statement that a graph G has a nontrivial automorphism, i.e. an
automorphism different from the idential one.

Returns

A CNF formula which is satiafiable if and only if graph G has a

nontrivial automorphism.

GraphIsomorphism(G1, G2)
Graph Isomorphism formula

The formula is the CNF encoding of the statement that two simple graphs G1 and G2 are isomorphic.

Parameters

G1 [networkx.Graph] an undirected graph object

G2 [networkx.Graph] an undirected graph object

Returns

A CNF formula which is satiafiable if and only if graphs G1 and G2

are isomorphic.

5.1.4 cnfformula.families.ordering module

Implementation of the ordering principle formulas

class GOPCmdHelper
Bases: object

Command line helper for Graph Ordering principle formulas

5.1. Included formula families 15

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Methods

build_cnf(args) Build a Graph ordering principle formula accord-
ing to the arguments

setup_command_line(parser) Setup the command line options for Graph order-
ing principle formula

static build_cnf(args)
Build a Graph ordering principle formula according to the arguments

Arguments: - args: command line options

description = 'graph ordering principle'

name = 'gop'

static setup_command_line(parser)
Setup the command line options for Graph ordering principle formula

Arguments: - parser: parser to load with options.

GraphOrderingPrinciple(graph, total=False, smart=False, plant=False, knuth=0)
Generates the clauses for graph ordering principle

Arguments: - graph : undirected graph - total : add totality axioms (i.e. “x < y” or “x > y”) - smart :
“x < y” and “x > y” are represented by a single variable (implies total) - plant : allow last element to be
minimum (and could make the formula SAT) - knuth : Don Knuth variants 2 or 3 of the formula (anything
else suppress it)

class OPCmdHelper
Bases: object

Command line helper for Ordering principle formulas

Methods

build_cnf(args) Build an Ordering principle formula according to
the arguments

setup_command_line(parser) Setup the command line options for Ordering prin-
ciple formula

static build_cnf(args)
Build an Ordering principle formula according to the arguments

Arguments: - args: command line options

description = 'ordering principle'

name = 'op'

static setup_command_line(parser)
Setup the command line options for Ordering principle formula

Arguments: - parser: parser to load with options.

OrderingPrinciple(size, total=False, smart=False, plant=False, knuth=0)
Generates the clauses for ordering principle

Arguments: - size : size of the domain - total : add totality axioms (i.e. “x < y” or “x > y”) - smart : “x <
y” and “x > y” are represented by a single variable (implies totality) - plant : allow a single element to be
minimum (could make the formula SAT) - knuth : Donald Knuth variant of the formula ver. 2 or 3 (anything
else suppress it)

16 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

varname(v1, v2)

5.1.5 cnfformula.families.pebbling module

Implementation of the pigeonhole principle formulas

class PebblingCmdHelper
Command line helper for pebbling formulas

Methods

build_cnf(args) Build the pebbling formula
setup_command_line(parser) Setup the command line options for pebbling for-

mulas

static build_cnf(args)
Build the pebbling formula

Arguments: - args: command line options

description = 'pebbling formula'

name = 'peb'

static setup_command_line(parser)
Setup the command line options for pebbling formulas

Arguments: - parser: parser to load with options.

PebblingFormula(digraph)
Pebbling formula

Build a pebbling formula from the directed graph. If the graph has an ordered_vertices attribute, then it is
used to enumerate the vertices (and the corresponding variables).

Arguments: - digraph: directed acyclic graph.

class SparseStoneCmdHelper
Sparse Stone formulas

This is a variant of the StoneFormula(). See that for a description of the formula. This variant is such
that each vertex has only a small selection of which stone can go to that vertex. In particular which stones
are allowed on each vertex is specified by a bipartite graph 𝐵 on which the left vertices represent the vertices
of DAG 𝐷 and the right vertices are the stones.

If a vertex of 𝐷 correspond to the left vertex 𝑣 in 𝐵, then its neighbors describe which stones are allowed
for it.

The vertices in 𝐷 do not need to have the same name as the one on the left side of 𝐵. It is only important
that the number of vertices in 𝐷 is the same as the vertices in the left side of 𝐵.

In that case the element at position 𝑖 in the ordered sequence enumerate_vertices(D) corresponds
to the element of rank 𝑖 in the sequence of left side vertices of 𝐵 according to the output of Left, Right
= bipartite_sets(B).

Standard StoneFormula() is essentially equivalent to a sparse stone formula where 𝐵 is the complete
graph.

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

B [bipartite graph]

Raises

5.1. Included formula families 17

CNFgen Documentation, Release 0.7.3

ValueError if 𝐷 is not a directed acyclic graph

ValueError if 𝐵 is not a bipartite graph

ValueError when size differs between 𝐷 and the left side of 𝐵

See also:

StoneFormula

Methods

build_cnf(args) Build the pebbling formula
setup_command_line(parser) Setup the command line options for stone formulas

static build_cnf(args)
Build the pebbling formula

Arguments: - args: command line options

description = 'stone formula (sparse version)'

name = 'stonesparse'

static setup_command_line(parser)
Setup the command line options for stone formulas

Arguments: - parser: parser to load with options.

SparseStoneFormula(D, B)
Sparse Stone formulas

This is a variant of the StoneFormula(). See that for a description of the formula. This variant is such
that each vertex has only a small selection of which stone can go to that vertex. In particular which stones
are allowed on each vertex is specified by a bipartite graph 𝐵 on which the left vertices represent the vertices
of DAG 𝐷 and the right vertices are the stones.

If a vertex of 𝐷 correspond to the left vertex 𝑣 in 𝐵, then its neighbors describe which stones are allowed
for it.

The vertices in 𝐷 do not need to have the same name as the one on the left side of 𝐵. It is only important
that the number of vertices in 𝐷 is the same as the vertices in the left side of 𝐵.

In that case the element at position 𝑖 in the ordered sequence enumerate_vertices(D) corresponds
to the element of rank 𝑖 in the sequence of left side vertices of 𝐵 according to the output of Left, Right
= bipartite_sets(B).

Standard StoneFormula() is essentially equivalent to a sparse stone formula where 𝐵 is the complete
graph.

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

B [bipartite graph]

Raises

ValueError if 𝐷 is not a directed acyclic graph

ValueError if 𝐵 is not a bipartite graph

ValueError when size differs between 𝐷 and the left side of 𝐵

See also:

StoneFormula

18 Chapter 5. Formula families

CNFgen Documentation, Release 0.7.3

class StoneCmdHelper
Stone formulas

The stone formulas have been introduced in [2] and generalized in [1]. They are one of the classic examples
that separate regular resolutions from general resolution [1].

A “Stones formula” from a directed acyclic graph 𝐷 claims that each vertex of the graph is associated with
one on 𝑠 stones (not necessarily in an injective way). In particular for each vertex 𝑣 in 𝑉 (𝐷) and each stone
𝑗 we have a variable 𝑃𝑣,𝑗 that claims that stone 𝑗 is associated to vertex 𝑣.

Each stone can be either red or blue, and not both. The propositional variable 𝑅𝑗 if true when the stone 𝑗 is
red and false otherwise.

The clauses of the formula encode the following constraints. If a stone is on a source vertex (i.e. a vertex
with no incoming edges), then it must be red. If all stones on the predecessors of a vertex are red, then the
stone of the vertex itself must be red.

The formula furthermore enforces that the stones on the sinks (i.e. vertices with no outgoing edges) are
blue.

Note: The exact formula structure depends by the graph and on its topological order, which is determined
by the enumerate_vertices(D).

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

nstones [int] the number of stones.

Raises

ValueError if 𝐷 is not a directed acyclic graph

ValueError if the number of stones is negative

References

[1], [2]

Methods

build_cnf(args) Build the pebbling formula
setup_command_line(parser) Setup the command line options for stone formulas

static build_cnf(args)
Build the pebbling formula

Arguments: - args: command line options

description = 'stone formula'

name = 'stone'

static setup_command_line(parser)
Setup the command line options for stone formulas

Arguments: - parser: parser to load with options.

StoneFormula(D, nstones)
Stone formulas

The stone formulas have been introduced in [2] and generalized in [1]. They are one of the classic examples

5.1. Included formula families 19

CNFgen Documentation, Release 0.7.3

that separate regular resolutions from general resolution [1].

A “Stones formula” from a directed acyclic graph 𝐷 claims that each vertex of the graph is associated with
one on 𝑠 stones (not necessarily in an injective way). In particular for each vertex 𝑣 in 𝑉 (𝐷) and each stone
𝑗 we have a variable 𝑃𝑣,𝑗 that claims that stone 𝑗 is associated to vertex 𝑣.

Each stone can be either red or blue, and not both. The propositional variable 𝑅𝑗 if true when the stone 𝑗 is
red and false otherwise.

The clauses of the formula encode the following constraints. If a stone is on a source vertex (i.e. a vertex
with no incoming edges), then it must be red. If all stones on the predecessors of a vertex are red, then the
stone of the vertex itself must be red.

The formula furthermore enforces that the stones on the sinks (i.e. vertices with no outgoing edges) are
blue.

Note: The exact formula structure depends by the graph and on its topological order, which is determined
by the enumerate_vertices(D).

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

nstones [int] the number of stones.

Raises

ValueError if 𝐷 is not a directed acyclic graph

ValueError if the number of stones is negative

References

[1], [2]

stone_formula_helper(F, D, mapping)
Stones formulas helper

Builds the clauses of a stone formula given the mapping object between stones and vertices of the DAG.
THis is not supposed to be called by user code, and indeed this function assumes the following facts.

• 𝐷 is equal to mapping.domain()

• 𝐷 is a DAG

Parameters

F [CNF] the CNF which will contain the clauses of the stone formula

D [a directed acyclic graph] it should be a directed acyclic graph.

mapping [unary_mapping object] mapping between stones and graph vertices

See also:

StoneFormula the classic stone formula

SparseStoneFormula stone formula with sparse mapping

20 Chapter 5. Formula families

CNFgen Documentation, Release 0.7.3

5.1.6 cnfformula.families.pigeonhole module

Implementation of the pigeonhole principle formulas

class BPHPCmdHelper
Bases: object

Command line helper for the Pigeonhole principle CNF

Methods

build_cnf(args) Build a PHP formula according to the arguments
setup_command_line(parser) Setup the command line options for pigeonhole

principle formula

static build_cnf(args)
Build a PHP formula according to the arguments

Arguments: - args: command line options

description = 'binary pigeonhole principle'

name = 'bphp'

static setup_command_line(parser)
Setup the command line options for pigeonhole principle formula

Arguments: - parser: parser to load with options.

BinaryPigeonholePrinciple(pigeons, holes)
Binary Pigeonhole Principle CNF formula

The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. This
formula encodes the principle using binary strings to identify the holes.

Parameters

pigeon [int] number of pigeons

holes [int] number of holes

class GPHPCmdHelper
Command line helper for the Pigeonhole principle on graphs

Methods

build_cnf(args) Build a Graph PHP formula according to the argu-
ments

setup_command_line(parser) Setup the command line options for pigeonhole
principle formula over graphs

static build_cnf(args)
Build a Graph PHP formula according to the arguments

Arguments: - args: command line options

description = 'graph pigeonhole principle'

name = 'gphp'

static setup_command_line(parser)
Setup the command line options for pigeonhole principle formula over graphs

5.1. Included formula families 21

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Arguments: - parser: parser to load with options.

GraphPigeonholePrinciple(graph, functional=False, onto=False)
Graph Pigeonhole Principle CNF formula

The graph pigeonhole principle CNF formula, defined on a bipartite graph G=(L,R,E), claims that there is a
subset E’ of the edges such that every vertex on the left size L has at least one incident edge in E’ and every
edge on the right side R has at most one incident edge in E’.

This is possible only if the graph has a matching of size |L|.

There are different variants of this formula, depending on the values of functional and onto argument.

• PHP(G): each left vertex can be incident to multiple edges in E’

• FPHP(G): each left vertex must be incident to exaclty one edge in E’

• onto-PHP: all right vertices must be incident to some vertex

• matching: E’ must be a perfect matching between L and R

Arguments: - graph : bipartite graph - functional: add clauses to enforce at most one edge per left vertex -
onto: add clauses to enforce that any right vertex has one incident edge

Remark: the graph vertices must have the ‘bipartite’ attribute set. Left vertices must have it set to 0 and the
right ones to 1. A KeyException is raised otherwise.

class PHPCmdHelper
Bases: object

Command line helper for the Pigeonhole principle CNF

Methods

build_cnf(args) Build a PHP formula according to the arguments
setup_command_line(parser) Setup the command line options for pigeonhole

principle formula

static build_cnf(args)
Build a PHP formula according to the arguments

Arguments: - args: command line options

description = 'pigeonhole principle'

name = 'php'

static setup_command_line(parser)
Setup the command line options for pigeonhole principle formula

Arguments: - parser: parser to load with options.

PigeonholePrinciple(pigeons, holes, functional=False, onto=False)
Pigeonhole Principle CNF formula

The pigeonhole principle claims that no M pigeons can sit in N pigeonholes without collision if M>N. The
counterpositive CNF formulation requires such mapping to be satisfied. There are different variants of this
formula, depending on the values of functional and onto argument.

• PHP: pigeon can sit in multiple holes

• FPHP: each pigeon sits in exactly one hole

• onto-PHP: pigeon can sit in multiple holes, every hole must be covered.

• Matching: one-to-one bijection between pigeons and holes.

22 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Arguments: - pigeon: number of pigeons - hole: number of holes - functional: add clauses to enforce at
most one hole per pigeon - onto: add clauses to enforce that any hole must have a pigeon

>>> print(PigeonholePrinciple(4,3).dimacs(export_header=False))
p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0
-1 -4 0
-1 -7 0
-1 -10 0
-4 -7 0
-4 -10 0
-7 -10 0
-2 -5 0
-2 -8 0
-2 -11 0
-5 -8 0
-5 -11 0
-8 -11 0
-3 -6 0
-3 -9 0
-3 -12 0
-6 -9 0
-6 -12 0
-9 -12 0

5.1.7 cnfformula.families.ramsey module

CNF Formulas for Ramsey-like statements

class PTNCmdHelper
Bases: object

Command line helper for PTN formulas

Methods

build_cnf(args) Build a Ramsey formula according to the argu-
ments

setup_command_line(parser) Setup the command line options for PTN formula

static build_cnf(args)
Build a Ramsey formula according to the arguments

Arguments: - args: command line options

description = 'Bicoloring of N with no monochromatic Pythagorean Triples'

name = 'ptn'

static setup_command_line(parser)
Setup the command line options for PTN formula

Arguments: - parser: parser to load with options.

PythagoreanTriples(N)
There is a Pythagorean triples free coloring on N

The formula claims that it is possible to bicolor the numbers from 1 to 𝑁 so that there is no monochromatic

5.1. Included formula families 23

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

triplet (𝑥, 𝑦, 𝑧) so that 𝑥2 + 𝑦2 = 𝑧2.

Parameters

N [int] size of the interval

Raises

ValueError Parameters are not positive integers

References

[1]

class RamseyCmdHelper
Bases: object

Command line helper for RamseyNumber formulas

Methods

build_cnf(args) Build a Ramsey formula according to the argu-
ments

setup_command_line(parser) Setup the command line options for Ramsey for-
mula

static build_cnf(args)
Build a Ramsey formula according to the arguments

Arguments: - args: command line options

description = 'ramsey number principle'

name = 'ram'

static setup_command_line(parser)
Setup the command line options for Ramsey formula

Arguments: - parser: parser to load with options.

RamseyLowerBoundFormula(s, k, N)
Formula claiming that Ramsey number r(s,k) > N

Arguments: - s: independent set size - k: clique size - N: vertices

5.1.8 cnfformula.families.randomformulas module

Random CNF Formulas

class RandCmdHelper
Bases: object

Command line helper for random formulas

Methods

build_cnf(args) Build a conjunction
setup_command_line(parser) Setup the command line options for an and of lit-

erals

24 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

static build_cnf(args)
Build a conjunction

Arguments: - args: command line options

description = 'random k-CNF'

name = 'randkcnf'

static setup_command_line(parser)
Setup the command line options for an and of literals

Arguments: - parser: parser to load with options.

RandomKCNF(k, n, m, seed=None, planted_assignments=[])
Build a random k-CNF

Sample 𝑚 clauses over 𝑛 variables, each of width 𝑘, uniformly at random. The sampling is done without
repetition, meaning that whenever a randomly picked clause is already in the CNF, it is sampled again.

Parameters

k [int] width of each clause

n [int] number of variables to choose from. The resulting CNF object will contain n vari-
ables even if some are not mentioned in the clauses.

m [int] number of clauses to generate

seed [hashable object] seed of the random generator

planted_assignments [iterable(dict), optional] a set of total/partial assigments such that all
clauses in the formula will be satisfied by all of them.

Returns

a CNF object

Raises

ValueError when some paramenter is negative, or when k>n.

all_clauses(k, indices, planted_assignments)

clause_satisfied(cls, assignments)
Test whether a clause is satisfied by all assignments

Test if clauses cls is satisfied by all assigment in the list assignments.

sample_clauses(k, indices, m, planted_assignments)

sample_clauses_dense(k, indices, m, planted_assignments)

5.1.9 cnfformula.families.subgraph module

Implementation of formulas that check for subgraphs

BinaryCliqueFormula(G, k)
Test whether a graph has a k-clique.

Given a graph 𝐺 and a non negative value 𝑘, the CNF formula claims that 𝐺 contains a 𝑘-clique. This
formula uses the binary encoding, in the sense that the clique elements are indexed by strings of bits.

Parameters

G [networkx.Graph] a simple graph

k [a non negative integer] clique size

Returns

a CNF object

5.1. Included formula families 25

CNFgen Documentation, Release 0.7.3

class BinaryKCliqueCmdHelper
Bases: object

Command line helper for k-clique formula

Methods

build_cnf(args) Build a k-clique formula according to the argu-
ments

setup_command_line(parser) Setup the command line options for k-clique for-
mula

static build_cnf(args)
Build a k-clique formula according to the arguments

Arguments: - args: command line options

description = 'Binary k clique formula'

name = 'kcliquebin'

static setup_command_line(parser)
Setup the command line options for k-clique formula

Arguments: - parser: parser to load with options.

CliqueFormula(G, k)
Test whether a graph has a k-clique.

Given a graph 𝐺 and a non negative value 𝑘, the CNF formula claims that 𝐺 contains a 𝑘-clique.

Parameters

G [networkx.Graph] a simple graph

k [a non negative integer] clique size

Returns

a CNF object

class KCliqueCmdHelper
Bases: object

Command line helper for k-clique formula

Methods

build_cnf(args) Build a k-clique formula according to the argu-
ments

setup_command_line(parser) Setup the command line options for k-clique for-
mula

static build_cnf(args)
Build a k-clique formula according to the arguments

Arguments: - args: command line options

description = 'k clique formula'

name = 'kclique'

static setup_command_line(parser)

26 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Setup the command line options for k-clique formula

Arguments: - parser: parser to load with options.

class RWCmdHelper
Bases: object

Command line helper for ramsey graph formula

Methods

build_cnf(args) Build a formula to check that a graph is a ramsey
number lower bound

setup_command_line(parser) Setup the command line options for ramsey wit-
ness formula

static build_cnf(args)
Build a formula to check that a graph is a ramsey number lower bound

Arguments: - args: command line options

description = 'unsat if G witnesses that r(k,s)>|V(G)| (i.e. G has not k-clique nor s-stable)'

name = 'ramlb'

static setup_command_line(parser)
Setup the command line options for ramsey witness formula

Arguments: - parser: parser to load with options.

RamseyWitnessFormula(G, k, s)
Test whether a graph contains one of the templates.

Given a graph 𝐺 and a non negative values 𝑘 and 𝑠, the CNF formula claims that 𝐺 contains a neither a
𝑘-clique nor an independet set of size 𝑠.

Parameters

G [networkx.Graph] a simple graph

k [a non negative integer] clique size

s [a non negative integer] independet set size

Returns

a CNF object

class SubGraphCmdHelper
Bases: object

Command line helper for Graph Isomorphism formula

Methods

build_cnf(args) Build a graph automorphism formula according to
the arguments

setup_command_line(parser) Setup the command line options for graph isomor-
phism formula

static build_cnf(args)
Build a graph automorphism formula according to the arguments

5.1. Included formula families 27

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Arguments: - args: command line options

description = 'subgraph formula'

name = 'subgraph'

static setup_command_line(parser)
Setup the command line options for graph isomorphism formula

Arguments: - parser: parser to load with options.

SubgraphFormula(graph, templates, symmetric=False)
Test whether a graph contains one of the templates.

Given a graph 𝐺 and a sequence of template graphs 𝐻1, 𝐻2, . . . , 𝐻𝑡, the CNF formula claims that 𝐺
contains an isomorphic copy of at least one of the template graphs.

E.g. when 𝐻1 is the complete graph of 𝑘 vertices and it is the only template, the formula claims that 𝐺
contains a 𝑘-clique.

Parameters

graph [networkx.Graph] a simple graph

templates [list-like object] a sequence of graphs.

symmetric: all template graphs are symmetric wrt permutations of vertices. This allows
some optimization in the search space of the assignments.

induce: force the subgraph to be induced (i.e. no additional edges are allowed)

Returns

a CNF object

5.1.10 cnfformula.families.subsetcardinality module

Implementation of subset cardinality formulas

class SCCmdHelper
Bases: object

Methods

build_cnf
setup_command_line

static build_cnf(args)

description = 'subset cardinality formulas'

name = 'subsetcard'

static setup_command_line(parser)

SubsetCardinalityFormula(B, equalities=False)
Consider a bipartite graph 𝐵. The CNF claims that at least half of the edges incident to each of the vertices
on left side of 𝐵 must be zero, while at least half of the edges incident to each vertex on the left side must
be one.

Variants of these formula on specific families of bipartite graphs have been studied in [1], [2] and [3], and
turned out to be difficult for resolution based SAT-solvers.

Each variable of the formula is denoted as 𝑥𝑖,𝑗 where {𝑖, 𝑗} is an edge of the bipartite graph. The clauses of
the CNF encode the following constraints on the edge variables.

28 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

For every left vertex i with neighborhood Γ(𝑖)∑︁
𝑗∈Γ(𝑖)

𝑥𝑖,𝑗 ≥
|Γ(𝑖)|

2

For every right vertex j with neighborhood Γ(𝑗)∑︁
𝑖∈Γ(𝑗)

𝑥𝑖,𝑗 ≤
|Γ(𝑗)|

2
.

If the equalities flag is true, the constraints are instead represented by equations.∑︁
𝑗∈Γ(𝑖)

𝑥𝑖,𝑗 =

⌈︂
|Γ(𝑖)|

2

⌉︂
∑︁

𝑖∈Γ(𝑗)

𝑥𝑖,𝑗 =

⌊︂
|Γ(𝑗)|

2

⌋︂
.

Parameters

B [networkx.Graph] the graph vertices must have the ‘bipartite’ attribute set. Left vertices
must have it set to 0 and the right ones to 1. A KeyException is raised otherwise.

equalities [boolean] use equations instead of inequalities to express the cardinality con-
straints. (default: False)

Returns

A CNF object

References

[1], [2], [3]

5.1.11 cnfformula.families.cliquecoloring module

Implementation of the clique-coloring formula

CliqueColoring(n, k, c)
Clique-coloring CNF formula

The formula claims that a graph 𝐺 with 𝑛 vertices simultaneously contains a clique of size 𝑘 and a coloring
of size 𝑐.

If 𝑘 = 𝑐 + 1 then the formula is clearly unsatisfiable, and it is the only known example of a formula hard
for cutting planes proof system. [1]

Variables 𝑒𝑢,𝑣 to encode the edges of the graph.

Variables 𝑞𝑖,𝑣 encode a function from [𝑘] to [𝑛] that represents a clique.

Variables 𝑟𝑣,ℓ encode a function from [𝑛] to [𝑐] that represents a coloring.

Parameters

n [number of vertices in the graph]

k [size of the clique]

c [size of the coloring]

Returns

A CNF object

5.1. Included formula families 29

CNFgen Documentation, Release 0.7.3

References

[1]

class CliqueColoringCmdHelper
Bases: object

Command line helper for the Clique-coclique CNF

Methods

build_cnf(args) Build a Clique-coclique formula according to the
arguments

setup_command_line(parser) Setup the command line options for clique-
coloring formula

static build_cnf(args)
Build a Clique-coclique formula according to the arguments

Arguments: - args: command line options

description = 'There is a graph G with a k-clique and a c-coloring'

name = 'cliquecoloring'

static setup_command_line(parser)
Setup the command line options for clique-coloring formula

Arguments: - parser: parser to load with options.

5.1.12 cnfformula.families.tseitin module

Implementation of Tseitin formulas

class TseitinCmdHelper
Bases: object

Command line helper for Tseitin formulas

Methods

build_cnf(args) Build Tseitin formula according to the arguments
setup_command_line(parser) Setup the command line options for Tseitin for-

mula

static build_cnf(args)
Build Tseitin formula according to the arguments

Arguments: - args: command line options

description = 'tseitin formula'

name = 'tseitin'

static setup_command_line(parser)
Setup the command line options for Tseitin formula

Arguments: - parser: parser to load with options.

TseitinFormula(graph, charges=None)

30 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Build a Tseitin formula based on the input graph.

Odd charge is put on the first vertex by default, unless other vertices are is specified in input.

Arguments: - graph: input graph - ‘charges’: odd or even charge for each vertex

5.1.13 cnfformula.families.simple module

Implementation of simple formulas

class AND
Bases: object

Command line helper for a 1-CNF (i.e. conjunction)

Methods

build_cnf(args) Build a conjunction
setup_command_line(parser) Setup the command line options for an and of lit-

erals

static build_cnf(args)
Build a conjunction

Arguments: - args: command line options

description = 'a single conjunction'

name = 'and'

static setup_command_line(parser)
Setup the command line options for an and of literals

Arguments: - parser: parser to load with options.

class EMPTY
Bases: object

Command line helper for the empty CNF (no clauses)

Methods

build_cnf(args) Build an empty CNF formula

setup_command_line

static build_cnf(args)
Build an empty CNF formula

Parameters

args [ignored] command line options

description = 'empty CNF formula'

name = 'empty'

static setup_command_line(parser)

class EMPTY_CLAUSE
Bases: object

5.1. Included formula families 31

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

Command line helper for the contradiction (one empty clauses)

Methods

build_cnf(args) Build a CNF formula with an empty clause

setup_command_line

static build_cnf(args)
Build a CNF formula with an empty clause

Parameters

args [ignored] command line options

description = 'one empty clause'

name = 'emptyclause'

static setup_command_line(parser)

class OR
Bases: object

Command line helper for a single clause formula

Methods

build_cnf(args) Build an disjunction
setup_command_line(parser) Setup the command line options for single or of

literals

static build_cnf(args)
Build an disjunction

Arguments: - args: command line options

description = 'a single disjunction'

name = 'or'

static setup_command_line(parser)
Setup the command line options for single or of literals

Arguments: - parser: parser to load with options.

5.2 Command line invocation

Furthermore it is possible to generate the formulas directly from the command line. To list all formula families
accessible from the command line just run the command cnfgen --help. To get information about the specific
command line parameters for a formula generator run the command cnfgen <generator_name> --help.

Recall the example above, in hich we produced a pigeohole principle formula for 10 pigeons and 9 holes. We can
get the same formula in DIMACS format with the following command line.

$ cnfgen php 10 9
c Pigeonhole principle formula for 10 pigeons and 9 holes

(continues on next page)

32 Chapter 5. Formula families

https://docs.python.org/2.7/library/functions.html#object

CNFgen Documentation, Release 0.7.3

(continued from previous page)

c Generated with `cnfgen` (C) 2012-2016 Massimo Lauria <lauria.massimo@gmail.com>
c https://massimolauria.github.io/cnfgen
c
p cnf 90 415
1 2 3 4 5 6 7 8 9 0
10 11 12 13 14 15 16 17 18 0
19 20 21 22 23 24 25 26 27 0
28 29 30 31 32 33 34 35 36 0
37 38 39 40 41 42 43 44 45 0
46 47 48 49 50 51 52 53 54 0
55 56 57 58 59 60 61 62 63 0
64 65 66 67 68 69 70 71 72 0
73 74 75 76 77 78 79 80 81 0
82 83 84 85 86 87 88 89 90 0
-1 -10 0
-1 -19 0
-1 -28 0
-1 -37 0
-1 -46 0
-1 -55 0
-1 -64 0
-1 -73 0
-1 -82 0
-10 -19 0
-10 -28 0
-10 -37 0
-10 -46 0
...
-72 -81 0
-72 -90 0
-81 -90 0

5.2. Command line invocation 33

CNFgen Documentation, Release 0.7.3

34 Chapter 5. Formula families

CHAPTER 6

Graph based formulas

The most interesting benchmark formulas have a graph structure. See the following example, where
cnfformula.TseitinFormula() is realized over a star graph with five arms.

>>> import cnfformula
>>> import networkx as nx
>>> G = nx.star_graph(5)
>>> G.edges()
>>> [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> F = cnfformula.TseitinFormula(G,charges=[0,1,1,0,1,1])
>>> F.is_satisfiable()
(True,
{'E_{0,1}': True,
'E_{0,2}': True,
'E_{0,3}': False,
'E_{0,4}': True,
'E_{0,5}': True})

Tseitin formulas can be really hard for if the graph has large edge expansion. Indeed the unsatisfiable version of
this formula requires exponential running time in any resolution based SAT solver1.

In the previous example the structure of the CNF was a simple undirected graph, but in CNFgen we have formulas
built around four different types of graphs.

simple simple graph default graph
bipartite bipartite graph vertices split in two inpedendent sets
digraph directed graph each edge has an orientation
dag directed acyclic graph no cycles, edges induce a partial ordering

To manipulate graphs CNFgen does not reinvent the wheel, but uses the famous NetworkX library behind the
scene. NetworkX supports reading and writing graph from/to files, and CNFgen leverages on that. Fur-
thermore CNFgen implements graph I/O in few other file formats. The function cnfformula.graphs.
supported_formats() lists the file formats available for each graph type.

>>> from cnfformula.graphs import supported_formats
>>> supported_formats()
{'bipartite': ['matrix', 'gml', 'dot'],

(continues on next page)

1 A. Urquhart. Hard examples for resolution. Journal of the ACM (1987) http://dx.doi.org/10.1145/48014.48016

35

https://en.wikipedia.org/wiki/Expander_graph
https://networkx.github.io/
http://dx.doi.org/10.1145/48014.48016

CNFgen Documentation, Release 0.7.3

(continued from previous page)

'dag': ['kthlist', 'gml', 'dot'],
'digraph': ['kthlist', 'gml', 'dot', 'dimacs'],
'simple': ['kthlist', 'gml', 'dot', 'dimacs']}

The dot format is from Graphviz and it is available only if the optional pydot2 python package is installed in
the system. The Graph Modelling Language (GML) gml is the current standard in graph representation. The
DIMACS (dimacs) format2 is used sometimes for programming competitions or in the theoretical computer
science community. The kthlist and matrix formats are defined and implemented inside CNFgen.

Note: More information about the supported graph file formats is in the User Documentation for the cnfgen
command line too. In particular there is a description of kthlist and matrix formats.

6.1 Directed Acyclic Graphs and Bipartite Graphs

NetworkX does not have a specific data structure for a directed acyclic graphs (DAGs). In CNFgen a DAG
is any object which is either a networkx.DiGraph or networkx.MultiDiGraph instance, and which
furthermore passes the test cnfformula.graphs.is_dag().

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_cycle([1,2,3])
>>> cnfformula.graphs.is_dag(G)
False
>>> H = nx.DiGraph()
>>> H.add_path([1,2,3])
>>> cnfformula.graphs.is_dag(H)
True

In the same way NetworkX does not have a particular data structure for bipartite graphs (networkx.Graph
and networkx.MultiGraph are possible choices), but it follows the convention that all vertices in the graph
have the bipartite attribute that gets values {0, 1}3. The CNF formula constructions that make use of bipartite
graphs usually associate the 0 part as the left side, and the 1 part to the right side. The function cnfformula.
graphs.has_bipartition() tests whether this bipartition exists in a graph.

>>> import networkx as nx
>>> G=nx.bipartite.random_graph(3,2,0.5)
>>> cnfformula.graphs.has_biparition(G)
True
>>> G.node
{0: {'bipartite': 0},
1: {'bipartite': 0},
2: {'bipartite': 0},
3: {'bipartite': 1},
4: {'bipartite': 1}}

>>> G.edges()
[(0, 4), (1, 3), (1, 4), (2, 3)]
>>> F = cnfformula.GraphPigeonholePrinciple(G)
>>> list(F.variables())
['p_{0,4}', 'p_{1,3}', 'p_{1,4}', 'p_{2,3}']

2 Beware. Here we are talking about the DIMACS format for graphs, not the DIMACS file format for CNF formulas.
3 This convention is describe in http://networkx.readthedocs.org/en/latest/reference/algorithms.bipartite.html

36 Chapter 6. Graph based formulas

http://www.graphviz.org/content/dot-language
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://prolland.free.fr/works/research/dsat/dimacs.html
http://massimolauria.github.io/cnfgen/graphformats.html
http://networkx.readthedocs.org/en/latest/reference/algorithms.bipartite.html

CNFgen Documentation, Release 0.7.3

6.2 Graph I/O

The cnfformula.graphs module implements a graph reader cnfformula.graphs.readGraph and
a graph writer cnfformula.graphs.writeGraph to facilitate graph I/O. .. Both readGraph and
writeGraph operate either on filenames, encoded as str or unicode, or otherwise on file-like objects such
as

• standard file objects (including sys.stdin and sys.stdout);

• string buffers of type StringIO.StringIO;

• in-memory text streams that inherit from io.TextIOBase.

>>> import sys
>>> import networkx as nx
>>> from cnfformula.graphs import readGraph, writeGraph

>>> G = nx.bipartite.random_graph(3,2,0.5)
>>> writeGraph(G,sys.stdout,graph_type='bipartite',file_format='gml')
strict graph "fast_gnp_random_graph(3,2,0.5)" {
0 [bipartite=0];

4 [bipartite=1];
0 -- 4;
1 [bipartite=0];
3 [bipartite=1];
1 -- 3;
2 [bipartite=0];
2 -- 4;

}

>>> from StringIO import StringIO
>>> buffer = StringIO("graph X { 1 -- 2 -- 3 }")
>>> G = readGraph(buffer, graph_type='simple', file_format='dot')
>>> G.edges()
[('1', '2'), ('3', '2')]

There are several advantages with using those functions, instead of the reader/writer implemented NextowrkX.
First of all the reader always verifies that when reading a graph of a certain type, the actual input actually matches
the type. For example if the graph is supposed to be a DAG, then cnfformula.graphs.readGraph()
would check that.

>>> buffer = StringIO('digraph A { 1 -- 2 -- 3 -- 1}')
>>> readGraph(buffer,graph_type='dag',file_format='dot')
[...]
ValueError: Input graph must be acyclic

When the file object has an associated file name, it is possible to omit the file_format argument. In this latter
case the appropriate choice of format will be guessed by the file extension.

>>> with open("example.dot","w") as f: print >> f , "digraph A {1->2->3}"
>>> G = readGraph("example.dot",graph_type='dag')
>>> G.edges()
[('1', '2'), ('2', '3')]

>>> with open("example.gml","w") as f: print >> f , "digraph A {1->2->3}"
>>> G = readGraph("example.gml",graph_type='dag',file_format='dot')
>>> G.edges()
[('1', '2'), ('2', '3')]

6.2. Graph I/O 37

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/sys.html#sys.stdin
https://docs.python.org/2.7/library/sys.html#sys.stdout
https://docs.python.org/2.7/library/stringio.html#StringIO.StringIO
https://docs.python.org/2.7/library/io.html#io.TextIOBase

CNFgen Documentation, Release 0.7.3

>>> with open("example.gml","w") as f: print >> f , "digraph A {1->2->3}"
>>> G = readGraph("example.gml",graph_type='dag')
ValueError: [Parse error in GML input] expected ...

6.3 Graph generators

Note: See the documentation of the module cnfformula.graphs for more information about the CNFgen
support code for graphs.

6.4 References

38 Chapter 6. Graph based formulas

CHAPTER 7

Post-process a CNF formula

After you produce a cnfformula.CNF, maybe using one of the generators included, it is still possible to modify
it. One simple ways is to add new clauses but there are ways to make the formula harder with some structured
transformations. Usually this technique is employed to produce interesting formulas for proof complexity appli-
cations or to benchmark SAT solvers.

7.1 Example: OR substitution

As an example of formula post-processing, we transform a formula by substituting every variable with the logical
disjunction of, says, 3 fresh variables. Consider the following CNF as starting point.

(¬𝑋 ∨ 𝑌) ∧ (¬𝑍)

After the substitution the new formula is still expressed as a CNF and it is

(¬𝑋1 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑋2 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑋3 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑍1) ∧ (¬𝑍2) ∧ (¬𝑍3)

There are many other transformation methods than OR substitution. Each method comes with a rank parameter
that controls the hardness after the substitution. In the previous example the parameter would be the number of
variables used in the disjunction to substitute the original variables.

7.2 Using CNF transformations

To get a list of the available transformations you can run

>>> import cnfformula
>>> cnfformula.available_transformations()

The following processing methods are implemented. The none method just leaves the formula alone. It is a null
transformation in the sense that, contrary to the other methods, this one returns exactly the same cnfformula.
CNF object that it gets in input. All the other methods would produce a new CNF object with the new formula.
The old one is left untouched.

39

families.html

CNFgen Documentation, Release 0.7.3

Name Description Default rank See documentation
none leaves the formula alone ignored
eq all variables equal 3 cnfformula.transformation.Equality
ite if x then y else z ignored cnfformula.transformation.IfThenElse
lift lifting 3 cnfformula.transformation.Lifting
maj Loose majority 3 cnfformula.transformation.Majority
neq not all vars equal 3 cnfformula.transformation.NotEquality
one Exactly one 3 cnfformula.transformation.One
or OR substitution 2 cnfformula.transformation.InnerOr
xor XOR substitution 2 cnfformula.transformation.InnerXor

Any cnfformula.CNF can be post-processed using the function cnfformula.TransformFormula().
For example to substitute each variable with a 2-XOR we can do

>>> from cnfformula import CNF, TransformFormula
>>> F = CNF([[(True,"x1"),(True,"x2"),(False,"x3")], [(False,"x2"),(True,"x4")]])
>>> G = TransformFormula(F,'xor',2)

Here is the original formula.

>>> print F.dimacs(export_header=False)
p cnf 4 2
1 2 -3 0
-2 4 0

Here it is after the transformation.

>>> print G.variables(export_header=False)
p cnf 8 12
1 2 3 4 5 -6 0
1 2 3 4 -5 6 0
1 2 -3 -4 5 -6 0
1 2 -3 -4 -5 6 0
-1 -2 3 4 5 -6 0
-1 -2 3 4 -5 6 0
-1 -2 -3 -4 5 -6 0
-1 -2 -3 -4 -5 6 0
3 -4 7 8 0
3 -4 -7 -8 0
-3 4 7 8 0
-3 4 -7 -8 0

It is possible to omit the rank parameter. In such case the default value is used.

40 Chapter 7. Post-process a CNF formula

CHAPTER 8

The command line utility

Most people are likely to use CNFgen by command line. The command line has a powerful interface with many
options and sensible defaults, so that the newcomer is not intimidated but it is still possible to generate nontrivial
formula

41

CNFgen Documentation, Release 0.7.3

42 Chapter 8. The command line utility

CHAPTER 9

Adding a formula family to CNFgen

43

CNFgen Documentation, Release 0.7.3

44 Chapter 9. Adding a formula family to CNFgen

CHAPTER 10

Welcome to CNFgen’s documentation!

The main components of CNFgen are the cnfformula library and the cnfgen command line utility.

10.1 The cnfformula library

The cnfformula library is capable to generate Conjunctive Normal Form (CNF) formulas, manipulate them
and, when there is a satisfiability (SAT) solver properly installed on your system, test their satisfiability. The
CNFs can be saved on file in DIMACS format, which the standard input format for SAT solvers1, or converted
to LaTeX2 to be included in a document. The library contains many generators for formulas that encode various
combinatorial problems or that come from research in Proof Complexity3.

The main entry point for the library is the cnfformula.CNF object. Let’s see a simple example of its usage.

>>> import cnfformula
>>> F = cnfformula.CNF()
>>> F.add_clause([(True,"X"),(False,"Y")])
>>> F.add_clause([(False,"X")])
>>> F.is_satisfiable()
(True, {'Y':False, 'X':False})
>>> F.add_clause([(True,"Y")])
>>> F.is_satisfiable()
(False, None)
>>> print F.dimacs()
c Generated with `cnfgen` (C) 2012-2016 Massimo Lauria <lauria.massimo@gmail.com>
c https://github.com/MassimoLauria/cnfgen.git
c
p cnf 2 3
1 -2 0
-1 0
2 0
>>> print F.latex()
% Generated with `cnfgen` (C) 2012-2016 Massimo Lauria <lauria.massimo@gmail.com>
% https://github.com/MassimoLauria/cnfgen.git
%

(continues on next page)

1 http://www.satlib.org/Benchmarks/SAT/satformat.ps
2 http://www.latex-project.org/
3 http://en.wikipedia.org/wiki/Proof_complexity

45

http://www.satlib.org/Benchmarks/SAT/satformat.ps
http://www.latex-project.org/
http://en.wikipedia.org/wiki/Proof_complexity

CNFgen Documentation, Release 0.7.3

(continued from previous page)

\begin{align}
& \left({X} \lor \neg{Y} \right) \\
& \land \left(\neg{X} \right) \\
& \land \left({Y} \right)
\end{align}

A typical unsatisfiable formula studied in Proof Complexity is the pigeonhole principle formula.

>>> from cnfformula import PigeonholePrinciple
>>> F = PigeonholePrinciple(5,4)
>>> print F.dimacs()
c Pigeonhole principle formula for 5 pigeons and 4 holes
c Generated with `cnfgen` (C) 2012-2016 Massimo Lauria <lauria.massimo@gmail.com>
c https://github.com/MassimoLauria/cnfgen.git
c
p cnf 20 45
1 2 3 4 0
5 6 7 8 0
...
-16 -20 0
>>> F.is_satisfiable()
(False, None)

10.2 The cnfgen command line tool

The command line tool is installed along cnfformula package, and provides a somehow limited interface to
the library capabilities. It provides ways to produce formulas in DIMACS and LaTeX format from the command
line. To produce a pigeonhole principle from 5 pigeons to 4 holes as in the previous example the command line is

$ cnfgen php 5 4
c Pigeonhole principle formula for 5 pigeons and 4 holes
c Generated with `cnfgen` (C) Massimo Lauria <lauria.massimo@gmail.com>
c https://github.com/MassimoLauria/cnfgen.git
c
p cnf 20 45
1 2 3 4 0
5 6 7 8 0
...
-16 -20 0

For a documentation on how to use cnfgen command please type cnfgen --help and for further documen-
tation about a specific formula generator type cnfgen <generator_name> --help.

10.3 Reference

46 Chapter 10. Welcome to CNFgen’s documentation!

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

47

CNFgen Documentation, Release 0.7.3

48 Chapter 11. Indices and tables

Bibliography

[1] Locality and Hard SAT-instances, Klas Markstrom Journal on Satisfiability, Boolean Modeling and Compu-
tation 2 (2006) 221-228

[1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart An Exponential Separation between Regular and
General Resolution. Theory of Computing (2007)

[2] R. Raz and P. McKenzie Separation of the monotone NC hierarchy. Combinatorica (1999)

[1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart An Exponential Separation between Regular and
General Resolution. Theory of Computing (2007)

[2] R. Raz and P. McKenzie Separation of the monotone NC hierarchy. Combinatorica (1999)

[1] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples problem
via cube-and-conquer. arXiv preprint arXiv:1605.00723, 2016.

[1] Mladen Miksa and Jakob Nordstrom Long proofs of (seemingly) simple formulas Theory and Applications of
Satisfiability Testing–SAT 2014 (2014)

[2] Ivor Spence sgen1: A generator of small but difficult satisfiability benchmarks Journal of Experimental Algo-
rithmics (2010)

[3] Allen Van Gelder and Ivor Spence Zero-One Designs Produce Small Hard SAT Instances Theory and Appli-
cations of Satisfiability Testing–SAT 2010(2010)

[1] Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of
Symbolic Logic (1997)

49

CNFgen Documentation, Release 0.7.3

50 Bibliography

Python Module Index

f
cnfformula.families.cliquecoloring, 29
cnfformula.families.coloring, 13
cnfformula.families.counting, 11
cnfformula.families.graphisomorphism,

14
cnfformula.families.ordering, 15
cnfformula.families.pebbling, 17
cnfformula.families.pigeonhole, 21
cnfformula.families.ramsey, 23
cnfformula.families.randomformulas, 24
cnfformula.families.simple, 31
cnfformula.families.subgraph, 25
cnfformula.families.subsetcardinality,

28
cnfformula.families.tseitin, 30

51

CNFgen Documentation, Release 0.7.3

52 Python Module Index

Index

A
all_clauses() (in module cnffor-

mula.families.randomformulas), 25
AND (class in cnfformula.families.simple), 31

B
BinaryCliqueFormula() (in module cnffor-

mula.families.subgraph), 25
BinaryKCliqueCmdHelper (class in cnffor-

mula.families.subgraph), 25
BinaryPigeonholePrinciple() (in module cnffor-

mula.families.pigeonhole), 21
BPHPCmdHelper (class in cnffor-

mula.families.pigeonhole), 21
build_cnf() (AND static method), 31
build_cnf() (BinaryKCliqueCmdHelper static method),

26
build_cnf() (BPHPCmdHelper static method), 21
build_cnf() (CliqueColoringCmdHelper static method),

30
build_cnf() (CountingCmdHelper static method), 11
build_cnf() (ECCmdHelper static method), 13
build_cnf() (EMPTY static method), 31
build_cnf() (EMPTY_CLAUSE static method), 32
build_cnf() (GAutoCmdHelper static method), 14
build_cnf() (GIsoCmdHelper static method), 15
build_cnf() (GOPCmdHelper static method), 16
build_cnf() (GPHPCmdHelper static method), 21
build_cnf() (KCliqueCmdHelper static method), 26
build_cnf() (KColorCmdHelper static method), 14
build_cnf() (OPCmdHelper static method), 16
build_cnf() (OR static method), 32
build_cnf() (ParityCmdHelper static method), 12
build_cnf() (PebblingCmdHelper static method), 17
build_cnf() (PHPCmdHelper static method), 22
build_cnf() (PMatchingCmdHelper static method), 12
build_cnf() (PTNCmdHelper static method), 23
build_cnf() (RamseyCmdHelper static method), 24
build_cnf() (RandCmdHelper static method), 25
build_cnf() (RWCmdHelper static method), 27
build_cnf() (SCCmdHelper static method), 28
build_cnf() (SparseStoneCmdHelper static method), 18
build_cnf() (StoneCmdHelper static method), 19

build_cnf() (SubGraphCmdHelper static method), 27
build_cnf() (TseitinCmdHelper static method), 30

C
clause_satisfied() (in module cnffor-

mula.families.randomformulas), 25
CliqueColoring() (in module cnffor-

mula.families.cliquecoloring), 29
CliqueColoringCmdHelper (class in cnffor-

mula.families.cliquecoloring), 30
CliqueFormula() (in module cnffor-

mula.families.subgraph), 26
cnfformula.families.cliquecoloring (module), 29
cnfformula.families.coloring (module), 13
cnfformula.families.counting (module), 11
cnfformula.families.graphisomorphism (module), 14
cnfformula.families.ordering (module), 15
cnfformula.families.pebbling (module), 17
cnfformula.families.pigeonhole (module), 21
cnfformula.families.ramsey (module), 23
cnfformula.families.randomformulas (module), 24
cnfformula.families.simple (module), 31
cnfformula.families.subgraph (module), 25
cnfformula.families.subsetcardinality (module), 28
cnfformula.families.tseitin (module), 30
CountingCmdHelper (class in cnffor-

mula.families.counting), 11
CountingPrinciple() (in module cnffor-

mula.families.counting), 12

D
description (AND attribute), 31
description (BinaryKCliqueCmdHelper attribute), 26
description (BPHPCmdHelper attribute), 21
description (CliqueColoringCmdHelper attribute), 30
description (CountingCmdHelper attribute), 11
description (ECCmdHelper attribute), 13
description (EMPTY attribute), 31
description (EMPTY_CLAUSE attribute), 32
description (GAutoCmdHelper attribute), 14
description (GIsoCmdHelper attribute), 15
description (GOPCmdHelper attribute), 16
description (GPHPCmdHelper attribute), 21
description (KCliqueCmdHelper attribute), 26

53

CNFgen Documentation, Release 0.7.3

description (KColorCmdHelper attribute), 14
description (OPCmdHelper attribute), 16
description (OR attribute), 32
description (ParityCmdHelper attribute), 12
description (PebblingCmdHelper attribute), 17
description (PHPCmdHelper attribute), 22
description (PMatchingCmdHelper attribute), 12
description (PTNCmdHelper attribute), 23
description (RamseyCmdHelper attribute), 24
description (RandCmdHelper attribute), 25
description (RWCmdHelper attribute), 27
description (SCCmdHelper attribute), 28
description (SparseStoneCmdHelper attribute), 18
description (StoneCmdHelper attribute), 19
description (SubGraphCmdHelper attribute), 28
description (TseitinCmdHelper attribute), 30

E
ECCmdHelper (class in cnfformula.families.coloring),

13
EMPTY (class in cnfformula.families.simple), 31
EMPTY_CLAUSE (class in cnffor-

mula.families.simple), 31
EvenColoringFormula() (in module cnffor-

mula.families.coloring), 13

G
GAutoCmdHelper (class in cnffor-

mula.families.graphisomorphism), 14
GIsoCmdHelper (class in cnffor-

mula.families.graphisomorphism), 14
GOPCmdHelper (class in cnffor-

mula.families.ordering), 15
GPHPCmdHelper (class in cnffor-

mula.families.pigeonhole), 21
GraphAutomorphism() (in module cnffor-

mula.families.graphisomorphism), 15
GraphColoringFormula() (in module cnffor-

mula.families.coloring), 13
GraphIsomorphism() (in module cnffor-

mula.families.graphisomorphism), 15
GraphOrderingPrinciple() (in module cnffor-

mula.families.ordering), 16
GraphPigeonholePrinciple() (in module cnffor-

mula.families.pigeonhole), 22

K
KCliqueCmdHelper (class in cnffor-

mula.families.subgraph), 26
KColorCmdHelper (class in cnffor-

mula.families.coloring), 14

N
name (AND attribute), 31
name (BinaryKCliqueCmdHelper attribute), 26
name (BPHPCmdHelper attribute), 21
name (CliqueColoringCmdHelper attribute), 30
name (CountingCmdHelper attribute), 12

name (ECCmdHelper attribute), 13
name (EMPTY attribute), 31
name (EMPTY_CLAUSE attribute), 32
name (GAutoCmdHelper attribute), 14
name (GIsoCmdHelper attribute), 15
name (GOPCmdHelper attribute), 16
name (GPHPCmdHelper attribute), 21
name (KCliqueCmdHelper attribute), 26
name (KColorCmdHelper attribute), 14
name (OPCmdHelper attribute), 16
name (OR attribute), 32
name (ParityCmdHelper attribute), 12
name (PebblingCmdHelper attribute), 17
name (PHPCmdHelper attribute), 22
name (PMatchingCmdHelper attribute), 12
name (PTNCmdHelper attribute), 23
name (RamseyCmdHelper attribute), 24
name (RandCmdHelper attribute), 25
name (RWCmdHelper attribute), 27
name (SCCmdHelper attribute), 28
name (SparseStoneCmdHelper attribute), 18
name (StoneCmdHelper attribute), 19
name (SubGraphCmdHelper attribute), 28
name (TseitinCmdHelper attribute), 30

O
OPCmdHelper (class in cnfformula.families.ordering),

16
OR (class in cnfformula.families.simple), 32
OrderingPrinciple() (in module cnffor-

mula.families.ordering), 16

P
ParityCmdHelper (class in cnffor-

mula.families.counting), 12
PebblingCmdHelper (class in cnffor-

mula.families.pebbling), 17
PebblingFormula() (in module cnffor-

mula.families.pebbling), 17
PerfectMatchingPrinciple() (in module cnffor-

mula.families.counting), 12
PHPCmdHelper (class in cnffor-

mula.families.pigeonhole), 22
PigeonholePrinciple() (in module cnffor-

mula.families.pigeonhole), 22
PMatchingCmdHelper (class in cnffor-

mula.families.counting), 12
PTNCmdHelper (class in cnfformula.families.ramsey),

23
PythagoreanTriples() (in module cnffor-

mula.families.ramsey), 23

R
RamseyCmdHelper (class in cnffor-

mula.families.ramsey), 24
RamseyLowerBoundFormula() (in module cnffor-

mula.families.ramsey), 24

54 Index

CNFgen Documentation, Release 0.7.3

RamseyWitnessFormula() (in module cnffor-
mula.families.subgraph), 27

RandCmdHelper (class in cnffor-
mula.families.randomformulas), 24

RandomKCNF() (in module cnffor-
mula.families.randomformulas), 25

RWCmdHelper (class in cnffor-
mula.families.subgraph), 27

S
sample_clauses() (in module cnffor-

mula.families.randomformulas), 25
sample_clauses_dense() (in module cnffor-

mula.families.randomformulas), 25
SCCmdHelper (class in cnffor-

mula.families.subsetcardinality), 28
setup_command_line() (AND static method), 31
setup_command_line() (BinaryKCliqueCmdHelper

static method), 26
setup_command_line() (BPHPCmdHelper static

method), 21
setup_command_line() (CliqueColoringCmdHelper

static method), 30
setup_command_line() (CountingCmdHelper static

method), 12
setup_command_line() (ECCmdHelper static method),

13
setup_command_line() (EMPTY static method), 31
setup_command_line() (EMPTY_CLAUSE static

method), 32
setup_command_line() (GAutoCmdHelper static

method), 14
setup_command_line() (GIsoCmdHelper static

method), 15
setup_command_line() (GOPCmdHelper static

method), 16
setup_command_line() (GPHPCmdHelper static

method), 21
setup_command_line() (KCliqueCmdHelper static

method), 26
setup_command_line() (KColorCmdHelper static

method), 14
setup_command_line() (OPCmdHelper static method),

16
setup_command_line() (OR static method), 32
setup_command_line() (ParityCmdHelper static

method), 12
setup_command_line() (PebblingCmdHelper static

method), 17
setup_command_line() (PHPCmdHelper static

method), 22
setup_command_line() (PMatchingCmdHelper static

method), 12
setup_command_line() (PTNCmdHelper static

method), 23
setup_command_line() (RamseyCmdHelper static

method), 24

setup_command_line() (RandCmdHelper static
method), 25

setup_command_line() (RWCmdHelper static method),
27

setup_command_line() (SCCmdHelper static method),
28

setup_command_line() (SparseStoneCmdHelper static
method), 18

setup_command_line() (StoneCmdHelper static
method), 19

setup_command_line() (SubGraphCmdHelper static
method), 28

setup_command_line() (TseitinCmdHelper static
method), 30

SparseStoneCmdHelper (class in cnffor-
mula.families.pebbling), 17

SparseStoneFormula() (in module cnffor-
mula.families.pebbling), 18

stone_formula_helper() (in module cnffor-
mula.families.pebbling), 20

StoneCmdHelper (class in cnffor-
mula.families.pebbling), 18

StoneFormula() (in module cnffor-
mula.families.pebbling), 19

SubGraphCmdHelper (class in cnffor-
mula.families.subgraph), 27

SubgraphFormula() (in module cnffor-
mula.families.subgraph), 28

SubsetCardinalityFormula() (in module cnffor-
mula.families.subsetcardinality), 28

T
TseitinCmdHelper (class in cnffor-

mula.families.tseitin), 30
TseitinFormula() (in module cnffor-

mula.families.tseitin), 30

V
varname() (in module cnfformula.families.ordering), 16

Index 55

	Exporting formulas to DIMACS
	Exporting formulas to LaTeX
	Reference
	Testing satisfiability
	Formula families
	Included formula families
	Command line invocation

	Graph based formulas
	Directed Acyclic Graphs and Bipartite Graphs
	Graph I/O
	Graph generators
	References

	Post-process a CNF formula
	Example: OR substitution
	Using CNF transformations

	The command line utility
	Adding a formula family to CNFgen
	Welcome to CNFgen’s documentation!
	The cnfformula library
	The cnfgen command line tool
	Reference

	Indices and tables
	Bibliography
	Python Module Index

