
CML
Release 1.10.4

Ulises Jeremias Cornejo Fandos

Jan 13, 2019

Contents

1 Introduction 1
1.1 Routines available in CML . 1

2 Using the Library 3
2.1 An Example Program . 3
2.2 Compiling and Linking . 4
2.3 Shared Libraries . 4
2.4 ANSI C Compliance . 5
2.5 Inline functions . 5
2.6 Long double . 5
2.7 Compatibility with C++ . 6
2.8 Thread-safety . 6

3 Mathematical Functions 7
3.1 Mathematical Constants . 7
3.2 Infinities and Not-a-number . 8
3.3 Elementary Functions . 8
3.4 Trigonometric Functions . 9
3.5 Inverse Trigonometric Functions . 9
3.6 Hyperbolic Functions . 10
3.7 Inverse Hyperbolic Functions . 10
3.8 Small integer powers . 11
3.9 Testing the Sign of Numbers . 11
3.10 Maximum and Minimum functions . 11
3.11 Approximate Comparison of Floating Point Numbers . 11

4 Complex Numbers 13
4.1 Representation of complex numbers . 13
4.2 Properties of complex numbers . 14
4.3 Complex arithmetic operators . 14
4.4 Elementary Complex Functions . 15
4.5 Complex Trigonometric Functions . 15
4.6 Inverse Complex Trigonometric Functions . 16
4.7 Complex Hyperbolic Functions . 16
4.8 Inverse Complex Hyperbolic Functions . 17

5 Quaternions 19

i

5.1 Representation of quaternions . 19

6 Numerical Differentiation 21
6.1 Functions . 21
6.2 Examples . 22
6.3 References and Further Reading . 23

7 Easings Functions 25
7.1 References and Further Reading . 25

8 Physical Constants 27
8.1 Fundamental Constants . 27
8.2 Astronomy and Astrophysics . 28
8.3 Atomic and Nuclear Physics . 28
8.4 Measurement of Time . 29
8.5 Imperial Units . 29
8.6 Speed and Nautical Units . 30
8.7 Printers Units . 30
8.8 Volume, Area and Length . 30
8.9 Mass and Weight . 31
8.10 Thermal Energy and Power . 31
8.11 Pressure . 31
8.12 Viscosity . 32
8.13 Light and Illumination . 32
8.14 Radioactivity . 32
8.15 Force and Energy . 33
8.16 Prefixes . 33
8.17 Examples . 34
8.18 References and Further Reading . 34

9 IEEE floating-point arithmetic 37
9.1 Representation of floating point numbers . 37
9.2 References and Further Reading . 39

10 Statistics 41
10.1 Data Types . 41
10.2 Mean, Standard Deviation and Variance . 42
10.3 Absolute deviation . 43
10.4 Higher moments (skewness and kurtosis) . 43
10.5 Autocorrelation . 44
10.6 Covariance . 44
10.7 Correlation . 44
10.8 Maximum and Minimum values . 45
10.9 Median and Percentiles . 45
10.10 References and Further Reading . 46

11 Indices and tables 47

ii

CHAPTER 1

Introduction

The C Math Library (CML) is a pure mathematical C library with a wide variety of mathematical functions that seeks
to be close to complying with ANSI C for portability. It’s a collection of routines for numerical computing written
from scratch in C. The routines present a modern API for C programmers, allowing wrappers to be written for very
high level languages. It is free software under the MIT License.

1.1 Routines available in CML

Routines are available for the following areas,

Mathematical Functions Complex Numbers Special Functions
Quaternions Differential Equations Numerical Differentiation
IEEE Floating-Point Physical Constants Easing Functions
Statistics Blocks Vectors and Matrices

Each chapter of this manual provides detailed definitions of the functions, followed by examples and references to the
articles and other resources on which the algorithms are based.

1

CML, Release 1.10.4

2 Chapter 1. Introduction

CHAPTER 2

Using the Library

This chapter describes how to compile programs that use CML, and introduces its conventions.

2.1 An Example Program

The following short program demonstrates the use of the library

#include <stdlib.h>
#include <stdio.h>
#include <cml.h>

int
main(int argc, char const *argv[])
{

cml_complex_t z, w;

z = complex(1.0, 2.0);
w = csin(z);

printf("%g\n", sin(2.0));
printf("%g\n", atan2(2.0, 3.0));
printf("%g\n", creal(w));
printf("%g\n", cimag(w));

return 0;
}

The steps needed to compile this program are described in the following sections.

3

CML, Release 1.10.4

2.2 Compiling and Linking

The library header files are installed in their own cml directory. You should write any preprocessor include statements
with a cml/ directory prefix thus:

#include <cml/math.h>

or simply requiring all the modules in the following way:

#include <cml.h>

If the directory is not installed on the standard search path of your compiler you will also need to provide its location to
the preprocessor as a command line flag. The default location of the main header file cml.h and the cml directory is
/usr/local/include. A typical compilation command for a source file example.c with the GNU C compiler
gcc is:

$ gcc -Wall -I/usr/local/include -c example.c

This results in an object file example.o. The default include path for gcc searches /usr/local/include
automatically so the -I option can actually be omitted when CML is installed in its default location.

2.2.1 Linking programs with the library

The library is installed as a single file, libcml.a. A shared version of the library libcml.so is also installed on
systems that support shared libraries. The default location of these files is /usr/local/lib. If this directory is
not on the standard search path of your linker you will also need to provide its location as a command line flag. The
following example shows how to link an application with the library:

$ gcc -L/usr/local/lib example.o -lcml

The default library path for gcc searches /usr/local/lib automatically so the -L option can be omitted when
CML is installed in its default location.

For a tutorial introduction to the GNU C Compiler and related programs, see “An Introduction to GCC” (ISBN
0954161793).1

2.3 Shared Libraries

To run a program linked with the shared version of the library the operating system must be able to locate the corre-
sponding .so file at runtime. If the library cannot be found, the following error will occur:

$./a.out
./a.out: error while loading shared libraries:
libcml.so.0: cannot open shared object file: No such file or directory

To avoid this error, either modify the system dynamic linker configuration2 or define the shell variable
LD_LIBRARY_PATH to include the directory where the library is installed.

For example, in the Bourne shell (/bin/sh or /bin/bash), the library search path can be set with the following
commands:

1 http://www.network-theory.co.uk/gcc/intro/
2 /etc/ld.so.conf on GNU/Linux systems

4 Chapter 2. Using the Library

http://www.network-theory.co.uk/gcc/intro/

CML, Release 1.10.4

$ LD_LIBRARY_PATH=/usr/local/lib
$ export LD_LIBRARY_PATH
$./example

In the C-shell (/bin/csh or /bin/tcsh) the equivalent command is:

% setenv LD_LIBRARY_PATH /usr/local/lib

The standard prompt for the C-shell in the example above is the percent character %, and should not be typed as part
of the command.

To save retyping these commands each session they can be placed in an individual or system-wide login file.

To compile a statically linked version of the program, use the -static flag in gcc:

$ gcc -static example.o -lcml

2.4 ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). It should be portable to
any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the user. Programs you write using
CML can be ANSI compliant. Extensions which can be used in a way compatible with pure ANSI C are supported,
however, via conditional compilation. This allows the library to take advantage of compiler extensions on those
platforms which support them.

When an ANSI C feature is known to be broken on a particular system the library will exclude any related functions
at compile-time. This should make it impossible to link a program that would use these functions and give incorrect
results.

To avoid namespace conflicts all exported function names and variables have the prefix cml_, while exported macros
have the prefix CML_.

2.5 Inline functions

The inline keyword is not part of the original ANSI C standard (C89) so the library does not export any inline
function definitions by default. Inline functions were introduced officially in the newer C99 standard but most C89
compilers have also included inline as an extension for a long time.

To allow the use of inline functions, the library provides optional inline versions of performance-critical routines by
conditional compilation in the exported header files.

By default, the actual form of the inline keyword is extern inline, which is a gcc extension that eliminates
unnecessary function definitions.

When compiling with gcc in C99 mode (gcc -std=c99) the header files automatically switch to C99-compatible inline
function declarations instead of extern inline.

2.6 Long double

In general, the algorithms in the library are written for double precision only. The long double type is not sup-
ported for every computation.

2.4. ANSI C Compliance 5

CML, Release 1.10.4

One reason for this choice is that the precision of long double is platform dependent. The IEEE standard only
specifies the minimum precision of extended precision numbers, while the precision of double is the same on all
platforms.

However, it is sometimes necessary to interact with external data in long-double format, so the structures datatypes
include long-double versions.

It should be noted that in some system libraries the stdio.h formatted input/output functions printf and scanf
are not implemented correctly for long double. Undefined or incorrect results are avoided by testing these func-
tions during the configure stage of library compilation and eliminating certain CML functions which depend on
them if necessary. The corresponding line in the configure output looks like this:

checking whether printf works with long double... no

Consequently when long double formatted input/output does not work on a given system it should be impossible
to link a program which uses CML functions dependent on this.

If it is necessary to work on a system which does not support formatted long double input/output then the options
are to use binary formats or to convert long double results into double for reading and writing.

2.7 Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when included in C++ programs.
This allows the functions to be called directly from C++.

2.8 Thread-safety

The library can be used in multi-threaded programs. All the functions are thread-safe, in the sense that they do not use
static variables. Memory is always associated with objects and not with functions. For functions which use workspace
objects as temporary storage the workspaces should be allocated on a per-thread basis. For functions which use table
objects as read-only memory the tables can be used by multiple threads simultaneously.

6 Chapter 2. Using the Library

CHAPTER 3

Mathematical Functions

For the development of this module, the functions present in many of the system libraries are taken as reference with
the idea of offering them in CML as an option for when they are not present.

This chapter describes basic mathematical functions.

The functions and macros described in this chapter are defined in the header file cml/math.h.

3.1 Mathematical Constants

The library ensures that the standard BSD mathematical constants are defined. For reference, here is a list of the
constants:

M_E The base of exponentials, 𝑒
M_LOG2E The base-2 logarithm of 𝑒, log2(𝑒)
M_LOG10E The base-10 logarithm of 𝑒, log10(𝑒)
M_SQRT2 The square root of two,

√
2

M_SQRT1_2 The square root of one-half,
√︀

1/2

M_SQRT3 The square root of three,
√
3

M_PI The constant pi, 𝜋
M_PI_2 Pi divided by two, 𝜋/2
M_PI_4 Pi divided by four, 𝜋/4
M_SQRTPI The square root of pi,

√
𝜋

M_2_SQRTPI Two divided by the square root of pi, 2/
√
𝜋

M_1_PI The reciprocal of pi, 1/𝜋
M_2_PI Twice the reciprocal of pi, 2/𝜋
M_LN10 The natural logarithm of ten, ln(10)
M_LN2 The natural logarithm of two, ln(2)
M_LNPI The natural logarithm of pi, ln(𝜋)
M_EULER Euler’s constant, 𝛾

7

CML, Release 1.10.4

3.2 Infinities and Not-a-number

CML_POSINF
This macro contains the IEEE representation of positive infinity, +∞. It is computed from the expression
+1.0/0.0.

CML_NEGINF
This macro contains the IEEE representation of negative infinity, −∞. It is computed from the expression
-1.0/0.0.

CML_NAN
This macro contains the IEEE representation of the Not-a-Number symbol, NaN. It is computed from the ratio
0.0/0.0.

bool cml_isnan(double x)
This function returns 1 if x is not-a-number.

bool cml_isinf(double x)
This function returns +1 if x is positive infinity, −1 if x is negative infinity and 0 otherwise.1

bool cml_isfinite(double x)
This function returns 1 if x is a real number, and 0 if it is infinite or not-a-number.

3.3 Elementary Functions

The following routines provide portable implementations of functions found in the BSD math library, e.g. When native
versions are not available the functions described here can be used instead. The substitution can be made automatically
if you use autoconf to compile your application (see portability-functions).

double cml_log1p(double x)
This function computes the value of log(1 + 𝑥) in a way that is accurate for small x. It provides an alternative
to the BSD math function log1p(x).

double cml_expm1(double x)
This function computes the value of exp(𝑥)− 1 in a way that is accurate for small x. It provides an alternative
to the BSD math function expm1(x).

double cml_hypot(double x, double y)
This function computes the value of

√︀
𝑥2 + 𝑦2 in a way that avoids overflow. It provides an alternative to the

BSD math function hypot(x,y).

double cml_hypot3(double x, double y, double cml_x)
This function computes the value of

√︀
𝑥2 + 𝑦2 + 𝑥2 in a way that avoids overflow.

double cml_acosh(double x)
This function computes the value of arccosh (𝑥). It provides an alternative to the standard math function
acosh(x).

double cml_asinh(double x)
This function computes the value of arcsinh (𝑥). It provides an alternative to the standard math function
asinh(x).

double cml_atanh(double x)
This function computes the value of arctanh (𝑥). It provides an alternative to the standard math function
atanh(x).

1 Note that the C99 standard only requires the system isinf() function to return a non-zero value, without the sign of the infinity. The
implementation in some earlier versions of CML used the system isinf() function and may have this behavior on some platforms. Therefore, it
is advisable to test the sign of x separately, if needed, rather than relying the sign of the return value from isinf().

8 Chapter 3. Mathematical Functions

CML, Release 1.10.4

double cml_ldexp(double x, int e)
This function computes the value of 𝑥 * 2𝑒. It provides an alternative to the standard math function ldexp(x,
e).

double cml_frexp(double x, int *e)
This function splits the number x into its normalized fraction 𝑓 and exponent 𝑒, such that 𝑥 = 𝑓 * 2𝑒 and
0.5 <= 𝑓 < 1. The function returns 𝑓 and stores the exponent in 𝑒. If 𝑥 is zero, both 𝑓 and 𝑒 are set to zero.
This function provides an alternative to the standard math function frexp(x, e).

double cml_sqrt(double x)
This function returns the square root of the number x,

√
𝑧. The branch cut is the negative real axis. The result

always lies in the right half of the plane.

double cml_pow(double x, double a)
The function returns the number x raised to the double-precision power a, 𝑥𝑎. This is computed as exp(log(𝑥)*
𝑎) using logarithms and exponentials.

double cml_exp(double x)
This function returns the exponential of the number x, exp(𝑥).

double cml_log(double x)
This function returns the natural logarithm (base 𝑒) of the number x, log(𝑥). The branch cut is the negative real
axis.

double cml_log10(double x)
This function returns the base-10 logarithm of the number x, log10(𝑥).

double cml_log_b(double x, double b)
This function returns the base-b logarithm of the double-precision number x, log𝑏(𝑥). This quantity is computed
as the ratio log(𝑥)/ log(𝑏).

3.4 Trigonometric Functions

double cml_sin(double x)
This function returns the sine of the number x, sin(𝑥).

double cml_cos(double x)
This function returns the cosine of the number x, cos(𝑥).

double doublean(double x)
This function returns the tangent of the number x, tan(𝑥).

double cml_sec(double x)
This function returns the secant of the number x, sec(𝑥) = 1/ cos(𝑥).

double cml_csc(double x)
This function returns the cosecant of the number x, csc(𝑥) = 1/ sin(𝑥).

double cml_cot(double x)
This function returns the cotangent of the number x, cot(𝑥) = 1/ tan(𝑥).

3.5 Inverse Trigonometric Functions

double cml_asin(double x)
This function returns the arcsine of the number x, arcsin(𝑥).

3.4. Trigonometric Functions 9

CML, Release 1.10.4

double cml_acos(double x)
This function returns the arccosine of the number x, arccos(𝑥).

double cml_atan(double x)
This function returns the arctangent of the number x, arctan(𝑥).

double cml_asec(double x)
This function returns the arcsecant of the number x, arcsec(𝑥) = arccos(1/𝑥).

double cml_acsc(double x)
This function returns the arccosecant of the number x, arccsc(𝑥) = arcsin(1/𝑥).

double cml_acot(double x)
This function returns the arccotangent of the number x, arccot(𝑥) = arctan(1/𝑥).

3.6 Hyperbolic Functions

double cml_sinh(double x)
This function returns the hyperbolic sine of the number x, sinh(𝑥) = (exp(𝑥)− exp(−𝑥))/2.

double cml_cosh(double x)
This function returns the hyperbolic cosine of the number x, cosh(𝑥) = (exp(𝑥) + exp(−𝑥))/2.

double doubleanh(double x)
This function returns the hyperbolic tangent of the number x, tanh(𝑥) = sinh(𝑥)/ cosh(𝑥).

double cml_sech(double x)
This function returns the hyperbolic secant of the double-precision number x, sech(𝑥) = 1/ cosh(𝑥).

double cml_csch(double x)
This function returns the hyperbolic cosecant of the double-precision number x, csch(𝑥) = 1/ sinh(𝑥).

double cml_coth(double x)
This function returns the hyperbolic cotangent of the double-precision number x, coth(𝑥) = 1/ tanh(𝑥).

3.7 Inverse Hyperbolic Functions

double cml_asinh(double x)
This function returns the hyperbolic arcsine of the number x, arcsinh(𝑥).

double cml_acosh(double x)
This function returns the hyperbolic arccosine of the double-precision number x, arccosh(𝑥).

double cml_atanh(double x)
This function returns the hyperbolic arctangent of the double-precision number x, arctanh(𝑥).

double cml_asech(double x)
This function returns the hyperbolic arcsecant of the double-precision number x, arcsech(𝑥) = arccosh(1/𝑥).

double cml_acsch(double x)
This function returns the hyperbolic arccosecant of the double-precision number x, arccsch(𝑥) = arcsinh(1/𝑥).

double cml_acoth(double x)
This function returns the hyperbolic arccotangent of the double-precision number x, arccoth(𝑥) =
arctanh(1/𝑥).

10 Chapter 3. Mathematical Functions

CML, Release 1.10.4

3.8 Small integer powers

A common complaint about the standard C library is its lack of a function for calculating (small) integer powers. CML
provides some simple functions to fill this gap. For reasons of efficiency, these functions do not check for overflow or
underflow conditions.

double cml_pow_int(double x, int n)
double cml_pow_uint(double x, unsigned int n)

These routines computes the power 𝑥𝑛 for integer n. The power is computed efficiently—for example, 𝑥8 is
computed as ((𝑥2)2)2, requiring only 3 multiplications.

double cml_pow_2(double x)
double cml_pow_3(double x)
double cml_pow_4(double x)
double cml_pow_5(double x)
double cml_pow_6(double x)
double cml_pow_7(double x)
double cml_pow_8(double x)
double cml_pow_9(double x)

These functions can be used to compute small integer powers 𝑥2, 𝑥3, etc. efficiently. The functions will
be inlined when HAVE_INLINE is defined, so that use of these functions should be as efficient as explicitly
writing the corresponding product expression:

#include <cml/math.h>
[...]
double y = pow_4(3.141); /* compute 3.141**4 */

3.9 Testing the Sign of Numbers

double cml_sgn(double x)
This macro returns the sign of x. It is defined as ((x) >= 0 ? 1 : -1). Note that with this definition
the sign of zero is positive (regardless of its IEEE sign bit).

3.10 Maximum and Minimum functions

Note that the following macros perform multiple evaluations of their arguments, so they should not be used with
arguments that have side effects (such as a call to a random number generator).

CML_MAX(a, b)
This macro returns the maximum of a and b. It is defined as ((a) > (b) ? (a):(b)).

CML_MIN(a, b)
This macro returns the minimum of a and b. It is defined as ((a) < (b) ? (a):(b)).

3.11 Approximate Comparison of Floating Point Numbers

It is sometimes useful to be able to compare two floating point numbers approximately, to allow for rounding and
truncation errors. The following function implements the approximate floating-point comparison algorithm proposed
by D.E. Knuth in Section 4.2.2 of “Seminumerical Algorithms” (3rd edition).

3.8. Small integer powers 11

CML, Release 1.10.4

bool cml_cmp(double x, double y, double epsilon)
This function determines whether x and y are approximately equal to a relative accuracy epsilon.

The relative accuracy is measured using an interval of size 2𝛿, where 𝛿 = 2𝑘𝜖 and 𝑘 is the maximum base-2
exponent of 𝑥 and 𝑦 as computed by the function frexp().

If 𝑥 and 𝑦 lie within this interval, they are considered approximately equal and the function returns 0. Otherwise
if 𝑥 < 𝑦, the function returns −1, or if 𝑥 > 𝑦, the function returns +1.

Note that 𝑥 and 𝑦 are compared to relative accuracy, so this function is not suitable for testing whether a value
is approximately zero.

The implementation is based on the package fcmp by T.C. Belding.

12 Chapter 3. Mathematical Functions

CHAPTER 4

Complex Numbers

The complex types, functions and arithmetic operations are defined in the header file cml/complex.h.

4.1 Representation of complex numbers

Complex numbers are represented using the type cml_complex_t. The internal representation of this type may
vary across platforms and should not be accessed directly. The functions and macros described below allow complex
numbers to be manipulated in a portable way.

For reference, the default form of the cml_complex_t type is given by the following struct:

typedef struct
{

union
{

double p[2];
double parts[2];
struct
{

double re;
double im;

};
struct
{

double real;
double imaginary;

};
};

} cml_complex_t;

The real and imaginary part are stored in contiguous elements of a two element array. This eliminates any padding
between the real and imaginary parts, parts[0] and parts[1], allowing the struct to be mapped correctly onto
packed complex arrays.

13

CML, Release 1.10.4

cml_complex_t complex(double x, double y)
This function uses the rectangular Cartesian components (𝑥, 𝑦) to return the complex number 𝑧 = 𝑥 + 𝑦𝑖. An
inline version of this function is used when HAVE_INLINE is defined.

cml_complex_t cml_complex_polar(double r, double theta)
This function returns the complex number 𝑧 = 𝑟 exp(𝑖𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) from the polar representation
(r, theta).

creal(z)
cimag(z)

These macros return the real and imaginary parts of the complex number z.

4.2 Properties of complex numbers

double cml_complex_arg(cml_complex_t z)
This function returns the argument of the complex number z, arg(𝑧), where −𝜋 < arg(𝑧) <= 𝜋.

double cml_complex_abs(cml_complex_t z)
This function returns the magnitude of the complex number z, |𝑧|.

double cml_complex_abs2(cml_complex_t z)
This function returns the squared magnitude of the complex number z, |𝑧|2.

double cml_complex_logabs(cml_complex_t z)
This function returns the natural logarithm of the magnitude of the complex number z, log |𝑧|. It allows an ac-
curate evaluation of log |𝑧| when |𝑧| is close to one. The direct evaluation of log(cml_complex_abs(z))
would lead to a loss of precision in this case.

4.3 Complex arithmetic operators

cml_complex_t cml_complex_add(cml_complex_t a, cml_complex_t b)
This function returns the sum of the complex numbers a and b, 𝑧 = 𝑎+ 𝑏.

cml_complex_t cml_complex_sub(cml_complex_t a, cml_complex_t b)
This function returns the difference of the complex numbers a and b, 𝑧 = 𝑎− 𝑏.

cml_complex_t cml_complex_mul(cml_complex_t a, cml_complex_t b)
This function returns the product of the complex numbers a and b, 𝑧 = 𝑎𝑏.

cml_complex_t cml_complex_div(cml_complex_t a, cml_complex_t b)
This function returns the quotient of the complex numbers a and b, 𝑧 = 𝑎/𝑏.

cml_complex_t cml_complex_add_real(cml_complex_t a, double x)
This function returns the sum of the complex number a and the real number x, 𝑧 = 𝑎+ 𝑥.

cml_complex_t cml_complex_sub_real(cml_complex_t a, double x)
This function returns the difference of the complex number a and the real number x, 𝑧 = 𝑎− 𝑥.

cml_complex_t cml_complex_mul_real(cml_complex_t a, double x)
This function returns the product of the complex number a and the real number x, 𝑧 = 𝑎𝑥.

cml_complex_t cml_complex_div_real(cml_complex_t a, double x)
This function returns the quotient of the complex number a and the real number x, 𝑧 = 𝑎/𝑥.

cml_complex_t cml_complex_add_imag(cml_complex_t a, double y)
This function returns the sum of the complex number a and the imaginary number 𝑖𝑦, 𝑧 = 𝑎+ 𝑖𝑦.

14 Chapter 4. Complex Numbers

CML, Release 1.10.4

cml_complex_t cml_complex_sub_imag(cml_complex_t a, double y)
This function returns the difference of the complex number a and the imaginary number 𝑖𝑦, 𝑧 = 𝑎− 𝑖𝑦.

cml_complex_t cml_complex_mul_imag(cml_complex_t a, double y)
This function returns the product of the complex number a and the imaginary number 𝑖𝑦, 𝑧 = 𝑎 * (𝑖𝑦).

cml_complex_t cml_complex_div_imag(cml_complex_t a, double y)
This function returns the quotient of the complex number a and the imaginary number 𝑖𝑦, 𝑧 = 𝑎/(𝑖𝑦).

cml_complex_t cml_complex_conj(cml_complex_t z)
This function returns the complex conjugate of the complex number z, 𝑧* = 𝑥− 𝑦𝑖.

cml_complex_t cml_complex_inverse(cml_complex_t z)
This function returns the inverse, or reciprocal, of the complex number z, 1/𝑧 = (𝑥− 𝑦𝑖)/(𝑥2 + 𝑦2).

cml_complex_t cml_complex_negative(cml_complex_t z)
This function returns the negative of the complex number z, −𝑧 = (−𝑥) + (−𝑦)𝑖.

4.4 Elementary Complex Functions

cml_complex_t cml_complex_sqrt(cml_complex_t z)
This function returns the square root of the complex number z,

√
𝑧. The branch cut is the negative real axis.

The result always lies in the right half of the complex plane.

cml_complex_t cml_complex_sqrt_real(double x)
This function returns the complex square root of the real number x, where x may be negative.

cml_complex_t cml_complex_pow(cml_complex_t z, cml_complex_t a)
The function returns the complex number z raised to the complex power a, 𝑧𝑎. This is computed as exp(log(𝑧)*
𝑎) using complex logarithms and complex exponentials.

cml_complex_t cml_complex_pow_real(cml_complex_t z, double x)
This function returns the complex number z raised to the real power x, 𝑧𝑥.

cml_complex_t cml_complex_exp(cml_complex_t z)
This function returns the complex exponential of the complex number z, exp(𝑧).

cml_complex_t cml_complex_log(cml_complex_t z)
This function returns the complex natural logarithm (base 𝑒) of the complex number z, log(𝑧). The branch cut
is the negative real axis.

cml_complex_t cml_complex_log10(cml_complex_t z)
This function returns the complex base-10 logarithm of the complex number z, log10(𝑧).

cml_complex_t cml_complex_log_b(cml_complex_t z, cml_complex_t b)
This function returns the complex base-b logarithm of the complex number z, log𝑏(𝑧). This quantity is com-
puted as the ratio log(𝑧)/ log(𝑏).

4.5 Complex Trigonometric Functions

cml_complex_t cml_complex_sin(cml_complex_t z)
This function returns the complex sine of the complex number z, sin(𝑧) = (exp(𝑖𝑧)− exp(−𝑖𝑧))/(2𝑖).

cml_complex_t cml_complex_cos(cml_complex_t z)
This function returns the complex cosine of the complex number z, cos(𝑧) = (exp(𝑖𝑧) + exp(−𝑖𝑧))/2.

cml_complex_t cml_complex_tan(cml_complex_t z)
This function returns the complex tangent of the complex number z, tan(𝑧) = sin(𝑧)/ cos(𝑧).

4.4. Elementary Complex Functions 15

CML, Release 1.10.4

cml_complex_t cml_complex_sec(cml_complex_t z)
This function returns the complex secant of the complex number z, sec(𝑧) = 1/ cos(𝑧).

cml_complex_t cml_complex_csc(cml_complex_t z)
This function returns the complex cosecant of the complex number z, csc(𝑧) = 1/ sin(𝑧).

cml_complex_t cml_complex_cot(cml_complex_t z)
This function returns the complex cotangent of the complex number z, cot(𝑧) = 1/ tan(𝑧).

4.6 Inverse Complex Trigonometric Functions

cml_complex_t cml_complex_asin(cml_complex_t z)
This function returns the complex arcsine of the complex number z, arcsin(𝑧). The branch cuts are on the real
axis, less than −1 and greater than 1.

cml_complex_t cml_complex_asin_real(double z)
This function returns the complex arcsine of the real number z, arcsin(𝑧). For 𝑧 between −1 and 1, the function
returns a real value in the range [−𝜋/2, 𝜋/2]. For 𝑧 less than −1 the result has a real part of −𝜋/2 and a positive
imaginary part. For 𝑧 greater than 1 the result has a real part of 𝜋/2 and a negative imaginary part.

cml_complex_t cml_complex_acos(cml_complex_t z)
This function returns the complex arccosine of the complex number z, arccos(𝑧). The branch cuts are on the
real axis, less than −1 and greater than 1.

cml_complex_t cml_complex_acos_real(double z)
This function returns the complex arccosine of the real number z, arccos(𝑧). For 𝑧 between −1 and 1, the
function returns a real value in the range [0, 𝜋]. For 𝑧 less than −1 the result has a real part of 𝜋 and a negative
imaginary part. For 𝑧 greater than 1 the result is purely imaginary and positive.

cml_complex_t cml_complex_atan(cml_complex_t z)
This function returns the complex arctangent of the complex number z, arctan(𝑧). The branch cuts are on the
imaginary axis, below −𝑖 and above 𝑖.

cml_complex_t cml_complex_asec(cml_complex_t z)
This function returns the complex arcsecant of the complex number z, arcsec(𝑧) = arccos(1/𝑧).

cml_complex_t cml_complex_asec_real(double z)
This function returns the complex arcsecant of the real number z, arcsec(𝑧) = arccos(1/𝑧).

cml_complex_t cml_complex_acsc(cml_complex_t z)
This function returns the complex arccosecant of the complex number z, arccsc(𝑧) = arcsin(1/𝑧).

cml_complex_t cml_complex_acsc_real(double z)
This function returns the complex arccosecant of the real number z, arccsc(𝑧) = arcsin(1/𝑧).

cml_complex_t cml_complex_acot(cml_complex_t z)
This function returns the complex arccotangent of the complex number z, arccot(𝑧) = arctan(1/𝑧).

4.7 Complex Hyperbolic Functions

cml_complex_t cml_complex_sinh(cml_complex_t z)
This function returns the complex hyperbolic sine of the complex number z, sinh(𝑧) = (exp(𝑧)− exp(−𝑧))/2.

cml_complex_t cml_complex_cosh(cml_complex_t z)
This function returns the complex hyperbolic cosine of the complex number z, cosh(𝑧) = (exp(𝑧) +
exp(−𝑧))/2.

16 Chapter 4. Complex Numbers

CML, Release 1.10.4

cml_complex_t cml_complex_tanh(cml_complex_t z)
This function returns the complex hyperbolic tangent of the complex number z, tanh(𝑧) = sinh(𝑧)/ cosh(𝑧).

cml_complex_t cml_complex_sech(cml_complex_t z)
This function returns the complex hyperbolic secant of the complex number z, sech(𝑧) = 1/ cosh(𝑧).

cml_complex_t cml_complex_csch(cml_complex_t z)
This function returns the complex hyperbolic cosecant of the complex number z, csch(𝑧) = 1/ sinh(𝑧).

cml_complex_t cml_complex_coth(cml_complex_t z)
This function returns the complex hyperbolic cotangent of the complex number z, coth(𝑧) = 1/ tanh(𝑧).

4.8 Inverse Complex Hyperbolic Functions

cml_complex_t cml_complex_asinh(cml_complex_t z)
This function returns the complex hyperbolic arcsine of the complex number z, arcsinh(𝑧). The branch cuts are
on the imaginary axis, below −𝑖 and above 𝑖.

cml_complex_t cml_complex_acosh(cml_complex_t z)
This function returns the complex hyperbolic arccosine of the complex number z, arccosh(𝑧). The branch cut
is on the real axis, less than 1. Note that in this case we use the negative square root in formula 4.6.21 of
Abramowitz & Stegun giving arccosh(𝑧) = log(𝑧 −

√
𝑧2 − 1).

cml_complex_t cml_complex_acosh_real(double z)
This function returns the complex hyperbolic arccosine of the real number z, arccosh(𝑧).

cml_complex_t cml_complex_atanh(cml_complex_t z)
This function returns the complex hyperbolic arctangent of the complex number z, arctanh(𝑧). The branch cuts
are on the real axis, less than −1 and greater than 1.

cml_complex_t cml_complex_atanh_real(double z)
This function returns the complex hyperbolic arctangent of the real number z, arctanh(𝑧).

cml_complex_t cml_complex_asech(cml_complex_t z)
This function returns the complex hyperbolic arcsecant of the complex number z, arcsech(𝑧) = arccosh(1/𝑧).

cml_complex_t cml_complex_acsch(cml_complex_t z)
This function returns the complex hyperbolic arccosecant of the complex number z, arccsch(𝑧) =
arcsinh(1/𝑧).

cml_complex_t cml_complex_acoth(cml_complex_t z)
This function returns the complex hyperbolic arccotangent of the complex number z, arccoth(𝑧) =
arctanh(1/𝑧).

4.8. Inverse Complex Hyperbolic Functions 17

CML, Release 1.10.4

18 Chapter 4. Complex Numbers

CHAPTER 5

Quaternions

The functions described in this chapter provide support for quaternions. The algorithms take care to avoid unnecessary
intermediate underflows and overflows, allowing the functions to be evaluated over as much of the quaternion plane as
possible.

The quaternion types, functions and arithmetic operations are defined in the header file cml/quaternion.h.

5.1 Representation of quaternions

Quaternions are represented using the type cml_quaternion_t. The internal representation of this type may vary
across platforms and should not be accessed directly. The functions and macros described below allow quaternions to
be manipulated in a portable way.

For reference, the default form of the cml_quaternion_t type is given by the following struct:

typedef struct
{

union
{

double q[4];
struct
{

double w, x, y, z;
};
struct
{

double a, i, j, k;
};

};
} cml_quaternion_t;

19

CML, Release 1.10.4

20 Chapter 5. Quaternions

CHAPTER 6

Numerical Differentiation

The functions described in this chapter compute numerical derivatives by finite differencing. An adaptive algorithm is
used to find the best choice of finite difference and to estimate the error in the derivative.

Again, the development of this module is inspired by the same present in GSL looking to adapt it completely to the
practices and tools present in CML.

The functions described in this chapter are declared in the header file cml/deriv.h.

6.1 Functions

int cml_deriv_central(const cml_function_t *f, double x, double h, double *result, double *abserr)
This function computes the numerical derivative of the function f at the point x using an adaptive central
difference algorithm with a step-size of h. The derivative is returned in result and an estimate of its absolute
error is returned in abserr.

The initial value of h is used to estimate an optimal step-size, based on the scaling of the truncation error and
round-off error in the derivative calculation. The derivative is computed using a 5-point rule for equally spaced
abscissae at 𝑥 − ℎ, 𝑥 − ℎ/2, 𝑥, 𝑥 + ℎ/2, 𝑥 + ℎ, with an error estimate taken from the difference between the
5-point rule and the corresponding 3-point rule 𝑥−ℎ, 𝑥, 𝑥+ℎ. Note that the value of the function at 𝑥 does not
contribute to the derivative calculation, so only 4-points are actually used.

int cml_deriv_forward(const cml_function_t *f, double x, double h, double *result, double *abserr)
This function computes the numerical derivative of the function f at the point x using an adaptive forward
difference algorithm with a step-size of h. The function is evaluated only at points greater than x, and never at
x itself. The derivative is returned in result and an estimate of its absolute error is returned in abserr. This
function should be used if 𝑓(𝑥) has a discontinuity at x, or is undefined for values less than x.

The initial value of h is used to estimate an optimal step-size, based on the scaling of the truncation error and
round-off error in the derivative calculation. The derivative at 𝑥 is computed using an “open” 4-point rule for
equally spaced abscissae at 𝑥+ℎ/4, 𝑥+ℎ/2, 𝑥+3ℎ/4, 𝑥+ℎ, with an error estimate taken from the difference
between the 4-point rule and the corresponding 2-point rule 𝑥+ ℎ/2, 𝑥+ ℎ.

21

CML, Release 1.10.4

int cml_deriv_backward(const cml_function_t *f, double x, double h, double *result, double *abserr)
This function computes the numerical derivative of the function f at the point x using an adaptive backward
difference algorithm with a step-size of h. The function is evaluated only at points less than x, and never at x
itself. The derivative is returned in result and an estimate of its absolute error is returned in abserr. This
function should be used if 𝑓(𝑥) has a discontinuity at x, or is undefined for values greater than x.

This function is equivalent to calling cml_deriv_forward() with a negative step-size.

6.2 Examples

The following code estimates the derivative of the function 𝑓(𝑥) = 𝑥3/2 at 𝑥 = 2 and at 𝑥 = 0. The function 𝑓(𝑥) is
undefined for 𝑥 < 0 so the derivative at 𝑥 = 0 is computed using cml_deriv_forward().

#include <stdio.h>
#include <cml/math.h>
#include <cml/diff.h>

double
f(double x, void *params)
{

(void) params; /* avoid unused parameter warning */
return cml_pow(x, 1.5);

}

int
main(void)
{

cml_function_t F;
double result, abserr;

F.function = &f;
F.params = 0;

printf("f(x) = x^(3/2)\n");

cml_deriv_central(&F, 2.0, 1e-8, &result, &abserr);
printf("x = 2.0\n");
printf("f'(x) = %.10f +/- %.10f\n", result, abserr);
printf("exact = %.10f\n\n", 1.5 * sqrt(2.0));

cml_deriv_forward (&F, 0.0, 1e-8, &result, &abserr);
printf("x = 0.0\n");
printf("f'(x) = %.10f +/- %.10f\n", result, abserr);
printf("exact = %.10f\n", 0.0);

return 0;
}

Here is the output of the program,

f(x) = x^(3/2)
x = 2.0
f'(x) = 2.1213203120 +/- 0.0000005006
exact = 2.1213203436

x = 0.0
(continues on next page)

22 Chapter 6. Numerical Differentiation

CML, Release 1.10.4

(continued from previous page)

f'(x) = 0.0000000160 +/- 0.0000000339
exact = 0.0000000000

6.3 References and Further Reading

This work is a spiritual descendent of the Differentiation module in GSL.

6.3. References and Further Reading 23

CML, Release 1.10.4

24 Chapter 6. Numerical Differentiation

CHAPTER 7

Easings Functions

The functions described in this chapter are declared in the header file cml/easings.h.

The easing functions are an implementation of the functions presented in http://easings.net/, useful particularly for
animations. Easing is a method of distorting time to control apparent motion in animation. It is most commonly used
for slow-in, slow-out. By easing time, animated transitions are smoother and exhibit more plausible motion.

Easing functions take a value inside the range [0.0, 1.0] and usually will return a value inside that same range.
However, in some of the easing functions, the returned value extrapolate that range http://easings.net/ to see those
functions).

The following types of easing functions are supported:

Linear
Quadratic
Cubic
Quartic
Quintic
Sine
Circular
Exponential
Elastic
Bounce
Back

The core easing functions are implemented as C functions that take a time parameter and return a progress parameter,
which can subsequently be used to interpolate any quantity.

7.1 References and Further Reading

This work is a spiritual descendent (not to say derivative work) of works done by Robert Penner. So, the main
references could be found in http://robertpenner.com/easing/

• http://robertpenner.com/easing/penner_chapter7_tweening.pdf

25

http://easings.net/
http://easings.net/
http://robertpenner.com/easing/
http://robertpenner.com/easing/penner_chapter7_tweening.pdf

CML, Release 1.10.4

• http://gilmoreorless.github.io/sydjs-preso-easing/

• http://upshots.org/actionscript/jsas-understanding-easing

• http://sol.gfxile.net/interpolation/

26 Chapter 7. Easings Functions

http://gilmoreorless.github.io/sydjs-preso-easing/
http://upshots.org/actionscript/jsas-understanding-easing
http://sol.gfxile.net/interpolation/

CHAPTER 8

Physical Constants

This module is inspired by the constants module present in GSL.

The full list of constants is described briefly below. Consult the header files themselves for the values of the constants
used in the library.

8.1 Fundamental Constants

CML_CONST_MKSA_SPEED_OF_LIGHT
The speed of light in vacuum, 𝑐.

CML_CONST_MKSA_VACUUM_PERMEABILITY
The permeability of free space, 𝜇0. This constant is defined in the MKSA system only.

CML_CONST_MKSA_VACUUM_PERMITTIVITY
The permittivity of free space, 𝜖0. This constant is defined in the MKSA system only.

CML_CONST_MKSA_PLANCKS_CONSTANT_H
Planck’s constant, ℎ.

CML_CONST_MKSA_PLANCKS_CONSTANT_HBAR
Planck’s constant divided by 2𝜋, ~.

CML_CONST_NUM_AVOGADRO
Avogadro’s number, 𝑁𝑎.

CML_CONST_MKSA_FARADAY
The molar charge of 1 Faraday.

CML_CONST_MKSA_BOLTZMANN
The Boltzmann constant, 𝑘.

CML_CONST_MKSA_MOLAR_GAS
The molar gas constant, 𝑅0.

CML_CONST_MKSA_STANDARD_GAS_VOLUME
The standard gas volume, 𝑉0.

27

CML, Release 1.10.4

CML_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT
The Stefan-Boltzmann radiation constant, 𝜎.

CML_CONST_MKSA_GAUSS
The magnetic field of 1 Gauss.

8.2 Astronomy and Astrophysics

CML_CONST_MKSA_ASTRONOMICAL_UNIT
The length of 1 astronomical unit (mean earth-sun distance), 𝑎𝑢.

CML_CONST_MKSA_GRAVITATIONAL_CONSTANT
The gravitational constant, 𝐺.

CML_CONST_MKSA_LIGHT_YEAR
The distance of 1 light-year, 𝑙𝑦.

CML_CONST_MKSA_PARSEC
The distance of 1 parsec, 𝑝𝑐.

CML_CONST_MKSA_GRAV_ACCEL
The standard gravitational acceleration on Earth, 𝑔.

CML_CONST_MKSA_SOLAR_MASS
The mass of the Sun.

8.3 Atomic and Nuclear Physics

CML_CONST_MKSA_ELECTRON_CHARGE
The charge of the electron, 𝑒.

CML_CONST_MKSA_ELECTRON_VOLT
The energy of 1 electron volt, 𝑒𝑉 .

CML_CONST_MKSA_UNIFIED_ATOMIC_MASS
The unified atomic mass, 𝑎𝑚𝑢.

CML_CONST_MKSA_MASS_ELECTRON
The mass of the electron, 𝑚𝑒.

CML_CONST_MKSA_MASS_MUON
The mass of the muon, 𝑚𝜇.

CML_CONST_MKSA_MASS_PROTON
The mass of the proton, 𝑚𝑝.

CML_CONST_MKSA_MASS_NEUTRON
The mass of the neutron, 𝑚𝑛.

CML_CONST_NUM_FINE_STRUCTURE
The electromagnetic fine structure constant 𝛼.

CML_CONST_MKSA_RYDBERG
The Rydberg constant, 𝑅𝑦, in units of energy. This is related to the Rydberg inverse wavelength 𝑅∞ by 𝑅𝑦 =
ℎ𝑐𝑅∞.

CML_CONST_MKSA_BOHR_RADIUS
The Bohr radius, 𝑎0.

28 Chapter 8. Physical Constants

CML, Release 1.10.4

CML_CONST_MKSA_ANGSTROM
The length of 1 angstrom.

CML_CONST_MKSA_BARN
The area of 1 barn.

CML_CONST_MKSA_BOHR_MAGNETON
The Bohr Magneton, 𝜇𝐵 .

CML_CONST_MKSA_NUCLEAR_MAGNETON
The Nuclear Magneton, 𝜇𝑁 .

CML_CONST_MKSA_ELECTRON_MAGNETIC_MOMENT
The absolute value of the magnetic moment of the electron, 𝜇𝑒. The physical magnetic moment of the electron
is negative.

CML_CONST_MKSA_PROTON_MAGNETIC_MOMENT
The magnetic moment of the proton, 𝜇𝑝.

CML_CONST_MKSA_THOMSON_CROSS_SECTION
The Thomson cross section, 𝜎𝑇 .

CML_CONST_MKSA_DEBYE
The electric dipole moment of 1 Debye, 𝐷.

8.4 Measurement of Time

CML_CONST_MKSA_MINUTE
The number of seconds in 1 minute.

CML_CONST_MKSA_HOUR
The number of seconds in 1 hour.

CML_CONST_MKSA_DAY
The number of seconds in 1 day.

CML_CONST_MKSA_WEEK
The number of seconds in 1 week.

8.5 Imperial Units

CML_CONST_MKSA_INCH
The length of 1 inch.

CML_CONST_MKSA_FOOT
The length of 1 foot.

CML_CONST_MKSA_YARD
The length of 1 yard.

CML_CONST_MKSA_MILE
The length of 1 mile.

CML_CONST_MKSA_MIL
The length of 1 mil (1/1000th of an inch).

8.4. Measurement of Time 29

CML, Release 1.10.4

8.6 Speed and Nautical Units

CML_CONST_MKSA_KILOMETERS_PER_HOUR
The speed of 1 kilometer per hour.

CML_CONST_MKSA_MILES_PER_HOUR
The speed of 1 mile per hour.

CML_CONST_MKSA_NAUTICAL_MILE
The length of 1 nautical mile.

CML_CONST_MKSA_FATHOM
The length of 1 fathom.

CML_CONST_MKSA_KNOT
The speed of 1 knot.

8.7 Printers Units

CML_CONST_MKSA_POINT
The length of 1 printer’s point (1/72 inch).

CML_CONST_MKSA_TEXPOINT
The length of 1 TeX point (1/72.27 inch).

8.8 Volume, Area and Length

CML_CONST_MKSA_MICRON
The length of 1 micron.

CML_CONST_MKSA_HECTARE
The area of 1 hectare.

CML_CONST_MKSA_ACRE
The area of 1 acre.

CML_CONST_MKSA_LITER
The volume of 1 liter.

CML_CONST_MKSA_US_GALLON
The volume of 1 US gallon.

CML_CONST_MKSA_CANADIAN_GALLON
The volume of 1 Canadian gallon.

CML_CONST_MKSA_UK_GALLON
The volume of 1 UK gallon.

CML_CONST_MKSA_QUART
The volume of 1 quart.

CML_CONST_MKSA_PINT
The volume of 1 pint.

30 Chapter 8. Physical Constants

CML, Release 1.10.4

8.9 Mass and Weight

CML_CONST_MKSA_POUND_MASS
The mass of 1 pound.

CML_CONST_MKSA_OUNCE_MASS
The mass of 1 ounce.

CML_CONST_MKSA_TON
The mass of 1 ton.

CML_CONST_MKSA_METRIC_TON
The mass of 1 metric ton (1000 kg).

CML_CONST_MKSA_UK_TON
The mass of 1 UK ton.

CML_CONST_MKSA_TROY_OUNCE
The mass of 1 troy ounce.

CML_CONST_MKSA_CARAT
The mass of 1 carat.

CML_CONST_MKSA_GRAM_FORCE
The force of 1 gram weight.

CML_CONST_MKSA_POUND_FORCE
The force of 1 pound weight.

CML_CONST_MKSA_KILOPOUND_FORCE
The force of 1 kilopound weight.

CML_CONST_MKSA_POUNDAL
The force of 1 poundal.

8.10 Thermal Energy and Power

CML_CONST_MKSA_CALORIE
The energy of 1 calorie.

CML_CONST_MKSA_BTU
The energy of 1 British Thermal Unit, 𝑏𝑡𝑢.

CML_CONST_MKSA_THERM
The energy of 1 Therm.

CML_CONST_MKSA_HORSEPOWER
The power of 1 horsepower.

8.11 Pressure

CML_CONST_MKSA_BAR
The pressure of 1 bar.

CML_CONST_MKSA_STD_ATMOSPHERE
The pressure of 1 standard atmosphere.

8.9. Mass and Weight 31

CML, Release 1.10.4

CML_CONST_MKSA_TORR
The pressure of 1 torr.

CML_CONST_MKSA_METER_OF_MERCURY
The pressure of 1 meter of mercury.

CML_CONST_MKSA_INCH_OF_MERCURY
The pressure of 1 inch of mercury.

CML_CONST_MKSA_INCH_OF_WATER
The pressure of 1 inch of water.

CML_CONST_MKSA_PSI
The pressure of 1 pound per square inch.

8.12 Viscosity

CML_CONST_MKSA_POISE
The dynamic viscosity of 1 poise.

CML_CONST_MKSA_STOKES
The kinematic viscosity of 1 stokes.

8.13 Light and Illumination

CML_CONST_MKSA_STILB
The luminance of 1 stilb.

CML_CONST_MKSA_LUMEN
The luminous flux of 1 lumen.

CML_CONST_MKSA_LUX
The illuminance of 1 lux.

CML_CONST_MKSA_PHOT
The illuminance of 1 phot.

CML_CONST_MKSA_FOOTCANDLE
The illuminance of 1 footcandle.

CML_CONST_MKSA_LAMBERT
The luminance of 1 lambert.

CML_CONST_MKSA_FOOTLAMBERT
The luminance of 1 footlambert.

8.14 Radioactivity

CML_CONST_MKSA_CURIE
The activity of 1 curie.

CML_CONST_MKSA_ROENTGEN
The exposure of 1 roentgen.

CML_CONST_MKSA_RAD
The absorbed dose of 1 rad.

32 Chapter 8. Physical Constants

CML, Release 1.10.4

8.15 Force and Energy

CML_CONST_MKSA_NEWTON
The SI unit of force, 1 Newton.

CML_CONST_MKSA_DYNE
The force of 1 Dyne = 10−5 Newton.

CML_CONST_MKSA_JOULE
The SI unit of energy, 1 Joule.

CML_CONST_MKSA_ERG
The energy 1 erg = 10−7 Joule.

8.16 Prefixes

These constants are dimensionless scaling factors.

CML_CONST_NUM_YOTTA
1024

CML_CONST_NUM_ZETTA
1021

CML_CONST_NUM_EXA
1018

CML_CONST_NUM_PETA
1015

CML_CONST_NUM_TERA
1012

CML_CONST_NUM_GIGA
109

CML_CONST_NUM_MEGA
106

CML_CONST_NUM_KILO
103

CML_CONST_NUM_MILLI
10−3

CML_CONST_NUM_MICRO
10−6

CML_CONST_NUM_CML_NANO
10−9

CML_CONST_NUM_PICO
10−12

CML_CONST_NUM_FEMTO
10−15

CML_CONST_NUM_ATTO
10−18

8.15. Force and Energy 33

CML, Release 1.10.4

CML_CONST_NUM_ZEPTO
10−21

CML_CONST_NUM_YOCTO
10−24

8.17 Examples

The following program demonstrates the use of the physical constants in a calculation. In this case, the goal is to
calculate the range of light-travel times from Earth to Mars.

The required data is the average distance of each planet from the Sun in astronomical units (the eccentricities and
inclinations of the orbits will be neglected for the purposes of this calculation). The average radius of the orbit of
Mars is 1.52 astronomical units, and for the orbit of Earth it is 1 astronomical unit (by definition). These values
are combined with the MKSA values of the constants for the speed of light and the length of an astronomical unit
to produce a result for the shortest and longest light-travel times in seconds. The figures are converted into minutes
before being displayed.

#include <stdio.h>
#include <cml.h>

int
main(void)
{

double c = CML_CONST_MKSA_SPEED_OF_LIGHT;
double au = CML_CONST_MKSA_ASTRONOMICAL_UNIT;
double minutes = CML_CONST_MKSA_MINUTE;

/* distance stored in meters */
double r_earth = 1.00 * au;
double r_mars = 1.52 * au;

double t_min, t_max;

t_min = (r_mars - r_earth) / c;
t_max = (r_mars + r_earth) / c;

printf("light travel time from Earth to Mars:\n");
printf("minimum = %.1f minutes\n", t_min / minutes);
printf("maximum = %.1f minutes\n", t_max / minutes);

return 0;
}

Here is the output from the program,

light travel time from Earth to Mars:
minimum = 4.3 minutes
maximum = 21.0 minutes

8.18 References and Further Reading

The authoritative sources for physical constants are the 2006 CODATA recommended values, published in the article
below. Further information on the values of physical constants is also available from the NIST website.

34 Chapter 8. Physical Constants

CML, Release 1.10.4

• P.J. Mohr, B.N. Taylor, D.B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants:
2006”, Reviews of Modern Physics, 80(2), pp. 633–730 (2008).

8.18. References and Further Reading 35

CML, Release 1.10.4

36 Chapter 8. Physical Constants

CHAPTER 9

IEEE floating-point arithmetic

The functions described in this chapter are declared in the header file cml/ieee.h.

9.1 Representation of floating point numbers

The IEEE Standard for Binary Floating-Point Arithmetic defines binary formats for single and double precision num-
bers. Each number is composed of three parts: a sign bit (𝑠), an exponent (𝐸) and a fraction (𝑓). The numerical value
of the combination (𝑠, 𝐸, 𝑓) is given by the following formula,

(−1)𝑠(1 · 𝑓𝑓𝑓𝑓𝑓 . . .)2𝐸

The sign bit is either zero or one. The exponent ranges from a minimum value 𝐸𝑚𝑖𝑛 to a maximum value 𝐸𝑚𝑎𝑥

depending on the precision. The exponent is converted to an unsigned number 𝑒, known as the biased exponent, for
storage by adding a bias parameter,

𝑒 = 𝐸 + bias

The sequence 𝑓𝑓𝑓𝑓𝑓... represents the digits of the binary fraction 𝑓 . The binary digits are stored in normalized form,
by adjusting the exponent to give a leading digit of 1. Since the leading digit is always 1 for normalized numbers it is
assumed implicitly and does not have to be stored. Numbers smaller than 2𝐸𝑚𝑖𝑛 are be stored in denormalized form
with a leading zero,

(−1)𝑠(0 · 𝑓𝑓𝑓𝑓𝑓 . . .)2𝐸𝑚𝑖𝑛

This allows gradual underflow down to 2𝐸𝑚𝑖𝑛−𝑝 for 𝑝 bits of precision. A zero is encoded with the special exponent
of 2𝐸𝑚𝑖𝑛−1 and infinities with the exponent of 2𝐸𝑚𝑎𝑥+1.

The format for single precision numbers uses 32 bits divided in the following way:

seeeeeeeefffffffffffffffffffffff

s = sign bit, 1 bit
e = exponent, 8 bits (E_min=-126, E_max=127, bias=127)
f = fraction, 23 bits

37

CML, Release 1.10.4

The format for double precision numbers uses 64 bits divided in the following way:

seeeeeeeeeeeff

s = sign bit, 1 bit
e = exponent, 11 bits (E_min=-1022, E_max=1023, bias=1023)
f = fraction, 52 bits

It is often useful to be able to investigate the behavior of a calculation at the bit-level and the library provides functions
for printing the IEEE representations in a human-readable form.

void cml_ieee754_fprintf_float(FILE * stream, const float * x)
void cml_ieee754_fprintf_double(FILE * stream, const double * x)

These functions output a formatted version of the IEEE floating-point number pointed to by x to the stream
stream. A pointer is used to pass the number indirectly, to avoid any undesired promotion from float to
double. The output takes one of the following forms,

NaN

the Not-a-Number symbol

Inf, -Inf

positive or negative infinity

1.fffff...*2^E, -1.fffff...*2^E

a normalized floating point number

0.fffff...*2^E, -0.fffff...*2^E

a denormalized floating point number

0, -0

positive or negative zero

The output can be used directly in GNU Emacs Calc mode by preceding it with 2# to indicate binary.

void cml_ieee754_printf_float(const float * x)
void cml_ieee754_printf_double(const double * x)

These functions output a formatted version of the IEEE floating-point number pointed to by x to the stream
stdout.

The following program demonstrates the use of the functions by printing the single and double precision representa-
tions of the fraction 1/3. For comparison the representation of the value promoted from single to double precision is
also printed.

#include <stdio.h>
#include <cml.h>

int
main(void)
{

float f = 1.0/3.0;
double d = 1.0/3.0;

double fd = f; /* promote from float to double */

printf(" f = ");
cml_ieee754_printf_float(&f);
printf("\n");

(continues on next page)

38 Chapter 9. IEEE floating-point arithmetic

CML, Release 1.10.4

(continued from previous page)

printf("fd = ");
cml_ieee754_printf_double(&fd);
printf("\n");

printf(" d = ");
cml_ieee754_printf_double(&d);
printf("\n");

return 0;
}

The binary representation of 1/3 is 0.01010101.... The output below shows that the IEEE format normalizes this
fraction to give a leading digit of 1:

f = 1.01010101010101010101011*2^-2
fd = 1.0101010101010101010101100000000000000000000000000000*2^-2
d = 1.01*2^-2

The output also shows that a single-precision number is promoted to double-precision by adding zeros in the binary
representation.

9.2 References and Further Reading

The reference for the IEEE standard is,

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

9.2. References and Further Reading 39

CML, Release 1.10.4

40 Chapter 9. IEEE floating-point arithmetic

CHAPTER 10

Statistics

This chapter describes the statistical functions in the library. The basic statistical functions include routines to compute
the mean, variance and standard deviation. More advanced functions allow you to calculate absolute deviations,
skewness, and kurtosis as well as the median and arbitrary percentiles. The algorithms use recurrence relations to
compute average quantities in a stable way, without large intermediate values that might overflow.

10.1 Data Types

The functions are available in versions for datasets in the standard floating-point and integer types. The versions
for double precision floating-point data have the prefix cml_stats and are declared in the header file cml/
statistics/double.h. The versions for integer data have the prefix cml_stats_int and are declared in
the header file cml/statistics/int.h. All the functions operate on C arrays with a stride parameter speci-
fying the spacing between elements. The full list of available types is given below,

Prefix Type
cml_stats double
cml_stats_float float
cml_stats_long_double long double
cml_stats_int int
cml_stats_uint unsigned int
cml_stats_long long
cml_stats_ulong unsigned long
cml_stats_short short
cml_stats_ushort unsigned short
cml_stats_char char
cml_stats_uchar unsigned char
cml_stats_complex complex double
cml_stats_complex_float complex float
cml_stats_complex_long_double complex long double

41

CML, Release 1.10.4

10.2 Mean, Standard Deviation and Variance

double cml_stats_mean(const double data[], size_t stride, size_t n)
This function returns the arithmetic mean of data, a dataset of length n with stride stride. The arithmetic
mean, or sample mean, is denoted by �̂� and defined as,

�̂� =
1

𝑁

∑︁
𝑥𝑖

where 𝑥𝑖 are the elements of the dataset data. For samples drawn from a gaussian distribution the variance of
�̂� is 𝜎2/𝑁 .

double cml_stats_variance(const double data[], size_t stride, size_t n)
This function returns the estimated, or sample, variance of data, a dataset of length n with stride stride.
The estimated variance is denoted by �̂�2 and is defined by,

�̂�2 =
1

(𝑁 − 1)

∑︁
(𝑥𝑖 − �̂�)2

where 𝑥𝑖 are the elements of the dataset data. Note that the normalization factor of 1/(𝑁 − 1) results from the
derivation of �̂�2 as an unbiased estimator of the population variance 𝜎2. For samples drawn from a Gaussian
distribution the variance of �̂�2 itself is 2𝜎4/𝑁 .

This function computes the mean via a call to cml_stats_mean(). If you have already computed the mean
then you can pass it directly to cml_stats_variance_m().

double cml_stats_variance_m(const double data[], size_t stride, size_t n, double mean)
This function returns the sample variance of data relative to the given value of mean. The function is computed
with �̂� replaced by the value of mean that you supply,

�̂�2 =
1

(𝑁 − 1)

∑︁
(𝑥𝑖 −𝑚𝑒𝑎𝑛)2

double cml_stats_sd(const double data[], size_t stride, size_t n)
double cml_stats_sd_m(const double data[], size_t stride, size_t n, double mean)

The standard deviation is defined as the square root of the variance. These functions return the square root of
the corresponding variance functions above.

double cml_stats_tss(const double data[], size_t stride, size_t n)
double cml_stats_tss_m(const double data[], size_t stride, size_t n, double mean)

These functions return the total sum of squares (TSS) of data about the mean. For cml_stats_tss_m()
the user-supplied value of mean is used, and for cml_stats_tss() it is computed using
cml_stats_mean().

TSS =
∑︁

(𝑥𝑖 −𝑚𝑒𝑎𝑛)2

double cml_stats_variance_with_fixed_mean(const double data[], size_t stride, size_t n, dou-
ble mean)

This function computes an unbiased estimate of the variance of data when the population mean mean of the
underlying distribution is known a priori. In this case the estimator for the variance uses the factor 1/𝑁 and the
sample mean �̂� is replaced by the known population mean 𝜇,

�̂�2 =
1

𝑁

∑︁
(𝑥𝑖 − 𝜇)2

double cml_stats_sd_with_fixed_mean(const double data[], size_t stride, size_t n, double mean)
This function calculates the standard deviation of data for a fixed population mean mean. The result is the
square root of the corresponding variance function.

42 Chapter 10. Statistics

CML, Release 1.10.4

10.3 Absolute deviation

double cml_stats_absdev(const double data[], size_t stride, size_t n)
This function computes the absolute deviation from the mean of data, a dataset of length nwith stride stride.
The absolute deviation from the mean is defined as,

𝑎𝑏𝑠𝑑𝑒𝑣 =
1

𝑁

∑︁
|𝑥𝑖 − �̂�|

where 𝑥𝑖 are the elements of the dataset data. The absolute deviation from the mean provides a more robust
measure of the width of a distribution than the variance. This function computes the mean of data via a call to
cml_stats_mean().

double cml_stats_absdev_m(const double data[], size_t stride, size_t n, double mean)
This function computes the absolute deviation of the dataset data relative to the given value of mean,

𝑎𝑏𝑠𝑑𝑒𝑣 =
1

𝑁

∑︁
|𝑥𝑖 −𝑚𝑒𝑎𝑛|

This function is useful if you have already computed the mean of data (and want to avoid recomputing it), or
wish to calculate the absolute deviation relative to another value (such as zero, or the median).

10.4 Higher moments (skewness and kurtosis)

double cml_stats_skew(const double data[], size_t stride, size_t n)
This function computes the skewness of data, a dataset of length n with stride stride. The skewness is
defined as,

𝑠𝑘𝑒𝑤 =
1

𝑁

∑︁(︂
𝑥𝑖 − �̂�

�̂�

)︂3

where 𝑥𝑖 are the elements of the dataset data. The skewness measures the asymmetry of the tails of a distribu-
tion.

The function computes the mean and estimated standard deviation of data via calls to cml_stats_mean()
and cml_stats_sd().

double cml_stats_skew_m_sd(const double data[], size_t stride, size_t n, double mean, double sd)
This function computes the skewness of the dataset data using the given values of the mean mean and standard
deviation sd,

𝑠𝑘𝑒𝑤 =
1

𝑁

∑︁(︂
𝑥𝑖 −𝑚𝑒𝑎𝑛

𝑠𝑑

)︂3

These functions are useful if you have already computed the mean and standard deviation of data and want to
avoid recomputing them.

double cml_stats_kurtosis(const double data[], size_t stride, size_t n)
This function computes the kurtosis of data, a dataset of length n with stride stride. The kurtosis is defined
as,

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

(︃
1

𝑁

∑︁(︂
𝑥𝑖 − �̂�

�̂�

)︂4
)︃

− 3

The kurtosis measures how sharply peaked a distribution is, relative to its width. The kurtosis is normalized to
zero for a Gaussian distribution.

10.3. Absolute deviation 43

CML, Release 1.10.4

double cml_stats_kurtosis_m_sd(const double data[], size_t stride, size_t n, double mean, double sd)
This function computes the kurtosis of the dataset data using the given values of the mean mean and standard
deviation sd,

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁

(︃∑︁(︂
𝑥𝑖 −𝑚𝑒𝑎𝑛

𝑠𝑑

)︂4
)︃

− 3

This function is useful if you have already computed the mean and standard deviation of data and want to
avoid recomputing them.

10.5 Autocorrelation

double cml_stats_lag1_autocorrelation(const double data[], const size_t stride, const size_t n)
This function computes the lag-1 autocorrelation of the dataset data.

𝑎1 =

∑︀𝑛
𝑖=2(𝑥𝑖 − �̂�)(𝑥𝑖−1 − �̂�)∑︀𝑛
𝑖=1(𝑥𝑖 − �̂�)(𝑥𝑖 − �̂�)

double cml_stats_lag1_autocorrelation_m(const double data[], const size_t stride, const size_t n,
const double mean)

This function computes the lag-1 autocorrelation of the dataset data using the given value of the mean mean.

10.6 Covariance

double cml_stats_covariance(const double data1[], const size_t stride1, const double data2[], const
size_t stride2, const size_t n)

This function computes the covariance of the datasets data1 and data2 which must both be of the same
length n.

𝑐𝑜𝑣𝑎𝑟 =
1

(𝑛− 1)

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̂�)(𝑦𝑖 − 𝑦)

double cml_stats_covariance_m(const double data1[], const size_t stride1, const double data2[],
const size_t stride2, const size_t n, const double mean1, const dou-
ble mean2)

This function computes the covariance of the datasets data1 and data2 using the given values of the means,
mean1 and mean2. This is useful if you have already computed the means of data1 and data2 and want to
avoid recomputing them.

10.7 Correlation

double cml_stats_correlation(const double data1[], const size_t stride1, const double data2[], const
size_t stride2, const size_t n)

This function efficiently computes the Pearson correlation coefficient between the datasets data1 and data2
which must both be of the same length n.

𝑟 =
𝑐𝑜𝑣(𝑥, 𝑦)

�̂�𝑥�̂�𝑦
=

1
𝑛−1

∑︀
(𝑥𝑖 − �̂�)(𝑦𝑖 − 𝑦)√︁

1
𝑛−1

∑︀
(𝑥𝑖 − �̂�)2

√︁
1

𝑛−1

∑︀
(𝑦𝑖 − 𝑦)2

44 Chapter 10. Statistics

CML, Release 1.10.4

double cml_stats_spearman(const double data1[], const size_t stride1, const double data2[], const
size_t stride2, const size_t n, double work[])

This function computes the Spearman rank correlation coefficient between the datasets data1 and data2
which must both be of the same length n. Additional workspace of size 2 * n is required in work. The
Spearman rank correlation between vectors 𝑥 and 𝑦 is equivalent to the Pearson correlation between the ranked
vectors 𝑥𝑅 and 𝑦𝑅, where ranks are defined to be the average of the positions of an element in the ascending
order of the values.

10.8 Maximum and Minimum values

The following functions find the maximum and minimum values of a dataset (or their indices). If the data contains
NaN-s then a NaN will be returned, since the maximum or minimum value is undefined. For functions which return
an index, the location of the first NaN in the array is returned.

double cml_stats_max(const double data[], size_t stride, size_t n)
This function returns the maximum value in data, a dataset of length n with stride stride. The maximum
value is defined as the value of the element 𝑥𝑖 which satisfies 𝑥𝑖 ≥ 𝑥𝑗 for all 𝑗.

If you want instead to find the element with the largest absolute magnitude you will need to apply fabs() or
abs() to your data before calling this function.

double cml_stats_min(const double data[], size_t stride, size_t n)
This function returns the minimum value in data, a dataset of length n with stride stride. The minimum
value is defined as the value of the element 𝑥𝑖 which satisfies 𝑥𝑖 ≤ 𝑥𝑗 for all 𝑗.

If you want instead to find the element with the smallest absolute magnitude you will need to apply fabs() or
abs() to your data before calling this function.

void cml_stats_minmax(double * min, double * max, const double data[], size_t stride, size_t n)
This function finds both the minimum and maximum values min, max in data in a single pass.

size_t cml_stats_max_index(const double data[], size_t stride, size_t n)
This function returns the index of the maximum value in data, a dataset of length n with stride stride. The
maximum value is defined as the value of the element 𝑥𝑖 which satisfies 𝑥𝑖 ≥ 𝑥𝑗 for all 𝑗. When there are
several equal maximum elements then the first one is chosen.

size_t cml_stats_min_index(const double data[], size_t stride, size_t n)
This function returns the index of the minimum value in data, a dataset of length n with stride stride. The
minimum value is defined as the value of the element 𝑥𝑖 which satisfies 𝑥𝑖 ≥ 𝑥𝑗 for all 𝑗. When there are several
equal minimum elements then the first one is chosen.

void cml_stats_minmax_index(size_t * min_index, size_t * max_index, const double data[],
size_t stride, size_t n)

This function returns the indexes min_index, max_index of the minimum and maximum values in data
in a single pass.

10.9 Median and Percentiles

The median and percentile functions described in this section operate on sorted data. For convenience we use quantiles,
measured on a scale of 0 to 1, instead of percentiles (which use a scale of 0 to 100).

double cml_stats_median_from_sorted_data(const double sorted_data[], size_t stride, size_t n)
This function returns the median value of sorted_data, a dataset of length n with stride stride. The
elements of the array must be in ascending numerical order. There are no checks to see whether the data are
sorted, so the function cml_sort() should always be used first.

10.8. Maximum and Minimum values 45

CML, Release 1.10.4

When the dataset has an odd number of elements the median is the value of element (𝑛−1)/2. When the dataset
has an even number of elements the median is the mean of the two nearest middle values, elements (𝑛 − 1)/2
and 𝑛/2. Since the algorithm for computing the median involves interpolation this function always returns a
floating-point number, even for integer data types.

double cml_stats_quantile_from_sorted_data(const double sorted_data[], size_t stride, size_t n,
double f)

This function returns a quantile value of sorted_data, a double-precision array of length n with stride
stride. The elements of the array must be in ascending numerical order. The quantile is determined by the
f, a fraction between 0 and 1. For example, to compute the value of the 75th percentile f should have the value
0.75.

There are no checks to see whether the data are sorted, so the function cml_sort() should always be used
first.

The quantile is found by interpolation, using the formula

quantile = (1− 𝛿)𝑥𝑖 + 𝛿𝑥𝑖+1

where 𝑖 is floor((n - 1)f) and 𝛿 is (𝑛− 1)𝑓 − 𝑖.

Thus the minimum value of the array (data[0*stride]) is given by f equal to zero, the maximum value
(data[(n-1)*stride]) is given by f equal to one and the median value is given by f equal to 0.5. Since the
algorithm for computing quantiles involves interpolation this function always returns a floating-point number,
even for integer data types.

10.10 References and Further Reading

The standard reference for almost any topic in statistics is the multi-volume Advanced Theory of Statistics by Kendall
and Stuart.

• Maurice Kendall, Alan Stuart, and J. Keith Ord. The Advanced Theory of Statistics (multiple volumes) reprinted
as Kendall’s Advanced Theory of Statistics. Wiley, ISBN 047023380X.

Many statistical concepts can be more easily understood by a Bayesian approach. The following book by Gelman,
Carlin, Stern and Rubin gives a comprehensive coverage of the subject.

• Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data Analysis. Chapman & Hall,
ISBN 0412039915.

46 Chapter 10. Statistics

CHAPTER 11

Indices and tables

• genindex

47

CML, Release 1.10.4

48 Chapter 11. Indices and tables

Index

A
acosh, 8
ANSI C, use of, 1
approximate comparison of floating point numbers, 11
argument of complex number, 14
arithmetic exceptions, 39
asinh, 8
astronomical constants, 28
atanh, 8
atomic physics, constants, 28

B
bias, IEEE format, 37

C
C extensions, compatible use of, 1
C99, inline keyword, 5
cimag (C macro), 14
cml_acos (C function), 9
cml_acosh (C function), 8, 10
cml_acot (C function), 10
cml_acoth (C function), 10
cml_acsc (C function), 10
cml_acsch (C function), 10
cml_asec (C function), 10
cml_asech (C function), 10
cml_asin (C function), 9
cml_asinh (C function), 8, 10
cml_atan (C function), 10
cml_atanh (C function), 8, 10
cml_cmp (C function), 11
cml_complex_abs (C function), 14
cml_complex_abs2 (C function), 14
cml_complex_acos (C function), 16
cml_complex_acos_real (C function), 16
cml_complex_acosh (C function), 17
cml_complex_acosh_real (C function), 17
cml_complex_acot (C function), 16
cml_complex_acoth (C function), 17

cml_complex_acsc (C function), 16
cml_complex_acsc_real (C function), 16
cml_complex_acsch (C function), 17
cml_complex_add (C function), 14
cml_complex_add_imag (C function), 14
cml_complex_add_real (C function), 14
cml_complex_arg (C function), 14
cml_complex_asec (C function), 16
cml_complex_asec_real (C function), 16
cml_complex_asech (C function), 17
cml_complex_asin (C function), 16
cml_complex_asin_real (C function), 16
cml_complex_asinh (C function), 17
cml_complex_atan (C function), 16
cml_complex_atanh (C function), 17
cml_complex_atanh_real (C function), 17
cml_complex_conj (C function), 15
cml_complex_cos (C function), 15
cml_complex_cosh (C function), 16
cml_complex_cot (C function), 16
cml_complex_coth (C function), 17
cml_complex_csc (C function), 16
cml_complex_csch (C function), 17
cml_complex_div (C function), 14
cml_complex_div_imag (C function), 15
cml_complex_div_real (C function), 14
cml_complex_exp (C function), 15
cml_complex_inverse (C function), 15
cml_complex_log (C function), 15
cml_complex_log10 (C function), 15
cml_complex_log_b (C function), 15
cml_complex_logabs (C function), 14
cml_complex_mul (C function), 14
cml_complex_mul_imag (C function), 15
cml_complex_mul_real (C function), 14
cml_complex_negative (C function), 15
cml_complex_polar (C function), 14
cml_complex_pow (C function), 15
cml_complex_pow_real (C function), 15
cml_complex_sec (C function), 16

49

CML, Release 1.10.4

cml_complex_sech (C function), 17
cml_complex_sin (C function), 15
cml_complex_sinh (C function), 16
cml_complex_sqrt (C function), 15
cml_complex_sqrt_real (C function), 15
cml_complex_sub (C function), 14
cml_complex_sub_imag (C function), 14
cml_complex_sub_real (C function), 14
cml_complex_t, 13
cml_complex_tan (C function), 15
cml_complex_tanh (C function), 16
CML_CONST_MKSA_ACRE (C macro), 30
CML_CONST_MKSA_ANGSTROM (C macro), 28
CML_CONST_MKSA_ASTRONOMICAL_UNIT (C

macro), 28
CML_CONST_MKSA_BAR (C macro), 31
CML_CONST_MKSA_BARN (C macro), 29
CML_CONST_MKSA_BOHR_MAGNETON (C

macro), 29
CML_CONST_MKSA_BOHR_RADIUS (C macro), 28
CML_CONST_MKSA_BOLTZMANN (C macro), 27
CML_CONST_MKSA_BTU (C macro), 31
CML_CONST_MKSA_CALORIE (C macro), 31
CML_CONST_MKSA_CANADIAN_GALLON (C

macro), 30
CML_CONST_MKSA_CARAT (C macro), 31
CML_CONST_MKSA_CURIE (C macro), 32
CML_CONST_MKSA_DAY (C macro), 29
CML_CONST_MKSA_DEBYE (C macro), 29
CML_CONST_MKSA_DYNE (C macro), 33
CML_CONST_MKSA_ELECTRON_CHARGE (C

macro), 28
CML_CONST_MKSA_ELECTRON_MAGNETIC_MOMENT

(C macro), 29
CML_CONST_MKSA_ELECTRON_VOLT (C macro),

28
CML_CONST_MKSA_ERG (C macro), 33
CML_CONST_MKSA_FARADAY (C macro), 27
CML_CONST_MKSA_FATHOM (C macro), 30
CML_CONST_MKSA_FOOT (C macro), 29
CML_CONST_MKSA_FOOTCANDLE (C macro), 32
CML_CONST_MKSA_FOOTLAMBERT (C macro), 32
CML_CONST_MKSA_GAUSS (C macro), 28
CML_CONST_MKSA_GRAM_FORCE (C macro), 31
CML_CONST_MKSA_GRAV_ACCEL (C macro), 28
CML_CONST_MKSA_GRAVITATIONAL_CONSTANT

(C macro), 28
CML_CONST_MKSA_HECTARE (C macro), 30
CML_CONST_MKSA_HORSEPOWER (C macro), 31
CML_CONST_MKSA_HOUR (C macro), 29
CML_CONST_MKSA_INCH (C macro), 29
CML_CONST_MKSA_INCH_OF_MERCURY (C

macro), 32

CML_CONST_MKSA_INCH_OF_WATER (C macro),
32

CML_CONST_MKSA_JOULE (C macro), 33
CML_CONST_MKSA_KILOMETERS_PER_HOUR

(C macro), 30
CML_CONST_MKSA_KILOPOUND_FORCE (C

macro), 31
CML_CONST_MKSA_KNOT (C macro), 30
CML_CONST_MKSA_LAMBERT (C macro), 32
CML_CONST_MKSA_LIGHT_YEAR (C macro), 28
CML_CONST_MKSA_LITER (C macro), 30
CML_CONST_MKSA_LUMEN (C macro), 32
CML_CONST_MKSA_LUX (C macro), 32
CML_CONST_MKSA_MASS_ELECTRON (C macro),

28
CML_CONST_MKSA_MASS_MUON (C macro), 28
CML_CONST_MKSA_MASS_NEUTRON (C macro),

28
CML_CONST_MKSA_MASS_PROTON (C macro), 28
CML_CONST_MKSA_METER_OF_MERCURY (C

macro), 32
CML_CONST_MKSA_METRIC_TON (C macro), 31
CML_CONST_MKSA_MICRON (C macro), 30
CML_CONST_MKSA_MIL (C macro), 29
CML_CONST_MKSA_MILE (C macro), 29
CML_CONST_MKSA_MILES_PER_HOUR (C macro),

30
CML_CONST_MKSA_MINUTE (C macro), 29
CML_CONST_MKSA_MOLAR_GAS (C macro), 27
CML_CONST_MKSA_NAUTICAL_MILE (C macro),

30
CML_CONST_MKSA_NEWTON (C macro), 33
CML_CONST_MKSA_NUCLEAR_MAGNETON (C

macro), 29
CML_CONST_MKSA_OUNCE_MASS (C macro), 31
CML_CONST_MKSA_PARSEC (C macro), 28
CML_CONST_MKSA_PHOT (C macro), 32
CML_CONST_MKSA_PINT (C macro), 30
CML_CONST_MKSA_PLANCKS_CONSTANT_H (C

macro), 27
CML_CONST_MKSA_PLANCKS_CONSTANT_HBAR

(C macro), 27
CML_CONST_MKSA_POINT (C macro), 30
CML_CONST_MKSA_POISE (C macro), 32
CML_CONST_MKSA_POUND_FORCE (C macro), 31
CML_CONST_MKSA_POUND_MASS (C macro), 31
CML_CONST_MKSA_POUNDAL (C macro), 31
CML_CONST_MKSA_PROTON_MAGNETIC_MOMENT

(C macro), 29
CML_CONST_MKSA_PSI (C macro), 32
CML_CONST_MKSA_QUART (C macro), 30
CML_CONST_MKSA_RAD (C macro), 32
CML_CONST_MKSA_ROENTGEN (C macro), 32
CML_CONST_MKSA_RYDBERG (C macro), 28

50 Index

CML, Release 1.10.4

CML_CONST_MKSA_SOLAR_MASS (C macro), 28
CML_CONST_MKSA_SPEED_OF_LIGHT (C macro),

27
CML_CONST_MKSA_STANDARD_GAS_VOLUME

(C macro), 27
CML_CONST_MKSA_STD_ATMOSPHERE (C

macro), 31
CML_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT

(C macro), 28
CML_CONST_MKSA_STILB (C macro), 32
CML_CONST_MKSA_STOKES (C macro), 32
CML_CONST_MKSA_TEXPOINT (C macro), 30
CML_CONST_MKSA_THERM (C macro), 31
CML_CONST_MKSA_THOMSON_CROSS_SECTION

(C macro), 29
CML_CONST_MKSA_TON (C macro), 31
CML_CONST_MKSA_TORR (C macro), 31
CML_CONST_MKSA_TROY_OUNCE (C macro), 31
CML_CONST_MKSA_UK_GALLON (C macro), 30
CML_CONST_MKSA_UK_TON (C macro), 31
CML_CONST_MKSA_UNIFIED_ATOMIC_MASS (C

macro), 28
CML_CONST_MKSA_US_GALLON (C macro), 30
CML_CONST_MKSA_VACUUM_PERMEABILITY

(C macro), 27
CML_CONST_MKSA_VACUUM_PERMITTIVITY (C

macro), 27
CML_CONST_MKSA_WEEK (C macro), 29
CML_CONST_MKSA_YARD (C macro), 29
CML_CONST_NUM_ATTO (C macro), 33
CML_CONST_NUM_AVOGADRO (C macro), 27
CML_CONST_NUM_CML_NANO (C macro), 33
CML_CONST_NUM_EXA (C macro), 33
CML_CONST_NUM_FEMTO (C macro), 33
CML_CONST_NUM_FINE_STRUCTURE (C macro),

28
CML_CONST_NUM_GIGA (C macro), 33
CML_CONST_NUM_KILO (C macro), 33
CML_CONST_NUM_MEGA (C macro), 33
CML_CONST_NUM_MICRO (C macro), 33
CML_CONST_NUM_MILLI (C macro), 33
CML_CONST_NUM_PETA (C macro), 33
CML_CONST_NUM_PICO (C macro), 33
CML_CONST_NUM_TERA (C macro), 33
CML_CONST_NUM_YOCTO (C macro), 34
CML_CONST_NUM_YOTTA (C macro), 33
CML_CONST_NUM_ZEPTO (C macro), 33
CML_CONST_NUM_ZETTA (C macro), 33
cml_cos (C function), 9
cml_cosh (C function), 10
cml_cot (C function), 9
cml_coth (C function), 10
cml_csc (C function), 9
cml_csch (C function), 10

cml_deriv_backward (C function), 21
cml_deriv_central (C function), 21
cml_deriv_forward (C function), 21
cml_exp (C function), 9
cml_expm1 (C function), 8
CML_EXTERN_INLINE, 5
cml_frexp (C function), 9
cml_hypot (C function), 8
cml_hypot3 (C function), 8
cml_ieee754_fprintf_double (C function), 38
cml_ieee754_fprintf_float (C function), 38
cml_ieee754_printf_double (C function), 38
cml_ieee754_printf_float (C function), 38
cml_isfinite (C function), 8
cml_isinf (C function), 8
cml_isnan (C function), 8
cml_ldexp (C function), 9
cml_log (C function), 9
cml_log10 (C function), 9
cml_log1p (C function), 8
cml_log_b (C function), 9
CML_MAX (C macro), 11
CML_MIN (C macro), 11
CML_NAN (C macro), 8
CML_NEGINF (C macro), 8
CML_POSINF (C macro), 8
cml_pow (C function), 9
cml_pow_2 (C function), 11
cml_pow_3 (C function), 11
cml_pow_4 (C function), 11
cml_pow_5 (C function), 11
cml_pow_6 (C function), 11
cml_pow_7 (C function), 11
cml_pow_8 (C function), 11
cml_pow_9 (C function), 11
cml_pow_int (C function), 11
cml_pow_uint (C function), 11
cml_quaternion_t, 19
cml_sec (C function), 9
cml_sech (C function), 10
cml_sgn (C function), 11
cml_sin (C function), 9
cml_sinh (C function), 10
cml_sqrt (C function), 9
cml_stats_absdev (C function), 43
cml_stats_absdev_m (C function), 43
cml_stats_correlation (C function), 44
cml_stats_covariance (C function), 44
cml_stats_covariance_m (C function), 44
cml_stats_kurtosis (C function), 43
cml_stats_kurtosis_m_sd (C function), 43
cml_stats_lag1_autocorrelation (C function), 44
cml_stats_lag1_autocorrelation_m (C function), 44
cml_stats_max (C function), 45

Index 51

CML, Release 1.10.4

cml_stats_max_index (C function), 45
cml_stats_mean (C function), 42
cml_stats_median_from_sorted_data (C function), 45
cml_stats_min (C function), 45
cml_stats_min_index (C function), 45
cml_stats_minmax (C function), 45
cml_stats_minmax_index (C function), 45
cml_stats_quantile_from_sorted_data (C function), 46
cml_stats_sd (C function), 42
cml_stats_sd_m (C function), 42
cml_stats_sd_with_fixed_mean (C function), 42
cml_stats_skew (C function), 43
cml_stats_skew_m_sd (C function), 43
cml_stats_spearman (C function), 44
cml_stats_tss (C function), 42
cml_stats_tss_m (C function), 42
cml_stats_variance (C function), 42
cml_stats_variance_m (C function), 42
cml_stats_variance_with_fixed_mean (C function), 42
compatibility, 1
compiling programs, include paths, 3
compiling programs, library paths, 4
complex (C function), 13
complex arithmetic, 14
complex numbers, 12
conjugate of complex number, 15
constants, fundamental, 27
constants, mathematical (defined as macros), 7
constants, physical, 26
constants, prefixes, 33
conversion of units, 26
correlation, of two datasets, 44
cosine, 9
cosine of complex number, 15
covariance, of two datasets, 44
creal (C macro), 14

D
denormalized form, IEEE format, 37
derivatives, calculating numerically, 19
differentiation of functions, numeric, 19
division by zero, IEEE exceptions, 39
double precision, IEEE format, 38
doublean (C function), 9
doubleanh (C function), 10

E
e, defined as a macro, 7
easings functions, 23
elementary functions, 6
energy, units of, 31
estimated standard deviation, 39
estimated variance, 39
euclidean distance function, hypot, 8

euclidean distance function, hypot3, 8
Euler’s constant, defined as a macro, 7
exceptions, IEEE arithmetic, 39
exp, 9
expm1, 8
exponent, IEEE format, 37
exponential, difference from 1 computed accurately, 8
exponentiation of complex number, 15
extern inline, 5

F
floating point numbers, approximate comparison, 11
force and energy, 32
frexp, 9
functions, numerical differentiation, 19
fundamental constants, 27

H
header files, including, 3
hyperbolic cosine, inverse, 8
hyperbolic functions, 10
hyperbolic functions, complex numbers, 16
hyperbolic sine, inverse, 8
hyperbolic tangent, inverse, 8
hypot, 8

I
IEEE exceptions, 39
IEEE floating point, 35
IEEE format for floating point numbers, 37
IEEE infinity, defined as a macro, 7
IEEE NaN, defined as a macro, 8
illumination, units of, 32
imperial units, 29
including CML header files, 3
infinity, defined as a macro, 7
infinity, IEEE format, 37
inline functions, 5
inverse complex trigonometric functions, 16
inverse hyperbolic cosine, 8
inverse hyperbolic functions, 10
inverse hyperbolic functions, complex numbers, 17
inverse hyperbolic sine, 8
inverse hyperbolic tangent, 8
inverse trigonometric functions, 9

K
kurtosis, 43

L
ldexp, 9
length, computed accurately using hypot, 8
length, computed accurately using hypot3, 8
libraries, linking with, 4

52 Index

CML, Release 1.10.4

license of CML, 1
light, units of, 32
linking with CML libraries, 4
log, 9
log1p, 8
logarithm of complex number, 15
logarithm, computed accurately near 1, 8

M
macros for mathematical constants, 7
magnitude of complex number, 14
mantissa, IEEE format, 37
mass, units of, 30
mathematical constants, defined as macros, 7
mathematical functions, elementary, 6
max, 39
maximum of two numbers, 11
mean, 39
min, 39
minimum of two numbers, 11
MIT, 1

N
NaN, defined as a macro, 8
nautical units, 29
normalized form, IEEE format, 37
Not-a-number, defined as a macro, 8
nuclear physics, constants, 28
numerical constants, defined as macros, 7
numerical derivatives, 19

O
overflow, IEEE exceptions, 39

P
physical constants, 26
pi, defined as a macro, 7
polar form of complex numbers, 13
pow, 9
power of complex number, 15
power, units of, 31
precision, IEEE arithmetic, 39
prefixes, 33
pressure, 31
printers units, 30

Q
quaternions, 17

R
radioactivity, 32
range, 39
representations of complex numbers, 13

representations of quaternion, 19
rounding mode, 39

S
safe comparison of floating point numbers, 11
sign bit, IEEE format, 37
sin, of complex number, 15
sine, 9
single precision, IEEE format, 37
skewness, 43
slope, see numerical derivative, 19
sqrt, 9
square root of complex number, 15
standard deviation, 39
standards conformance, ANSI C, 1
statistics, 39

T
t-test, 39
tangent, 9
tangent of complex number, 15
thermal energy, units of, 31
time units, 29
trigonometric functions, 9
trigonometric functions of complex numbers, 15

U
underflow, IEEE exceptions, 39
units of, 31, 32
units, conversion of, 26
units, imperial, 29

V
variance, 39
viscosity, 32
volume units, 30

W
weight, units of, 30

Z
zero, IEEE format, 37

Index 53

	Introduction
	Routines available in CML

	Using the Library
	An Example Program
	Compiling and Linking
	Shared Libraries
	ANSI C Compliance
	Inline functions
	Long double
	Compatibility with C++
	Thread-safety

	Mathematical Functions
	Mathematical Constants
	Infinities and Not-a-number
	Elementary Functions
	Trigonometric Functions
	Inverse Trigonometric Functions
	Hyperbolic Functions
	Inverse Hyperbolic Functions
	Small integer powers
	Testing the Sign of Numbers
	Maximum and Minimum functions
	Approximate Comparison of Floating Point Numbers

	Complex Numbers
	Representation of complex numbers
	Properties of complex numbers
	Complex arithmetic operators
	Elementary Complex Functions
	Complex Trigonometric Functions
	Inverse Complex Trigonometric Functions
	Complex Hyperbolic Functions
	Inverse Complex Hyperbolic Functions

	Quaternions
	Representation of quaternions

	Numerical Differentiation
	Functions
	Examples
	References and Further Reading

	Easings Functions
	References and Further Reading

	Physical Constants
	Fundamental Constants
	Astronomy and Astrophysics
	Atomic and Nuclear Physics
	Measurement of Time
	Imperial Units
	Speed and Nautical Units
	Printers Units
	Volume, Area and Length
	Mass and Weight
	Thermal Energy and Power
	Pressure
	Viscosity
	Light and Illumination
	Radioactivity
	Force and Energy
	Prefixes
	Examples
	References and Further Reading

	IEEE floating-point arithmetic
	Representation of floating point numbers
	References and Further Reading

	Statistics
	Data Types
	Mean, Standard Deviation and Variance
	Absolute deviation
	Higher moments (skewness and kurtosis)
	Autocorrelation
	Covariance
	Correlation
	Maximum and Minimum values
	Median and Percentiles
	References and Further Reading

	Indices and tables

