

Cloudmesh Version 4

PREFACE

	1. About
	1.1. Features

	1.2. Roadmap for Future Activities

	1.3. Contact

	2. Contributors

INSTALLATION

	1. Installation
	1.1. Prerequisites
	1.1.1. Installation via pip development

	1.1.2. Source installation for development

	1.2. Installation of mongod

	1.3. Anaconda and Conda

	2. Quickstart
	2.1. Command line

	2.2. Interactive shell (proposed)

	2.3. Command scripts

	2.4. Cache

	2.5. Manual

	3. Configuration
	3.1. MongoDB

	3.2. Compute Cloud Providers
	3.2.1. AWS

	3.2.2. Azure

	3.2.3. Google

	3.2.4. OpenStack

	3.2.5. Virtual Box

	3.2.6. SSH

	3.2.7. Local

	3.2.8. Docker

	3.3. Storage Providers
	3.3.1. AWS S3

	3.3.2. Azure

	3.3.3. Google drive

	3.3.4. Box

	3.3.5. ADD OTHERS IF MISSING

	3.4. Object Store

	3.5. Batch

	3.6. REST

	3.7. Log File (proposed)

	4. Cloudmesh yaml file
	4.1. Variables
	4.1.1. Replacing home

	5. Cloudmesh Database
	5.1. Database Decorator

	5.2. Database Access

	5.3. Creating Uniqe Names

	5.4. Cloudmesh Attributes

	6. Cloudmesh Yaml file Encrytion (TODO)
	6.1. Generating the Key and Certificate

	6.2. Validate and verify the key

	6.3. Encryption

	6.4. Decryption

	6.5. Cloudmesh Integration

	6.6. Editing the Configuration file

	6.7. Adding information to the configuration

	6.8. Separating the sensitive information

COMPUTE

	1. Virtual Machine Management
	1.1. Command Line and Shell Interface

	1.2. Uniform Parameter Management

	1.3. Virtual machine management

	1.4. Key management

	1.5. Security groups

	1.6. Command Examples
	1.6.1. Ping

	1.6.2. Check

	1.6.3. Refersh

	1.6.4. Status

	1.6.5. Console

	1.6.6. Start

	1.6.7. Stop

	1.6.8. Terminate

	1.6.9. Delete

	1.7. AWS Quickstart

STORAGE

	1. Cloudmesh Multi Cloud Storage Interface

	2. Cloudmesh Storage Module
	2.1. Requirements

	2.2. AWSS3 Cloudmesh Integration
	2.2.1. Storage functions overview

	2.2.2. Create dir

	2.2.3. Put

	2.2.4. Get

	2.2.5. Search

	2.2.6. List

	2.2.7. Delete

	2.3. Pytests
	2.3.1. Generic Tests

	2.3.2. Provider Specific Pytests

	2.4. General features
	2.4.1. Command Line Interface

	2.4.2. Programming Interface

	2.4.3. Pytests

	2.5. Virtual Directory
	2.5.1. Configuration

	2.5.2. Pytests

	2.6. Google drive
	2.6.1. Note

	2.6.2. Links

	3. Object Storage
	3.1. Instalation for Users

	3.2. Instalation for Developers

	3.3. Cloudmesh Object Storage Interfaces
	3.3.1. Object Storage with ASW S3

	3.3.2. Objstorage Functionality

	3.4. Create Object Directory

	3.5. Put

	3.6. Get

	3.7. Search

	3.8. List

	3.9. Delete

	4. Cloudmesh Multi Cloud Open API Interface
	4.1. Pytests

WORKFLOW

	1. Infrastructure Workflow
	1.1. Javascript Interface (proposed)

	1.2. REST

	1.3. Resources

	2. Jupyter Integration (proposed)
	2.1. API command shell access (proposed)

	2.2. API calls (ok)

HPC

	1. Batch
	1.1. Creating a job configuration

	1.2. Testing the connection

	1.3. Running the Job

	1.4. Downloading the Results

	1.5. Cleaning the remote

	1.6. Get the list of the jobs and clusters

	1.7. Modifying the Configuration by Setting Parameters

	1.8. Removing jobs and clusters

cmd5

	1. CMD5 Integartion
	1.1. Install

MAMUAL PAGES

MANUAL PAGES

	1. Reference Card (proposed)
	1.1. Shell

	1.2. Shell commands that expire after a session

	1.3. Clouds

	1.4. Comet

	1.5. HPC

	2. Commands

	3. Manual Cmd5
	3.1. admin

	3.2. banner

	3.3. clear

	3.4. default

	3.5. echo

	3.6. info

	3.7. pause

	3.8. plugin

	3.9. q

	3.10. quit

	3.11. shell

	3.12. sleep

	3.13. stopwatch

	3.14. sys

	3.15. var

	3.16. version

	4. Compute Manual Pages
	4.1. batch

	4.2. flavor

	4.3. image

	4.4. key

	4.5. network

	4.6. open

	4.7. secgroup

	4.8. ssh

	4.9. vbox

	4.10. vcluster

	4.11. vm

	4.12. workflow

	5. Storage Manual Pages
	5.1. objstorage

	5.2. storage

	5.3. vdir

DATABASE OBJECTS

Database

	1. Cloudmesh Database
	1.1. Virtual Machines
	1.1.1. Openstack
	1.1.1.1. Flavor

	1.1.1.2. Image

	1.1.1.3. VM

	1.2. Azure AzProvider
	1.2.1. Flavor

	1.2.2. Image

	1.2.3. VM

	1.3. Azure MS Azure Library Provider
	1.3.1. Flavor

	1.3.2. Image

	1.3.3. VM

	1.4. AWS Libcloud Provider
	1.4.1. Flavor

	1.4.2. Image

	1.4.3. VM

	1.5. AWS Boto3 Provider
	1.5.1. Flavor

	1.5.2. Image

	1.5.3. VM

	1.6. Storage
	1.6.1. AwsS3

	1.6.2. Box
	1.6.2.1. Directory

	1.6.2.2. File

	1.6.3. Azure Blob
	1.6.3.1. Directory

	1.6.3.2. File

	1.6.4. AWSS3 the one from cloudmesh-cloud
	1.6.4.1. Directory

	1.6.4.2. File

	1.6.5. AWSS3 the one from cloudmesh-objstore
	1.6.5.1. Directory

	1.6.5.2. File

	1.6.6. Google Drive
	1.6.6.1. Directory

	1.6.6.2. File

	1.6.7. Local
	1.6.7.1. Directory

	1.6.7.2. File

	1.7. Workflow

	1.8. EMR
	1.8.1. Cluster Listing

	1.8.2. Instance Listing

	1.8.3. Cluster Description

	1.8.4. Copy File Request

	1.8.5. File Upload

	1.8.6. Run File Request

	1.8.7. Start Cluster Request

	1.8.8. Stop Cluster Request

	1.8.9. Step List

	1.9. HPC
	1.9.1. Batch

	1.9.2. Queue

	1.9.3. Job

	1.10. Keys

BENCHMARKS

Database

	1. Benchmarks

	2. AWS EC2 VM Management

	3. AWS S3 File Storage

	4. Azure Blob Storage

	5.

	6. Benchmark results for ‘box’ Storage

	7.

	8. AWS EMR Benchmarking

CODE

CODE

	1. Code Documentation

	2. Common
	2.1. DEBUG

	2.2. Variable

	2.3. Util

	2.4. Dotdict

	2.5. Locations

	2.6. Parameter

	2.7. FlatDict

	2.8. Printer

	2.9. Stopwatch

	2.10. Console

	2.11. Logger

	2.12. Error

	2.13. Shell

	2.14. Run

	2.15. DB

	2.16. SSH

	3. CMD5

	4. Cloudmesh

	5. Management
	5.1. Configuration

	5.2. Printer

	5.3. Names

	5.4. Script

	5.5. Debug

	6. Mongo
	6.1. MongoDB

	6.2. Controler

	7. Commands

	8. Inventory

	9. cloudmesh-storage

	10. cloudmesh-objstorage

	11. cloudmesh-cloud

	12. cloudmesh-batch

	13. cloudmesh-emr

CONTRIBUTION

	1. Code Conventions

	2. Code Management

	3. Documentation Management

	4. Version Managemt

	5. Pytest
	5.1. Installation

	5.2. Test Specification and Execution

Cloud Provider Accounts

Cloud Accounts

	1. Amazon Web Services (AWS) Account Creation Tutorial
	1.1. Step-by-Step Guide

	1.2. References

	2. Azure Blob Storage and Account Creation
	2.1. Azure Blob Storage

	2.2. Azure Storage account creation

	2.3. References

	3. Setting Up Your Box Account
	3.1. Sign up

	3.2. Creating an app

	3.3. Authentication with JWT

	3.4. References

	4. Google Storage Providers
	4.1. Google Drive

	4.2. Google Docs

	4.3. Python Google Drive API
	4.3.1. Step-by-step process

	4.4. References

	5. Google (What is this?)
	5.1. Note

	5.2. Links

	6. VM Providers (outdated)
	6.1. General Cloud Providers Access

	6.2. General Interface

	6.3. Explicit Use with Options

	6.4. Vagrant

	6.5. AWS
	6.5.1. Setup and Configuration

	6.6. Azure
	6.6.1. Setup and Configuration

	6.7. OpenStack
	6.7.1. Jetstream

	6.7.2. Chameleon Cloud

	6.7.3. Cybera

	6.7.4. DevStack

Cloudmesh Outdated

Outdated:

	1. Goal (outdated)

	2. Manual: Cloudmesh Multi Service Data Access
	2.1. Database Providers
	2.1.1. Local

	2.1.2. MongoDB

	2.2. Storage Providers
	2.2.1. Local

	2.2.2. Azure Blob Storage

	2.3. Getting Started

	3. Vagrant (outdated)

	4. CM4 Details (outdated)
	4.1. Extra: Vargrant

	4.2. What we have implemented
	4.2.1. The Preparation for installing cloudmesh (David)

	4.2.2. The Configuration files and some relative function classes (Sachith)
	4.2.2.1. Use the Configurations file
	4.2.2.1.1. Getting the config object

	4.2.2.1.2. Getting values

	4.2.3. Using the Counter file
	4.2.3.1. Using the counter
	4.2.3.1.1. Incrementing and Decrementing the counter values

	4.2.3.1.2. Getting and Setting the counter values

	4.2.4. The MongoDB Database in cloudmesh (Yu)
	4.2.4.1. Data Scheme in MongoDB

	4.2.4.2. Security in MongoDB

	4.2.4.3. Install MongoDB Into Local

	4.2.4.4. Insert and Update Documents in MongoDB

	4.2.5. The Virtual Machine Provider
	4.2.5.1. Execute Command in MongoDB

	4.2.6. 4. The Virtual Machine Provider

	4.2.7. AWS VM Operations (Yu)

	4.2.8. Azure VM Operation (David)

	4.2.9. Chameleon VM Operation (Rui and Kimball)

	4.2.10. VM Refactor (Rui)

	4.3. Flask Rest API (Sachith)
	4.3.1. Pre-requisites

	4.3.2. How to run the REST API

	4.3.3. API

	4.3.4. Examples

	4.3.5. Dev - restricting certain ips for certain rest calls

	4.4. Extra: Run Command/Script in AWS

	5. AWS cm (outdated)
	5.1. Code Description
	5.1.1. cloudmesh.yaml

	5.1.2. :o: Suggestion for Redesign

	5.1.3. awscm.py
	5.1.3.1. Add resources

	5.1.3.2. List Resources

	5.1.3.3. Remove Resources

	5.1.3.4. View Resources

	5.1.3.5. Copy Instances from File

	5.1.3.6. Copy Instances from Folder

	5.1.3.7. Copy Instances

	5.1.3.8. Delete Instances from file

	5.1.3.9. Delete Instances from Folder

	5.1.3.10. Create instances from folder

	5.1.3.11. Read Instances from Folder

	5.1.3.12. Download INstances from file

	5.1.4. Download instances from folder
	5.1.4.1. Check instances

	5.1.4.2. Run instances locally

	5.1.4.3. Run instances remotely

	5.1.4.4. Run local

	5.1.4.5. Run local

	5.1.5. config.py

	5.1.6. resource.py

	5.1.7. utility.py

	5.1.8. run.py

	5.1.9. advanced.py

	5.2. TODO - Spark

	6. REST Service (outdated)
	6.1. Pre-requisites

	6.2. How to run the REST API

	6.3. API

	6.4. Examples

	6.5. Dev - restricting certain ips for certain rest calls

	7. Virtual Cluster (in progress)
	7.1. Creating a Virtual Cluster and testing connections

	7.2. Creating a runtime-configuration

	7.3. Running Parallel Remote Jobs

	7.4. Cleaning the remote

Indices and tables

	Index

	Module Index

	Search Page

1. About

Cloudmesh version 4 [https://cloudmesh-community.github.io/cm/] is
an evolution of our previous tool that has been used by hundreds of
students and cloud practitioners to interact easily with clouds to
create a service meshup to access common cloud services across a number
of cloud providers.

It is under active development. It is managed in github at

	Documentation: https://cloudmesh.github.io/cloudmesh-manual/

	Code: https://github.com/cloudmesh/

It has a variety of repositories that add features to cloudmesh based on
needs by the user.

1.1. Features

	useful common programming library to make it easy to interface with
the system https://github.com/cloudmesh/cloudmesh-common

	extensible cmondline and shell with cmd5
https://github.com/cloudmesh/cloudmesh-cmd5

	convenient installer for developers
https://github.com/cloudmesh/cloudmesh-installer

	MongoDB as a backend for caching
https://github.com/cloudmesh/cloudmesh-cloud

	Cloud Providers, AWS, Azure, Google, Openstack
https://github.com/cloudmesh/cloudmesh-cloud

	A cloud workflow plugin
https://github.com/cloudmesh/cloudmesh-workflow

	AWS emr plugin https://github.com/cloudmesh/cloudmesh-emr

	A plugin for Storage providers
https://github.com/cloudmesh/cloudmesh-storage

	OpenAPI based REST service interfaces

1.2. Roadmap for Future Activities

	A plugin for HPC systems https://github.com/cloudmesh/cloudmesh-batch

	Storage: local provider

	Compute: virtual box, ssh, slurm

	A javascript based GUI

	A cloud high throughput broker for pleasantly parallel parameter
studies

1.3. Contact

For more info please contact Gregor von Laszewski, laszewski@gmail.com

Gregor von Laszewski [http://gregor.cyberaide.org]

E-mail: laszewski@gmail.comn

Indiana University

School of Informatics and Computing

2425 N Milo B Sampson Ln

Bloomington, IN 47408

Google Map [https://www.google.com/maps/dir/39.1720419,-86.5005219/Integrated+Science+and+Accelerator+Technology+Hall+(ISAT)+2425+North+Milo+B+Sampson+Lane/@39.1811259,-86.5286507,14z/data=!3m1!4b1!4m15!1m6!3m5!1s0x886c66c26789ad33:0x3499a08bb315d436!2sIndiana+University+Bloomington!8m2!3d39.1754487!4d-86.512627!4m7!1m0!1m5!1m1!1s0x886c613437918d4b:0x17d28e7c953b9d48!2m2!1d-86.5229357!2d39.1898917]

2. Contributors

Code Contributions can be seen at

	https://github.com/cloudmesh/cloudmesh-cloud/graphs/contributors

The original author of cloudmesh is

	Gregor von Laszewski (laszewski@gmail.com)

Large contributions have also been made by

	Fugang Wang

Many have contributed to cloudmesh in the past. However, this version has
reveived contributions from a subset of them. Previous contributors will be
acknowledged once we integrate them in the author script.

Contributors are sorted by the first letter of their combined Firstname and
Lastname and if not available by their github ID. Please, note that the
authors are identified through git logs in addition to some contributors added
by hand. The git repository from which this document is derived contains more
than the documents included in this document. Thus not everyone in this list
may have directly contributed to this document. However if you find someone
missing that has contributed (they may not have used this particular git)
please let us know. We will add you. The contributors that we are aware of
include:

Anthon van der Neut, Anthony Duer, Ashok, Badi Abdul-Wahid, Bo
Feng, Chun-Sheng Wu, Dave DeMeulenaere, Eric Collins, Fugang Wang,
Gerald Manipon, Gregor von Laszewski, Jeevan Reddy Rachepalli, Jing
Huang, Karthick, Keli Fine, Mallik Challa, Manjunath Sivan, Ritesh
Tandon, Rui Li, Sachith Withana, Scott McClary, Tarun Rawat, Tharak
Vangalapat, Vafa Andalibi, Yu Luo, Yue, Xiao, amannars, colliner,
fugangwang, himanshu3jul, hyspoc, juaco77, kimballXD,
manjunathsivan, robludwig, swsachith, xiao yue, zhengyili4321

1. Installation

1.1. Prerequisites

Before you install make sure that you have at minimum python 3.7.2
installed. We recommend that you use a python virtualenv such as venv
or pyenv to isolate the python installed packages as not to interfere
with the system installation.

1.1.1. Installation via pip development

The installation via pip is not yet supported for cloudmesh cm. Thus
we recommend that you use the source installation instead.

In future cloudmesh version 4 will be installed with

$ pip install cloudmesh-cms
$ pip install cloudmesh-cloud
$ pip install cloudmesh-storage

Additional packages will include

$ pip install cloudmesh-flow
$ pip install cloudmesh-emr
$ pip install cloudmesh-batch
$ pip install cloudmesh-openapi

For the time being we recommend you conduct the source install.

1.1.2. Source installation for development

The best way to install cloudmesh from source is to use our installer:

More documentation about it can be found at

	https://github.com/cloudmesh/cloudmesh-installer

You install it with

$ pip install cloudmesh-installer

It is best to create an emty directory and decide which bundles to install

$ mkdir cm
$ cd cm
$ cloudmesh-installer bundels

Decide which bundels you like to install (let us assume you use storage) and
simply say

$ cloudmesh-installer git clone storage
$ cloudmesh-installer install storage -e

It will take a while to install On newer machines 1 minte, on older significant
longer.

YOu can than test if

$ cms help

works. Make susre to stay up to date while issuing the pull command on your
bundle

$ cloudmesh-installer git pull bundle
$ cloudmesh-installer install storage -e

1.2. Installation of mongod

First, you will need to install a cloudmesh4.yaml file, if you have
not done this before. The easieast way to do so is with the command

$ cms help

Now you will need to edit the file

~/.cloudmesh/cloudmesh4.yaml

and change the password of the mongo entry to something you like,
e.g. change the TBD to a real strong password

MONGO_PASSWORD: TBD

In case you do not have mongod installed, you can do so for macOS and Ubuntu
18.xx by setting the following variable:

MONGO_AUTOINSTALL: True

Now you can run the admin mongo install command. It will not only
install mongo, but also add the path to your .bash_* file. In case
of windows platform, you will have to set the PATH variable
manually. To install it simply say.

$ cms admin mongo install

To create a password protection you than run the command

bash $ cms admin mongo create In case of Windows platform, after
executing above command, open a new cms session and execute below
commands.

$ cms admin mongo start

Once the mongo db is created it can be started and stoped with

$ cms admin mongo start
$ cms admin mongo stop

For cloudmesh to work properly, please start mongo.

1.3. Anaconda and Conda

We also have the base packages available as conda packages on conda hub in the
chanel laszewski. This includes

	cloudmesh-common

	cloudmesh-cmd5

	cloudmesh-sys

Note that the packages will always be a little bit behind the packages on pypi
and especially the source distribution. If you are interested in helping out
with the conda packages, let us know.

2. Quickstart

One of the features up Cloudmesh is to easily start new virtual machines on
vairous clouds. It uses defaults for these clouds that can be chaned, but are
easily stored in a yaml file located at ~/.cloudmesh/cloudmesh4.yaml This
file is created upon first start of the shell. You need to edit it and include
some of your cloud information.

A template for the yaml file is located at:

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml

2.1. Command line

It is easy to switch beteeen clouds with the set command. Ater the set and
specifying the cloud by name many commands will default to that cloud. The
exception is the vm list command that lists by default all vms on all clouds.
In addition the vm refresh command will also work on all clouds.

$ cms admin mongo create # needs only be done one time
$ cms admin mongo start

$ cms set cloud=vagrant
$ cms vm start
$ cms image list
$ cms flavor list

$ cms set cloud=aws
$ cms vm start
$ cms image list
$ cms flavor list

$ cms set cloud=azure
$ cms vm start
$ cms image list
$ cms flavor list

$ cms set cloud=chameleon
$ cms vm start
$ cms image list
$ cms flavor list

$ cms set cloud=jetstream
$ cms vm start
$ cms image list
$ cms flavor list

$ cms vm refresh

$ cms vm listcms admin mongo stop

In case you want a command explicitly apply to one or more clouds or one or more
vms, they can be specified by name such as

$ cms vm list --name vm[0-100]
$ cms vm list --cloud aws,azure

Defaults for the cloud and the name can be specified through set such as

$ cms set name=vm[0-100]
$ cms set cloud=aws,azure

Using the commands

$ cms vm list

would than add the appropriate options to the command. To reset the show to all
vms set name and cloud to all

$ cms set name=all
$ cms set cloud=all

2.2. Interactive shell (proposed)

Cloudmesh uses cmd5 for its shell implementation and thus all commands that are
typed in in the terminal can also be typed in into a shell that is started with
cms

$ cms
cms> set cloud=aws
cms> vm start

2.3. Command scripts

As we use cmd5 we also have access to piped and named scripts with

$ echo script.cms | cms

and

$ cms --script script.cms

2.4. Cache

All information about for example virtual machines are cached locally. The cache
for various information sources can be explicitly updated with the --refresh
flag. Thus the command

$ cms vm list --refresh

would first execute a refresh while the command

$ cms vm list

would only read from the local cache

To chang ethe behavior and alwas do a refresh you can use the command

$ cms set refresh=True

To switch it off you can say

$ cms set refresh=False

2.5. Manual

The manaul page can be opened with

$ cms open doc

or in case you start it in the source with

$ cms open doc local

3. Configuration

The Configuration of cloudmesh is controled with a yaml file that is placed in
~/.clloudmesh/cloudmesh4.yaml. It is created automatically from the templace
located at

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml

You can customize the file in your local directory.

3.1. MongoDB

The cache of cloudmesh is managed in a mongo db database with various
collections. However the user does not have to manage thes collections as this
is done for the user through cloudmesh. Before you can use it it mongo does need
to be installed.

If you have not installed mongo, you may try

$ cms admin mongo install

Next you create the database template with authentication with

$ cms admin mongo create

Now you are ready to use it in cloudmesh.
The mongo db can be started and stoped
with the command

$cms admin mongo start
$cms admin mongo stop

The configuration detals are included in the yaml file.

3.2. Compute Cloud Providers

The default yaml file includes templates to configure various clouds. YOu can
change these defaults and provide access to your cloud credentials to make the
management of cloud virtual machines easier. Templates for AWS, Azure, Google,
OpenStack are provided. Specific templates for Jetstream and Chameleopn cloud
are included in the example
cloudmesh4.yaml [https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml]. We list each template next.

3.2.1. AWS

It is beyond the scope of this manual to discuss how to get an account on Aws.
However we do provide a convenient documentation at [image: CONTRIBUTE]

cloudmesh:
 ...
 cloud:
 ...
 aws:
 cm:
 active: False
 heading: AWS
 host: aws.amazon.com
 label: aws
 kind: aws
 version: TBD
 default:
 image: 'ami-0f65671a86f061fcd'
 size: 't2.micro'
 credentials:
 region: 'us-west-2'
 EC2_SECURITY_GROUP: 'group1'
 EC2_ACCESS_ID: TBD
 EC2_SECRET_KEY: TBD
 EC2_PRIVATE_KEY_FILE_PATH: '~/.cloudmesh/aws_cert.pem'
 EC2_PRIVATE_KEY_FILE_NAME: 'aws_cert'

3.2.2. Azure

It is beyond the scope of this manual to discuss how to get an account on Azure.
However we do provide a convenient documentation at [image: CONTRIBUTE]

cloudmesh:
 ...
 cloud:
 ...
 azure:
 cm:
 active: False
 heading: AWS
 host: azure.mocrosoft.com
 label: Azure
 kind: azure_arm
 version: TBD
 default:
 image: 'Canonical:UbuntuServer:16.04-LTS:latest'
 size: 'Basic_A0'
 resource_group: 'cloudmesh'
 storage_account: 'cmdrive'
 network: 'cmnetwork'
 subnet: 'cmsubnet'
 blob_container: 'vhds'
 credentials:
 AZURE_TENANT_ID: 'xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 AZURE_SUBSCRIPTION_ID: 'xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 AZURE_APPLICATION_ID: 'xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 AZURE_SECRET_KEY: TBD
 AZURE_REGION: 'northcentralus'

3.2.3. Google

It is beyond the scope of this manual to discuss how to get an account on Google.
However we do provide a convenient documentation at [image: CONTRIBUTE]

cloudmesh:
 ...
 cloud:
 ...
 google:
 cm:
 active: True
 heading: google
 host: google.cloud.com
 label: google
 kind: google
 version: TBD
 default:
 image: 'Image Name'
 size: 'n1-standard-4'
 credentials:
 datacenter: 'us-central1-a'
 client_email: '<service account>.iam.gserviceaccount.com'
 project: '<Project Name>'
 path_to_json_file: '~/.cloudmesh/<file with credentials>'

3.2.4. OpenStack

We provide an example on how to use an OpenStack based cloud in cloudmesh.
Please ass the following to your cloudmesh4.yaml file and replace the values
for TBD. Our example uses Chameleon Cloud [https://www.chameleoncloud.org/].
This is a cloud for academic research. Certainly you can configure other clouds
based on this template. We have successfully used also clouds in Canada
(Cybera), Germany (KIT), Indiana University (jetstream). TO get started you can
even install your local cloud with devstack and make adjustements. Please
remember you can have multiple clouds in the cloudmesh4.yaml file so you could
if you have access to them integrate all of them.

Example for chameleon cloud:

	You will need access to a project and add your project nump=ber to the
credentials.

cloudmesh:
 ...
 cloud:
 ...
 chameleon:
 cm:
 active: True
 heading: Chameleon
 host: chameleoncloud.org
 label: chameleon
 kind: openstack
 version: liberty
 credentials:
 OS_AUTH_URL: https://openstack.tacc.chameleoncloud.org:5000/v2.0/tokens
 OS_USERNAME: TBD
 OS_PASSWORD: TBD
 OS_TENANT_NAME: CH-819337
 OS_TENANT_ID: CH-819337
 OS_PROJECT_NAME: CH-819337
 OS_PROJECT_DOMAIN_ID: default
 OS_USER_DOMAIN_ID: default
 OS_VERSION: liberty
 OS_REGION_NAME: RegionOne
 OS_KEY_PATH: ~/.ssh/id_rsa.pub
 default:
 flavor: m1.small
 image: CC-Ubuntu16.04
 username: cc

3.2.5. Virtual Box

Virtualbox has at this time limited functionality, but creation, ssh, and
deletion of the virtual box is possible.

You can also integrate virtualbox as part of cloudmesh while providing the
following description:

cloudmesh:
 ...
 cloud:
 ...
 vbox:
 cm:
 active: False
 heading: Vagrant
 host: localhost
 label: vbox
 kind: vagrant
 version: TBD
 default:
 path: ~/.cloudmesh/vagrant
 image: "generic/ubuntu1810"
 credentials:
 local: True
 hostname: localhost

3.2.6. SSH

STUDENT CONTRIBUTE HERE

3.2.7. Local

STUDENT CONTRIBUTE HERE

3.2.8. Docker

STUDENT CONTRIBUTE HERE

3.3. Storage Providers

General description for all storage providers, comment on the default: and
what that does

3.3.1. AWS S3

It is beyond the scope of this manual to discuss how to get an account on Google.
However we do provide a convenient documentation at [image: CONTRIBUTE]

In the cloudmesh4.yaml file, the ‘aws’ section under ‘storage’ describes an
example configuration or a AWS S3 storage provider. In the credentials section
under aws, specify the access key id and secret access key which will be
available in the AWS console under AWS IAM service -> Users -> Security Credentials. Container is the default Bucket which will be used to store the
files in AWS S3. Region is the geographic area like us-east-1 which contains
the bucket. Region is required to get a connection handle on the S3 Client or
resource for that geographic area. Here is a sample.

TODO: Make credentials more uniform between compute and data

storage:
 aws:
 cm:
 heading: aws
 host: amazon.aws.com
 label: aws
 kind: awsS3
 version: TBD
 default:
 directory: /
 credentials:
 access_key_id: *********
 secret_access_key: *******
 container: name of bucket that you want user to be contained in.
 region: Specfiy the default region eg us-east-1

3.3.2. Azure

It is beyond the scope of this manual to discuss how to get an account on Google.
However we do provide a convenient documentation at [image: CONTRIBUTE]

The cloudmesh4.yaml file needs to be set up as follows for the ‘azureblob’
section under ‘storage’.

cloudmesh:

 storage:
 azureblob:
 cm:
 heading: Azure
 host: azure.com
 label: Azure
 kind: azureblob
 version: TBD
 default:
 directory: /
 credentials:
 account_name: '*****************'
 account_key: '**'
 container: 'azuretest'

Configuration settings for credentials in the yaml file can be obtained from Azure portal.

TODO: MOre information via a pointer to a documentation you create needs to be added here

In the yaml file the following values have to be changed

	account_name - This is the name of the Azure blob storage account.

	account_key - This can be found under ‘Access Keys’ after navigating to the storage account on the Azure portal.

	container - This can be set to a default container created under the Azure blob storage account.

3.3.3. Google drive

Due to bugs in the requirements of the google driver code,
we have not yet included it in the Provider code. This needs to be fixed
before we can do this.

The cloudmesh4.yaml file needs to be set up as follows for the ‘gdrive’
section under ‘storage’.

storge:
 gdrive:
 cm:
 heading: GDrive
 host: gdrive.google.com
 kind: gdrive
 label: GDrive
 version: TBD
 credentials:
 auth_host_name: localhost
 auth_host_port:
 - ****
 - ****
 auth_provider_x509_cert_url: "https://www.googleapis.com/oauth2/v1/certs"
 auth_uri: "https://accounts.google.com/o/oauth2/auth"
 client_id: *******************
 client_secret: ************
 project_id: ************
 redirect_uris:
 - "urn:ietf:wg:oauth:2.0:oob"
 - "http://localhost"
 token_uri: "https://oauth2.googleapis.com/token"
 default:
 directory: TBD

3.3.4. Box

It is beyond the scope of this manual to discuss how to get an account on Google.
However we do provide a convenient documentation at [image: CONTRIBUTE]

In the cloudmesh4.yaml file, find the ‘box’ section under ‘storage’. Under
credentials, set config_path to the path of the configuration file you created
as described in the Box chapter:

 box:
 cm:
 heading: Box
 host: box.com
 label: Box
 kind: box
 version: TBD
 default:
 directory: /
 credentials:
 config_path: ******************************

3.3.5. ADD OTHERS IF MISSING

3.4. Object Store

[image: CONTRIBUTE]

3.5. Batch

[image: CONTRIBUTE]

3.6. REST

TBD

3.7. Log File (proposed)

THIS FEATURE IS NOT YET SUPPORTED

Log files are stored by default in ~/.cloudmesh/log The directory can be
specified in the yaml file.

4. Cloudmesh yaml file

cpy the file

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/etc/cloudmesh4.yaml

to ~/.cloudmesh/cloudmesh4.yaml

$ put hed the code for thsi wit h git and so on wget or curl

make sure the permissions are

Next edit the yaml file and add your credentials.

4.1. Variables

4.1.1. Replacing home

Values in the yaml file that incluse a ~ or $HOME will be replaced with the home
directory.

Vales starting with . will be replaced with the current working directory.

In addition any value that includes strings such as "{cloudmesh.attribute}"
will be replaced with the value from within the yaml file.

For example. ;et us assume the yaml file contains:

from cloudmesh.management.configuration.config import Config

cloudmesh4.yaml:

script =
"""
cloudmesh:
 profile:
 name: Gregor
 cloud:
 aws:
 username: "{cloudmesh.grofile.name}"
 key: ~/.ssh/id_rsa
 dir: $HOME
 current: .

will result be transformed with

data = Config()

to for example

cloudmesh:
 profile:
 name: Gregor
 cloud:
 aws:
 username: "Gregor"
 key: /home/gergor/.ssh/id_rsa
 dir: /home/gregor
 current: /home/gregor/github/cm

end converted to a dict. The data in the cloudmesh4.yaml file stays unchanegd.

5. Cloudmesh Database

Cloudmesh stores its status in a database so that you can easily remember which
services you used where and have an accurate account of them. We use as a
database mongoDB to store this information. To use cloudmesh you simply need to
create and start the database service.

First, you need to create a MongoDB database with

$ cms admin mongo create

Second, you need to start it with below command (for windows platform, open a new command prompt)

$ cms admin mongo start

Now you can interact with it to find out the status, the stats, and the database
listing with the commands

$ cms admin mongo status
$ cms admin mongo stats
$ cms admin mongo list

To stop it from running use the command

$ cms admin mongo stop

The database will be started on the information as specified in
~/.cloudmesh/cloudmesh4.yaml

An example is

 mongo:
 MONGO_AUTOINSTALL: True
 MONGO_BREWINSTALL: False
 LOCAL: ~/local
 MONGO_HOME: ~/local/mongo
 MONGO_PATH: ~/.cloudmesh/mongodb
 MONGO_LOG: ~/.cloudmesh/mongodb/log
 MONGO_DBNAME: 'cloudmesh'
 MONGO_HOST: '127.0.0.1'
 MONGO_PORT: '27017'
 MONGO_USERNAME: 'admin'
 MONGO_PASSWORD: TBD
 MONGO_DOWNLOAD:
 darwin: https://fastdl.mongodb.org/osx/mongodb-osx-ssl-x86_64-4.0.4.tgz
 linux: https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-4.0.4.tgz
 win32: https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-4.0.4-signed.msi
 redhat: https://repo.mongodb.org/yum/redhat/7/mongodb-org/4.0/x86_64/RPMS/mongodb-org-server-4.0.4-1.el7.x86_64.rpm

We also provide a convenient install script that downloads the version defined
in the yaml file and installs it in the system with the command. In case of windows platform,
you will have to set the PATH variable manually after install

$ cms admin mongo install

5.1. Database Decorator

Cloudmesh comes with a very convenient mechanism to integrate data into MongoDB.
All you have to do is to create a list of dictionaries with a function, that
returns this dictionary and use a decorator in the function to update the
information into the database.

The data base decorator automatically replaces an entry in the database with
the dictionary returned by a function.

It is added to a MongoDB collection. The location is determined from the
values in the dictionary.

The name of the collection is determined from cloud and kind:

cloud-kind

In addition each entry in the collection has a name that must be unique in
that collection.

In most examples it is best to separate the updload from the actual return
class. This way we essentially provide two functions one that provide the
dict and another that is responsible for the upload to the database.

Example:

cloudmesh.example.foo contains:

class Provider(object)

 def entries(self):
 return {
 "cm" : {
 "kind" : "flavor",
 "driver" : "openstack",
 "cloud" : "foo",
 "created" : "2019-04-01 15:59:39.815993",
 "name" : "m1.xxxlarge",
 "collection" : "chameleon-flavor",
 "modified" : "2019-04-01 16:01:11.720274"
 },

cloudmesh.example.bar contains:

class Provider(object)

 def entries(self):
 return {
 "cm" : {
 "kind" : "flavor",
 "driver" : "openstack",
 "cloud" : "bar",
 "created" : "2019-04-01 15:59:39.815993",
 "name" : "m1.xxxlarge",
 "collection" : "chameleon-flavor",
 "modified" : "2019-04-01 16:01:11.720274"
 },

cloudmesh.example.provider.foo contains:

from cloudmesh.example.foo import Provider as FooProvider
from cloudmesh.example.foo import Provider as BarProvider

class Provider(object)

 def __init__(self, provider):
 if provider == "foo":
 provider = FooProvider()
 elif provider == "bar":
 provider = BarProvider()

 @DatabaseUpdate()
 def entries(self):
 provider.entries()

Separating the database and the dictionary creation allows the developer to
implement different providers but only use one class with the same methods
to interact for all providers with the database.

In the combined provider a find function to for example search for entries
by name across collections could be implemented.

5.2. Database Access

In addition to the decorator, we have a very simple database class for
interacting across a number of collections. THis especially is useful for
finding informtion.

self.database = CmDatabase()

Find the entry with the uniqe name CC-Centos

r = self.database.find_name("CC-CentOS7")
pprint(r)

Find the entries with either CC-CentOS7 or CC-CentOS7-1811

r = self.database.find_names("CC-CentOS7,CC-CentOS7-1811")
pprint(r)

Find out how many entries exist with the name CC-CentOS7:

r = self.database.name_count("CC-CentOS7")
pprint(r)

5.3. Creating Uniqe Names

Uniqe names with the format {experiment}-{group}-{user}-{counter} can be
created with

from cloumesh.management.configuration.name import Name

name = Name(
 experiment="exp",
 group="grp",
 user="gregor",
 kind="vm",
 counter=1)

To increae the counter use

name.incr()

To get the name at the current counter value say

str(name)

or

name.id()

The format can be chaned with schema= at the initailization. Thus

name = Name(
 user='gregor,
 schema='{user}-{counter}`,
 counter=1)

would create names of the form gergor1, gergor2 and so on.

5.4. Cloudmesh Attributes

Cloudmesh elements in the database will have a special cm dictionary with a
number of attributes defined in it. The following example showcases such an
attribute dict. The attributs can be used to uniquely define an object in the
database by cobining the cloud, kind, and name. In addition it contains the date
for the object being created first and its update time.

"cm" : {
 "name" : "m1.medium",
 "created" : "2019-03-25 07:45:46.905623",
 "updated" : "2019-03-25 07:45:46.905623",
 "cloud" : "chameleon",
 "kind" : "flavor",
 "driver" : "openstack",
 "collection" : "chameleon-flavor"
},

Using this information the object can easily be found in the database by name,
type or cloud or a combination thereof.

6. Cloudmesh Yaml file Encrytion (TODO)

THIS SECTION IS UNDER DEVELOPMENT AND THE CONTENT DESCRIBED IS NOT YET WORKING

The cloudmesh yaml file can contain some information to simplify authentication.
IN order not tos store the file in cleartext we have provided a replacement
function for the configuration that allows encruption of the file with your ssh
key. IT is important that your ssh key is generated with a passphrase. If you do
not, even if you encrypt, the file can without a passphrase decrypted which is
the same as having it in cleartext. SO make sure tour ssh-key has a passphrase.

6.1. Generating the Key and Certificate

We can encrypt and decrypt files using generated random key as follows:

First, you need to create a public-private key with a passphrase. THis can be
achieved with the cms key command it assumes that you have not jet created a key

cms config ssh keygen

Alternatively you can craete a key as follows

ssh-keygen -t rsa -m pem

In case you need to convert your key, to a pem certificate you can do it as follows

$ openssl rsa -in ~/.ssh/id_rsa -out ~/.ssh/id_rsa.pem

6.2. Validate and verify the key

To validate the key please use the cms command

$ cms config check
$ cms config verify

6.3. Encryption

To encrypt the file, pleas use the command

$ cms config encrypt

This command will encrypt your cloudmesh4.yaml file and place it under
~/.cloudmesh/cloudmesh4.yaml.enc. It will ask you if you like to delete the orignial yaml file.

6.4. Decryption

To decrypt the file, pleas use the command

$ cms config decrypt

This command will decrypt your cloudmesh4.yaml.enc file and place it under
~/.cloudmesh/cloudmesh4.yaml.enc.enc. It will ask you if you like to delete the orignial yaml file.

6.5. Cloudmesh Integration

We have provided a new cloudmesh.management.configuration.ConfigCrypt() That
will be integrated in future (once verified it works) into the regular Config()

The functionality tht is provided by ConfigCrypt() includes

	if cloudmesh4.yaml and cloudmesh4.yaml.enc exist a warning is written that
both files exist and it recommended in production to delete the unencrypted
file.

	if only cloudmesh4.yaml exist a warning is written that an unencrypted yaml
file is used

	if only cloudmesh4.yaml.enc exists it is unencrypted and loded into memory.
Please note that ConfigCrypt() just as Config() is implemented as Borg class
so that the decryption and loading loading is conducted only once.

6.6. Editing the Configuration file

Editing the configuration file can be done by first unencrypting the file with

$ TBD

Than yo ucan use your favourit editor to make modifications. Let us assume thsi
is emacs.

emacs ~/.cloudmesh/cloudmesh4.yaml

Once written back quit your editor and encrypt the file with

cms config encrypt

6.7. Adding information to the configuration

It is also possible to add configurations to the encrypted file while storing
the new values in a temporary yaml file.

Let us assume the temporary file ./change.yaml contains the following information:

cloudmesh:
 profile:
 firstname: Gregor
 lastname: von Laszewski

Than the command

cms config add ./change.yaml

Will update the existing cloudmesh4.yaml or cloudmesh4.yaml.enc` file with the
provided information. This is taking place regardless if the yaml file is
encrypted or not. If both files exist., both files will be modified. A Wrning is
however issued if the unencrypted yaml file esists to remind the user to delete
it.

Alternatively the convenient dot notation cloudmesh provides for configuration
files can be used. This is done by having the ending txt instead of yml
We illustarted this on the following example where the data is stored in change.txt

cloudmesh.profile.firstname: Gregor
cloudmesh.profile.lastname: von Laszewski

cms config add ./change.txt

6.8. Separating the sensitive information

As it may be beneficial to separate the sensitive form the non sensitive
information, we also provide a mechanism for authentication with a merged file.
This way you could for example store the sensitive information on a USB key.

For this to work we specify in the yaml file a field called

cloudmesh:
 encrypted: ~/.cloudmesh/cloudmesh4-secrets.yaml.enc

You can name the file anything you like and you could point it to your location
of the USB key.

in this file we store only the sensitive information such as

cloudmesh.storage.azure.credentials.AZURE_SUBSCRIPTION_ID: 'xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'

PLease note that we leverage the convenient dot notation cloudmesh provides for
configuration files so we can formulate the value in a single line>

1. Virtual Machine Management

CLoudmesh v4 contains sophisticated virtual machine management services that
makes it easy for the user to manage a large number of virtual machines across
clouds with a uniform naming scheme.

For now we will focus on the command line and shell interface.

1.1. Command Line and Shell Interface

The command line and shell interface to manage virtual machines are listed next.

vm ping [NAMES] [--cloud=CLOUDS] [N]
vm check [NAMES] [--cloud=CLOUDS]
vm refresh [NAMES] [--cloud=CLOUDS]
vm status [NAMES] [--cloud=CLOUDS]
vm console [NAME] [--force]
vm start [NAMES] [--cloud=CLOUD] [--dryrun]
vm stop [NAMES] [--cloud=CLOUD] [--dryrun]
vm terminate [NAMES] [--cloud=CLOUD] [--dryrun]
vm delete [NAMES] [--cloud=CLOUD] [--dryrun]
vm list [NAMES]
 [--cloud=CLOUDS]
 [--output=OUTPUT]
 [--refresh]
vm boot [--name=NAME]
 [--cloud=CLOUD]
 [--username=USERNAME]
 [--image=IMAGE]
 [--flavor=FLAVOR]
 [--public]
 [--secgroup=SECGROUPs]
 [--key=KEY]
 [--dryrun]
vm boot [--n=COUNT]
 [--cloud=CLOUD]
 [--username=USERNAME]
 [--image=IMAGE]
 [--flavor=FLAVOR]
 [--public]
 [--secgroup=SECGROUPS]
 [--key=KEY]
 [--dryrun]
vm run [--name=NAMES] [--username=USERNAME] [--dryrun] COMMAND
vm script [--name=NAMES] [--username=USERNAME] [--dryrun] SCRIPT
vm ip assign [NAMES]
 [--cloud=CLOUD]
vm ip show [NAMES]
 [--cloud=CLOUD]
 [--output=OUTPUT]
 [--refresh]
vm ip inventory [NAMES]
vm ssh [NAMES] [--username=USER]
 [--quiet]
 [--ip=IP]
 [--key=KEY]
 [--command=COMMAND]
 [--modify-knownhosts]
vm rename [OLDNAMES] [NEWNAMES] [--force] [--dryrun]
vm wait [--cloud=CLOUD] [--interval=SECONDS]
vm info [--cloud=CLOUD]
 [--output=OUTPUT]
vm username USERNAME [NAMES] [--cloud=CLOUD]
vm resize [NAMES] [--size=SIZE]

1.2. Uniform Parameter Management

The parameters across thes commands are uniformly managed. Most of the plural
form allow a parameterized specification such as a[00-03],a8 which would
result in an array ["a0", "a1", "a2", "a3", "a8"]. This especially applies to
clouds as well as virtual machine names.

We destinguish the following parameterized options

:–cloud=CLOUDS: which specifies one or more clouds in parameterized fashion

:–names=NAMES: which specifies one or more clouds in parameterized fashion

We distinguish the following regular options

:–interval=INTERVAL: a specified interval in seconds

:–output=OUTPUT: The output format: txt, csv, table

:–refresh: To update the state of the vms specified with clouds and names

:–username=USERNAME: The username to be used for conectiing with the vm

:–quiet: do not print debug messages

:–dryrun: do not execute the command, but just print what would happen

:–ip=IP: specify a public IP

:–key=KEY: start the vm with the keypair name

1.3. Virtual machine management

Virtual machines can be

	Created

	Started

	Stoped

	Suspended

	Resumed

	Destroyed

Default behavior such as a key management nameing scheme as well as ip adress
and security management is conveniently provided

1.4. Key management

Access to the virtual machien is governed by SSH keys. The default key can be
uploaded to the cloud with the key command. The name of the key in the cloud can
be used to associate it with virtual machines so that this key can be used to
log into the VM

1.5. Security groups

A security group acts as a virtual firewall for the instance. When we launch a
instance, we want to attach security Groups for controlling the traffic in and
out of the VM.

1.6. Command Examples

1.6.1. Ping

vm ping [NAMES] [–cloud=CLOUDS] [N]

1.6.2. Check

vm check [NAMES] [–cloud=CLOUDS]

1.6.3. Refersh

vm refresh [NAMES] [–cloud=CLOUDS]

1.6.4. Status

vm status [NAMES] [–cloud=CLOUDS]

1.6.5. Console

vm console [NAME] [–force]

1.6.6. Start

vm start [NAMES] [–cloud=CLOUD] [–dryrun]

1.6.7. Stop

vm stop [NAMES] [–cloud=CLOUD] [–dryrun]

1.6.8. Terminate

vm terminate [NAMES] [–cloud=CLOUD] [–dryrun]

1.6.9. Delete

vm delete [NAMES] [–cloud=CLOUD] [–dryrun]

1.7. AWS Quickstart

vm boot –name=test_cloudmesh –cloud=aws

vm status –name=test_cloudmesh –cloud=aws
(check to see if test_cloudmesh is running)

vm ping –name=test_cloudmesh –cloud=aws

vm check –name=test_cloudmesh –cloud=aws

vm ssh –name=test_cloudmesh –cloud=aws

vm stop –name=test_cloudmesh –cloud=aws

vm start –name=test_cloudmesh –cloud=aws

vm terminate –name=test_cloudmesh –cloud=aws

1. Cloudmesh Multi Cloud Storage Interface

Cloudmesh multiple cloud storage services is independent of the APIs and
interfaces used to access these services. In other words, an abstraction layer
between data and the proprietary APIs is used to place that data in any given
cloud storage service.

Provides a interface to manage all cloud storage in one place. it helps you
access and search all of your files in one place so you don’t need to sign into
several accounts.

2. Cloudmesh Storage Module

Note: Do not modify the shield, once we release the storage module they will work

[image: _images/cloudmesh-storage.svg]Version [https://pypi.python.org/pypi/cloudmesh-storage]
[image: _images/License-Apache%202.0-blue.svg]License [https://github.com/cloudmesh/cloudmesh-storage/blob/master/LICENSE]
[image: _images/cloudmesh-storage1.svg]Python [https://pypi.python.org/pypi/cloudmesh-storage]
[image: _images/cloudmesh-storage2.svg]Format [https://pypi.python.org/pypi/cloudmesh-storage]
[image: _images/cloudmesh-storage3.svg]Format [https://pypi.python.org/pypi/cloudmesh-storage]
[image: _images/cloudmesh-storage4.svg]Travis [https://travis-ci.com/cloudmesh/cloudmesh-storage]

2.1. Requirements

Please note that several packages are available which are pointed to in the
installation documentation.

	Links
—————	——-
Documentation	https://cloudmesh.github.io/cloudmesh-manual
Code	https://github.com/cloudmesh/cloudmesh-storage
Instalation Instructions	https://github.com/cloudmesh-installer

An dynamically extensible CMD based command shell. For en extensive
documentation please see

	https://github.com/cloudmesh-community/book/blob/master/vonLaszewski-cloud.epub?raw=true

where we also document how to use pyenv virtualenv.

2.2. AWSS3 Cloudmesh Integration

AWS S3 file storage has been integrated with cloudmesh library and is available
for use via commandline. As a first step we need to modify cloudmesh4.yaml
config file. Under ‘storage’ section, we need to add the aws section to specify
the parameters used to store files in AWS S3.

In the credentials section under aws, specify the access key id and secret
access key which will be available in the AWS console under
AWS IAM service -> Users -> Security Credentials.

Container is the default bucket which will be used to store the files in AWS S3.
Region is the geographic area like us-east-1 which contains the bucket. Region
is required to get a connection handle on the S3 Client or resource for
that geographic area.

Here is a sample.

cloudmesh:
 ...
 storage:
 aws:
 cm:
 heading: aws
 host: amazon.aws.com
 label: aws
 kind: awsS3
 version: TBD
 default:
 directory: TBD
 credentials:
 access_key_id: *********
 secret_access_key: *******
 container: name of bucket that you want user to be contained in.
 region: Specfiy the default region eg us-east-1

The Cloudmesh command line library offers six functions under storage command:
get, put, search, list, create directory, and delete.
Once you have installed Cloudmesh, type cms into the command line to start the
cms shell.

$ cms
+---+
| ____ _ _ _ |
/ ___		___ _ _ __		_ __ ___ ___ ___		__												
				/ _ \|			/ _`	'_ ` _ \ / _ \/ __	'_ \									
		___		(_)		_		(_							__/__ \			
____	_	___/ __,_	__,_	_		_		_	___		___/_		_					
+---+																		
Cloudmesh CMD5 Shell																		
+---+

cms>

To view the docopt for storage command, type in

cms> help storage

Help command gives a detail level understanding of what each command does and
how to use the command line to interact with different storage providers and
different parameters / options available in a particular command.
For eg to invoke AWS S3 service, we need to pass awss3 as parameter to storage
and suffix with the function call with the function parameters.

cms> storage --storage='aws' list ''

Alternatively, storage command can also be called directly without starting the
cms shell.

$ cms storage --storage='aws' list ''

2.2.1. Storage functions overview

2.2.2. Create dir

This command helps to create a new directory on AWS S3. You must specify the
full path of the new directory you would like to create.

$ cms storage --storage='aws' create dir /base_path/targetdir

2.2.3. Put

The put command uploads files from your local host to the S3.

$ cms storage --storage='aws' put ~/.cloudmesh/storage/sourcedir /base_path/targetdir --recursive

Source for this command could be either a file or directory.

If you specify a file as the source, the file will be uploaded if no such file
exists on the cloud or updated if a copy already exists on the cloud.

If the source is a directory, you can choose to specify the recursive option to
upload the files in the sub-directories in the source as well to the target
directory in S3.
If the recursive option is not specified, only the files in the source
directory will be uploaded to the target directory and the sub-directories will
be ignored.

2.2.4. Get

The get command downloads files from S3 to your local host.

$ cms storage --storage='aws' get /base_container/sourcedir ~/.cloudmesh/storage/targetdir --recursive

Source for this command could be either a file or directory.

If you specify a file as the source, you need to speccify the full path of file
including the file name where you want the file to be downloaded. In case you
do not specify the file name and only give the target directory, then the file
will be downloaded with the same name as present on S3.

If the source is a directory, you can choose to specify the recursive option to
download files in the sub-directories in the source as well to the target
directory in your local host.
If the recursive option is not specified, only the files in the source
directory will be downloaded to the target directory and the sub-directories
will be ignored.

2.2.5. Search

The search command helps to search for a particular file within a directory.

If recursive options is specified, Cloudmesh will search for the file in all
sub-directories of the original directory as well.

To search for a file at the root, pass an empty string or / as the target dir.

$ cms storage --storage='aws' search /base_path/targetdir testfile.txt --recursive

Note that for the Box storage provider, objects are only indexed every 5 to 10 minutes and will not show up in a search until they have been indexed.

2.2.6. List

The list command lists all the contents of a cloud directory. If the recursive
option is specified, it will list the contents of all sub-directories as well.

$ cms storage --storage='aws' list /base_path/targetdir --recursive

2.2.7. Delete

The delete command can delete files or folders from your cloud file storage.
Deleting a folder will delete its contents as well (including the
sub-directories).

$ cms storage --storage='aws' delete /base_path/targetdir --recursive

2.3. Pytests

2.3.1. Generic Tests

We have developed a number of simple pytests that can be called. To see the list
of Pytests go to our directory

	https://github.com/cloudmesh/cloudmesh-storage/tree/master/tests

We also developed a general pytest that works accross providers and can be
invoked as follows

$ cms set storage=box
$ pytest -v --capture=no tests/test_storage.py

$ cms set storage=azure
$ pytest -v --capture=no tests/test_storage.py

$ cms set storage=gdrive
$ pytest -v --capture=no tests/test_storage.py

$ cms set storage=awss3
$ pytest -v --capture=no tests/test_storage.py

2.3.2. Provider Specific Pytests

Open a terminal and navigate to the cloudmesh-storage directory. Enter the
following command to run pytests:

$ pytest -v --capture=no tests/test_storage_box.py
$ pytest -v --capture=no tests/test_azure.py
$ pytest -v --capture=no tests/test_storage_aws.py

TODO: rename to

	test_storage_azure.py

2.4. General features

How to set up the authentication to a specific service is discussed in later
sections

TODO: Provide a simple programming example with the general provider

2.4.1. Command Line Interface

TBD

$ cms set storage=azure
$ cms storage list

2.4.2. Programming Interface

TBD

Cloudmesh Storage provides a simple programming API interface that you can use.
We highlight a simple exampple for storing and retrieving a file form a storage
provider.

We assume the files at the given path exist

import cloudmesh.storage.provider.Provider as Provider
from cloudmesh.common.util import path_expand
from pprint import pprint

provider = Provider(service="azure")
src = path_expand("~/.cloudmesh/storage/test/a/a.txt")
dst = "/"
result = provider.put(src, dst)
The resut will be a dict of the information whih you can print with

pprint(result)

2.4.3. Pytests

Script to test the GDrive service can be accessed under tests folder using the
following pytest command.

TODO rename to test_storage_gdrive.py

$ pytest -v --capture=no tests/test_gdrive.py

2.5. Virtual Directory

The virtual directory has been developed to mirror the linux directory commands.
File links in the virtual directory point to files on storage providers, which
can be retrieved using the virtual directory.

2.5.1. Configuration

The credentials for the virtual directory are the same as for the admin mongo
command. See the Mongo section for details.

2.5.2. Pytests

The vdir command can be tested as follows:

$ pytest -v --capture=no tests/test_vdir.py

2.6. Google drive

The Google Drive API needs the following two 2 credentials files.

	client_secret.json

	google-drive-credentials.json

If we run the Google Drive Provider.py for the First time then the
required keys, tokens are taken from the cloudmesh4.yaml file and creates a
client_secret.json file in the follwing path ~/.cloudmesh/gdrive/

The Authentication.py creates a .credentials folder under the following path
~/.cloudmesh/gdrive/ if it doesn’t exist and creates a
google-drive-credentials.json file under the following folder
~/.cloudmesh/gdrive/.credentials/

So, for the First time browser will be opened up automatically and asks for
the Google Drive(gmail) credentials i.e., login email and password. If you
provide these 2 then the Authentication step is completed and then it will
create the google-drive-credentials.json and place it in
~/.cloudmesh/gdrive/.credentials/ folder.

These steps are to be followed for the first time or initial run. Once it is
done then our program is set. After these steps then the program will run
automatically by using these credentials stored in the respective files.

2.6.1. Note

The Google Drive API accepts these 2 files in the form of .json file format
and not in the form of a dictionary.

2.6.2. Links

Link for additional information:

	https://github.com/cloudmesh-community/sp19-516-130/blob/master/gdrive.md

3. Object Storage

3.1. Instalation for Users

At this time we do not offer this ~~but it will be~~

~~pip install cloudmesh-community~~

Gregor will set this up, so please do not do this yourself.

3.2. Instalation for Developers

This install only works if you use ssh-keys with github

mkdir cm
cd cm
pip install cloudmesh-installer
#
if you have not uploaded your ssh key to git do so. One option is
cloudmesh-installer git key
#
cloudmesh-installer clone storage
cloudmesh-installer install storage -e
git clone git@github.com:cloudmesh/cloudmesh-objstorage.git
cd cloudmesh-objstorage
pip install -e .

3.3. Cloudmesh Object Storage Interfaces

3.3.1. Object Storage with ASW S3

Object Storage is one of the feature in AWS S3 and this feature integrated with cloudmesh library and is available
for use via commandline.

Follow the below steps:

	Modify cloudmesh4.yaml config file in ‘cloudmesh-objstorage’ section. User need to add required object storage parameters to communicate with cloud(AWS S3)

	In the credentials section under awss3, add the parameter values of access_key_id and secret_access_key, these credentials will be gained from appropriate cloud vendor(For ex: AWS), in the case of AWS, these will be available which will be available in the AWS console under
AWS IAM service -> Users -> Security Credentials.

Here is a sample.

cloudmesh:
 ...
 objstorage:
 awss3:
 cm:
 heading: aws
 host: amazon.aws.com
 label: aws
 kind: awss3
 version: 1.0
 default:
 directory: AWS
 credentials:
 access_key_id: *********
 secret_access_key: *******

The Cloudmesh command line library offers several functions as part of objstorage command:
get, put, search, list, create, and delete.
Once you have installed Cloudmesh, type cms into the command line to start the
cms shell.

$ cms
+---+
| ____ _ _ _ |
/ ___		___ _ _ __		_ __ ___ ___ ___		__												
				/ _ \|			/ _`	'_ ` _ \ / _ \/ __	'_ \									
		___		(_)		_		(_							__/__ \			
____	_	___/ __,_	__,_	_		_		_	___		___/_		_					
+---+																		
Cloudmesh CMD5 Shell																		
+---+

cms>

To view the docopt for objstorage command, type in

cms> help objstorage

Help command gives a detail level understanding of what each command does and
how to use the command line to interact with different object storage providers and
different parameters / options available in a particular command.

In this, default object storage invokes AWS S3 service, we need to pass awss3 as parameter to storage
and suffix with the function call with the function parameters.

cms> objstorage --objstorage='aws3' list ''

Alternatively, objstorage command can also be called directly without starting the
cms shell.

$ cms objstorage --objstorage='awss3' list ''

3.3.2. Objstorage Functionality

3.4. Create Object Directory

This command helps to create a new bucket before storage an object on AWS S3. You must specify the
full path of the new directory you would like to create.

$ cms objstorage --objstorage='awss3' create bucket_name /base_path/

3.5. Put

The put command uploads object from your local system to AWS S3 object storage

$ cms objstorage --objstorage='awss3' put ~/.cloudmesh/objstorage/src /base_path/dest --recursive

3.6. Get

The put command retrieve or download a object from AWS S3 object storage

$ cms objstorage --objstorage='awss3' get /bucket_name/src ~/.cloudmesh/objstorage/dest --recursive

3.7. Search

The advantage of search command to search a given object in specified bucket location

$ cms objstorage --objstorage='aws3' search //bucket_name/dest "<<objectname>>" --recursive

3.8. List

The list command lists all the contents of a cloud object details. If the recursive
option is specified, it will list the contents of all the nested objects information

$ cms objstorage --objstorage='awss3' list /bucket_name/dest --recursive

3.9. Delete

The delete command can delete objects on cloud storage. Once object deletes it will never be rollback and delete applicable to nested objects when function --recursive used.
Deleting a folder will delete its contents as well (including the
sub-directories).

$ cms objstorage --objstorage='awss3' delete /bucket_name/est --recursive

4. Cloudmesh Multi Cloud Open API Interface

Cloudmesh-storage also provides an OpenAPI specification that allows users to
run the multi cloud storage services using a single REST service in addition
to the command line interface.

The REST service is developed independent of the storage service provider and
users can switch between providers by setting the storage variable as
follows:

$ cms set storage='azureblob'

Note: azureblob can be replaced with the desired service in the above command.

To invoke the server, navigate to the OpenAPI folder in the
cloudmesh-storage directory and use:

$ cms openapi server start ./openapi_storage.yaml

to start up the server on the default address and port. Once the server is
started all cloudmesh-storage functions can be accessed using the following
endpoints.

http://localhost:8080//cloudmesh/storage/v1/put
http://localhost:8080//cloudmesh/storage/v1/get
http://localhost:8080//cloudmesh/storage/v1/list
http://localhost:8080//cloudmesh/storage/v1/search
http://localhost:8080//cloudmesh/storage/v1/delete
http://localhost:8080//cloudmesh/storage/v1/create_dir

All of the options described in the cloudmesh-storage section are available
in the OpenAPI specification as arguments. For example, to list the files
from a specific directory on the service, the following URL can be visited:

http://localhost:8080/cloudmesh/storage/v1/list?service={storage}&directory=%2fapitest&recursive=True

4.1. Pytests

A generic pytest is also developed which is available in the following directory

	https://github.com/cloudmesh/cloudmesh-storage/tree/master/cloudmesh/storage/spec/tests

The generic pytest that works accross providers and can be invoked as follows

$ cms set storage=azureblob
$ pytest -v --capture=no tests/test_openapi_storage.py

$ cms set storage=box
$ pytest -v --capture=no tests/test_openapi_storage.py

$ cms set storage=gdrive
$ pytest -v --capture=no tests/test_openapi_storage.py

$ cms set storage=awss3
$ pytest -v --capture=no tests/test_openapi_storage.py

1. Infrastructure Workflow

Cloudmesh supports an infrastructure workflow [https://github.com/cloudmesh/cloudmesh-flow] where users can specify python
functions and map their execution on cloud infrastructure. The workflow
feature allows you to define Python functions on a workflow class, and
specify when to execute them via the command line or in a YAML file. You
can then visualize the result of your workflow execution.

An example is given below.

from cloudmesh.flow.FlowDecorator import BaseWorkFlow

class MyFlow(BaseWorkFlow):
 def a(self):
 print("in a!")
 time.sleep(5)
 def b(self):
 print("in b!")
 time.sleep(10)
 def c(self):
 print("in c!")
 time.sleep(10)

This allows you to define functions in your workflow file. Then you can
write a specification for the sequence to execute your functions:

(a; b || c)

Where

	a ; b is executed sequentially

	b || c is executed in parallel.

Finally, after execution the results are stored in MongoDB to be visualized or consumed
by later functions in the series.

1.1. Javascript Interface (proposed)

We are looking for someone that would chose as its project to include a
rendering of some DAG in javascript. The javascript library must be free to use.
Nodes and edges must be able to be labeled.

A promissing start for a Javascript library is

	http://visjs.org/network_examples.html

	http://visjs.org/examples/network/events/interactionEvents.html

This project is only recommended for someone that knows javascript already.

You will do the rest of the project in python. It is important that the
functions be specified in python and not just Javascript. The focus is not on
specifying the DAG with a GUI, but to visualizing it at runtime with status
updates

Here is another summary that we posted earlier and is probably better as it has
a dict return

So what we want to do is something i have done previously somewhere with
graphviz, but instead of using graphviz we use java script. W want to define
tasks that depend on each other. The tasks are defined as python functions. The
dependencieas are specified via a simple graph string

def a (); print("a"); sleep(1) ; return {"status": "done", "color":"green", shape:"circle", label="a"}

def b (); print("b"); sleep(2); return{"status": "done", "color":"green", shape:"circle", label="b"}

def b (); print("c"); sleep(3); return{"status": "done", "color":"green", shape:"circle", label="c"}

w = workflow("a; b | c")

; = sequential

| = parallel

w.run()

While executing the javascript would change dynamically the state and color
after a calculation is completed. The workflow should also be able to be
specified in yaml

Here just one idea:

tasks:
 task:
 name: a
 parameter:
 x: "int"
 y:: "int"
 calculation: f(x,y)
 entry:
 color: green
 label: a
 value: x (this is a python variable local to the function
 shape: circle
 return:
 color: green
 label: a
 value: x (this is a python variable local to the function
 shape: circle

Naturally at one point f(x,y) will be cloud related such as starting a vm and
executing a command in teh vm ….

Followup:

We added a value to the return. Values can be any object.

def a():
 x = 10
 return {"status": "done",
 "color": "green",
 "shape": "circle",
 "label": "c",
 "value": x}

1.2. REST

An OpenAPI specification for this is to be defined.

1.3. Resources

	https://github.com/xflr6/graphviz

	http://visjs.org/examples/network/events/interactionEvents.html

2. Jupyter Integration (proposed)

As cloudmesh provides an API but also is available as command shell it is very
easy to integrate it into jupyter

In this section we describe hw to do this.

Any cms command can be run via the shell

[1] !cms set cloud=AWS
[2] !cms vm start

2.1. API command shell access (proposed)

To use a more pythonic apporach you can do

import cloudmesh

script = """
cms set cloud=AWS
cms vm start
"""

cloudmesh.shell(script)

2.2. API calls (ok)

To use the specific API calls, look at the manaul or the tests. To list for example the
flavors of a cloud you can use:

from cloudmesh.compute.libcloud.Provider import Provider
from cloudmesh.common.Printer import Printer
from pprint import pprint

provider = Provider(name="chameleon")
images= provider.images()

pprint (images)

To print the information in a noce table you can also use

print(Printer.flatwrite(images,
 sort_keys=("name","extra.minDisk"),
 order=["name", "extra.minDisk", "updated", "driver"],
 header=["Name", "MinDisk", "Updated", "Driver"])
)

The printer has a flatwrite method included that first converts the dict into a
flat dict, where each attribute is changed to a single level dict by using a
period to indicate the indentation of the dicts in case dict of dicts are used
as in our example

1. Batch

The purpose of this sub-command is to facilitate job submission on
clusters that use SLURM as their workload manager. Note that this
tools assumes that the SLURM file is properly prepared by the user and
does not modify the SLURM script in any way. Similar to other
sub-commands batch has several sub-commands itself:

cms batch create-job JOB_NAME --slurm-script=SLURM_SCRIPT_PATH --input-type=INPUT_TYPE --slurm-cluster=SLURM_CLUSTER_NAME --job-script-path=SCRIPT_PATH --remote-path=REMOTE_PATH --local-path=LOCAL_PATH [--argfile-path=ARGUMENT_FILE_PATH] [--outfile-name=OUTPUT_FILE_NAME] [--suffix=SUFFIX] [--overwrite]
cms batch run-job JOB_NAME
cms batch fetch JOB_NAME
cms batch test-connection SLURM_CLUSTER_NAME
cms batch set-param slurm-cluster CLUSTER_NAME PARAMETER VALUE
cms batch set-param job-metadata JOB_NAME PARAMETER VALUE
cms batch list slurm-clusters [DEPTH [default:1]]
cms batch list jobs [DEPTH [default:1]]
cms batch remove slurm-cluster CLUSTER_NAME
cms batch remove job JOB_NAME
cms batch clean-remote JOB_NAME

The main options are:

	create-job: used for creating a job configuration (this does not
run the job automatically)

	run-job: used for running a job configuration that is previously created.

	test-connection: used for testing the connection to a SLURM cluster

	set-param: used for setting a parameter in any configuration key

	list: used for listing possible instances of an entity

	remove: used for removing a cluster or job

	clean-remote: used for cleaning the files of a job from a cluster

Each of these sub-commands are reviewed in the following sections with
examples.

1.1. Creating a job configuration

As can be seen, this sub-command has the most number of arguments and
is the vital part of the batch tool. The parameters are all
self-explanatory, but we will review the important ones here:

	--slurm-script: defines the path to the SLURM script that is going to be submitted to the SLURM cluster.

	--input-type: defines the type of input for the application that is going to be run on the cluster. This is important because if the program takes a file name as an argument, that file has to be transfered to the cluster as well. Possible values for this parameter is either params or params+file. Note that if you pass params+file then you have to specify the --argfile-path as well where you define the path to the argument file.

	--slurm-cluster: defines the name of the cluster that is previously defined in cloudmesh yaml file.

	--job-script-path: defines the path to the file that is going to be run on the SLURM cluster

	--remote-path: defines the path on SLURM cluster on which the job files are going to be copied, run and collected.

	--local-path: defines the local path for saving the results.

Consider the following example :

$ cms batch create-job SlurmTest1 --slurm-script=./1_argsin_stdout.slurm --input-type=params --slurm-cluster=slurm-taito --job-script-path=./1_argsin_stdout_script.sh --remote-path=~/tmp --local-path=../batch/sample_scripts/out --overwrite

This will create a job that looks like this in the slurm_batch configuration file placed in the workspace directory:

slurm_cluster:
 slurm-taito:
 name: taito
 credentials:
 sshconfigpath: ~/vms/sshconfig_slurm
job-metadata:
 SlurmTest1:
 suffix: _20181206_19275141
 slurm_cluster_name: slurm-taito
 input_type: params+file
 raw_remote_path: ~/tmp
 slurm_script_path: ./4_filein_fileout.slurm
 job_script_path: ./4_filein_fileout_script.sh
 argfile_path: ./test-script-argument
 argfile_name: test-script-argument
 script_name: 4_filein_fileout_script.sh
 slurm_script_name: 4_filein_fileout.slurm
 remote_path: ~/tmp/job_20181206_19275141/
 remote_script_path: ~/tmp/job_20181206_19275141/4_filein_fileout_script.sh
 remote_slurm_script_path: ~/tmp/job_20181206_19275141/4_filein_fileout.slurm
 local_path: ../batch/sample_scripts/out

1.2. Testing the connection

Note that the cluster information is already extracted and added to
this file. Therefore unlike vcluster, there is no need to add the
cluster manually. So far, we have just added and updated the
configuration and the job is neither submitted nor run in the cluster.
Before doing that, let’s try to test our connection to the cluster:

$ cms batch test-connection slurm-taito
Slurm Cluster taito is accessible.

1.3. Running the Job

Now that we are sure that the ssh connection works fine, let’s try to
run the job:

$ cms batch run-job SlurmTest1
Remote job ID: 32846209

Despite the short output, this command does a lot of work behind the
seen including:

	Creating the proper folder structure in the remote

	Copying the SLURM script, as well as the job script and the argument
files if any.

	Submitting the job

	Keeping the job ID and save it in the configuration file so that the
results can be fetched later

Just for the demonstration purpose, let’s check the remote folder in
the cluster and you will see that all of the files as well as the
results will be available there:

@taito-login3:~/tmp/job_20181206_19301175$ ll
total 28
drwxr-xr-x 2 4096 Dec 7 02:36 ./
drwx------ 3 4096 Dec 7 02:35 ../
-rwxr-xr-x 1 238 Dec 7 02:35 4_filein_fileout.slurm*
-rw-r--r-- 1 0 Dec 7 02:36 4_filein_fileout.slurm.e32846209
-rw-r--r-- 1 117 Dec 7 02:36 4_filein_fileout.slurm.o32846209
-rwxr-xr-x 1 48 Dec 7 02:35 4_filein_fileout_script.sh*
-rw-r--r-- 1 35 Dec 7 02:35 test-script-argument
-rw------- 1 35 Dec 7 02:36 test-script-output

1.4. Downloading the Results

Now that the results are ready we can fetch the results using the following command:

$ cms batch fetch SlurmTest1
collecting results
Results collected from taito for jobID 32846209
waiting for other results if any...
All of the remote results collected.

Using this, the results will be downloaded in the local path specified
in the configuration file:

out$ ll job_20181206_19301175/
total 1M
drwxr-xr-x 2 corriel 1M Dec 6 19:40 ./
drwxr-xr-x 3 corriel 1M Dec 6 19:40 ../
-rw-r--r-- 1 corriel 0M Dec 6 19:40 4_filein_fileout.slurm.e32846209
-rw-r--r-- 1 corriel 1M Dec 6 19:40 4_filein_fileout.slurm.o32846209
-rw------- 1 corriel 1M Dec 6 19:40 test-script-output

1.5. Cleaning the remote

Now that you are done, you can easily clean the remote using:

$ cms batch clean-remote SlurmTest1
Job SlurmTest1 cleaned successfully.

1.6. Get the list of the jobs and clusters

Naturally after working with the batch for a while, several jobs and clusters will be accumulated in the configuration file. You can get the list of current jobs and clusters using the following commands:

$ cms batch list slurm-clusters
 slurm-taito:
	 name
	 credentials
$ cms batch list jobs
 SlurmTest1:
	 suffix
	 slurm_cluster_name
	 input_type
	 raw_remote_path
	 slurm_script_path
	 job_script_path
	 argfile_path
	 argfile_name
	 script_name
	 slurm_script_name
	 remote_path
	 remote_script_path
	 remote_slurm_script_path
	 local_path
	 jobIDs

It is also possible to increase the depth of the information by adding the desired depth as the next parameter:

$ cms batch list slurm-clusters 2
 slurm-taito:
	 name:
		 taito
	 credentials:
		 sshconfigpath:
			 ~/vms/sshconfig_slurm

1.7. Modifying the Configuration by Setting Parameters

In case you want to modify or add a configuration parameter, there is no need to directly modify the file. Indeed you can use the set-param command to set a key for both jobs and slurm-clusters. In the next example we will add a test-key and test-value parameter to the slurm-taito cluster:

$ cms batch set-param slurm-cluster slurm-taito test-key test-value
slurm-cluster parameter test-key set to test-value successfully.

$ cms batch list slurm-clusters 2
 slurm-taito:
	 name:
		 taito
	 credentials:
		 sshconfigpath:
			 ~/vms/sshconfig_slurm
	 test-key:
		 test-value

1.8. Removing jobs and clusters

Finally, when you are done with a job, or when a cluster is not accessible anymore, you can easily remove them from the batch configuration file using the following:

$ cms baremove slurm-cluster slurm-taito
Slurm-cluster slurm-taito removeed successfully.

similarly, you can remove a obsolete job using the following command:

$ cms batch remove job SlurmTest1
Job SlurmTest1 removeed successfully.

1. CMD5 Integartion

1.1. Install

TODO verify if pip install is different from python setup.py

pip install cmd5
pip install -e .

git clone https://github.com/cloudmesh/cloudmesh.common.git
git clone https://github.com/cloudmesh/cloudmesh.cmd5.git
git clone https://github.com/cloudmesh/cloudmesh.bar.git
git clone https://github.com/cloudmesh/cloudmesh.sys.git
cd ~/github/cloudmesh.common
python setup.py install
pip install .
cd ~/github/cloudmesh.cmd5
python setup.py install
pip install .
cd ~/github/cloudmesh.sys
python setup.py install
pip install .

1. Reference Card (proposed)

1.1. Shell

Shell

	Command

	Description

	cms help

	help

	cms man

	manual pages

	cms script.cm

	execute cm commands in script

1.2. Shell commands that expire after a session

Shell

	Command

	Description

	cms color on

	sets the shell color

	cms color off

	switches off the color

	cms refresh on

	automatic refresh from the clouds

	cms refresh off

	data is only read from the database. Useful for managing thousands of VMs or limit your access to the cloud.

	var a=xyx

	declares a variable

	var username=cloudmesh.profile.username

	reads the variable from the cloudmesh.yaml file

	var time=now

	gets the time and store it in the variable time

1.3. Clouds

Cloud

	Command

	Description

	cms image list

	list images

	cms flavor list

	list flavors

	cms vm list

	list vms

	cms vm boot

	boot vm

	cms vm boot –cloud=kilo

	boot vm on cloud kilo

	cms default cloud=kilo

	set default cloud to kilo

	cms select image

	select interactively the default image (not implemented yet).

	cms select flavor

	select interactively the default flavor (not implemented yet).

	cms select cloud

	select interactively the default cloud (not implemented yet).

1.4. Comet

1.5. HPC

HPC

	Command

	Description

	cms help

	Help

	cms hpc queue <batch>

	info about the queue <batch>

	cms hpc info

	information about the queues on the HPC resource

	cms hpc run uname -a

	runs the command uname

	cms hpc run list

	prints the ids of previously run jobs

	cms hpc run list

	prints the ids of previously run jobs

	cms hpc run list 11

	prints the information regarding the job with the id 11

2. Commands

EOF data image objstorage secgroup storage version
admin default info open set sys vm
banner echo inventory pause shell url workflow
batch emr key plugin sleep var
clear flavor login q source vbox
config flow man queue ssh vcluster
container help network quit stopwatch vdir

3. Manual Cmd5

CMD5

	3.1. admin

	3.2. banner

	3.3. clear

	3.4. default

	3.5. echo

	3.6. info

	3.7. pause

	3.8. plugin

	3.9. q

	3.10. quit

	3.11. shell

	3.12. sleep

	3.13. stopwatch

	3.14. sys

	3.15. var

	3.16. version

3.1. admin

Usage:
 admin mongo install [--brew] [--download=PATH]
 admin mongo create
 admin mongo status
 admin mongo stats
 admin mongo version
 admin mongo start
 admin mongo stop
 admin mongo backup FILENAME
 admin mongo load FILENAME
 admin mongo security
 admin mongo password PASSWORD
 admin mongo list
 admin rest status
 admin rest start
 admin rest stop
 admin status
 admin system info
 admin yaml cat
 admin yaml check

The admin command performs some administrative functions, such as installing packages, software and services.
It also is used to start services and configure them.

Arguments:
 FILENAME the filename for backups

Options:
 -f specify the file

Description:

 Mongo DB

 MongoDB is managed through a number of commands.

 The configuration is read from ~/.cloudmesh/cloudmesh4.yaml

 First, you need to create a MongoDB database with

 cms admin mongo create

 Second, you need to start it with

 cms admin mongo start

 Now you can interact with it to find out the status, the stats,
 and the database listing with the commands

 cms admin mongo status
 cms admin mongo stats
 cms admin mongo list

 To stop it from running use the command

 cms admin mongo stop

 System information about your machine can be returned by

 cms admin system info

 This can be very useful in case you are filing an issue or bug.

3.2. banner

Usage:
 banner [-c CHAR] [-n WIDTH] [-i INDENT] [-r COLOR] TEXT...

Arguments:
 TEXT... The text message from which to create the banner
 CHAR The character for the frame.
 WIDTH Width of the banner
 INDENT indentation of the banner
 COLOR the color

 Options:
 -c CHAR The character for the frame. [default: #]
 -n WIDTH The width of the banner. [default: 70]
 -i INDENT The width of the banner. [default: 0]
 -r COLOR The color of the banner. [default: BLACK]

 Prints a banner form a one line text message.

3.3. clear

Usage:
 clear

Clears the screen.

3.4. default

Usage:
 default list [--context=CONTEXT] [--format=FORMAT]
 default delete --context=CONTEXT
 default delete KEY [--context=CONTEXT]
 default KEY [--context=CONTEXT]
 default KEY=VALUE [--CONTEXT=CONTEXT]

Arguments:
 KEY the name of the default
 VALUE the value to set the key to

Options:
 --context=CONTEXT the name of the context
 --format=FORMAT the output format. Values include
 table, json, csv, yaml.

Description:
 Cloudmesh has the ability to manage easily multiple
 clouds. One of the key concepts to manage multiple clouds
 is to use defaults for the cloud, the images, flavors,
 and other values. The default command is used to manage
 such default values. These defaults are used in other commands
 if they are not overwritten by a command parameter.

 The current default values can by listed with

 default list --all

 Via the default command you can list, set, get and delete
 default values. You can list the defaults with

 default list

 A default can be set with

 default KEY=VALUE

 To look up a default value you can say

 default KEY

 A default can be deleted with

 default delete KEY

 To be specific to a cloud you can specify the name of the
 cloud with the --cloud=CLOUD option. The list command can
 print the information in various formats iv specified.

Examples:
 default list --all
 lists all default values

 default list --cloud=kilo
 lists the defaults for the cloud with the name kilo

 default image=xyz
 sets the default image for the default cloud to xyz

 default image=abc --cloud=kilo
 sets the default image for the cloud kilo to xyz

 default image
 list the default image of the default cloud

 default image --cloud=kilo
 list the default image of the cloud kilo

 default delete image
 deletes the value for the default image in the
 default cloud

 default delete image --cloud=kilo
 deletes the value for the default image in the
 cloud kilo

3.5. echo

Usage:
 echo [-r COLOR] TEXT

 Arguments:
 TEXT The text message to print
 COLOR the color

 Options:
 -r COLOR The color of the text. [default: BLACK]

 Prints a text in the given color

3.6. info

Usage:
 info [path|commands|files|cloudmesh]

Description:
 info
 provides internal info about the shell and its packages

3.7. pause

Usage:
 pause [MESSAGE]

Arguments:
 MESSAGE message to be displayed

Description:
 Displays the specified text then waits for the user to press RETURN.

3.8. plugin

Usage:
 plugin install PLUGIN [-s]
 plugin uninstall PLUGIN
 plugin list
 plugin ? [--format=FORMAT]

Arguments:
 PLUGIN the name of the plugin

Description:
 plugin available
 lists the available plugins
 plugin list
 lists the plugin
 plugin install
 installs the given plugin
 plugin uninstall
 uninstalls the given plugin

3.9. q

Usage:
 quit

Description:
 Action to be performed when quit is typed

3.10. quit

Usage:
 quit

Description:
 Action to be performed when quit is typed

3.11. shell

Usage:
 shell COMMAND

 Arguments:
 COMMAND the command to be executed

Description:
 shell COMMAND executes the command

3.12. sleep

Usage:
 sleep SECONDS

Clears the screen.

3.13. stopwatch

Usage:
 stopwatch start TIMER
 stopwatch stop TIMER
 stopwatch print [TIMER]

Arguments:
 TIMER the name of the timer

Description:
 THIS IS NOT YET WORKING
 starts and stops named timers and prints them

3.14. sys

Usage:
 sys upload
 sys commit MESSAGE
 sys command generate NAME
 sys version VERSION

This command does some useful things.

Arguments:
 MESSAGE the message to commit
 NAME the command to generate
 VERSION the version number

Options:
 -f specify the file

Description:
 cms sys command generate my
 This requires that you have checked out

 ./cloudmesh-common
 ./cloudmesh-cmd5
 ./cloudmesh-sys

 When you execute in . this command
 will generate a sample directory tree for
 the command 'my'.

 You can than modify

 cloudmesh.my/cloudmesh/my/command/my.py

 to define your own cmd5 add on commands.
 You install the command with

 cd cloudmesh.my; pip install .

 The commands 'version', 'commit' and 'upload'
 are only to be used by Gregor.

 cms version
 The version command adds a new version to the
 VERSION file for cmd5, common, and sys.
 This helps to keep the versions aligned across
 these modules.

 cms commit
 The commit command adds a new version and commits

 cms upload
 The upload command uploads the new version to pypi

3.15. var

Usage:
 var list
 var clear
 var delete NAME
 var NAME=VALUE
 var NAME

Arguments:
 NAME the name of the variable
 VALUE the value of the variable
 FILENAME the filename of the variable
Description:
 Manage persistent variables

 var NAME=VALUE
 sets the variable with the name to the value
 if the value is one of data, time, now it will be
 replaced with the value at this time, the format will be
 date 2017-04-14
 time 11:30:33
 now 2017-04-14 11:30:41
 It will wbe replaced accordingly

 The value can also refer to another variable name.
 In this case the current value will be copied in the named
 variable. As we use the $ sign it is important to distinguish
 shell variables from cms variables while using proper quoting.

 Examples include:

 cms var a=\$b
 cms var 'a=$b'
 cms var a=val.b

 The previous command copy the value from b to a. The val command
 was added to avoid quoting.

3.16. version

Usage:
 version pip [PACKAGE]
 version [--format=FORMAT] [--check=CHECK]

Options:
 --format=FORMAT the format to print the versions in [default: table]
 --check=CHECK boolean tp conduct an additional check [default: True]

Description:
 version
 Prints out the version number
 version pip
 Prints the contents of pip list

Limitations:
 Package names must not have a . in them instead you need to use -
 Thus to query for cloudmesh-cmd5 use

 cms version pip cloudmesh-cmd5

4. Compute Manual Pages

Compute

	4.1. batch

	4.2. flavor

	4.3. image

	4.4. key

	4.5. network

	4.6. open

	4.7. secgroup

	4.8. ssh

	4.9. vbox

	4.10. vcluster

	4.11. vm

	4.12. workflow

4.1. batch

Usage:
 batch job create
 --name=NAME
 --cluster=CLUSTER
 --script=SCRIPT
 --executable=EXECUTABLE
 --destination=DESTINATION
 --source=SOURCE
 [--companion-file=COMPANION_FILE]
 [--outfile-name=OUTPUT_FILE_NAME]
 [--suffix=SUFFIX]
 [--overwrite]
 batch job run [--name=NAMES] [--output=OUTPUT]
 batch job fetch [--name=NAMES]
 batch job remove [--name=NAMES]
 batch job clean [--name=NAMES]
 batch job set [--name=NAMES] PARAMETER=VALUE
 batch job list [--name=NAMES] [--depth=DEPTH]
 batch connection_test --job=JOB
 batch cluster list [--cluster=CLUSTERS] [--depth=DEPTH]
 batch cluster remove [--cluster=CLUSTERS]
 batch cluster set [--cluster=CLUSTERS] PARAMETER=VALUE

Arguments:
 FILE a file name
 INPUT_TYPE tbd

Options:
 -f specify the file
 --depth=DEPTH [default: 1]
 --output=OUTPUT [default: table]

Description:

 This command allows to submit batch jobs to queuing systems hosted
 in an HBC center as a service directly form your commandline.

 We assume that a number of experiments are conducted with possibly
 running the script multiple times. Each experiment will save the
 batch script in its own folder.

 The output of the script can be saved in a destination folder. A virtual
 directory is used to coordinate all saved files.

 The files can be located due to the use of the virtual directory on
 multiple different data or file services

 Authentication to the Batch systems is done viw the underlaying HPC
 center authentication. We assume that the user has an account to
 submit on these systems.

 (SSH, 2 factor, XSEDE-account) TBD.

Experiments:

 experiments are jobs that can be run multiple times and create input
 and output file sin them

 cloudmesh:
 experiment:
 job:
 name: {cloudmesh.profile.user.name}-01
 directory: ~/experiment/{experiment.job.name}
 output: {cloudmesh.experiment.job.name}/output
 input: ~/experiment/{experiment.job.name}/input
 script: script.sh
 source ,,,
 destination: {cloudmesh.experiment.job.directory}

 - queue associates with server (cloud)
 - job could be run on queue and is associated with one or multiple
 servers
 - experiment is same as job, but gives some facility to run it
 multiple times

 I do not know what companion file is

Examples:

 batch job run [--name=NAMES] [--output=OUTPUT]

 runs jobs with the given names

 LOTS OF DOCUMENTATION MISSING HERE

 [--companion-file=COMPANION_FILE]
 [--outfile-name=OUTPUT_FILE_NAME]
 [--suffix=SUFFIX] [--overwrite]

4.2. flavor

Usage:
 flavor list [NAMES] [--cloud=CLOUD] [--refresh] [--output=OUTPUT]

Options:
 --output=OUTPUT the output format [default: table]
 --cloud=CLOUD the cloud name
 --refresh refreshes the data before displaying it

Description:

 This lists out the flavors present for a cloud

Examples:
 cm flavor refresh
 cm flavor list
 cm flavor list --output=csv
 cm flavor list 58c9552c-8d93-42c0-9dea-5f48d90a3188 --refresh

 please remember that a uuid or the falvor name can be used to
 identify a flavor.

4.3. image

Usage:
 image list [NAMES] [--cloud=CLOUD] [--refresh] [--output=OUTPUT]

Options:
 --output=OUTPUT the output format [default: table]
 --cloud=CLOUD the cloud name
 --refresh live data taken from the cloud

Description:
 cm image list
 cm image list --output=csv
 cm image list 58c9552c-8d93-42c0-9dea-5f48d90a3188 --refresh

4.4. key

Usage:
 key -h | --help
 key list --cloud=CLOUDS [--output=OUTPUT]
 key list --source=ssh [--dir=DIR] [--output=OUTPUT]
 key list --source=git [--output=OUTPUT] [--username=USERNAME]
 key list [NAMES] [--output=OUTPUT]
 key load --filename=FILENAME [--output=OUTPUT]
 key add [NAME] [--source=FILENAME]
 key add [NAME] [--source=git]
 key add [NAME] [--source=ssh]
 key get NAME [--output=OUTPUT]
 key default --select
 key delete (NAMES | --select | --all) [--dryrun]
 key delete NAMES --cloud=CLOUDS [--dryrun]
 key upload [NAMES] [--cloud=CLOUDS] [--dryrun]
 key upload [NAMES] [VMS] [--dryrun]
 key group upload [--group=GROUPNAMES] [--cloud=CLOUDS] [--dryrun]
 key group add [--group=GROUPNAMES] [--cloud=CLOUDS] [--dryrun]
 key group add --file=FILENAME
 key group delete [--group=GROUPNAMES] [NAMES] [--dryrun]
 key group list [--group=GROUPNAMES] [--output=OUTPUT]
 key group export --group=GROUNAMES --filename=FILENAME

Arguments:
 VMS Parameterized list of virtual machines
 CLOUDS The clouds
 NAME The name of the key.
 SOURCE db, ssh, all
 KEYNAME The name of a key. For key upload it defaults to the default key name.
 OUTPUT The format of the output (table, json, yaml)
 FILENAME The filename with full path in which the key
 is located

Options:
 --dir=DIR the directory with keys [default: ~/.ssh]
 --output=OUTPUT the format of the output [default: table]
 --source=SOURCE the source for the keys [default: cm]
 --username=USERNAME the source for the keys [default: none]
 --name=KEYNAME The name of a key

Description:

 Please note that some values are read from the cloudmesh4.yaml
 file. One such value is cloudmesh.profile.user

 Manages public keys is an essential component of accessing
 virtual machine sin the cloud. There are a number of sources
 where you can find public keys. This includes teh ~/.ssh
 directory and for example github. To list these keys the
 following list functions are provided.

 key list --source=git [--username=USERNAME]
 lists all keys in git for the specified user. If the
 name is not specified it is read from cloudmesh4.yaml
 key list --source=ssh [--dir=DIR] [--output=OUTPUT]
 lists all keys in the directory. If the directory is not
 specified the default will be ~/.ssh
 key list NAMES
 lists all keys in the named virtual machines.

 The keys will be uploaded into cloudmesh with the add command
 under the given name. If the name is not specified the name
 cloudmesh.profile.user is assumed.

 key add --ssh
 adds the default key in ~/.ssh/id_rsa.pub
 key add NAME --source=FILENAME
 adds the key specified by the filename with the given name
 key add NAME --git --username=username
 adds a named github key from a user with the given github
 username.

 Once the keys are uploaded to github, they can be listed

 key list [NAME] [--output=OUTPUT]
 list the keys loaded to cloudmesh in the given format:
 json, yaml, table. table is default. The NAME can be
 specified and if omitted the name cloudmesh.profile.user
 is assumed.

 key get NAME
 Retrieves the key indicated by the NAME parameter from
 cloudmesh and prints its details.
 key default --select
 Select the default key interactively
 key delete NAMES
 deletes the keys. This may also have an impact on groups
 key rename NAME NEW
 renames the key from NAME to NEW.

 Group management of keys is an important concept in cloudmesh,
 allowing multiple users to be added to virtual machines.
 The keys must be uploaded to cloudmesh with a name so they can
 be used in a group. The --dryrun option executes the command
 without uploading the information to the clouds. If no groupname
 is specified the groupname default is assumed. If no cloudnames
 are specified, all active clouds are assumed. active clouds can be
 set in the cloudmesh4.yaml file.

 key group delete [GROUPNAMES] [NAMES] [--dryrun]
 deletes the named keys from the named groups.

 key group list [GROUPNAMES] [--output=OUTPUT]
 list the key names and details in the group.

 key group upload [GROUPNAMES] [CLOUDS] [--dryrun]
 uploads the named groups to the specified clouds.

 In some cases you may want to store the public keys in files. For
 this reason we support the following commands.

 key group add --group=GROUPNAME --file=FILENAME
 the command adds the keys to the given group. The keys are
 written in the files in yaml format.

 key group export --group=GROUNAMES --filename=FILENAME
 the command exports the keys to the given group. The keys are
 written in the files in yaml format.

 The yaml format is as follows:

 cloudmesh:
 keys:
 NAMEOFKEY:
 name: NAMEOFKEY
 key: ssh-rsa AAAA..... comment
 group:
 - GROUPNAME
 ...

 If a key is included in multiple groups they will be added
 to the grouplist of the key

4.5. network

Usage:
 network get fixed [ip] [--cloud=CLOUD] FIXED_IP
 network get floating [ip] [--cloud=CLOUD] FLOATING_IP_ID
 network reserve fixed [ip] [--cloud=CLOUD] FIXED_IP
 network unreserve fixed [ip] [--cloud=CLOUD] FIXED_IP
 network associate floating [ip] [--cloud=CLOUD] [--group=GROUP]
 [--instance=INS_ID_OR_NAME] [FLOATING_IP]
 network disassociate floating [ip] [--cloud=CLOUD] [--group=GROUP]
 [--instance=INS_ID_OR_NAME] [FLOATING_IP]
 network create floating [ip] [--cloud=CLOUD] [--pool=FLOATING_IP_POOL]
 network delete floating [ip] [--cloud=CLOUD] [--unused] [FLOATING_IP]
 network list floating pool [--cloud=CLOUD]
 network list floating [ip] [--cloud=CLOUD] [--unused] [--instance=INS_ID_OR_NAME] [IP_OR_ID]
 network create cluster --group=demo_group
 network -h | --help

Options:
 -h help message
 --unused unused floating ips
 --cloud=CLOUD Name of the IaaS cloud e.g. india_openstack_grizzly.
 --group=GROUP Name of the group in Cloudmesh
 --pool=FLOATING_IP_POOL Name of Floating IP Pool
 --instance=INS_ID_OR_NAME ID or Name of the vm instance

Arguments:
 IP_OR_ID IP Address or ID of IP Address
 FIXED_IP Fixed IP Address, e.g. 10.1.5.2
 FLOATING_IP Floating IP Address, e.g. 192.1.66.8
 FLOATING_IP_ID ID associated with Floating IP, e.g. 185c5195-e824-4e7b-8581-703abec4bc01

Examples:
 network get fixed ip --cloud=india 10.1.2.5
 network get fixed --cloud=india 10.1.2.5
 network get floating ip --cloud=india 185c5195-e824-4e7b-8581-703abec4bc01
 network get floating --cloud=india 185c5195-e824-4e7b-8581-703abec4bc01
 network reserve fixed ip --cloud=india 10.1.2.5
 network reserve fixed --cloud=india 10.1.2.5
 network unreserve fixed ip --cloud=india 10.1.2.5
 network unreserve fixed --cloud=india 10.1.2.5
 network associate floating ip --cloud=india --instance=albert-001 192.1.66.8
 network associate floating --cloud=india --instance=albert-001
 network associate floating --cloud=india --group=albert_group
 network disassociate floating ip --cloud=india --instance=albert-001 192.1.66.8
 network disassociate floating --cloud=india --instance=albert-001 192.1.66.8
 network create floating ip --cloud=india --pool=albert-f01
 network create floating --cloud=india --pool=albert-f01
 network delete floating ip --cloud=india 192.1.66.8 192.1.66.9
 network delete floating --cloud=india 192.1.66.8 192.1.66.9
 network list floating ip --cloud=india
 network list floating --cloud=india
 network list floating --cloud=india --unused
 network list floating --cloud=india 192.1.66.8
 network list floating --cloud=india --instance=323c5195-7yy34-4e7b-8581-703abec4b
 network list floating pool --cloud=india
 network create cluster --group=demo_group

4.6. open

Usage:
 open chameleon baremetal tacc
 open chameleon baremetal uc
 open chameleon vm
 open chameleon openstack
 open FILENAME
 open doc local
 open doc

Arguments:

 FILENAME the file to open in the cwd if . is
 specified. If file in in cwd
 you must specify it with ./FILENAME

 if the FILENAME is doc than teh documentation from the Web
 is opened.

Description:

 Opens the given URL in a browser window.

 open chameleon baremetal tacc
 starts horizon for baremetal for chameleon cloud at TACC

 open chameleon baremetal uc
 starts horizon for baremetal for chameleon cloud at UC

 open chameleon vm
 starts horizon for virtual machines

4.7. secgroup

Usage:
 secgroup list [--output=OUTPUT]
 secgroup list --cloud=CLOUD [--output=OUTPUT]
 secgroup list GROUP [--output=OUTPUT]
 secgroup add GROUP RULE FROMPORT TOPORT PROTOCOL CIDR
 secgroup delete GROUP [--cloud=CLOUD]
 secgroup delete GROUP RULE
 secgroup upload [GROUP] [--cloud=CLOUD]
Options:
 --output=OUTPUT Specify output format, in one of the following:
 table, csv, json, yaml, dict. The default value
 is 'table'.
 --cloud=CLOUD Name of the IaaS cloud e.g. kilo,chameleon.
 The clouds are defined in the yaml file.
 If the name "all" is used for the cloud all
 clouds will be selected.
Arguments:
 RULE The security group rule name
 GROUP The label/name of the security group
 FROMPORT Staring port of the rule, e.g. 22
 TOPORT Ending port of the rule, e.g. 22
 PROTOCOL Protocol applied, e.g. TCP,UDP,ICMP
 CIDR IP address range in CIDR format, e.g.,
 129.79.0.0/16

Examples:
 secgroup list
 secgroup list --cloud=kilo
 secgroup add my_new_group webapp 8080 8080 tcp 0.0.0.0/0
 seggroup delete my_group my_rule
 secgroup delete my_unused_group --cloud=kilo
 secgroup upload --cloud=kilo

Description:
 security_group command provides list/add/delete
 security_groups for a tenant of a cloud, as well as
 list/add/delete of rules for a security group from a
 specified cloud and tenant.
 Security groups are first assembled in a local database.
 Once they are defined they can be added to the clouds.
 secgroup list [--output=OUTPUT]
 lists all security groups and rules in the database
 secgroup list GROUP [--output=OUTPUT]
 lists a given security group and its rules defined
 locally in the database
 secgroup list --cloud=CLOUD [--output=OUTPUT]
 lists the security groups and rules on the specified clouds.
 secgroup add GROUP RULE FROMPORT TOPORT PROTOCOL CIDR
 adds a security rule with the given group and the details
 of the security rules
 secgroup delete GROUP [--cloud=CLOUD]
 Deletes a security group from the local database. To make
 the change on the remote cloud, using the 'upload' command
 afterwards.
 If the --cloud parameter is specified, the change would be
 made directly on the specified cloud
 secgroup delete GROUP RULE
 deletes the given rule from the group. To make this change
 on the remote cloud, using 'upload' command.
 secgroup upload [GROUP] [--cloud=CLOUD...]
 uploads a given group to the given cloud. If the cloud is
 not specified the default cloud is used.
 If the parameter for cloud is "all" the rules and groups
 will be uploaded to all active clouds.
 This will synchronize the changes (add/delete on security
 groups, rules) made locally to the remote cloud(s).

4.8. ssh

Usage:
 ssh table
 ssh list [--output=OUTPUT]
 ssh cat
 ssh register NAME PARAMETERS
 ssh ARGUMENTS
 conducts a ssh login on a machine while using a set of
 registered machines specified in ~/.ssh/config

Arguments:
 NAME Name or ip of the machine to log in
 list Lists the machines that are registered and
 the commands to login to them
 PARAMETERS Register te resource and add the given
 parameters to the ssh config file. if the
 resource exists, it will be overwritten. The
 information will be written in /.ssh/config

Options:
 -v verbose mode
 --output=OUTPUT the format in which this list is given
 formats includes table, json, yaml, dict
 [default: table]
 --user=USER overwrites the username that is
 specified in ~/.ssh/config
 --key=KEY The keyname as defined in the key list
 or a location that contains a public key

Description:
 ssh list
 lists the hostsnames that are present in the
 ~/.ssh/config file
 ssh cat
 prints the ~/.ssh/config file
 ssh table
 prints contents of the ~/.ssh/config file in table format
 ssh register NAME PARAMETERS
 registers a host i ~/.ssh/config file
 Parameters are attribute=value pairs
 Note: Note yet implemented
 ssh ARGUMENTS
 executes the ssh command with the given arguments
 Example:
 ssh myhost
 conducts an ssh login to myhost if it is defined in
 ~/.ssh/config file

4.9. vbox

Usage:
 vbox version [--output=OUTPUT]
 vbox image list [--output=OUTPUT]
 vbox image find KEYWORDS...
 vbox image add NAME
 vbox image delete NAME
 vbox vm info NAME
 vbox vm list [--output=OUTPUT] [-v]
 vbox vm delete NAME
 vbox vm ip [NAME] [--all]
 vbox vm create [NAME] ([--memory=MEMORY] [--image=IMAGE] [--port=PORT] [--script=SCRIPT] | list)
 vbox vm boot [NAME] ([--memory=MEMORY] [--image=IMAGE] [--port=PORT] [--script=SCRIPT] | list)
 vbox vm ssh [NAME] [-e COMMAND]

4.10. vcluster

Usage:

 vcluster create cluster CLUSTER_NAME --clusters=CLUSTERS_LIST [--computers=COMPUTERS_LIST] [--debug]
 vcluster destroy cluster CLUSTER_NAME
 vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params out:stdout [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-later [default=True]] [--debug]
 vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params out:file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-later [default=True]] [--debug]
 vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:stdout [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-later [default=True]] [--debug]
 vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-later [default=True]] [--debug]
 vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:stdout+file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-later [default=True]] [--debug]
 vcluster set-param runtime-config CONFIG_NAME PARAMETER VALUE
 vcluster destroy runtime-config CONFIG_NAME
 vcluster list clusters [DEPTH [default:1]]
 vcluster list runtime-configs [DEPTH [default:1]]
 vcluster run-script --script-path=SCRIPT_PATH --job-name=JOB_NAME --vcluster-name=CLUSTER_NAME --config-name=CONFIG_NAME --arguments=SET_OF_PARAMS --remote-path=REMOTE_PATH --local-path=LOCAL_PATH [--argfile-path=ARGUMENT_FILE_PATH] [--outfile-name=OUTPUT_FILE_NAME] [--suffix=SUFFIX] [--overwrite]
 vcluster fetch JOB_NAME
 vcluster clean-remote JOB_NAME PROCESS_NUM
 vcluster test-connection CLUSTER_NAME PROCESS_NUM

This command does some useful things.

Arguments:
 FILE a file name

Options:
 -f specify the file

4.11. vm

Usage:
 vm ping [NAMES] [--cloud=CLOUDS] [--count=N] [--processors=PROCESSORS]
 vm check [NAMES] [--cloud=CLOUDS] [--processors=PROCESSORS]
 vm status [NAMES] [--cloud=CLOUDS]
 vm console [NAME] [--force]
 vm start [NAMES] [--cloud=CLOUD] [--dryrun]
 vm stop [NAMES] [--cloud=CLOUD] [--dryrun]
 vm terminate [NAMES] [--cloud=CLOUD] [--dryrun]
 vm delete [NAMES] [--cloud=CLOUD] [--dryrun]
 vm refresh [--cloud=CLOUDS]
 vm list [NAMES]
 [--cloud=CLOUDS]
 [--output=OUTPUT]
 [--refresh]
 vm boot [--name=VMNAMES]
 [--cloud=CLOUD]
 [--username=USERNAME]
 [--image=IMAGE]
 [--flavor=FLAVOR]
 [--public]
 [--secgroup=SECGROUPs]
 [--key=KEY]
 [--dryrun]
 vm boot [--n=COUNT]
 [--cloud=CLOUD]
 [--username=USERNAME]
 [--image=IMAGE]
 [--flavor=FLAVOR]
 [--public]
 [--secgroup=SECGROUPS]
 [--key=KEY]
 [--dryrun]
 vm run [--name=VMNAMES] [--username=USERNAME] [--dryrun] COMMAND
 vm script [--name=NAMES] [--username=USERNAME] [--dryrun] SCRIPT
 vm ip assign [NAMES]
 [--cloud=CLOUD]
 vm ip show [NAMES]
 [--group=GROUP]
 [--cloud=CLOUD]
 [--output=OUTPUT]
 [--refresh]
 vm ip inventory [NAMES]
 vm ssh [NAMES] [--username=USER]
 [--quiet]
 [--ip=IP]
 [--key=KEY]
 [--command=COMMAND]
 [--modify-knownhosts]
 vm rename [OLDNAMES] [NEWNAMES] [--force] [--dryrun]
 vm wait [--cloud=CLOUD] [--interval=SECONDS]
 vm info [--cloud=CLOUD]
 [--output=OUTPUT]
 vm username USERNAME [NAMES] [--cloud=CLOUD]
 vm resize [NAMES] [--size=SIZE]

Arguments:
 OUTPUT the output format
 COMMAND positional arguments, the commands you want to
 execute on the server(e.g. ls -a) separated by ';',
 you will get a return of executing result instead of login to
 the server, note that type in -- is suggested before
 you input the commands
 NAME server name. By default it is set to the name of last vm from database.
 NAMES server name. By default it is set to the name of last vm from database.
 KEYPAIR_NAME Name of the vm keypair to be used to create VM. Note this is
 not a path to key.
 NEWNAMES New names of the VM while renaming.
 OLDNAMES Old names of the VM while renaming.

Options:
 --output=OUTPUT the output format [default: table]
 -H --modify-knownhosts Do not modify ~/.ssh/known_hosts file
 when ssh'ing into a machine
 --username=USERNAME the username to login into the vm. If not
 specified it will be guessed
 from the image name and the cloud
 --ip=IP give the public ip of the server
 --cloud=CLOUD give a cloud to work on, if not given, selected
 or default cloud will be used
 --count=COUNT give the number of servers to start
 --detail for table, a brief version
 is used as default, use this flag to print
 detailed table
 --flavor=FLAVOR give the name or id of the flavor
 --group=GROUP give the group name of server
 --secgroup=SECGROUP security group name for the server
 --image=IMAGE give the name or id of the image
 --key=KEY specify a key to use, input a string which
 is the full path to the private key file
 --keypair_name=KEYPAIR_NAME Name of the vm keypair to
 be used to create VM.
 Note this is not a path to key.
 --user=USER give the user name of the server that you want
 to use to login
 --name=NAME give the name of the virtual machine
 --force rename/ delete vms without user's confirmation
 --command=COMMAND
 specify the commands to be executed

Description:
 commands used to boot, start or delete servers of a cloud

 vm default [options...]
 Displays default parameters that are set for vm boot either
 on the default cloud or the specified cloud.

 vm boot [options...]
 Boots servers on a cloud, user may specify flavor, image
 .etc, otherwise default values will be used, see how to set
 default values of a cloud: cloud help

 vm start [options...]
 Starts a suspended or stopped vm instance.

 vm stop [options...]
 Stops a vm instance .

 vm delete [options...]

 Delete servers of a cloud, user may delete a server by its
 name or id, delete servers of a group or servers of a cloud,
 give prefix and/or range to find servers by their names.
 Or user may specify more options to narrow the search

 vm floating_ip_assign [options...]
 assign a public ip to a VM of a cloud

 vm ip show [options...]
 show the ips of VMs

 vm ssh [options...]
 login to a server or execute commands on it

 vm list [options...]
 same as command "list vm", please refer to it

 vm status [options...]
 Retrieves status of last VM booted on cloud and displays it.

 vm refresh [--cloud=CLOUDS]
 this command refreshes the data for virtual machines,
 images and flavors for the specified clouds.

 vm ping [NAMES] [--cloud=CLOUDS] [--count=N] [--processors=PROCESSORS]
 pings the specified virtual machines, while using at most N pings.
 The ping is executed in parallel.
 If names are specifies the ping is restricted to the given names in
 parameter format. If clouds are specified, names that are not in
 these clouds are ignored. If the name is set in the variables
 this name is used.

Tip:
 give the VM name, but in a hostlist style, which is very
 convenient when you need a range of VMs e.g. sample[1-3]
 => ['sample1', 'sample2', 'sample3']
 sample[1-3,18] => ['sample1', 'sample2', 'sample3', 'sample18']

Quoting commands:
 cm vm login gvonlasz-004 --command="uname -a"

Limitations:

 Azure: rename is not supported

4.12. workflow

Usage:
 workflow refresh [--cloud=CLOUD] [-v]
 workflow list [ID] [NAME] [--cloud=CLOUD] [--output=OUTPUT] [--refresh] [-v]
 workflow add NAME LOCATION
 workflow delete ID
 workflow status [NAMES]
 workflow show ID
 workflow save NAME WORKFLOWSTR
 workflow run NAME
 workflow service start
 workflow service stop
 This lists out the workflows present for a cloud

Options:
 --output=OUTPUT the output format [default: table]
 --cloud=CLOUD the cloud name
 --refresh refreshes the data before displaying it
 from the cloud

Examples:
 cm workflow refresh
 cm workflow list
 cm workflow list --format=csv
 cm workflow show 58c9552c-8d93-42c0-9dea-5f48d90a3188 --refresh
 cm workflow run workflow1

5. Storage Manual Pages

Storage

	5.1. objstorage

	5.2. storage

	5.3. vdir

5.1. objstorage

Usage:
 objstorage [--service=SERVICE] create dir DIRECTORY
 objstorage [--service=SERVICE] copy SOURCE DESTINATION [--recursive]
 objstorage [--service=SERVICE] get SOURCE DESTINATION [--recursive]
 objstorage [--service=SERVICE] put SOURCE DESTINATION [--recursive]
 objstorage [--service=SERVICE] list SOURCE [--recursive] [--output=OUTPUT]
 objstorage [--service=SERVICE] delete SOURCE
 objstorage [--service=SERVICE] search DIRECTORY FILENAME [--recursive] [--output=OUTPUT]

This command does some useful things.

Arguments:
 SOURCE BUCKET | OBJECT can be a source bucket or object name or file
 DESTINATION BUCKET | OBJECT can be a destination bucket or object name or file
 DIRECTORY DIRECTORY refers to a folder or bucket on the cloud service for ex: awss3

Options:
 -h, --help
 --service=SERVICE specify the cloud service name like aws-s3

Description:
 commands used to upload, download, list files on different cloud objstorage services.

 objstorage put [options..]
 Uploads the file specified in the filename to specified cloud from the SOURCEDIR.

 objstorage get [options..]
 Downloads the file specified in the filename from the specified cloud to the DESTDIR.

 objstorage delete [options..]
 Deletes the file specified in the filename from the specified cloud.

 objstorage list [options..]
 lists all the files from the container name specified on the specified cloud.

 objstorage create dir [options..]
 creates a folder with the directory name specified on the specified cloud.

 objstorage search [options..]
 searches for the source in all the folders on the specified cloud.

Example:
 set objstorage=s3object
 objstorage put SOURCE DESTINATION --recursive
 is the same as
 objstorage --service=s3object put SOURCE DESTINATION --recursive

5.2. storage

Usage:
 storage [--storage=SERVICE] create dir DIRECTORY
 storage [--storage=SERVICE] get SOURCE DESTINATION [--recursive]
 storage [--storage=SERVICE] put SOURCE DESTINATION [--recursive]
 storage [--storage=SERVICE] list SOURCE [--recursive] [--output=OUTPUT]
 storage [--storage=SERVICE] delete SOURCE
 storage [--storage=SERVICE] search DIRECTORY FILENAME [--recursive] [--output=OUTPUT]
 storage [--storage=SERVICE] sync SOURCE DESTINATION [--name=NAME] [--async]
 storage [--storage=SERVICE] sync status [--name=NAME]
 storage config list [--output=OUTPUT]

This command does some useful things.

Arguments:
 SOURCE SOURCE can be a directory or file
 DESTINATION DESTINATION can be a directory or file
 DIRECTORY DIRECTORY refers to a folder on the cloud service

Options:
 --storage=SERVICE specify the cloud service name like aws or
 azure or box or google

Description:
 commands used to upload, download, list files on different
 cloud storage services.

 storage put [options..]
 Uploads the file specified in the filename to specified
 cloud from the SOURCEDIR.

 storage get [options..]
 Downloads the file specified in the filename from the
 specified cloud to the DESTDIR.

 storage delete [options..]
 Deletes the file specified in the filename from the
 specified cloud.

 storage list [options..]
 lists all the files from the container name specified on
 the specified cloud.

 storage create dir [options..]
 creates a folder with the directory name specified on the
 specified cloud.

 storage search [options..]
 searches for the source in all the folders on the specified
 cloud.

 sync SOURCE DESTINATION
 puts the content of source to the destination.
 If --recursive is specified this is done recursively from
 the source
 If --async is specified, this is done asyncronously
 If a name is specified, the process can also be monitored
 with the status command by name.
 If the anme is not specified all date is monitored.

 sync status
 The status for the asynchronous sync can be seen with this
 command

 config list
 Lists the configures storage services in the yaml file

Example:
 set storage=azureblob
 storage put SOURCE DESTINATION --recursive

 is the same as
 storage --storage=azureblob put SOURCE DESTINATION --recursive

5.3. vdir

Usage:
 vdir mkdir DIR
 vdir cd [DIR]
 vdir ls [DIR]
 vdir add [FILEENDPOINT] [DIR_AND_NAME]
 vdir delete [DIR_OR_NAME]
 vdir status [DIR_OR_NAME]
 vdir get NAME DESTINATION

Arguments:
 DIR a directory name
 FILEENDPOINT location of file
 DIR_AND_NAME path of file link
 DIR_OR_NAME name of directory or link
 DESTINATION directory to download to
 NAME name of link

Options:
 -f specify the file

Descripton:

 A virtual directory is explained in our NIST doecumentation. It
 contains a number of links that point to other storage services on
 which the file is stored. The links include the provider, the name
 of the profider and its type are identified in the
 ~/.cloudmesh4.yaml file.

 the location is identified as

 {provider}:{directory}/{filensme}

 A cloudmesh directory can be used to uniquely specify the file:

 cm:
 name: the unique name of the file
 kind: vdir
 cloud: local
 directory: directory
 filename: filename
 directory: directory
 provider: provider
 created: date
 modified: date

 vdir get NAME DESTINATION

 locates the file with the name on a storage provider,
 and fetches it from there.

1. Cloudmesh Database

Cloudmesh has a database in whic a local copy of information about objects that
are stored in the cloud is maintained. The objects contain all information of
the cloud that can be retrieved with the raw provider but are enhanced with a
cloudmesh attribute dict. Potential security related attributes, will hoever be removed from it so they are not stored in the database.

This dict looks like

"cm": {
 "kind": the kind of the provider
 "cloud": the cloud or service name, will be renamed to service in future)
 "name": a unique name of the object
}

We list in the next section examples of such data objects

1.1. Virtual Machines

1.1.1. Openstack

The compute provider kind is openstack. The Provider is located at

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/compute/virtualbox/Provider.py

This provder should not be used, but you need to use the general provider at

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/compute/vm/Provider.py

1.1.1.1. Flavor

{
 "_id" : ObjectId("5ca798a7dc64f18b19e644e1"),
 "id" : "1",
 "name" : "m1.tiny",
 "ram" : 512,
 "disk" : 1,
 "bandwidth" : null,
 "price" : 0.0,
 "extra" : {},
 "vcpus" : 1,
 "ephemeral_disk" : 0,
 "swap" : "",
 "cm" : {
 "kind" : "flavor",
 "driver" : "openstack",
 "cloud" : "chameleon",
 "created" : "2019-04-05 18:04:23.621043",
 "name" : "m1.tiny",
 "collection" : "chameleon-flavor",
 "modified" : "2019-04-06 06:50:23.894035"
 },
 "updated" : "2019-04-06 06:50:23.867695"
}

1.1.1.2. Image

{
 "_id" : ObjectId("5ca798abdc64f18b19e644e9"),
 "id" : "4c8e6dac-97f0-4224-b7a2-0daef96b5c9f",
 "name" : "CC-Ubuntu16.04",
 "extra" : {
 "visibility" : null,
 "updated" : "2019-03-25T21:21:06Z",
 "created" : "2019-03-25T21:20:51Z",
 "status" : "ACTIVE",
 "progress" : 100,
 "metadata" : {
 "build-repo-commit" : "4ba0beb418de52f0d3bf93a94392b662d653c073",
 "build-variant" : "base",
 "build-os-base-image-revision" : "20190325",
 "build-os" : "ubuntu-xenial",
 "build-tag" : "jenkins-cc-ubuntu16.04-builder-34",
 "build-repo" : "https://github.com/ChameleonCloud/CC-Ubuntu16.04"
 },
 "os_type" : null,
 "serverId" : null,
 "minDisk" : 0,
 "minRam" : 0
 },
 "cm" : {
 "kind" : "image",
 "driver" : "openstack",
 "cloud" : "chameleon",
 "created" : "2019-04-05 18:04:27.417958",
 "updated" : "2019-03-25T21:21:06Z",
 "name" : "CC-Ubuntu16.04",
 "collection" : "chameleon-image",
 "modified" : "2019-04-06 06:50:33.747656"
 }
}

1.1.1.3. VM

{
 "_id" : ObjectId("5ca798acdc64f18b19e6454e"),
 "id" : "f531d2df-c472-4b32-8239-0e3969d33ebb",
 "name" : "exp-grp-gregor-vm-1",
 "state" : "running",
 "public_ips" : [],
 "private_ips" : [
 "192.168.0.249"
],
 "size" : null,
 "created_at" : ISODate("2019-04-01T11:05:56.000-04:00"),
 "image" : null,
 "extra" : {
 "addresses" : {
 "CH-819337-net" : [
 {
 "OS-EXT-IPS-MAC:mac_addr" : "fa:16:3e:9d:ca:c2",
 "version" : 4,
 "addr" : "192.168.0.249",
 "OS-EXT-IPS:type" : "fixed"
 }
]
 },
 "hostId" : "64472a496451a2d599c215a8e86275191c9e3fb9d53790de35bbb6dc",
 "access_ip" : "",
 "access_ipv6" : "",
 "tenantId" : "CH-819337",
 "userId" : "tg455498",
 "imageId" : "4c8e6dac-97f0-4224-b7a2-0daef96b5c9f",
 "flavorId" : "3",
 "uri" : "http://openstack.tacc.chameleoncloud.org:8774/v2/CH-819337/servers/f531d2df-c472-4b32-8239-0e3969d33ebb",
 "service_name" : "nova",
 "metadata" : {},
 "password" : null,
 "created" : "2019-04-01T15:05:56Z",
 "updated" : "2019-04-01T15:06:06Z",
 "key_name" : "gregor",
 "disk_config" : "MANUAL",
 "config_drive" : "",
 "availability_zone" : "nova",
 "volumes_attached" : [],
 "task_state" : null,
 "vm_state" : "active",
 "power_state" : 1,
 "progress" : 0,
 "fault" : null
 },
 "cm" : {
 "kind" : "node",
 "driver" : "openstack",
 "cloud" : "chameleon",
 "updated" : "2019-04-06 06:50:35.592158",
 "name" : "exp-grp-gregor-vm-1",
 "created" : "2019-04-05 18:04:28.376784",
 "collection" : "chameleon-node",
 "modified" : "2019-04-06 06:50:35.596479"
 }
}

1.2. Azure AzProvider

The compute provider kind is azure. The Provider is located at

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/compute/virtualbox/Provider.py

This provder should not be used, but you need to use the general provider at

	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/cloudmesh/compute/azure/AzProvider.py

1.2.1. Flavor

1.2.2. Image

1.2.3. VM

{
 "_id" : ObjectId("5cbe0513b6ac5a154ef64a26"),
 "additionalCapabilities" : null,
 "availabilitySet" : null,
 "diagnosticsProfile" : null,
 "hardwareProfile" : {
 "vmSize" : "Standard_DS1_v2"
 },
 "id" : null,
 "identity" : null,
 "instanceView" : null,
 "licenseType" : null,
 "location" : "eastus",
 "name" : "testvm1",
 "networkProfile" : {
 "networkInterfaces" : [
 {
 "id" : null,
 "primary" : null,
 "resourceGroup" : "test"
 }
]
 },
 "osProfile" : {
 "adminPassword" : null,
 "adminUsername" : "ubuntu",
 "allowExtensionOperations" : true,
 "computerName" : "testvm1",
 "customData" : null,
 "linuxConfiguration" : {
 "disablePasswordAuthentication" : true,
 "provisionVmAgent" : true,
 "ssh" : {
 "publicKeys" : [
 {
 "keyData" : "ssh-rsa"
 "path" : "/home/ubuntu/.ssh/authorized_keys"
 }
]
 }
 },
 "requireGuestProvisionSignal" : true,
 "secrets" : [],
 "windowsConfiguration" : null
 },
 "plan" : null,
 "provisioningState" : "Succeeded",
 "resourceGroup" : "test",
 "resources" : null,
 "storageProfile" : {
 "dataDisks" : [],
 "imageReference" : {
 "id" : null,
 "offer" : "UbuntuServer",
 "publisher" : "Canonical",
 "sku" : "18.04-LTS",
 "version" : "latest"
 },
 "osDisk" : {
 "caching" : "ReadWrite",
 "createOption" : "FromImage",
 "diffDiskSettings" : null,
 "diskSizeGb" : null,
 "encryptionSettings" : null,
 "image" : null,
 "managedDisk" : {
 "id" : null,
 "resourceGroup" : "test",
 "storageAccountType" : null
 },
 "name" : "testvm1_OsDisk_1_a6a6a6a7639468d88e7b018385e225f",
 "osType" : "Linux",
 "vhd" : null,
 "writeAcceleratorEnabled" : null
 }
 },
 "tags" : {},
 "type" : "Microsoft.Compute/virtualMachines",
 "vmId" : "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaa",
 "zones" : null,
 "cm" : {
 "kind" : "node",
 "driver" : "azure",
 "cloud" : "az",
 "name" : "testvm1",
 "collection" : "az-node",
 "created" : "2019-04-22 18:16:51.552324",
 "modified" : "2019-04-22 18:16:51.552324"
 }
}

1.3. Azure MS Azure Library Provider

The compute provider kind is MISSING. The Provider is located at

	

 1. Benchmarks

1. Benchmarks

Put your benchmarks in separate files into this directory.

 2. AWS EC2 VM Management

2. AWS EC2 VM Management

Benchmark results for AWS EC2 File vm management under cloudmesh-storage.

PING ms : 19
DOWNLOAD Mbps : 54.05
UPLOAD Mbps : 5.90

+------------------+--+
| Machine Arribute | Time/s |
+------------------+--+
mac_version	10.14.2
machine	('x86_64',)
node	('hyspocMacBookPro.local',)
platform	Darwin-18.2.0-x86_64-i386-64bit
processor	('i386',)
processors	Darwin
python	3.7.2 (default, Feb 8 2019, 11:44:32)
	[Clang 10.0.0 (clang-1000.11.45.5)]
release	('18.2.0',)
sys	darwin
system	Darwin
user	hyspoc
version	Darwin Kernel Version 18.2.0: Mon Nov 12 20:24:46 PST 2018; root:xnu-4903.231.4~2/RELEASE_X86_64
win_version	
+------------------+--+	
+-------------------------+------+-----------------------------+--------+-------------+-------------+	
timer	time
+-------------------------+------+-----------------------------+--------+-------------+-------------+	
cms vm boot dryrun	1.88
cms vm boot	4.28
cms vm list	4.24
cms vm status	1.82
cms vm stop dryrun	1.83
cms vm stop	2.88
cms vm ping	3.84
cms vm check	3.32
cms vm run dryrun	1.83
cms vm script dryrun	1.82
cms vm start dryrun	1.82
cms vm start	2.82
cms vm delete dryrun	1.84
cms vm terminate dryrun	1.82
cms vm terminate	2.31
cms vm delete	2.31
+-------------------------+------+-----------------------------+--------+-------------+-------------+

 3. AWS S3 File Storage

3. AWS S3 File Storage

Benchmark results for AWS S3 File storage under cloudmesh-storage.

PING ms : 3
DOWNLOAD Mbps : 46.86
UPLOAD Mbps : 35.13

+------------------+--+
| Machine Arribute | Time/s |
+------------------+--+
mac_version	
machine	AMD64
node	DESKTOP-CNS55VM
platform	Windows-10-10.0.17134-SP0
processor	Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
processors	Windows
release	10
sys	win32
system	Windows
version	10.0.17134
win_version	('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
+------------------+--+	
+---------------------------------+-------+-----------------+---------+-------------+--+	
timer	time
+---------------------------------+-------+-----------------+---------+-------------+--+	
PUT file	0.29
GET file	0.35
LIST Directory	3.52
CREATE DIR	0.36
SEARCH file	1.08
DELETE Directory	0.49
PUT Directory --recursive	32.34
GET Directory --recursive	35.97
DELETE Sub-directory	0.64
LIST Directory --recursive	11.55
LIST Sub-directory --recursive	1.15
SEARCH file --recursive	1.63
SEARCH file under a sub-dir --r	0.31
SEARCH file under root dir --r	1.53
+---------------------------------+-------+-----------------+---------+-------------+--+

 4. Azure Blob Storage

4. Azure Blob Storage

Internet Speedtest:
ping: 11 ms
download: 129.68 Mbps
upload: 11.73 Mbps

Benchmark results for Azure Blob storage under cloudmesh-storage.

##
Benchmark results for 'azureblob' Storage
##

+------------------+---+
| Machine Arribute | Time/s |
+------------------+---+
mac_version	
machine	('x86_64',)
node	('TESTUSER-VirtualBox',)
platform	Linux-4.15.0-47-generic-x86_64-with-debian-buster-sid
processor	('x86_64',)
processors	Linux
python	3.7.2 (default, Feb 11 2019, 00:01:16)
	[GCC 7.3.0]
release	('4.15.0-47-generic',)
sys	linux
system	Linux
user	TESTUSER
version	#50-Ubuntu SMP Wed Mar 13 10:44:52 UTC 2019
win_version	
+------------------+---+	
+---------------------------------+------+--------------------------+--------+-------------+-------------+	
timer	time
+---------------------------------+------+--------------------------+--------+-------------+-------------+	
PUT file	0.41
GET file	0.18
LIST Directory	0.44
CREATE DIR	0.72
SEARCH file	0.42
DELETE Directory	0.49
PUT Directory --recursive	3.69
GET Directory --recursive	1.78
DELETE Sub-directory	0.79
LIST Directory --recursive	0.5
LIST Sub-directory --recursive	0.5
SEARCH file --recursive	0.49
SEARCH file under a sub-dir --r	0.44
SEARCH file under root dir --r	0.48
+---------------------------------+------+--------------------------+--------+-------------+-------------+

 5.

5.

6. Benchmark results for ‘box’ Storage

7.

+——————+————————————————————————————————–+
| Machine Arribute | Time/s |
+——————+————————————————————————————————–+
mac_version	10.13.6
machine	x86_64
node	KeliFinsMacBook
platform	Darwin-17.7.0-x86_64-i386-64bit
processor	i386
processors	Darwin
release	17.7.0
sys	darwin
system	Darwin
user	alan12fine
version	Darwin Kernel Version 17.7.0: Thu Dec 20 21:47:19 PST 2018; root:xnu-4570.71.22~1/RELEASE_X86_64
win_version	
+——————+————————————————————————————————–+	
+—————-+——–+—————–+——–+————-+————-+	
timer	time
+—————-+——–+—————–+——–+————-+————-+	
test setup	0.03
test config	0.0
test provider	0.0
box put	5.13
box get	2.39
box list	1.02
box create dir	1.18
box delete	549.25
+—————-+——–+—————–+——–+————-+————-+

 8. AWS EMR Benchmarking

8. AWS EMR Benchmarking

Benchmark results for AWS EMR using cloudmesh-emr.

Speedtest.net results:
Ping: 14ms
Download: 23.32 Mbps.
Upload: 6.01 Mbps.

Benchmark results via StopWatch:

+---------------------+--+
| Machine Arribute | Time/s |
+---------------------+--+
BUG_REPORT_URL	"https://bugs.launchpad.net/ubuntu/"
DISTRIB_CODENAME	bionic
DISTRIB_DESCRIPTION	"Ubuntu 18.04.2 LTS"
DISTRIB_ID	Ubuntu
DISTRIB_RELEASE	18.04
HOME_URL	"https://www.ubuntu.com/"
ID	ubuntu
ID_LIKE	debian
NAME	"Ubuntu"
PRETTY_NAME	"Ubuntu 18.04.2 LTS"
PRIVACY_POLICY_URL	"https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
SUPPORT_URL	"https://help.ubuntu.com/"
UBUNTU_CODENAME	bionic
VERSION	"18.04.2 LTS (Bionic Beaver)"
VERSION_CODENAME	bionic
VERSION_ID	"18.04"
mac_version	
machine	('x86_64',)
node	('vb',)
platform	Linux-4.18.0-17-generic-x86_64-with-Ubuntu-18.04-bionic
processor	('x86_64',)
processors	Linux
python	3.6.7 (default, Oct 22 2018, 11:32:17)
	[GCC 8.2.0]
release	('4.18.0-17-generic',)
sys	linux
system	Linux
user	anthony
version	#18~18.04.1-Ubuntu SMP Fri Mar 15 15:27:12 UTC 2019
win_version	
+---------------------+--+	
+------------------+------+---------+--------+-------------+-------------+	
timer	time
+------------------+------+---------+--------+-------------+-------------+	
List Clusters	0.53
Start Cluster	0.41
List Instances	0.26
Describe Cluster	0.22
List Steps	0.25
Copy File	0.36
Run Program	0.32
Stop Cluster	0.26
+------------------+------+---------+--------+-------------+-------------+

 1. Code Documentation

1. Code Documentation

 2. Common

2. Common

cloudmesh-common contains a number of useful methods that you can reuse to
develop your code. They avoid reimplementation and duplication among the
different contributors. Please use these methods instead of reimplementing them.

2.1. DEBUG

2.2. Variable

2.3. Util

Useful utility functions

	
cloudmesh.common.util.HEADING(txt=None, c='#')

	Prints a message to stdout with #### surrounding it. This is useful for
nosetests to better distinguish them.

	Parameters

	
	c – uses the given char to wrap the header

	txt (string) – a text message to be printed

	
cloudmesh.common.util.auto_create_requirements(requirements)

	creates a requirement.txt file form the requirements in the list. If the file
exists, it get changed only if the
requirements in the list are different from the existing file

	Parameters

	requirements – the requirements in a list

	
cloudmesh.common.util.auto_create_version(class_name, version, filename='__init__.py')

	creates a version number in the __init__.py file.
it can be accessed with __version__
:param class_name:
:param version:
:param filename:
:return:

	
cloudmesh.common.util.backup_name(filename)

	
	Parameters

	filename (string) – given a filename creates a backup name of the form
filename.bak.1. If the filename already exists
the number will be increased as much as needed so
the file does not exist in the given location.
The filename can consists a path and is expanded
with ~ and environment variables.

	Return type

	string

	
cloudmesh.common.util.banner(txt=None, c='#', debug=True, label=None, color=None)

	prints a banner of the form with a frame of # around the txt:

############################
txt
############################

	Parameters

	
	color – prints in the given color

	label – adds a label

	debug – prints only if debug is true

	txt (string) – a text message to be printed

	c (character) – the character used instead of c

	
cloudmesh.common.util.convert_from_unicode(data)

	converts unicode data to a string
:param data: the data to convert
:return:

	
cloudmesh.common.util.copy_files(files_glob, source_dir, dest_dir)

	
	Parameters

	
	files_glob – *.yaml

	source_dir – source directiry

	dest_dir – destination directory

	Returns

	

	
cloudmesh.common.util.exponential_backoff(fn, sleeptime_s_max=1800)

	Calls fn until it returns True, with an exponentially increasing wait time between calls

	
cloudmesh.common.util.generate_password(length=8, lower=True, upper=True, number=True)

	generates a simple password. We should not really use this in production.
:param length: the length of the password
:param lower: True of lower case characters are allowed
:param upper: True if upper case characters are allowed
:param number: True if numbers are allowed
:return:

	
cloudmesh.common.util.grep(pattern, filename)

	Very simple grep that returns the first matching line in a file.
String matching only, does not do REs as currently implemented.

	
cloudmesh.common.util.path_expand(text)

	returns a string with expanded variable.

	Parameters

	
	text – the path to be expanded, which can include ~ and environment $ variables

	text – string

	
cloudmesh.common.util.readfile(filename)

	returns the content of a file
:param filename: the filename
:return:

	
cloudmesh.common.util.search(lines, pattern)

	return all lines that match the pattern
#TODO: we need an example

	Parameters

	
	lines –

	pattern –

	Returns

	

	
cloudmesh.common.util.str_banner(txt=None, c='#', debug=True)

	prints a banner of the form with a frame of # around the txt:

############################
txt
############################

	Parameters

	
	debug (boolean) – return “” if not in debug

	txt (string) – a text message to be printed

	c (character) – the character used instead of c

	
cloudmesh.common.util.tempdir(*args, **kwargs)

	A contextmanager to work in an auto-removed temporary directory

Arguments are passed through to tempfile.mkdtemp

example:

>>> with tempdir() as path:
... pass

	
cloudmesh.common.util.writefile(filename, content)

	writes the content into the file
:param filename: the filename
:param content: teh content
:return:

	
cloudmesh.common.util.yn_choice(message, default='y', tries=None)

	asks for a yes/no question.

	Parameters

	
	tries – the number of tries

	message – the message containing the question

	default – the default answer

2.4. Dotdict

A convenient dot dict class

a = dotdict({“argument”: “value”})

print (a.argument)

	
class cloudmesh.common.dotdict.dotdict

	dot.notation access to dictionary attributes

2.5. Locations

class that specifies where we read the cloudmesh.yaml file from

	
cloudmesh.common.locations.config_dir_setup(filename)

	sets the config file and makes sure the directory exists if it has not yet been created.
:param filename:
:return:

	
cloudmesh.common.locations.config_file(filename)

	The location of the config file: ~/.cloudmesh/filename. ~ will be expanded
:param filename: the filename

	
cloudmesh.common.locations.config_file_prefix()

	The prefix of the configuration file location

	
cloudmesh.common.locations.config_file_raw(filename)

	The location of the config file: ~/.cloudmesh/filename. ~ will NOT be expanded
:param filename: the filename

2.6. Parameter

2.7. FlatDict

	
class cloudmesh.common.FlatDict.FlatDict(d)

	A data structure to manage a flattened dict. It is initialized by passing the dict
at time of initialization.

	
keys() → a set-like object providing a view on D's keys

	

	
values() → an object providing a view on D's values

	

	
cloudmesh.common.FlatDict.flatten(d, parent_key='', sep='__')

	flattens the dict into a one dimensional dictionary

	Parameters

	
	d – multidimensional dict

	parent_key – replaces from the parent key

	sep – the separation character used when fattening. the default is __

	Returns

	the flattened dict

	
cloudmesh.common.FlatDict.key_prefix_replace(d, prefix, new_prefix='')

	replaces the list of prefix in keys of a flattened dict

	Parameters

	
	d – the flattened dict

	prefix (list of str) – a list of prefixes that are replaced with a new prefix.
Typically this will be “”

	new_prefix – The new prefix. By default it is set to “”

	Returns

	the dict with the keys replaced as specified

2.8. Printer

Convenient methods and classes to print tables.

	
class cloudmesh.common.Printer.Printer

	A simple Printer class with convenient methods to print dictionary, tables, csv, lists

	
classmethod attribute(d, header=None, order=None, sort_keys=True, output='table')

	prints a attribute/key value table
:param d: A a dict with dicts of the same type.

Each key will be a column

	Parameters

	
	order – The order in which the columns are printed.
The order is specified by the key names of the dict.

	header (A list of string) – The Header of each of the columns

	sort_keys (string or a tuple of string (for sorting with multiple columns)) – Key(s) of the dict to be used for sorting.
This specify the column(s) in the table for sorting.

	output – the output format table, csv, dict, json

	
classmethod csv(d, order=None, header=None, sort_keys=True)

	prints a table in csv format

	Parameters

	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A a dict with dicts of the same type.

	:param order:The order in which the columns are printed.

	The order is specified by the key names of the dict.

	Parameters

	
	header (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of field names) – The Header of each of the columns

	sort_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – TODO: not yet implemented

	Returns

	a string representing the table in csv format

	
classmethod dict(d, order=None, header=None, output='table', sort_keys=True, show_none='')

	TODO
:param d: A a dict with dicts of the same type.
:type d: dict
:param order:The order in which the columns are printed.

The order is specified by the key names of the dict.

	Parameters

	
	header (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of field names) – The Header of each of the columns

	output (string) – type of output (table, csv, json, yaml or dict)

	sort_keys (bool [https://docs.python.org/3/library/functions.html#bool]) –

	show_none (bool [https://docs.python.org/3/library/functions.html#bool]) – prints None if True for None values otherwise “”

	Returns

	

	
classmethod dict_table(d, order=None, header=None, sort_keys=True, show_none='', max_width=40)

	prints a pretty table from an dict of dicts
:param d: A a dict with dicts of the same type.

Each key will be a column

	Parameters

	
	order – The order in which the columns are printed.
The order is specified by the key names of the dict.

	header (A list of string) – The Header of each of the columns

	sort_keys (string or a tuple of string (for sorting with multiple columns)) – Key(s) of the dict to be used for sorting.
This specify the column(s) in the table for sorting.

	show_none (bool [https://docs.python.org/3/library/functions.html#bool]) – prints None if True for None values otherwise “”

	max_width (int [https://docs.python.org/3/library/functions.html#int]) – maximum width for a cell

	
classmethod flatwrite(table, order=None, header=None, output='table', sort_keys=True, show_none='', sep='.')

	writes the information given in the table
:param table: the table of values
:param order: the order of the columns
:param header: the header for the columns
:param output: the format (default is table, values are raw, csv, json, yaml, dict
:param sort_keys: if true the table is sorted
:param show_none: passed along to the list or dict printer
:param sep: uses sep as the separator for csv printer
:return:

	
classmethod list(l, order=None, header=None, output='table', sort_keys=True, show_none='')

	
	Parameters

	
	l – l is a list not a dict

	order –

	header –

	output –

	sort_keys –

	show_none –

	Returns

	

	
classmethod print_list(l, output='table')

	prints a list
:param l: the list
:param output: the output, default is a table
:return:

	
classmethod row_table(d, order=None, labels=None)

	prints a pretty table from data in the dict.
:param d: A dict to be printed
:param order: The order in which the columns are printed.

The order is specified by the key names of the dict.

	Parameters

	labels – The array of labels for the column

	
classmethod write(table, order=None, header=None, output='table', sort_keys=True, show_none='')

	writes the information given in the table
:param table: the table of values
:param order: the order of the columns
:param header: the header for the columns
:param output: the format (default is table, values are raw, csv, json, yaml, dict
:param sort_keys: if true the table is sorted
:param show_none: passed along to the list or dict printer
:return:

2.9. Stopwatch

Class for starting and stopping named timers.

This class is based on a similar java class in cyberaide, and java cog kit.

	
class cloudmesh.common.StopWatch.StopWatch

	A class to measure times between events.

	
classmethod benchmark(sysinfo=True)

	prints out all timers in a convenient benchmark tabble
:return:
:rtype:

	
classmethod clear()

	clear start and end timer_start

	
classmethod get(name)

	returns the time of the timer.

	Parameters

	name (string) – the name of the timer

	Return type

	the elapsed time

	
classmethod keys()

	returns the names of the timers

	
classmethod print(*args)

	prints a timer. The first argument is the label if it exists, the last is the timer
:param args: label, name
:return:

	
classmethod start(name)

	starts a timer with the given name.

	Parameters

	name (string) – the name of the timer

	
classmethod stop(name)

	stops the timer with a given name.

	Parameters

	name (string) – the name of the timer

2.10. Console

Printing messages in a console

	
class cloudmesh.common.console.Console

	A simple way to print in a console terminal in color. Instead of using
simply the print statement you can use special methods to indicate
warnings, errors, ok and regular messages.

Example Usage:

Console.warning("Warning")
Console.error("Error")
Console.info("Info")
Console.msg("msg")
Console.ok("Success")

One can switch the color mode off with:

Console.color = False
Console.error("Error")

The color will be switched on by default.

	
static TODO(message, prefix=True, traceflag=True)

	prints an TODO message
:param message: the message
:param prefix: if set to true it prints TODO: as prefix
:param traceflag: if true the stack trace is retrieved and printed
:return:

	
static cprint(color, prefix, message)

	prints a message in a given color
:param color: the color as defined in the theme
:param prefix: the prefix (a string)
:param message: the message
:return:

	
static debug_msg(message)

	print a debug message
:param message: the message
:return:

	
classmethod error(message, prefix=True, traceflag=False)

	prints an error message
:param message: the message
:param prefix: a prefix for the message
:param traceflag: if true the stack trace is retrieved and printed
:return:

	
static get(name)

	returns the default theme for printing console messages
:param name: the name of the theme
:return:

	
static info(message)

	prints an informational message
:param message: the message
:return:

	
static msg(*message)

	prints a message
:param message: the message to print
:return:

	
static ok(message)

	prints an ok message
:param message: the message<
:return:

	
classmethod set_debug(on=True)

	sets debugging on or of
:param on: if on debugging is set
:return:

	
static set_theme(color=True)

	defines if the console messages are printed in color
:param color: if True its printed in color
:return:

	
static txt_msg(message, width=79)

	prints a message to the screen
:param message: the message to print
:param width: teh width of the line
:return:

	
static warning(message)

	prints a warning
:param message: the message
:return:

	
cloudmesh.common.console.indent(text, indent=2, width=128)

	indents the given text by the indent specified and wrapping to the given width

	Parameters

	
	text – the text to print

	indent – indent characters

	width – the width of the text

	Returns

	

2.11. Logger

simple logging convenience framework

	
cloudmesh.common.logger.LOGGER(filename)

	creates a logger with the given name.

You can use it as follows:

log = cloudmesh.common.LOGGER(__file__)
log.error("this is an error")
log.info("this is an info")
log.warning("this is a warning")

	
cloudmesh.common.logger.LOGGING_OFF(log)

	Switches logging off
:param log: the logger for which we switch logging off

	
cloudmesh.common.logger.LOGGING_ON(log)

	Switches logging on
:param log: the logger for which we switch logging on

2.12. Error

A simple framework to handle error messages

	
class cloudmesh.common.error.Error

	A class to print error messages

	
classmethod debug(msg)

	prints a debug message.
:param msg: the message
:return:

	
classmethod exit(msg)

	call a system exit
:param msg:
:return:

	
classmethod info(msg)

	prints an info msg.
:param msg: the message
:return:

	
classmethod msg(error=None, debug=True, trace=True)

	prints the error message
:param error: the error message
:param debug: only prints it if debug is set to true
:param trace: if true prints the trace
:return:

	
classmethod traceback(error=None, debug=True, trace=True)

	prints the trace
:param error: a message preceding the trace
:param debug: prints it if debug is set to true
:param trace:
:return:

	
classmethod warning(msg)

	prints a warning message.
:param msg:
:return:

2.13. Shell

A convenient method to execute shell commands and return their output. Note: that this method requires that the
command be completely execute before the output is returned. FOr many activities in cloudmesh this is sufficient.

	
class cloudmesh.common.Shell.Shell

	The shell class allowing us to conveniently access many operating system commands.
TODO: This works well on Linux and OSX, but has not been tested much on Windows

	
classmethod VBoxManage(*args)

	executes VboxManage with the given arguments
:param args:
:return:

	
classmethod bash(*args)

	executes bash with the given arguments
:param args:
:return:

	
classmethod blockdiag(*args)

	executes blockdiag with the given arguments
:param args:
:return:

	
classmethod brew(*args)

	executes bash with the given arguments
:param args:
:return:

	
classmethod cat(*args)

	executes cat with the given arguments
:param args:
:return:

	
classmethod check_output(*args, **kwargs)

	Thin wrapper around subprocess.check_output() [https://docs.python.org/3/library/subprocess.html#subprocess.check_output]

	
classmethod check_python()

	checks if the python version is supported
:return: True if it is supported

	
classmethod cm(*args)

	executes cm with the given arguments
:param args:
:return:

	
command = {'darwin': {}, 'linux': {}, 'windows': {}}

	TODO

how do we now define dynamically functions based on a list that we want to support

what we want is where args are multiple unlimited parameters to the function

	def f(args…):

	name = get the name from f
a = list of args…

cls.execute(cmd, arguments=a, capture=True, verbose=False)

commands = [‘ps’, ‘ls’, …..]
for c in commands:

generate this command and add to this class dynamically

or do something more simple

ls = cls.execute(‘cmd’, args…)

	
classmethod command_exists(name)

	returns True if the command exists
:param name:
:return:

	
classmethod dialog(*args)

	executes dialof with the given arguments
:param args:
:return:

	
classmethod execute(cmd, arguments='', shell=False, cwd=None, traceflag=True, witherror=True)

	Run Shell command

	Parameters

	
	witherror – if set to False the error will not be printed

	traceflag – if set to true the trace is printed in case of an error

	cwd – the current working directory in whcih the command is supposed to be executed.

	shell – if set to true the subprocess is called as part of a shell

	cmd – command to run

	arguments – we do not know yet

	Returns

	

	
classmethod fgrep(*args)

	executes fgrep with the given arguments
:param args:
:return:

	
classmethod find_cygwin_executables()

	find the executables in cygwin

	
classmethod find_lines_with(lines, what)

	returns all lines that contain what
:param lines:
:param what:
:return:

	
classmethod get_python()

	returns the python and pip version
:return: python version, pip version

	
classmethod git(*args)

	executes git with the given arguments
:param args:
:return:

	
classmethod grep(*args)

	executes grep with the given arguments
:param args:
:return:

	
classmethod head(*args)

	executes head with the given arguments
:param args:
:return:

	
classmethod keystone(*args)

	executes keystone with the given arguments
:param args:
:return:

	
classmethod kill(*args)

	executes kill with the given arguments
:param args:
:return:

	
classmethod ls(*args)

	executes ls with the given arguments
:param args:
:return:

	
classmethod mkdir(directory)

	creates a directory with all its parents in ots name
:param directory: the path of the directory
:return:

	
classmethod mongod(*args)

	executes mongod with the given arguments
:param args:
:return:

	
classmethod nosetests(*args)

	executes nosetests with the given arguments
:param args:
:return:

	
classmethod nova(*args)

	executes nova with the given arguments
:param args:
:return:

	
classmethod operating_system()

	the name of the os
:return: the name of the os

	
classmethod pandoc(*args)

	executes vagrant with the given arguments
:param args:
:return:

	
classmethod ping(host=None, count=1)

	execute ping
:param host: the host to ping
:param count: the number of pings
:return:

	
classmethod pip(*args)

	executes pip with the given arguments
:param args:
:return:

	
classmethod ps(*args)

	executes ps with the given arguments
:param args:
:return:

	
classmethod pwd(*args)

	executes pwd with the given arguments
:param args:
:return:

	
classmethod rackdiag(*args)

	executes rackdiag with the given arguments
:param args:
:return:

	
classmethod remove_line_with(lines, what)

	returns all lines that do not contain what
:param lines:
:param what:
:return:

	
classmethod rm(*args)

	executes rm with the given arguments
:param args:
:return:

	
classmethod rsync(*args)

	executes rsync with the given arguments
:param args:
:return:

	
classmethod scp(*args)

	executes scp with the given arguments
:param args:
:return:

	
classmethod sh(*args)

	executes sh with the given arguments
:param args:
:return:

	
classmethod sort(*args)

	executes sort with the given arguments
:param args:
:return:

	
classmethod ssh(*args)

	executes ssh with the given arguments
:param args:
:return:

	
classmethod sudo(*args)

	executes sudo with the given arguments
:param args:
:return:

	
classmethod tail(*args)

	executes tail with the given arguments
:param args:
:return:

	
classmethod terminal_type()

	returns darwin, cygwin, cmd, or linux

	
unzip(source_filename, dest_dir)

	unzips a file into the destination directory
:param source_filename: the source
:param dest_dir: the destination directory
:return:

	
classmethod vagrant(*args)

	executes vagrant with the given arguments
:param args:
:return:

	
classmethod which(command)

	returns the path of the command with which
:param command: teh command
:return: the path

	
class cloudmesh.common.Shell.Subprocess(cmd, cwd=None, stderr=-1, stdout=-1, env=None)

	Executes a command. This class should not be directly used, but instead you should use Shell.

	
exception cloudmesh.common.Shell.SubprocessError(cmd, returncode, stderr, stdout)

	Manages the formatting of the error and stdout.
THis command should not be directly called. Instead use SHell

	
cloudmesh.common.Shell.main()

	a test that should actually be added into a nosetest
:return:

2.14. Run

2.15. DB

	
class cloudmesh.db.strdb.YamlDB(path)

	A YAML-backed Key-Value database to store strings

	
clear()

	Truncate the database

	
close()

	This is a NoOP for backwards compatibility

2.16. SSH

authorized key management.

	
class cloudmesh.common.ssh.authorized_keys.AuthorizedKeys

	Class to manage authorized keys.

	
add(pubkey)

	add a public key.
:param pubkey: the filename to the public key
:return:

	
classmethod load(path)

	load the keys from a path

	Parameters

	path – the filename (path) in which we find the keys

	Returns

	

	
remove(pubkey)

	Removes the public key
TODO: this method is not implemented
:param pubkey: the filename of the public key
:return:

	
cloudmesh.common.ssh.authorized_keys.get_fingerprint_from_public_key(pubkey)

	Generate the fingerprint of a public key

	Parameters

	pubkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – the value of the public key

	Returns

	fingerprint

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Managing ~/.ssh/config

	
class cloudmesh.common.ssh.ssh_config.ssh_config(filename=None)

	Managing the config in .ssh

	
execute(name, command)

	execute the command on the named host
:param name: the name of the host in config
:param command: the command to be executed
:return:

	
generate(key='india', host='india.futuresystems.org', username=None, force=False, verbose=False)

	adds a host to the config file with given parameters. #TODO: make sure this is better documented
:param key: the key
:param host: the host
:param username: the username
:param force: not used
:param verbose: prints debug messages
:return:

	
list()

	list the hosts in the config file
:return:

	
load()

	list the hosts defined in the ssh config file

	
local(command)

	execute the command on the localhost
:param command: the command to execute
:return:

	
login(name)

	login to the host defines in .ssh/config by name
:param name: the name of the host as defined in the config file
:return:

	
names()

	The names defined in ~/.ssh/config
:return: the names

	
status()

	
	executes a test with the given ssh config if a login is possible.

	TODO: not yet implemented

	
username(host)

	returns the username for a given host in the config file
:param host: the hostname
:return: the username

 3. CMD5

3. CMD5

	
cloudmesh.shell.command.basecommand(func)

	A decorator to create a function with docopt arguments.
It also generates a help function

@command
def do_myfunc(self, args):

“”” docopts text “””
pass

will create

	def do_myfunc(self, args, arguments):

	“”” docopts text “””
…

	def help_myfunc(self, args, arguments):

	… prints the docopt text …

	Parameters

	func – the function for the decorator

	
cloudmesh.shell.command.command(func)

	A decorator to create a function with docopt arguments.
It also generates a help function

@command
def do_myfunc(self, args):

“”” docopts text “””
pass

will create

	def do_myfunc(self, args, arguments):

	“”” docopts text “””
…

	def help_myfunc(self, args, arguments):

	… prints the docopt text …

	Parameters

	func – the function for the decorator

	
cloudmesh.shell.command.map_parameters(arguments, *args)

	This command is useful to map parameters with – to regular argument dicts for easier processing.

	Parameters

	
	arguments –

	args –

	Returns

	

an example is

	map_parameters(arguments,

	‘active’,
‘cloud’)

where –active=ACTIVE is mapped to arguments[“active”]
and –cloud=CLOUD is mapped to arguments[“cloud”]

as arguments is a dotdict, they can than for example be called as

arguments.cloud

	
class cloudmesh.shell.shell.CMShell(completekey='tab', stdin=None, stdout=None)

	The command shell that inherits all commands from PluginCommand

	
do_EOF(args)

	Usage:
 EOF

Description:
 Command to the shell to terminate reading a script.

	
do_help(arg)

	Usage:
 help
 help COMMAND

Description:
 List available commands with "help" or detailed help with
 "help COMMAND".

	
do_info(args)

	Usage:
 info [path|commands|files|cloudmesh]

Description:
 info
 provides internal info about the shell and its packages

	
do_plugin(args)

	Usage:
 plugin install PLUGIN [-s]
 plugin uninstall PLUGIN
 plugin list
 plugin ? [--format=FORMAT]

Arguments:
 PLUGIN the name of the plugin

Description:
 plugin available
 lists the available plugins
 plugin list
 lists the plugin
 plugin install
 installs the given plugin
 plugin uninstall
 uninstalls the given plugin

	
do_q(args)

	Usage:
 quit

Description:
 Action to be performed when quit is typed

	
do_quit(args)

	Usage:
 quit

Description:
 Action to be performed when quit is typed

	
do_shell(args)

	Usage:
 shell COMMAND

 Arguments:
 COMMAND the command to be executed

Description:
 shell COMMAND executes the command

	
do_version(args)

	Usage:
 version pip [PACKAGE]
 version [--format=FORMAT] [--check=CHECK]

Options:
 --format=FORMAT the format to print the versions in [default: table]
 --check=CHECK boolean tp conduct an additional check [default: True]

Description:
 version
 Prints out the version number
 version pip
 Prints the contents of pip list

Limitations:
 Package names must not have a . in them instead you need to use -
 Thus to query for cloudmesh-cmd5 use

 cms version pip cloudmesh-cmd5

	
emptyline()

	Called when an empty line is entered in response to the prompt.

If this method is not overridden, it repeats the last nonempty
command entered.

	
help_help()

	Usage:
 help
 help COMMAND

Description:
 List available commands with "help" or detailed help with
 "help COMMAND".

	
onecmd(line)

	Interpret the argument as though it had been typed in response
to the prompt.

This may be overridden, but should not normally need to be;
see the precmd() and postcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of
commands by the interpreter should stop.

	
postcmd(stop, line)

	Hook method executed just after a command dispatch is finished.

	
precmd(line)

	Hook method executed just before the command line is
interpreted, but after the input prompt is generated and issued.

	
preloop()

	adds the banner to the preloop

	
class cloudmesh.shell.shell.Plugin

	Some simple methods to manage dynamic namespace plugins for cloudmesh.

	
classmethod class_name(command)

	creates the default filename in which the module is defined
:param command: the name of the command
:return: cloudmesh.ext.command.<command>+command.<Command>

	
classmethod classes()

	list of the commands in the cloudmesh namespace under cloudmesh.ext.command
:return: list of the commands

	
classmethod load(commands=None)

	
	Parameters

	commands – If None the commands will be found from import cloudmesh
Otherwise the commands can be explicitly specified with

	commands = [

	‘cloudmesh.ext.command.bar.BarCommand’,
‘cloudmesh.ext.command.foo.FooCommand’,
]

A namespace package must exists. Foo and Bar ar just examples

	Returns

	the classes of the command

	
classmethod modules()

	list of cloudmesh modules in the cloudmesh namespace
:return: list of modules

	
classmethod name(command)

	creates a name for a modules starting with do_
:param command: returns a tuple with the module location and tge do_function
:return:

	
cloudmesh.shell.shell.PluginCommandClasses

	alias of cloudmesh.shell.shell.CommandProxyClass

	
cloudmesh.shell.shell.main()

	cms.

	Usage:

	cms –help
cms [–echo] [–debug] [–nosplash] [-i] [COMMAND …]

	Arguments:

	COMMAND A command to be executed

	Options:

	
	--file=SCRIPT

	
	-f

	SCRIPT Executes the script

	-i

	After start keep the shell interactive,
otherwise quit [default: False]

	--nosplash

	do not show the banner [default: False]

	
cloudmesh.shell.shell.print_list(elements)

	prints the element of a list
:param elements: the elements to be printed

 4. Cloudmesh

4. Cloudmesh

 5. Management

5. Management

5.1. Configuration

	
class cloudmesh.management.configuration.counter.Counter(counter_file_path='~/.cloudmesh/counter.yaml')

	A counter is used to keep track of some value that can be increased
and is associated with a user. Typically it is used to increment the
vm id or the job id.

	
decr(name='counter')

	increments the counter by one
:return:

	
get(name='counter')

	returns the value of the counter
:param name: name of the counter
:return: the value of the counter

	
incr(name='counter')

	increments the counter by one
:return:

	
set(name='counter', value=None)

	sets a counter associated with a particular user
:param name: name of the counter
:param value: the value
:return:

We use a uniform naming convention method. The name is defined by different kinds of objects. The name is a string
its syntax is defined in a yaml file located at ~/.cloudmesh/name.yaml

order:
- experiment
- group
- user
- kind
- counter
schema: '{experiment}-{group}-{user}-{kind}-{counter}'
experiment: exp
group: grp
user: gregor
kind: container
counter: 2

This file is automatically generated if it does not exists by a simple Name object that can include an ordered
number of dictionary keys such as

	Experiment

	is an experiment that all cloud objects can be placed under.

	Group

	A group formulates a number of objects that logically build an entity,
such as a number of virtual machines building a cluster

	User

	A user name that may control the group

	Kind

	A kind that identifies which kind of resource this is

The last is a counter which is always increased and written into this file in order to assure that the latest
value is safely included in it.

A typical use is

n = Name(experiment="exp",
 group="grp",
 user="gregor",
 kind="vm",
 counter=1)

n.incr()
counter = n.get()

Which will return

exp-grp-gregor-vm-1

	
class cloudmesh.management.configuration.name.Name(order=None, **kwargs)

	

	
class cloudmesh.management.configuration.SSHkey.SSHkey

	
	
get_from_git(user, keyname=None)

	gets the key from github

	Parameters

	
	keyname – the keyname

	user – the github username

	Returns

	an array of public keys

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
set_permissions(path)

	Sets the permissions of the path assuming the path is a public or private key
:param path:
:return:

5.2. Printer

5.3. Names

We use a uniform naming convention method. The name is defined by different kinds of objects. The name is a string
its syntax is defined in a yaml file located at ~/.cloudmesh/name.yaml

order:
- experiment
- group
- user
- kind
- counter
schema: '{experiment}-{group}-{user}-{kind}-{counter}'
experiment: exp
group: grp
user: gregor
kind: container
counter: 2

This file is automatically generated if it does not exists by a simple Name object that can include an ordered
number of dictionary keys such as

	Experiment

	is an experiment that all cloud objects can be placed under.

	Group

	A group formulates a number of objects that logically build an entity,
such as a number of virtual machines building a cluster

	User

	A user name that may control the group

	Kind

	A kind that identifies which kind of resource this is

The last is a counter which is always increased and written into this file in order to assure that the latest
value is safely included in it.

A typical use is

n = Name(experiment="exp",
 group="grp",
 user="gregor",
 kind="vm",
 counter=1)

n.incr()
counter = n.get()

Which will return

exp-grp-gregor-vm-1

	
class cloudmesh.management.configuration.name.Name(order=None, **kwargs)

	

5.4. Script

A convenient method to execute shell commands and return their output. Note:
that this method requires that the command be completely executed before the
output is returned. For many activities in cloudmesh this is sufficient.

	
class cloudmesh.management.script.Script

	Executing a script defined by a simple text parameter

	
static run(script, live=False, debug=False)

	run the specified script line by line.

TODO: at one point this should be moved to cloudmesh.common

	Parameters

	
	script – The script

	debug – If true the output of the script is printed

	Returns

	

	
class cloudmesh.management.script.SystemPath

	Managing the System path in the .bashrc or .bash_profile files

	
static add(path)

	Adds a path to the ~/.bashrc or ~/.bash_profile files.

TODO: Windows is not implemented yet.

	Parameters

	path – The path to be added

	Returns

	

	
cloudmesh.management.script.find_process(name)

	find a process by name

	Parameters

	name – the name of the process

	Returns

	A list of dicts in which the attributes pid, command, and created are available and the name matches
the specified name argument.

TODO: at one point this should be moved to cloudmesh.common

Return a list of processes matching ‘name’.

5.5. Debug

 6. Mongo

6. Mongo

6.1. MongoDB

6.2. Controler

 7. Commands

7. Commands

 8. Inventory

8. Inventory

 9. cloudmesh-storage

9. cloudmesh-storage

	
class cloudmesh.storage.spec.tests.test_openapi_storage.Test_cloud_storage

	see: https://github.com/cloudmesh/cloudmesh-common/blob/master/cloudmesh/common/run/background.py
the code in thel link has not bean tested
make this s function execute the server in the back ground not in a terminal,
get the pid and kill it after the test is done
UNAME := $(shell uname)
ifeq ($(UNAME), Darwin)
define terminal

osascript -e ‘tell application “Terminal” to do script “cd $(PWD); $1”’

endef
endif
ifeq ($(UNAME), Linux)
define terminal

gnome-terminal –command ‘bash -c “cd $(PWD); $1”’

endef
endif

	
class cloudmesh.storage.provider.local.Provider.Provider(service=None, config='~/.cloudmesh/cloudmesh4.yaml')

	
	cloudmesh:

	
	a:

	
	cm:

	active: False
heading: Local A
host: localhost
label: local_a
kind: local
version: 1.0

	default:

	directory: .

	credentials:

	directory: ~/.cloudmesh/storage/a

default location is credentials.directory / default.directory

	
create_dir(directory=None)

	creates a directory

	Parameters

	directory – the name of the directory

	Returns

	dict

	
create_dir_from_filename(filename=None)

	creates a directory

	Parameters

	directory – the name of the directory for the filename

	Returns

	dict

	
delete(source=None, recusrive=False)

	deletes the source

	Parameters

	
	source – the source which either can be a directory or file

	recursive – in case of directory the recursive referes to all
subdirectories in the specified source

	Returns

	dict

	
get(source=None, destination=None, recusrive=False)

	gets the source and copies it in destination

	Parameters

	
	source – the source which either can be a directory or file

	destination – the destination which either can be a directory or
file

	recursive – in case of directory the recursive referes to all
subdirectories in the specified source

	Returns

	dict

	
put(source=None, destination=None, recusrive=False)

	puts the source on the service

	Parameters

	
	source – the source which either can be a directory or file

	destination – the destination which either can be a directory or
file

	recursive – in case of directory the recursive referes to all
subdirectories in the specified source

	Returns

	dict

	
search(directory=None, filename=None, recursive=False)

	gets the destination and copies it in source

	Parameters

	
	service – the name of the service in the yaml file

	directory – the directory which either can be a directory or file

	recursive – in case of directory the recursive referes to all
subdirectories in the specified source

	Returns

	dict

	
tree(directory=None)

	Prints a fisual representation of the files and directories
:param directory:
:type directory:
:return:
:rtype:

	
cloudmesh.storage.provider.local.Provider.creation_date(path_to_file)

	Try to get the date that a file was created, falling back to when it was
last modified if that isn’t possible.
See http://stackoverflow.com/a/39501288/1709587 for explanation.

 10. cloudmesh-objstorage

10. cloudmesh-objstorage

 11. cloudmesh-cloud

11. cloudmesh-cloud

	
class cloudmesh.security.encrypt.EncryptFile(filename, secret)

	keys must be generated with

ssh-keygen -t rsa -m pem
openssl rsa -in id_rsa -out id_rsa.pem

	
check_passphrase()

	this does not work with pem

cecks if the ssh key has a password
:return:

	
pem_verify()

	this does not work
:return:

Managing ~/.ssh/config

	
class cloudmesh.security.ssh_config.ssh_config(filename=None)

	Managing the config in .ssh

	
execute(name, command)

	execute the command on the named host
:param name: the name of the host in config
:param command: the command to be executed
:return:

	
generate(key='india', host='india.futuresystems.org', username=None, force=False, verbose=False)

	adds a host to the config file with given parameters. #TODO: make sure this is better documented
:param key: the key
:param host: the host
:param username: the username
:param force: not used
:param verbose: prints debug messages
:return:

	
list()

	list the hosts in the config file
:return:

	
load()

	list the hosts defined in the ssh config file

	
local(command)

	execute the command on the localhost
:param command: the command to execute
:return:

	
login(name)

	login to the host defines in .ssh/config by name
:param name: the name of the host as defined in the config file
:return:

	
names()

	The names defined in ~/.ssh/config
:return: the names

	
status()

	
	executes a test with the given ssh config if a login is possible.

	TODO: not yet implemented

	
username(host)

	returns the username for a given host in the config file
:param host: the hostname
:return: the username

authorized key management.

	
class cloudmesh.security.authorized_keys.AuthorizedKeys

	Class to manage authorized keys.

	
add(pubkey)

	add a public key.
:param pubkey: the filename to the public key
:return:

	
classmethod load(path)

	load the keys from a path

	Parameters

	path – the filename (path) in which we find the keys

	Returns

	

	
remove(pubkey)

	Removes the public key
TODO: this method is not implemented
:param pubkey: the filename of the public key
:return:

	
cloudmesh.security.authorized_keys.get_fingerprint_from_public_key(pubkey)

	Generate the fingerprint of a public key

	Parameters

	pubkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – the value of the public key

	Returns

	fingerprint

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class cloudmesh.management.configuration.SSHkey.SSHkey

	
	
get_from_git(user, keyname=None)

	gets the key from github

	Parameters

	
	keyname – the keyname

	user – the github username

	Returns

	an array of public keys

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
set_permissions(path)

	Sets the permissions of the path assuming the path is a public or private key
:param path:
:return:

We use a uniform naming convention method. The name is defined by different kinds of objects. The name is a string
its syntax is defined in a yaml file located at ~/.cloudmesh/name.yaml

order:
- experiment
- group
- user
- kind
- counter
schema: '{experiment}-{group}-{user}-{kind}-{counter}'
experiment: exp
group: grp
user: gregor
kind: container
counter: 2

This file is automatically generated if it does not exists by a simple Name object that can include an ordered
number of dictionary keys such as

	Experiment

	is an experiment that all cloud objects can be placed under.

	Group

	A group formulates a number of objects that logically build an entity,
such as a number of virtual machines building a cluster

	User

	A user name that may control the group

	Kind

	A kind that identifies which kind of resource this is

The last is a counter which is always increased and written into this file in order to assure that the latest
value is safely included in it.

A typical use is

n = Name(experiment="exp",
 group="grp",
 user="gregor",
 kind="vm",
 counter=1)

n.incr()
counter = n.get()

Which will return

exp-grp-gregor-vm-1

	
class cloudmesh.management.configuration.name.Name(order=None, **kwargs)

	

	
class cloudmesh.management.configuration.counter.Counter(counter_file_path='~/.cloudmesh/counter.yaml')

	A counter is used to keep track of some value that can be increased
and is associated with a user. Typically it is used to increment the
vm id or the job id.

	
decr(name='counter')

	increments the counter by one
:return:

	
get(name='counter')

	returns the value of the counter
:param name: name of the counter
:return: the value of the counter

	
incr(name='counter')

	increments the counter by one
:return:

	
set(name='counter', value=None)

	sets a counter associated with a particular user
:param name: name of the counter
:param value: the value
:return:

A convenient method to execute shell commands and return their output. Note:
that this method requires that the command be completely executed before the
output is returned. For many activities in cloudmesh this is sufficient.

	
class cloudmesh.management.script.Script

	Executing a script defined by a simple text parameter

	
static run(script, live=False, debug=False)

	run the specified script line by line.

TODO: at one point this should be moved to cloudmesh.common

	Parameters

	
	script – The script

	debug – If true the output of the script is printed

	Returns

	

	
class cloudmesh.management.script.SystemPath

	Managing the System path in the .bashrc or .bash_profile files

	
static add(path)

	Adds a path to the ~/.bashrc or ~/.bash_profile files.

TODO: Windows is not implemented yet.

	Parameters

	path – The path to be added

	Returns

	

	
cloudmesh.management.script.find_process(name)

	find a process by name

	Parameters

	name – the name of the process

	Returns

	A list of dicts in which the attributes pid, command, and created are available and the name matches
the specified name argument.

TODO: at one point this should be moved to cloudmesh.common

Return a list of processes matching ‘name’.

	
cloudmesh.vbox.command.vbox.defaults()

	default values
:return: a number of default values for memory, image, and script
:rtype: dotdict

	
class cloudmesh.display.Display

	

	
class cloudmesh.compute.azure.AzProvider.Provider(name=None, configuration='~/.cloudmesh/cloudmesh4.yaml')

	az commands

https://docs.microsoft.com/en-us/cli/azure/reference-index?view=azure-cli-latest

create the

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

	
create(name=None, image=None, size=None, timeout=360, **kwargs)

	creates a named node

	Parameters

	
	name – the name of the node

	image – the image used

	size – the size of the image

	timeout – a timeout in seconds that is invoked in case the image does not boot.
The default is set to 3 minutes.

	kwargs – additional arguments passed along at time of boot

	Returns

	

	
destroy(name=None)

	Destroys the node
:param name: the name of the node
:return: the dict of the node

	
info(name=None)

	gets the information of a node with a given name

	Parameters

	name –

	Returns

	The dict representing the node including updated status

	
list()

	list all nodes id

	Returns

	an array of dicts representing the nodes

	
rename(name=None, destination=None)

	rename a node

	Parameters

	
	destination –

	name – the current name

	Returns

	the dict with the new name

	
resume(name=None)

	resume the named node

	Parameters

	name – the name of the node

	Returns

	the dict of the node

	
start(name=None)

	start a node

	Parameters

	name – the unique node name

	Returns

	The dict representing the node

	
stop(name=None)

	stops the node with the given name

	Parameters

	name –

	Returns

	The dict representing the node including updated status

	
suspend(name=None)

	suspends the node with the given name

	Parameters

	name – the name of the node

	Returns

	The dict representing the node

	
class cloudmesh.abstractclass.State.State(name=None)

	

	
class cloudmesh.mongo.DataBaseDecorator.DatabaseAlter(**kwargs)

	The data base decorator utomatically replaces an entry in the database with
the dictionary returned by a function.

It is added to a MongoDB collection. The location is determined from the
values in the dictionary.

The name of the collection is determined from cloud and kind:

cloud-kind

In addition each entry in the collection has a name that must be unique in
that collection.

IN most examples it is pest to separate the updload from the actual return
class. This way we essentially provide two functions one that provide the
dict and another that is responsible for the upload to the database.

Example:

cloudmesh.example.foo contains:

class Provider(object)

	def entries(self):

	
	return {

	
	“cm”: {

	“cloud”: “foo”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

}
“cloud”: “foo”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

cloudmesh.example.bar contains:

class Provider(object)

	def entries(self):

	
	return {

	“cloud”: “bar”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

cloudmesh.example.provider.foo:

from cloudmesh.example.foo import Provider as FooProvider
from cloudmesh.example.foo import Provider as BarProvider

class Provider(object)

	def __init__(self, provider):

	
	if provider == “foo”:

	provider = FooProvider()

	elif provider == “bar”:

	provider = BarProvider()

@DatabaseUpdate
def entries(self):

provider.entries()

Separating the database and the dictionary creation allows the developer to
implement different providers but only use one class with the same methods
to interact for all providers with the database.

In the combined provider a find function to for example search for entries
by name across collections could be implemented.

	
class cloudmesh.mongo.DataBaseDecorator.DatabaseUpdate(**kwargs)

	The data base decorator utomatically replaces an entry in the database with
the dictionary returned by a function.

It is added to a MongoDB collection. The location is determined from the
values in the dictionary.

The name of the collection is determined from cloud and kind:

cloud-kind

In addition each entry in the collection has a name that must be unique in
that collection.

IN most examples it is pest to separate the updload from the actual return
class. This way we essentially provide two functions one that provide the
dict and another that is responsible for the upload to the database.

Example:

cloudmesh.example.foo contains:

class Provider(object)

	def entries(self):

	
	return {

	
	“cm”: {

	“cloud”: “foo”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

}
“cloud”: “foo”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

cloudmesh.example.bar contains:

class Provider(object)

	def entries(self):

	
	return {

	“cloud”: “bar”,
“kind”“: “entries”,
“name”: “test01”
“test”: “hello”}

cloudmesh.example.provider.foo:

from cloudmesh.example.foo import Provider as FooProvider
from cloudmesh.example.foo import Provider as BarProvider

class Provider(object)

	def __init__(self, provider):

	
	if provider == “foo”:

	provider = FooProvider()

	elif provider == “bar”:

	provider = BarProvider()

@DatabaseUpdate
def entries(self):

provider.entries()

Separating the database and the dictionary creation allows the developer to
implement different providers but only use one class with the same methods
to interact for all providers with the database.

In the combined provider a find function to for example search for entries
by name across collections could be implemented.

	
class cloudmesh.data.api.storage.StorageProviderABC.StorageProviderABC

	Abstract Base Class for supported cloud providers.

	
delete(name)

	delete a file from the provider

	Parameters

	name – the cloud file entry being deleted

	
exists(name)

	if a file exists in the remote storage provider

	Parameters

	name – a file name to check

	
get(source, destination)

	get a file stored with this provider

	Parameters

	
	source – the cloud file entry being retrieved

	destination – download destination

	Returns

	the downloaded cloud file binary

	
put(source)

	upload a file

	Parameters

	source – a CloudFile. todo

	Returns

	a CloudFile with resource information filled in

	
class cloudmesh.data.api.db.DBProviderABC.DBProviderABC

	Abstract Base Class for supported database providers.

	
add(cloud_file)

	add a new CloudFile to the database

	Parameters

	cloud_file – a CloudFile. todo

	Returns

	a CloudFile with resource information filled in

	
delete(cloud_file)

	delete a file from the database

	Parameters

	cloud_file – the cloud file entry being deleted

	
list_files()

	get a list of stored files

	Returns

	a list of CloudFiles

	
update(cloud_file)

	update a file

	Parameters

	cloud_file – the cloud file entry being updated

	Returns

	the updated CloudFile

 12. cloudmesh-batch

12. cloudmesh-batch

 13. cloudmesh-emr

13. cloudmesh-emr

 1. Code Conventions

1. Code Conventions

	Python lint: All code must be formatted with the pyCHarm inspect method which
will suggest a reformat with pyCharm and allows good error and python issue
detection. Please fix as many as you can.

	Printing errors:

In case you need to print errors please do not use print, but use

from cloudmesh.common.console import Console

Console.error("this is an example")

	Printing debug messages in verbose mode

In case yo ulike to do debug messages use

from cloudmesh.DEBUG import VERBOSE

VERBOSE("this is an example")
```







	Managing debug and verbose mode

Verbosity and debugging can be controlled with

cms set verbose=10
cms set debug=True
cms set trace=True





anything that is smaller than 10will be printed.









          

      

      

    

  

  
    
    2. Code Management
    

    

    
 
  

    
      
          
            
  
2. Code Management

At this time we recommend and require that you use pyCharm community edition
or profesional to edit your code. Before committing we like that you run
Inspect Code on all files that you commit and fix as many errors as possible
including PEP8 format suggestions. It also notifies you of issues you may not
think about while doing other code inspection.

The reason we ask you to do so is that pycharms code inspection is very good,
and that if everyone uses pycharm the format of the code is uinform and we do
not run in to formatting issues.

This will make the review of any code contributed much easier.

Naturally you can use a different editor for your work, but we still ask you to
use pycharm to fix formatting and code inspection before you commit.

Typically we run a code inspection every week.




3. Documentation Management

To increase readability of the documentation we ask you to try to use 80
character line limits if possible. This is important for better editing
experience in github. A good editor to do this with is emacs withe its Esc-q
command and pycharm with its Edit-Wrap Line to column or paragraph features.
On macOS this can be called with CONTROL-SHIFT-COMMAND-W or
CONTROL-SHIFT-COMMAND-P




4. Version Managemt

This is only done by Gregor

To create a development version we say

$ make build





To increase the patch number, say

$ make patch





To increase the minor number

$ make minor





The major number will stay to 4, so this is not changed

To create a release say

$ make release





After the release is done the minor number will be increased and the buld number
will be reset.





          

      

      

    

  

  
    
    5. Pytest
    

    

    
 
  

    
      
          
            
  
5. Pytest

Pytest is a utility to unit test python code.

We use nosetests and not __main__ to test all functionality so they can me
automatically run and reports can be generated. A project that does not have a
sufficient number of tests to make sure the module works can not be accepted.


5.1. Installation

The nose module can be installed with the help of pip utility

$ pip install pytest





This will install the pytest module in the current Python distribution, which
means the test can be run using this utility as well as using –m switch. All
tests are included in the folder tests.

For example for the cloudmesh-cloud module they are in


	https://github.com/cloudmesh/cloudmesh-cloud/tree/master/tests




Best is to add a numbe rto identify in which order they are run

+cm
  + cloudmesh
  + tests
    - test_01_topic1.py
    - test_02_topic2.py
    - test_03_topic2.py








5.2. Test Specification and Execution

A simple example for a test is


	https://github.com/cloudmesh/cloudmesh-cloud/blob/master/tests/test_key.py




Note that all test python programs have specific function names
of the form

def test_number_topic (self)

The number is defined to order them and is typically something like 001, note
the leading spaces. The topic is a descriptive term on what we test.

Each test starts with a setup function def setup(self) we declare a setup that
is run prior to each test being executed. Other functions will use the setup
prior to execution.

A function includes one or multiple asserts that check if a particular test
succeeds and reports this to nose to expose the information if a tess succeds or
fails, when running it

Note that all nosetest functions start with a HEADING() in the body which conveniently
prints a banner with the function name and thus helps in debugging in case of
errors.

Invocation is simply done with the comment lines you see on top that you will include.

in our case the test is called test_key.py so we include on the top

###############################################################
# pytest -v --capture=no tests/test_key.py
# pytest -v  tests/test_key.py
# pytest -v --capture=no -v --nocapture tests/test_key.py:Test_key.<METHIDNAME>
###############################################################





You can than execute the test with either command. More information is printed
with the command

Make sure that you place this comment in your tests.

The following is our simple nosetests for key. THe file is stored at
tests/test_key.py

First, we import the needed classes and methods we like to test.
We define a class, and than we define the methods. such as the setup and the actual tests.

your run it with

$ pytest -v --capture=no tests/test_key.py





###############################################################
# pytest -v --capture=no tests/test_key.py
# pytest -v  tests/test_key.py
# pytest -v --capture=no -v --nocapture tests/test_key.py:Test_key.<METHIDNAME>
###############################################################
from pprint import pprint
from cloudmesh.common.Printer import Printer
from cloudmesh.common.util import HEADING
from cloudmesh.management.configuration.SSHkey import SSHkey
from cloudmesh.management.configuration.config import Config

@pytest.mark.incremental
class TestKey:

    def setup(self):
        self.sshkey = SSHkey()


    def test_01_key(self):
        HEADING()
        pprint(self.sshkey)
        print(self.sshkey)
        print(type(self.sshkey))
        pprint(self.sshkey.__dict__)

        assert self.sshkey.__dict__  is not None


    def test_02_git(self):
        HEADING()
        config = Config()
        username = config["cloudmesh.profile.github"]
        print ("Username:", username)
        keys = self.sshkey.get_from_git(username)
        pprint (keys)
        print(Printer.flatwrite(keys,
                            sort_keys=("name"),
                            order=["name", "fingerprint"],
                            header=["Name", "Fingerprint"])
              )

        assert len(keys) > 0





The output with pytest tests/test_key.py does not provide any detail,
but just reports if tests fail or succeed.

----------------------------------------------------------------------
Ran 2 tests in 0.457s

OK





The output with  nosetests -v tests/test_key.py

results in

tests.test_key.TestName.test_01_key ... ok
tests.test_key.TestName.test_02_git ... ok

----------------------------------------------------------------------
Ran 2 tests in 1.072s

OK





During development phase you want to use nosetests -v --nocapture tests/test_key.py

WHich prints all print statements also







          

      

      

    

  

  
    
    1. Amazon Web Services (AWS) Account Creation Tutorial
    

    

    
 
  

    
      
          
            
  
1. Amazon Web Services (AWS) Account Creation Tutorial

Amazon Web Services provides a wide variaty of cloud-based products including analytics, application integration, AR and VR, cost management, blockchain, business applications, compute, customer engagement, database, developer tools, end user computing, game tech, IoT, machine learning, management and governance, media services, migration and transfer, mobile, networking and content delivery, robotics, satellite, security, identity and compliance, and storage. Here at cloudmesh, we develop services through providers to support your utilization of many of these products.


	Amazon Elastic Compute Cloud (EC2) Amazon EC2 is web service that enables users to perform elastic web-scable computing while having complete control over instances. It is integrated with most AWS services such as Amazon S3, RDS, and VPC.


	Amazon Simple Storage Service (S3) Amazon S3 an object storage service that offers a wide range of storage classes.




This page is a step-by-step guide on how to create an AWS account through the AWS webpage.


1.1. Step-by-Step Guide

First, we go to the AWS website: https://aws.amazon.com. Click on Create an AWS Account.

[image: ../_images/image1.png]Image

This will direct you to the account creation page. Fill out your information and click Continue.

[image: ../_images/image2.png]Image

At this page, you will need to fill out your contact information. You can choose Professional or Personal as your account type. Here in this tutorial, we selected Personal. Read the AWS Customer Aggrement, and check the box if agreed. Click on Create Account and Continue to continue.

[image: ../_images/image3.png]Image

Fill out your payment information and proceed.


We will not charge you unless your usage exceeds the AWS Free Tier Limits.  - Amazon AWS




[image: ../_images/image4.png]Image

Next your need to confirm your identity. You can choose either Text message (SMS) or Voice call to receive your verification code. Here we choose Text message (SMS). Enter your phone number and the security check code and click Send SMS.

[image: ../_images/image5.png]Image

Enter the 4-digit verification code you received from your phone, and click on Verify Code.

[image: ../_images/image6.png]Image

If you entered the correct verification code, you will see this page. Click on Continue.

[image: ../_images/image7.png]Image

You will need to choose your support plan. For the tutorial, we chose Amazon’s free tier Basic Plan.

[image: ../_images/image8.png]Image

Congratulations! You have successully created an AWS account. Now you can click on Sign In to the Console to sign in.

[image: ../_images/image9.png]Image

Enter the email address you used for registration, and click on Next.

[image: ../_images/image10.png]Image

Enter the password you used for registration, and click on Sign In.

[image: ../_images/image11.png]Image

Now you’ve successfully signed in to the AWS Management Console.

[image: ../_images/image12.png]Image

You can click on Services to explore AWS services through their webpage.

[image: ../_images/image13.png]Image

You can also start managing your account and instances through our cloudmesh services! :)




1.2. References


	https://aws.amazon.com/?nc2=h_lg


	https://aws.amazon.com/ec2/?nc2=h_m1


	https://aws.amazon.com/s3/?c=23&pt=1










          

      

      

    

  

  
    
    2. Azure Blob Storage and Account Creation
    

    

    
 
  

    
      
          
            
  
2. Azure Blob Storage and Account Creation


2.1. Azure Blob Storage

Azure Storage is Microsoft’s cloud storage solution for modern data
storage scenarios. Azure Blob storage is Microsoft’s object storage
solution for the cloud. Blob storage is optimized for storing massive
amounts of data.

Blob storage offers three types of resources:


	The storage account


	A container in the storage account


	A blob in a container







2.2. Azure Storage account creation

Following are the steps to create Azure storage account


	Prerequisites

Create a free Azure cloud services subscirption account.



	Log in to the Azure Portal [https://portal.azure.com/].




[image: ../_images/azure-portal.png]AZ-Portal{#fig:az-portal}


	In the Azure portal, click on Create a resource on the top left corner.




[image: ../_images/azure-resource.png]AZ-Resource{#fig:az-resource}


	Select Storage Account from the options shown




[image: ../_images/azure-account.png]AZ-Account{#fig:az-account}


	Select the subscription in which to create the storage account.


	Under the Resource group field, select Create new. Enter a name for your
new resource group.


	Next, enter a name for your storage account.


	Select a location for your storage account, or use the default location.


	Select create




After the completion of above steps, Azure blob storage service will be ready
for use. As a first step, a Container should be created in the Blob storage.
A container organizes a set of blobs, similar to a directory in a file system.
A default Container should be set in the cloudmesh4.yaml file, details  of
which are outlined
here [https://github.com/cloudmesh/cloudmesh-manual/blob/master/docs-source/source/configuration/configuration]

IMPORTANT NOTE:

The free Azure account needs to be upgrade to a pay-as-you-go subscription
after first 30 days to get continued access to free products—some for the
first 12 months.

Refer to more details here - https://azure.microsoft.com/en-us/free/




2.3. References


	https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction


	https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview










          

      

      

    

  

  
    
    3. Setting Up Your Box Account
    

    

    
 
  

    
      
          
            
  
3. Setting Up Your Box Account


3.1. Sign up

In the top right hand corner of the box homepage [https://www.box.com/home] click on the Get Started button.

[image: ../_images/get_started.png]get_started

From the plans page, select the Individual tab and then click on the free option.

[image: ../_images/individual_plan.png]individual_plan

Fill out the required information and click Submit. You will receive a confirmation email with a link to verify your account.

[image: ../_images/information.png]information.png

Once you have verified your account and signed in, you will be taken to a page that asks you about how you are using Box. You may fill this out or click Skip this and go straight to Box below the Next button.

[image: ../_images/skip.png]skip




3.2. Creating an app

Navigate to the developer console [https://app.box.com/developers/console] and select Create New App.  You will need to select what type of application you are building and an authentication method for your app and then enter an app name (you can change this later). Once your app has been created, click View App. You will then need to click the profile button in the top right corner of the page, and go to Account Settings. Scroll down to the Authentication section and click Require 2-step verification for unrecognized logins, then follow the prompts.




3.3. Authentication with JWT

In the Configuration panel of the Developer Console, scroll down to
the section titled Add and Manage Public Keys and click Generate a Public/Private Keypair:

[image: ../_images/box_add_key.png]Box Add Key

Once you have generated a keypair, a config.json file will
automatically download. Save this file in a secure location as you
will need it for authentication purposes.




3.4. References


	https://developer.box.com/reference










          

      

      

    

  

  
    
    4. Google Storage Providers
    

    

    
 
  

    
      
          
            
  
4. Google Storage Providers


4.1. Google Drive

Google Drive is a file storing platform where an user can store all his/her
files in the google drive. Here files  can be of any form ranging from
documents to audio / video or image files. In free account each user will be 
 given around 15 GB of free data space to be stored. We can create folders and
subfolders in the Google Drive  to store our data.

Each file will be stored in Google cloud with a unique URL and it’s up to the
user to make the file  sharable or not. Google Drive is reliable and if an
user has different devices and if he/she wants to access  those files then
Google Drive is needed in this case as he can have access to his file as all his
files  are stored in the cloud. The user does not need to install any kind
of software in order to view these files.




4.2. Google Docs

Google docs is especially designed for viewing or editing or sharing the
documents like Docs, Sheets,  Slides, Forms. No need to install any
software to access or edit these. And google doc can be sharable with
editable option. There is an automatic mechanism to convert Microsoft documents
to Google Docs.


	Google Docs: Google docs is a broader term for Google sheets, Google slides
and Google forms.


	Google Sheets: Just like Microsoft excel sheet Google sheets has almost all
of the functionalities.  Google sheets can be shared with other people
and can concurrently work on it and can edit it. We can change  the font
size, type as we want. We can use the formulas to calculate some mathematical
expressions. This can be  readily transformed to .csv or .xlsx format.


	Google Slides: Just like Microsoft PowerPoint presentation, Google has
Googleslides. We can do small  animations, transformations of slides.
This can be shared with other people to edit this on real time basis.We can change the font size, type of these as we want.


	Google Forms: Out of all Google docs this is the most powerful tool when
anyone wants to collect data from other people. One can make a Google form and
can share it via the link. The one who opens this link will see a form to fill.
We can add many different types of survey questions with multiple choice or
Multiple options, or text entries or date entries or choose from a list entry.
This google forms can be used to conduct surveys within a close group like
teachers, students or employees.




In a broader sense Google docs is just a subset of Google Drive




4.3. Python Google Drive API


4.3.1. Step-by-step process

Before writing the Python interface for Google Drive, we need to setup an email
account, with that email  account we will get a set of google services and
one of them is Google Drive with 15 GB overall storage.

After that we need to go through the Google Drive Quick start guide:

<https://developers.google.com/drive/api/v3/quickstart/python >

There we can see Enable API option as shown in the next picture:

[image: ../_images/image14.png]Image1

Once we enable that we will get credentials.json file where all of our
credentials are stored that can be used  to communicate with our Google
Drive through Python Interface.  After that, we will be redirected to a
page where we need to create our own project as shown in the next picture:

[image: ../_images/image21.png]image2

As we see next we need to select Google Drive API from here

[image: ../_images/image16.png]gd1

After that, we need to obtain the client_secret file as shown next: (The
file that is downloaded as client_id.json needs to be renamed as
client_secret.json)

[image: ../_images/image18.png]image3

After this we need to click Done otherwise it would not set the Google Drive API

After this if we run Authentication.py we will be redirected to our default
browser to put our our login id and password and  after that it asks to
authenticate our credentials. If we allow that as shown next:

[image: ../_images/image211.png]gd2

We will get the screen something like given next (as the authentication
pipeline has bees completed).

[image: ../_images/image23.png]gd3

If the authentication flow is completed then the Authentication.py will create a
google-drive-credentials.json file in  .credentials folder. This file
can be used for future purposes. If we delete this file then the
Authentication.py  will again ask for login id and password and again
create that file automatically.

So, now with the client_secret.json,
google-drive-credentials.json
and with Authentication.py and Provider.py our setup is ready

Once all these steps are done correctly, then we can use the Python program
interface to transfer the files  between our Python program and Google
Drive.






4.4. References


	https://www.cloudwards.net/how-does-google-drive-work/


	https://whatis.techtarget.com/definition/Google-Docs


	https://www.techopedia.com/definition/13626/google-docs


	https://www.technokids.com/blog/apps/reasons-to-use-google-forms-with-your-students/


	https://developers.google.com/drive/api/v3/quickstart/python


	https://github.com/samlopezf/google-drive-api-tutorial


	https://developers.google.com/drive/api/v3/manage-uploads










          

      

      

    

  

  
    
    5. Google (What is this?)
    

    

    
 
  

    
      
          
            
  
5. Google (What is this?)


THIS WAS FOUND IN AN UNRELATED DOCUMENT IN A USERS DOCUMENTATION





	client_secret.json


	google-drive-credentials.json




If we run the Google Drive Provider.py for the First time then the
required keys, tokens are taken from the cloudmesh4.yaml file and creates a
client_secret.json file in the follwing path ~/.cloudmesh/gdrive/

The Authentication.py creates a .credentials folder under the following path
~/.cloudmesh/gdrive/ if it doesn’t exist and creates a
google-drive-credentials.json file under the following folder
~/.cloudmesh/gdrive/.credentials/

So, for the First time
browser will be opened up automatically and asks for the Google Drive(gmail)
credentials i.e., login email and  password. If you provide these 2 then
the Authentication step is completed and then it will create the
google-drive-credentials.json and place it in ~/.cloudmesh/gdrive/.credentials/ folder.

These steps are to be followed for the first time or initial run. Once it is
done then our program is set. After these steps then the program will run
automatically by using these credentials stored in the respective files.


5.1. Note

The Google Drive API accepts these 2 files in the form of .json file format
and not in the form of a dictionary.




5.2. Links

Link for additional information:


	https://github.com/cloudmesh-community/sp19-516-130/blob/master/gdrive.md










          

      

      

    

  

  
    
    6. VM Providers (outdated)
    

    

    
 
  

    
      
          
            
  
6. VM Providers (outdated)

Cm4 works straight forward with a number of providers under the
assumption you have accounts on these frameworks. We demonstrate hete
how to start a singel vm on each of these providers and list the
started vms. Defaults form the configuration file are used to select
images and flavors. These defaults can naturally be changed.


6.1. General Cloud Providers Access

We are using the python library
Apache Libcloud [https://libcloud.apache.org] to interact with
cloud service providers. Currently, in cms, we could access:


	AWS [https://aws.amazon.com]


	AZURE [https://azure.microsoft.com/en-us/]


	any cloud service providers using OpenStack.
For example, Chameleon [https://www.chameleoncloud.org] and
Jetstream [https://jetstream-cloud.org]




By using the Apache Libcloud API, we could do these operations for
nodes in above cloud service providers:


	Start the node


	Stop the node


	Resume the node


	Suspend the node


	Destory the node


	Create the node




Improvement: Sometimes adjustments to nodes are necessary (switch
between different images/OS and service sizes).  Cm4 also allow users
to customize their instances across multiple providers by using
refactor functions to support their management tasks.


	Resize the node


	Rebuild(with different image) the node


	Rename the node


	Revert previous operations to the node







6.2. General Interface

$ cms set cloud=<cloudname as defined in the ~/.cloudmesh/cloudmesh4.yaml>
$ cms vm start
$ cms vm list

$ cms flavor="medium"
$ cms image="ubuntu18.04"

$ cms vm start








6.3. Explicit Use with Options

$ cms vm start --cloud=chameleon --image=ubuntu18.04 --flavor=medium --key=~/.ssh/id_rsa.bub








6.4. Vagrant

TODO

$ cms set cloud=vagrant
$ cms vm start
$ cms vm list








6.5. AWS


6.5.1. Setup and Configuration

Amazon Web Service (AWS) provided by Amazon is a secure cloud
service platform, users could start any instances with selected
images.

Before users use the cms platform to access EC2, they have to finish these preparations:


	EC2 account, more information is
here [https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/]


	Log in the EC2 account, update your Access Key.

Access Keys has two parts: Access Key ID and Secret
Access Key. These Access Keys are the only way you could
authentically access the AWS though AWS API requests.  (create new
Access Key: Account (right upper corner) > My Security Credentials


Access Keys > Create New Access Key)






	Private Key file is a key pairs to encrypt and decrypt login
information. While using Private Key file, there is no need to
use username or password to login the instance of AWS. For sshing
the instance, the ssh client would use the private key file
instead of credential information. (create new key pairs: Network &
Security (left column bar) > Key Pairs > Create Key Pair)


	Security Group acts as a virtual firewall for the instance.
When you launch a instance, we have to attach the Security
Group to it for controlling the traffic in and out. So before you
are using any nodes in AWS, you have to pre-define the Security
Group that you will use.  (create new Security Group: Network $
Security (left column bar) > Security Group > Create Security
Group)


	Region is the service location where you start the instance.
AWS hosts services in different regions, you should select the
region where you want to start you instance.




When you finish all above things, you should update information into
the block ‘aws’ of cloudmesh4.yaml file in ETC folder

EC2 provides On-Demand Pricing cloud services based on different
CPU, Memory and Storage selections. Please visit this
page [https://aws.amazon.com/ec2/pricing/on-demand/] for more
information. In default setting, we use the latest Ubuntu image
filled in default.image field. If you want to use other images, please
update the Image ID into it.

$ cms set cloud=aws
$ cms vm start
$ cms vm list










6.6. Azure

Uses LibCloud’s Azure ARM Compute Driver [https://libcloud.readthedocs.io/en/latest/compute/drivers/azure_arm.html]


6.6.1. Setup and Configuration

Install Azure CLI

Download and install according to your platform. [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest]

Make sure subscription is registered for compute services

az provider register --namespace Microsoft.Compute





Service principal

Full documentation on creating service principals. [https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest]
The Azure ARM Driver does not appear to support certificate based
principals at this time.

Create Principal

az ad sp create-for-rbac --name cm-admin-pw --password <SECRET>





Add Owner role.

az role assignment create --assignee <APP_ID> --role Owner





Note: <APP_ID> is provided in the output when the principal is created

$ cms set cloud=azure
$ cms vm start
$ cms vm list










6.7. OpenStack

OpenStack is an Infrastructure service that allows users to utilize
computing resource in cloud service platform through virtual
environments.

Chameleon Cloud [https://www.chameleoncloud.org/] provides an
OpenStack installation of version 2015.1 (Kilo) using the KVM
virtualization technology at the KVM@TACC site. It is important to
make sure you are visiting the
KVM@TACC [https://openstack.tacc.chameleoncloud.org/] site so as to
get proper installation. Learn more
here [https://chameleoncloud.readthedocs.io/en/latest/technical/kvm.html]
to properly set up yout account before proceed to your journey with
cms.


6.7.1. Jetstream

TODO

$ cms set cloud=jetstream
$ cms vm start
$ cms vm list








6.7.2. Chameleon Cloud

$ cms set cloud=chameleon
$ cms vm start
$ cms vm list








6.7.3. Cybera

TODO

$ cms set cloud=cybera
$ cms vm start
$ cms vm list








6.7.4. DevStack

TODO

$ cms set cloud=devstack
$ cms vm start
$ cms vm list













          

      

      

    

  

  
    
    1. Goal (outdated)
    

    

    
 
  

    
      
          
            
  
1. Goal (outdated)

The goal is to have a configuration file in which we add a number of
computers that you can use to execute tasks via ssh calls remotely. We
wiill use no fancyful ssh library, but just subprocess. As this task
requires possibly more than you can do in a single week, you need to
decide which task you like to work on.

a) develop a documentation so that the program can be managed via a
command line. Use docopts for that. You are not allowed to use other
tools

b) develop a yaml file in which we manage the remote machines and how
you get access to them. This includes how many jobs on the machine can
be executed in parallel.

c) develop a task mechanism to manage and distribute the jobs on the
machine using subprocess and a queue. Start with one job per machine,

c.1) take c and do a new logic where each machine can take multiple
jobs

d) develop a mechanism to start n vms via vagrant

e) develop a test program that distributes a job to the machines
calculates the job and fetches the result back. This is closely
related to c, but instead of integrating it in c the movement of the
data to and from the job is part of a separate mechanism, It is
essentially the status of the calculation. Once all results are in do
the reduction into a single result. Remember you could do result
calculations in parallel even if other results are not there i

f) advanced: develop a string based formulation of the tasks while
providing the task in a def and using the chars | for parallel, ; for
sequential and + for adding results

For example

def a():

   sting to be executed via ssh on a remote machine

def b():

(a | b| c); d; a+ b+ c +d








2. Manual: Cloudmesh Multi Service Data Access


2.1. Database Providers

A central database provider keeps track of files stored with multiple cloud services.


2.1.1. Local

BUG: we will not use files, this class needs  to be eliminated, and instead mongo is to be used

The LocalDBProvider uses a folder
on the local file system or network share to store each cloud file
entry as a yaml file.




2.1.2. MongoDB

Todo






2.2. Storage Providers

Storage providers are services that allow storing files.


2.2.1. Local

The LocalStorageProvider
uses a folder on the local file system or network share to act as a
“cloud” storage provider.




2.2.2. Azure Blob Storage

See Libcloud’s
Azure Blobs Storage Driver Documentation [https://libcloud.readthedocs.io/en/latest/storage/drivers/azure_blobs.html]
for instructions on how to setup a storage account and generate access
keys.






2.3. Getting Started

The default data section in cloudmesh.yaml is setup to use a local database and storage provider.

Download

git clone https://github.com/cloudmesh/cloudmesh-cloud
cd cm
pip install -r requirements.txt
cd data





Add a file to the default storage service

$ cms data add test/files/hello.txt





If you’re using an unmodified cloudmesh.yaml local test directories
are set as the default “service”.  An entry for the added file will
appear in the local db folder cloudmesh-cloud/test/data/db
and the file will be stored in
cm4/test/data/storage.

Note: Network shares can also be used with the local storage provider.

List all files

cms data add ls





Download file

cms data get hello.txt ../test





Delete file

cms data del hello.txt











          

      

      

    

  

  
    
    3. Vagrant (outdated)
    

    

    
 
  

    
      
          
            
  
3. Vagrant (outdated)

This has to be reimplemented for Python 3

cms set cloud=vagrant





See https://github.com/cloudmesh/vagrant

Usage:
  cms vbox version [--output=OUTPUT]
  cms vbox image list [--output=OUTPUT]
  cms vbox image find NAME
  cms vbox image add NAME
  cms vbox vm list [--output=OUTPUT] [-v]
  cms vbox vm delete NAME
  cms vbox vm config NAME
  cms vbox vm ip NAME [--all]
  cms vbox create NAME ([--memory=MEMORY]
                       [--image=IMAGE]
                       [--script=SCRIPT] | list)
  cms vbox vm boot NAME ([--memory=MEMORY]
                        [--image=IMAGE]
                        [--port=PORT]
                        [--script=SCRIPT] | list)
  cms vbox vm ssh NAME [-e COMMAND]





For each named vbox a directory is created in whcih a Vagrant file is placed that than is used to interact with the virtual box
The location of teh directory is ~/.cloudmesh/vagrant/NAME.

If you set however the cloud to vbox you can save yourself the vbox command in consecutive calls and just use

Usage:
  cms version [--output=OUTPUT]
  cms image list [--output=OUTPUT]
  cms image find NAME
  cms image add NAME
  cms vm list [--output=OUTPUT] [-v]
  cms vm delete NAME
  cms vm config NAME
  cms vm ip NAME [--all]
  cms create NAME ([--memory=MEMORY]
                       [--image=IMAGE]
                       [--script=SCRIPT] | list)
  cms vm boot NAME ([--memory=MEMORY]
                        [--image=IMAGE]
                        [--port=PORT]
                        [--script=SCRIPT] | list)
  cms vm ssh NAME [-e COMMAND]









          

      

      

    

  

  
    
    4. CM4 Details (outdated)
    

    

    
 
  

    
      
          
            
  
4. CM4 Details (outdated)

In cloudmesh, we are using the Python tool to implement a
program that could remotely control cloud nodes provided by different
organizations and run experiments in parallel.

The goal of cloudmesh is to provide a platform that users could directly
control the nodes they have, like AWS, Azure, and OPENSTACK
instances. Users could decide to start, stop, destroy, create, resume,
and suspend different nodes without accessing the Console
interfaces of providers. Then users could install experiment
environment, software, and other required tools in these running
nodes. Finally, an experiment could be executed in running nodes by
sending the commands from cloudmesh platform. Meanwhile, we embed the
NoSQL database MongoDB into cloudmesh for managing the nodes and
experiments.


4.1. Extra: Vargrant

TODO: update the link

Please refer to here [https://github.com/cloudmesh/cloudmesh-cloud/tree/master/cloudmesh-cloud/vagrant/README] to see how to setup
Vagrant with cloudmesh.




4.2. What we have implemented


	the function to install cms and its required packages


	the function to manage the virtual machines from cloud service providers (Azure, AWS, and Openstack)


	the function to use MongoDB for saving data





4.2.1. The Preparation for installing cloudmesh (David)


	requriements.txt : the required packages


	setup.py


	cloudmesh-cloud/command/command.py : the python class defines the interface for the command-line cms




$ cms
Usage:
      cms admin mongo install [--brew] [--download=PATH]
      cms admin mongo status
      cms admin mongo start
      cms admin mongo stop
      cms admin mongo backup FILENAME
      ...








4.2.2. The Configuration files and some relative function classes (Sachith)

The cloudmesh4.yaml file contains all the configurations required for CM4 to run.
By default it’s located in the Cloudmesh home directory (~/.cloudmesh/cloudmesh4.yaml).


4.2.2.1. Use the Configurations file

To use the configurations in CM4, you need to import the Config class and use the config
object provided by that class to access and manipulate the configuration file.


4.2.2.1.1. Getting the config object

from cloudmesh.cloud.configuration.config import Config
config = Config().data["cloudmesh"]








4.2.2.1.2. Getting values

To get values from the configurations, you can call level by level from top-down config.

MONGO_HOST = config["data"]["mongo"]["MONGO_HOST"]












4.2.3. Using the Counter file

CM4 keeps track of all the VMs running using counters for each VM.
The counter file is located at

~/.cloudmesh/counter.yaml






4.2.3.1. Using the counter

from cloudmesh.cloud.configuration.counter import Counter
counter = Counter()






4.2.3.1.1. Incrementing and Decrementing the counter values

# to update a specific VM counter
counter.incr("<VM_NAME>")
counter.decr("<VM_NAME>")

# to update the total vm counter
counter.incr()
counter.decr()








4.2.3.1.2. Getting and Setting the counter values

# to update a specific VM counter
counter.get("<VM_NAME>")
counter.set("<VM_NAME>", "value")












4.2.4. The MongoDB Database in cloudmesh (Yu)

We add the database into cloudmesh with two reasons:


	provide the information of nodes in different providers.


	record the experiment executed through cloudmesh, easy for next re-execution.




Every time the user use the cloudmesh platform, the server would access the running MongoDB database, querying the nodes’
information, showing relative metadata, and then updating all necessary data.

The MongoDB would finish below tasks:


	saving all information:


	the nodes’ information queried from cloud service, like name, id, status, and other metadata about this node.


	saving the executing or executed experiment information, like which node we run the experiment, the input, the
command, and the output.


	saving the group information users defined.






	updating any changes:


	the changes updated on the nodes, like stop running node, or start stopped node.


	the changes updated on the [cloudmesh4.yaml], like add new nodes.


	when the experiment is done, output and experiment status would be updated.


	new group is created while using cms will be updated






	return required information:


	return the node information, group information, and experiment information when cms queries them.









4.2.4.1. Data Scheme in MongoDB

There are three types of documents in MongoDB:


	Node information in cloud collection.
Different cloud service providers would return different schemas of node information. It is hard to manipulate
different nodes’ information into same schema, so we decide to dump the return mesaage into MongoDB without
any changes.


	Node’s experiment status in status collection.
The document in status collection is going to save the information of experiments executed in a node.

{'_id': node_id,
'status': status,
'currentJob': job_id,
'history' : the history of executed experiments in this node}







	Experiment information in job collection.

{'_id': experiment_id
'name': name,
'status': status,
'input': input_info,
'output': output_info,
'description': description,
'commands': commands}







	Group information in group collection.

{'cloud': cloud,
'name': name,
'size': size,
'vms': list_vms}












4.2.4.2. Security in MongoDB

For data security purpose, we enable the MongoDB security functionality in cms.

When users first time start the MongoDB, they have to add an account and open an port to access all database in MongoDB. Because we save all nodes’ information into MongoDB inclduing the Authorization information. If your MongoDB is open to everyone, it is easy for hacker to steal your information. So you are requried to set the username and password for the security purpose.

If you want to learn more about the Security in MongoDB, you can visit this page [https://docs.mongodb.com/manual/security/] or visit the brief introduction about the MongoDB

Here is a quick reference about how to
enable MongoDB Security [https://medium.com/@raj_adroit/mongodb-enable-authentication-enable-access-control-e8a75a26d332] option.




4.2.4.3. Install MongoDB Into Local

If you want to know how to install MongoDB into local, you can review Install MongoDB [https://docs.mongodb.com/manual/installation/]

And if you want to use cms to help you install MongoDB, you have to update the information required for installing MongoDB into [cloudmesh4.yaml] file.

The cloudmesh-cloud/cmmongo/MongoDBController.py has the functions to install MongoDB for Linux and Darwin system.

The logic of installing MongoDB is:

1. install prepared tools
2. download the MonoDB .tgz tarball
3. extract file from tarball
4. update the PATH environment 
5. create data and log directories
6. create the mongodb configuration file





When we finish installing MongoDB to local, we have to:

7. run the MongoDB
8. add new role for user to access the database
9. stop MongoDB
10. enable the security setting in configuration file








4.2.4.4. Insert and Update Documents in MongoDB

We have different documents in different collections. The operations in cloudmesh-cloud/vm/Vm.py will call mongoDB.py to accomplish
inserting and updating the document.

insert_cloud_document(document) : insert the document into 'cloud' collection
insert_status_document(document) : insert the document into 'status' collection
insert_job_document(document) : insert the document into 'job' collection
insert_group_document(document) : insert the document into 'group' collection
update_document(collection_name, key, value, info) : update the new information into the
                                                     the document queried by 'key : value' 
                                                     in collection_name' collection
find_document(collection_name, key, value) : get a document by 'key : value' from 
                                             'collection_name' collection
find(collection_name, key, value) : get documents satisfied with 'key : value' from 
                               'collection_name' collection
delete_document(collection_name, key, value) : delete the document satisfied with 'key : value'
                                               from 'collection_name' collection










4.2.5. The Virtual Machine Provider


4.2.5.1. Execute Command in  MongoDB

To grant users more power in manipulating their local MongoDB database, we also
add functions for users to execute their customized mongoDB command as if they can
use mongoDB client throught terminal by db_command(command) function.
And in order to handle the various exceptions and errors which might occur when
executing the command, we also add the db_connection() function to help contain those
unexpected results.

db_command(command): issue a command string to virtual mongoDB shell
db_connection: test connection to local mongoDB host










4.2.6. 4. The Virtual Machine Provider

In cloudmesh, we developed the cloudmesh-cloud/vm/Vm.py class to implement the operations for different virtual machines from AWS,
Azure, and Chameleon by using the python library Apache Libcloud [https://libcloud.apache.org] to interact with
cloud service providers.

The basic functions are:

1. start(vm_name) : start the virtual machine with specified name
2. stop(vm_name, deallocate) : stop the virtual machine with specified name
3. resume(vm_name) : resume the suspended virtual machine with specified name
4. suspend(vm_name) : suspend the running virtual machine with specified name
5. destroy(vm_name) : destroy the virtual machine with specified name
6. list() : list all virtual machine in your cloud service account
7. status(vm_name) : show the working status of virtual machine with specified name
8. info(vm_name) : show all information about the virtual machine with specified name
9. get_public_ips(vm_name) : return the public ip of the virtual machine with specified name
10. set_public_ip(vm_name, public_ip): set the public ip for the virtual machine with specified name
11. remove_public_ip(vm_name) : remove the public ip from virtual machine with specified name





Below we list some sample of running these functions for virtual machines in  AWS, Azure and Openstack.




4.2.7. AWS VM Operations (Yu)

Before using the AWS Vm code, user has to update their AWS information into cloudmesh4.yaml file in etc folder.

The Libcloud library has enough methods to support the operations for managing virtual machines in AWS. We use a
cloudmesh-cloud/vm/Aws.py to create the driver based on the configuration to connect to AWS.

Inherit the Libcloud library, we did some modifications on AWSDriver to extend the operation. The create_node
method would create a virtual machine in AWS based on the configuration of cloudmesh4.yaml file

Here are some samples for running these operations by using cloudmesh-cloud:

First, user would create the virtual machine in AWS.

$ cms vm create
Collection(Database(MongoClient(host=['127.0.0.1:27017'], document_class=dict, tz_aware=False, connect=True), 'cloudmesh'), 'cloud')
Thread: updating the status of node
Created base-cloudmesh-yuluo-4
PING 52.39.13.229 (52.39.13.229): 56 data bytes

--- 52.39.13.229 ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss





then MongoDB will have below record in cloud collection.

{ "_id" : ObjectId("5c09c65f56c5a939942a9911"), 
"id" : "i-01ca62f33728f4931", 
"name" : "base-cloudmesh-yuluo-4", 
"state" : "running", 
"public_ips" : [ "52.39.13.229" ], 
...}





If user want to stop the virtual machine, then he has to type below command with virtual machine name. The code will return
you the virtual machine from MongoDB record with a thread updating the new information. When the thread is done, you can use
status method to check the status of the virtual machine.

$ cms vm stop --vms=base-cloudmesh-yuluo-4
Thread: updating the status of node
{'_id': ObjectId('5c09c65f56c5a939942a9911'), 
'id': 'i-01ca62f33728f4931', 
'name': 'base-cloudmesh-yuluo-4', 
'state': 'running', 
'public_ips': ['52.39.13.229'],
...}
$ cms vm status --vms=base-cloudmesh-yuluo-4
stopped





When user wants to start the stopped virtual machine, he has to type the command of below sample.

$ cms vm start --vms=base-cloudmesh-yuluo-4
Thread: updating the status of node
{'_id': ObjectId('5c09c65f56c5a939942a9911'), 
'id': 'i-01ca62f33728f4931', 
'name': 'base-cloudmesh-yuluo-4', 
'state': 'stopped', 
'public_ips': [],
...}
PING 54.191.109.54 (54.191.109.54): 56 data bytes

--- 54.191.109.54 ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss

$ cms vm status --vms=base-cloudmesh-yuluo-4
running





There is a way for users to get the public ip of a virtual machine.

$ cms vm publicip --vms=base-cloudmesh-yuluo-4
{'base-cloudmesh-yuluo-4': ['54.191.109.54']}





Also, if user wants to know the information of virtual machines under his AWS account, he could do this.

$ cms vm list
<Node: uuid=9b46e75095f586471e2cfe8ebc6b1021ead0e86b, name=a-b-luoyu-0, state=STOPPED, public_ips=[], 
private_ips=['172.31.28.147'], provider=Amazon EC2 ...>, 
<Node: uuid=da309c8acbbc7bc1f21295600323d073afffb04a, name=base-cloudmesh-yuluo-1, state=TERMINATED, 
public_ips=[], private_ips=[], provider=Amazon EC2 ...>
<Node: uuid=cb62a083081350da9e6f229aace4b697358a987b, name=base-cloudmesh-yuluo-4, state=RUNNING, 
public_ips=['54.191.109.54'], private_ips=['172.31.41.197'], provider=Amazon EC2 ...>,





Finally, if user wants to delete the virtual machine, he could do this.

$ cms vm destroy --vms=base-cloudmesh-yuluo-4
True








4.2.8. Azure VM Operation (David)




4.2.9. Chameleon VM Operation (Rui and Kimball)

Same as above, before using the VM Openstack functionalities,
user has to update their Openstack information into the cloudmesh4.yaml file (~/.cloudmesh/cloudmesh.yaml by macOS convention).
It is also important to notice that openstack has various providers.
And it is important to specify each of them with correspondent log-in credentials.

Many of the funtions are supported by the Libcloud library. By specifying the config parameters to openstack and chameleaon,
VM Provider will automatically attach futher operations to openstack primitives.

In order to overcome some issues with service provider (mostly delays in operations like spawing, ip-assignments, refactoring and etc),
we implement timeout mechanism to syncronize status between our local machines and remote providers.
Blocking strategy is used to prevent un-deterministic running result.

Since providers of openstack like Chameleon and Jetstream allow users to
associate customized float ip to their instances, we also develop such functions
to support tasks like this and give more power to users when runing their jobs.

Please refer to AWS VM Operation for examples.
Chameleon Openstack expose same
operations as AWS to users. Notice that before running your command,
you need to make sure the global default cloud parameter has been set
to ‘Chameleon’ by:

$ cms vm set cloud chameleon
Setting env parameter cloud to: chameleon
Writing updata to cloudmesh.yaml
Config has been updated.








4.2.10. VM Refactor (Rui)

In addition, in order to offer more flexibilities to our users, we also developed vmrefactor (cloudmesh-cloud/vm/VmRefactor.py)
to allow users to customize the flavors of their running instances and services in different providers.

1. resize(vm_name, size) : resize the virtual machine with specified size object
2. confirm_resize(vm_name) : some providers requires confirmation message to complete resize() operation
3. revert(vm_name) : revert a resize operation. Revert the virtual machine to previous status
4. rename(vm_name, newname) : rename the virtual machine 
5. rebuild(vm_name, image) : rebuild the virtual machine to another image/OS with image object.





Currently, major providers usually charge users according to their usage. It might be
finacially wise sometimes to shift between different service size to reduce unnecessary cost.
VmRefactor is designed based on this idea to help users to achieve higher cost efficiency. VmRefactor can also help users navigate
thier management tasks especially when they have many different tasks on the run=.






4.3. Flask Rest API (Sachith)

The cloudmesh REST Api is built using flask and provides the cloud information retrieval functionality through HTTP calls.


4.3.1. Pre-requisites

Use pip install to install the following packages.


	Flask


	Flask-PyMongo







4.3.2. How to run the REST API

$ cms admin rest status
$ cms admin rest start
$ cms admin rest stop






	Navigate to the cm directory. example:




cd ~/git/cloudmesh/cm






	Configure cloudmesh




pip install .






	Add the MongoDB information in the cloudmesh configuration file




vi ~/.cloudmesh/cloudmesh4.yaml






	Run the REST API




python cm4/flask_rest_api/rest_api.py








4.3.3. API


	/vms/ : Provides information on all the VMs.


	/vms/stopped  : Provides information on all the stopped VMs.


	/vms/<id> : Provides information on the VM identified by the 
  
    
    5. AWS cm (outdated)
    

    

    
 
  

    
      
          
            
  
5. AWS cm (outdated)

The code is designed for using awscm.py to access the aws
instance and run scripts in it.

In the code, we provide these commands for achieving the goal of
conducting benchmarks on remote machines.


5.1. Code Description

In the awscm folder, there are several basic python files:


5.1.1. cloudmesh.yaml

This file contains the property of each instance, especially the AWS
instance. In AWS cm, we only concern about the block of
information in “cloud” part.

In the properties of one aws instance, we need users to specify the
“name” and “label” of the instance. In the “credentials” part, we need
users to fill in the “KEY” and “ID”. Make sure there are no duplicated
names and labels in the “aws” list.




5.1.2. :o: Suggestion for Redesign

I propose to redising and use the old cloudmesh interface in this new
implementation

cms aws vm list
cms cloud=aws
# all subsequent commands are done on aws without the ned to specify the cloud
cms group=cluster1
# all subsequent commands are added to the group. The last group is set to group1, a group can have arbitrary resources in it vms, files, ...
# commands applied to last vm 
cms vm start [--cloud=CLOUD]
cms vm stop [--cloud=CLOUD]
cms vm info [--cloud=CLOUD]
cms vm delete [--cloud=CLOUD]
cms vm suspend [--cloud=CLOUD]
#
cms group list [--group=GROUP]
cms group delete [--group=GROUP]

MongoDB is used to manage the data

cms save [--file=FILE]
cms load [--file=FILE]

makesa backup of the data in mongo

cms system satus

looks at teh system sattus of mongo and other cms stuff






here are some additional thoughts, that may influence what we do:


	http://cloudmesh.github.io/cmd3/man/man.html#vm


	There is also a newer version of cloudmesh, that we have not
implemented all of this logic but it uses cmd5







5.1.3. awscm.py

The [awscm.py] is the main runable python class to start the aws
cm. It used the “docopt” to build the usage of commands.  Here are the
version 1 commands that could be used:


5.1.3.1. Add resources

  awscm.py resource add <yaml_file>





add extra instance information into the default yaml file. Please
follow the schema of the asw instance. For example:

aws_a:
    credentials: {EC2_ACCESS_ID: "id", EC2_SECRET_KEY: "key"}
    label: aws_a
    name: aws_a








5.1.3.2. List Resources

  awscm.py resource list [--debug]





list all instances from the default yaml file




5.1.3.3. Remove Resources

  awscm.py resource remove <label_name>





remove the named or labeled instance from yaml file. Please fill in
the correct name or label. For example:

  python awscm.py resource remove aws_a








5.1.3.4. View Resources

  awscm.py resource view <label_name>





view named or labeled instance from the default yaml file. Please fill
in the correct name or label. For example:

   python awscm.py view aws_a








5.1.3.5. Copy Instances from File

  awscm.py copy instance <label_name> file <file> to <where> 





copy the file from local to the directory of instance. For exmaple:

  python awscm.py copy instance aws_a file test.txt to /test/








5.1.3.6. Copy Instances from Folder

  awscm.py copy instance <label_name> foler <foler> to <where> 





copy the folder from local to the directory of instance. For example:

  python awscm.py copy instance aws_a folder /test/ to /test/








5.1.3.7. Copy Instances

  awscm.py list instance <label_name> from <where>





list the files/folders in the directory of instanace. For example:

  python awscm.py instance aws_a from /test/








5.1.3.8. Delete Instances from file

  awscm.py delete instance <label_name> file <file> from <where> 





delete the file from the directory of instance. For example:

  python awscm.py delete instance aws_a file text.txt from /test/








5.1.3.9. Delete Instances from Folder

  awscm.py delete instance <label_name> folder <folder> from <where>





delete the folder from the directory of instance. For example:

  python awscm.py delete instance aws_a folder test from /test/








5.1.3.10. Create instances from folder

  awscm.py create instance <label_name> folder <folder> in <where>





create a new folder in the directory of instance. For example:

  python awscm.py create instance aws_a folder test in /test/








5.1.3.11. Read Instances from Folder

  awscm.py read instance <label_name> file <file> from <where>





read the file in the directory of instance. For example:

  python awscm.py read instance aws_a file test.txt from /test/








5.1.3.12. Download INstances from file

  awscm.py download instance <label_name> file <file> from <where> to <local>





download the file from the directory of instance to local. For example:

  python awscm.py download instance aws_a file test.txt from /test/ to /test/










5.1.4. Download instances from folder

  awscm.py download instance <label_name> folder <folder> from <where> to <local>





download the folder from the directory of instance to local. For example:

  python awscm.py download instance aws_a folder test from /test/ to /test






5.1.4.1. Check instances

  awscm.py check instance <label_name> process_name <process>





check the running process in the instance. For example:

  python awscm.py check isntance aws_a process_name test








5.1.4.2. Run instances locally

  awscm.py run instance <label_name> local <scripts>





run the scripts from local into the instance. For example:

  python awscm.py instance aws_a local test.sh,test.sh,test.sh








5.1.4.3. Run instances remotely

  awscm.py run instance <label_name> remote <scripts>





run the scripts from remote instance. For example:

  python awscm.py run instance aws_a remote test.sh,test.sh,test.sh








5.1.4.4. Run local

  awscm.py run local <scripts>





run the scripts from local into the random parallel instance. For example:

  python awscm.py run local test.sh,test.sh,test.sh








5.1.4.5. Run local

  awscm.py run remote <scripts>





run the scripts from the remote parallel instances. Make sure all
instances have the required scripts. For example:

  python awscm.py run remote test.sh,test.sh,test.sh





Run advanced

  awscm.py run advanced <string>





this command is running the advanced algorithm. Developing a string
based formulation of the tasks while providing the task in a def and
using the chars | for parallel, ; for sequential and + for adding
results.  In cloudmesh, we only develop simples string to be
executed via ssh on a remote machines. The default setting is running
the local scripts into remote parallel instances.

For example, we define the function in [advanced.py]:

  def a():
  def b():
  def c():
  def d();





then we run the command to get the result:

  python awscm.py advanced a|b|c;d;a+b+c+d










5.1.5. config.py

This python class is reading the configuration of instances. In the
yaml file, we set three types of instances: cloud, cluster and
default, and the [config.py] could return relative block information
of them.




5.1.6. resource.py

[resource.py] is used to read and manage the default yaml file. In
the class, we provides the read, update, add, remove and review
functionalities for yaml file. And [awscm.py] would call these
functions to run the commands.




5.1.7. utility.py

The [utility.pt] file contains the functions to do preparation
before running scripts in remote instance. In this python class, we
implement the functions: copy file to instance, copy folder into
instance, list files from the instance, delete file from instance,
delete folder from instance, create folder instance, read file from
instance, download file from instance, download folder from instance
and check whether the process is running or not.




5.1.8. run.py

The [run.py] file contains the functions to call the scripts in
remote instance. In this class, we provides three functions: run the
scripts locally to the instance, run the remote scripts in the
instance and run the scripts in parallel instances.




5.1.9. advanced.py

This class is used for the advanced approach to run a string based
formulation of the tasks. Need to be updated later.






5.2. TODO - Spark


	[ ] update more functionalities


	[ ] try the Spark in AWS instances


	[ ] try Spark by using awscm python code


	[ ] develop the test code










          

      

      

    

  

  
    
    6. REST Service (outdated)
    

    

    
 
  

    
      
          
            
  
6. REST Service (outdated)

The REST Api is built using flask and provides the cloud
information retrieval functionality through HTTP calls.


6.1. Pre-requisites

Use pip install to install the following packages.


	Flask


	Flask-PyMongo







6.2. How to run the REST API


	Navigate to the cm directory. example:




cd ~/git/cloudmesh/cm






	Configure cloudmesh




pip install .






	Add the MongoDB information in the configuration file




vi ~/.cloudmesh/cloudmesh4.yaml






	Run the REST API




python cm4/flask_rest_api/rest_api.py








6.3. API


	/vms/ : Provides information on all the VMs.


	/vms/stopped  : Provides information on all the stopped VMs.


	/vms/<id> : Provides information on the VM identified by the 
  
    
    7. Virtual Cluster (in progress)
    

    

    
 
  

    
      
          
            
  
7. Virtual Cluster (in progress)

This is a tool used to submit jobs to remote hosts in parallel and contains the following subcommands:

cms vcluster create virtual-cluster VIRTUALCLUSTER_NAME --clusters=CLUSTERS_LIST [--computers=COMPUTERS_LIST] [--debug]
cms vcluster destroy virtual-cluster VIRTUALCLUSTER_NAME
cms vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params out:stdout [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-now [default=True]]  [--debug]
cms vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params out:file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-now [default=True]]  [--debug]
cms vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:stdout [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]]  [--download-now [default=True]]  [--debug]
cms vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-now [default=True]]  [--debug]
cms vcluster create runtime-config CONFIG_NAME PROCESS_NUM in:params+file out:stdout+file [--fetch-proc-num=FETCH_PROCESS_NUM [default=1]] [--download-now [default=True]]  [--debug]
cms vcluster set-param runtime-config CONFIG_NAME PARAMETER VALUE
cms vcluster destroy runtime-config CONFIG_NAME
cms vcluster list virtual-clusters [DEPTH [default:1]]
cms vcluster list runtime-configs [DEPTH [default:1]]
cms vcluster run-script --script-path=SCRIPT_PATH --job-name=JOB_NAME --vcluster-name=VIRTUALCLUSTER_NAME --config-name=CONFIG_NAME --arguments=SET_OF_PARAMS --remote-path=REMOTE_PATH> --local-path=LOCAL_PATH [--argfile-path=ARGUMENT_FILE_PATH] [--outfile-name=OUTPUT_FILE_NAME] [--suffix=SUFFIX] [--overwrite]
cms vcluster fetch JOB_NAME
cms vcluster clean-remote JOB_NAME PROCESS_NUM
cms vcluster test-connection VIRTUALCLUSTER_NAME PROCESS_NUM





As can be seen, the command vcluster can be called with XX possible
options:


	create


	virtual-cluster


	runtime-config






	destroy


	virtual-cluster


	runtime-config






	list


	virtual-clusters


	runtime-configs






	set-param


	virtual-cluster


	runtime-config






	run-script


	fetch


	clean-remote


	test-connection




The information needed to create a virtual cluster, are extracted from
the yaml file of the cloudmesh v4, aka cms, however, it does not
modify that file. Instead, it will create a new configuration file in
a folder called vcluster_workspace. This newly generate
configuration file contains all the information about the virtual
clusters, runtime configurations as well as submitted jobs and
therefore the file is crucial for fetching the result of the previous
runs. Although possible, it is highly recommended not to modify the
file directly but instead use the set-param command to modify the
file.

When you are creating a virtual cluster, you can pick your nodes of
interest from the cloudmesh configuration and just pass it as an
argument to create virtual-cluster and you will have your Virtual
Cluster created this way. When you are done with a Virtual Cluster,
aka vcluster, you can simply destroy it.


7.1. Creating a Virtual Cluster and testing connections

Consider the following two dummy clusters in the cloudmesh4.yaml file:

cloudmesh: 
	...
    vcluster_test1:
      computer_a:
        name: machine1
        label: one
        address: localhost
        credentials:
          sshconfigpath: ~/vms/ubuntu14/sshconfig1
      computer_b:
        name:                       computer_a
        label:                      one
        address:                    localhost
        credentials:
          username:                 TBD
          pulickey:                 ~/.ssh/id_rsa.pub
    vcluster_test2:
      c2:
        name: machine2
        label: two
        address: localhost
        credentials:
          sshconfigpath: ~/vms/ubuntu14/sshconfig2
    ...





Suppose you want to create a virtual cluster called new_vcluster
using computer_a from vcluster_test1 and c2 from
vcluster_test2. This can be achieved using the following command:

$ cms vcluster create virtual-cluster vcluster1 --clusters=vcluster_test1,vcluster_test2 --computers=computer_a,c2
Virtual cluster created/replaced successfully.





This command will create the vcluster.yaml file in the
vcluster_workspace folder and will keep the information about the
virtual cluster in there. Now, we can get the information about the
virtual cluster that we just created:

$ cms vcluster list virtual-clusters
 vcluster1:
	 computer_a
	 c2





By passing a depth higher than one as an extra argument, you can get
more information about the virtual clusters:

$ cms vcluster list virtual-clusters 2
 vcluster1:
	 computer_a:
		 name:
			 machine1
		 label:
			 one
		 address:
			 localhost
		 credentials:
			 sshconfigpath
	 c2:
		 name:
			 machine2
		 label:
			 two
		 address:
			 localhost
		 credentials:
			 sshconfigpath





Now that the virtual cluster is created, we can test the connection to
the remote nodes. We will try that using 2 processes in parallel:

$ cms vcluster test-connection vcluster1 2
Node computer_a is accessible.
Node c2 is accessible.





The output indicates that both nodes in the vcluster1 are
accessible. In case you did not need the vcluster1 anymore, you can
easily remove it using:

$ cms vcluster destroy virtual-cluster vcluster1
Virtual-cluster vcluster1 destroyed successfully.








7.2. Creating a runtime-configuration

Next, we have to create a runtime-configuration which defines the
type of input and output for possibly a set of jobs that are going to
be submitted later.  In the next example we will create a runtime
configuration for jobs that we want to run remotely using 5 processes,
fetch their results using 3 processes and the script that we want to
run remotely takes just some parameter (which could be left empty for
no parameters), and the output of the script is going to be printed on
the standard output, and suppose we want to just submit the jobs for
running on remote nodes and download them later (hence the
--download-later flag):

$ cms vcluster create runtime-config ParamInStdOut 5 in:params out:stdout --fetch-proc-num=3 --download-later
Runtime-configuration created/replaced successfully.





Let’s get the list of runtime configurations to make sure our
configuration is created as we expected:

$ cms vcluster list runtime-configs 2
 ParamInStdOut:
	 proc_num:
		 5
	 download_proc_num:
		 1
	 download-later:
		 False
	 input-type:
		 params
	 output-type:
		 stdout





Similar to the virtual cluster, you can remove a runtime-configuration
using the destroy sub-command:

$ cms vcluster destroy runtime-config ParamInStdOut
Runtime-configuration ParamInStdOut destroyed successfully.








7.3. Running Parallel Remote Jobs

Now that we have both the virtual cluster and runtime configuration
ready, we can try to submit a batch job to our virtual cluster using
cms vcluster run-script. This is by far the most complicated
sub-command of the vcluster, however, the name of the arguments are
pretty clear and looking at the names you would be able to pretty much
find your way. In the next example, we submit the
inf_script_stdin_stdout.sh file to the nodes of vcluster1 and
using the ParamInStdOut configuration we run 10 instance of that
script on the virtual cluster. This script will be copied and run on
the home directory of the remote nodes (~/).  Note that even though
the remote path is set to home directory, for each job a folder with a
unique suffix will be created to avoid conflicts. Also, note that this
script does not take any argument, but we indicated 10 _ separated
by commas as a meaningless argument. This will notify the tool that
you need 10 instances of this script to be executed:

$ cms vcluster run-script --script-path=./cm4/vcluster/sample_scripts/inf_script_stdin_stdout.sh --job-name=TestJob1 --vcluster-name=vcluster1 --config-name=ParamInStdOut --arguments=_,_,_,_,_,_,_,_,_,_ --remote-path=~/ --local-path=./cm4/vcluster/sample_output --overwrite
Remote Pid on c2: 10104
Remote Pid on c2: 10109
Remote Pid on c2: 10402
Remote Pid on computer_a: 8973
Remote Pid on computer_a: 8979
Remote Pid on computer_a: 8983
Remote Pid on computer_a: 9464
Remote Pid on c2: 10884
Remote Pid on c2: 10993
Remote Pid on computer_a: 9592
collecting results
waiting for other results if any...
Results collected from c2.
Results collected from c2.
Results collected from c2.
Results collected from computer_a.
Results collected from computer_a.
Results collected from computer_a.
Results collected from computer_a.
Results collected from c2.
Results collected from c2.
Results collected from computer_a.
waiting for other results if any...
All of the remote results collected.





As you can see all of the jobs were submitted (using 5 processes) and
results were collected afterwards (using 3 processes). We can check
the existence of the results:

$ ll ./cloudmesh-cloud/vcluster/sample_output/
total 48
drwxr-xr-x 2 corriel 4096 Oct 31 22:12 ./
drwxr-xr-x 8 corriel 4096 Oct 31 22:12 ../
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_0_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_1_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_2_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_3_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_4_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_5_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_6_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_7_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_8_20181031_22123465
-rw-r--r-- 1 corriel  255 Oct 31 22:12 outputfile_9_20181031_22123465





Now, suppose the jobs were going to take so long that we could not
wait for the results and we had to download them later. To prepare
this scenario, we can set the download-later attribute of the
runtime configuration to true:

$ cms vcluster set-param runtime-config ParamInStdOut download-later true
Runtime-configuration parameter download-later set to true successfully.





Now that we set this parameter, we can submit the jobs and this time
the tool will not wait for the results:

$ cms vcluster run-script --script-path=./cloudmesh-cloud/vcluster/sample_scripts/inf_script_stdin_stdout.sh --job-name=TestJob1 --vcluster-name=vcluster1 --config-name=ParamInStdOut --arguments=_,_,_,_,_,_,_,_,_,_ --remote-path=~/ --local-path=./cloudmesh-cloud/vcluster/sample_output --overwrite
Remote Pid on c2: 12981
Remote Pid on c2: 12987
Remote Pid on c2: 13280
Remote Pid on computer_a: 11858
Remote Pid on computer_a: 11942
Remote Pid on computer_a: 11945
Remote Pid on computer_a: 12300
Remote Pid on c2: 13795
Remote Pid on computer_a: 12427
Remote Pid on c2: 13871





As you can see, the jobs are submitted and the script is
finished. Note that since a job with that exact job name exists, you
cannot submit the job unless you use the --overwrite flag. Now that
we have submitted the jobs and their results are ready, we can fetch
their produced results using the fetch command and all results will
be collected using the same number of processes that were indicated in
the runtime-configuration using which the job was submitted in the
first place:

$ cms vcluster fetch TestJob1
collecting results
Results collected from c2.
Results collected from c2.
Results collected from c2.
Results collected from computer_a.
Results collected from computer_a.
Results collected from computer_a.
Results collected from c2.
Results collected from computer_a.
Results collected from computer_a.
Results collected from c2.
waiting for other results if any...
All of the remote results collected.








7.4. Cleaning the remote

By default the Virtual Cluster tool does not clean the remotes
automatically and this task is left to be performed manually since
important results might be lose due to mistakes. To clean the remotes,
the user has to explicitly use the clean-remote command for a
specific job and this way only the results of that particular job will
be removed from ALL remotes using 2 parallel processes:

$ cms vcluster clean-remote TestJob1 4
Node c2 cleaned successfully.
Node computer_a cleaned successfully.











          

      

      

    

  

  
    
    Python Module Index
    

    

    

 


  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       cloudmesh	
       

     
       	
       	   
       cloudmesh.abstractclass.ComputeNodeABC	
       

     
       	
       	   
       cloudmesh.abstractclass.ProcessManagerABC	
       

     
       	
       	   
       cloudmesh.abstractclass.State	
       

     
       	
       	   
       cloudmesh.abstractclass.StorageABC	
       

     
       	
       	   
       cloudmesh.admin.command.admin	
       

     
       	
       	   
       cloudmesh.common.console	
       

     
       	
       	   
       cloudmesh.common.dotdict	
       

     
       	
       	   
       cloudmesh.common.error	
       

     
       	
       	   
       cloudmesh.common.FlatDict	
       

     
       	
       	   
       cloudmesh.common.locations	
       

     
       	
       	   
       cloudmesh.common.logger	
       

     
       	
       	   
       cloudmesh.common.parameter	
       

     
       	
       	   
       cloudmesh.common.Printer	
       

     
       	
       	   
       cloudmesh.common.run.background	
       

     
       	
       	   
       cloudmesh.common.run.file	
       

     
       	
       	   
       cloudmesh.common.Shell	
       

     
       	
       	   
       cloudmesh.common.ssh.authorized_keys	
       

     
       	
       	   
       cloudmesh.common.ssh.encrypt	
       

     
       	
       	   
       cloudmesh.common.ssh.ssh_config	
       

     
       	
       	   
       cloudmesh.common.StopWatch	
       

     
       	
       	   
       cloudmesh.common.util	
       

     
       	
       	   
       cloudmesh.compute.azure.AzProvider	
       

     
       	
       	   
       cloudmesh.compute.azure.AzureVm	
       

     
       	
       	   
       cloudmesh.compute.docker.Provider	
       

     
       	
       	   
       cloudmesh.compute.libcloud.Provider	
       

     
       	
       	   
       cloudmesh.compute.virtualbox.Provider	
       

     
       	
       	   
       cloudmesh.compute.vm.Provider	
       

     
       	
       	   
       cloudmesh.config.command.config	
       

     
       	
       	   
       cloudmesh.container.command.container	
       

     
       	
       	   
       cloudmesh.data.api.CloudFile	
       

     
       	
       	   
       cloudmesh.data.api.db.DBProviderABC	
       

     
       	
       	   
       cloudmesh.data.api.Driver	
       

     
       	
       	   
       cloudmesh.data.api.File	
       

     
       	
       	   
       cloudmesh.data.api.storage.StorageProviderABC	
       

     
       	
       	   
       cloudmesh.data.command.data	
       

     
       	
       	   
       cloudmesh.db.strdb	
       

     
       	
       	   
       cloudmesh.DEBUG	
       

     
       	
       	   
       cloudmesh.default.command.default	
       

     
       	
       	   
       cloudmesh.display	
       

     
       	
       	   
       cloudmesh.emr.api.manager	
       

     
       	
       	   
       cloudmesh.emr.command.emr	
       

     
       	
       	   
       cloudmesh.flavor.command.flavor	
       

     
       	
       	   
       cloudmesh.iaas.flavor	
       

     
       	
       	   
       cloudmesh.iaas.image	
       

     
       	
       	   
       cloudmesh.image.api.manager	
       

     
       	
       	   
       cloudmesh.image.command.image	
       

     
       	
       	   
       cloudmesh.image.Image	
       

     
       	
       	   
       cloudmesh.inventory.command.inventory	
       

     
       	
       	   
       cloudmesh.inventory.inventory	
       

     
       	
       	   
       cloudmesh.key.api.key	
       

     
       	
       	   
       cloudmesh.key.api.manager	
       

     
       	
       	   
       cloudmesh.key.command.key	
       

     
       	
       	   
       cloudmesh.login.api.manager	
       

     
       	
       	   
       cloudmesh.login.command.login	
       

     
       	
       	   
       cloudmesh.man.command.man	
       

     
       	
       	   
       cloudmesh.management.configuration.arguments	
       

     
       	
       	   
       cloudmesh.management.configuration.config	
       

     
       	
       	   
       cloudmesh.management.configuration.counter	
       

     
       	
       	   
       cloudmesh.management.configuration.generic_config	
       

     
       	
       	   
       cloudmesh.management.configuration.name	
       

     
       	
       	   
       cloudmesh.management.configuration.operatingsystem	
       

     
       	
       	   
       cloudmesh.management.configuration.SSHkey	
       

     
       	
       	   
       cloudmesh.management.debug	
       

     
       	
       	   
       cloudmesh.management.printer.Printer	
       

     
       	
       	   
       cloudmesh.management.script	
       

     
       	
       	   
       cloudmesh.mongo.CmDatabase	
       

     
       	
       	   
       cloudmesh.mongo.DataBaseDecorator	
       

     
       	
       	   
       cloudmesh.mongo.MongoDBController	
       

     
       	
       	   
       cloudmesh.network.api.manager	
       

     
       	
       	   
       cloudmesh.network.command.network	
       

     
       	
       	   
       cloudmesh.open.command.open	
       

     
       	
       	   
       cloudmesh.secgroup.api.manager	
       

     
       	
       	   
       cloudmesh.secgroup.command.secgroup	
       

     
       	
       	   
       cloudmesh.security.authorized_keys	
       

     
       	
       	   
       cloudmesh.security.encrypt	
       

     
       	
       	   
       cloudmesh.security.ssh_config	
       

     
       	
       	   
       cloudmesh.set.command.set	
       

     
       	
       	   
       cloudmesh.shell.command	
       

     
       	
       	   
       cloudmesh.shell.plugin	
       

     
       	
       	   
       cloudmesh.shell.shell	
       

     
       	
       	   
       cloudmesh.shell.variables	
       

     
       	
       	   
       cloudmesh.source.api.manager	
       

     
       	
       	   
       cloudmesh.source.command.source	
       

     
       	
       	   
       cloudmesh.ssh.api.manager	
       

     
       	
       	   
       cloudmesh.ssh.command.ssh	
       

     
       	
       	   
       cloudmesh.storage.command.storage	
       

     
       	
       	   
       cloudmesh.storage.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.awss3.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.azureblob.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.box.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.gdrive.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.local.Provider	
       

     
       	
       	   
       cloudmesh.storage.provider.storage	
       

     
       	
       	   
       cloudmesh.storage.spec.cloudmesh.storage	
       

     
       	
       	   
       cloudmesh.storage.spec.tests.test_openapi_storage	
       

     
       	
       	   
       cloudmesh.storage.StorageABC	
       

     
       	
       	   
       cloudmesh.terminal.command.terminal	
       

     
       	
       	   
       cloudmesh.url.command.url	
       

     
       	
       	   
       cloudmesh.var.command.var	
       

     
       	
       	   
       cloudmesh.vbox.api.provider	
       

     
       	
       	   
       cloudmesh.vbox.command.vbox	
       

     
       	
       	   
       cloudmesh.vcluster.api.VirtualCluster	
       

     
       	
       	   
       cloudmesh.vcluster.command.vcluster	
       

     
       	
       	   
       cloudmesh.vdir.api.manager	
       

     
       	
       	   
       cloudmesh.vdir.command.vdir	
       

     
       	
       	   
       cloudmesh.vm.api.manager	
       

     
       	
       	   
       cloudmesh.vm.command.vm	
       

     
       	
       	   
       cloudmesh.workflow.api.manager	
       

     
       	
       	   
       cloudmesh.workflow.command.workflow	
       

   



          

      

      

    

  

  
    
    Index
    

    

    
 
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 


A


  	
      	add() (cloudmesh.common.ssh.authorized_keys.AuthorizedKeys method)

      
        	(cloudmesh.data.api.db.DBProviderABC.DBProviderABC method)


        	(cloudmesh.management.script.SystemPath static method), [1]


        	(cloudmesh.security.authorized_keys.AuthorizedKeys method)


      


  

  	
      	attribute() (cloudmesh.common.Printer.Printer class method)


      	AuthorizedKeys (class in cloudmesh.common.ssh.authorized_keys)

      
        	(class in cloudmesh.security.authorized_keys)


      


      	auto_create_requirements() (in module cloudmesh.common.util)


      	auto_create_version() (in module cloudmesh.common.util)


  





B


  	
      	backup_name() (in module cloudmesh.common.util)


      	banner() (in module cloudmesh.common.util)


      	basecommand() (in module cloudmesh.shell.command)


  

  	
      	bash() (cloudmesh.common.Shell.Shell class method)


      	benchmark() (cloudmesh.common.StopWatch.StopWatch class method)


      	blockdiag() (cloudmesh.common.Shell.Shell class method)


      	brew() (cloudmesh.common.Shell.Shell class method)


  





C


  	
      	cat() (cloudmesh.common.Shell.Shell class method)


      	check_output() (cloudmesh.common.Shell.Shell class method)


      	check_passphrase() (cloudmesh.security.encrypt.EncryptFile method)


      	check_python() (cloudmesh.common.Shell.Shell class method)


      	class_name() (cloudmesh.shell.shell.Plugin class method)


      	classes() (cloudmesh.shell.shell.Plugin class method)


      	clear() (cloudmesh.common.StopWatch.StopWatch class method)

      
        	(cloudmesh.db.strdb.YamlDB method)


      


      	close() (cloudmesh.db.strdb.YamlDB method)


      	cloudmesh (module)


      	cloudmesh.abstractclass.ComputeNodeABC (module)


      	cloudmesh.abstractclass.ProcessManagerABC (module)


      	cloudmesh.abstractclass.State (module)


      	cloudmesh.abstractclass.StorageABC (module)


      	cloudmesh.admin.command.admin (module), [1]


      	cloudmesh.common.console (module)


      	cloudmesh.common.dotdict (module)


      	cloudmesh.common.error (module)


      	cloudmesh.common.FlatDict (module)


      	cloudmesh.common.locations (module)


      	cloudmesh.common.logger (module)


      	cloudmesh.common.parameter (module)


      	cloudmesh.common.Printer (module)


      	cloudmesh.common.run.background (module)


      	cloudmesh.common.run.file (module)


      	cloudmesh.common.Shell (module)


      	cloudmesh.common.ssh.authorized_keys (module)


      	cloudmesh.common.ssh.encrypt (module)


      	cloudmesh.common.ssh.ssh_config (module)


      	cloudmesh.common.StopWatch (module)


      	cloudmesh.common.util (module)


      	cloudmesh.compute.azure.AzProvider (module)


      	cloudmesh.compute.azure.AzureVm (module)


      	cloudmesh.compute.docker.Provider (module)


      	cloudmesh.compute.libcloud.Provider (module)


      	cloudmesh.compute.virtualbox.Provider (module)


      	cloudmesh.compute.vm.Provider (module)


      	cloudmesh.config.command.config (module)


      	cloudmesh.container.command.container (module)


      	cloudmesh.data.api.CloudFile (module)


      	cloudmesh.data.api.db.DBProviderABC (module)


      	cloudmesh.data.api.Driver (module)


      	cloudmesh.data.api.File (module)


      	cloudmesh.data.api.storage.StorageProviderABC (module)


      	cloudmesh.data.command.data (module)


      	cloudmesh.db.strdb (module)


      	cloudmesh.DEBUG (module)


      	cloudmesh.default.command.default (module)


      	cloudmesh.display (module)


      	cloudmesh.emr.api.manager (module)


      	cloudmesh.emr.command.emr (module)


      	cloudmesh.flavor.command.flavor (module)


      	cloudmesh.iaas.flavor (module)


      	cloudmesh.iaas.image (module)


      	cloudmesh.image.api.manager (module)


      	cloudmesh.image.command.image (module)


      	cloudmesh.image.Image (module)


      	cloudmesh.inventory.command.inventory (module)


      	cloudmesh.inventory.inventory (module)


      	cloudmesh.key.api.key (module)


      	cloudmesh.key.api.manager (module)


      	cloudmesh.key.command.key (module)


      	cloudmesh.login.api.manager (module)


      	cloudmesh.login.command.login (module)


      	cloudmesh.man.command.man (module)


      	cloudmesh.management.configuration.arguments (module), [1]


      	cloudmesh.management.configuration.config (module), [1]


      	cloudmesh.management.configuration.counter (module), [1]


      	cloudmesh.management.configuration.generic_config (module), [1]


  

  	
      	cloudmesh.management.configuration.name (module), [1], [2]


      	cloudmesh.management.configuration.operatingsystem (module), [1]


      	cloudmesh.management.configuration.SSHkey (module), [1]


      	cloudmesh.management.debug (module), [1]


      	cloudmesh.management.printer.Printer (module), [1]


      	cloudmesh.management.script (module), [1]


      	cloudmesh.mongo.CmDatabase (module)


      	cloudmesh.mongo.DataBaseDecorator (module)


      	cloudmesh.mongo.MongoDBController (module)


      	cloudmesh.network.api.manager (module)


      	cloudmesh.network.command.network (module)


      	cloudmesh.open.command.open (module)


      	cloudmesh.secgroup.api.manager (module)


      	cloudmesh.secgroup.command.secgroup (module)


      	cloudmesh.security.authorized_keys (module)


      	cloudmesh.security.encrypt (module)


      	cloudmesh.security.ssh_config (module)


      	cloudmesh.set.command.set (module)


      	cloudmesh.shell.command (module)


      	cloudmesh.shell.plugin (module)


      	cloudmesh.shell.shell (module)


      	cloudmesh.shell.variables (module)


      	cloudmesh.source.api.manager (module)


      	cloudmesh.source.command.source (module)


      	cloudmesh.ssh.api.manager (module)


      	cloudmesh.ssh.command.ssh (module)


      	cloudmesh.storage.command.storage (module)


      	cloudmesh.storage.Provider (module)


      	cloudmesh.storage.provider.awss3.Provider (module)


      	cloudmesh.storage.provider.azureblob.Provider (module)


      	cloudmesh.storage.provider.box.Provider (module)


      	cloudmesh.storage.provider.gdrive.Provider (module)


      	cloudmesh.storage.provider.local.Provider (module)


      	cloudmesh.storage.provider.storage (module)


      	cloudmesh.storage.spec.cloudmesh.storage (module)


      	cloudmesh.storage.spec.tests.test_openapi_storage (module)


      	cloudmesh.storage.StorageABC (module)


      	cloudmesh.terminal.command.terminal (module)


      	cloudmesh.url.command.url (module)


      	cloudmesh.var.command.var (module)


      	cloudmesh.vbox.api.provider (module)


      	cloudmesh.vbox.command.vbox (module)


      	cloudmesh.vcluster.api.VirtualCluster (module)


      	cloudmesh.vcluster.command.vcluster (module), [1]


      	cloudmesh.vdir.api.manager (module)


      	cloudmesh.vdir.command.vdir (module)


      	cloudmesh.vm.api.manager (module)


      	cloudmesh.vm.command.vm (module)


      	cloudmesh.workflow.api.manager (module)


      	cloudmesh.workflow.command.workflow (module)


      	cm() (cloudmesh.common.Shell.Shell class method)


      	CMShell (class in cloudmesh.shell.shell)


      	command (cloudmesh.common.Shell.Shell attribute)


      	command() (in module cloudmesh.shell.command)


      	command_exists() (cloudmesh.common.Shell.Shell class method)


      	config_dir_setup() (in module cloudmesh.common.locations)


      	config_file() (in module cloudmesh.common.locations)


      	config_file_prefix() (in module cloudmesh.common.locations)


      	config_file_raw() (in module cloudmesh.common.locations)


      	Console (class in cloudmesh.common.console)


      	convert_from_unicode() (in module cloudmesh.common.util)


      	copy_files() (in module cloudmesh.common.util)


      	Counter (class in cloudmesh.management.configuration.counter), [1]


      	cprint() (cloudmesh.common.console.Console static method)


      	create() (cloudmesh.compute.azure.AzProvider.Provider method)


      	create_dir() (cloudmesh.storage.provider.local.Provider.Provider method)


      	create_dir_from_filename() (cloudmesh.storage.provider.local.Provider.Provider method)


      	creation_date() (in module cloudmesh.storage.provider.local.Provider)


      	csv() (cloudmesh.common.Printer.Printer class method)


  





D


  	
      	DatabaseAlter (class in cloudmesh.mongo.DataBaseDecorator)


      	DatabaseUpdate (class in cloudmesh.mongo.DataBaseDecorator)


      	DBProviderABC (class in cloudmesh.data.api.db.DBProviderABC)


      	debug() (cloudmesh.common.error.Error class method)


      	debug_msg() (cloudmesh.common.console.Console static method)


      	decr() (cloudmesh.management.configuration.counter.Counter method), [1]


      	defaults() (in module cloudmesh.vbox.command.vbox)


      	delete() (cloudmesh.data.api.db.DBProviderABC.DBProviderABC method)

      
        	(cloudmesh.data.api.storage.StorageProviderABC.StorageProviderABC method)


        	(cloudmesh.storage.provider.local.Provider.Provider method)


      


      	destroy() (cloudmesh.compute.azure.AzProvider.Provider method)


      	dialog() (cloudmesh.common.Shell.Shell class method)


  

  	
      	dict() (cloudmesh.common.Printer.Printer class method)


      	dict_table() (cloudmesh.common.Printer.Printer class method)


      	Display (class in cloudmesh.display)


      	do_EOF() (cloudmesh.shell.shell.CMShell method)


      	do_help() (cloudmesh.shell.shell.CMShell method)


      	do_info() (cloudmesh.shell.shell.CMShell method)


      	do_plugin() (cloudmesh.shell.shell.CMShell method)


      	do_q() (cloudmesh.shell.shell.CMShell method)


      	do_quit() (cloudmesh.shell.shell.CMShell method)


      	do_shell() (cloudmesh.shell.shell.CMShell method)


      	do_version() (cloudmesh.shell.shell.CMShell method)


      	dotdict (class in cloudmesh.common.dotdict)


  





E


  	
      	emptyline() (cloudmesh.shell.shell.CMShell method)


      	EncryptFile (class in cloudmesh.security.encrypt)


      	Error (class in cloudmesh.common.error)


      	error() (cloudmesh.common.console.Console class method)


      	execute() (cloudmesh.common.Shell.Shell class method)

      
        	(cloudmesh.common.ssh.ssh_config.ssh_config method)


        	(cloudmesh.security.ssh_config.ssh_config method)


      


  

  	
      	exists() (cloudmesh.data.api.storage.StorageProviderABC.StorageProviderABC method)


      	exit() (cloudmesh.common.error.Error class method)


      	exponential_backoff() (in module cloudmesh.common.util)


  





F


  	
      	fgrep() (cloudmesh.common.Shell.Shell class method)


      	find_cygwin_executables() (cloudmesh.common.Shell.Shell class method)


      	find_lines_with() (cloudmesh.common.Shell.Shell class method)


  

  	
      	find_process() (in module cloudmesh.management.script), [1]


      	FlatDict (class in cloudmesh.common.FlatDict)


      	flatten() (in module cloudmesh.common.FlatDict)


      	flatwrite() (cloudmesh.common.Printer.Printer class method)


  





G


  	
      	generate() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


      	generate_password() (in module cloudmesh.common.util)


      	get() (cloudmesh.common.console.Console static method)

      
        	(cloudmesh.common.StopWatch.StopWatch class method)


        	(cloudmesh.data.api.storage.StorageProviderABC.StorageProviderABC method)


        	(cloudmesh.management.configuration.counter.Counter method), [1]


        	(cloudmesh.storage.provider.local.Provider.Provider method)


      


  

  	
      	get_fingerprint_from_public_key() (in module cloudmesh.common.ssh.authorized_keys)

      
        	(in module cloudmesh.security.authorized_keys)


      


      	get_from_git() (cloudmesh.management.configuration.SSHkey.SSHkey method), [1]


      	get_python() (cloudmesh.common.Shell.Shell class method)


      	git() (cloudmesh.common.Shell.Shell class method)


      	grep() (cloudmesh.common.Shell.Shell class method)

      
        	(in module cloudmesh.common.util)


      


  





H


  	
      	head() (cloudmesh.common.Shell.Shell class method)


  

  	
      	HEADING() (in module cloudmesh.common.util)


      	help_help() (cloudmesh.shell.shell.CMShell method)


  





I


  	
      	incr() (cloudmesh.management.configuration.counter.Counter method), [1]


      	indent() (in module cloudmesh.common.console)


  

  	
      	info() (cloudmesh.common.console.Console static method)

      
        	(cloudmesh.common.error.Error class method)


        	(cloudmesh.compute.azure.AzProvider.Provider method)


      


  





K


  	
      	key_prefix_replace() (in module cloudmesh.common.FlatDict)


      	keys() (cloudmesh.common.FlatDict.FlatDict method)

      
        	(cloudmesh.common.StopWatch.StopWatch class method)


      


  

  	
      	keystone() (cloudmesh.common.Shell.Shell class method)


      	kill() (cloudmesh.common.Shell.Shell class method)


  





L


  	
      	list() (cloudmesh.common.Printer.Printer class method)

      
        	(cloudmesh.common.ssh.ssh_config.ssh_config method)


        	(cloudmesh.compute.azure.AzProvider.Provider method)


        	(cloudmesh.security.ssh_config.ssh_config method)


      


      	list_files() (cloudmesh.data.api.db.DBProviderABC.DBProviderABC method)


      	load() (cloudmesh.common.ssh.authorized_keys.AuthorizedKeys class method)

      
        	(cloudmesh.common.ssh.ssh_config.ssh_config method)


        	(cloudmesh.security.authorized_keys.AuthorizedKeys class method)


        	(cloudmesh.security.ssh_config.ssh_config method)


        	(cloudmesh.shell.shell.Plugin class method)


      


  

  	
      	local() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


      	LOGGER() (in module cloudmesh.common.logger)


      	LOGGING_OFF() (in module cloudmesh.common.logger)


      	LOGGING_ON() (in module cloudmesh.common.logger)


      	login() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


      	ls() (cloudmesh.common.Shell.Shell class method)


  





M


  	
      	main() (in module cloudmesh.common.Shell)

      
        	(in module cloudmesh.shell.shell)


      


      	map_parameters() (in module cloudmesh.shell.command)


      	mkdir() (cloudmesh.common.Shell.Shell class method)


  

  	
      	modules() (cloudmesh.shell.shell.Plugin class method)


      	mongod() (cloudmesh.common.Shell.Shell class method)


      	msg() (cloudmesh.common.console.Console static method)

      
        	(cloudmesh.common.error.Error class method)


      


  





N


  	
      	Name (class in cloudmesh.management.configuration.name), [1], [2]


      	name() (cloudmesh.shell.shell.Plugin class method)


      	names() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


  

  	
      	nosetests() (cloudmesh.common.Shell.Shell class method)


      	nova() (cloudmesh.common.Shell.Shell class method)


  





O


  	
      	ok() (cloudmesh.common.console.Console static method)


  

  	
      	onecmd() (cloudmesh.shell.shell.CMShell method)


      	operating_system() (cloudmesh.common.Shell.Shell class method)


  





P


  	
      	pandoc() (cloudmesh.common.Shell.Shell class method)


      	path_expand() (in module cloudmesh.common.util)


      	pem_verify() (cloudmesh.security.encrypt.EncryptFile method)


      	ping() (cloudmesh.common.Shell.Shell class method)


      	pip() (cloudmesh.common.Shell.Shell class method)


      	Plugin (class in cloudmesh.shell.shell)


      	PluginCommandClasses (in module cloudmesh.shell.shell)


      	postcmd() (cloudmesh.shell.shell.CMShell method)


      	precmd() (cloudmesh.shell.shell.CMShell method)


      	preloop() (cloudmesh.shell.shell.CMShell method)


  

  	
      	print() (cloudmesh.common.StopWatch.StopWatch class method)


      	print_list() (cloudmesh.common.Printer.Printer class method)

      
        	(in module cloudmesh.shell.shell)


      


      	Printer (class in cloudmesh.common.Printer)


      	Provider (class in cloudmesh.compute.azure.AzProvider)

      
        	(class in cloudmesh.storage.provider.local.Provider)


      


      	ps() (cloudmesh.common.Shell.Shell class method)


      	put() (cloudmesh.data.api.storage.StorageProviderABC.StorageProviderABC method)

      
        	(cloudmesh.storage.provider.local.Provider.Provider method)


      


      	pwd() (cloudmesh.common.Shell.Shell class method)


  





R


  	
      	rackdiag() (cloudmesh.common.Shell.Shell class method)


      	readfile() (in module cloudmesh.common.util)


      	remove() (cloudmesh.common.ssh.authorized_keys.AuthorizedKeys method)

      
        	(cloudmesh.security.authorized_keys.AuthorizedKeys method)


      


      	remove_line_with() (cloudmesh.common.Shell.Shell class method)


  

  	
      	rename() (cloudmesh.compute.azure.AzProvider.Provider method)


      	resume() (cloudmesh.compute.azure.AzProvider.Provider method)


      	rm() (cloudmesh.common.Shell.Shell class method)


      	row_table() (cloudmesh.common.Printer.Printer class method)


      	rsync() (cloudmesh.common.Shell.Shell class method)


      	run() (cloudmesh.management.script.Script static method), [1]


  





S


  	
      	scp() (cloudmesh.common.Shell.Shell class method)


      	Script (class in cloudmesh.management.script), [1]


      	search() (cloudmesh.storage.provider.local.Provider.Provider method)

      
        	(in module cloudmesh.common.util)


      


      	set() (cloudmesh.management.configuration.counter.Counter method), [1]


      	set_debug() (cloudmesh.common.console.Console class method)


      	set_permissions() (cloudmesh.management.configuration.SSHkey.SSHkey method), [1]


      	set_theme() (cloudmesh.common.console.Console static method)


      	sh() (cloudmesh.common.Shell.Shell class method)


      	Shell (class in cloudmesh.common.Shell)


      	sort() (cloudmesh.common.Shell.Shell class method)


      	ssh() (cloudmesh.common.Shell.Shell class method)


      	ssh_config (class in cloudmesh.common.ssh.ssh_config)

      
        	(class in cloudmesh.security.ssh_config)


      


      	SSHkey (class in cloudmesh.management.configuration.SSHkey), [1]


  

  	
      	start() (cloudmesh.common.StopWatch.StopWatch class method)

      
        	(cloudmesh.compute.azure.AzProvider.Provider method)


      


      	State (class in cloudmesh.abstractclass.State)


      	status() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


      	stop() (cloudmesh.common.StopWatch.StopWatch class method)

      
        	(cloudmesh.compute.azure.AzProvider.Provider method)


      


      	StopWatch (class in cloudmesh.common.StopWatch)


      	StorageProviderABC (class in cloudmesh.data.api.storage.StorageProviderABC)


      	str_banner() (in module cloudmesh.common.util)


      	Subprocess (class in cloudmesh.common.Shell)


      	SubprocessError


      	sudo() (cloudmesh.common.Shell.Shell class method)


      	suspend() (cloudmesh.compute.azure.AzProvider.Provider method)


      	SystemPath (class in cloudmesh.management.script), [1]


  





T


  	
      	tail() (cloudmesh.common.Shell.Shell class method)


      	tempdir() (in module cloudmesh.common.util)


      	terminal_type() (cloudmesh.common.Shell.Shell class method)


      	Test_cloud_storage (class in cloudmesh.storage.spec.tests.test_openapi_storage)


  

  	
      	TODO() (cloudmesh.common.console.Console static method)


      	traceback() (cloudmesh.common.error.Error class method)


      	tree() (cloudmesh.storage.provider.local.Provider.Provider method)


      	txt_msg() (cloudmesh.common.console.Console static method)


  





U


  	
      	unzip() (cloudmesh.common.Shell.Shell method)


      	update() (cloudmesh.data.api.db.DBProviderABC.DBProviderABC method)


  

  	
      	username() (cloudmesh.common.ssh.ssh_config.ssh_config method)

      
        	(cloudmesh.security.ssh_config.ssh_config method)


      


  





V


  	
      	vagrant() (cloudmesh.common.Shell.Shell class method)


  

  	
      	values() (cloudmesh.common.FlatDict.FlatDict method)


      	VBoxManage() (cloudmesh.common.Shell.Shell class method)


  





W


  	
      	warning() (cloudmesh.common.console.Console static method)

      
        	(cloudmesh.common.error.Error class method)


      


  

  	
      	which() (cloudmesh.common.Shell.Shell class method)


      	write() (cloudmesh.common.Printer.Printer class method)


      	writefile() (in module cloudmesh.common.util)


  





Y


  	
      	YamlDB (class in cloudmesh.db.strdb)


  

  	
      	yn_choice() (in module cloudmesh.common.util)


  







          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  *Anthon van der Neut*, *Anthony Duer*, *Ashok*, *Badi Abdul-Wahid*, *Bo
Feng*, *Chun-Sheng Wu*, *Dave DeMeulenaere*, *Eric Collins*, *Fugang Wang*,
*Gerald Manipon*, *Gregor von Laszewski*, *Jeevan Reddy Rachepalli*, *Jing
Huang*, *Karthick*, *Keli Fine*, *Mallik Challa*, *Manjunath Sivan*, *Ritesh
Tandon*, *Rui Li*, *Sachith Withana*, *Scott McClary*, *Tarun Rawat*, *Tharak
Vangalapat*, *Vafa Andalibi*, *Yu Luo*, *Yue, Xiao*, *amannars*, *colliner*,
*fugangwang*, *himanshu3jul*, *hyspoc*, *juaco77*, *kimballXD*,
*manjunathsivan*, *robludwig*, *swsachith*, *xiao yue*, *zhengyili4321*







          

      

      

    

  

  
    
    Cloudmesh Virtualbox/Vagrant Interface
    

    

    
 
  

    
      
          
            
  
Cloudmesh Virtualbox/Vagrant Interface

Virtualbox provides a convenient way to manage virtual machines on a
local computer. Graphical user interfaces, a commandline client, but
also vagrant exist to access them. However we noticed that we often only
need a very small subset to start a vm and to tear it down. Remembering
the interfaces is difficult. Previously we developed a cloudmesh_client
that has an easy to remember interface. We leverage from this experience
and introduce a very easy to remember commandline client. At the same
time we also allow a simpl python API to manage virtual machines on
virtualbox. We use vagrant internally. However vagrants focus on
directories and Vagrantfiles in a bit inconvenient also fo us, so we
provided wrappers and utelize the design of vagrant to our advantage
while only exposing the needed functionality.


Manual Page

Usage:
  cm-vbox version [--output=OUTPUT]
  cm-vbox image list [--output=OUTPUT]
  cm-vbox image find NAME
  cm-vbox image add NAME
  cm-vbox vm list [--output=OUTPUT] [-v]
  cm-vbox vm delete NAME
  cm-vbox vm config NAME
  cm-vbox vm ip NAME [--all]
  cm-vbox create NAME ([--memory=MEMORY]
                       [--image=IMAGE]
                       [--script=SCRIPT] | list)
  cm-vbox vm boot NAME ([--memory=MEMORY]
                        [--image=IMAGE]
                        [--port=PORT]
                        [--script=SCRIPT] | list)
  cm-vbox vm ssh NAME [-e COMMAND]
  cm-vbox -h | --help








Source Code


	github.com/cloudmesh/vagrant







Prerequisits

Make sure you have the python development libraries and pip installed


Ubuntu

sudo apt-get install python-dev
sudo apt-get install python-pip










Inastall from pip

pip install cloudmesh_vagrant








Install from github

mkdir cloudmesh
cd cloudmesh
git clone https://github.com/cloudmesh/vagrant
cd vagrant
python setup.py install








Examples


Listing vms

List the vms:

cm-vbox vm list







name   state     id        provider     directory

w12 w1 running   47347b4   virtualbox   ~/w12 ~/w1
running   db913dd   virtualbox






Listing images

List the images:

cm-vbox image list







name              provider     date

ubuntu/trusty64   virtualbox   20160406.0.0






Booting vms

Start a vm while taking an ubuntu image as default:

cm-vbox vm boot w12








Login

To login into a vm you can use the ssh command followed by the VM:

cm-vbox vm ssh w12





where w12 is the name of the vm.




Executing a command

To just execute a command, use:

cm-vbox vm ssh w12 -e uname








Destroy a vm

Deletes the specified vm:

cm-vbox vm delete w12








Create a Vagrantfile

Creates a Vagrantfile in ./w12/Vagrantfile:

cm-vbox create w12








Destroy the directory of the vm

Assume you like to destroy also the directory with all information about
the previously run vm you can simple delete it with rm:

cm-vbox vm delete w12
rm -r w12





Please not that wen you delet the directory the list command will
automatically remove it from the available vms. Hoewver before you
delete it is advisable to destroy the vm so you do not have the vm any
longer running.









          

      

      

    

  

  
    
    Timed decorator
    

    

    
 
  

    
      
          
            
  
Timed decorator

In some cases you may want to use a timed decorator that limits the time a test
is executed for. An example is given next:

############################################
# nosetest -v --nocapture 
# nosetests tests/test_timed.py
# nosetests -v --nocapture tests/test_timed.py
############################################

class TestTimed:

    @timed(1.0)
    def test_10_sleep_which_fails():
        time.sleep(2.0)








Test Setup

The setup in a class can be controlled by the following functions. We include in
the print statement when they are called:

   def setup(self):
        print ("setup() is called before each test method")
 
    def teardown(self):
        print ("teardown() is called after each test method")
 
    @classmethod
    def setup_class(cls):
        print ("setup_class()is called before any methods in this class")
 
    @classmethod
    def teardown_class(cls):
        print ("teardown_class() is called after any methods in this class")








Test Timer

The following extension adds timers to nosetests


	https://github.com/mahmoudimus/nose-timer




It is installed with

$ pip install nose-timer





It is started with the flag --with-timer

Thus,

$ nosetests -v --nocapture --with-timer tests/test_key.py





Will print the time for each test as shown in this partial output:

...
[success] 58.61% tests.test_key.TestName.test_02_git: 0.1957s
[success] 41.39% tests.test_key.TestName.test_01_key: 0.1382s
----------------------------------------------------------------------
Ran 2 tests in 0.334s








Doctests in Cloudmesh

Out of principal we will not create an test running doctests.




Sniffer (not tested)

often we make changes frequently and like to get an imediate feedback on the
changes made. For the automatic repeated execution on change we can use the tool
sniffer.

$ sniffer -x--with-spec -x--spec-color





This will execute the nosetests upon change. To specify a specific test you can
pass along the name of the python test.

To install it use

$ pip install sniffer





The manual page can be called with

$ sniffer --help








Profiling

Nosetest can be augmented with profiles that showcase some of the internal time
spend on different functions and methods. To do so install


	https://github.com/msherry/nose-cprof




$ pip install nose-cprof
$ pip install cprofilev
$ pip install snakeviz
$ pip install profiling





Then call the nosetest with the additional option

$ nosetests --with-cprofile





The output will be stored by default in stats.dat

To view it use cprofilev

$ cprofilev -f stats.dat





To view it with snakeviz use

$ snakeviz -f stats.dat





To visualize the call graph we use pygraphviz. Unfortunatley it has an error and only produces png files.
Thus we use a modified version and instal it from source:

cd /tmp
$ git clone git@github.com:laszewsk/pycallgraph.git
$ cd pycallgraph
$ pip install .





Next we go to the cm directory and can creat a call graph from a python program
and open the output

$ pycallgraph graphviz -- tests/test_key.py 
$ open pycallgraph.pdf 





Another very usefule module is profiling which can be invoked with

$ profiling tests/test_key.py





To do live profiling you can use

$ profiling live-profile tests/test_key.py









          

      

      

    

  

  
    
    ToDo
    

    

    
 
  

    
      
          
            
  
ToDo


Residential Students


	a


	b


	c


	d


	e










          

      

      

    

  

  
    
    <no title>
    

    

    
 
  

    
      
          
            
  

          

      

      

    

  

  
    
    Cloud Library
    

    

    
 
  

    
      
          
            
  
Cloud Library


VCluster




Service






AWS




Virtual Cluster




Data




Server




Openstack




Vagrant




VM





          

      

      

    

  
nav.xhtml

    
      Table of Contents


      
        		
          Cloudmesh Version 4
        


        		
          About
          
            		
              Features
            


            		
              Roadmap for Future Activities
            


            		
              Contact
            


          


        


        		
          Contributors
        


        		
          Installation
          
            		
              Prerequisites
              
                		
                  Installation via pip development
                


                		
                  Source installation for development
                


              


            


            		
              Installation of mongod
            


            		
              Anaconda and Conda
            


          


        


        		
          Quickstart
          
            		
              Command line
            


            		
              Interactive shell (proposed)
            


            		
              Command scripts
            


            		
              Cache
            


            		
              Manual
            


          


        


        		
          Configuration
          
            		
              MongoDB
            


            		
              Compute Cloud Providers
              
                		
                  AWS
                


                		
                  Azure
                


                		
                  Google
                


                		
                  OpenStack
                


                		
                  Virtual Box
                


                		
                  SSH
                


                		
                  Local
                


                		
                  Docker
                


              


            


            		
              Storage Providers
              
                		
                  AWS S3
                


                		
                  Azure
                


                		
                  Google drive
                


                		
                  Box
                


                		
                  ADD OTHERS IF MISSING
                


              


            


            		
              Object Store
            


            		
              Batch
            


            		
              REST
            


            		
              Log File (proposed)
            


          


        


        		
          Cloudmesh yaml file
          
            		
              Variables
              
                		
                  Replacing home
                


              


            


          


        


        		
          Cloudmesh Database
          
            		
              Database Decorator
            


            		
              Database Access
            


            		
              Creating Uniqe Names
            


            		
              Cloudmesh Attributes
            


          


        


        		
          Cloudmesh Yaml file Encrytion (TODO)
          
            		
              Generating the Key and Certificate
            


            		
              Validate and verify the key
            


            		
              Encryption
            


            		
              Decryption
            


            		
              Cloudmesh Integration
            


            		
              Editing the Configuration file
            


            		
              Adding information to the configuration
            


            		
              Separating the sensitive information
            


          


        


        		
          Virtual Machine Management
          
            		
              Command Line and Shell Interface
            


            		
              Uniform Parameter Management
            


            		
              Virtual machine management
            


            		
              Key management
            


            		
              Security groups
            


            		
              Command Examples
              
                		
                  Ping
                


                		
                  Check
                


                		
                  Refersh
                


                		
                  Status
                


                		
                  Console
                


                		
                  Start
                


                		
                  Stop
                


                		
                  Terminate
                


                		
                  Delete
                


              


            


            		
              AWS Quickstart
            


          


        


        		
          Cloudmesh Multi Cloud Storage Interface
        


        		
          Cloudmesh Storage Module
          
            		
              Requirements
            


            		
              AWSS3 Cloudmesh Integration
              
                		
                  Storage functions overview
                


                		
                  Create dir
                


                		
                  Put
                


                		
                  Get
                


                		
                  Search
                


                		
                  List
                


                		
                  Delete
                


              


            


            		
              Pytests
              
                		
                  Generic Tests
                


                		
                  Provider Specific Pytests
                


              


            


            		
              General features
              
                		
                  Command Line Interface
                


                		
                  Programming Interface
                


                		
                  Pytests
                


              


            


            		
              Virtual Directory
              
                		
                  Configuration
                


                		
                  Pytests
                


              


            


            		
              Google drive
              
                		
                  Note
                


                		
                  Links
                


              


            


          


        


        		
          Object Storage
          
            		
              Instalation for Users
            


            		
              Instalation for Developers
            


            		
              Cloudmesh Object Storage Interfaces
              
                		
                  Object Storage with ASW S3
                


                		
                  Objstorage Functionality
                


              


            


            		
              Create Object Directory
            


            		
              Put
            


            		
              Get
            


            		
              Search
            


            		
              List
            


            		
              Delete
            


          


        


        		
          Cloudmesh Multi Cloud Open API Interface
          
            		
              Pytests
            


          


        


        		
          Infrastructure Workflow
          
            		
              Javascript Interface (proposed)
            


            		
              REST
            


            		
              Resources
            


          


        


        		
          Jupyter Integration (proposed)
          
            		
              API command shell access (proposed)
            


            		
              API calls (ok)
            


          


        


        		
          Batch
          
            		
              Creating a job configuration
            


            		
              Testing the connection
            


            		
              Running the Job
            


            		
              Downloading the Results
            


            		
              Cleaning the remote
            


            		
              Get the list of the jobs and clusters
            


            		
              Modifying the Configuration by Setting Parameters
            


            		
              Removing jobs and clusters
            


          


        


        		
          CMD5 Integartion
          
            		
              Install
            


          


        


        		
          Reference Card (proposed)
          
            		
              Shell
            


            		
              Shell commands that expire after a session
            


            		
              Clouds
            


            		
              Comet
            


            		
              HPC
            


          


        


        		
          Commands
        


        		
          Manual Cmd5
          
            		
              admin
            


            		
              banner
            


            		
              clear
            


            		
              default
            


            		
              echo
            


            		
              info
            


            		
              pause
            


            		
              plugin
            


            		
              q
            


            		
              quit
            


            		
              shell
            


            		
              sleep
            


            		
              stopwatch
            


            		
              sys
            


            		
              var
            


            		
              version
            


          


        


        		
          Compute Manual Pages
          
            		
              batch
            


            		
              flavor
            


            		
              image
            


            		
              key
            


            		
              network
            


            		
              open
            


            		
              secgroup
            


            		
              ssh
            


            		
              vbox
            


            		
              vcluster
            


            		
              vm
            


            		
              workflow
            


          


        


        		
          Storage Manual Pages
          
            		
              objstorage
            


            		
              storage
            


            		
              vdir
            


          


        


        		
          Cloudmesh Database
          
            		
              Virtual Machines
              
                		
                  Openstack
                


              


            


            		
              Azure AzProvider
              
                		
                  Flavor
                


                		
                  Image
                


                		
                  VM
                


              


            


            		
              Azure MS Azure Library Provider
              
                		
                  Flavor
                


                		
                  Image
                


                		
                  VM
                


              


            


            		
              AWS Libcloud Provider
              
                		
                  Flavor
                


                		
                  Image
                


                		
                  VM
                


              


            


            		
              AWS Boto3 Provider
              
                		
                  Flavor
                


                		
                  Image
                


                		
                  VM
                


              


            


            		
              Storage
              
                		
                  AwsS3
                


                		
                  Box
                


                		
                  Azure Blob
                


                		
                  AWSS3 the one from cloudmesh-cloud
                


                		
                  AWSS3 the one from cloudmesh-objstore
                


                		
                  Google Drive
                


                		
                  Local
                


              


            


            		
              Workflow
            


            		
              EMR
              
                		
                  Cluster Listing
                


                		
                  Instance Listing
                


                		
                  Cluster Description
                


                		
                  Copy File Request
                


                		
                  File Upload
                


                		
                  Run File Request
                


                		
                  Start Cluster Request
                


                		
                  Stop Cluster Request
                


                		
                  Step List
                


              


            


            		
              HPC
              
                		
                  Batch
                


                		
                  Queue
                


                		
                  Job
                


              


            


            		
              Keys
            


          


        


        		
          Benchmarks
        


        		
          AWS EC2 VM Management
        


        		
          AWS S3 File Storage
        


        		
          Azure Blob Storage
        


        		
          Benchmark results for â��boxâ�� Storage
        


        		
          AWS EMR Benchmarking
        


        		
          Code Documentation
        


        		
          Common
          
            		
              DEBUG
            


            		
              Variable
            


            		
              Util
            


            		
              Dotdict
            


            		
              Locations
            


            		
              Parameter
            


            		
              FlatDict
            


            		
              Printer
            


            		
              Stopwatch
            


            		
              Console
            


            		
              Logger
            


            		
              Error
            


            		
              Shell
            


            		
              Run
            


            		
              DB
            


            		
              SSH
            


          


        


        		
          CMD5
        


        		
          Cloudmesh
        


        		
          Management
          
            		
              Configuration
            


            		
              Printer
            


            		
              Names
            


            		
              Script
            


            		
              Debug
            


          


        


        		
          Mongo
          
            		
              MongoDB
            


            		
              Controler
            


          


        


        		
          Commands
        


        		
          Inventory
        


        		
          cloudmesh-storage
        


        		
          cloudmesh-objstorage
        


        		
          cloudmesh-cloud
        


        		
          cloudmesh-batch
        


        		
          cloudmesh-emr
        


        		
          Code Conventions
        


        		
          Code Management
        


        		
          Documentation Management
        


        		
          Version Managemt
        


        		
          Pytest
          
            		
              Installation
            


            		
              Test Specification and Execution
            


          


        


        		
          Amazon Web Services (AWS) Account Creation Tutorial
          
            		
              Step-by-Step Guide
            


            		
              References
            


          


        


        		
          Azure Blob Storage and Account Creation
          
            		
              Azure Blob Storage
            


            		
              Azure Storage account creation
            


            		
              References
            


          


        


        		
          Setting Up Your Box Account
          
            		
              Sign up
            


            		
              Creating an app
            


            		
              Authentication with JWT
            


            		
              References
            


          


        


        		
          Google Storage Providers
          
            		
              Google Drive
            


            		
              Google Docs
            


            		
              Python Google Drive API
              
                		
                  Step-by-step process
                


              


            


            		
              References
            


          


        


        		
          Google (What is this?)
          
            		
              Note
            


            		
              Links
            


          


        


        		
          VM Providers (outdated)
          
            		
              General Cloud Providers Access
            


            		
              General Interface
            


            		
              Explicit Use with Options
            


            		
              Vagrant
            


            		
              AWS
              
                		
                  Setup and Configuration
                


              


            


            		
              Azure
              
                		
                  Setup and Configuration
                


              


            


            		
              OpenStack
              
                		
                  Jetstream
                


                		
                  Chameleon Cloud
                


                		
                  Cybera
                


                		
                  DevStack
                


              


            


          


        


        		
          Goal (outdated)
        


        		
          Manual: Cloudmesh Multi Service Data Access
          
            		
              Database Providers
              
                		
                  Local
                


                		
                  MongoDB
                


              


            


            		
              Storage Providers
              
                		
                  Local
                


                		
                  Azure Blob Storage
                


              


            


            		
              Getting Started
            


          


        


        		
          Vagrant (outdated)
        


        		
          CM4 Details (outdated)
          
            		
              Extra: Vargrant
            


            		
              What we have implemented
              
                		
                  The Preparation for installing cloudmesh (David)
                


                		
                  The Configuration files and some relative function classes (Sachith)
                


                		
                  Using the Counter file
                


                		
                  The MongoDB Database in cloudmesh (Yu)
                


                		
                  The Virtual Machine Provider
                


                		
                  4. The Virtual Machine Provider
                


                		
                  AWS VM Operations (Yu)
                


                		
                  Azure VM Operation (David)
                


                		
                  Chameleon VM Operation (Rui and Kimball)
                


                		
                  VM Refactor (Rui)
                


              


            


            		
              Flask Rest API (Sachith)
              
                		
                  Pre-requisites
                


                		
                  How to run the REST API
                


                		
                  API
                


                		
                  Examples
                


                		
                  Dev - restricting certain ips for certain rest calls
                


              


            


            		
              Extra: Run Command/Script in AWS
            


          


        


        		
          AWS cm (outdated)
          
            		
              Code Description
              
                		
                  cloudmesh.yaml
                


                		
                  :o: Suggestion for Redesign
                


                		
                  awscm.py
                


                		
                  Download instances from folder
                


                		
                  config.py
                


                		
                  resource.py
                


                		
                  utility.py
                


                		
                  run.py
                


                		
                  advanced.py
                


              


            


            		
              TODO - Spark
            


          


        


        		
          REST Service (outdated)
          
            		
              Pre-requisites
            


            		
              How to run the REST API
            


            		
              API
            


            		
              Examples
            


            		
              Dev - restricting certain ips for certain rest calls
            


          


        


        		
          Virtual Cluster (in progress)
          
            		
              Creating a Virtual Cluster and testing connections
            


            		
              Creating a runtime-configuration
            


            		
              Running Parallel Remote Jobs
            


            		
              Cleaning the remote
            


          


        


      


    
  

_images/azure-resource.png
Microsoft Azure

Create a resource
# Home
[ Dashboard

All services

FAVORITES

All resources
W9 Resource groups
& App services
<7 Function Apps
& sqL databases
& Azure Cosmos DB
B virtual machines
4 Load balancers
B Storage accounts

<+ Virtual networks

@ Azure Active Directory

@ WMonitor

@ Advisor

@ Security Center
?) Cost Management + Billing

S Help + support

> New

New

Get started

Recently created
Compute

Networking

Storage

Web

Mobile

Containers

Databases

Analytics

Al + Machine Learning
Internet of Things
Mixed Reality
Integration

Security

Identity

Developer Tools
Management Tools
Software as a Service (SaaS)

Blockchain

P Search resources, services, and docs

Windows Server 2016 VM

Ubuntu Server 18.04 VM

Web App

SQL Database

Serverless Function App

Cosmos DB

Kubernetes Service

DevOps Project

Storage Account






_images/box_add_key.png
Add and Manage Public Keys

Generate a Public/Private Keypair
Generate an RSA keypair to sign and

authenticate the JWT request made by
vour app or upload your own public key.
Leamn to generate your own RSA
keypair.

Note: Box does not store your private
key, so make sure you save the
downloaded file if you are using our
generate button.





_images/azure-account.png
Microsoft Azure

Create a resource
# Home
[ Dashboard
All services
FAVORITES
All resources
Resource groups
& App services
Function Apps
R sQL databases
& Azure Cosmos DB
B virtual machines
4 Load balancers
B8 storage accounts

Virtual networks

@ Azure Active Directory

@ WMonitor

@ Advisor

@ Security Center

?) Cost Management + Billing

S Help + support

P Search resources, services, and docs

Home > New > Create storage account

Create storage account

Basics Advanced Tags Review + create

Azure Storage is a Microsoft-managed service providing cloud storage that is highly available, secure, durable, scalable, and
redundant. Azure Storage includes Azure Blobs (objects), Azure Data Lake Storage Gen2, Azure Files, Azure Queues, and Azure
Tables. The cost of your storage account depends on the usage and the options you choose below.  Learn more

PROJECT DETAILS

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
your resources.

* Subscription Pay-As-You-Go v
* Resource group Select existing. v
Create new

INSTANCE DETAILS

The default deployment model is Resource Manager, which supports the latest Azure features. You may choose to deploy using
the classic deployment model instead. Choose classic deployment model

* Storage account name @

* Location (US) East US v
performance @ ) standard () Premium

Account kind @ StorageV2 (general purpose v2) v
Replication @ Read-access geo-redundant storage (RA-GRS) v






_images/azure-portal.png
Microsoft Azure

Create a resource
Home
Dashboard
Al services
FAVORITES
All resources
# Resource groups
& App services
Function Apps
@ SQL databases
& Azure Cosmos DB
Virtual machines
4 Load balancers
B8 storage accounts
Virtual networks
@ Azure Active Directory
@ WMonitor
Advisor
@ Security Center

?) Cost Management + Billing

S Help + support

Azure services Seeall (100+) >

R
<)
&

App Services

Virtual machines

! Microsoft Learn
Lear Azure with free
online training from
Microsoft

Recent resources See all your recent resources > See all your resources >

NAME

Create a resource >

= (] &

SQL databases

Storage accounts Azure Database for  Azure Cosmos DB Kubernetes Function App

PostgreSQL servers services

@50 Azure Monitor G Security Center 9 Cost Management
Monitor your apps and Secure your apps and Analyze and optimize your
infrastructure infrastructure cloud spend

Useful links

fon 4
TYPE LAST VIEWED Technical Documentation (4
Azure Services (2

Recent Azure Updates [2

Azure Blog (4

Azure mobile app

[ 3 r‘App Store






_images/get_started.png
Pricing Contact 1.877.729.4269 - Login

Usiness works

t, workflow, and collaboration





_images/image1.png
< D & aws.amazon.com @] (4] ] ul

aWS Contact Sales Support English ¥ My Account ¥ Create an AWS Account

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Explore More Q

Start Building on AWS Today

Whether you're looking for compute power, database storage, content delivery,
or other functionality, AWS has the services to help you build sophisticated
applications with increased flexibility, scalability and reliability

View AWS Free Tier Details »

Amazon Lightsail Sign up for free »

Everything you need to get started on AWS—for a low, predictable price

1 Instantly get access to the AWS Free Tier 2 Explore and learn with simple tutorials 3 Begin building with step-by-step guides to help
you launch your AWS project

Explore Our Products

Ut

Open “https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?nc2=h_ct&src=header_signup” in a new tab






_images/image12.png
< [Em] & us-east-2.console.aws.amazon.com o

Services v  Resource Groups v * [\ cloudmesh_tutorial v  Ohio ~

AWS Management Console

AWS services Access resources on the go
Find Services =) Access the Management Console
You can enter names, keywords or acronyms. Q@ using the AWS Console Mobile
App. Learn more [4
Q PP
¥ Recently visited services Explore AWS
Billing Support

Amazon SageMaker

» All services Machine learning for every developer and
data scientist. Learn more [

Build a solution Visit AWS around the world at a Summit

Get started with simple wizards and automated workflows. AWS Global Summits bring the cloud
computing community together to connect,
collaborate, and learn about

Launch a virtual machine Build a web app Build using virtual servers AWS. Learn more [4

With EC2 With Elastic Beanstalk With Lightsail

2-3 minutes 6 minutes 1-2 minutes
Amazon RDS

(\‘) Set up, operate, and scale your relational
% database in the cloud. Learn more [

Open Distro for Elasticsearch

Connect an loT device Start a development project Register a domain

A 100% open-source, community driven
dictribution of Elacticcearch with enterprice-

ttps://us-east-2.console.aws.amazon.com/console/home?nc2=h_ct&region=us-east-2&src=header-signin# on this page in a new tab





_images/image10.png
& signin.aws.amazon.com

adWws
~—

Signine

Email address of your AWS account

Or to sign in as an IAM user, enter your
account ID or account alias instead.

——— gy

12 Months of Free Tier Access

New to AWS? Including use of Amazon EC2,
Amazon S3, and Amazon DynamoDB
Create a new AWS account

Visit aws.amazon.com/free for full offer terms

About Amazon.com Sign In

Amazon Web Services uses information from your Amazon.com account to identify you and allow access to Amazon Web Services. Your use of this site is governed by our
Terms of Use and Privacy Policy linked below. Your use of Amazon Web Services products and services is governed by the AWS Customer Agreement linked below unless you
have entered into a separate agreement with Amazon Web Services or an AWS Value Added Reseller to purchase these products and services. The AWS Customer Agreement
was updated on March 31, 2017. For more information about these updates, see Recent Changes.






_images/image11.png
& signin.aws.amazon.com

adWws
~—

Root user sign in ©

Email:

Password Forgot password?

I -

TR AWS Accounts nclude

12 Months of Free Tier Access

Sign in to a different account
Including use of Amazon EC2,
Create a new AWS account Amazon S3, and Amazon DynamoDB

Visit aws.amazon.com/free for full offer terms

About Amazon.com Sign In

Amazon Web Services uses information from your Amazon.com account to identify you and allow access to Amazon Web Services. Your use of this site is governed by our
Terms of Use and Privacy Policy linked below. Your use of Amazon Web Services products and services is governed by the AWS Customer Agreement linked below unless you
have entered into a separate agreement with Amazon Web Services or an AWS Value Added Reseller to purchase these products and services. The AWS Customer Agreement
was updated on March 31, 2017. For more information about these updates, see Recent Changes.

© 2019 Amaron Weh Services Ine or ite affiliatee Al riahte recerved Terme of Llee | Privacy Palicy | AWS Crictomer Aareement —






_images/image16.png
<« C @ https//consoledevelopers.google.com/apis/credentials/wizardZproject=my-project-43289

Unlock more of Google Cloud Platform by upgrading now ($300.00 credit and 354 days left in your free trial).

= Google APls

My Project 43289 w Q

API APIs & Services Credentials

& Dashboard

Add credentials to your project

i Libr
" orery 1 Find out what kind of credentials you need

O+ Credentials We'll help you set up the correct credentials.
If you want you can skip this step and create an API key, client ID or service account.

Which API are you using?

Different APIs use different auth platforms and some credentials can be restricted
to only call certain APIs.

Google Drive API -

Where will you be calling the API from?

Credentials can be restricted using details of the context from which they're called.
Some credentials are unsafe to use in certain contexts.

Web browser (Javascript)
Web server (e.g. node s, Tomeat)
Android
ding on the type of
i0s
Chrome application
Other Ul (e.g. Windows, CLI tool)

Other non-Ul (e.g. cron job, daemon)

What credentials do | need?

2 Getyour credentials

<l
Cancel






_images/image18.png
<« C @ https//consoledevelopers.google.com/apis/credentials/wizard?authuser=5&project=artful-sky-231001

Your free trial is waiting: activate now to get $300 credit to explore Google Cloud products.Leam more

Google APIs  ge MyFirst Project v Q

API APIs & Services Credentials

& Dashboard

Add credentials to your project

i Libr
" orery @ Find out what kind of credentials you need

Calling Google Drive API from a Utbased platform
Ox  Credentials

@ Create an OAuth 2.0 client ID
Created OAuth client "Other client 1°

@ Setup the OAuth 2.0 consent screen

4 Download credentials

Client ID 605083724477-1Ihaauu9csjdb3r3782jq236beddvam?.apps.googleusercontent.com

Download this credential information in JSON format. This is always available for you on the credentials page.

1l do this later






_images/image13.png
< 0

Resource Groups v *

& us-east-2.console.aws.amazon.com

Q

cloudmesh_tutorial

Ohio ~

Support v

History
Console Home
Billing

Support

’ Group A-Z

Compute

EC2

Lightsail &

ECR

ECS

EKS

Lambda

Batch

Elastic Beanstalk

Serverless Application Repository

Storage

S3

EFS

FSx

S3 Glacier
Storage Gateway
AWS Backup

Database

RDS

DynamoDB
ElastiCache
Neptune
Amazon Redshift

Amazon DocumentDB

b)

Open “https://us-east-2.console.aws.amazon.com/ec2/v2/home?region=us-east-2" in a new tab

Robotics
AWS RoboMaker

Blockchain

Amazon Managed Blockchain

Satellite

Ground Station

Management & Governance
AWS Organizations
CloudWatch

AWS Auto Scaling
CloudFormation

CloudTrail

Config

OpsWorks

Service Catalog

Systems Manager

Trusted Advisor

Managed Services

Control Tower

AWS License Manager

AWS Well-Architected Tool
Personal Health Dashboard &

A close

With Route 53

Analytics

Athena

EMR

CloudSearch
Elasticsearch Service
Kinesis

QuickSight &

Data Pipeline

AWS Glue

MSK

Security, Identity, & Compliance

1AM

Resource Access Manager
Cognito

Secrets Manager
GuardDuty

Inspector

Amazon Macie

AWS Single Sign-On
Certificate Manager

Key Management Service
CloudHSM

Directory Service

WAF & Shield

Artifact

Security Hub

Business Applications
Alexa for Business
Amazon Chime @
WorkMail

@ End User Computing
WorkSpaces

AppStream 2.0
WorkDocs
WorkLink

@ Internet Of Things
loT Core
Amazon FreeRTOS
loT 1-Click
loT Analytics
loT Device Defender
loT Device Management
loT Events
loT Greengrass
loT SiteWise
loT Things Graph

@J'lg Game Development

Amazon GamelLift

dictribution of Elacticcearch with enterprice-





_images/image14.png
€ Python Quickstart | Drive REST = X + - X

C @ https//developers.google.com/drive/api/v3/quickstart/python *w Gy © B ow  §

A Google Drive APIs > REST Q' search ALL PRODUCTS

o

UIDES REFI

NCE SAMPLES

PPORT SWITCH TO V2 SEND FEEDBACK

Overview Pyth on O uickstart Contents

Prerequisites
Quickstarts Step 1: Turn on the Drive

Apps Script Complete the steps described in the rest of this page to create a simple Python command-line application that makes AP
Browser requests to the Drive API. Step 2: Install the Google
. Client Library
e Step 3: Set up the
sample

Node.js Prerequisites Step 4: Run the sample
PHP Notes
Pyth B

G To run this quickstart, you'll need: Further reading
Ruby Troubleshooting

« Python 2.6 or greater
Android [
i0s 4 « The pip package management tool
Concepts « A Google account with Google Drive enabled

Manage files and folders
Enable collaboration
Detect changes and revisions Step 1: Turn on the Drive API
Integrate with the Drive Ul
Embed Ul widgets

Click this button to create a new Cloud Platform project and automatically enable the Drive API:
Improve your app

Migrate to V3 and Team Drives ENABLE THE DRIVE AP

Branding

Client libraries. In resulting dialog click DOWNLOAD CLIENT CONFIGURATION and save the file credentials.json to your working
directory.

H QO Type here to search





_images/image211.png
Grant Quickstart permission

& View metadata for files in
your Google Drive

Deny  Allow






_images/image23.png
< C @ localhost:8080/?state=MZSWrAqHH8fmLBtvuQZeUMK55uMWol

The authentication flow has completed, you may close this window.





_images/image2.png
& portal.aws.amazon.com

Create an AWS account

Email address

AWS Accounts Include _
12 Months of Free Tier Access

Including use of Amazon EC2, Amazon S3, and Amazon DynamoDB

Visit aws.amazon.com/free for full offer terms

AWS account name @

‘ cloudmesh_tutoriall ’

Sign in to an existing AWS account

© 2019 Amazon Web Services, Inc. or its affiliates.
Al rights reserved.

Privacy Policy = Terms of Use





_images/image21.png
<« C @ httpsy/consoledevelopers.google.com/projectcreate?previousPage-=

= Google APls Q

New Project

4 Youhave 23 projects remaining in your quota. Request an increase or
delete projects. Learn more

MANAGE QUOTAS

Project Name *
[ My Project 59426 (2]

Project ID: virtual-dogfish-231001. It cannot be changed later. ~ EDIT

Location *
B No organisation BROWSE

Parent organisation or folder

CREATE CANCEL





_images/image3.png
& portal.aws.amazon.com

Contact Information

Account type @

") Professional © Personal

Full name

cloudmesh_tutorial

Phone number

Country/Region

<«

United States

Address

700 N Woodlawn Ave

City

Bloomington

State / Province or region

Indiana

Postal code

47408

Check here to indicate that you have
read and agree to the terms of the AWS
Customer Agreement

¢

All fields are required.

Please select the account type and complete the fields below with your contact details.





_images/image4.png
& portal.aws.amazon.com

Payment Information

Please type your payment information so we can verify your identity. We will not charge
you unless your usage exceeds the AWS Free Tier Limits. Review frequently asked
questions for more information.

Credit/Debit card number

Expiration date

a
v

o

Cardholder's name

Billing address
O Use my contact address

700 N Woodlawn Ave
Bloomington Indiana 47408
us

Use a new address

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Privacy Policy ~ TermsofUse  Sign Out





_images/image8.png
& portal.aws.amazon.com

Select a Support Plan

AWS offers a selection of support plans to meet your needs. Choose the support plan
that best aligns with your AWS usage. Learn more

—/)

=]

1.

Basic Plan

e Included with all
accounts

e 24/7 self-service access
to forums and resources

e Best practice checks to
help improve security
and performance

e Access to health status
and notifications

Developer Plan

From $29/month

e For early adoption,
testing and development

e Email access to AWS
Support during business
hours

e 1 primary contact can
open an unlimited
number of support cases

e 12-hour response time
for nonproduction
systems

Need Enterprise level support?

Business Plan

From $100/month

For production
workloads & business-
critical dependencies

24/7 chat, phone, and
email access to AWS
Support

Unlimited contacts can
open an unlimited
number of support cases

1-hour response time for
production systems

Contact your account manager for additional information on running business and mission
critical-workloads on AWS (starting at $15,000/month). Le