

Welcome to Cluster Genesis User’s Guide documentation!

	Version:	1.4

	Date:	2017-09-22

	Document Owner:	OpenPOWER Cluster Genesis Team

	Authors:	Irving Baysah,
Rolf Brudeseth,
Jay Carman,
Ray Harrington,
Doug Lehr
Hoa Ngo,
Nilesh Shah,
Jorge Yanez,

Contents:

	1. Document Preface and Scope

	2. Release Table

	3. Introduction

	4. Prerequisite hardware setup

	5. Creating the config.yml File

	6. OpenPOWER reference design recipes

	7. Running the OpenPOWER Cluster Configuration Software

	8. Developer Guide

	9. Building the Introspection Kernel and Filesystem

	10. Appendix - A Using the ‘gen’ Program

	11. Appendix - B The System Configuration File

	12. Appendix - C The System Inventory File (needs update)

	13. Appendix - D Example system 1 Simple Flat Cluster

	14. Appendix - E Example system 2 - Simple Cluster with High Availability Network

	15. Appendix - F Detailed Genesis Flow (needs update)

	16. Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

	17. Appendix - H Recovering from Genesis Issues

	18. Appendix - I Using the ‘tear-down’ Program

	19. Appendix - J Transferring Deployement Container to New Host

Indices and tables

	Index

	Module Index

	Search Page

1. Document Preface and Scope

This document is a User’s guide for the OpenPOWER Cluster Genesis
toolkit. It is targeted at all users of the toolkit. Users are expected
to have a working knowledge of Ethernet networking and Linux.

1.1. Document Control

Upon initial publication, this document will be stored on Github

1.2. Revision History

	0.9
	11 Oct 2016
	Beta release
	

	1.0
	24 Jan 2017
	initial external release
	

	1.0
	4 Feb 2017
	Fixes and updates
	

	1.1
	24 Feb 2017
	Release 1.1 with LAG and
MLAG support
	

	1.2
	14 Apr 2017
	Release 1.2 with introspection
and support for 4 ports and 2 bonds
	

	1.3
	26 Jun 2017
	Release 1.3 Passive switch mode
and improved introspection support.
	

Table 1: Revision History

1.3. Related Documentation

	Document Name
	Location / Owner

	Lenovo Application Guide For Networking OS 8.3
	http://systemx.lenovofiles.com/help/topic/com.lenovo.rackswitch.g8052.doc/G8052_AG_8-3.pdf

	Mellanox MLNX-OS® User Manual for Ethernet
	See instructions for access at https://community.mellanox.com/docs/DOC-2188

2. Release Table

	Release
	Code Name
	Release Date
	End of Life Date

	0.9
	Antares
	2016-10-24
	2017-04-15

	1.0
	Betelgeuse
	2017-01-25
	TBD

	1.1
	Castor
	2017-02-24
	TBD

	1.2
	Denebola
	2017-04-15
	TBD

	1.3
	Electra
	2017-06-26
	TBD

	1.4
	Fafnir
	2017-09-22
	TBD

3. Introduction

OpenPOWER Cluster Genesis (OPCG) enables greatly simplified configuration of clusters of
bare metal OpenPOWER servers running Linux. It leverages widely used open
source tools such as Cobbler, Ansible and Python. Because it relies
solely on industry standard protocols such as IPMI and PXE boot, hybrid
clusters of OpenPOWER and x86 nodes can readily be supported. Currently
OPCG supports Ethernet networking with separate data and management
networks. OPCG can configure simple flat networks for typical HPC
environments or more advanced networks with VLANS and bridges for
OpenStack environments. OPCG also configures the switches in the
cluster. Currently Mellanox SX1410 is supported for the data network and
the Lenovo G8052 is supported for the management network.

3.1. Overview

OPCG is designed to be easy to use. If you are implementing one of the
supported architectures with supported hardware, OPCG eliminates the
need for custom scripts or programming. It does this via a configuration
file (config.yml) which drives the cluster configuration. The
configuration file is a yaml text file which the user edits. Example
YAML files are included. The configuration process is driven from a
“deployer” node which does not need to remain in the cluster when
finished. The process is as follows;

	Rack and cable the hardware.

	Initialize hardware.
	initialize switches with static ip address, userid and password.

	insure that all cluster compute nodes are set to obtain a DHCP
address on their BMC ports.

	Install the OpenPOWER Cluster Genesis software on the deployer node.

	Edit an existing config.yml file.

	Run the OPCG software

	Power on the cluster compute nodes.

When finished, OPCG generates a YAML formatted inventory file which can
be read by operational management software and used to seed
configuration files needed for installing a solution software stack.

3.1.1. Hardware and Architecture Overview

The OpenPOWER Cluster Genesis software supports clusters of servers
interconnected with Ethernet. The
servers must support IPMI and PXE boot. Currently single racks with single
or redundant data switches (with MLAG) are supported. Multiple racks can
be interconnected with traditional two tier access-aggregation
networking. In the future we plan to support two tier leaf-spine networks
with L3 interconnect capable of supporting VXLAN.

3.1.2. Networking

The data network is implemented using the Mellanox SX1410 10 Gb switch.
Currently OPCG supports up to four ethernet interfaces. These interfaces
can be bonded in pairs with support for LAG or MLAG.

Templates are used to define multiple network configurations in the config.yml file.
These can be physical ports, bonded ports, Linux bridges or vLANS. Physical ports can be
renamed to ease installation of additional software stack elements.

Management and/or Data switches can be set to “passive” mode to allow
deployment without supplying login credentials to the switch management
interfaces. This mode requires the user to manually write switch MAC address
tables to file and to configure the management and/or data switch in accordance
with the defined networks. The client networks will still be configured by
Cluster Genesis.

3.1.3. Compute Nodes

OPCG supports clusters of heterogeneous compute nodes. Users can define any number of
node types by creating templates in a config file. Node templates can
include any network templates defined in the network templates section. The combination of
node templates and network templates allows great flexibility in building heterogeneous
clusters with nodes dedicated to specific purposes.

3.1.4. Supported Hardware

Compute Nodes

OpenPOWER Compute Nodes;

	S812LC

	S822LC

	Tyan servers derived from the above 2 nodes are generally supported.

	SuperMicro OpenPOWER servers

x86 Compute Nodes;

	Lenovo x3550

	Lenovo x3650

Switches

For information on adding additional switch support using
Genesis’ switch class API, (see Developer Guide)

Data Switches;

	Mellanox SX1410

	Mellanox SX1710

Support for Lenovo G8264 is planned

Management Switches;

	Lenovo G8052

4. Prerequisite hardware setup

4.1. Hardware initialization

	Insure the cluster is cabled according to build instructions and that
a list of all switch port to compute node connections is available
and verified. Note that every node to be deployed, must have a BMC
and PXE connection to a management switch. (see the example cluster
in Appendix-D)

	Cable the deployer node to the cluster management network. It is
required that the deployer node be connected directly to
the management switch. For large cluster deployments, a 10 Gb
connection is recommended. The deployer node must also have access to
the public internet (or site) network for accessing software and operating
system image files. If the cluster management network does not have
external access, an alternate connection with external access must be
provided such as the cluster data network, or wireless etc.

	Insure that the BMC ports of all cluster nodes are configured to
obtain an IP address via DHCP.

	If this is a first time OS install, insure that all PXE ports are
also configured to obtain an ip address via DHCP. On OpenPOWER
servers, this is typically done using the Petitboot menus.

	Acquire any needed public and or site network addresses

	Insure you have a config.yml file to drive the cluster configuration.
If necessary, edit / create the config.yml file (see section
4 Creating the config.yml File)

Configuring the Cluster Switches

If your switches are a supported model, Genesis can fully configure them.
(See Supported Hardware for a list of supported switches.)
Even if your switch models are not supported by Cluster Genesis, you
can still use Cluster Genesis to deploy and configure your cluster
compute nodes. Genesis supports a ‘passive’ switch mode which enables
this. (See : Preparing for Passive Mode)

Initial configuration of data switch(es)

For out of box installation, it is usually
easiest to configure the switch using a serial connection. See the
switch installation guide. Using the Mellanox configuration wizard;

	assign hostname

	set DHCP to no for management interfaces

	set zeroconf on mgmt0 interface: to no

	do not enable ipv6 on management interfaces

	assign static ip address. This must match the address specified in
the config.yml file (keyname: ipaddr-data-switch:) and be in
a different subnet than your cluster management subnet used for BMC
and PXE communication.*

	assign netmask. This must match the netmask of the subnet the
deployer will use to access the management port of the switch.

	default gateway

	Primary DNS server

	Domain name

	Set Enable ipv6 to no

	admin password. This must match the password specified in the
config.yml file (keyword: password-data-switch:). Note that all
data switches in the cluster must have the same userid and
password.

	disable spanning tree (typical industry standard commands;
enable, configure terminal, no spanning-tree or for Lenovo
switches spanning-tree mode disable)

	enable SSH login. (ssh server enable)

	If this switch has been used previously, delete any existing vlans
which match those specified in the network template section of the
config.yml file. This insures that only those nodes specified in
the config file have access to the cluster. (for a brand new
switch this step can be ignored)

	login to the switch:

enable
configure terminal
show vlan

note those vlans that include the ports of the nodes to be included in the new cluster and remove those vlans or remove those ports from existing vlans:

no vlan n

	Save config. In switch config mode:

configuration write

	If using redundant data switches with MLAG, Leave the interswitch peer links (IPL) links
disconnected until Cluster Genesis completes. (This avoids loops)

Initial configuration of management switch(es)

For out of box installation, it is usually necessary to configure the switch
using a serial connection. See the switch installation guide. For
additional info on Lenovo G8052 specific commands, see Appendix G.
and the Lenovo RackSwitch G8052 Installation guide)

In order for Cluster Genesis to access and configure the switches in your cluster
it is necessary to configure management access on all switches and provide management
access information in the config.yml file. The diagram below shows the intitial switch setup
and the corresponding config file entries;

[image: _images/cluster-genesis-initial-switch-setup.png]
Initial switch setup

In this example, the management switch has an in-band management interface. The initial
setup requires an ‘externally’ accessible address on an in-band interface of all management switches.
(‘Externally’ accessible is used here to mean external to the cluster. ie on the customers’ management intranet)
Cluster genesis uses this address along with the provided userid and password credentials to access
the management switch initially. Cluster genesis will create a vlan isolated management network for accessing
the management interfaces of the switches in your cluster. A new management interface is created on the
management switch in the vlan indicated by the config.yml file. The ‘externally’ accessible inerface
is left unchanged and is available for external monitoring or other purposes. In addition, a vlan is
created on the management switches for isolating access to the pxe and BMC interfaces of all node in
the cluster.

The following entries in the config.yml file relate to initial switch setup;

	cidr-mgmt-switch-external-dev: 10.0.48.3/20 # example address

Address on the deployer node for access to the customers external management network.
Used by Cluster Genesis for initial management switch access. It is optional to configure
this address on an interface on the deployer. If it is not configured, Genesis will configure
it temporarily and then remove it when it has finished configuring the management network.

	
	ipaddr-mgmt-switch-external:

	rack1: 10.0.48.20 # example address

Address of the management switch on the customers external management network.
Used by Cluster Genesis for initial management switch access.

	port-mgmt-network: 46

Specifies the port on the management switch that the deployer is connected to.

	ipaddr-mgmt-network: 192.168.16.0/24

Defines the private network that Genesis creates for access to the management interfaces of switches
in the cluster. Although the user is free to change this, it is usually not necessary as Genesis will
vlan isolate this network so that it will not conflict with existing networks in the customer environment.

	
	ipaddr-data-switch:

	rack1: 192.168.16.25

Address on the data switch in the private network that genesis creates. Currently the user
needs to set up this address on the data switches before running Cluster Genesis. In the
future, Genesis will automatically create this address. This address must be within the
subnet defined by the ipaddr-mgmt-network: value. Optionally, the customer may also set up a
management interface in his external subnet for monitoring or other management purposes.

	
	port-mgmt-data-network:

	rack1:
- 45

Ports on the management switch which connect to management ports on the data switches.

[image: _images/cluster-genesis-switch-management-network-setup.png]
Genesis setup of the switch management network

Management switch setup commands. (for G8052)

	Enable configuration of the management switch:

enable
configure terminal

	Enable IP interface mode for the management interface:

RS G8052(config)# interface ip 1

	assign a static ip address, netmask and gateway address to the management interface.
This must match the address specified in
the config.yml file (keyname: ipaddr-mgmt-switch-external:) and be in a
different subnet than your cluster management subnet:

RS G8052(config-ip-if)# ip address 10.0.48.20 (example IP address)
RS G8052(config-ip-if)# ip netmask 255.255.240.0
RS G8052(config-ip-if)# vlan 1 (User selectable, usually default vlan 1 is used)
RS G8052(config-ip-if)# enable
RS G8052(config-ip-if)# exit

	Optionally configure a default gateway and enable the gateway:

RS G8052(config)# ip gateway 1 address 10.0.48.1 (example ip address)
RS G8052(config)# ip gateway 1 enable

	admin password. This must match the password specified in the
config.yml file (keyword: password-mgmt-switch:). Note that all
management switches in the cluster must have the same userid and
password. The following command is interactive:

access user administrator-password

	disable spanning tree (for Lenovo switches enable, configure
terminal, spanning-tree mode disable):

spanning-tree mode disable

	enable secure https and SSH login:

ssh enable
ssh generate-host-key
access https enable

	Save the config (For Lenovo switches, enter config mode
For additional information, consult vendor documentation):

copy running-config startup-config

This completes normal Genesis initial configuration.

Preparing for Passive Mode

In passive mode, Genesis configures the cluster compute nodes without
requiring any management communication with the cluster switches. This
facilitates the use of Genesis even when the switch hardare is not
supported or in cases where the end user does not allow 3rd party
access to their switches. When running Genesis in passive mode,
the user is responsible for configuring the cluster switches. The
user must also provide the Cluster Genesis software with MAC address
tables collected from the cluster switches during the Genesis process.
For passive mode, the cluster management switch must be fully programmed
before beginning cluster genesis, while the data switch should be
configured after Genesis runs.

Configuring the management switch(es)

	The port connected to the deployer node must be put in trunk mode with
allowed vlans vlan-mgmt-network and vlan-mgmt-client-network added.
(see Appendix - B The System Configuration File for a description of these config file keys)

	The ports on the management switch which connect to the management ports
of cluster data switches must be in access mode and have their PVID
(Native VLAN) value set to vlan-mgmt-network

	The ports on the management switch which connect to cluster node BMC
ports or PXE ports must be in access mode and have their PVID
(Native VLAN) set to vlan-mgmt-client-network

Configuring the data switch(es)

Configuration of the data switches is dependent on the user requirements.
The user / installer is responsible for all configuration. Generally,
configuration of the data switches should occur after Cluster Genesis
completes. In particular, note that it is not usually possible to aquire
complete MAC address information once vPC (AKA MLAG or VLAG) has been
configured on the data switches.

4.2. Setting up the Deployer Node

Requirements; It is recommended that the deployer node have at least one
available core of a XEON class processor, 16 GB of memory free and 64 GB
available disk space. For larger cluster deployments, additional cores,
memory and disk space are recommended. A 4 core XEON class processor
with 32 GB memory and 320 GB disk space is generally adequate for
installations up to several racks.

The deployer node requires internet access. This can be achieved through the
interface used for connection to the management switch (assuming the management
switch has a connection to the internet) or through another interface.

Operating Sytem and Package setup of the Deployer Node

	
	Deployer OS Requirements:

	
	
	Ubuntu

	
	Release 14.04LTS or 16.04LTS

	SSH login enabled

	sudo privileges

	
	RHEL

	
	Release 7.2

	Extra Packages for Enterprise Linux (EPEL) repository enabled
(https://fedoraproject.org/wiki/EPEL)

	SSH login enabled

	sudo privileges

	Optionally, assign a static, public ip address to the BMC port to
allow external control of the deployer node.

	
	login into the deployer and install the vim, vlan, bridge-utils and fping packages

	
	Ubuntu:

$ sudo apt-get update
$ sudo apt-get install vim vlan bridge-utils fping

	RHEL:

$ sudo yum install vim vlan bridge-utils fping

Network Configuration of the Deployer Node

Note: The deployer port connected to the management switch must be defined in
/etc/network/interfaces (Ubuntu) or the ifcfg-eth# file (RedHat).

ie:

auto eth0 # example device name
iface eth0 inet manual

Genesis sets up a vlan and subnet for it’s access to the switches in the cluster.
It is recommended that the deployer be provided with a direct connection to the
management switch to simplify the overall setup. If this is not possible, the
end user must insure that tagged vlan packets can be communicated between the
deployer and the switches in the cluster.

The following keys are used to provide initial access to the switches
in the cluster and must be assigned in the config.yml file

	ipaddr-mgmt-switch

	ipaddr-data-switch

	vlan-mgmt-network

	ipaddr-mgmt-switch-external

	cidr-mgmt-switch-external-dev

	port-mgmt-data-network

For a detailed description of these keys, see Appendix - B The System Configuration File and
Genesis setup of the switch management network.

There are two options for configuring network setup on the deployer. With the
first option, Genesis will attempt to discover the deployer port connected to the
management switch and configure a temporary address on it for accessing the
management switches. For the second option, the user can optionally assign the
label-mgmt-switch-external-dev key in the config file to skip the auto
discovery. In this case, the user must configure the specified port so that
it can access the management switches on the ‘external’ management network.

5. Creating the config.yml File

The config.yml file drives the creation of the cluster. It uses YAML
syntax which is stored as readable text. As config.yml is a Linux file,
lines must terminate with a line feed character (/n). If using a windows
editor to create or edit the file, be sure to use an editor such as Open
Office which supports saving text files with new line characters or use
dos2unix to convert the windows text file to linux format.

YAML files support data structures such as lists, dictionaries and
scalars. A complete definition of the config.yml file along with
detailed documentation of the elements used are given in appendix B.

The config.yml file has 5 main sections. These are;

	General Settings

	Cluster definition

	Network templates

	Node templates

	Post Genesis activities

Notes:

	Usually it is easier to start with an existing config.yml file rather
than create one from scratch.

	YAML files use spaces as part of syntax. This means for example that
elements of the same list must have the exact same number of spaces
preceeding them. When editing a .yml file pay careful attention to
spaces at the start of lines. Incorrect spacing can result in failure
to load messages during genesis.

5.1. General Settings

The top part of the config.yml file contains a group of key value pairs that
define general settings.

Config file version:

version: 1.1

	Release Branch
	Supported Config File Version

	release-0.9
	version: 1.0

	release-1.x
	version: 1.1

	release-2.x
	version: 2.0 (planned)

Default log level:

log_level: debug

Introspection:

Introspection consists of loading a lightweight in-memory OS (linux buildroot)
on all client nodes prior to OS installation on disk. This feature can be
enabled via the ‘introspection-enabled’ key in ‘config.yml’ to a boolean
value. If omitted or set to ‘false’ the introspection components will not be
run. Initially it is only supported on clusters with all ppc64el deployer and
client nodes.:

introspection-enabled: true # Introspection Mode Enabled
introspection-enabled: false # Introspection Mode Disabled

Write switch configuration to flash memory

The manangement and data switches can automatically write the configuration
to flash memory using the ‘write-switch-memory’ key.:

write-switch-memory: true # Write Switch Memory Enabled
write-switch-memory: false # Write Switch Memory Disabled

Deployment Environment

The ‘deployment-environment’ key in ‘config.yml’ can be used to define
environment variables (as key: values) to be set during deployment:

deployment-environment:
 https_proxy: "http://192.168.1.2:3128"
 http_proxy: "http://192.168.1.2:3128"
 no_proxy: "localhost,127.0.0.1"

This was implemented to enable http/https proxy configuration but could be used
for anything that utilized environment variables. The ‘deployment-environment’
dictionary is copied into ‘playbooks/group_vars/all’ as
‘deployment_environment’ (note the “-” is changed to “_”).

5.2. Cluster definition

The next section of the config.yml file contains a group of key value pairs
that define the overall cluster layout. Each rack in a cluster is
assumed to have a management switch and one or two data switches.
Note that keywords with a leading underscore can be changed by the end
user as appropriate for your application. (e.g. “_rack1” could be changed to
“base-rack”)

The following keys must be included in the cluster definition section:

ipaddr-mgmt-network: a.b.c.d/n
ipaddr-mgmt-client-network: a.b.e.f/n
vlan-mgmt-network: 16
vlan-mgmt-client-network: 20
port-mgmt-network: 1
ipaddr-mgmt-switch:
 rackname: a.b.c.d
ipaddr-data-switch:
 rackname: a.b.c.d
redundant-network: false # "true" for redundant network (future release)
userid-default: joeuser
password-default: passw0rd
userid-mgmt-switch: admin
password-mgmt-switch: admin
userid-data-switch: admin
password-data-switch: admin

Notes:

	OpenPOWER Cluster Genesis creates two VLANs on the management switch(es) in your cluster.
These are used to isolate access of the management interfaces on the cluster switches from the
BMC and PXE ports of the cluster nodes. The VLAN in which the switch management interfaces reside
is defined by the vlan-mgmt-network: keyword. The VLAN in which the cluster BMC and PXE ports
reside in is defined by the vlan-mgmt-client-network: keyword.

	The ipaddr-mgmt-network: keyword defines the subnet that the PXE and BMC ports for
your cluster nodes will reside in. addresses a.b.c.1 and a.b.c.2 are reserved for
use by the linux container on the deployer node. Cluster node address assignements
will begin at a.b.c.100.

	The ipaddr-mgmt-client-network: keyword defines the subnet that the BMC and PXE ports
of the cluster nodes reside in.

	The management ip addresses for the management switch and the data
switch must not reside in the same subnet as the nodes management
network.

	It is permitted to include addititonal application specific key value
pairs at the end of the cluster definition section. Additional keys
will be copied to the inventory.yml file which can be read by
software stack installation scripts.

	a.b.c.d is used above to represent any ipv4 address. The user must
supply a valid ipv4 address. a.b.c.d/n is used to represent any valid
ipv4 address in CIDR format.

Passive Switch Mode:

Cluster Genesis can deal with management and/or data switches in “passive” mode
to allow deployments without requiring access to the switch management
interfaces. This mode requires the user to manually configure the switches and
to write switch MAC address tables to files.

Passive management switch mode and passive data switch mode can be configured
independent of each other, but passive and active switches of the same
classification cannot be mixed (i.e. all data switches must either be
active or passive).

Passive Management Switch Mode:

Passive management switch mode requires the user to configure the management
switch before starting a Cluster Genesis deploy. The client network must be
isolated from any outside servers. Cluster Genesis will attempt to issue IPMI
commands to any system BMC that is set to DHCP and has access to the client
network.

To configure passive switches simply omit ‘userid-mgmt-switch’ from
‘config.yml’. The ‘ipaddr-mgmt-switch’ dictionary still needs to be defined
in order to be used as a switch identifier. In place of IP addresses anything
may be used as long as each switch has a unique value. These unique values will
be used by Cluster Genesis to identify the files containing MAC address information.

Passive management switch example configuration:

ipaddr-mgmt-switch:
 base-rack: passive_mgmt_1
 rack2: passive_mgmt_2
 rack3: passive_mgmt_3
ipaddr-data-switch:
 base-rack: passive_data_1
 rack2: passive_data_2
 rack3: passive_data_3

Passive Data Switch Mode:

Passive data switch mode requires the user to configure the data switch in
accordance with the defined networks. The node interfaces of the cluster will
still be configured by Cluster Genesis.

To configure passive switches simply omit ‘userid-data-switch’ from
‘config.yml’. The ‘ipaddr-data-switch’ dictionary still needs to be defined
in order to be used as a switch identifier. In place of IP addresses anything
may be used as long as each switch has a unique value. These unique values will
be used by Cluster Genesis to identify the files containing MAC address information.

Passive data switch example configuration:

ipaddr-mgmt-switch:
 base-rack: 192.168.16.5
 rack2: 192.168.16.6
 rack3: 192.168.16.7
ipaddr-data-switch:
 base-rack: passive1
 rack2: passive2
 rack3: passive3

5.3. Network Templates

The network template section of the config.yml file defines the cluster
networks. The OpenPower cluster configuration software can configure
multiple network interfaces, bridges and vlans on the cluster nodes.
vlans setup on cluster nodes will be configured on the data switches
also. Network templates are called out in compute templates to create
the desired networks on your cluster.

The network template section of the config file begins with the
following key:

networks:

This key is then followed by the name of an individual interface or
bridge definitions. Users are free to use any name for a network
template. Bridge definitions may optionally include vlans, in which case
a virtual vlan port will be added to the specified interface and
attached to the bridge. There may be as many network definitions as
desired.

5.3.1. Simple static ip address assignement

The following definition shows how to specify a simple static ip address
assignement to ethernet port 2:

external1: your-ifc-name
 description: Organization site or external network
 addr: a.b.c.d/n
 broadcast: a.b.c.e
 gateway: a.b.c.f
 dns-nameservers: e.f.g.h
 dns-search: your.search.domain
 method: static
 eth-port: eth2

Note: Addresses to be assigned to cluster nodes can be entered in
the config file as individual addresses or multiple ranges of addresses.

5.3.2. Bridge creation

The following definition shows how to create a bridge with a VLAN
attached to the physical port eth2 defined above:

mybridge:
 description: my-bridge-name
 bridge: br-mybridge
 method: static
 tcp_segmentation_offload: off
 addr: a.b.c.d/n
 vlan: n
 eth-port: eth2

The above definition will cause the creation of a bridge called
br-mybridge with a connection to a virtual vlan port eth2.n which is
connected to physical port eth2.

5.4. Node Templates

5.4.1. Renaming Interfaces

The name-interfaces: key provides the ability to rename ethernet
interfaces. This allows the use of heterogeneous nodes with software
stacks that need consistent interface names across all nodes. It is not
necessary to know the existing interface name. The cluster configuration
code will find the MAC address of the interface cabled to the specified
switch port and change it as specified. In the example below, the first
node has a pxe port cabled to management switch port 1. The genesis code
reads the MAC address attached to that port from the management switch
and then changes the name of the physical port belonging to that MAC
address to the name specified. (in this case “eth15”). Note also that
the key pairs under name-interfaces: must correlate to the interfaces
names listed under “ports:” ie “mac-pxe” correlates to “pxe” etc.

In the example compute node template below, the node ethernet ports
connected to management switch ports 1 and 3 (the pxe ports) will be
renamed to eth15, the node ethernet ports connected to management switch
ports 5 and 7 (the eth10 ports) will be renamed to eth10:

compute:
 hostname: compute
 userid-ipmi: ADMIN
 password-ipmi: ADMIN
 cobbler-profile: ubuntu-14.04.4-server-amd64.sm
 os-disk: /dev/sda
 name-interfaces:
 mac-pxe: eth15
 mac-eth10: eth10
 ports:
 pxe:
 rack1:
 - 1
 - 3
 ipmi:
 rack1:
 - 2
 - 4
 eth10:
 rack1:
 - 5
 - 7

5.4.2. Node Template Definition

The node templates section of the config file starts with the following
key:

node-templates:

Template definitions begin with a user chosen name followed by the key
values which define the node:

compute:
 hostname: compute
 userid-ipmi: ADMIN
 password-ipmi: ADMIN
 cobbler-profile: ubuntu-14.04.4-server-amd64.sm
 os-disk: /dev/sda
 name-interfaces:
 mac-pxe: eth15
 mac-eth10: eth10
 mac-eth11: eth11
 ports:
 pxe:
 rack1:
 - 1
 - 3
 ipmi:
 rack1:
 - 2
 - 4
 eth10:
 rack1:
 - 5
 - 7
 eth11:
 rack1:
 - 6
 - 8
 networks:
 - external1
 - mybridge

Notes:

	The order of ports under the “ports:” dictionary are important and
must be in order for each node. In the above example, the first
node’s pxe, ipmi, eth10 and eth11 ports are connected to the data
switch ports 1, 2, 5 and 6.

	The os-disk key is the disk to which the operating system will be
installed. Specifying this disk is not always obvious because Linux
naming is insconsistent between boot and final OS install. For
OpenPOWER S812LC, the two drives in the rear of the unit are
typically used for OS install. These drives should normally be
specified as /dev/sdj and /dev/sdk

5.5. Post Genesis Activities

The section of the config.yml file allows you to execute additional commands on your
cluster nodes after Genesis completes. These can perform various additional configuration
activities or bootstrap additional software package installation. Commands can be specified
to run on all cluster nodes or only specific nodes specified by the compute template name.

The following config.yml file entries run the “apt-get update” command on all cluster
nodes and then runs the “apt-get upgrade -y” command on the first compute node and runs
“apt-get install vlan” on all controller nodes:

software-bootstrap:
 all: apt-get update
 compute[0]: |
 apt-get update
 apt-get upgrade -y
 controllers:
 apt-get install vlan

6. OpenPOWER reference design recipes

Many OpenPOWER reference design recipes are available on github. These recipes
include bill of materials, system diagrams and config.yml files;

	openstack-recipes

	acclerated-db

OpenPOWER reference designs [https://github.com/open-power-ref-design]

7. Running the OpenPOWER Cluster Configuration Software

7.1. Installing and Running the Genesis code. Step by Step Instructions

	Verify that all the steps in section 4 Prerequisite Hardware Setup have been executed. Genesis can not run if addresses have not been configured
on the cluster switches and recorded in the config.yml file.

	login to the deployer node.

	Install git

	Ubuntu:

$ sudo apt-get install git

	RHEL:

$ sudo yum install git

	From your home directory, clone Cluster Genesis:

$ git clone https://github.com/open-power-ref-design-toolkit/cluster-genesis

	Install the remaining software packages used by Cluster Genesis and
setup the environment:

$ cd cluster-genesis
$./scripts/install.sh

(this will take a few minutes to complete)

$ source scripts/setup-env

NOTE: The setup-env script will ask for permission to add
lines to your .bashrc file. It is recommended that you allow this.
These lines can be removed using the “tear-down” script.

	If introspection is enabled then follow the instructions in
Building Necessary Config Files
to set the ‘IS_BUILDROOT_CONFIG’ and ‘IS_KERNEL_CONFIG’ environment
variables.

	copy your config.yml file to the ~/cluster-genesis directory (see
section 4 Creating the config.yml
File for how to create the config.yml file)

	Copy any needed os image files (iso format) to the
‘/cluster-genesis/os_images’ directory. Symbolic links to image
files are also allowed.

	For RHEL iso images, create a kickstart file having the same name as
your iso image but with an extension of .ks. This can be done by
copying the supplied kickstart file located in the
/cluster-genesis/os_images/config directory. For example, if your
RHEL iso is RHEL-7.2-20151030.0-Server-ppc64le-dvd1.iso, from within
the /cluster-genesis/os_images/config directory:

$ cp RHEL-7.x-Server.ks RHEL-7.2-20151030.0-Server-ppc64le-dvd1.ks

(The cobbler-profile: key in your config.yml file should have a value
of RHEL-7.2-20151030.0-Server-ppc64le-dvd1 (no .ks extension)*

	NOTE:

	Before beginning the next step, be sure all BMCs are configured to obtain a
DHCP address then reset (reboot) all BMC interfaces of your cluster nodes. As the BMCs reset,
the Cluster Genesis DHCP server will assign new addresses to the BMCs of all cluster nodes.

One of the following options can be used to reset the BMC interfaces;

	Cycle power to the cluster nodes. BMC ports should boot and wait to obtain
an IP address from the deployer node.

	Use ipmitool run as root local to each node; ipmitool bmc reset warm OR
ipmitool mc reset warm depending on server

	Use ipmitool remotely such as from the deployer node. (this assumes a known
ip address already exists on the BMC interface):

ipmitool -I lanplus -U <username> -P <password> -H <bmc ip address> mc reset cold

If necessary, use one of the following options to configure the BMC
port to use DHCP;

	From a local console, reboot the system from the host OS, use the
UEFI/BIOS setup menu to configure the BMC network configuration to
DHCP, save and exit.

	use IPMItool to configure BMC network for DHCP and reboot the BMC

Most of Genesis’ capabilities are accessed using the ‘gen’ program. For a
complete overview of the gen program, see Appendix A.

	To deploy operating systems to your cluster nodes:

$ gen deploy

Note: If running with passive management switch(es) follow special
instructions in deploy-passive instead.

	This will create the management neworks, install the container that runs most of the Genesis
functions and then optionally launch the introspection OS and then install OS’s on the cluster nodes.
This process can take as little as 30 minutes or as much as mutliple hours depending on
the size of the cluster, the capabilities of the deployer and the complexity of the deployment.

	To monitor progress of the deployment, open an additional terminal session
into the deployment node and run the gen program with a status request. (During install, you
must allow Genesis to make updates to your .bashrc file in order to run gen functions
from another terminal session):

$ gen status

After several minutes Cluster Genesis will have initialized and should display a list of cluster
nodes which have obtained BMC addresses. Genesis will wait up to 30 minutes for the BMCs of all
cluster nodes to reset and obtain an IP address. After 30 minutes, if there are nodes which have
still not requested a DHCP address, Genesis will pause to give you an opportunity to make fixes.
If any nodes are missing, verify cabling and verify the config.yml file. If
necessary, recycle power to the missing nodes. See “Recovering from Genesis Issues” in the
appendices for additional debug help. You can monitor which nodes have obtained ip
addresses, by executing the following from another window:

$ gen status

After Genesis completes the assignment of DHCP addresses to the cluster nodes BMC ports,
Genesis will interrogate the management switches and read the MAC addresses associated with
the BMC and PXE ports and initialize Cobbler to assign specific IP addresses to the interfaces
holding those MAC addresses.

After Genesis has assigned IP addresses to the BMC ports of all cluster nodes, it will display a list of
all nodes. Genesis will wait up to 30 minutes for the PXE ports of all cluster nodes to
reset and obtain an IP address. After 30 minutes, if there are nodes which have
still not requested a DHCP address, Genesis will pause to give you an opportunity to make fixes.

After all BMC and PXE ports have been discovered Genesis will begin operating system deployment.

	Introspection

If introspection is enabled then all client systems will be booted into the
in-memory OS with ssh enabled. One of the last tasks of this phase of Cluster
Genesis will print a table of all introspection hosts, including their
IP addresses and login / ssh private key credentials. This list is maintained
in the ‘cluster-genesis/playbooks/hosts’ file under the ‘introspections’ group.
Genesis will pause after the introspection OS deployement to allow for customized
updates to the cluster nodes. Use ssh (future: or Ansible) to run custom scripts
on the client nodes.

	To continue the Genesis process, press enter and/or enter the sudo password

Again, you can monitor the progress of operating system installation from an
additional SSH window:

$ gen status

It will usually take several minutes for all the nodes to load their OS.
If any nodes do not appear in the cobbler status, see “Recovering from
Genesis Issues” in the Appendices

Genesis creates logs of it’s activities. A file (log.txt) external to the Genesis container
is written in the cluster-genesis directory. This can be viewed:

$ gen log

An additional log file is created within the deployer container.
This log file can be viewed:

$ gen logc

Configuring networks on the cluster nodes

Note: If running with passive data switch(es) follow special instructions in
post-deploy-passive instead.

After completion of OS installation, Genesis performs several additional activities such
as setting up networking on the cluster nodes, setup SSH keys and copy to cluster nodes,
and configure the data switches. From the host namespace, execute:

$ gen post-deploy

If data switches are configured with MLAG verify

	The switch IPL ports are disabled or are not plugged in.

	No port channels are defined.

7.2. Passive Switch Mode Special Instructions

Deploying operating systems to your cluster nodes with passive management
switches

When prompted, it is advisable to clear the mac address table on the management
switch(es).:

$ gen deploy-passive

When prompted, write each switch MAC address table to file in
‘cluster-genesis/passive’. The files should be named to match the unique
values set in the ‘config.yml’ ‘ipaddr-mgmt-switch’ dictionary. For example,
take the following ‘ipaddr-mgmt-switch’ configuration:

ipaddr-mgmt-switch:
 rack1: passive_mgmt_rack1
 rack2: passive_mgmt_rack2

	The user would need to write two files:

	
	‘cluster-genesis/passive/passive_mgmt_rack1’

	‘cluster-genesis/passive/passive_mgmt_rack2’

If the user has ssh access to the switch management interface writing the MAC
address table to file can easily be accomplished by redirecting stdout. Here is
an example of the syntax for a Lenovo G8052:

$ ssh <mgmt_switch_user>@<mgmt_switch_ip> \
'show mac-address-table' > ~/cluster-genesis/passive/passive_mgmt_rack1

Note that this command would need to be run for each individual mgmt switch,
writing to a seperate file for each. It is recommended to verify each file has
a complete table for the appropriate interface configuration and only one mac
address entry per interface.

See MAC address table file formatting rules below.

After writing MAC address tables to file press enter to continue with OS
installation. Resume normal instructions.

If deploy-passive fails due to incomplete MAC address table(s) use the
following command to reset all servers (power off / set bootdev pxe / power on)
and attempt to collect MAC address table(s) again when prompted:

$ gen deploy-passive-retry

Configuring networks on the cluster nodes with passive data switches

When prompted, it is advisable to clear the mac address table on the data
switch(es). This step can be skipped if the operating systems have just been
installed on the cluster nodes and the mac address timeout on the switches is
short enough to insure that no mac addresses remain for the data switch ports
connected to cluster nodes. If in doubt, check the acquired mac address file
(see below) to insure that each data port for your cluster has only a single
mac address entry.:

$ gen post-deploy-passive

When prompted, write each switch MAC address table to file in
‘cluster-genesis/passive’. The files should be named to match the unique
values set in the ‘config.yml’ ‘ipaddr-data-switch’ dictionary. For example,
take the following ‘ipaddr-data-switch’ configuration:

ipaddr-data-switch:
 base-rack: passive1
 rack2: passive2
 rack3: passive3

	The user would need to write three files:

	
	‘cluster-genesis/passive/passive1’

	‘cluster-genesis/passive/passive2’

	‘cluster-genesis/passive/passive3’

If the user has ssh access to the switch management interface writing the MAC
address table to file can easily be accomplished by redirecting stdout. Here is
an example of the syntax for a Mellanox SX1400:

$ ssh <data_switch_user>@<data_switch_ip> \
'cli en show\ mac-address-table' > ~/cluster-genesis/passive/passive1

Note that this command would need to be run for each individual data switch,
writing to a seperate file for each. It is recommended to verify each file has
a complete table for the appropriate interface configuration and only one mac
address entry per interface.

See MAC address table file formatting rules below.

MAC Address Table Formatting Rules

Each file must be formatted according to the following rules:

	
	MAC addresses and ports are listed in a tabular format.

	
	Columns can be in any order

	Additional columns (e.g. vlan) are OK as long as a header is
provided.

	If a header is provided and it includes the strings “mac address” and
“port” (case insensitive) it will be used to identify column positions.
Column headers must be delimited by at least two spaces. Single spaces
will be considered a continuation of a single column header (e.g. “mac
address” is one column, but “mac address vlan” would be two).

	If a header is not provided then only MAC address and Port columns are
allowed.

	
	MAC addresses are written as (case-insensitive):

	
	Six pairs of hex digits delimited by colons (:) [e.g. 01:23:45:67:89:ab]

	Six pairs of hex digits delimited by hyphens (-) [e.g. 01-23-45-67-89-ab]

	Three quads of hex digits delimited by periods (.) [e.g. 0123.4567.89ab]

	
	Ports are written either as:

	
	An integer

	A string with a “/”. The string up to and including the “/” will be
removed. (e.g. “Eth1/5” will be saved as “5”).

Both Lenovo and Mellanox switches currently supported by Cluster Genesis follow
these rules. An example of a user generated “generic” file would be:

mac address Port
0c:c4:7a:20:0d:22 38
0c:c4:7a:76:b0:9b 19
0c:c4:7a:76:b1:16 9
0c:c4:7a:76:c8:ec 37
40:f2:e9:23:82:ba 18
40:f2:e9:23:82:be 17
40:f2:e9:24:96:5a 22
40:f2:e9:24:96:5e 21
5c:f3:fc:31:05:f0 13
5c:f3:fc:31:06:2a 12
5c:f3:fc:31:06:2c 11
5c:f3:fc:31:06:ea 16
5c:f3:fc:31:06:ec 15
6c:ae:8b:69:22:24 2
70:e2:84:14:02:92 5
70:e2:84:14:0f:57 1

7.3. SSH Keys

The OpenPOWER Cluster Genesis Software will generate a passphrase-less SSH
key pair which is distributed to
each node in the cluster in the /root/.ssh directory. The public key is
written to the authorized_keys file in the /root/.ssh directory and
also to the /home/userid-default/.ssh directory. This key pair can be
used for gaining passwordless root login to the cluster nodes or
passwordless access to the userid-default. On the deployer node, the
keypair is written to the ~/.ssh directory as id_rsa_ansible-generated
and id_rsa_ansible-generated.pub. To login to one of the cluster nodes
as root from the deployer node:

ssh -i ~/.ssh/id_rsa_ansible-generated root@a.b.c.d

As root, you can log into any node in the cluster from any other node in
the cluster as:

ssh root@a.b.c.d

where a.b.c.d is the ip address of the port used for pxe install. These
addresses are stored under the keyname ipv4-pxe in the inventory file.
The inventory file is stored on every node in the cluster at
/var/oprc/inventory.yml. The inventory file is also stored on the
deployer in the deployer container in the /home/deployer/cluster-genesis
directory.

Note that you can also log into any node in the cluster using the
credentials specified in the config.yml file (keynames userid-default
and password-default)

8. Developer Guide

Cluster Genesis development is overseen by a team of IBM engineers.

8.1. Git Repository Model

Development and test is orchestrated within the master branch. Stable
release-x.y branches are created off master and supported with bug fixes.
Semantic Versioning [http://semver.org/] is used for release tags and branch
names.

8.2. Coding Style

Code should be implemented in accordance with
PEP 8 – Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].

It is requested that modules contain appropriate __future__ imports to simplify
future migration to Python3.

8.3. Commit Message Rules

	
	Subject line

	
	First line of commit message provides a short description of change

	Must not exceed 50 characters

	First word after tag must be capitalized

	Must begin with one of the follwoing subject tags:

feat: New feature
fix: Bug fix
docs: Documentation change
style: Formatting change
refactor: Code change without new feature
test: Tests change
chore: Miscellaneous no code change
Revert Revert previous commit

	
	Body

	
	Single blank line seperates subject line and message body

	Contains detailed description of change

	Lines must not exceed 72 characters

	Periods must be followed by single space

Your Commit message can be validated within the tox environment
(see below for setup of the tox environment):

cluster-genesis$ tox -e commit_message_validate

8.4. Unit Tests and Linters

8.4.1. Tox

Tox is used to manage python virtual environments used to run unit tests and
various linters.

To run tox first install python dependencies:

cluster-genesis$./scripts/install.sh

Install tox:

cluster-genesis$ pip install tox

To run all tox test environments:

cluster-genesis$ tox

List test environments:

cluster-genesis$ tox -l
py27
bashate
pep8
ansible-lint

Run only ‘pep8’ test environment:

cluster-genesis$ tox -e pep8

8.4.2. Unit Test

Unit test scripts reside in the cluster-genesis/tests/unit/ directory.

Unit tests can be run through tox:

cluster-genesis$ tox -e py27

Or called directly through python (be mindful of your python environment!):

cluster-genesis$ python -m unittest discover

8.4.3. Linters

Linters are required to run cleanly before a commit is submitted. The following
linters are used:

	Bash: bashate

	Python: pep8/flake8

	Ansible: ansible-lint

Linters can be run through tox:

cluster-genesis$ tox -e bashate
cluster-genesis$ tox -e pep8
cluster-genesis$ tox -e ansible-lint

Or called directly (again, be mindful of your python environment!)

8.4.4. Copyright Date Validation

If any changed files include a copyright header the year must be current. This
rule is enforced within a tox environment:

cluster-genesis$ tox -e verify_copyright

8.5. Mock Inventory Generation

Upon completion, Cluster-Genesis provides an inventory of the cluster (saved
locally on the deployer at /var/oprc/inventory.yml). This inventory is used to
generate an Ansible dynamic inventory. It can also be consumed by other
post-deployment services.

A ‘mock’ inventory can be generated from any config.yml file. A tox environment
is provided to automatically create a python virtual environment with all
required dependencies. By default the ‘config.yml’ file in the cluster-genesis
root directory will be used as the input:

cluster-genesis$ tox -e mock_inventory

usage: mock_inventory.py [-h] [config_file] [inventory_file]

positional arguments:
 config_file Input config.yml to process
 inventory_file Output inventory.yml path

optional arguments:
 -h, --help show this help message and exit

9. Building the Introspection Kernel and Filesystem

Introspection enables the clients to boot a Linux mini-kernel and filesystem
prior to deployment. This allows Cluster Genesis to extract client hardware
resource information and provides an environment for users to run configuration
scripts (e.g. RAID volume management).

9.1. Building

	By default, the introspection kernel is built automatically whenever one of
the following commands are executed, and the introspection option is enabled
in the config.yml file

cd cluster-genesis/playbooks
ansible_playbook -i hosts lxc-create.yml -K
ansible_playbook -i hosts lxc-introspect.yml -K
ansible_playbook -i hosts introspection_build.yml -K

or

gen deploy #if introspection was specified in the config.yml file

	Wait for introspection_build.yml playbook to complete. If the rootfs.cpio.gz and
vmlinux images already exist, the playbook will not rebuild them.

	The final kernel and filesystem will be copied from the deployer container to the
host filesystem under ‘cluster-genesis/os_images/introspection’

9.1.1. Buildroot Config Files

Introspection includes a default buildroot and linux kernel config files.

These files are located in introspection/configs directory under cluster-genesis.

If there are any additional features or packages that you wish to add to the
introspection kernel, they can be added to either of the configs prior to
setup.sh being executed.

9.2. Run Time

Average load and build time on a POWER8 Server(~24 mins)

9.3. Public Keys

To append a public key to the buildroot filesystem

	Build.sh must have been run prior

	Execute add_key.sh <key.pub>

	The final updated filesystem will be placed into
output/rootfs.cpio.gz

10. Appendix - A Using the ‘gen’ Program

The ‘gen’ program is the primary interface to the OpenPOWER Cluster Genesis software.
Help can be accessed by typing:

gen -h
or
gen --help

Usage;
gen [–help | -h] <command> [<args>]

Auto completion is enabled for the gen functions.

The gen program provides the following
functions;

	log
Displays the log file associated with Genesis network setup and container install.

	logc
Displays the Genesis container log which logs activities associated with OS deployment
and cluster node configuration.

	loga [<-f | +F>]
Displays the log file generated by Genesis’ ansible playbooks. Normally displays the end
of the file. By using the -f or +F options, you or another user can monitor (ie tail) the
progress of the Genesis installation from another window.

	status
Displays information about the status of the Genesis installation including information about
the Genesis container, the bridges Genesis creates in the deployer and information about
the state of the DHCP server (including leased addresses) and information about the cobbler
program including operating systems deployed and in progress.

	deploy [<-p>]
This command runs all of the ansible playbooks necessary to configure the
management switch, create the container for Genesis’ deploy functions
to run in and deploy operating systems to the cluster nodes. When run with the -p option,
Genesis will prompt you if you want to continue after each playbook runs. The
playbooks run are;

	setup

	enable-mgmt-switch

	lxc-create

	install_1

	install_2

Note that these playbooks can be run individually. ie;
gen enable-mgmt-switch. This can be useful when debugging or if you do not have time
to complete the entire deploy process for instance.

	deploy-passive [<-p>]
This command performs the same functions as the deploy command, but does
not access the management switches.

	deploy-passive-retry [<-p>]
If deploy-passive fails due to incomplete MAC address table(s) this will
reset all servers (power off / set bootdev pxe / power on) to allow the
user another chance to collect MAC address tables.

	enable-mgmt-switch
Runs the enable-mgmt-switch ansible playbook. Prepares the management
switch for use by Genesis.

	lxc-create
Runs the lxc-create ansible playbook. Creates the container for Genesis
to run in and installs the needed software.

	install_1
Runs the install_1 ansible playbook which performs the first phase of OS
deployment. Node discovery and mac address
association is performed during this phase. If introspection is enabled,
it is run during this step.

	install_2
Runs the install_2 ansible playbook which performs the second phase of OS
deployment. Actual OS deployment occurs during this phase.

	config.yml
Displays the config.yml file.

	inventory
Displays the inventory.yml file created by Cluster Genesis.

	show_mgmt_switches
Displays select configuration information of a cluster management switch.
Information includes display of management interfaces, configuration of the
port connecting to the Genesis deployer node and vlan information for the
Genesis VLANs. If multiple management switches are defined, a list of switches
is displayed and the user is prompted to select a switch.

	–help or -h
Displays help for the gen program

	post-deploy [<-p>]
This command runs all of the ansible playbooks which perform post OS
deploy activities. These activities include configuration of network
interfaces on cluster nodes, copying of SSH keys to cluster nodes,
configuring VLANs on data switches and running ‘bootstrap’ scripts
on cluster nodes. When run with the -p option, Genesis will prompt you
if you want to continue after each playbook runs. The following
playbooks are run;

	ssh_keyscan

	gather_mac_addresses

	set_data_switch_config

	configure_operating_systems

	ssh_keyscan
Runs the ssh_keyscan ansible playbook. Gathers hostkeys from all client
nodes and appends the hostkeys to the known_hosts file on each client node.

	gather_mac_addresses
Runs the gather_mac_addresses ansible playbook. Gathers mac addresses
from data switches for all client node interfaces.
Genesis uses this information to accurately rename client node interfaces.

	set_data_switch_config
Runs the set_data_switch_config ansible playbook. Configures the
cluster data switches including LAG, MLAG and VLANs.

	configure_operating_systems
Runs the configure_operating_systems ansible playbook. Configures client
node network interfaces, transfers SSH keys to client
nodes, copies the inventory.yml file to select cluster nodes and runs
bootstrap scripts on specified cluster nodes.

	post-deploy-passive [<-p>]
This command performs the same functions as the post-deploy command,
but does not access the data switches.

11. Appendix - B The System Configuration File

Genesis of the OpenPOWER Cloud Reference Config is controlled by the
opcr.cfg.yml file. This file is stored in YAML format. The definition of
the fields and the YAML file format are documented below.

11.1. config.yml Field Definitions (incomplete)

	Keyword
	Description
	Required/
Optional
	Format
	Example

	cidr-mgmt-switch-external-dev
	If the label-mgmt-switch-external-dev key is not present in the config file and there is
not an existing route to the addresses listed in ipaddr-mgmt-switch-ext, Genesis will
temporarily configure this address on each ‘up’ interface on the deployer node
in turn looking for one which can communicate with the management switch(es).
After Genesis configures the management switch with the address it will use,
it will remove this interface adddress.
	O
	
	

	deployment-environment
	Set deployer environment variables to be set during deployment. See
config file deployment environment.
	O
	(dictionary)
	

	introspection-enabled
	Enable introspection mode. See config file introspection.
	O
	(boolean)
	true

	ipaddr-data-switch
	This is a list of ipv4 addresses of the management ports of the data switches. This address
must be manually configured on the data switches before genesis begins. Users
should also plan to allocate one or more additional ip addresses for each pair of data
switches. These addresses are used by the switches for inter-switch communication. All of
the management interfaces for the management switches and the data switches must reside in
one subnet. This subnet must be different than the subnet used for the cluster management
network.
	R
	(string)
	192.168.80.36

	ipaddr-mgmt-client-network
	Cluster node management network address in CIDR format. This is the network that the PXE
and BMC ports will reside in. This network will reside in the vlan specified by the
vlan-mgmt-client-network key. Note that the management ports of all switches will reside in
a different subnet and vlan.
	R
	(string)
	192.168.16.0/20

	ipaddr-mgmt-switch
	List of IP v4 address to be used for the interface Genesis will create on the management
switches in the cluster. These will be in the vlan specified by the vlan-mgmt-network
key. The subnet mask to be used on the created interface is defined by the
ipaddr-mgmt-network key. Depending on the switch, this interface may be able to exist
on the same physical port as the interface on which ipaddr-mgmt-switch-ext is defined.
	R
	(dictionary)
	192.168.16.20

	ipaddr-mgmt-switch-ext
	List of externally accessible ipv4 addresses of the management interfaces for the
management switches in the cluster. Here, externally is used to indicate that these
addresses are visible from outside the cluster (ie on the user’s intranet) and available
for monitoring or other management purposes. These ip addresses must be manually
configured on the management switches before genesis begins. The OpenPOWER cluster
genesis will look for management switches at the specified addresses. Genesis will
create an additional interface on the management switch in the vlan specified by the
vlan-mgmt-network key in the config.yml file. Usually, one management switch would
be physically located in each rack or with each cell. Note that all of the management
interfaces for the management switch and the data switches must reside in one subnet. This
subnet must be different than the subnet used for the cluster node network.
	R
	(dictionary)
	10.0.1.2

	log_level
	Sets the level for Genesis logging. Valid levels are DEBUG, INFO, WARNING, ERROR and
CRITICAL. See config file default log level. When
omitted, log_level defaults to “DEBUG”.
	O
	(string)
	DEBUG

	label-mgmt-switch-external-dev
	This is the device name of the physical port on the deployer which connects
to the management switch. If included in the config file, Genesis will not try to
auto-detect the port to use to communicate to the management switch, but instead will use
this port during intial set up of the management switch.
	O
	(string)
	enp1s0f0

	os-disk
	Sets the disk to be used for OS installation. This key can be set individually for
each compute template. If not set, Genesis will install the OS on the first available
disk (the first disk enumerated by the OS). If a list of two disks is set,
Genesis will set configure the installation for RAID-1 software mirroring.
	O
	(string) or list
	/dev/sda

	password-default
	Default password to be set for all cluster node OS access
	R
	(string)
	

	password-mgmt-switch
	Pasword of the management switch’s management port. Passwords of the mangement ports of all
management switches must be manually configured on the management switch before genesis
begins. During genesis, all management switches are assumed to have the same userid and
password.
	R
	(string)
	

	port-mgmt-data-network:
	This key is used to hold the port numbers on the cluster management switches which
connect to management ports of data switches. These ports will have there PVID (native
vlan) set to the value specified by the vlan-mgmt-client-network key.
	R
	(dictionary)
	

	userid-data-switch
	User ID of the management port of the data switch. This userid must be manually configured
on the data switch(es) prior to genesis.
	R
	(string)
	joeuser

	userid-default
	Default userid to be set for all cluster node host OS access
	R
	(string)
	

	userid-mgmt-switch
	Userid of the management switch’s management port. User ID’s of the management ports of all
management switches must be manually configured on the management switch before genesis
begins. During genesis, all management switches are assumed to have the same userid and
password. If not specified, the default userid will be used.
	R
	(string)
	

	password-data-switch
	Password for the management port of the data switch. This password must be manually
configured on the data switch(es) prior to genesis.
	R
	(string)
	passw0rd

	version
	See config file version.
	R
	x.x
	1.1

	vlan-mgmt-network
	This key specifies the vlan on the management switch(es) which contains the
management interfaces of all switches in the cluster.
	
	
	

	vlan-mgmt-client-network
	This key specifies the vlan on the management switch(es) which contains the
BMC and PXE ports for all nodes in the cluster.
	
	
	

	write-switch-memory
	Enable automatic writing of switch configuration to flash memory. See
config file write switch configuration to flash memory
	O
	(boolean)
	true

11.2. config.yml YAML File format:

Copyright 2017 IBM Corp.
#
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
This sample configuration file documents all of the supported key values
supported by the genesis software. It can be used as the basis for creating
your own config.yml file. Note that keywords with a leading underscore
can be changed by the end user as appropriate for your application.(e.g.
"_rack1" could be changed to "base-rack")

This sample configuration file documents all of the supported key values
supported by the genesis software. It can be used as the basis for creating
your own config.yml file. Note that keywords with a leading underscore
can be changed by the end user as appropriate for your application. (e.g.
"_rack1" could be changed to "base-rack")

version: 1.1

ipaddr-mgmt-network: 192.168.16.0/20
ipaddr-mgmt-client-network: 192.168.20.0/24
vlan-mgmt-network: 16
vlan-mgmt-client-network: 20
port-mgmt-network: 1
NOTE: The "_rack:" keywords must match the the corresponding rack keyword
under the keyword;
node-templates:
_node name:
ports:
port-mgmt-data-network:
 _rack1: 47
ipaddr-mgmt-switch:
 _rack1: 192.168.16.20
ipaddr-data-switch:
 _rack1: 192.168.16.25
redundant-network: false
userid-default: user
password-default: passw0rd
An encrypted password hash can also be provided using the following format:
password-default-crypted: 6STFB8U/AyA$sVhg5a/2RvDiXof9EhADVcUm/7Tq8T4m0dcdHLFZkOr.pCjJr2eH8RS56W7ZUWw6Zsm2sKrkcS4Xc8910JMOw.
userid-mgmt-switch: user # applied to all mgmt switches
password-mgmt-switch: passw0rd # applied to all mgmt switches
userid-data-switch: user
password-data-switch: passw0rd
Rack information is optional (not required to be present)
racks:
 - rack-id: rack1
 data-center: dataeast
 room: room33
 row: row1
networks:
 _external1:
 description: Organization site or external network
 addr: 9.3.89.0/24
 available-ips:
 - 9.3.89.14 # single address
 - 9.3.89.18 9.3.89.22 # address range
 - 9.3.89.111 9.3.89.112
 - 9.3.89.120
 broadcast: 9.3.89.255
 gateway: 9.3.89.1
 dns-nameservers: 9.3.1.200
 dns-search: your.dns.com
 method: static
 eth-port: eth10
 mtu: 9000
 _external2:
 description: Interface for eth11
 method: manual
 eth-port: eth11
 _pxe-dhcp:
 description: Change pxe port(eth15) to dhcp
 method: dhcp
 eth-port: eth15
 _standalone-bond0:
 description: Multilink bond
 bond: mybond0
 addr: 10.0.16.0/22
 available-ips:
 - 10.0.16.150 # single address
 - 10.0.16.175 10.0.16.215 # address range
 broadcast: 10.0.16.255
 gateway: 10.0.16.1
 dns-nameservers: 10.0.16.200
 dns-search: mycompany.domain.com
 method: static
 # name of physical interfaces to bond together.
 bond-interfaces:
 - eth0
 - eth1
 # if necessary not all bond modes support a primary slave
 bond-primary: eth10
 # bond-mode, needs to be one of 7 types
 # either name or number can be used.
 # 0 balance-rr
 # 1 active-backup
 # 2 balance-xor
 # 3 broadcast
 # 4 802.3ad
 # 5 balance-tlb
 # 6 balance-alb
 # bond-mode: active-backup
 bond-mode: 1
 # there is a long list of optional bond arguments.
 # Specify them here and they will be added to end of bond definition
 optional-bond-arguments:
 bond-miimon: 100
 bond-lacp-rate: 1
 _manual-bond1:
 description: bond network to be used by future bridges
 bond: bond1
 method: manual
 bond-mode: balance-rr
 bond-interfaces:
 - eth10
 - eth11
 _cluster-mgmt:
 description: Cluster Management Network
 bridge: br-mgmt
 method: static
 tcp_segmentation_offload: "off" # on/off values need to be enclosed in quotes
 addr: 172.29.236.0/22
 vlan: 10
 eth-port: eth10
 bridge-port: veth-infra # add a veth pair to the bridge
 _vm-vxlan-network:
 description: vm vxlan Network
 bridge: br-vxlan
 method: static
 addr: 172.29.240.0/22
 vlan: 30
 eth-port: eth11
 _vm-vlan-network:
 description: vm vlan Network
 bridge: br-vlan
 method: static
 addr: 0.0.0.0/1 # Host nodes do not get IPs assigned in this network
 eth-port: eth11 # No specified vlan. Allows use with untagged vlan
 bridge-port: veth12
node-templates:
 _node-name:
 hostname: controller
 userid-ipmi: userid
 password-ipmi: password
 cobbler-profile: ubuntu-14.04.4-server-amd64
 os-disk: /dev/sda
 users:
 - name: user1
 groups: sudo
 - name: testuser1
 groups: testgroup
 groups:
 - name: testgroup
 name-interfaces:
 mac-pxe: eth15 # This keyword is paired to ports: pxe: keyword
 mac-eth10: eth10 # This keyword is paired to ports: eth10: keyword
 mac-eth11: eth11 # This keyword is paired to ports: eth11: keyword
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is physically cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 1
 - 2
 - 3
 ipmi:
 _rack1:
 - 4
 - 5
 - 6
 eth10:
 _rack1:
 - 1
 - 2
 - 3
 eth11:
 _rack1:
 - 4
 - 5
 - 6
 networks:
 - _cluster-mgmt
 - _vm-vxlan-network
 - _vm-vlan-network
 - _external1
 - _external2
 - _pxe-dhcp
 - _manual-bond1
 - _standalone-bond0
 _compute:
 hostname: compute
 userid-ipmi: userid
 password-ipmi: password
 cobbler-profile: ubuntu-14.04.4-server-amd64
 name-interfaces:
 mac-pxe: eth15
 mac-eth10: eth10
 mac-eth11: eth11
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 7
 - 8
 - 9
 ipmi:
 _rack1:
 - 10
 - 11
 - 12
 eth10:
 _rack1:
 - 7
 - 8
 - 9
 eth11:
 _rack1:
 - 10
 - 11
 - 12
 networks:
 - _cluster-mgmt
 - _vm-vxlan-network
 - _vm-vlan-network
 - _external1
 - _external2
 - _pxe-dhcp
 - _manual-bond1
 - _standalone-bond0

software-bootstrap:
 all: apt-get update
 compute[0]: |
 apt-get update
 apt-get upgrade -y
Additional key/value pairs are not processed by Genesis, but are copied into
the inventory.yml file and made available to post-Genesis scripts and/or
playbooks.

12. Appendix - C The System Inventory File (needs update)

The inventory.yml file is created by the system genesis process. It can
be used by higher level software stacks installation tools to configure
their deployment. It is also used to seed the system inventory
information into the operations management environment.

12.1. inventory.yml File format:

—

userid-default: joedefault # default userid if no other userid is
specified

password-default: joedefaultpassword

redundant-network: 0 # indicates whether the data network is redundant
or not

ipaddr-mgmt-network: 192.168.16.0/20 #ipv4 address /20 provides 4096
addresses

ipaddr-mgmt-switch:

	-rack1: 192.168.16.2 #ipv4 address of the management switch in the

	first rack or cell.

-rack2: 192.168.16.3

-rack3: 192.168.16.4

-rack4: 192.168.16.5

-rack5: 192.168.16.6

-aggregation: 192.168.16.18

userid-mgmt-switch: joemgmt # if not specified, the userid-default will
be used

password-mgmt-switch: joemgmtpassword # if not specified, the
password-default will be used.

ipaddr-data-switch:

	-rack1: 192.168.16.20 # if redundant-network is set to 1, genesis will

	look for an additional switch at the next sequential address.

-rack2: 192.168.16.25

-rack3: 192.168.16.30

-rack4: 192.168.16.35

-rack5: 192.168.16.40

-spine: 192.168.16.45

userid-data-switch: joedata # if not specified, the userid-default will
be used

password-data-switch: joedatapassword # if not specified, the
password-default will be used.

userid-ipmi-new: userid

password-ipmi-new: password

Base Network information

openstack-mgmt-network:

addr: 172.29.236.0/22 #ipv4 openstack management network

vlan: 10

eth-port: eth10

openstack-stg-network:

addr: 172.29.244.0/22 #ipv4 openstack storage network

vlan: 20

eth-port: eth10

openstack-tenant-network:

addr: 172.29.240.0/22 #ipv4 openstack tenant network

vlan: 30 # vxlan vlan id

eth-port: eth11

ceph-replication-network:

addr: 172.29.248.0/22 # ipv4 ceph replication network

vlan: 40

eth-port: eth11

swift-replication-network:

addr: 172.29.252.0/22 # ipv4 ceph replication network

vlan: 50

eth-port: eth11

########## OpenStack Controller Node Section ################

userid-ipmi-ctrlr: userid

password-ipmi-ctrlr: password

hostname-ctrlr:

name-10G-ports-ctrlr:

	-ifc1: [ifcname1, ifcname2] # 2nd ifcname is optional.

	Multiple ports are bonded.

-ifc2: [ifcname1, ifcname2]

list-ctrlr-ipmi-ports:

-rack1: [port1, port2, port3]

-rack2: [port1]

########## Compute Node Section #############################

userid-ipmi-compute: userid

password-ipmi-compute: password

hostname-compute:

name-10G-ports-compute:

	-ifc1: [ifcname1, ifcname2] # 2nd ifcname is optional.

	Multiple ports are bonded.

-ifc2: [ifcname1, ifcname2]

list-compute-ipmi-ports:

-rack1: [port1, port2, port3, port4]

-rack2: [port1, port2, port3, port4, port5]

-rack3: [port1, port2, port3, port4, port5]

-rack4: [port1, port2, port3, port4, port5]

-rack5: [port1, port2, port3, port4, port5]

########## Ceph OSD Node Section ###########################

userid-ipmi-ceph-osd: userid

password-ipmi-ceph-osd: password

hostname-ceph-osd:

name-10G-ports-ceph-osd:

	-ifc1: [ifcname1, ifcname2] # 2nd ifcname is optional.

	Multiple ports are bonded.

-ifc2: [ifcname1, ifcname2]

list-ceph-osd-ipmi-ports:

-rack1: [port1, port2, port3]

-rack2: [port1, port2, port3]

-rack3: [port1]

-rack4: [port1]

-rack5: [port1]

########## Swift Storage Node Section ######################

userid-ipmi-swift-stg: userid

password-ipmi-swift-stg: password

hostname-swift-stg:

name-10G-ports-swift-stg:

	-ifc1: [ifcname1, ifcname2] # 2nd ifcname is optional.

	Multiple ports are bonded.

-ifc2: [ifcname1, ifcname2]

list-swift-stg-ipmi-ports:

-rack1: [port2, port3, port4]

-rack2: [port2, port3, port4]

-rack3: [port1, port2]

-rack4: [port1]

-rack5: [port1]

...

—

hardware-mgmt-network: 192.168.0.0/20 # 4096 addresses

ip-base-addr-mgmt-switches: 2 # 20 contiguous ip addresses will be
reserved

ip-base-addr-data-switches: 21 # 160 contiguous ip addresses will be
reserved

redundant-network: 1

dns:

	dns1-ipv4: address1

	dns2-ipv4: address2

userid-default: user

password-default: passw0rd

userid-mgmt-switch: user # applied to all mgmt switches

password-mgmt-switch: passw0rd # applied to all mgmt switches

userid-data-switch: user

password-data-switch: passw0rd

ssh-public-key: # key used for access to all node types

ssh-passphrase: passphrase

openstack-mgmt-network:

addr: 172.29.236.0/22 #ipv4 openstack management network

vlan: 10

eth-port: eth10

openstack-stg-network:

addr: 172.29.244.0/22 #ipv4 openstack storage network

vlan: 20

eth-port: eth10

openstack-tenant-network:

addr: 172.29.240.0/22 #ipv4 openstack tenant network

vlan: 30 # vxlan vlan id

eth-port: eth11

ceph-replication-network:

addr: 172.29.248.0/22 # ipv4 ceph replication network

vlan: 40

eth-port: eth11

swift-replication-network:

addr: 172.29.252.0/22 # ipv4 ceph replication network

vlan: 50

eth-port: eth11

racks:

	rack-id: rack number or name

data-center: data center name

room: room id or name

row: row id or name

	rack-id: rack number or name

data-center: data center name

room: room id or name

row: row id or name

switches:

mgmt:

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

leaf:

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

spine:

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

	hostname: Device hostname

ipv4-addr: ipv4 address of the management port

userid: Linux user id for this controller

password: Linux password for this controller

rack-id: rack name or number

rack-eia: rack eia location

model: model # for this switch

serial-number: Serial number for this switch

nodes:

controllers: # OpenStack controller nodes

	hostname: hostname #(associated with ipv4-addr below)

ipv4-addr: ipv4 address of this host # on the eth10 interface

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.2/22

openstack-stg-addr: 172.29.244.2/22

openstack-tenant-addr: 172.29.240.2/22

	hostname: Linux hostname

ipv4-addr: ipv4 address of this host # on the eth10 interface

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.3/22 #ipv4 mgmt network

openstack-stg-addr: 172.29.244.3/22 #ipv4 storage network

openstack-tenant-addr: 172.29.240.3/22 #ipv4 tenant network

compute: # OpenStack compute nodes

	hostname: Linux hostname

ipv4-addr: ipv4 address of this host # on the eth11 port???

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.0/22 #ipv4 management network

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

openstack-tenant-addr: 172.29.240.0/22 #ipv4 tenant network

	hostname: Linux hostname

ipv4-addr: ipv4 address of this host # on the eth11 port???

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.0/22 #ipv4 management network

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

openstack-tenant-addr: 172.29.240.0/22 #ipv4 tenant network

ceph-osd:

	hostname: nameabc #Linux hostname

ipv4-addr: ipv4 address of this host # on the eth10 interface

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

ceph-replication-addr: 172.29.240.0/22 #ipv4 replication network

journal-devices:

	/dev/sdc

	/dev/sdd

osd-devices:

	/dev/sde

	/dev/sdf

	/dev/sdg

	/dev/sdh

	hostname: nameabc

ipv4-addr: ipv4 address of this host # on the eth11 port???

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

ceph-replication-addr: 172.29.240.0/22 #ipv4 replication network

journal-devices:

	/dev/sdc

	/dev/sdd

osd-devices:

	/dev/sde

	/dev/sdf

	/dev/sdg

	/dev/sdh

swift-storage:

	hostname: Linux hostname

ipv4-addr: ipv4 address of this host # on the eth11 port???

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.0/22 #ipv4 management network

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

swift-replication-addr: 172.29.240.0/22 #ipv4 replication network

	hostname: Linux hostname

ipv4-addr: ipv4 address of this host # on the eth11 port???

userid: Linux user id for this controller

cobbler-profile: name of cobbler profile

rack-id: rack name or number

rack-eia: rack eia location

chassis-part-number: part number # ipmi field value

chassis-serial-number: Serial number # ipmi field value

model: system model number # ipmi field value

serial-number: system serial number # ipmi field value

ipv4-ipmi: ipv4 address of the ipmi port

mac-ipmi: mac address of the ipmi port

userid-ipmi: userid for logging into the ipmi port

password-ipmi: password for logging into the ipmi port

userid-pxe: userid for logging into the pxe port

password-pxe: password for logging into the pxe port

ipv4-pxe: ipv4 address of the ipmi port

mac-pxe: mac address of the ipmi port

openstack-mgmt-addr: 172.29.236.0/22 #ipv4 management network

openstack-stg-addr: 172.29.244.0/22 #ipv4 storage network

openstack-tenant-addr: 172.29.240.0/22 #ipv4 tenant network

13. Appendix - D Example system 1 Simple Flat Cluster

[image: _images/cluster-genesis-simple_flat_cluster.png]
A simple flat cluster with two node types

A Sample config.yml file;

The config file below defines two compute node templates and multiple network
templates. The sample cluster can be configured with the provided config.yml file.
The deployer node needs to have access to the internet for accessing packages.
Internet access must then be provided via one of the dotted line paths shown
in the figure above or alternately via a wireless or dedicated interface.

Various OpenPOWER nodes can be used such as the S821LC. The deployer node can be OpenPOWER
or alternately a laptop which does not need to remain in the cluster. The data switch can be
Mellanox SX1700 or SX1410. The management switch must be a
Lenovo G8052 switch:

This sample configuration file documents all of the supported key values
supported by the genesis software. It can be used as the basis for creating
your own config.yml file. Note that keywords with a leading underscore
can be changed by the end user as appropriate for your application. (e.g.
"_rack1" could be changed to "base-rack")

version: 1.1

ipaddr-mgmt-network: 192.168.16.0/20
ipaddr-mgmt-client-network: 192.168.20.0/24
vlan-mgmt-network: 16
vlan-mgmt-client-network: 20
port-mgmt-network: 46
NOTE: The "_rack:" keywords must match the the corresponding rack keyword
under the keyword;
node-templates:
_node name:
ports:
port-mgmt-data-network:
 _rack1: 47
ipaddr-mgmt-switch:
 _rack1: 192.168.16.20
ipaddr-data-switch:
 _rack1: 192.168.16.25
redundant-network: false
userid-default: user
password-default: passw0rd
An encrypted password hash can also be provided using the following format:
password-default-crypted: 6STFB8U/AyA$sVhg5a/2RvDiXof9EhADVcUm/7Tq8T4m0dcdHLFZkOr.pCjJr2eH8RS56W7ZUWw6Zsm2sKrkcS4Xc8910JMOw.
userid-mgmt-switch: user # applies to all mgmt switches
password-mgmt-switch: passw0rd # applies to all mgmt switches
userid-data-switch: user
password-data-switch: passw0rd
Rack information is optional (not required to be present)
racks:
 - rack-id: rack1
 data-center: dataeast
 room: room33
 row: row1
networks:
 _external1:
 description: Organization site or external network
 addr: 10.3.89.0/24
 available-ips:
 - 10.3.89.14 # single address
 - 10.3.89.18 10.3.89.22 # address range
 - 10.3.89.111 10.3.89.112
 - 10.3.89.120
 broadcast: 10.3.89.255
 gateway: 10.3.89.1
 dns-nameservers: 8.8.8.8
 dns-search: your.dns.com
 method: static
 eth-port: eth10
 mtu: 9000
 _external2:
 description: Interface for eth11
 method: manual
 eth-port: eth11
 mtu: 9000
 _pxe-dhcp:
 description: Change pxe port(eth15) to dhcp
 method: dhcp
 eth-port: eth15
 _cluster-bridge:
 description: Cluster Management Network
 bridge: br-clst
 method: static
 tcp_segmentation_offload: "off" # on/off values need to be enclosed in quotes
 addr: 172.29.236.0/22
 vlan: 10
 eth-port: eth10
 bridge-port: veth-infra # add a veth pair to the bridge
node-templates:
 _node-type1:
 hostname: charlie
 userid-ipmi: userid
 password-ipmi: password
 cobbler-profile: ubuntu-14.04.4-server-amd64
 os-disk: /dev/sda
 users:
 - name: user1
 groups: sudo
 - name: testuser1
 groups: testgroup
 groups:
 - name: testgroup
 name-interfaces:
 mac-pxe: eth15 # This keyword is paired to ports: pxe: keyword
 mac-eth10: eth10 # This keyword is paired to ports: eth10: keyword
 mac-eth11: eth11 # This keyword is paired to ports: eth11: keyword
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is physically cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 2
 ipmi:
 _rack1:
 - 1
 eth10:
 _rack1:
 - 5
 networks:
 - _cluster-mgmt
 - _external1
 - _external2
 - _pxe-dhcp
 _node-type2:
 hostname: compute
 userid-ipmi: userid
 password-ipmi: password
 cobbler-profile: ubuntu-14.04.4-server-amd64
 name-interfaces:
 mac-pxe: eth15
 mac-eth10: eth10
 mac-eth11: eth11
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 4
 - 6
 ipmi:
 _rack1:
 - 3
 - 5
 eth10:
 _rack1:
 - 6
 - 8
 eth11:
 _rack1:
 - 7
 - 9
 networks:
 - _cluster-mgmt
 - _external1
 - _external2
 - _pxe-dhcp

software-bootstrap:
 all: apt-get update
_node-type2[0]: |
export GIT_BRANCH=master
URL="https://raw.githubusercontent.com/open-power-ref-design/openstack-recipes/${GIT_BRANCH}/scripts/bootstrap-solution.sh"
wget ${URL}
chmod +x bootstrap-solution.sh
./bootstrap-solution.sh

Additional key/value pairs are not processed by Genesis, but are copied into
the inventory.yml file and made available to post-Genesis scripts and/or
playbooks.

14. Appendix - E Example system 2 - Simple Cluster with High Availability Network

[image:]
High Availability Network using MLAG

The config file below defines two compute node templates and multiple network
templates. The sample cluster can be configured with the provided config.yml file.
The deployer node needs to have access to the internet for accessing packages.

Various OpenPOWER nodes can be used such as the S821LC. The deployer node can be OpenPOWER
or alternately a laptop which does not need to remain in the cluster. The data switch can be
Mellanox SX1700 or SX1410. The management switch must be a
Lenovo G8052 switch:

This sample configuration file documents all of the supported key values
supported by the genesis software. It can be used as the basis for creating
your own config.yml file. Note that keywords with a leading underscore
can be changed by the end user as appropriate for your application. (e.g.
"_rack1" could be changed to "base-rack")

version: 1.1

ipaddr-mgmt-network: 192.168.16.0/24
ipaddr-mgmt-client-network: 192.168.20.0/24
vlan-mgmt-network: 16
vlan-mgmt-client-network: 20
port-mgmt-network: 19
Note: The "_rack:" keywords must match the the corresponding rack keyword
under the keyword;
node-templates:
_node name:
ports:
port-mgmt-data-network:
 _rack1:
 - 45
 - 47
ipaddr-mgmt-switch:
 _rack1: 192.168.16.20
cidr-mgmt-switch-external-dev: 10.0.48.3/24
ipaddr-mgmt-switch-external:
 _rack1: 10.0.48.20 # must be present on the switch to start
ipaddr-data-switch: # With MLAG
 _rack1:
 - passmlagdsw1_192.168.16.25
 - passmlagdsw2_192.168.16.30
ipaddr-mlag-vip:
 _rack1: 192.168.16.254
cidr-mlag-ipl:
 _rack1:
 - 10.0.0.1/24
 - 10.0.0.2/24
mlag-vlan:
 _rack1: 4000
mlag-port-channel:
 _rack1: 6
mlag-ipl-ports:
 _rack1:
 -
 - 35
 - 36
 -
 - 35
 - 36
redundant-network: false
userid-default: ubuntu
password-default: passw0rd
userid-mgmt-switch: admin # applies to all mgmt switches
password-mgmt-switch: admin # applies to all mgmt switches
userid-data-switch: admin
password-data-switch: admin
networks:
 _external1:
 description: Interface for eth10
 method: manual
 eth-port: eth10
 mtu: 9000
 _external2:
 description: Interface for eth11
 method: manual
 eth-port: eth11
 mtu: 9000
 _external3:
 description: Interface for eth12
 method: manual
 eth-port: eth12
 mtu: 9000
 _external4:
 description: Interface for eth13
 method: manual
 eth-port: eth13
 mtu: 9000
 _pxe-dhcp:
 description: Change pxe port(eth15) to dhcp
 method: dhcp
 eth-port: eth15
 _standalone-bond0:
 description: Multilink bond
 bond: mybond0
 addr: 10.0.16.0/22
 available-ips:
 - 10.0.16.150 # single address
 - 10.0.16.175 10.0.16.215 # address range
 broadcast: 10.0.16.255
 gateway: 10.0.16.1
 dns-nameservers: 10.0.16.200
 # dns-search: mycompany.domain.com
 method: static
 # name of physical interfaces to bond together.
 bond-interfaces:
 - eth10
 - eth11
 mtu: 9000
 # if necessary not all bond modes support a primary slave
 bond-primary: eth10
 # bond-mode, needs to be one of 7 types
 # either name or number can be used.
 # 0 balance-rr
 # 1 active-backup
 # 2 balance-xor
 # 3 broadcast
 # 4 802.3ad
 # 5 balance-tlb
 # 6 balance-alb
 # bond-mode: active-backup
 bond-mode: 4
 # there is a long list of optional bond arguments.
 # Specify them here and they will be added to end of bond definition
 optional-bond-arguments:
 bond-miimon: 100
 bond-lacp-rate: 1
 _standalone-bond1:
 description: bond network to be used by future bridges
 bond: mybond1
 method: manual
 bond-interfaces:
 - eth12
 - eth13
 mtu: 9000
 bond-primary: eth12
 bond-mode: 4
 optional-bond-arguments:
 bond-miimon: 100
 bond-lacp-rate: 1
node-templates:
 node-type1:
 hostname: gandalf
 userid-ipmi: ADMIN
 password-ipmi: admin
 cobbler-profile: ubuntu-16.04.2-server-ppc64el
 os-disk: /dev/sdj
 name-interfaces:
 mac-pxe: eth15 # This keyword is paired to ports: pxe: keyword
 mac-eth10: eth10 # This keyword is paired to ports: eth10: keyword
 mac-eth11: eth11 # This keyword is paired to ports: eth11: keyword
 mac-eth12: eth12 # This keyword is paired to ports: eth12: keyword
 mac-eth13: eth13 # This keyword is paired to ports: eth13: keyword
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is physically cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 1
 ipmi:
 _rack1:
 - 2
 eth10: # switch one, 1st bond
 _rack1:
 - 4 # 1st node
 eth11: # switch two, 1st bond
 _rack1:
 - 4
 eth12: # switch one, 2nd bond
 _rack1:
 - 5
 eth13: # switch two, 2nd bond
 _rack1:
 - 5
 networks:
 - _external1
 - _external2
 - _external3
 - _external4
 - _pxe-dhcp
 - _standalone-bond0
 - _standalone-bond1
 node-type2:
 hostname: radagast
 userid-ipmi: ADMIN
 password-ipmi: admin
 cobbler-profile: ubuntu-16.04.2-server-ppc64el
 os-disk: /dev/sdj
 name-interfaces:
 mac-pxe: eth15
 mac-eth10: eth10
 mac-eth11: eth11
 mac-eth12: eth12
 mac-eth13: eth13
 # Each host has one network interface for each of these ports and
 # these port numbers represent the switch port number to which the host
 # interface is physically cabled.
 # To add or remove hosts for this node-template you add or remove
 # switch port numbers to these ports.
 ports:
 pxe:
 _rack1:
 - 3
 - 5
 ipmi:
 _rack1:
 - 4
 - 6
 eth10: # switch one, 1st bond
 _rack1:
 - 6 # 1st node
 - 8 # 2nd node
 eth11: # switch two, 1st bond
 _rack1:
 - 6
 - 8
 eth12: # switch one, 2nd bond
 _rack1:
 - 7
 - 9
 eth13: # switch two, 2nd bond
 _rack1:
 - 7
 - 9
 networks:
 - _external1
 - _external2
 - _external3
 - _external4
 - _pxe-dhcp
 - _standalone-bond0
 - _standalone-bond1

15. Appendix - F Detailed Genesis Flow (needs update)

Phase 1:

	Apply power to the management and data switches.

	All ports on the management switch will be enabled and added to a
single LAN through genesis routines.

	Power on the compute, storage and controller nodes.
	Each BMC will automatically be assigned an arbitrary IP from the
DHCP pool.

	Genesis code accesses management switch to read MAC address table
information. (MAC to port number mapping). This will include both
BMC MAC addresses as well as PXE port MAC addresses.

	Read BMC port list from the config file.

	Read ip address assignement for BMC ports from the DHCP server

	IPMI call will be issued to determine whether the BMC represents an
x86_64 or PPC64 system.

	Each BMC will be instructed to initiate a PXE install of a minimal
OS, such as CoreOS or similar.

	Genesis function will access CoreOS and correlate IPMI and PXE MAC
addresses using internal IPMI call.

	Each data network port on the client will be issues an ‘UP’ and
checked for physical connectivity.

	

	Cobbler database will be updated. Need more detail.

	Data switch will be configured.
	VLANS.

	verification

	Inventory file will be updated with IPMI, PXE and data port details.

	IPMI will be used to configure for OS reload and reboot.

	OS and packages will be installed on the various systems

	10 Gb Network ports are renamed

	Networks are configured on system nodes. There will be a unique
config per role. Network configuration consists of modifying the
interfaces file template for that role and copying it to the
servers.

	IP addresses

	VLANS

	Bridges created

	Other post OS configuration (NTP)

	reboot for network config to take effect

	Deployer container is copied to the first controller node.

	The inventory file is copied to the first controller node.

Phase 2:

	Software installation orchestrator is installed on first controller
node and given control. Genesis activity continues on first
controller node.

16. Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

For the Lenovo G8052 switch, the following commands can be used to
configure management access on interface 1. Initially the switch should be
configured with a serial cable so as to avoid loss of communication with the switch
when configuring management access. Alternately you can configure a second
management interface on a different subnet and vlan.

Enable configuration mode and create vlan:

RS 8052> enable
RS 8052# configure terminal
RS 8052 (config)# vlan 16 (sample vlan #)
RS G8052(config-vlan)# enable
RS G8052(config-vlan)# exit

Enable IP interface mode for the management interface:

RS 8052 (config)# interface ip 1

Assign a static ip address, netmask and gateway address to the management interface.
This must match the address specified in
the config.yml file (keyname: ipaddr-mgmt-switch:) and be in a
different subnet than your cluster management subnet. Place this
interface in the above created vlan:

RS 8052 (config-ip-if)# ip address 192.168.16.20 (example IP address)
RS 8052 (config-ip-if)# ip netmask 255.255.255.0
RS 8052 (config-ip-if)# vlan 16
RS 8052 (config-ip-if)# enable
RS 8052 (config-ip-if)# exit

Configure the default gateway and enable the gateway:

ip gateway 1 address 192.168.16.1 (example ip address)
ip gateway 1 enable

Note: if you are SSH’d into the switch on interface 1, be careful not to
cut off access if changing the ip address. If needed, additional
management interfaces can be set up on interfaces 2, 3 or 4.

For the Mellanox switch, the following commands can be used to configure
the MGMT0 management port;

switch (config) # no interface mgmt0 dhcp

switch (config) # interface mgmt0 ip address <IP address> <netmask>

For the Mellanox switch, the following commands can be used to configure
an in-band management interface on an existing vlan ; (example vlan 10)

switch (config) # interface vlan 10

switch (config interface vlan 10) # ip address 10.10.10.10 /24

To check the config;

switch (config) # show interfaces vlan 10

17. Appendix - H Recovering from Genesis Issues

17.1. Playbook “lxc-create.yml” fails to create lxc container.

	Verify python virtual environment is activated by running which
ansible-playbook. This should return the path
*/cluster-genesis/deployenv/bin/ansible-playbook. If something else
is returned (including nothing) cd into the cluster-genesis directory
and re-run source scripts/setup-env.

Verify that the Cluster Genesis network bridges associated with the management
and client vlans specified in the config.yml file are up and that there are
two interfaces attached to each bridge. One of these interfaces should be a
tagged vlan interface associated with the physical port to be used by by
Cluster Genesis. The other should be a veth pair attached to the Cluster Genesis
container:

$ gen status

Verify than both bridges have an ip address assigned:

ip address show brn (n whould be the vlan number)

17.2. Switch connectivity Issues:

	Verify connectivity from deployer container to management interfaces
of both management and data switches. Be sure to use values assigned
to the [ipaddr,userid,password]-[mgmt,data]-switch keys in the
config.yml. These switches can be on any subnet except the one to be
used for your cluster management network, as long as they’re
accessible to the deployer system.

	Verify SSH is enabled on the data switch and that you can ssh
directly from deployer to the switch using the ipaddr,userid, and
password keys defined in the config.yml

17.3. Missing Hardware

Hardware can fail to show up for various reasons. Most of the time these
are do to miscabling or mistakes in the config.yml file. The Node
discovery process starts with discovery of mac addresses and DHCP hand
out of ip addresses to the BMC ports of the cluster nodes. This process
can be monitored by checking the DHCP lease table after booting the BMCs
of the cluster nodes. During execution of the install_1.yml playbook, at
the prompt;

“Please reset BMC interfaces to obtain DHCP leases. Press <enter> to
continue”

After rebooting the BMCs and before pressing <enter>, you can execute
from a second shell:

gen status

Alternately to see just the leases table, log into the deployer container:

$ ssh ~/.ssh/id_rsa_ansible-generated deployer@address

The address used above can be read from the ‘gen status’ display. It is
the second address of the subnet specified by the ipaddr-mgmt-network: key
in the config.yml file. After logging in:

deployer@ubuntu-14-04-deployer:~$ cat /var/lib/misc/dnsmasq.leases

1471870835 a0:42:3f:30:61:cc 192.168.3.173 * 01:a0:42:3f:30:61:cc

1471870832 70:e2:84:14:0a:10 192.168.3.153 * 01:70:e2:84:14:0a:10

1471870838 a0:42:3f:32:6f:3f 192.168.3.159 * 01:a0:42:3f:32:6f:3f

1471870865 a0:42:3f:30:61:fe 192.168.3.172 * 01:a0:42:3f:30:61:fe

To follow the progress continually you can execute;

deployer@ubuntu-14-04-deployer:~$ tail -f /var/lib/misc/dnsmasq.leases

You can also check what switch ports these mac addresses are connected
to by logging into the management switch and executing;

RS G8052>show mac-address-table

	MAC address VLAN Port Trnk State Permanent Openflow*

	—————– ——– ——- —- —– ——— ——–*

	00:00:5e:00:01:99 1 48 FWD N *

	00:16:3e:53:ae:19 1 20 FWD N *

	0c:c4:7a:76:c8:ec 1 37 FWD N *

	40:f2:e9:23:82:be 1 11 FWD N *

	40:f2:e9:24:96:5e 1 1 FWD N *

	5c:f3:fc:31:05:f0 1 15 FWD N *

	5c:f3:fc:31:06:2a 1 18 FWD N *

	5c:f3:fc:31:06:2c 1 17 FWD N *

	5c:f3:fc:31:06:ec 1 13 FWD N *

	70:e2:84:14:02:92 1 3 FWD N *

For missing mac addresses, verify that port numbers in the above
printout match the ports specified in the config.yml file. Mistakes can
be corrected by correcting cabling, correcting the config.yml file and
rebooting the BMCs.

Mistakes in the config.yml file require a restart of the deploy process.
(ie rerunning gen deploy.) Before doing so remove the existing Genesis container
by running the ‘tear-down’ script and answering yes to the prompt to destroy the container
and it’s associated bridges.

Depending on the error, it may be possible to rerun the deploy playbooks individually:

$ gen install_1
$ gen install_2

Alternately, from the cluster-genesis/playbooks directory:

$ ansible-playbook -i hosts install_1.yml -K
$ ansible-playbook -i hosts install_2.yml -K

Before rerunning the above playbooks, make a backup of any existing
inventory.yml files and then create an empty inventory.yml file:

$ mv inventory.yml inventory.yml.bak
$ touch inventory.yml

Once all the BMC mac addresses have been given leases, press return in
the genesis execution window.

17.4. Common Supermicro PXE bootdev Failure

Supermicro servers often fail to boot PXE devices on first try. In
order to get the MAC addresses of the PXE ports our code sets the
bootdev on all nodes to pxe and initiates a power on. Supermicro servers
do ***not* reliably boot pxe (usually will instead choose one of
the disks). This *will usually show up as a python key error in the
“container/inv_add_pxe_ports.yml” playbook. The only remedy is to
retry the PXE boot until it’s successful (usually **within* 2-3
tries). To retry use ipmitool from the deployer. The tricky part,
however, is determining 1) which systems failed to PXE boot and 2) what
the current BMC IP address is. **

To determine which systems have failed to boot, go through the
following bullets in this section (starting with “Verify port
lists...”)

To determine what the corresponding BMC addresss is view the
inventory.yml file. At this point the BMC ipv4 and mac address will
already be populated in the inventory.yml within the container. To find
out:

ubuntu@bloom-deployer: cluster-genesis/playbooks$ grep “^deployer”
hosts

deployer ansible_user=deployer
ansible_ssh_private_key_file=/home/ubuntu/.ssh/id_rsa_ansible-generated
ansible_host=192.168.16.2

ubuntu@bloom-deployer:~/cluster-genesis/playbooks$ ssh -i
/home/ubuntu/.ssh/id_rsa_ansible-generated deployer@192.168.16.2

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.2.0-42-generic x86_64)

	* Documentation: https://help.ubuntu.com/*

Last login: Mon Aug 22 12:14:17 2016 from 192.168.16.3

deployer@ubuntu-14-04-deployer:~$ grep -e hostname -e ipmi
cluster-genesis/inventory.yml

	
	hostname: mgmtswitch1*

	
	hostname: dataswitch1*

	
	hostname: controller-1*

	userid-ipmi: ADMIN*

	password-ipmi: ADMIN*

	port-ipmi: 29*

	mac-ipmi: 0c:c4:7a:4d:88:26*

	ipv4-ipmi: 192.168.16.101*

	
	hostname: controller-2*

	userid-ipmi: ADMIN*

	password-ipmi: ADMIN*

	port-ipmi: 27*

	mac-ipmi: 0c:c4:7a:4d:87:30*

	ipv4-ipmi: 192.168.16.103*

~snip~

Verify port lists within cluster-genesis/config.yml are correct:

~snip~

node-templates:

controller1:

~snip~

	ports:*

	ipmi:*

	rack1:*

	
	9*

	
	11*

	
	13*

	pxe:*

	rack1:*

	
	10*

	
	12*

	
	14*

	eth10:*

	rack1:*

	
	5*

	
	7*

	
	3*

	eth11:*

	rack1:*

	
	6*

	
	8*

	
	4*

~snip~

On the management switch;

RS G8052>show mac-address-table

in the mac address table, look for the missing pxe ports. Also note the
mac address for the corresponding BMC port. Use ipmitool to reboot the
nodes which have not pxe booted succesfully.

17.5. Stopping and resuming progress

In general, to resume progress after a play stops on error (presumably
after the error has been understood and corrected!) the failed playbook
should be re-run and subsequent plays run as normal. In the case of
“cluster-genesis/playbooks/install_1.yml” and
“cluster-genesis/playbooks/install_2.yml” around 20 playbooks are
included. If one of these playbooks fail then edit the .yml file and
and comment plays that have passed by writing a “#” at the front of the
line. Be sure not to comment out the playbook that failed so that it
will re-run. Here’s an example of a modified
“cluster-genesis/playbooks/install.yml” where the
user wishes to resume after a data switch connectivity problem caused
the “container/set_data_switch_config.yml” playbook to fail:

	1 —*

	2 # Copyright 2017, IBM US, Inc.*

	3 *

~ 4 #- include: lxc-update.yml

~ 5 #- include: container/cobbler/cobbler_install.yml

~ 6 #- include: pause.yml message=”Please reset BMC interfaces to
obtain DHCP leases. Press <enter> to continue”

	7 - include: container/set_data_switch_config.yml log_level=info*

	8 - include: container/inv_add_switches.yml log_level=info*

	9 - include: container/inv_add_ipmi_ports.yml log_level=info*

	
	10 - include: container/ipmi_set_bootdev.yml log_level=info

	bootdev=network persistent=False*

	11 - include: container/ipmi_power_on.yml log_level=info*

	12 - include: pause.yml minutes=5 message=”Power-on Nodes”*

	13 - include: container/inv_add_ipmi_data.yml log_level=info*

	14 - include: container/inv_add_pxe_ports.yml log_level=info*

	15 - include: container/ipmi_power_off.yml log_level=info*

	16 - include: container/inv_modify_ipv4.yml log_level=info*

	17 - include: container/cobbler/cobbler_add_distros.yml*

	18 - include: container/cobbler/cobbler_add_profiles.yml*

	19 - include: container/cobbler/cobbler_add_systems.yml*

	20 - include: container/inv_add_config_file.yml*

	21 - include: container/allocate_ip_addresses.yml*

	22 - include: container/get_inv_file.yml dest=/var/oprc*

	
	23 - include: container/ipmi_set_bootdev.yml log_level=info

	bootdev=network persistent=False*

	24 - include: container/ipmi_power_on.yml log_level=info*

	25 - include: pause.yml minutes=5 message=”Power-on Nodes”*

	
	26 - include: container/ipmi_set_bootdev.yml log_level=info

	bootdev=default persistent=True*

17.6. Recovering from Wrong IPMI userid and /or password

If the userid or password for the ipmi ports are wrong, genesis will
fail. To fix this, first correct the userid and or password in the
config.yml file (~/cluster-genesis/config.yml in both the host OS and
the container). Also correct the userid and or password in the container
at ~/cluster-genesis/inventory.yml. Then modify the
~/cluster-genesis/playbooks/install.yml file, commenting out the
playbooks shown below. Then rerstart genesis from step 15(rerun the
install playbook)

—

Copyright 2017 IBM Corp.

#

All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the “License”);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing,
software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions
and

limitations under the License.

#- include: lxc-update.yml

#- include: container/cobbler/cobbler_install.yml

- include: pause.yml message=”Please reset BMC interfaces to obtain
DHCP leases”

#- include: container/set_data_switch_config.yml

#- include: container/inv_add_switches.yml

#- include: container/inv_add_ipmi_ports.yml

- include: container/ipmi_set_bootdev.yml bootdev=network
persistent=False

- include: container/ipmi_power_on.yml

- include: pause.yml minutes=20 message=”Power-on Nodes”

- include: container/inv_add_ipmi_data.yml

- include: container/inv_add_pxe_ports.yml

- include: container/ipmi_power_off.yml

- include: container/inv_modify_ipv4.yml

- include: container/cobbler/cobbler_add_distros.yml

- include: container/cobbler/cobbler_add_profiles.yml

- include: container/cobbler/cobbler_add_systems.yml

- include: container/inv_add_config_file.yml

- include: container/allocate_ip_addresses.yml

- include: container/get_inv_file.yml dest=/var/oprc

- include: container/ipmi_set_bootdev.yml bootdev=network
persistent=False

- include: container/ipmi_power_on.yml

- include: pause.yml minutes=5 message=”Power-on Nodes”

- include: container/ipmi_set_bootdev.yml bootdev=default
persistent=True

17.7. Recreating the Genesis Container

To destroy the Genesis container and restart Genesis from that
point:

$ tear-down

Respond yes to prompts to destroy the container and remove it’s associated bridges.
Restart genesis from step 9 of the step by step instructions.

17.8. OpenPOWER Node issues

Specifying the target drive for operating system install;

In the config.yml file, the os-disk key is the disk to which the
operating system will be installed. Specifying this disk is not always
obvious because Linux naming is inconsistent between boot and final OS
install. For OpenPOWER S812LC, the two drives in the rear of the unit
are typically used for OS install. These drives should normally be
specified as /dev/sdj and /dev/sdk

PXE boot: OpenPOWER nodes need to have the Ethernet port used for PXE
booting enabled for DHCP in petitboot.

Be sure to specify a disk configured for boot as the bootOS drive in the
config.yml file.

When using IPMI, be sure to specify the right user id and password. IPMI
will generate an “unable to initiate IPMI session errors” if the
password is not correct.

ipmitool -I lanplus -H 192.168.x.y -U ADMIN -P ADMIN chassis power off

ipmitool -I lanplus -H 192.168.x.y -U ADMIN -P ADMIN chassis bootdev
pxe

ipmitool -I lanplus -H 192.168.x.y -U ADMIN -P ADMIN chassis power on

ipmitool -I lanplus -H 192.168.x.y -U ADMIN -P ADMIN chassis power
status

To monitor the boot window using the serial over lan capability;

ipmitool -H 192.168.0.107 -I lanplus -U ADMIN -P admin sol activate

Be sure to use the correct password.

You can press Ctrl-D during petit boot to bring up a terminal.

To exit the sol window, enter “~.” enter (no quotes)

18. Appendix - I Using the ‘tear-down’ Program

The ‘tear-down’ program allows for select ‘tear down’ of the Genesis
environment on the deployer node and cluster switches. It is primarily used
when redeploying your cluster for test purposes, after taking corrective action
after previous deployment failures or for removing the Cluster Genesis environment
from the deployer node.

tear-down is completely interactive and only acts when you respond ‘y’ to prompts.

Usage:

tear-down

There are currently no arguments or options.

The tear-down program can perform the following
functions;

	Backup the config.yml file. Backed up to ~/configbak directory.
Config.yml files are date/time stamped.

	Backup the os-images directory

	Remove the Cluster Genesis created management interface from the
management switch.

	Remove the Cluster Genesis created bridges from the deployer node.

	Remove the Genesis container. Removes the containers SSH key fom the
deployers known_host file.

	Remove the Cluster Genesis software and the directory it is installed in.

	Remove entries made to the .bashrc file and undo changes made to the
$PATH environment variable.

	Remove the SSH keys for cluster switches from the deployer known_host file.

For a typical redeploy where the Cluster Genesis software does not need
updating, you should remove the cluster genesis container and it’s associated
bridges. You should also allow removal of all SSH keys from the known_hosts file.

19. Appendix - J Transferring Deployement Container to New Host

Stil in Development

TODO: general description

19.1. Save Container Files

	Note container name from LXC status:

user@origin-host:~$ sudo lxc-ls -f

	Archive LXC files:

user@origin-host:cluster-genesis/scripts $./container_save.sh [container_name]

	Save config.yml, inventory.yml, and known_hosts files:

origin-host:<cluster-genesis>/config.yml
origin-host:/var/oprc/inventory.yml
origin-host:<cluster-genesis>/playbooks/known_hosts

19.2. Prepare New Host

	Install git

	Ubuntu:

user@new-host:~$ sudo apt-get install git

	RHEL:

user@new-host:~$ sudo yum install git

	From your home directory, clone Cluster Genesis:

user@new-host:~$ git clone https://github.com/open-power-ref-design-toolkit/cluster-genesis

	Install the remaining software packages used by Cluster Genesis and
setup the environment:

user@new-host:~$ cd cluster-genesis
user@new-host:~/cluster-genesis$./scripts/install.sh

(this will take a few minutes to complete)::

user@new-host:~/cluster-genesis$ source scripts/setup-env

NOTE: anytime you leave and restart your shell session, you need to
re-execute the set-env script. Alternately, (recommended) add the following
to your .bashrc file; *PATH=~/cluster-genesis/deployenv/bin:$PATH*

ie::

user@new-host:~$ echo "PATH=~/cluster-genesis/deployenv/bin:\$PATH" >> ~/.bashrc

	Copy config.yml, inventory.yml, and known_hosts files from origin to new
host:

new-host:<cluster-genesis>/config.yml
new-host:/var/oprc/inventory.yml
new-host:<cluster-genesis>/playbooks/known_hosts

	If needed, modify config.yml and inventory.yml ‘port-mgmt-network’. This
value represents the port number that the deployer is connected to the
management switch.

	Append cluster-genesis host keys to user’s known_hosts:

user@new-host:~/cluster-genesis$ cat playbooks/known_hosts >> ~/.ssh/known_hosts

NOTE: If user@new-host:~/.ssh/known_hosts already includes keys for
any of these host IP address this action will result in SSH refusing to
connect to the host (with host key checking enabled).

	Make the ~/cluster-genesis/playbooks directory the current working directory:

user@new-host:~/cluster-genesis$ cd ~/cluster-genesis/playbooks/

	Setup host networking:

user@new-host:~/cluster-genesis/playbooks$ ansible-playbook -i hosts lxc-create.yml -K --extra-vars "networks_only=True"

	Configure management switch:

user@new-host:~/cluster-genesis/playbooks$ ansible-playbook -i hosts container/set_mgmt_switch_config.yml

19.3. Restore container from archive

	Copy LXC file archive from origin to new host

	Run ‘container_restore.sh’ script to install and start container:

user@new-host:cluster-genesis/scripts $./container_restore.sh container_archive [new_container_name]

	Use LXC status to verify container is running:

user@new-host:~$ sudo lxc-ls -f

Index

 _static/up-pressed.png

_static/comment-bright.png

_images/cluster-genesis-initial-switch-setup.png
Mgmt Switch Data Switch
10.0.48.20

ipaddr-mgmt-switch-external: 1004825 0pt)

]

port-mgmt-netdork:

Node 1

exe | (node-typel)

IPMI__ (e 6
Node 2
exe | (node-type2) 7
IPMI__ (e
Node 3 8
exe | (node-ype2) 3

ipaddr-data-switch:

[1 [[a [&] [mm%m

——————————— u

port-mgmt-data-network: M] 192.168.14.25

:

_images/cluster-genesis-simple_flat_cluster.png
Mgmt Switch
192.168.16.20

N[

)_

Fiﬂ

iPMI
Node 1
exe | (node-typet)

1PV

1ML
PXE
XE

P

BB [« & [«

Data Switch
192.168.16.25

]

18]

B O N e

_images/cluster-genesis-switch-management-network-setup.png
Mgt Switch Data Switch
100483 | ipaddr-mgmt-switch-external: 192.168.16.25
192.168.16.20 | Ipaddr-mgmt-switch:
Vian 16 | vian-mgmt-network: 1

]

&[]

1ML

El

Node 1
(node-type1)

PXE

N [

piig= 16

B [el [¢ [=] [«
EU o

_images/cluster-genesis-simple-ha-cluster.png
Mgmt Switch
100483
192.168.16.20

&[]

PXE

1ML

N =

Node 1

(node-type1)

Data Switch

192.168.16.25

Data Switch
192.168.16.30

eth10,
ShTT{] 14
ethi2

eh13{] =15

MLAG

(o [=]

el

B

EE [¢ @ [

=

Links

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Cluster Genesis User's Guide documentation!

 		Document Preface and Scope

 		Document Control

 		Revision History

 		Related Documentation

 		Release Table

 		Introduction

 		Overview

 		Hardware and Architecture Overview

 		Networking

 		Compute Nodes

 		Supported Hardware

 		Prerequisite hardware setup

 		Hardware initialization

 		Setting up the Deployer Node

 		Creating the config.yml File

 		General Settings

 		Cluster definition

 		Network Templates

 		Simple static ip address assignement

 		Bridge creation

 		Node Templates

 		Renaming Interfaces

 		Node Template Definition

 		Post Genesis Activities

 		OpenPOWER reference design recipes

 		Running the OpenPOWER Cluster Configuration Software

 		Installing and Running the Genesis code. Step by Step Instructions

 		Passive Switch Mode Special Instructions

 		SSH Keys

 		Developer Guide

 		Git Repository Model

 		Coding Style

 		Commit Message Rules

 		Unit Tests and Linters

 		Tox

 		Unit Test

 		Linters

 		Copyright Date Validation

 		Mock Inventory Generation

 		Building the Introspection Kernel and Filesystem

 		Building

 		Buildroot Config Files

 		Run Time

 		Public Keys

 		Appendix - A Using the 'gen' Program

 		Appendix - B The System Configuration File

 		config.yml Field Definitions (incomplete)

 		config.yml YAML File format:

 		Appendix - C The System Inventory File (needs update)

 		inventory.yml File format:

 		Appendix - D Example system 1 Simple Flat Cluster

 		Appendix - E Example system 2 - Simple Cluster with High Availability Network

 		Appendix - F Detailed Genesis Flow (needs update)

 		Appendix - G Configuring Management Access on the Lenovo G8052 and Mellanox SX1410

 		Appendix - H Recovering from Genesis Issues

 		Playbook “lxc-create.yml” fails to create lxc container.

 		Switch connectivity Issues:

 		Missing Hardware

 		Common Supermicro PXE bootdev Failure

 		Stopping and resuming progress

 		Recovering from Wrong IPMI userid and /or password

 		Recreating the Genesis Container

 		OpenPOWER Node issues

 		Appendix - I Using the 'tear-down' Program

 		Appendix - J Transferring Deployement Container to New Host

 		Save Container Files

 		Prepare New Host

 		Restore container from archive

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

