

Welcome to cmdfor’s documentation!

Contents:

	cmdfor
	Features

	How-To

	To-Do

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Maintainer

	Contributors

	History

Indices and tables

	Index

	Module Index

	Search Page

cmdfor

[image: _images/cmdfor.svg]
 [https://travis-ci.org/jwgalley/cmdfor][image: _images/cmdfor1.svg]
 [https://pypi.python.org/pypi/cmdfor]nd for every line of input

	Free software: MIT license

	Documentation: (COMING SOON!) https://cmdfor.readthedocs.org.

Features

A shell utility (and package) which runs a command for every line of input.

It allows for spawning an arbitrary number of concurrent threads, and control
over where to keep each commands output.

In my daily work, I have to run all manner of commands on huge batches of
items. These things are usually not CPU bound, so it makes sense to
multithread these tasks.

Thus, I find myself doing bash commands such as the following, which takes an
input file of items, splits it into equal(ish) parts, and then spawns a worker
for each part, all the while keeping granular logs and return codes:

lines=`wc -l domains.txt | awk '{print $1}'`; threads=10; split=$(((lines/threads)+1)); mkdir -p in out; split -d -l ${split} domains.txt in/part. ; ls in/ | while read -r f; do cat in/${f} | while read -r d; do host -t a "${d}" > out/${d} 2>&1; echo -e "${d}\t$?"; done > log.${f} & echo ${!}; done > pids

That gets pretty tiring to type all the time. Why not use xargs -P you say?
Well that works perfectly fine for cases where I don’t need to make very
complicated commands, and don’t need to log all return codes. Maybe I can do
all of that with xargs, but I wanted to make this anyway as a learning
experience.

How-To

The program can take input from STDIN or from a file passed with the -i option.

All arguments that aren’t options are considered the subcommand to run. All
wildcards {} are replaced with the corresponding positional field from the
input data.

To delete a list of files, basically the same behaviour as xargs:

cat files.txt | cmdfor rm {}

To run the fictional command imaplogin for every line of a csv that
contains <email>,<password> fields, logging each individual command’s output
to an file in the directory ./out:

cat email_users.csv | cmdfor -d, -o ./out -- imaplogin -u {} -p {}

To look up the IP addresses of a huge amount of hostnames, using 10 concurrent
threads, and storing each individual commands stdout and stderr in seperate
files in the directory ./results, with each file being named after the hostname
on which the query was performed:

cat hostnames.txt | cmdfor -t 10 -Eo ./results -l 1 -- host -t a {}

To-Do

1. Come up with a real test case. Since this is a shell utility and really only
deals with shell subcommands, I don’t know what will work and what won’t on
travis.ci (can I run a shell command there?)
2. By default, it suppresses all output from subprocesses, and writes a message
to STDOUT for each process spawn and reap. This output is too verbose for the
default behaviour, and so it should be toggled with -v. The default should be
quitier and simpler. Perhaps just the returncodes of each task.
3. Refactoring some stuff to be a little less messy. The function signatures
are huge, and there are messages generated in odd places. I think it would be
better to pass a context object.

Installation

At the command line:

$ pip install cmdfor

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv cmdfor
$ pip install cmdfor

Usage

To use cmdfor in a project:

import cmdfor

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jwgalley/cmdfor/issues.

If you are reporting a bug, please include:

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

cmdfor could always use more documentation, whether
as part of the official cmdfor docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jwgalley/cmdfor/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cmdfor for local development.

	Fork the cmdfor repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/cmdfor.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv cmdfor
$ cd cmdfor/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 cmdfor tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, 3.4, 3.5 and for PyPy. Check
https://travis-ci.org/jwgalley/cmdfor/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Maintainer

	Jesse Galley <jesse@jessegalley.net>

Contributors

None yet. Why not be the first? See: CONTRIBUTING.rst

History

2018-04-09 v0.1.0 initial release, still need to do tests and docs

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to cmdfor’s documentation!

 		
 cmdfor

 		
 Features

 		
 How-To

 		
 To-Do

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Maintainer

 		
 Contributors

 		
 History

_static/up.png

_static/up-pressed.png

