

 Navigation

 	
 index

 	
 next |

 	cm client

Cloudmesh Client Toolkit

The cloudmesh client toolkit is a lightweight client interface of
accessing heterogeneous clouds, clusters, and workstations right from
the users computer. The user can manage his own set of resources he
would like to utilize. Thus the user has the freedom to customize
their cyber infrastructure they use. Cloudmesh client includes an
API, a commandline client, and a commandline shell. It strives to
abstract backends to databases that are used to manage the workflow
utilizing the different infrastructure and also the
services. Switching for example to stage virtual machines from
openstack clouds to amazon is as simple as specifying the name of the
cloud. Moreover, cloudmesh client can be installed on Linux, MacOSX,
and even Windows. Currently we support backends to SLURM, SSH,
Openstack, Heat. In the past we supported AWS and Azure. We are in the
process of integrating them back into the client.

This documentation and code is available on github at:

	Documentation:

	on github: http://cloudmesh.github.io/client/

	on rtd: http://cloudmesh-client.readthedocs.org/

	Code: https://github.com/cloudmesh/client

	Automated build reports and documentation:

	Documentation: http://cloudmesh-client.readthedocs.org

	Code: https://travis-ci.org/cloudmesh/client

Overview

	Prefix
	Repositories
	Automated Builds and Reports

	Contact

	Authors

	Conventions

	Feature Requests

	Introduction
	Where to go next?

Short Manuals

	Quickstart
	Setup

	Help

	Cloudmesh shell

	Accessing Clouds

	Virtual Machines

	HPC

	Reference Card
	Shell

	Shell commands that expire after a session

	Clouds

	Comet

	HPC

	Example Scripts
	Comment

	Terminal Commands

	Executing Shell commands

	Executing Python

	Variables

	Group

	Keys

	VMs

	Copy

	Security Groups

	Nova

	Network

	HPC

	Cluster

	Cloud

	Comet Virtual Cluster

User Manuals

	Setup
	Preparation

	Installation

	Configuration

	User Manual
	Shell Commands

	Cloud Commands

	HPC Commands

	Comet Commands

	Proposed Commands

	Commands
	banner

	check

	clear

	cloud

	cluster

	color

	comet

	context

	debug

	default

	echo

	EOF

	exec

	flavor

	group

	h

	help

	history

	hpc

	image

	inventory

	key

	launcher

	limits

	list

	man

	network

	nova

	open

	pause

	portal

	py

	q

	quit

	quota

	refresh

	register

	reservation

	reset

	rsync

	secgroup

	select

	server

	shell

	shell_exec

	ssh

	submit

	sync

	timer

	usage

	var

	verbose

	version

	vm

Teaching

	Exercises
	Assignment A: Prerequisite

	Assignment B: IaaS

	Assignment C: Ansible

	Assignment D: Key Management

Developer Manuals

	API
	Cloud Database

	Updating an element in the database

	Hacking
	Contributing

	Editor

	Documentation

	Git

Appendix

	Appendix
	Developer Notes
	OpenStack API Examples

	Changes
	Summary of Changes

	Changelog
	%%version%% (unreleased)

	2.0.4 (2016-02-11)

	2.0.3 (2016-02-10)

	2.0.2 (2016-02-10)

	2.0.1 (2016-02-10)

	2.0.0 (2016-02-10)

	1.1.6 (2016-02-09)
	New

	Changes

	Other

	1.1.5 (2016-02-02)

	1.1.4 (2016-02-01)
	New

	Changes

	Fix

	Other

	1.1.3 (2016-01-26)
	New

	Changes

	Fix

	Other

	1.1.2 (2016-01-13)

	1.1.1 (2016-01-13)
	New

	Other

	1.1.0 (2016-01-13)
	New

	Changes

	Fix

	Other

	1.0.2 (2015-11-25)
	New

	Other

	1.0.1 (2015-11-25)

	1.0.0 (2015-11-24)
	New

	Changes

	Other

	0.7.7 (2015-11-18)
	New

	Changes

	Other

	0.7.6 (2015-11-15)

	0.7.5 (2015-11-15)

	0.7.4 (2015-11-15)
	New

	Changes

	Fix

	Other

	0.7.3 (2015-10-31)
	New

	Changes

	Other

	0.7.2 (2015-10-30)
	New

	Changes

	Fix

	Other

	0.7.1 (2015-09-30)

	0.7.0 (2015-09-30)
	New

	Changes

	Fix

	Other

	0.6.9 (2015-09-06)

	0.6.8 (2015-09-06)

	0.6.7 (2015-09-05)

	0.6.6 (2015-09-04)

	0.6.5 (2015-09-04)

	0.6.4 (2015-09-02)

	0.6.3 (2015-09-01)

	0.6.2 (2015-09-01)

	0.6.1 (2015-08-31)

	0.6.0 (2015-08-29)

	0.5.8 (2015-06-28)

	0.5.7 (2015-06-17)

	0.5.6 (2015-06-17)

	0.5.5 (2015-06-17)

	0.5.4 (2015-06-17)

	ToDos

Future and Old

	Docker

Code

#.. toctree::
:caption: outdated
:maxdepth: 4

choco
cloudmesh_base
cloudmesh_client
commands_nova
commands_register
docker
man
old1
system-cygwin

Indices and tables

	Index

	Module Index

	Search Page

Todo

	ToDos

 Copyright 2015, Gregor von Laszewski.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Prefix

Cloudmesh client is a simple client to enable access to multiple cloud
environments form a command shell and commandline. It is grown out of
the need to simplify access to multiple clouds for researchers and
students easily. In contrast to our earlier versions of cloudmesh it
explicitly separates the code to only target client code. Due to this
simplification it is also possible to install the client code not only
on Linux, OSX, but also Windows. We have tested the installation on
Windows 10.

If you like to contribute or like to participate in the further
development, please contact Gregor von Laszewski at
laszewski@gmail.com.

Repositories

	Documentation: http://cloudmesh.github.io/client

	Code:
	https://github.com/cloudmesh/base.git

	https://github.com/cloudmesh/client.git

	Issues: https://github.com/cloudmesh/client/issues

	Milestones: https://github.com/cloudmesh/client/milestones

	Contributors: https://github.com/cloudmesh/client/graphs/contributors

As we have so far a tight integrated group, we are typically not
forking the repository, but cloning it directly. Members are than able
to work on the clones. We may change this in case we see need for forks.

Automated Builds and Reports

	Documentation: http://cloudmesh-client.readthedocs.org/

	Code: https://travis-ci.org/cloudmesh/client

Contact

For more info please contact Gregor von Laszewski, laszewski@gmail.com

Gregor von Laszewski [http://gregor.cyberaide.org]

E-mail: laszewski@gmail.comn

Indiana University

School of Informatics and Computing

Informatics West

901 E. 10th St.

Bloomington, IN 47408

and my office is at

611 N. Park Ave.

Bloomington, IN 47408

Google Map [https://www.google.com/maps/place/611+N+Park+Ave,+Bloomington,+IN+47408/@39.1721978,-86.5248349,17z/data=!3m1!4b1!4m2!3m1!1s0x886c66c69d3f454f:0x14b53a197e1ac505]

Authors

	0001 (2015-06-13): Gregor von Laszewski (laszewski@gmail.com)

	0002 (2015-06-15): fugangwang (kevinwangfg@gmail.com)

	0003 (2015-06-15): Daniel Silva (silva10.daniel@gmail.com)

	0004 (2015-06-18): Hyungro Lee (hroe.lee@gmail.com)

	0005 (2015-06-18): Paulo Chagas (paulo.robertojr100@gmail.com)

	0006 (2015-08-28): mangirish (vaglomangirish@gmail.com)

	0007 (2015-08-28): Gourav Shenoy (shenoy.200@gmail.com)

	0008 (2015-08-28): Mangirish Wagle (vaglomangirish@gmail.com)

	0009 (2015-08-28): Erika Dsouza (erika27desouza@gmail.com)

	0010 (2015-09-13): ehdsouza (Erika Dsouza)

	0011 (2016-02-12): Badi’ Abdul-Wahid (abdulwahidc@gmail.com)

Conventions

We will be using some simple conventions in this documentation. To
indicate a command to be executed on the terminal we use $ at the
beginning of the line:

echo "Hello World"

A command started in the cloudmesh client shell is preceded by cm>:

help

Often we are in the need to refer to a username or project. We will be
using the username albert and the project id FG-101. It will be up
to you to replace them with information related to your username and
project. Alternatively we assume that you have set the shell variables
$CM_USERNAME and $CM_PROJECT with for example:

export CM_USERNAME=albert
export CM_PROJECT=FG101

In this case we use in the documentation the values:

$CM_PROJECT
$CM_USERNAME

These values are typically set in the cloudmesh yaml file and if used
they can be read from it into variables within cloudmesh scripts:

var cloud=kilo
var username=cloudmesh.profile.username
var project=cloudmesh.clouds.$cloud.credentials.OS_TENANT_NAME

Please note that these values could be specific to a cloud as
indicated by the example for the project in the above project is
dependent on the specific cloud which can be easily integrated in the
cloudmesh variables while using a $ followed by the variable name.

Feature Requests

Please e-mail feature requests and bugs to laszewski@gmail.com.

We will manage them through github as part of issues and milestones:

	Issues: https://github.com/cloudmesh/client/issues

	Milestones: https://github.com/cloudmesh/client/milestones

Questions unrelated to cloudmesh but relate to futuresystems such as
network issues and outages are best send through the form at

	https://portal.futuresystems.org/help

 Copyright 2015, Gregor von Laszewski.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Introduction

	31 page slide presentation [https://drive.google.com/file/d/0Bx_sUfI4VkKSVG9KOE8xU05KREE/view?usp=sharing]
is available. Please press the download link. The presentation comes with audio and can
only be utilized once you download it. An alternative link provides
the presentation with audio online [https://mix.office.com/watch/1c7rd1l9i4c8o]

	8 page slide presentation

Cloudmesh client allows to easily manage virtual machines, containers,
HPC tasks, through a convenient client and API. Hence cloudmesh is
not only a multi-cloud, but a multi-hpc environment that allows also
to use container technologies (under development).

Client based. Cloudmesh client as the name indicates is a client
based toolkit that is installed and run on the users computers. This
also includes an add on component to the cloudmesh client which is a
portal. Hence we distinguish the client that contains most of the
functionality, as well as a portal that can access the functionality
through a locally maintaine Web portal. Important to note is that the
user manages its own credentials and thus security and credential
management is done directly on the users machine instead through a
hosted Web portal. This increases the security as access to any
credential is managed by the user and is not part of a credential
management system.

Layered Architecture. Cloudmesh client has a layered architecture
that allows easy development of new features. This also allows
contribution by the community while developing integrated and smaller
sub components. Figure A depicts the various layers. A resource
abstraction layer allows the integration of a multitude of resources
spanning HPC, Containers, and Cloud resources. (At this time we focus
on Openstack and Slurm resources. We are working on reintegrating
resources such as Azure, AWS, Maui, Moab, and others which we
previously supported, as well as new resources such as docker).

Figure A: Cloudmesh layered architecture.

Management Framework. Cloudmesh client contains a management
framework, and its components are depicted in Figure B. cloudmesh
allows easy management of virtual machines, containers, and the data
associated with them. We are currently developing a choreography
framework that leverages Ansible, chef, and heat. All of the
functionality is easily usable through a command shell that also can
be used from the commandline, and a Python API. IN future we will be
providing a REST API.

Figure B: Cloudmesh component overview.

Database Agnostic. Cloudmesh contains some state about the
resource and environment that a user may want to use. The information
is managed in an database abstraction that would allow storing the
data in a variety of databases such as SQL and MongoDB. At this time
we have chosen SQLite to be the default database as it does not
require any additional setup and is universally available on all
operating systems without change.

Command shell and line. Cloudmesh contains a command shell
allowing scripts to be developed and run. However we designed the
command shell in such a way that each command can also be called from
the command line. Through the cloudmesh state machine the state between
command shell, command client, and the portal is shared.

Cloudmesh Client Portal. Previously, we distributed cloudmesh
with client, server, and a portal components in one package. This
however turned out to be to complex to be installed for some of our
less technically skilled user community. Thus we split up the install
into two independent packages. The cloudmesh client and the cloudmesh
portal. The portal provides some elementary features to manage
virtual machines and HPC jobs. At this time the portal is considered
to be alpha technology. Just as the client the portal is to be run on
the local user machine in oredr to allow increased security by
managing the credentials locally rather than on a server.

Cloudmesh Two Factor Authentication. We have an exploratory
project in place that looks at the use of Yubikeys for cloudmesh,
client and cloudmesh portal.

Cloudmesh Comet. We are actively developing the client interface
for SDSC’s comet supercomputer allowing bare metal provisioning. The
interface reuses cloudmesh components and technologies while
interfacing with the comet cloud REST interface. The goal here is to
manage virtual clusters.

Where to go next?

What to read next may depend on your interest. Certainly you want to
install cloudmesh while following the

Installation information

Next we recommend that you get familiar with the concept of defaults
in cloudmesh. After that you have several options:

	If you are interestted in clouds such as Openstack read the Section
Cloud Commands

	If you are interested in Comet read the
the comet command manual.

	If you are interested in HPC read the Section HPC Commands

 Copyright 2015, Gregor von Laszewski.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Quickstart

Warning

This quickstart quide assumes that you have prepared your
system according to the steps documented in the Section
Preparation.

Setup

The setup of cloudmesh client is quite simple and can be done with:

pip install cloudmesh_client

However, you may want to read carefully our setup guide and prepare
your machine as your OS may not have the required packages installed
by default (see: Preparation).

Help

There are many commands in cloudmesh, and you can find
out more about them while typing in

help

When locationg a specific command you want to know more about, lets assume you want to know more about the command color, say

help color

Cloudmesh shell

The cloudmesh shell contains a number of simple abstractions. This
includes defaults, variables and configuration flags.

To set a default value, for example to set the default cloud to kilo use:

default cloud=kilo

To configure color output of the cloudmesh shell use:

color on

To conduct a live refresh in a cloud please use

refresh on

Accessing Clouds

Naturally you want to get started with clouds. In case you have a
username and project in futuresystems using cloudmesh is easy. Only
thing you need is an entry in the .ssh/config file with the machine
name india, like follows:

Host india
Hostname india.futuresystems.org
User albert

Next you can register the cloud(s) with:

register remote

This will fetch the necessary credentials from the cloud,
and poplulate the cloudmesh.yaml file for you. At this time it will
create an entry for a cloud named kilo.

If you need to view the flavors and images in the cloud, use:

image refresh
flavor refresh

To list the images/flavors use the following:

list image
list flavor

To set default flavor and image use:

default image=Ubuntu 14.04
default flavor=m1.tiny

You also need to set your default group. If you already have a group
created you can use that or else you can specify a new group name.

default group=test-group

Next, you need to upload your ssh keys to the cloud. If you already
have a key-pair you can use it, or else you can generate ssh keys using:

$ ssh-keygen -t rsa -C albert@albert-pc

This will generate id_rsa.pub (public key) and id_rsa (private key)
in the ~/.ssh/ directory.

First step (in the process of uploading key to cloud), is to add this key
to the key database. To do so, use:

key add --ssh --name=id_rsa

You can list the keys in the key database by using:

key list

The output would look something like:

+--------+----------------+-------------------------------------+--------------+--------+
| name | comment | uri | fingerprint | source |
+--------+----------------+-------------------------------------+--------------+--------+
| id_rsa | albert@mycompi | file:///home/albert/.ssh/id_rsa.pub | 64:aa: | ssh |
+--------+----------------+-------------------------------------+--------------+--------+

Then, to upload this key to the cloud (your default cloud) use:

key upload albert_ssh_key

Virtual Machines

If you have followed this document till this point, you are all set
to start a new VM in the cloud. This section explains how to do that.

First, make sure all defaults are correctly set.

vm default

The output will look somewhat similar to the following:

+-----------+---------------+
| Attribute | Value |
+-----------+---------------+
secgroup	
name	albert-001
image	Ubuntu 14.04
cloud	kilo
group	test-group
key	id_rsa
flavor	m1.tiny
login_key	
+-----------+---------------+
info. OK.

Starting a VM now is as simple as executing a single command.

vm boot

This will start up a new VM in your default cloud.
You need to refresh the database before listing VMs.

vm refresh
vm list

The output will look something like follows:

+----+--------------+------------+--------+-----------+-------------+----------+---------+--------+-------+
| id | uuid | label | status | static_ip | floating_ip | key_name | project | user | cloud |
+----+--------------+------------+--------+-----------+-------------+----------+---------+--------+-------+
| 47 | 8af4177f-... | albert-001 | ACTIVE | 10.0.2.37 | | id_rsa | fg478 | albert | kilo |
+----+--------------+------------+--------+-----------+-------------+----------+---------+--------+-------+

Congratulations! you have now learnt how to set up cloudmesh, and use it to start a VM.
Next step naturally is to login to the virtual machine. To do so, we need to assign it
a public IP (also called floating IP).

To associate a floating ip to an instance (albert-001) in our case, use:

network associate floating ip --instance=albert-001

Listing VMs will now show you this floating ip:

vm list

+----+--------------+------------+--------+-----------+--------------+----------+---------+--------+-------+
| id | uuid | label | status | static_ip | floating_ip | key_name | project | user | cloud |
+----+--------------+------------+--------+-----------+--------------+----------+---------+--------+-------+
| 47 | 8af4177f-... | albert-001 | ACTIVE | 10.0.2.37 | 152.25.6.101 | id_rsa | fg478 | albert | kilo |
+----+--------------+------------+--------+-----------+--------------+----------+---------+--------+-------+

Next, you need to set your login key to be able to ssh to the VM.
This will be the path to the private key (id_rsa) corresponding to
the public key we uploaded to the cloud:

default login_key=~/.ssh/id_rsa

Logging into the cloud is now as simple as:

vm login albert-001

This should get you through to the ssh session to the VM.
Congratulations! You have now learnt how to start a new VM and log into a VM.

To delete a VM, you use:

vm delete albert-001

HPC

IN order to use the HPC experiment management functionality, you must
register the queuing system in the yaml file and register the login
node in the .ssh/config file. If you are using india and have used the
clouds before, you may have already done this.

To start a command such as uname and execute a command you can say:

run uname

It will print a job number that you may use to interact with the
system further to for example list the output

run list 101

(We assume here 101 is your job id)

To see the status and the output you can say

run status 101
run output 101

 Copyright 2015, Gregor von Laszewski.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Reference Card

Shell

Shell

 Example Scripts

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Example Scripts

In this section we present a a number of scripts that may inspire you
to utilize the scriting abilities of cloudmesh. A script can be
started with

cm sriptname.cm

Comment

At this time comments are only detected based on the first characters
in a line. A comment line starts either with #, // or /*.

comment.cm:

test comment 1

// test comment 2

/* test comment 3 */

Terminal Commands

terminal.cm:

banner "prints a banner with this text"
echo "prints this text"
color ON
echo -r BLACK "prints in black "
echo -r BLUE "prints in blue"
echo -r GREEN "prints in green"

Executing Shell commands

bash.cm:

execute a shell command
! ls

Executing Python

py.cm:

py a = "hallo"
py print a

py n = 3
py for i in range(0,n): print i

Variables

var.cm:

#
TESTING VARIABLES
#

Listing the variables
var list

Get the time and print a banner with the time
var a=now
var b=date
var username=cloudmesh.profile.username

var list

banner $a

replace $a in comment

echo $username

echo $a
echo $b

Group

group.cm:

register remote kilo

show teh defaukts
cm default
vm default

banner "GROUP A"
boot 3 vms in goup a
default group=group_a

vm boot
vm boot
vm boot

vm list

banner "GROUP B"
boot 3 vms in group b
default group=group_b

vm boot
vm boot
vm boot

vm list

delete all vms in group_a
vm delete group_a

banner "GROUP C"
default group=group_c

create three vms in group_c
py n = 3
py for i in range(0,n): cm vm boot

vm list

Cleanup
vm delete group_b
vm delete group_c

Keys

key.cm:

banner KEYS

key delete --all --force=True

TODO: does ~ expansion works?
key add --name=test-key ~/.ssh/id_rsa.pub

key list
key list --format=json
key list --format=yaml

key list --source=cloudmesh
key list --source=ssh
key list --source=git

key get test-key

default cloud
key upload test-key

key map

key delete --select

VMs

vm.cm:

banner -r BLUE VM

banner -r BLUE -c "-" Setup

var cloud=kilo
var username=cloudmesh.profile.username
var tenant=cloudmesh.clouds.$cloud.credentials.OS_TENANT_NAME
var keyname="$username-key"

echo "Username: $username"
echo "Keyname: $keyname"

register remote

default cloud=$cloud

default cloud

banner -r BLUE -c "-" "VM List"

vm refresh
vm list

key add --name $keyname ~/.ssh/id_rsa.pub
key list
key upload $keyname

default key=$keyname

default flavor=m1.small
default image=Ubuntu-14.04-64

#default flavor=2
#default image=9eb8416d-1313-4748-a832-5fe0ecbbdffc

default list --cloud=$cloud

vm default

vm boot

vm refresh

vm ip assign

vm list

vm status

default login_key=~/.ssh/id_rsa
TODO: Monitor state change to check if the vm can be logged in
vm login

vm ssh uname -a

#--key=~/.ssh/id_rsa
=======
according to scripts/secgroup.cm
setting secgrup rule to allow ssh login
secgroup rules-add --tenant=$tenant default 22 22 tcp 0.0.0.0/0
however this seems having problem now

#default login_key=/home/mangirish/indiakey/id_rsa

#vm login --key=~/.ssh/id_rsa testvm

#vm list --format=json
#vm list --format=yaml

Copy

sync.cm:

default cloud=kilo

! rm -rf ~/cm_sync
! mkdir -p ~/cm_sync/put
! cp README.rst ~/cm_sync/put/file.txt

banner SYNC_FROM_LOCAL_TO_REMOTE
sync put ~/cm_sync/put sync_dir

banner SYNC_FROM_REMOTE_TO_LOCAL
sync get sync_dir/* ~/cm_sync/get

Security Groups

secgroup.cm:

default cloud=kilo
var username=cloudmesh.profile.username
var tenant=cloudmesh.clouds.$cloud.credentials.OS_TENANT_NAME
var keyname="$username-key"

key load
key upload

secgroup create --tenant=$tenant test-secgroup-01

banner LIST_SECURITY_GROUPS
secgroup list --tenant=$tenant

banner SECURITY_GROUP_ADD_RULES
secgroup rules-add --tenant=$tenant test-secgroup-01 80 80 tcp 0.0.0.0/0
secgroup rules-add --tenant=$tenant test-secgroup-01 443 443 udp 0.0.0.0/0

banner LIST_SECURITY_GROUP_RULES
secgroup rules-list --tenant=$tenant test-secgroup-01

banner SECURITY_GROUP_DELETE_RULE
secgroup rules-delete --tenant=$tenant test-secgroup-01 80 80 tcp 0.0.0.0/0
secgroup rules-list --tenant=$tenant test-secgroup-01

banner DELETE_SECURITY_GROUP
secgroup delete --tenant=$tenant test-secgroup-01

banner LIST_SECURITY_GROUPS
secgroup list --tenant=$tenant

Nova

nova.cm:

banner NOVA

this command should be avoided and you should use the vm command instead.
It is the same as ! nova ... but reads the configuration from the
cloudmesh.yaml file

nova set kilo

nova info

nova list
nova image-list

Network

network.cm:

lines that do not work but should are commented out for now with

banner SET_DEFAULT_CLOUD_AND_GROUP

var cloud=kilo
var username=cloudmesh.profile.username
var tenant=cloudmesh.clouds.$cloud.credentials.OS_TENANT_NAME
var keyname="$username-key"

echo "Username: $username"
echo "Keyname: $keyname"

default group=demo_group

banner FLOATING_IP_LIST
network list floating ip

banner FLOATING_POOL_LIST
network list floating pool

banner CREATE_FLOATING_IP
network create floating
network list floating

banner LIST_VM_DEFAULTS
vm default

banner CREATE_VM
vm boot
vm refresh
vm list

banner ASSOCIATE_FLOATING_IP_AUTO_DETECT
network associate floating --instance=goshenoy

banner FLOATING_IP_LIST
network list floating ip

banner DISASSOCIATE_FLOATING_IP
network disassociate floating --instance=goshenoy

banner DELETE_GROUP
group delete demo_group

banner DEFAULT_GROUP
default group=demo_group

banner CREATE_VM
vm boot
vm refresh
vm list

banner ASSOCIATE_FLOATING_IP_WITH_GROUP
network associate floating --group=demo_group

banner DISASSOCIATE_FLOATING_IP_WITH_GROUP
network disassociate floating --group=demo_group

banner DELETE_GROUP
group delete demo_group

HPC

hpc.cm:

default cloud=general
default group=test
default cluster=india

banner HPC

hpc info

hpc queue

hpc run ~/test.sh --group=test1

hpc run ~/test.sh --group=test1

hpc status --job=6

hpc delete all --group=test1

Cluster

cluster.cm:

banner SET_DEFAULT_CLOUD_AND_GROUP

var cloud=kilo
var group=demo_group
var key=cloudmesh.keys.keylist.keyname
var username=cloudmesh.profile.username

default cloud=$cloud
default group=$group
default key=$key

banner LIST_VM_DEFAULTS
vm default

banner CREATE_VM
vm boot
vm refresh
vm boot
vm refresh
vm list

banner CREATE_VIRTUAL_CLUSTER
network create cluster --group=$group

Cloud

cloud.cm:

banner DEFAULTS
list default

banner LIST_CLOUDS
cloud list

banner LOGON_TO_A_CLOUD
cloud logon kilo
cloud list

banner DEACTIVATE_A_CLOUD
cloud deactivate kilo
cloud list

banner ACTIVATE_A_CLOUD
cloud activate kilo
cloud list

banner LOGOUT_FROM_CLOUD
cloud logout kilo
cloud list

 Copyright 2015, Gregor von Laszewski.

 Comet Virtual Cluster

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Comet Virtual Cluster

The following information about the comet cluster are available

	Comet Command: Comet Virtual Cluster

	Comet Refernce Card Comet

	Man page comet

	https://portal.xsede.org/sdsc-comet

	http://www.sdsc.edu/support/user_guides/comet.html

	Comet nucleus API Docs: https://comet-nucleus.sdsc.edu/nucleus/docs/

 Copyright 2015, Gregor von Laszewski.

 Setup

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Setup

	Preparation
	OSX
	OSX Quick Install Scripts (untested)

	Ubuntu 14.04/15.04
	Ubuntu Quick Install Scripts (untested)

	CentOS
	One line install

	Deatailed Step-by-Step system preparation

	Centos Quick Install Scripts

	Windows 10
	Install Python

	Install Chocolatey, Git, VirtualEnv, Make

	Install VirtualEnv and Create a Virtual Python Environment

	Install Pycrypto

	Install FireFox Browser

	Adding SSH Key to Futuresystems Portal

	Installation
	Install Cloudmesh Client via pip

	Cloudmesh Installation from Source
	Updating an existing source distribution

	Configuration
	Get Registration from Indiana University

	Registration of other clouds

	Registration of Cybera Cloud
	Registration of Cybera Openstack Cloud

	Registration of Cybera EC2 Cloud

	Chameleon Cloud
	Registration of Chameleon Openstack Cloud

	Registration of Chameleon EC2 Cloud

	Registration of CloudLab Openstack Cloud

	Registration of AWS Cloud

	Registration of Azure Cloud

	Registration of devcloud

	Registration of a libcloud available cloud

 Copyright 2015, Gregor von Laszewski.

 Preparation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Setup

Preparation

The installation of cloudmesh is easy if you have prepared your system
with up-to-date software. We provide instructions to prepare your
system for a number of operating systems. After you have completed the
system preparation you can follow the Installation instructions which
will be the same for all systems.

In future we will provide an even simpler install mechanism on
the various operating systems based on simple install scripts.

If you like to help us in making the instructions simpler based on
your experience, please email us or create a pull request in github.

OSX

You will need a number of tools that are not distributed with the
regular OSX operating system. First you need to install xcode. The
easiest is to open a terminal and type

xcode-select --install

We recommend that you use python 2.7, e.g. at least python
2.7.10. This version of python is easy to install while downloading
the dmg and installing it on the system. You can find the python
version at:

	https://www.python.org/downloads/

You will still have access to the python version distributed with the
original OSX operating system. You will need to install pip, and
virtualenv which you can do with

sudo easy_install pip
sudo pip install virtualenv

To test out which version you have activated, you can use in the
command line

python --version
pip --version
virtualenv --version

Make sure that you have the supported versions:

	Software
	Version

	Python
	2.7.10

	pip
	8.0.2

	virtualenv
	13.1.2

On OSX as well as the other operating systems we require you to
use virtualenv. First you need to find which version of python you
use. You can say

which python

It will give you the path of the python interpreter. Let us assume the
interpreter was found in /usr/local/bin/python. Next you can create
a virtual ENV with

virtualenv -p /user/local/bin/python ~/ENV

You will need to activate the virtualenv with

source ~/ENV/bin/activate
export PYTHONPATH=~/ENV/lib/python2.7/site-packages:$PYTHONPATH

If successful, your terminal will have (ENV) as prefix to the prompt:

(ENV)machinename:dirname user$

If you like to use this version of python consistently, you may elect
to add it to your .bashrc file and add the command:

source $HOME/ENV/bin/activate
export PYTHONPATH=~/ENV/lib/python2.7/site-packages:$PYTHONPATH

We need to just do some simple updates in the virtualenv and you will
have an up to date python environment in ~/ENV

pip install pip -U
easy_install readline
easy_install pycrypto
pip install urllib3

Warning

We found that readline and pycrypto could not be
installed with pip at the time of writing of this manual,
despite the fact that pip claimed to have installed them.
However, the version installed with pip were not usable. The
workaround is to use easy_install for these packages as
shown above. If you have better idea how to fix this, let
us know and send mail to laszewski@gmail.com.

It is recommended that you test the version of the python interpreter
and pip again

pip --version

which should give the version 8.0.2

python --version

which should give the version Python 2.7.10

OSX Quick Install Scripts (untested)

Use at your own risk, we recommend that you follow the more detailed
instructions above

xcode-select --install
open https://www.python.org/downloads/

Install python 2.7.10. Next do

sudo easy_install pip
sudo pip install virtualenv
virtualenv -p /user/local/bin/python ~/ENV
source ~/ENV/bin/activate
export PYTHONPATH=~/ENV/lib/python2.7/site-packages:$PYTHONPATH
pip install pip -U
easy_install readline
easy_install pycrypto
pip install urllib3

In case you have not added the two lines in your .bashrc script, you
will need to run them in any new terminal you start in which yo like
to use the new python version. It may just be easier to add them to
your .bashrc file.

source ~/ENV/bin/activate
export PYTHONPATH=~/ENV/lib/python2.7/site-packages:$PYTHONPATH

Ubuntu 14.04/15.04

As your ubuntu version may be outdated we ask you to run the following
commands

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade
sudo apt-get install python-setuptools
sudo apt-get install python-pip
sudo apt-get install python-dev
sudo apt-get install libncurses-dev
sudo apt-get install git
sudo easy_install readline
sudo pip install pycrypto
sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev
sudo apt-get install libncursesw5-dev
sudo apt-get install libssl-dev
sudo apt-get install libsqlite3-dev
sudo apt-get install tk-dev
sudo apt-get install libgdbm-dev
sudo apt-get install libc6-dev
sudo apt-get install libbz2-dev

Note

if pycrypto does not install with pip use easy_install
pycrypto

We recommend that you use python 2.7.10, which you can install it
alternatively in your system with without overwriting the existing
python version

cd $HOME
wget --no-check-certificate https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
wget --no-check-certificate https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
wget --no-check-certificate https://bootstrap.pypa.io/get-pip.py
tar xzf Python-2.7.10.tgz
cd Python-2.7.10
./configure --prefix=/usr/local
sudo make && sudo make altinstall
export PATH="/usr/local/bin:$PATH"

Verify if you now have the correct alternative python installed

/usr/local/bin/python2.7 --version

which will return Python 2.7.10. Next, Install setuptools and pip

cd $HOME
sudo /usr/local/bin/python2.7 ez_setup.py
sudo /usr/local/bin/python2.7 get-pip.py

Create soft symbolic links

sudo ln -sf /usr/local/bin/python2.7 /usr/local/bin/python
sudo ln -sf /usr/local/bin/pip /usr/bin/pip

Verify if you now have the required pip version installed

pip --version

It shoudl show the version 8.0.2. If you see a lower version of pip, you may
upgrade it with the following command

pip install -U pip

Next, Install a python virtual environment on your machine as we do
not want to interfere with the system installed python
versions. Inside your terminal run

sudo apt-get install virtualenv

Next we will create a python virtualenv in the directory $HOME/ENV. To
activate virtualenv, execute the following steps

virtualenv -p /usr/local/bin/python $HOME/ENV
source $HOME/ENV/bin/activate

This will add a ‘(ENV)’ to your prompt in the terminal like following:

(ENV)[user@hostname ~]$

Ubuntu Quick Install Scripts (untested)

Use at your own risk, we recommend that you follow the more detailed
instructions above. THe script bellow contains also an update of the
python version from 2.7.9 to 2.7.10 in an alternate install. As
cloudmesh is running fine in python 2.7.9 the update may not be needed
and you may eliminate the steps in regards to this from the bellow
script if you wish.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade
sudo apt-get install python-setuptools
sudo apt-get install python-pip
sudo apt-get install python-dev
sudo apt-get install libncurses-dev
sudo apt-get install git
sudo easy_install readline
sudo pip install pycrypto
sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev
sudo apt-get install libncursesw5-dev
sudo apt-get install libssl-dev
sudo apt-get install libsqlite3-dev
sudo apt-get install tk-dev
sudo apt-get install libgdbm-dev
sudo apt-get install libc6-dev
sudo apt-get install libbz2-dev
cd $HOME
wget --no-check-certificate https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
wget --no-check-certificate https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
wget --no-check-certificate https://bootstrap.pypa.io/get-pip.py
tar xzf Python-2.7.10.tgz
cd Python-2.7.10
./configure --prefix=/usr/local
sudo make && sudo make altinstall
export PATH="/usr/local/bin:$PATH"
cd $HOME
sudo /usr/local/bin/python2.7 ez_setup.py
sudo /usr/local/bin/python2.7 get-pip.py
sudo ln -sf /usr/local/bin/python2.7 /usr/local/bin/python
sudo ln -sf /usr/local/bin/pip /usr/bin/pip
pip install -U pip
virtualenv -p /usr/local/bin/python $HOME/ENV

Add the following to your .bashrc file:

source $HOME/ENV/bin/activate

CentOS

This documentation assumes that the user is advanced enough to use
linux terminal. We also assume you are not logged in as root, but you
are a regular user. However to prepare the system we assume you have
sudo privileges.

One line install

You can conduct these steps automatically as well as the install of
cloudmesh by executing the following script in your command line.

After this you not only have the system updated for coudmesh with
necessary libraries and tools, but you will also have cloudmesh
installed.

We encourage you to inspect the script and assess if this is the way
you like to proceed. If you rather do a step by step install, please
read on.

Deatailed Step-by-Step system preparation

I you like to conduct these steps by hand please read on. First, we
check for up-to-date versions of python and pip

python --version

As CentOS typically comes with an old version of python (2.7.5), we
will install in addition to the system provided python, an alternative
python installation. This is achieved by following the next steps
executing them as normal user. They will install python 2.7.10
under`$HOME/ENV`

sudo yum install -y gcc wget zlib-devel openssl-devel sqlite-devel bzip2-devel
cd $HOME
wget --no-check-certificate https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
wget --no-check-certificate https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
wget --no-check-certificate https://bootstrap.pypa.io/get-pip.py
tar -xvzf Python-2.7.10.tgz
cd Python-2.7.10
./configure --prefix=/usr/local
sudo make && sudo make altinstall
export PATH="/usr/local/bin:$PATH"

Verify if you now have the correct alternative python installed

/usr/local/bin/python2.7 --version

which should return Python 2.7.10. Next, install setuptools and pip and
create symbolic links to them

cd $HOME
sudo /usr/local/bin/python2.7 ez_setup.py
sudo /usr/local/bin/python2.7 get-pip.py
sudo ln -s /usr/local/bin/python2.7 /usr/local/bin/python
sudo ln -s /usr/local/bin/pip /usr/bin/pip

Verify if you now have the required pip version installed (this may require
a new terminal to test or a source or the .bashrc script)

pip --version
pip 8.0.2 from /usr/lib/python2.7/site-packages/pip-8.0.2-py2.7.egg (python 2.7)

If you see an older version of pip, upgrade it with the following
command

pip install -U pip

Next, Install a python virtual environment on your machine as we do
not want to interfere with the system installed python
versions. Inside your terminal run

sudo pip install virtualenv

Next we will create a python virtualenv in the directory $HOME/ENV. To
activate virtualenv, execute the following steps

virtualenv -p /usr/local/bin/python $HOME/ENV
source $HOME/ENV/bin/activate

This will add a ‘(ENV)’ to your prompt in the terminal like following:

(ENV)[user@hostname ~]$

On more permanent basis, if you want to avoid activating virtualenv
every time you log in, You can add the activation of the virtualenv to
the ~/.bashrc file with your favourate editor:

emacs ~/.bashrc

Add the command:

source $HOME/ENV/bin/activate

to the file and save the file. You may test if this works, by
launching a new terminal session and checking if (ENV) is seen
added to the prompt.

Centos Quick Install Scripts

Use at your own risk, we recommend that you follow the more detailed
instructions above

sudo yum install -y gcc wget zlib-devel openssl-devel sqlite-devel bzip2-devel
cd $HOME
wget --no-check-certificate https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
wget --no-check-certificate https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
wget --no-check-certificate https://bootstrap.pypa.io/get-pip.py
tar -xvzf Python-2.7.10.tgz
cd Python-2.7.10
./configure --prefix=/usr/local
sudo make && sudo make altinstall
export PATH="/usr/local/bin:$PATH"
cd $HOME
sudo /usr/local/bin/python2.7 ez_setup.py
sudo /usr/local/bin/python2.7 get-pip.py
sudo ln -s /usr/local/bin/python2.7 /usr/local/bin/python
sudo ln -s /usr/local/bin/pip /usr/bin/pip
pip install -U pip
sudo pip install virtualenv
virtualenv -p /usr/local/bin/python $HOME/ENV

Add the following to your .bashrc script:

source $HOME/ENV/bin/activate

Windows 10

Install Python

Python can be found at http://www.python.org. We recommend to download
and install the newest version of python. At this time we recommend
that you use version 2.7.10. Other versions may work to, but are not
supported or tested. A direct link to the install can be found at:

https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi

In powershell you need to type:

PS> explorer https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi

This will open the internet browser and download the python msi
installer. It will walk you through the install process.

Note

If you like to install it separately, you can find the
downloaded msi in the ~/Downloads directory. To install
it in powershell use:

PS> cd ~/Downloads
PS> msiexec /i python-2.7.10.msi /qb

This will open a basic dialog to perform installation and
close after completion.

Note

While installing python, you have the option to
automatically include python binaries in the system Path.
This is disabled by default, so you will need to enable it explicitly.
Skip below step if you have choose to enable this feature.

After you have installed python (and not explicitly enabled the feature to add python to system path)
include it in the Path environment variable while you type in powershell:

PS> [Environment]::SetEnvironmentVariable("Path", "$env:Path;C:\Python27\;C:\Python27\Scripts\", "User")
PS> $env:Path=[Environment]::GetEnvironmentVariable("Path", "User")

This should install Python 2.7.10 successfully. You can now proceed to the
next step.

Install Chocolatey, Git, VirtualEnv, Make

As we need to do some editing you will need a nice editor. Please do
not use notepad and notepad++ as they have significant issues, please
use vi, vim, or emacs. Emacs is easy to use as it has a GUI on
windows. Install emacs:

PS> Start-Process powershell -Verb runAs

This will open a new Powershell window with administrator privileges.
Continue the below steps to install chocolatey & make:

PS> Set-ExecutionPolicy Unrestricted -force
PS> iex ((new-object net.webclient).DownloadString('https://chocolatey.org/install.ps1'))
PS> choco install emacs -y
PS> choco install make -y

Next, to install Git, type the following command into powershell:

PS> explorer https://git-scm.com/download/win

This will open the internet browser and download the git
installer. It will walk you through the install process.

Note

When installing you will see at one point a screen that asks
you if you like to add the commands to the shell. It is recommended
you select option (3) to add Unix shell commands to windows.
This will install Unix style commands to Windows and include it in path.

Follow the on screen instructions, selecting the default values
for all of the options (except for above note). This will install
Git & Git Bash successfully.

Install VirtualEnv and Create a Virtual Python Environment

At the time this guide was written, the latest version of python virtualenv
was 14.0.2. But Windows 10 users were facing a lot of issues with this version,
and so we recommend installing a lower version of virtualenv:

PS> pip install virtualenv==13.0.2

This will install python virtualenv on your system. To setup the environment
in powershell, run the following command:

PS> virtualenv ~/ENV

This will create a new directory ~/ENV/ comprising a local python environment.
To activate this new environment, run:

PS> ~/ENV/Scripts/activate.ps1

This will activate your new python virtual environment. As a proof,
you will now see a (ENV) prefixed to the powershell. It will look like:

(ENV) PS> python --version
 Python 2.7.10

Congratulations, you have now activated your python virtualenv.

Note

To deactivate this virtualenv, you need to run
the following command:

(ENV) PS> deactivate

But always remember to activate the virtualenv before using cloudmesh.

Next step is to install necessary python packages.

Install Pycrypto

First, if not already done, activate your virtualenv:

PS> ~/ENV/Scripts/activate.ps1

Next, update your python-pip:

(ENV) PS> pip install pip -U

Check the python and pip version:

(ENV) PS> python --version
 Python 2.7.10

(ENV) PS> pip --version
 pip 8.0.2 from c:\users\test-pc\ENV\lib\site-packages (python 2.7)

Then to install pycrypto, run the following:

(ENV) PS> easy_install http://www.voidspace.org.uk/python/pycrypto-2.6.1/pycrypto-2.6.1.win32-py2.7.exe

Install FireFox Browser

Cloudmesh contains tools for generating and viewing the html
documentation files. It uses FireFox to render HTML pages. To install
FireFox, run the following command:

(ENV) PS> explorer https://www.mozilla.org/en-US/firefox/new/#download-fx

This will download the latest FireFox browser installer on your machine.
Follow the on-screen instructions to install. Once complete, add FireFox to
your path:

(ENV) PS> [Environment]::SetEnvironmentVariable("Path", "$env:Path;C:\Program Files (x86)\Mozilla Firefox\", "User")
(ENV) PS> $env:Path=[Environment]::GetEnvironmentVariable("Path", "User")

COngratulations! You have now successfully setup your Windows 10 machine,
and are all ready to now install Cloudmesh.

Adding SSH Key to Futuresystems Portal

Close the current Powershell window and open a new one.
Now we are ready to use ssh and git. But first, let’s create a key:

PS> ssh-keygen -t rsa

Follow the instructions and leave the path unchanged. Make sure you
specify a passphrase. It is a policy on many compute resources that your
key has a passphrase. Look at the public key as we will need to upload
it to some resources:

PS> cat ~/.ssh/id_rsa.pub

Go to the futuresystems portal:

https://portal.futuresystems.org

Once you log in you can use the following link to add
your public key to futuresystems:

https://portal.futuresystems.org/my/ssh-keys

Naturally this only works if you are eligible to register and get an
account. Once you are in a valid project you can use indias
resources. After that you need to upload your public key that you
generated into the portal and did a cat on.

Warning

Windows will not past and copy correctly, please make
sure that newlines are removed for the text box where you
past the key. This is cause for many errors. Make sure
that the key in the text box is a single line and looks
like when you did the cat on it.

To simplify SSH access, you will need to configure a ssh config file.
You will need to first create a config file as follows:

PS> vim ~/.ssh/config

This should open the VIM editor and next you need to enter
the following contents:

Host india
 Hostname india.futuresystems.org
 User <your_portal_username>
 IdentityFile <path_to_id_rsa_file>

Replace your_portal_username with your futuresystems username and
path_to_id_rsa_file with the path to your private key file.
It generally is at ~/.ssh/id_rsa.

You can now easily perform ssh to futuresystems cloud using:

PS> ssh india

 Copyright 2015, Gregor von Laszewski.

 Installation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Setup

Installation

We assume that you have prepared your system (see Section
_my-reference-label) on which you like to install the cloudmesh
client. We recommend that you use python 2.7.10, pip 7.1.2 and use
virtualenv. Furthermore we recommend that on Linux systems you have
readline installed as it is a convenient tool for command line
manipulation. In the next sections we will walk you through a setup
that has been proven to work for developers and users and is very easy
to replicate.

Install Cloudmesh Client via pip

Warning

at this time we recommend you use the source install and not

the pip install

Users can install the cloudmesh client via pip

cd ~
pip install cloudmesh_client

Please note that the directory in which you call pip install does not have a
directory called cloudmesh_client THis may prevent pip from working properly.

Cloudmesh Installation from Source

Developers that wish to contribute to the source can obtain the code from
github. We assume that we conduct a source code install into the directory:

~/github/cloudmesh

If you like to use a different directory, that is also possible, but
the instructions we provide here assumes are targeted towards this
base directory.

Please use the following commands

mkdir -p github/cloudmesh
cd github/cloudmesh
git clone https://github.com/cloudmesh/client.git
cd client
python setup.py install

Updating an existing source distribution

During the development phase of cloudmesh you may need to update the
code from source, as cloudmesh client uses three different
repositories please do not forget to update them accordingly

export CLOUDMESH_HOME=$HOME/github/cloudmesh
cd $CLOUDMESH_HOME/client
git pull
python setup.py install

 Copyright 2015, Gregor von Laszewski.

 Configuration

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Setup

Configuration

During the installation of cloudmesh it will automatically generate
a configuration file in the directory:

~/.cloudmesh/cloudmesh.yaml

If this file is missing, you can run the command:

cm help to automatically generate it from defaults.

The file will be a template and it can either be modified with your
favorite editor, or if you are at Indiana University and want to use the
kilo cloud you can use the command

cm remote register

This will add the appropriate information into the yaml file.
The file will be looking as follows.
You will have several options to
modify the file as explained bellow

meta:
 yaml_version: 3.0
 kind: clouds
cloudmesh:
 profile:
 firstname: TBD
 lastname: TBD
 email: TBD
 username: None
 github:
 username: TBD
 portal:
 location: TBD
 browser: firefox
 comet:
 auth_provider: userpass
 userpass:
 username: TBD
 password: TBD
 apikey:
 api_key: TBD
 api_secret: TBD
 hpc:
 experiment:
 name: gregor-00000
 active:
 - comet
 - juliet
 clusters:
 india:
 cm_heading: India HPC CLuster
 cm_host: india
 cm_label: indiahpc
 cm_type: slurm
 cm_type_version: 14.11.9
 credentials:
 username: TBD
 project: None
 default:
 queue: delta
 experiment_dir: /N/u/{username}/experiment
 prefix: {username}
 comet:
 cm_heading: Comet HPC CLuster
 cm_host: comet
 cm_label: comethpc
 cm_type: slurm
 cm_type_version: 14.11.9
 credentials:
 username: TBD
 project: None
 default:
 queue: debug
 experiment_dir: /home/{username}/experiment
 prefix: {username}
 active:
 - kilo
 clouds:
 kilo:
 cm_heading: India OpenStack, Kilo
 cm_host: india
 cm_label: kilo
 cm_type: openstack
 cm_type_version: kilo
 cm_openrc: ~/.cloudmesh/clouds/india/kilo/openrc.sh
 credentials:
 OS_AUTH_URL: https://kilo.futuresystems.org:5000/v3
 OS_PASSWORD: TBD
 OS_TENANT_NAME: TBD
 OS_USERNAME: TBD
 OS_PROJECT_DOMAIN_ID: default
 OS_USER_DOMAIN_ID: default
 OS_PROJECT_NAME: TBD
 OS_IMAGE_API_VERSION: 2
 OS_VOLUME_API_VERSION: 2
 default:
 flavor: m1.small
 image: Ubuntu-14.04-64
 chameleon:
 cm_heading: Chameleon
 cm_host: chameleoncloud.org
 cm_label: chameleon
 cm_type: openstack
 cm_type_version: kilo
 credentials:
 OS_AUTH_URL: https://openstack.tacc.chameleoncloud.org:5000/v2.0
 OS_PASSWORD: TBD
 OS_TENANT_NAME: TBD
 OS_TENANT_ID: TBD
 OS_PROJECT_NAME: TBD
 OS_USERNAME: TBD
 OS_VERSION: kilo
 OS_REGION_NAME: RegionOne
 default:
 flavor: m1.small
 image: Ubuntu-Server-14.04-LTS
 cybera-c:
 cm_heading: Cybera Calgary OpenStack
 cm_host: cybera
 cm_label: cybera-c
 cm_type: openstack
 cm_type_version: kilo
 credentials:
 OS_AUTH_URL: TBD
 OS_TENANT_ID: TBD
 OS_TENANT_NAME: TBD
 OS_PROJECT_NAME: TBD
 OS_USERNAME: TBD
 OS_PASSWORD: TBD
 OS_REGION_NAME: Calgary
 default:
 flavor: m1.small
 image: Ubuntu 14.04
 cybera-e:
 cm_heading: Cybera Edmonton OpenStack
 cm_host: cybera
 cm_label: kilo
 cm_type: openstack
 cm_type_version: kilo
 credentials:
 OS_AUTH_URL: https://keystone-yyc.cloud.cybera.ca:5000/v2.0
 OS_TENANT_ID: TBD
 OS_TENANT_NAME: TBD
 OS_PROJECT_NAME: TBD
 OS_USERNAME: TBD
 OS_PASSWORD: TBD
 OS_REGION_NAME: Edmonton
 default:
 flavor: m1.small
 image: Ubuntu 14.04
 aws:
 cm_heading: Amazon Cloud, AWS
 cm_host: aws.amazon.com
 cm_label: aws
 cm_type: ec2
 cm_type_version: null
 credentials:
 EC2_ACCESS_KEY: TBD
 EC2_SECRET_KEY: TBD
 keyname: TBD
 userid: TBD
 default:
 flavor: t1.micro
 image: ami-d85e75b0
 location: us-east-1
 chameleon-ec2:
 cm_heading: Chameleon, EC2
 cm_host: chameleoncloud.org
 cm_label: chameleon_ec2
 cm_type: ec2
 cm_type_version: ec2
 credentials:
 EC2_ACCESS_KEY: TBD
 EC2_SECRET_KEY: TBD
 keyname: TBD_not_used
 userid: TBD_not_used
 EC2_URL: https://openstack.tacc.chameleoncloud.org:8773/services/Cloud
 EC2_USER_ID: TBD
 EC2_PRIVATE_KEY: ~/.cloudmesh/clouds/chameleon/TBD/pk.pem
 EC2_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cert.pem
 NOVA_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cacert.pem
 EUCALYPTUS_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cacert.pem
 default:
 flavor: m1.small
 image: Ubuntu-Server-14.04-LTS
 azure:
 cm_heading: Microsoft Azure Virtual Machines
 cm_host: windowsazure.com
 cm_label: azure
 cm_type: azure
 cm_type_version: null
 credentials:
 managementcertfile: TBD
 servicecertfile: TBD
 subscriptionid: TBD
 thumbprint: TBD
 default:
 flavor: ExtraSmall
 image: b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_2-LTS-amd64-server-20150610-en-us-30GB
 location: East US
 keys:
 default: id_rsa
 keylist:
 id_rsa: ~/.ssh/id_rsa.pub
 system:
 data: ~/.cloudmesh/cloudmesh_inventory.yaml
 console_color: true
 logging:
 file: ~/.cloudmesh/cloudmesh.log
 level: DEBUG

You can modify the file by hand and replace the TBD values
according to your information about your cloud. You can add new clouds
or delete the once that you do not want.

Warning

Just as private keys should be kept private so does
the cloudmesh.yaml
file. Please, make sure the file is protected as it contains

sensitive information.

Get Registration from Indiana University

In case you have an account on http::/portal.futuresystems.org the
integration can be done automatically for you with the account
information available to you as previously explained.

The best way is to configure first your ssh client to conveniently log into india the machine where you can
find the configuration information. To do so, please edit the
following file

~/./ssh/config

and add the following lines to it

Host india
 User: albert
 Hostname: india.futuresystems.org

please replace albert with your portal name that you have used for
registration with futuresystems.org. Once you have done this please
verify that you have access to india with a command such as:

ssh india uname -a

Next register the FutureSystems clouds into your cloudmesh yaml file with
the command:

cm register remote

This will update your cloudmesh.yaml file with the information retrieved
from india. While retrieving the information on india from the file:

~/.cloudmesh/clouds/india/kilo/openrc.sh

Make sure you add a valid tenant to the yaml file. More information
about using india can be found at http://portal.futuresystems.org

Registration of other clouds

The register command is quite powerful and useful and we encourage you to
take a closer look at the manual pages. This includes command such as

To find out more about the registration command:

cm register help

To edit the yaml file with the editor defined by the Shell variable $EDITOR:

register edit

To list the cloudmesh.yaml file:

register list

Registration of Cybera Cloud

Cybera an organization from Canada provides an easy accessible
openstack cloud. This cloud should only be used while following their
access policies documented at:

	http://www.cybera.ca/projects/cloud-resources/rapid-access-cloud/faq/#What_is_RAC

YOu may ask for permission, if you do not fit this category. Once you
have created an account at:

	https://rac-portal.cybera.ca/

YOu can access to Openstack portal at

	https://cloud.cybera.ca/auth/login/

Just as Chameleon Cloud the Cybera cloud allows openstack rc and ec2
rc files.

Registration of Cybera Openstack Cloud

When you have an account ana a project it is simple to configure
cloudmesh to include chameleon cloud in its resource set. To do so,
edit the file:

~/.cloudmesh/cloudmesh.yaml

Edit the follwoing lines:

OS_PASSWORD: TBD
OS_TENANT_NAME: TBD
OS_TENANT_ID: TBD
OS_PROJECT_NAME: TBD
OS_USERNAME: TBD

Let us assume you have the username albert and the project id
FG-101, Than the lines need to be changed to:

OS_PASSWORD: <your user password>
OS_TENANT_NAME: FG-101
OS_TENANT_ID: FG-101
OS_PROJECT_NAME: FG-101
OS_USERNAME: albert

You can find this information also in the openrc.sh file which you can
download via the Openstack Horizon interface by following this link:

	https://cloud.cybera.ca/project/access_and_security/api_access/openrc/

Registration of Cybera EC2 Cloud

Cybera cloud also support the usage of the EC2 interface which
is a pit more complex to set up than the openstack configuration.
First, you have to download a configuration directory, that is
packaged as a zip file. This file can be found at

	https://cloud.cybera.ca/project/access_and_security/api_access/ec2/

Let us assume you have the username albert and
the project FG-101. Than the zip file will be called:

FG-101-x509.zip

Let us set some environment variables to make the configuration
description easier

export C_USERNAME=<your cybera username>
export C_PROJECT=<your cybera project name>

Unpack the zip file and place the entire directory in the .cloudmesh
directory with. (We assume that you are in the directory where your
browser downloaded the zip file and you have uncompressed it)

mkdir ~/.cloudmesh/clouds/cybera/$C_PROJECT
cp $C_PROJECT ~/.cloudmesh/clouds/cybera/$C_PROJECT
ls ~/.cloudmesh/clouds/cybera/$C_PROJECT

The directory should include the files:

cacert.pem
cert.pem
ec2rc.sh
pk.pem

Take a look at the ec2rc.sh file

cat ~/.cloudmesh/clouds/cybera/$C_PROJECT/ec2rc.sh

Now you can edit the cloudmesh yaml file at:

~/.cloudmesh/cloudmesh.yaml

locate the cybera-ec2 entry and change the TBD values with the
values you see in the ec2rc.sh file:

EC2_ACCESS_KEY: <find the value in the ec2rc.sh file>
EC2_SECRET_KEY: <find the value in the ec2rc.sh file>
EC2_USER_ID: <find the value in the ec2rc.sh file>

For the following lines in the cloudmesh file, please replace the TBD
values with the cybera project ID that you use for this cloud:

EC2_PRIVATE_KEY: ~/.cloudmesh/clouds/cybera/TBD/pk.pem
EC2_CERT: ~/.cloudmesh/clouds/cybera/TBD/cert.pem
NOVA_CERT: ~/.cloudmesh/clouds/cybera/TBD/cacert.pem
EUCALYPTUS_CERT: ~/.cloudmesh/clouds/cybera/TBD/cacert.pem

Chameleon Cloud

Registration of Chameleon Openstack Cloud

NSF sponsors an experimental cloud environment called Chameleon at

	https://www.chameleoncloud.org

It is a KVM based Openstack cloud of version kilo. The documentation
can be found here:

	https://www.chameleoncloud.org/docs/user-guides/openstack-kvm-user-guide/

When you have an account and a project it is simple to configure
cloudmesh to include chameleon cloud in its resource set. To do so,
edit the file:

~/.cloudmesh/cloudmesh.yaml

Edit the follwoing lines:

OS_PASSWORD: TBD
OS_TENANT_NAME: TBD
OS_TENANT_ID: TBD
OS_PROJECT_NAME: TBD
OS_USERNAME: TBD

Let us assume you have the username albert and the project id
FG-101, Than the lines need to be changed to:

OS_PASSWORD: <your user password>
OS_TENANT_NAME: FG-101
OS_TENANT_ID: FG-101
OS_PROJECT_NAME: FG-101
OS_USERNAME: albert

You can find this information also in the openrc.sh file which you can
download via the Openstack Horizon interface by following this link:

	https://openstack.tacc.chameleoncloud.org/dashboard/project/access_and_security/api_access/openrc/

Registration of Chameleon EC2 Cloud

The chameleon cloud also support the usage of the EC2 interface which
is a pit more complex to set up than the openstack configuration.
First, you have to download a configuration directory, that is
packaged as a zip file. This file can be found at

	https://openstack.tacc.chameleoncloud.org/dashboard/project/access_and_security/api_access/ec2/

Let us assume you have the username albert and
the project FG-101. Than the zip file will be called:

FG-101-x509.zip

Let us set some environment variables to make the configuration
description easier

export C_USERNAME=<your chameleon username>
export C_PROJECT=<your chameleon project name>

Unpack the zip file and place the entire directory in the .cloudmesh
directory with. (We assume that you are in the directory where your
browser downloaded the zip file and you have uncompressed it)

mkdir ~/.cloudmesh/clouds/chameleon/$C_PROJECT
cp $C_PROJECT ~/.cloudmesh/clouds/chameleon/$C_PROJECT
ls ~/.cloudmesh/clouds/chameleon/$C_PROJECT

The directory should include the files:

cacert.pem
cert.pem
ec2rc.sh
pk.pem

Take a look at the ec2rc.sh file

cat ~/.cloudmesh/clouds/chameleon/$C_PROJECT/ec2rc.sh

Now you can edit the cloudmesh yaml file at:

~/.cloudmesh/cloudmesh.yaml

locate the chameleon-ec2 entry and change the TBD values with the
values you see in the ec2rc.sh file:

EC2_ACCESS_KEY: <find the value in the ec2rc.sh file>
EC2_SECRET_KEY: <find the value in the ec2rc.sh file>
EC2_USER_ID: <find the value in the ec2rc.sh file>

For the following lines in the cloudmesh file, please replace the TBD
values with the chameleon project ID that you use for this cloud:

EC2_PRIVATE_KEY: ~/.cloudmesh/clouds/chameleon/TBD/pk.pem
EC2_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cert.pem
NOVA_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cacert.pem
EUCALYPTUS_CERT: ~/.cloudmesh/clouds/chameleon/TBD/cacert.pem

Registration of CloudLab Openstack Cloud

Todo

not yet tested but should work. add cloud registration here

Registration of AWS Cloud

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

Registration of Azure Cloud

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

Registration of devcloud

Todo

not tested, but should work as is regular openstack. add cloud registration here

Registration of a libcloud available cloud

Todo

not yet supported. add cloud registration here

 Copyright 2015, Gregor von Laszewski.

 User Manual

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

User Manual

In this section we summarize a number of commands that are useful for
managing your multiple clouds. We organize them in the way you would
use them in some order while:

	registering clouds

	creating virtual machines

	creating virtual clusters

	creating platforms on the clusters

If you have additional needs we provide a detailed list of man pages
in alphabetical order in the Section ...

Shell Commands

	Basic Commands and Options
	Format

	Cloud

	History

	Help

	Shell & Commandline

	Elementary Commands
	Comments

	Cloudmesh File Execution

	Python

	Quitting the shell

	Manual Pages

	Scripts

	Variables

	Timers

	Color Command
	Color ON/TRUE

	Color OFF/FALSE

	Default Command
	default list

	set default values

	looking up default values

	deleting default values

	Group Command
	Group List

	Group Info

	Group Remove ID

	Group Add

	Group Copy

	Group Merge

	Group Delete

	Color Command
	Lists

	Executing Command

	Register

	Select Command
	Setting default image

	Setting default flavor

	Setting default cloud

	Setting default key

Cloud Commands

	Register Command
	Quickstart for registration of some clouds

	Introduction

	register list

	register remote

	register export

	register merge

	register form

	register check

	register json HOST

	register profile –username

	Cloud Command
	List status of all clouds

	Login to a single/multiple clouds

	Deactivate a cloud

	Activate a cloud

	Log out from a cloud

	Key Command
	Adding a key to the database
	List Keys

	Get Keys

	Default Keys

	Delete Keys

	Adding Key to Cloud

	List Key Cloud Mapings

	List Command
	List Default

	list Cloud objects

	SecGroup Command
	Security Group Create

	Security Group List

	Security Group Rule Add

	Security Group Rules List

	Security Group Rule Delete

	Security Group Delete

	VM Command
	Listing Defaults
	Booting a VM instance

	Listing a VM instances

	Stop a VM

	Start a VM

	Assign Floating IP to VM

	Retrieving IP Address details

	Login to VM

	Running command on VM

	Deleting a VM

	Nova Command
	Setting the Target Cloud

	Getting the Cloud Info

	Running openstack nova commands

	Flavor Command
	Refresh

	List

	List Details

	Image Command
	Refresh

	List

	List Details

	Network Command
	List Floating IP Pools

	List Floating IP Addresses

	Create Floating IP Addresses

	Delete Floating IP Addresses

	Associate Floating IP Address with an Instance

	Disassociate Floating IP Address from an Instance

	Nova Command
	Setting the Target Cloud

	Getting the Cloud Info

	Running openstack nova commands

	Sync Command
	Sync file on local machine with remote machine on cloud

	Sync file from remote machine on cloud to local machine

	Limits Command
	limits list

	Quota Command
	quota list

	Usage Command
	list

HPC Commands

	Hpc Command
	hpc info

	hpc queue

	hpc status

	Experiment management

	hpc delete

Comet Commands

	Comet Virtual Cluster
	Introduction

	Links

	Teminology

	Configuration

	Commands
	Getting information of your cluster(s); nodes; computesets; etc.

	Power management of frontend node:

	Power management of compute nodes:

	Getting Console access

	System image management

	Other commands:

	How to get a virtual cluster?

	Why are the names of the nodes so complicated?

	How do I get support?

Proposed Commands

	Reservation Command
	Adding a reservation

	List Reservation

	Update Reservation

	Delete Reservation

	Inventory Command

 Copyright 2015, Gregor von Laszewski.

 Basic Commands and Options

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Basic Commands and Options

Cloudmesh contains a number of commands that makes the management of
multiple heterogeneous clouds easier. In order to better manage the
various clouds it is convenient to introduce a number of options and
behaviors. This includes the following concepts.

Format

Many commands have a format parameter that allows to provide output of
the command in various formats. These formats include:

	json

	yaml

	table

	csv

The format can be changed on each command that supports it with:

--format FORMAT

where FORMAT is one of the values from the list above.

Todo

setting a default format via defaults

Not yet done: It is also possible to set the default format for all
commands that accept the format option. THis is done with the
command:

default format FORMAT

Once you have set it, the default format will be used for all commands
the do not explicitly set the format option on the commandline.

To switch off this behavior and use the build in behavior for each
command, we specify:

default format False

Cloud

Many commands are specific to a particular cloud. this cloud can be
set with the:

--cloud CLOUD

option for individual commands that support it. As we deal with many
clouds it may be inconvenient to specify the name of the cloud every
time, thus we have introduced the concept of a default cloud. The
default cloud can be set with the command:

default cloud CLOUDNAME

where cloudname is the name of the cloud that we have registered with
cloudmesh (see registration).

Todo

put link to registration here

History

The manual page of the history command can be found at:
register

Not yet completed. As we may want to run multiple commands we also
provide a history that can be invoked from cloudmesh to show which
cloudmesh commands have been issued in the past. This allows a more
easy review of past activities:

cm history

Commands in history are preceeded by a number. A past command can be
reissued by appending the number to the history. Thus the command:

cm history 3

would execute the 3rd command in the command history. Instead of
using the command history, you can also use the abbreviation h.

Help

To see the list of all available commands use the command:

cm help

The commands are sorted by topic, while the first list gives all
commands in alphabetical order. To opbtain an individual man page
simply say:

cm help COMMAND

where command is the command you which to get the help message for. To
optain the manual pages of all commands yo can use the command:

cm man

which will print all man pages out.

Shell & Commandline

Cloudmesh client is a shell as well as a commandline tool. Thus all
commands that you can type in as a single command could also be
executed as a command shell. To enter the command shell, please type:

cm

+===+
. ____ _ _ _ .
. / ___| | ___ _ _ __| |_ __ ___ ___ ___| |__ .
. | | | |/ _ \| | | |/ _` | '_ ` _ \ / _ \/ __| '_ \ .
. | |___| | (_) | |_| | (_| | | | | | | __/__ \ | | | .
. ____|_|___/ __,_|__,_|_| |_| |_|___||___/_| |_| .
+===+
 Cloudmesh Shell

cm>

You will see the prompt and can interactively execute some of the
commands without needing to type in cm in front of each command. To
see the commands type help. To get help for an individual command type
help COMMANDNAME. You can quit the comamnd shell with the command
quit.

The current list of commands contains:

cm help

Documented commands (type help <topic>):
==
EOF cloud group key man pause quota secgroup ssh
banner context help limits nova q register select version
clear default inventory list open quit reservation server vm

Security Commands
=================
key secgroup ssh

Shell Commands
==============
banner clear EOF man man open q

System Commands
===============
inventory reservation

Cloud Commands
==============
cloud default group limits list nova quota register select server vm

Elementary Commands

We have build in some convenience commands into the shell that include comments and execution of cm scripts.

Comments

Comments are identified by the first characters in a command line. We allow the following comment charater identification
strings:

#
/*
//

	If comments are to be done over multiple lines in a cloudmesh script, they have to be done for each line. If a space or other

	character is in front of a comment string, the it will not be considered as a comment.

Cloudmesh File Execution

Multiple cloudmesh commands can be placed in a single file. We recommend that you use the ending .cm. You can satrt the
execution of such a file with:

cm filename.cm

A cloudmesh file could itself include references to other cloudmesh files. They can be started in one of two ways. You can
use the exec command:

$ cm
cm> exec filename.cm

or you can use simply the filename. Cloudmesh will check if the filename exists and than execute it:

$ cm
cm> filename.cm

Python

You can execute a python command as follows:

cm> py COMMAND

where command is the command you like to execute

Quitting the shell

To quit the shell you can use either the commands:

cm> q
cm> quit
cm> EOF

Manual Pages

Often you will run in the situation where you may have to create a
list of manual pages for your commands for your users. To simplify
that we have not provided this in Unix Man format, but simply in RST
format. You can type in the command:

cm> man

and it will print you in RST format a list of all commands available
to you for your cmd3 shell. This naturally you could put into a sphinx
documentation to create a nice user manual for your users.

Scripts

Cloudmesh can easily execute multiple cloudmesh commands that are stored in
cloudmesh script files. TO do so we recommend to place them in a file ending
with .cm. Let us assume we call the file test.cm.

Now we can simply execute the script with:

cm test.cm

you can also cat the file with:

cat test.cm | cm

Variables

Cloudmesh client contains the ability to use variables within the shell.
Variables are preserved between calls to cm. To see a list of all variables,
use the command:

var list

To set variable values you can use:

cm> var name=value

which will set the variable with the given name to the specified value.
In case the value specifies an entry in the cloudmesh.yaml file it will
be read from it and put into the named variable. For example the command:

cm> var username=cloudmesh.profile.username

Will create a variable username and get the value form the yaml file
specified by its object hierarchy.

To use the content of the variable, simple use it on the shell with a
dollar sign such as:

cm> banner $name

In this example a banner will be created that contains the value of the
variable name. Note that the variables $date and $time are predefined
and give the current date and time and are updated at the time they are called.

As cm can also be used in a terminal, many terminal use a $ to indicate
variables for this terminal/shell. In order to mask this you will need to
use the ‘ ‘ or the sign. Thus,

$ cm banner '$name'
$ cm banner \$name

will result in the ability to ue the cloudmesh shell variables. If you
However want to use the terminal shell variables such as $HOME you can
access them directly:

$ cm banner $HOME

Special syntax detection of variables allow also easy use of operating
system/terminal variables while prepending them with os. Thus:

cm> banner $HOME
cm> banner $os.HOME

Will be the same the advantage is that with os. we clearly mark an os
systems variable that we like to access and no confusion between internal
cloudmesh shell and OS variables occur. Furthermore variables defined in the
cloudmesh yaml file can be directly accessed while using the . notation. Thus:

cm> banner $cloudmesh.profile.username

Will print a banner with the username being myusername as defined in the
yaml hierarchy under given this example:

cloudmesh:
 profile:
 username: myusername

To show the usage of the different variables in one line, please review the
following example:

cm var a=hello
cm banner '$a-[0-100] $os.HOME $cloudmesh.profile.username'

This will print, where albert is your username:

##
hallo-[0-100] /Users/albert albert
##

Timers

Sometimes it is a good idea to measure the time it takes to execute a
particular command. For this reason we have a timer command that can switch
on and off this behaviour.

timer on
timer off

switches the timer on or off. If the timer is switched on every command will
be followed with the time it takes toe execute that command. Special named
timers can be defined and used.

timer start mytimer

timer stop mytimer
timer print mytimer

Intuitive start, stop, and print options can be used. A timer will be reset
with

timer reset mytimer

 Copyright 2015, Gregor von Laszewski.

 Color Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Color Command

You can toggle the color of the cloudmesh shell console
by using the color command.

The manual page of the group command can be found at: group

Color ON/TRUE

Turn the color mode ON:

$ cm color ON
 Color True

$ cm color TRUE
 Color True

Color OFF/FALSE

Turn the color mode OFF:

$ cm color OFF
 Color False

$ cm color FALSE
 Color False

 Copyright 2015, Gregor von Laszewski.

 Default Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Default Command

The manual page of the group command can be found at: default

Cloudmesh has the ability to manage easily multiple clouds.
One of the key concepts to make the list of such clouds
easier is the introduction of defaults for each cloud or globally.
Hence it is possible to set default images, flavors for each cloud,
and also create the default cloud. The default command is used to
set and list the default values. These defaults are used in other
commands if they are not overwritten by a command parameter.

Upon start of cloudmesh, the default for cloud will be set to the first
cloud that is found in the yaml file and the default group is set to
general.

default list

All the current default values can by listed with –all option:

$ default list --all
+--------+-----------+-------+-------+
| user | cloud | name | value |
+--------+-----------+-------+-------+
albert	chameleon	image	abc
albert	general	cloud	azure
albert	general	image	zyx
+--------+-----------+-------+-------+

You can also add a –cloud=CLOUD option to see the defaults set
for a cloud:

$ default list --cloud=chameleon
+--------+-----------+-------+-------+
| user | cloud | name | value |
+--------+-----------+-------+-------+
| albert | chameleon | image | abc |
+--------+-----------+-------+-------+

set default values

To add a default value, type in a key=value pair. If no –cloud is specified,
it adds the value to the general/global cloud:

$ default image=xyz
Successfully added value: xyz for key: image

With the –cloud=CLOUD option, defaults can be set for a particular
cloud:

$ default image=xyz --cloud=chameleon
Successfully added value: xyz for key: image

looking up default values

To loop up a default value set, type in the key. If no –cloud option is
specified, it returns the value of the general/global cloud:

$ cm default image
Default value for image is xyz

With the –cloud=CLOUD option, defaults can be looked up for a particular
cloud:

$ default image --cloud=chameleon
Default value for image is xyz

deleting default values

To delete a default value, type in delete followed by the key. If no –cloud
option is specified, it deletes the value of the general/global cloud:

$ default delete image
Deleted key image for cloud general

With the –cloud=CLOUD option, defaults can be deleted for a particular
cloud:

$ default delete image --cloud=chameleon
Deleted key image for cloud chameleon

 Copyright 2015, Gregor von Laszewski.

 Group Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Group Command

One of cloudmesh major functionality is to group cloud and other
resources into a named group. Such named groups can than be used to
perform actions on them. Upon start the default group is set to general if
no default group exists.

Warning

at this time we have limited to groups to just hold ID
of vms.

The manual page of the group command can be found at: group

Group List

The named groups can be listed with the following command:

$ cm group list --cloud india --format table
 +----------+-------+--------+----------+------+
 | user | cloud | name | value | type |
 +----------+-------+--------+----------+------+
albert	india	groupA	test-001	vm
albert	india	groupA	test-002	vm
albert	india	groupA	test-004	vm
albert	india	groupB	test-003	vm
albert	india	groupB	test-005	vm
 +----------+-------+--------+----------+------+

Group Info

To get details about a particular group with specific name you can use
the info option:

$ cm group list groupA
 +----------+-------+--------+----------+------+
 | user | cloud | name | value | type |
 +----------+-------+--------+----------+------+
albert	india	groupA	test-001	vm
albert	india	groupA	test-002	vm
albert	india	groupA	test-004	vm
 +----------+-------+--------+----------+------+

Group Remove ID

To remove a VM from a particular group, you can use
the remove option:

$ cm group remove --name groupA --id test-002
 Successfully removed ID [test-002] from the group [groupA]

$ cm group list groupA
 +----------+-------+--------+----------+------+
 | user | cloud | name | value | type |
 +----------+-------+--------+----------+------+
 | albert | india | groupA | test-001 | vm |
 | albert | india | groupA | test-004 | vm |
 +----------+-------+--------+----------+------+

Group Add

To add a vm resource with specified id to a group with given name:

$ cm group add groupA --id test-001 --type vm
Created a new group [groupA] and added ID [test-001] to it

$ cm group info groupA
 +-----------+---------+--------+----------+------+
 | user | cloud | name | value | type |
 +-----------+---------+--------+----------+------+
 | albert | general | groupA | test-001 | vm |
 +-----------+---------+--------+----------+------+

Group Copy

To copy the VM(s) from one group to another use the command:

$ cm group copy groupA groupB
Created a new group [groupB] and added ID [test-001] to it

$ cm group info groupB
 +-----------+---------+--------+----------+------+
 | user | cloud | name | value | type |
 +-----------+---------+--------+----------+------+
 | albert | general | groupB | test-001 | vm |
 +-----------+---------+--------+----------+------+

Group Merge

Groups can be merged as follows:

$ cm group merge group01 groupB groupC
Merge of group [group01] & [groupB] to group [groupC] ok.

$ cm group info groupC
 +-----------+---------+--------+------------+------+
 | user | cloud | name | value | type |
 +-----------+---------+--------+------------+------+
albert	general	groupC	albert-001	vm
albert	general	groupC	albert-002	vm
albert	general	groupC	test-001	vm
 +-----------+---------+--------+------------+------+

Group Delete

A named group can be easily deleted.:

$ cm group delete groupC
Request to delete server albert-001 has been accepted.
Request to delete server albert-002 has been accepted.
Request to delete server test-001 has been accepted.
Deletion ok.

$ cm group list groupC
ERROR: No group with name groupC found in the cloudmesh database!

Warning

When a group is deleted, all the instances (vms) are deleted,
and a deletion request is submitted to the appropriate cloud.

 Copyright 2015, Gregor von Laszewski.

 Color Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Color Command

Often the ssh command needs to be used to login to remote machines. As the
interaction with such machines could be frequent via the ssh command, it is
often a good idea to include them into the ~/.ssh/config file. To simplify
interaction, we provide a simple ssh command in cloudmesh.

The manual page of the group command can be found at: ssh

Lists

ssh list
 lists the hostsnames that are present in the
 ~/.ssh/config file

ssh cat
 prints the ~/.ssh/config file

ssh table
 prints contents of the ~/.ssh/config file in table format

Executing Command

ssh ARGUMENTS
 executes the ssh command with the given arguments
 Example:
 ssh myhost

 conducts an ssh login to myhost if it is defined in
 ~/.ssh/config file

Register

ssh register NAME PARAMETERS
 registers a host i ~/.ssh/config file
 Parameters are attribute=value pairs
 Note: Note yet implemented

 Copyright 2015, Gregor von Laszewski.

 Select Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Select Command

Select Command is used to interactively set a default image/ flavor/ cloud/ key.

The manual page of the key command can be found at: SELECT

Setting default image

You can select the default image with the following simple command:

$ cm select image

Select an Image
===============

 1 - image-1
 2 - fedora
 3 - CentOS7
 4 - ubuntu-custom
 5 - Ubuntu-15.10-64
 6 - Ubuntu-14.04-64
 7 - cirros
 q - quit

Select between 1 - 7: 5
choice 5 selected.
Selected image Ubuntu-15.10-64

Setting default flavor

You can select the default flavor with the following simple command:

$ cm select flavor

Select a Flavor
===============

 1 - tiny
 2 - small
 3 - medium
 4 - large
 5 - xlarge
 q - quit

Select between 1 - 5: 3
choice 3 selected.
Selected flavor medium

Setting default cloud

You can select the default cloud with the following simple command:

$ cm select cloud

Select a cloud
==============

 1 - kilo
 2 - chameleon
 3 - cybera-c
 4 - cybera-e
 5 - aws
 6 - chameleon-ec2
 7 - azure
 q - quit

Select between 1 - 7: 2
choice 2 selected.
Selected cloud chameleon

Setting default key

You can select the default key with the following simple command:

$ cm select key

Select a Key
============

 1 - albert-key
 2 - customkey
 q - quit

Select between 1 - 2: 1
choice 1 selected.
Selected key albert-key

 Copyright 2015, Gregor von Laszewski.

 Register Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Register Command

	Registering different clouds with the cloudmesh register command is easy. We

	have a number of predefined templates that are stored in the ~/.cloudmesh
.yaml file that you can use and modify. However for some clouds such as the

once at IU an easy registration exists if you have appropriate access.

The manual page of the register command can be found at:
register

Quickstart for registration of some clouds

Please only use the quickstart if you know hat you are doing, otherwise,
read the manual. We assume you have access to the specific clouds that you
like to access. On a terminal say:

cm register remote kilo

to register the FutureSystems kilo cloud

More information about the cloud can be found at

	https://portal.futuresystems.org

To register an openstack cloud for which you have an existing openrc.sh file,
you can simply say:

cm register openrc.sh

Todo

verify if this works

On chameleoncloud.org you can for example go to the horizon web interface and
download the credentials in teh security panel.

Introduction

As we are managing multiple clouds with cloudmesh we need to register
them first. To make it easy for you cloudmesh reads the registered
clouds from an easy to manage yaml file. This yam file is installed by
default into the file:

~/.cloudmesh/cloudmesh.yaml

A number of templates in that file exist that refer to commonly used
clouds. YOu can fill out the yaml file with your information, add new
clouds, or delete templates of clouds that you do not use. We have
several different types of clouds that we support. This includes
OpenStack, AWS, and Azure clouds.

Todo

at this time we have not integrated our AWS and Azure IaaS
abstractions in the new cloudmesh client. We will make them available in
future.

As it may be inconvenient to edit this file and look at the yaml
format, we provide several administrative commands. The command:

$ register info

File /Users/albert/.cloudmesh/cloudmesh.yaml exists. ok.

identifies if the cloudmesh.yaml file exists.

To view the contents of that file, you can cat it or use the command:

register cat

To edit the file, you can use the command:

register edit

register list

To list the clouds that are defined in the cloudmesh.yaml file, you
can use the command:

$ register list

which will print a table with elementary information defined for the
clouds.:

$ register list
Clouds specified in the configuration file ~/.cloudmesh\cloudmesh.yaml

+-------+-----------+---------+
| Name | Iaas | Version |
+-------+-----------+---------+
azure	azure	N/A
aws	ec2	N/A
kilo	openstack	kilo
+-------+-----------+---------+

To list only the names, please use the command:

$ register list --name
Clouds specified in the configuration file ~/.cloudmesh\cloudmesh.yaml

+-------+
| Name |
+-------+
| azure |
| aws |
| india |
| kilo |
+-------+

As we also have to sometimes login to some remote hosts it is
convenient to reuse the ssh command for that. ssh has the advantage of
being able to use a config file in $HOME/.ssh/config. MOre information
about ssh config files and their format can be found in the many web
pages if you google for ssh config. In case you have defined
a host india in ~/.ssh/config in the following way:

	Host india

	Hostname india.futuresystems.org
User yourusername

The list command followed by ssh will give you a list of hosts defined
in that file:

$ cm register list ssh

india

register remote

In case you already use an openstack cloud you may have come across an
openrc.sh file. We are providing some very special helper functions, like
for example obtain the openrc files from the FutureSystems
cloud.

The command:

register remote HOSTNAME

will copy and register a machine on which an openrc.sh file is located into
the cloudmesh.yaml file. With cloudmesh we provide some default host, thus

they are very easy to configure. This includes kilo our
current clouds in our lab. To register them you can use the commands:

cm register reomte kilo

These commands will only work if you have an account on this
machine and it is integrated into the ssh config file as discussed
previously.

register export

To view the data associated with a particular cloud you can just use the
command export:

register export kilo --format=table

Which will look like this:

+-----------------------+--+
| Attribute | Value |
+-----------------------+--+
OS_PASSWORD	********
OS_VOLUME_API_VERSION	2
OS_IMAGE_API_VERSION	2
OS_PROJECT_DOMAIN_ID	default
OS_USER_DOMAIN_ID	default
OS_TENANT_NAME	fg1234
OS_PROJECT_NAME	fg1234
OS_USERNAME	albert
OS_AUTH_URL	https://kilo.futuresystems.org:5000/v3
OS_VERSION	kilo
OS_OPENRC	~/.cloudmesh/clouds/india/kilo/openrc.sh
+-----------------------+--+

The default view returns a openrc.sh file:

cm register export kilo

The output contains an rc file example:

export OS_PROJECT_DOMAIN_ID=default
export OS_USERNAME=albert
export OS_OPENRC=~/.cloudmesh/clouds/india/kilo/openrc.sh
export OS_AUTH_URL=https://kilo.futuresystems.org:5000/v3
export OS_TENANT_NAME=1234
export OS_USER_DOMAIN_ID=default
export OS_VERSION=kilo
export OS_VOLUME_API_VERSION=2
export OS_IMAGE_API_VERSION=2
export OS_PASSWORD=********
export OS_PROJECT_NAME=fg1234

The passwords will be masked with eight stars: ********.
In case you like also to see the password you can use the –password flag.

register merge

Todo

the description of what this is doing was ambigous, we need
to clarify if it only replaces to do or actually add things
that do not exist, or just overwrites.

IN case you have already a yaml file, form another project
you can merge two of them into the same cloudmesh yaml file. You
simply have to specify the location of the file that you like to merge
into the existing yaml file. However, please be careful, as it will
overwrite the contents in ~/.cloudmesh/cloudmesh.yaml

Todo

We used to have a .bak.# when we modified the yaml file, do
you still have this

Hence the command

$ cm register merge my_cloudmesh.yaml

This command allows the content from another yaml file to be merged into the
regular cloudmesh.yaml file. A backup of the old cloudmesh.yaml file is
created with an increased number.

register form

In some cases it is nice to have an interactive mechanism to fill out
the missing yaml file information that is indicated with TBD. THis is
useful, if you do not have an editor at hand. Thus you can use the command:

register form

It will interactively fills out the form wherever we find TBD:

$ cm register form
Please enter email[TBD]:
Editing the credentials for cloud india
Please enter OS_TENANT_NAME[TBD]:
Editing the credentials for cloud aws
Please enter EC2_ACCESS_KEY[TBD]:
Please enter EC2_SECRET_KEY[TBD]:
Please enter keyname[TBD]:
Please enter userid[TBD]:
Editing the credentials for cloud azure
Please enter managementcertfile[TBD]:
Please enter servicecertfile[TBD]:
Please enter subscriptionid[TBD]:
Please enter thumbprint[TBD]:

register check

o find any not filled out values, you can use the command:

register check

which hecks the yaml file for completness and list all fields that
have the value TBD:

$ cm register check
ERROR: The file has 11 values to be fixed

 email: TBD
 username: TBD
 flavor: TBD
 EC2_ACCESS_KEY: TBD
 EC2_SECRET_KEY: TBD
 keyname: TBD
 userid: TBD
 managementcertfile: TBD
 servicecertfile: TBD
 subscriptionid: TBD
 thumbprint: TBD

register json HOST

Instead of using the cat command and listing the contents of a cloud
registration in yaml format you can also explicitly obtain a jason
representation by issueing the command:

register json

It will return output in json format:

$ cm register json azure
{
 "cm_heading": "Microsoft Azure Virtual Machines",
 "cm_label": "waz",
 "cm_host": "windowsazure.com",
 "default": {
 "flavor": "ExtraSmall",
 "image": "b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_2-LTS-amd64-server-20150610-en-us-30GB",
 "location": "East US"
 },
 "credentials": {
 "managementcertfile": "TBD",
 "servicecertfile": "TBD",
 "subscriptionid": "TBD",
 "thumbprint": "TBD"
 },
 "cm_type": "azure",
 "cm_type_version": null
}

register profile –username

Instead of modifying the profile username in the cloudmesh yaml file manually, this command provides a convenient way
of setting the username through cm shell:

$ cm register profile --username=albert
Username albert set successfully in the yaml settings.

 Copyright 2015, Gregor von Laszewski.

 Cloud Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Cloud Command

The cloud command provides an API that allows users to login to
a cloud, activate a cloud, deactivate a cloud & logout from a cloud.

The manual page of the network command can be found at: cloud <../man/man.html#cloud>

List status of all clouds

To list status of all clouds registered in the
cloudmesh.yaml file use:

cm> cloud list
 +------------+------------+
 | cloud name | status |
 +------------+------------+
aws	Logged Out
azure	Logged Out
chameleon	Logged Out
kilo	Logged Out
 +------------+------------+

Login to a single/multiple clouds

To logon to a cloud use:

cm> cloud logon kilo
 Logged into cloud: kilo

You can logon to multiple clouds:

cm> cloud logon kilo
 Logged into cloud: kilo

cm> cloud list
 +------------+------------+
 | cloud name | status |
 +------------+------------+
aws	Logged Out
azure	Logged Out
chameleon	Logged Out
kilo	Active
 +------------+------------+

Deactivate a cloud

To deactivate a cloud use:

cm> cloud deactivate kilo
 Deactivated cloud: kilo

cm> cloud list
 +------------+------------+
 | cloud name | status |
 +------------+------------+
aws	Logged Out
azure	Logged Out
chameleon	Logged Out
kilo	Inactive
 +------------+------------+

Activate a cloud

To activate a cloud use:

cm> cloud activate kilo
 Activated cloud: kilo

cm> cloud list
 +------------+------------+
 | cloud name | status |
 +------------+------------+
aws	Logged Out
azure	Logged Out
chameleon	Logged Out
kilo	Active
 +------------+------------+

Log out from a cloud

To log out from a cloud use:

cm> cloud logout kilo
 Logged out of cloud: kilo

cm> cloud logout kilo
 Logged out of cloud: kilo

cm> cloud list
 +------------+------------+
 | cloud name | status |
 +------------+------------+
aws	Logged Out
azure	Logged Out
chameleon	Logged Out
kilo	Logged Out
 +------------+------------+

 Copyright 2015, Gregor von Laszewski.

 Key Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Key Command

In clouds and distributed environments security keys are used for
authentication. We like to be able to register specific keys with
clouds or vms and easily use them. To do so we upload them into a key
registry in which each key is uniquely named. We use these named keys
when we start up virtual machines or log into remote machines.

The manual page of the key command can be found at: key

Adding a key to the database

To add a key to the key registry from a file we use the command:

$ cm key add --name=demokey /home/albert/key_expt/id_rsa.pub
Key demokey successfully added to the database
info. OK.

List Keys

To list the keys in the registry you can use the command:

$ cm key list
 +---------+--------------------+--+---+--------+
 | name | comment | uri | fingerprint | source |
 +---------+--------------------+--+---+--------+
 | demokey | albert@Zweistein | file:///home/key_expt/id_rsa.pub | 4e:fc:e8:03:4e:c7:8e:ca:30:1a:54:43:8d:24:90:39 | ssh |
 +---------+--------------------+--+---+--------+
 info. OK.

The key command takes a number of additional options. Instead of using
the cloudmesh registry, keys can also be read from git hub with the option:

$ cm key list --source=git
+------+----------+-----------------------------+---+--------+
| name | comment | uri | fingerprint | source |
+------+----------+-----------------------------+---+--------+
| | github-0 | https://github.com/TBD.keys | 6e:95:48:8d:af:20:75:2a:52:6b:c5:29:d3:71:0a:8b | |
| | github-1 | https://github.com/TBD.keys | 8a:4f:fe:80:be:e5:ec:c8:c1:1d:e9:74:28:41:c5:a3 | |
+------+----------+-----------------------------+---+--------+
info. OK.

To change the output format you can specify it with the –format
option:

$ cm key list --source=git --format=json
{
 "github-0": {
 "comment": "github-0",
 "string": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC/4dvq0KG++Tieu4vhqL4WptgsSUIq+vqLi4PiR6N+UBwEcYWzX33O0gyHsQIJ4dgZRPzTf/kxGPFGtHCrKd0aAUL4uFWFZwuMmJqOvAp+6UDOan/XU9O59Ou0y2vnIxv7+QYb2AHJpHrxjWJ2TjBH7LlTN+jqZBpKUxWQpy4ooyJaN87vpJMbyOEk1LVNpBZHGexF4WRPI6XQUf4PshBRHgqJ9cmiEZUhFWQgeCiyknm8Zx7rGrRhIDnXRw/FOzCyQhnjSS4nJddWzfjNfv9Y0KzRz1KFWUQT9eLaO/j3Q3TleG0zzbZxCBgHv5Jhjm6lmUBcKD0pKU2uhwlD+Ki9",
 "uri": "https://github.com/TBD.keys",
 "key": "AAAAB3NzaC1yc2EAAAADAQABAAABAQC/4dvq0KG++Tieu4vhqL4WptgsSUIq+vqLi4PiR6N+UBwEcYWzX33O0gyHsQIJ4dgZRPzTf/kxGPFGtHCrKd0aAUL4uFWFZwuMmJqOvAp+6UDOan/XU9O59Ou0y2vnIxv7+QYb2AHJpHrxjWJ2TjBH7LlTN+jqZBpKUxWQpy4ooyJaN87vpJMbyOEk1LVNpBZHGexF4WRPI6XQUf4PshBRHgqJ9cmiEZUhFWQgeCiyknm8Zx7rGrRhIDnXRw/FOzCyQhnjSS4nJddWzfjNfv9Y0KzRz1KFWUQT9eLaO/j3Q3TleG0zzbZxCBgHv5Jhjm6lmUBcKD0pKU2uhwlD+Ki9",
 "fingerprint": "6e:95:48:8d:af:20:75:2a:52:6b:c5:29:d3:71:0a:8b",
 "type": "ssh-rsa",
 "Id": "github-0"
 },
 "github-1": {
 "comment": "github-1",
 "string": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDNTRjYstjHaZyS+vOssLOxYv57z1YEndk5VI34PFb6zb9JI3kTZ0wvhqeO38yAxkjowyrM5MFsMnJnecu9iNKtwb9VPKZRNHLfS3lftELFEEPQC3YaddjX/1ztr4xZqKKvZ6hXH5cRPHKfu5T+r8k2tvtUJlZhz4YeeSah76AL1OxJelHpCrRsiAyywlNLy55kSuG6LNNim6QELDCTRVHeuKMEAuOBL/0nF4NJx2FSYNnyKlSyESwOq5YFDi8tnB9t93zG6Ki0f3j9EtZVXr/4W+Cp9J/I8dX5tV/AJVTeuGrGvOZUjtv1+Na4XfbTOvB4WCJIbczxPlnORt3Qg3R1",
 "uri": "https://github.com/TBD.keys",
 "key": "AAAAB3NzaC1yc2EAAAADAQABAAABAQDNTRjYstjHaZyS+vOssLOxYv57z1YEndk5VI34PFb6zb9JI3kTZ0wvhqeO38yAxkjowyrM5MFsMnJnecu9iNKtwb9VPKZRNHLfS3lftELFEEPQC3YaddjX/1ztr4xZqKKvZ6hXH5cRPHKfu5T+r8k2tvtUJlZhz4YeeSah76AL1OxJelHpCrRsiAyywlNLy55kSuG6LNNim6QELDCTRVHeuKMEAuOBL/0nF4NJx2FSYNnyKlSyESwOq5YFDi8tnB9t93zG6Ki0f3j9EtZVXr/4W+Cp9J/I8dX5tV/AJVTeuGrGvOZUjtv1+Na4XfbTOvB4WCJIbczxPlnORt3Qg3R1",
 "fingerprint": "8a:4f:fe:80:be:e5:ec:c8:c1:1d:e9:74:28:41:c5:a3",
 "type": "ssh-rsa",
 "Id": "github-1"
 }
}
info. OK.

Get Keys

To get the fingerprint of a key you can obtain it with:

$ cm key get demokey
 demokey: 4e:fc:e8:03:4e:c7:8e:ca:30:1a:54:43:8d:24:90:39
 info. OK.

Default Keys

In many cases it is convenient to just use a default key that is
set. To mark key as default by name you can use the command:

$ cm key default demokey
Key demokey set as default
info. OK.

You can verify that a key is set as default while looking at the
‘is_default’ attribute:

$ cm key list --format=json

 "1": {
 "comment": "albert@Zweistein",
 "is_default": "True", <<--Set to True
 "kind": "key",
 "name": "demokey",
 "created_at": "2015-09-23 15:58:32",
 "uri": "file:///home/key_expt/id_rsa.pub",
 "value": null,
 "updated_at": "2015-09-23 16:14:41",
 "project": "undefined",
 "source": "ssh",
 "user": "undefined",
 "fingerprint": "4e:fc:e8:03:4e:c7:8e:ca:30:1a:54:43:8d:24:90:39",
 "label": "demokey",
 "id": 1,
 "cloud": "general"
 }
 }
 info. OK.

To make it easy for the user, we can set the default key also
interactively with the select option:

$ cm key default --select

KEYS
====

 1 - demokey: 4e:fc:e8:03:4e:c7:8e:ca:30:1a:54:43:8d:24:90:39
 2 - rsa: 2d:18:a8:03:1e:e1:7e:fe:b3:fa:59:49:c7:c2:cf:01
 q - quit

Select between 1 - 2: 2
choice 2 selected.
Setting key: rsa as default.
info. OK.

Delete Keys

A named key can be deleted from the registry with the command, where
‘demokey’ is the name of the key:

$ cm key delete demokey
Key demokey deleted successfully from database.
info. OK.

Alternatively you can also interactively select it:

$ cm key delete --select

KEYS
====

 1 - rsa: 2d:18:a8:03:1e:e1:7e:fe:b3:fa:59:49:c7:c2:cf:01
 2 - demokey: 4e:fc:e8:03:4e:c7:8e:ca:30:1a:54:43:8d:24:90:39
 q - quit

Select between 1 - 2: 2
choice 2 selected.
Deleting key: demokey...
info. OK.

To delete all keys from database use:

$ cm key delete --all
All keys from the database deleted successfully.
info. OK.

Adding Key to Cloud

This functionality is required for key management with VMs. We can add the key from database to the target cloud.:

$ cm key add_to_cloud albertkey
Adding key albertkey to cloud kilo as albert-kilo-albertkey
Key albertkey added successfully to cloud kilo as albert-kilo-albertkey.
info. OK.

By default the target cloud key name format is <username>-<cloud>-<key-name>.
However, you may choose to override it with ‘–name_on_cloud’ argument.:

$ cm key add_to_cloud albertkey --name_on_cloud=someothername
key add_to_cloud albertkey --name_on_cloud=someothername
Adding key albertkey to cloud kilo as someothername
Key albertkey added successfully to cloud kilo as someothername.
info. OK.

List Key Cloud Mapings

You may check out the mappings of database key names with the cloud key names.:

$ cm key list_cloud_mappings
+-----------+-----------+------------+-------------------------+
| user | key_name | cloud_name | key_name_on_cloud |
+-----------+-----------+------------+-------------------------+
| albert | albertkey | kilo | albert-kilo-albertkey |
+-----------+-----------+------------+-------------------------+

 Copyright 2015, Gregor von Laszewski.

 List Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

List Command

The cloudmesh list command provides you with the ability to easily
list information in regards to virtual machines, images, flavors,
defaults, and available clouds.

The manual page of the list command can be found at: list

List Default

To list all default values you can use:

$ cm list --cloud general default

To list the default values set in a particular cloud use:

$ cm list --cloud general default
 +-----------+---------+--------+----------+----------------------------+----------------------------+
 | user | cloud | name | value | created_at | updated_at |
 +-----------+---------+--------+----------+----------------------------+----------------------------+
albert	general	tenant	fg478	2015-09-21 02:24:31.978000	2015-09-21 02:24:31.978000
albert	general	cloud	india	2015-09-21 02:25:00.781000	2015-09-21 02:25:00.781000
albert	general	group	group001	2015-09-23 21:53:04	2015-09-23 21:53:04
albert	general	format	table	2015-09-23 21:53:16	2015-09-23 21:53:16
 +-----------+---------+--------+----------+----------------------------+----------------------------+

To specify a different format, such as json, use:

$ cm list --cloud general --format json default
{
 "1": {
 "cloud": "general",
 "created_at": "2015-09-21 02:24:31.978000",
 "id": "1",
 "kind": "default",
 "label": "tenant",
 "name": "tenant",
 "project": "undefined",
 "type": "string",
 "updated_at": "2015-09-21 02:24:31.978000",
 "user": "albert",
 "value": "fg478"
 },
 "2": {
 "cloud": "general",
 "created_at": "2015-09-21 02:25:00.781000",
 "id": "2",
 "kind": "default",
 "label": "cloud",
 "name": "cloud",
 "project": "undefined",
 "type": "string",
 "updated_at": "2015-09-21 02:25:00.781000",
 "user": "albert",
 "value": "india"
 },
 "3": {
 "cloud": "general",
 "created_at": "2015-09-23 21:53:04",
 "id": "3",
 "kind": "default",
 "label": "group",
 "name": "group",
 "project": "undefined",
 "type": "string",
 "updated_at": "2015-09-23 21:53:04",
 "user": "albert",
 "value": "group001"
 },
 "4": {
 "cloud": "general",
 "created_at": "2015-09-23 21:53:16",
 "id": "4",
 "kind": "default",
 "label": "format",
 "name": "format",
 "project": "undefined",
 "type": "string",
 "updated_at": "2015-09-23 21:53:16",
 "user": "albert",
 "value": "table"
 }
}

list Cloud objects

The list command can also be used to list cloud objects, thus you can use:

list image
list flavor
list quota
list limits
list usage
list vm

 Copyright 2015, Gregor von Laszewski.

 SecGroup Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

SecGroup Command

A security group is a named collection of network access rules
that are use to limit the types of traffic that have access to instances.
When you launch an instance, you can assign one or more security groups to it.
If you do not create security groups, new instances are automatically assigned to the default security group,
unless you explicitly specify a different security group.

The associated rules in each security group control the traffic to instances in the group.
Any incoming traffic that is not matched by a rule is denied access by default.
You can add rules to or remove rules from a security group,
and you can modify rules for the default and any other security group.

The manual page of the secgroup command can be found at: secgroup

Security Group Create

To create a security group in cloudmesh for a cloud and tenant use:

$ cm secgroup create --cloud india --tenant fg478 test-group02
Created a new security group [test-group02] with UUID [bd9cb15e-5fcf-11e5-85fd-d8eb97bdb464]

Security Group List

To list Security Groups in cloudmesh for a cloud and tenant use:

$ cm secgroup list --cloud india --tenant fg478
 +--------------------------------------+--------------------------------------+--+
 | Id | Name | Description |
 +--------------------------------------+--------------------------------------+--+
7ee21121-5fcc-11e5-8497-d8eb97bdb464	albert-security_group-q5ukqwab4odq	SSL(443), Web(5000), Celery-Flower(8888)
4bc8bbb1-014d-4a84-a62c-f216d620c2bc	albert-security_group-r2qpv3kefysi	SSL(443), Web(5000), Celery-Flower(8888)
68c31654-7f5f-4944-a295-b9ff29a7e170	albert-security_group-ayzancofltyf	SSL(443), Web(5000), Celery-Flower(8888)
 +--------------------------------------+--------------------------------------+--+

Security Group Rule Add

To add a new rule to the security group use:

$ cm secgroup rules-add --cloud india --tenant fg478 test-group 80 80 tcp 0.0.0.0/0
 Added rule [80 | 80 | tcp | 0.0.0.0/0] to secgroup [test-group]

$ cm secgroup rules-add --cloud india --tenant fg478 test-group 443 443 udp 0.0.0.0/0
 Added rule [443 | 443 | udp | 0.0.0.0/0] to secgroup [test-group]

Security Group Rules List

To list all the rules assigned to the security group use:

$ cm secgroup rules-list --cloud india --tenant fg478 test-group
 +----------+-------+------------+----------+--------+----------+-----------+
 | user | cloud | name | fromPort | toPort | protocol | cidr |
 +----------+-------+------------+----------+--------+----------+-----------+
 | albert | india | test-group | 80 | 80 | tcp | 0.0.0.0/0 |
 | albert | india | test-group | 443 | 443 | udp | 0.0.0.0/0 |
 +----------+-------+------------+----------+--------+----------+-----------+

Security Group Rule Delete

To delete a specific rule within a security group use:

$ cm secgroup rules-delete --cloud india --tenant fg478 test-group 80 80 tcp 0.0.0.0/0
 Rule [80 | 80 | tcp | 0.0.0.0/0] deleted

$ cm secgroup rules-list india fg478 test-group
 +----------+-------+--------------+----------+--------+----------+-----------+
 | user | cloud | name | fromPort | toPort | protocol | cidr |
 +----------+-------+--------------+----------+--------+----------+-----------+
 | albert | india | test-group | 443 | 443 | udp | 0.0.0.0/0 |
 +----------+-------+--------------+----------+--------+----------+-----------+

Security Group Delete

To delete an entire security group use:

$ cm secgroup delete --cloud india --tenant fg478 test-group
 Rule [443 | 443 | udp | 0.0.0.0/0] deleted
 Security Group [test-group] for cloud [india], & tenant [fg478] deleted

$ cm secgroup rules-list --cloud india --tenant fg478 test-group
 ERROR: Security Group with label [test-group], cloud [india], & tenant [fg478] not found!

 Copyright 2015, Gregor von Laszewski.

 VM Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

VM Command

VM Command is used to manage VM instances across clouds.
It is like a one stop interface that can be used to perform various VM
operations on various clouds available to Cloudmesh.

The manual page of the key command can be found at: VM

Listing Defaults

You can have a list of relevant default attributes required for VM operations:

+-----------+--------------------------------------+
| Attribute | Value |
+-----------+--------------------------------------+
secgroup	
login_key	/home/albert/key/id_rsa
flavor	2
image	619b8942-2355-4aa2-jaa5-74b8f1751911
cloud	kilo
name	albert-015
key	albertkey
group	test
+-----------+--------------------------------------+

	secgroup - Security Group to be provided for VM boot.

	login_key - Path to private key required for VM login.

	flavor - Flavor ID required for VM boot.

	image - Image ID required for VM boot.

	cloud - Target Cloud.

	name - Name of the VM to be booted. This is in format <username>-<count>. Username retrieved from cloudmesh.yaml, count retrieved from a counter in database.

	key - Key name from db used for VM boot.

	group - Group for the VM to be booted.

Booting a VM instance

If you have all the required attributes (secgroup not mandatory) setup and listed in the vm defaults,
then you can simply run the following to boot a vm.:

$ cm vm boot
Machine albert-015 is being booted on kilo Cloud...
Added ID [4a37b49a-9768-88cc-b988-01013701a8fb] to Group [test]
info. OK.

Else you may explicitly specify the attribute values in the arguments to the vm boot command.:

$ cm vm boot --name=testvm --cloud=kilo --image=619b8942-2355-4aa2-jaa5-74b8f1751911 --flavor=2
Machine testvm is being booted on kilo Cloud...

Listing a VM instances

You can list all the VM instances running on the cloud by ‘vm list’ command
like the one below:

+----+--------------------------------------+------------------------------+-----------+-------------+-----------------+-------------------------+-----------+-----------+-------+
| id | uuid | label | status | static_ip | floating_ip | key_name | project | user | cloud |
+----+--------------------------------------+------------------------------+-----------+-------------+-----------------+-------------------------+-----------+-----------+-------+
10	21305503-2649-3664-8876-d825758c83f3	albert-001	ACTIVE	10.20.99.xx	140.123.44.xxx	albert-key	undefined	albert	kilo
9	94f01af3-ee2a-9887-b228-75627f358169	albert-001	SHUTOFF	10.20.99.xx	140.123.44.xxx	albert-key	undefined	albert	kilo
8	2f275d38-62af-1223-a04a-0456e0d6466f	albert-server-jzqc23pekfcu	SUSPENDED	10.20.99.xx	140.123.44.xxx	albert-india-key	undefined	albert	kilo
7	6730c273-609f-9879-a481-313ff4200d82	albert-server-ekbvvsmjyqlo	ACTIVE	10.20.99.xx	140.123.44.xxx	albert-india-key	undefined	albert	kilo
6	fa3580f3-2dbd-d666-9178-326b39916c09	albert-server-cdmelfaefggf	ACTIVE	10.20.99.xx	140.123.44.xxx	albert-india-key	undefined	albert	kilo
+----+--------------------------------------+------------------------------+-----------+-------------+-----------------+-------------------------+-----------+-----------+-------+

Stop a VM

You can stop a VM by supplying it’s label or UUID:

$ cm vm stop testvm --cloud=kilo
Machine testvm is being stopped on kilo Cloud...
info. OK.

Start a VM

You can start a VM by supplying it’s label or UUID:

$ cm vm start testvm --cloud=kilo
Machine testvm is being started on kilo Cloud...
info. OK.

Assign Floating IP to VM

In order to access the vm from outside of the cloud private network, we need to assign a floating IP which can be
accessed publicly:

$ cm vm floating_ip_assign testvm --cloud=kilo
Floating IP assigned to testvm successfully and it is: 149.165.158.XX

Retrieving IP Address details

You can get the IP address details of a VM by the following command:

$ cm vm ip_show testvm --cloud=kilo
IP Addresses of instance testvm are as follows:-
+---------+---------+----------------+
| network | version | addr |
+---------+---------+----------------+
| int-net | 4 | 10.23.2.XX |
| int-net | 4 | 149.165.158.XX |
+---------+---------+----------------+

Login to VM

You can login to a VM in your target cloud:

$ cm vm login testvm --user=albert --key=/location/id_rsa --cloud=kilo
Logging in into testvm machine...
Determining IP Address to use with a ping test...
Checking 10.23.2.XX...
Cannot reach 10.23.2.XX.
Checking 149.165.158.XX...
IP to be used is: 149.165.158.XX
Warning: Permanently added '149.165.158.XX' (ECDSA) to the list of known hosts.
Enter passphrase for key '/location/id_rsa':
Welcome to <OS> <VERSION>.3 LTS (GNU/Linux <VERSION> <BIT_SPEC>)

 * Documentation: https://help.os.com/

 System information as of Mon Oct 19 04:17:48 UTC 2015

 System load: 0.0 Memory list: 2% Processes: 52
 Usage of /: 56.9% of 1.32GB Swap list: 0% Users logged in: 0

 Graph this data and manage this system at:
 https://landscape.canonical.com/

 Get cloud support with OS Advantage Cloud Guest:
 http://www.OS.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the OS system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

OS comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

albert@testvm:~$

Running command on VM

You can use the vm login to simply run a command on the target VM:

$ cm vm login testvm --user=albert --key=/location/id_rsa --command="uname\ -a" --cloud=kilo
Logging in into testvm machine...
Determining IP Address to use with a ping test...
Checking 10.23.2.XX...
Cannot reach 10.23.2.XX.
Checking 149.165.159.XX...
IP to be used is: 149.165.159.XX
Enter passphrase for key '/location/id_rsa':
OS testvm <VERSION> #103-OS SMP Fri Aug 14 21:42:59 UTC 2015 <BIT_SPEC> OS

Deleting a VM

You can delete a VM on the target cloud by using ‘vm delete’ command as below:

$ cm vm delete testvm --cloud=kilo
Machine testvm is being deleted on kilo Cloud...

 Copyright 2015, Gregor von Laszewski.

 Nova Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Nova Command

This is a wrapper nova command provided by cloudmesh which in turn calls the
openstack nova command on the target cloud. This also provides you with the
capability of setting the target cloud. However, we recommend not using
the command and instead use the cloudmesh command sas they allow for
information caching

The manual page of the key command can be found at: Nova

Setting the Target Cloud

You may set the target cloud on which the nova command should run as follows:

$ cm nova set india
india is set

Note that if you do not set a target cloud, default cloud considered is ‘india’.

Getting the Cloud Info

You may get the cloud info in the following manner:

$ cm nova info
WARNING: OS environment variable OS_REGION not found
+----------------+--+
| Variable | Value |
+----------------+--+
OS_REGION	None
OS_USERNAME	albert
OS_CACERT	/home/albert/.cloudmesh/clouds/india/kilo/cacert.pem
OS_TENANT_NAME	fg478
OS_AUTH_URL	https://i5r.idp.iu.futuregrid.org:5000/v2.0
OS_PASSWORD	********
+----------------+--+

By default it gives the ‘india’ cloud info. To check for specific cloud, here is an example for kilo cloud:

$ cm nova info kilo
+----------------+--+
| Variable | Value |
+----------------+--+
OS_REGION	None
OS_USERNAME	TBD
OS_CACERT	TBD
OS_TENANT_NAME	TBD
OS_AUTH_URL	https://i5r.idp.iu.futuresystems.org:5000/v2.0
OS_PASSWORD	********
+----------------+--+

Running openstack nova commands

The syntax is the same as what is used for openstack nova.
Following are couple of examples:

Listing images:

$ cm nova image-list
Cloud = india
+--------------------------------------+---+--------+--------------------------------------+
| ID | Name | Status | Server |
+--------------------------------------+---+--------+--------------------------------------+
619b8942-2355-4aa2-bae3-74b8f1751911	CentOS-7	ACTIVE	
f63a996c-ea69-4a56-830e-c190bca2f828	VM with Cloudmesh Configured Completely	ACTIVE	8b7ce3bf-f797-4e8e-903c-6a0de81b063c
7ddc3366-73bf-453a-a813-43514030bf2e	badi/centos-7-2015-06-01	ACTIVE	
c3c5b676-be53-4237-a40f-451d4c6e572e	badi/ubuntu-14.04-2015-06-01	ACTIVE	
f2c2bbda-8bc1-4f02-a2e8-60014da66689	cloudmesh/ipynb-n-java	ACTIVE	
186592ce-eed5-4631-bc0c-7022eccd8508	fg464/hadoop-b649	ACTIVE	63a2cf03-a6cf-4d8a-95c1-250eb71f1ebc
364bd53b-87d3-4ac6-8e41-af540301f0cd	futuresystems/centos-7	ACTIVE	
58e5d678-79ec-4a4d-9aa8-37975b7f40ac	futuresystems/fedora-21	ACTIVE	
a59833a2-60c9-47f0-b333-4e0bc071ac3a	futuresystems/hadoop-v2	ACTIVE	f01633b1-76b0-47b5-915e-eaae4559ba60
367de5c7-3a30-4bad-b316-1a2afa17d794	futuresystems/ubuntu-12.04	ACTIVE	
66708636-5ed6-4908-b36a-f5a69f8ac7ee	futuresystems/ubuntu-14.04	ACTIVE	
0f787e59-6ff9-466c-aaf6-cd3f3c9350d0	kilitbilgi/ubuntu_14_10_desktop	ACTIVE	
5337a50d-4418-4c1f-9741-5c31bf03e267	lee212/CoreOS	ACTIVE	
132c961f-bca8-4942-a2c5-a8f60f84aea9	lee212/CoreOS-Alpha	ACTIVE	
e8acb8e0-fbc9-44e4-9b31-3c38fc9c25ae	lee212/boot2docker	ACTIVE	
b073ddce-747d-4c66-8152-70118a4e5781	mooc-backup	ACTIVE	805da4cb-a14f-4465-841f-124346cf3bde
85fdb68e-8bd3-4e5e-bb4e-f286298f4fe6	said/ubuntu15	ACTIVE	
e3d5fcf5-1b40-48df-9098-3c03a682421e	slaves_ubuntu_14_04	ACTIVE	
58c9552c-8d93-42c0-9dea-5f48d90a3188	ubuntu12-cometworker1	ACTIVE	55458942-1d8f-4a54-af10-8e01c47953ea
+--------------------------------------+---+--------+--------------------------------------+

Listing flavors:

$ cm nova flavor-list
Cloud = india
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+
1	m1.tiny	512	0	0		1	1.0	True
2	m1.small	2048	20	0		1	1.0	True
3	m1.medium	4096	40	0		2	1.0	True
4	m1.large	8192	80	0		4	1.0	True
5	m1.xlarge	16384	160	0		8	1.0	True
6	m1.small_e30	2048	20	30		1	1.0	True
7	m1.medium_e60	4096	40	60		2	1.0	True
8	m1.large_e100	8192	80	100		4	1.0	True
9	m1.xlarge_e200	16384	160	200		8	1.0	True
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+

Following is the link for openstack nova command manual:-

Openstack nova command manual [http://docs.openstack.org/cli-reference/content/novaclient_commands.html]

 Copyright 2015, Gregor von Laszewski.

 Flavor Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Flavor Command

The manual page of the flavor command can be found at: Flavor

Flavors define the compute, memory, and storage capacity of nova computing instances.
To put it simply, a flavor is an available hardware configuration for a server. It
defines the �size� of a virtual server that can be launched

Refresh

The refresh command would update the local database with the latest flavors.
To refresh flavors of a cloud, do the following:

$cm flavor refresh --cloud=kilo
Refresh flavor for cloud kilo. ok

List

To list the set of flavors of a cloud, do the following:

$cm flavor list --cloud=kilo
+----+----------------+--------+-------+----------+-------+------+--------+-------------+-----------------+------+-------+------+
| Id | Name | User | RAM | Disabled | vCPUs | Swap | Access | rxtx_factor | os_flv_ext_data | Disk | Cloud | UUID |
+----+----------------+--------+-------+----------+-------+------+--------+-------------+-----------------+------+-------+------+
1	m1.tiny	albert	512	0	1		1	1.0	0	0	kilo	1
5	m1.xlarge	albert	16384	0	8		1	1.0	0	160	kilo	5
9	m1.xlarge_e200	albert	16384	0	8		1	1.0	200	160	kilo	9
2	m1.small	albert	2048	0	1		1	1.0	0	20	kilo	2
6	m1.small_e30	albert	2048	0	1		1	1.0	30	20	kilo	6
3	m1.medium	albert	4096	0	2		1	1.0	0	40	kilo	3
7	m1.medium_e60	albert	4096	0	2		1	1.0	60	40	kilo	7
4	m1.large	albert	8192	0	4		1	1.0	0	80	kilo	4
8	m1.large_e100	albert	8192	0	4		1	1.0	100	80	kilo	8
+----+----------------+--------+-------+----------+-------+------+--------+-------------+-----------------+------+-------+------+

List Details

To list the details of a flavor, give in the id, uuid or name of the flavor. In case latest information is needed,
the –refresh option can be used which would update the local database:

$cm flavor list 1 --cloud=kilo
+-----------------+---------------------+
| Attribute | Value |
+-----------------+---------------------+
id	1
swap	
os_flv_disabled	0
os_flv_ext_data	0
disk	0
os_flavor_acces	1
vcpus	1
uuid	1
rxtx_factor	1.0
created_at	2015-11-11 13:38:31
updated_at	2015-11-11 13:38:31
ram	512
user	albert
kind	flavor
cloud	kilo
name	m1.tiny
label	m1.tiny
project	undefined
+-----------------+---------------------+

 Copyright 2015, Gregor von Laszewski.

 Image Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Image Command

The manual page of the image command can be found at: Image

An image is a collection of files used to create or rebuild a server

Refresh

The refresh command would update the local database with the latest images.
To refresh images of a cloud (in this example, kilo), do the following:

$cm image refresh --cloud=kilo
Refresh image for cloud kilo. ok.

List

To list the set of images of a cloud, do the following:

$cm image list --cloud=kilo
+----+---------------+----------------------+------------------------------+---------+--------+---+----------+--------+----------------------+
| id | size | created | description | minDisk | minRam | name | progress | status | updated |
+----+---------------+----------------------+------------------------------+---------+--------+---+----------+--------+----------------------+
1	158443520	2015-03-23T20:50:29Z		0	0	XXX	100	ACTIVE	2015-03-23T20:50:33Z
2	1270546432	2015-03-26T18:15:47Z		20	0	YYY	100	ACTIVE	2015-03-26T18:17:41Z
3	4845404160	2015-03-26T20:05:29Z		40	0	mooc-backup	100	ACTIVE	2015-03-27T20:57:02Z
+----+---------------+----------------------+------------------------------+---------+--------+---+----------+--------+----------------------+

List Details

To list the details of an image, give in the id, uuid or name of the image. In case latest information is needed,
the –refresh option can be used which would update the local database:

$cm image list 12 --cloud=kilo
+--------------------------------------+--------------------------------------+
| Attribute | Value |
+--------------------------------------+--------------------------------------+
metadata__ramdisk_id	None
metadata__description	None
metadata__kernel_id	None
id	12
metadata__instance_type_ephemeral_gb	0
minRam	0
metadata__instance_type_swap	0
metadata__instance_type_vcpus	1
metadata__instance_type_rxtx_factor	1.0
progress	100
os_image_size	1977483264
metadata__instance_type_flavorid	2
metadata__instance_type_root_gb	20
minDisk	20
created	2015-05-23T20:45:51Z
updated	2015-05-23T20:51:12Z
updated_at	2015-11-11 00:29:55
created_at	2015-11-11 00:29:55
metadata__instance_type_memory_mb	2048
metadata__instance_type_id	5
metadata__base_image_ref	6a6a3474-8194-44ac-9f56-70cb93207f21
status	ACTIVE
metadata__network_allocated	True
uuid	a59833a2-60c9-47f0-b333-4e0bc071ac3a
metadata__image_state	available
metadata__user_id	b13b62690e984c7586df1cdd2df07b5f
metadata__owner_id	c713809dee494dccac34fcd02e012acb
user	albert
metadata__instance_uuid	f01633b1-76b0-47b5-915e-eaae4559ba60
label	ZZZ
name	ZZZ
kind	image
cloud	kilo
metadata__instance_type_name	m1.small
metadata__image_location	snapshot
metadata__image_type	snapshot
project	undefined
+--------------------------------------+--------------------------------------+

 Copyright 2015, Gregor von Laszewski.

 Network Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Network Command

The Network command provides an API that allows users to set up
and define network connectivity and addressing in the cloud.
Network command handles the creation and management of a virtual networking infrastructure,
including networks, fixed & floating ips.

The manual page of the network command can be found at: network <../man/man.html#network>

	..note:: We assume you have your default cloud set,

	via the default command:

$ cm default cloud=kilo

List Floating IP Pools

To list the floating ip pools in your cloud network use:

$ cm network list floating pool
 +------------------+
 | floating_ip_pool |
 +------------------+
 | ext-net |
 +------------------+

List Floating IP Addresses

To list the floating ip addresses in you cloud use:

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | | 100.165.123.110 | ext-net | | 3e0915a9-f190-324d-8b56-4c2fd2a0d97b | |
 | albert-004 | 100.165.123.111 | ext-net | 10.0.2.10 | 58fbeca5-aad3-2f44-af23-0bb8ac60dc89 | a183b85f-2d4r-44b9-933f-64562380286f |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

To view the floating ip details for a particular instance, use:

$ cm network list floating ip --instance=albert-004
 +---------------+--------------------------------------+
 | name | value |
 +---------------+--------------------------------------+
fixed_ip	10.0.2.10
ip	100.165.123.111
id	58fbeca5-aad3-2f44-af23-0bb8ac60dc89
instance_id	a183b85f-2d4r-44b9-933f-64562380286f
pool	ext-net
project	fg478
user	albert
instance_name	albert-004
cloud	kilo
 +---------------+--------------------------------------+

To view details of a particular floating ip address, use:

$ cm network list floating ip 100.165.123.111
 +---------------+--------------------------------------+
 | name | value |
 +---------------+--------------------------------------+
fixed_ip	10.0.2.10
ip	100.165.123.111
id	58fbeca5-aad3-2f44-af23-0bb8ac60dc89
instance_id	a183b85f-2d4r-44b9-933f-64562380286f
pool	ext-net
project	fg478
user	albert
instance_name	albert-004
cloud	kilo
 +---------------+--------------------------------------+

Create Floating IP Addresses

To create a floating ip address under a floating pool, use:

$ cm network create floating ip --pool=ext-net
 Created new floating IP [100.165.123.112]

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
	100.165.123.110	ext-net		3e0915a9-f190-324d-8b56-4c2fd2a0d97b	
	100.165.123.112	ext-net		2cd915a9-f191-762d-2456-24dcd2a0d97b	
albert-004	100.165.123.111	ext-net	10.0.2.10	58fbeca5-aad3-2f44-af23-0bb8ac60dc89	a183b85f-2d4r-44b9-933f-64562380286f
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Delete Floating IP Addresses

To delete a floating ip address, use:

$ cm network delete floating ip 100.165.123.112
 Floating IP [100.165.123.112] deleted successfully!

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | | 100.165.123.110 | ext-net | | 3e0915a9-f190-324d-8b56-4c2fd2a0d97b | |
 | albert-004 | 100.165.123.111 | ext-net | 10.0.2.10 | 58fbeca5-aad3-2f44-af23-0bb8ac60dc89 | a183b85f-2d4r-44b9-933f-64562380286f |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Associate Floating IP Address with an Instance

To automatically generate a floating ip address
and associate it with an instance, use:

$ cm network associate floating ip --instance=albert-009
 Created and assigned Floating IP [100.165.123.113] to instance [albert-009].

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
	100.165.123.110	ext-net		3e0915a9-f190-324d-8b56-4c2fd2a0d97b	
albert-004	100.165.123.111	ext-net	10.0.2.10	58fbeca5-aad3-2f44-af23-0bb8ac60dc89	a183b85f-2d4r-44b9-933f-64562380286f
albert-009	100.165.123.113	ext-net	10.0.2.11	34fbeca5-aad3-4er5-ag21-34b8ac60dc85	e433b85f-2d4r-44b9-933f-64562380285r
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Alternatively, you can also specify the floating ip address
that you want to associate with an instance:

$ cm network associate floating ip --instance=albert-008 100.165.123.112
 Associated Floating IP [100.165.123.112] to instance [albert-008].

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
	100.165.123.110	ext-net		3e0915a9-f190-324d-8b56-4c2fd2a0d97b	
albert-004	100.165.123.111	ext-net	10.0.2.10	58fbeca5-aad3-2f44-af23-0bb8ac60dc89	a183b85f-2d4r-44b9-933f-64562380286f
albert-008	100.165.123.112	ext-net	10.0.2.12	c45beca5-cd34-4e3d-4r34-34b8ac64td42	2ds345f4-2d4r-44b9-933f-342432fd3fcc
albert-009	100.165.123.113	ext-net	10.0.2.11	34fbeca5-aad3-4er5-ag21-34b8ac60dc85	e433b85f-2d4r-44b9-933f-64562380285r
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Disassociate Floating IP Address from an Instance

To automatically detect the floating ip address associated with an instance
& disassociate it from that instance, use:

$ cm network disassociate floating ip --instance=albert-009
 Disassociated Floating IP [100.165.123.113] from instance [albert-009].

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
	100.165.123.110	ext-net		3e0915a9-f190-324d-8b56-4c2fd2a0d97b	
	100.165.123.113	ext-net		34fbeca5-aad3-4er5-ag21-34b8ac60dc85	
albert-004	100.165.123.111	ext-net	10.0.2.10	58fbeca5-aad3-2f44-af23-0bb8ac60dc89	a183b85f-2d4r-44b9-933f-64562380286f
albert-008	100.165.123.112	ext-net	10.0.2.12	c45beca5-cd34-4e3d-4r34-34b8ac64td42	2ds345f4-2d4r-44b9-933f-342432fd3fcc
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Alternatively, you could also specify the floating ip address to dissociate:

$ cm network disassociate floating ip 100.165.123.113
 Disassociated Floating IP [100.165.123.113] from instance [albert-009].

$ cm network list floating ip
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
 | instance_name | floating_ip | floating_ip_pool | fixed_ip | floating_ip_id | instance_id |
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+
	100.165.123.110	ext-net		3e0915a9-f190-324d-8b56-4c2fd2a0d97b	
	100.165.123.113	ext-net		34fbeca5-aad3-4er5-ag21-34b8ac60dc85	
albert-004	100.165.123.111	ext-net	10.0.2.10	58fbeca5-aad3-2f44-af23-0bb8ac60dc89	a183b85f-2d4r-44b9-933f-64562380286f
albert-008	100.165.123.112	ext-net	10.0.2.12	c45beca5-cd34-4e3d-4r34-34b8ac64td42	2ds345f4-2d4r-44b9-933f-342432fd3fcc
 +---------------+-----------------+------------------+-----------+--------------------------------------+--------------------------------------+

Note

There are also a set of fixed-ip address operations you can perform,
but you need to have admin privilidges in your account.

Some of the commands include:

Reserving a fixed ip address:

$ cm network reserve fixed ip 10.1.1.3

Unreserve a fixed ip address:

$ cm network unreserve fixed ip 10.1.1.3

Getting fixed ip address details:

$ cm network get fixed ip 10.1.1.3

 Copyright 2015, Gregor von Laszewski.

 Nova Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Nova Command

This is a wrapper nova command provided by cloudmesh which in turn calls the
openstack nova command on the target cloud. This also provides you with the
capability of setting the target cloud. However, we recommend not using
the command and instead use the cloudmesh command sas they allow for
information caching

The manual page of the key command can be found at: Nova

Setting the Target Cloud

You may set the target cloud on which the nova command should run as follows:

$ cm nova set india
india is set

Note that if you do not set a target cloud, default cloud considered is ‘india’.

Getting the Cloud Info

You may get the cloud info in the following manner:

$ cm nova info
WARNING: OS environment variable OS_REGION not found
+----------------+--+
| Variable | Value |
+----------------+--+
OS_REGION	None
OS_USERNAME	albert
OS_CACERT	/home/albert/.cloudmesh/clouds/india/kilo/cacert.pem
OS_TENANT_NAME	fg478
OS_AUTH_URL	https://i5r.idp.iu.futuregrid.org:5000/v2.0
OS_PASSWORD	********
+----------------+--+

By default it gives the ‘india’ cloud info. To check for specific cloud, here is an example for kilo cloud:

$ cm nova info kilo
+----------------+--+
| Variable | Value |
+----------------+--+
OS_REGION	None
OS_USERNAME	TBD
OS_CACERT	TBD
OS_TENANT_NAME	TBD
OS_AUTH_URL	https://i5r.idp.iu.futuresystems.org:5000/v2.0
OS_PASSWORD	********
+----------------+--+

Running openstack nova commands

The syntax is the same as what is used for openstack nova.
Following are couple of examples:

Listing images:

$ cm nova image-list
Cloud = india
+--------------------------------------+---+--------+--------------------------------------+
| ID | Name | Status | Server |
+--------------------------------------+---+--------+--------------------------------------+
619b8942-2355-4aa2-bae3-74b8f1751911	CentOS-7	ACTIVE	
f63a996c-ea69-4a56-830e-c190bca2f828	VM with Cloudmesh Configured Completely	ACTIVE	8b7ce3bf-f797-4e8e-903c-6a0de81b063c
7ddc3366-73bf-453a-a813-43514030bf2e	badi/centos-7-2015-06-01	ACTIVE	
c3c5b676-be53-4237-a40f-451d4c6e572e	badi/ubuntu-14.04-2015-06-01	ACTIVE	
f2c2bbda-8bc1-4f02-a2e8-60014da66689	cloudmesh/ipynb-n-java	ACTIVE	
186592ce-eed5-4631-bc0c-7022eccd8508	fg464/hadoop-b649	ACTIVE	63a2cf03-a6cf-4d8a-95c1-250eb71f1ebc
364bd53b-87d3-4ac6-8e41-af540301f0cd	futuresystems/centos-7	ACTIVE	
58e5d678-79ec-4a4d-9aa8-37975b7f40ac	futuresystems/fedora-21	ACTIVE	
a59833a2-60c9-47f0-b333-4e0bc071ac3a	futuresystems/hadoop-v2	ACTIVE	f01633b1-76b0-47b5-915e-eaae4559ba60
367de5c7-3a30-4bad-b316-1a2afa17d794	futuresystems/ubuntu-12.04	ACTIVE	
66708636-5ed6-4908-b36a-f5a69f8ac7ee	futuresystems/ubuntu-14.04	ACTIVE	
0f787e59-6ff9-466c-aaf6-cd3f3c9350d0	kilitbilgi/ubuntu_14_10_desktop	ACTIVE	
5337a50d-4418-4c1f-9741-5c31bf03e267	lee212/CoreOS	ACTIVE	
132c961f-bca8-4942-a2c5-a8f60f84aea9	lee212/CoreOS-Alpha	ACTIVE	
e8acb8e0-fbc9-44e4-9b31-3c38fc9c25ae	lee212/boot2docker	ACTIVE	
b073ddce-747d-4c66-8152-70118a4e5781	mooc-backup	ACTIVE	805da4cb-a14f-4465-841f-124346cf3bde
85fdb68e-8bd3-4e5e-bb4e-f286298f4fe6	said/ubuntu15	ACTIVE	
e3d5fcf5-1b40-48df-9098-3c03a682421e	slaves_ubuntu_14_04	ACTIVE	
58c9552c-8d93-42c0-9dea-5f48d90a3188	ubuntu12-cometworker1	ACTIVE	55458942-1d8f-4a54-af10-8e01c47953ea
+--------------------------------------+---+--------+--------------------------------------+

Listing flavors:

$ cm nova flavor-list
Cloud = india
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+
1	m1.tiny	512	0	0		1	1.0	True
2	m1.small	2048	20	0		1	1.0	True
3	m1.medium	4096	40	0		2	1.0	True
4	m1.large	8192	80	0		4	1.0	True
5	m1.xlarge	16384	160	0		8	1.0	True
6	m1.small_e30	2048	20	30		1	1.0	True
7	m1.medium_e60	4096	40	60		2	1.0	True
8	m1.large_e100	8192	80	100		4	1.0	True
9	m1.xlarge_e200	16384	160	200		8	1.0	True
+----+----------------+-----------+------+-----------+------+-------+-------------+-----------+

Following is the link for openstack nova command manual:-

Openstack nova command manual [http://docs.openstack.org/cli-reference/content/novaclient_commands.html]

 Copyright 2015, Gregor von Laszewski.

 Sync Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Sync Command

The sync command provides an API that allows users to sync
a local directory with a directory on any remote machine on the cloud.
Sync command can be used to pull in data from the remote host, or
send data from local machine to remote host.

The manual page of the network command can be found at: sync <../man/man.html#sync>

Sync file on local machine with remote machine on cloud

To sync a file from local machine to remote use:

$ cm sync put ubuntu_file.txt sync_dir
 Please enter putty private key(ppk) file path: ~/.ssh/id_rsa_ppk.ppk
 Passphrase for key "imported-openssh-key":
 ubuntu_file.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
 Successuly synced local and remote directories.

Sync file from remote machine on cloud to local machine

To sync a file from remote machine to local use:

$ cm sync get sync_dir/* ./cm_sync/
 Please enter putty private key(ppk) file path: ~/.ssh/id_rsa_ppk.ppk
 Passphrase for key "imported-openssh-key":
 my_text.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
 my_text_2.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
 ex1.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
 ubuntu_file.txt | 0 kB | 0.0 kB/s | ETA: 00:00:00 | 100%
 Successuly synced local and remote directories.

 Copyright 2015, Gregor von Laszewski.

 Limits Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Limits Command

The manual page of the limits command can be found at: Limits

Accounts may be pre-configured with a set of thresholds(or limits) to manage
capacity and prevent abuse of the system. Limits command gives a description
of the limits set for each resource along with the total number of resources
used.

limits list

To list the limits on a default project/tenant you can use:

$ cm limits list
 +-------------------------+-------+
 | Name | Value |
 +-------------------------+-------+
maxImageMeta	128
maxPersonality	5
maxPersonalitySize	10240
maxSecurityGroupRules	20
maxSecurityGroups	10
maxServerGroupMembers	10
maxServerGroups	10
maxServerMeta	128
maxTotalCores	20
maxTotalFloatingIps	10
maxTotalInstances	10
maxTotalKeypairs	100
maxTotalRAMSize	51200
totalCoresUsed	4
totalFloatingIpsUsed	0
totalInstancesUsed	4
totalRAMUsed	8192
totalSecurityGroupsUsed	1
totalServerGroupsUsed	0
 +-------------------------+-------+

To export it in csv format, mention the format as csv:

$ cm limits list --format=csv
Name,Value
maxServerMeta,128
maxPersonality,5
totalServerGroupsUsed,0
maxImageMeta,128
maxPersonalitySize,10240
maxTotalRAMSize,51200
maxTotalKeypairs,100
maxSecurityGroupRules,20
maxServerGroups,10
totalCoresUsed,4
totalRAMUsed,8192
maxSecurityGroups,10
totalFloatingIpsUsed,0
totalInstancesUsed,4
totalSecurityGroupsUsed,1
maxTotalFloatingIps,10
maxTotalInstances,10
maxTotalCores,20
maxServerGroupMembers,10

 Copyright 2015, Gregor von Laszewski.

 Quota Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Quota Command

Many clouds have some kind of quota limitations on how many ip
addresses one can obtain, or how many cores a user can have. To get an
overview of the quotas set for a user in a project we are providing a
quota command.

The manual page of the quota command can be found at: Quota

quota list

To list the quota limit on a default project/tenant you can use:

$ cm quota list
 +-----------------------------+-------+
 | Quota | Limit |
 +-----------------------------+-------+
fixed_ips	-1
floating_ips	10
instances	10
security_groups	10
server_group_members	10
server_groups	10
key_pairs	100
injected_file_content_bytes	10240
metadata_items	128
cores	20
security_group_rules	20
injected_file_path_bytes	255
injected_files	5
ram	51200
 +-----------------------------+-------+

To export it in csv format,:

$ cm quota list --format=csv
Quota,Limit
instances,10
cores,20
ram,51200
floating_ips,10
fixed_ips,-1
metadata_items,128
injected_files,5
injected_file_content_bytes,10240
injected_file_path_bytes,255
key_pairs,100
security_groups,10
security_group_rules,20
server_groups,10
server_group_members,10

 Copyright 2015, Gregor von Laszewski.

 Usage Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Usage Command

The manual page of the quota command can be found at: Usage

This shows the resource list for a particular time frame. By default
it will show the resource list for the past one month.

list

To list the list information:

$cm list
Usage from 2015-09-24 to 2015-10-23:
+-----------+----------------+-------------+-----------------+
| Servers | RAM MB-Hours | CPU Hours | Disk GB-Hours |
+-----------+----------------+-------------+-----------------+
| 42 | 6275181.11 | 3064.05 | 61281.07 |
+-----------+----------------+-------------+-----------------+

 Copyright 2015, Gregor von Laszewski.

 Hpc Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Hpc Command

High Performance Computing(HPC) allows to solve large complex problems
in engineering, science and business using applications that require
very high compute power and amplified bandwidth. The cloudmesh hpc
command helps to easily manage hpc clusters.

The manual page of the hpc command can be found at: Hpc

Before we get started, we can set the default hpc cluster or use the
–cluster option. To set the default hpc cluster:

$ cm default cluster=comet
set in defaults cluster=comet. ok.

hpc info

Returns the state of partitions and nodes on the hpc cluster:

$ cm hpc info
 +---------+-----------+-------+------------+-------+-------+----------------------------+---------------------+
 | cluster | partition | avail | timelimit | nodes | state | nodelist | updated |
 +---------+-----------+-------+------------+-------+-------+----------------------------+---------------------+
india	xxxxx	up	3-00:00:00	8	idle	b[009-016]	2015-11-29 16:06:25
india	yyyyy	up	3-00:00:00	12	idle	d[001-012]	2015-11-29 16:06:25
india	zzzzz	up	3-00:00:00	16	idle	i[81-84,86-89,91-95,97-99]	2015-11-29 16:06:25
 +---------+-----------+-------+------------+-------+-------+----------------------------+---------------------+

hpc queue

Reports the state of jobs or job sets:

$ cm hpc queue
+---------+---------+--------------+-------------------+-----------+----+------------+-------+---------------------+---------------------+
| cluster | jobid | partition | name | user | st | time | nodes | nodelist | updated |
+---------+---------+--------------+-------------------+-----------+----+------------+-------+---------------------+---------------------+
india	1205397	gpu-shared	xxx	x_user	PD	0:00	1		2015-11-29 16:16:27
india	1267689	compute	yyy	y_user	PD	0:00	1		2015-11-29 16:16:27
india	1267690	compute	zzz	y_user	PD	0:00	8		2015-11-29 16:16:27
india	1267691	compute	lll	y_user	PD	0:00	3		2015-11-29 16:16:27
india	1267693	compute	mmm	y_user	PD	0:00	1		2015-11-29 16:16:27
india	1295159	gpu	nnnnnnn	z_user	CG	1-00:00:03	1	xxxxx-30-13	2015-11-29 16:16:27
india	1304301	compute	ooooooooooo	y_user	R	23:38:55	8	yy-04-[20-21,63-68]	2015-11-29 16:16:27
+---------+---------+--------------+--------------------+-----------+----+------------+-------+--------------------+---------------------+

To view the state of a specific job, use the –job=NAME option, where NAME can be the
job id or the job name

$ cm hpc queue --job=6
+---------+-------+-----------+-------------+-----------+----+------+-------+----------+---------------------+
| cluster | jobid | partition | name | user | st | time | nodes | nodelist | updated |
+---------+-------+-----------+-------------+-----------+----+------+-------+----------+---------------------+
| india | 6 | xxxxx | somethin.sh | xxxxxxxxx | PD | 0:00 | 1 | | 2015-11-29 16:24:15 |
+---------+-------+-----------+-------------+-----------+----+------+-------+----------+---------------------+

hpc status

Similar to hpc queue where the status of job(s) can be viewed.

Experiment management

Often it is the case that you may want to rerun your script multiple
times with potentially different parameters. We are working towards
simplifying this mechanism for parameter studies. At this time we
implemented the ability to run a simple shell command repeatedly.

For this we provide a simple experiment abstraction. An experiment is
created automatically once you run an hpc command. The experiment is
placed in an output directory that can be defined within the
cloudmesh.yaml file. By default it will be the home directory
~/experiment. In this experiment we create numbered sub directories
for consecutive execution of the experiment run.

To run an experiment (in this case just a shell command uname) you
can use the run command:

hpc run uname –cluster=india

	It will create on the cluster india a new experiment directory by

	increasing an experiment number, put the batch script, run the
command, and put the output into this directory.

One can also transfer a script for the experiment, for example:

hpc run <script_path> –cluster=india

To list experiments that have been previously run you can use the
command:

hpc run list

To list the files in a particular experiment you can use the
experiment number:

hpc run list 11

Now you will see what the experiment script has created and you will
be able to fr example view the output of the script:

hpc run output 11

To delete an experiment you can say:

hpc run rm 11

However, be careful as deleting it will permanently delete the
file. To delete all experiments (be extra careful) you can just omit
the number:

hpc run rm

In future we will provide the ability to add custom scripts.

hpc delete

If for any reason, you need to kill a job that you have submitted, use the
delete command with the job name or the job id:

$ hpc delete --job=1463
Job 1463 killed successfully

To delete all jobs from a group:

$ hpc delete all
All jobs for group test killed successfully

The above command will delete all active jobs from the default group.
You can also use the –group to specify a group of your choice.

 Copyright 2015, Gregor von Laszewski.

 Comet Virtual Cluster

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Comet Virtual Cluster

Introduction

Via XSEDE comet allows users to request high-performance virtual
clusters (VCs) as part of their Comet allocation. The VC front-end
associated with this award will be available 24/7 on the virtual
machine hosting nodes, but VC compute nodes are transitory and
allocated through the batch scheduler. The front end can be thought of
as the point of entry for the VC and is used to manage VC resources
and launch jobs. The justification for compute time is the same as for
a standard allocations request. Projects that are awarded a VC can use
their compute time through either the batch queue or the VC, but the
expectation is that the latter will account for a substantial fraction
of the usage.

In comet VCs are not meant to replace the standard HPC batch queuing
system, which is well suited for most scientific and technical
workloads. In addition, a VC should not be simply thought of as a VM
(virtual machine). Other XSEDE resources, such as Indiana
University’s Jetstream address this need. Comets VCs are primarily
intended for those users who require both fine-grained control over
their software stack and access to multiple nodes. With regards to the
software stack, this may include access to operating systems different
from the default version of CentOS available on Comet or to low-level
libraries that are closely integrated with the Linux
distribution. Science Gateways serving large research communities and
that require a flexible software environment are encouraged to
consider applying for a VC, as are current users of commercial clouds
who want to make the transition for performance or cost reasons.

Maintaining and configuring a virtual cluster requires a certain level
of technical expertise. We expect that each project will have at least
one person possessing strong systems administration experience with
the relevant OS since the owner of the VC will be provided with “bare
metal” root level access. SDSC staff will be available primarily to
address performance issues that may be related to problems with the
Comet hardware and not to help users build their system images.

All VC requests must include a brief justification that addresses the
following:

	Why is a VC required for this project?

	What expertise does the PI’s team have for building and maintaining the VC?

Please visit https://portal.xsede.org/sdsc-comet for more details on comet.

Links

Example CLI usage to manage comet virtual cluster using cloudmesh
client

	Comet Command: Comet Virtual Cluster (this page)

	Comet Refernce Card Comet

	Man page comet

	http://www.sdsc.edu/support/user_guides/comet.html

	https://portal.xsede.org/sdsc-comet

	Comet nucleus API Docs: https://comet-nucleus.sdsc.edu/nucleus/docs/

Teminology

We use in this section the following terminology:

	computeset:

	A group of compute nodes started together and being in some state
(submitted, started, finished, failed). Each compute node can only belong
to 1 computesets in submitted or active state.

	frontend:

	A node with limited computational resources used to manage a virtual
cluster. Frontends run 24/7, have a public interface and a private
interface. The public interface provides outside access to the virtual
cluster while the private interface is used to manage/install the compute
nodes.

	image:

	A file containing the contents and structure (ISO9660) of a disk volume
which can be attached as a cdrom to a node.

	console:

	An interactive representation of the screen of a virtual cluster
node (text or graphical) provided to assist with node installation
and management.

	virtual cluster:

	A virtual cluster is a loosely or tightly connected network of virtual
computers managed together by a virtual cluster administrator.

	node:

	The term node is used to refer to individual computers in a virtual cluster.

	image attach:

	Attach is an action applied to a node / image pair whereby the contents
of the image are made available to a node on the next power on.

	image detach:

	Detach is an action applied to a node / image pair whereby the contents
of the image are made unavailable to the node on the next power on.

Configuration

The configuration of the cloudmesh client is done semi automatically for you.
All you have to do after the installation is to call cloudmesh client once.

This is done best with the command:

cm help

This will automatically generate a configuration file at:

~/.cloudmesh/cloudmesh.yaml.

This file you can now modify with your favourite editor. It will contain a
default section similar to:

comet:
 auth_provider: apikey
 userpass:
 username: TBD
 password: TBD
 apikey:
 api_key: KEYSTRING
 api_secret: SECRETSTRING

Two authentication mechanisms are supported. You will only need one. Please
get in contact with the comet administrators to let you know which one is best
suited for you. If you have username and password you can get started with
that. Otherwise the comet admins will assign you an api_key and secret.

Commands

Next we list a number of important commands from the CLI that will help you
managing your comet virtual clusters.

Getting information of your cluster(s); nodes; computesets; etc.

List all clusters owned by the authenticated identity (summarized
format):

cm comet ll

List all clusters owned by the authenticated identity (detailed
list):

cm comet cluster

List a cluster by name (we use here vc2 as example):

cm comet cluster vc2

List all defined computesets:

cm comet computeset

List one computeset:

cm comet computeset 63

Power management of frontend node:

Power on the front end node of the specified cluster:

cm comet power on vc2

To power if off:

cm comet power off vc2

You can also reboot/reset/shutdown the fronend using the same
syntax, e.g., to reboot:

cm comet power reboot vc2

Power management of compute nodes:

Power on a set of compute nodes in cluster vc2:

cm comet power on vc2 vm-vc2-[0-3]

This will request the nodes for a default period of time - 2 hours.

To request for a longer time period, use –walltime parameter.
E.g., 100m (100 minutes), 6h (6 hours), 2d (2 days) , 1w (1 week):

cm comet power on vc2 vm-vc2-[0-3] --walltime=6h

The above will put the request under the one allocation associated with the cluster.
If your cluster have more than one allocations, use –allocation
parameter:

cm comet power on vc2 vm-vc2-[0-3] --allocation=YOUR_ALLOCATION

If you have more allocations, but does not specify via CLI, you will see a list of
allocations to choose from to use.

You can also power on N arbitrary nodes, if there is enough resource:

cm comet power on vc2 --count=4

The comet system will find 4 available nodes from the specified cluster and start them
as one computeset.

You can power off and back on individual nodes of an active
computeset. E.g.:

cm comet power off vc2 vm-vc2-[0,1]

and then:

cm comet power on vc2 vm-vc2-0

Or power off the whole computeset by specifying the computeset id:

cm comet power off vc2 123

or by specifying the hosts:

cm comet power off vc2 vm-vc2-[0-3]

Please note if you powered off all nodes from an active computeset, the computeset
itself will be removed as well (changed to ‘completed’ status)

You can also power on one single node as a computeset:

cm comet power on vc2 vm-vc2-[7]

or simply:

cm comet power on vc2 vm-vc2-7

Getting Console access

Get console of the frontend:

cm comet console vc2

Get console of a running compute node:

cm comet console vc2 vm-vc2-0

This will open a browser window using the system default browser
to display the console (in Mac OS X); or a firefox window (in Linux).
If no compatible browser found, it will print out a URL so you can
access it via other means.

System image management

Get the list of images that are available to you:

cm comet image list

Upload an image to the public shared folder:

cm comet image upload /path/to/your/image.iso

Or with a specified new image name:

cm comet image upload /path/to/your/image.iso --imagename=newimagename.iso

Attach an image to the frontend:

cm comet image attach newimagename.iso vc2

Or to a compute node:

cm comet image attach newimagename.iso vc2 vm-vc2-0

To detach the attached iso image from frontend node:

cm comet image detach vc2

Or from a compute node:

cm comet image detach vc2 vm-vc2-0

Image attaching/detaching also works on compute nodes in bulk:

cm comet image attach newimagename.iso vc2 vm-vc2-[0-4]

cm comet image detach vc2 vm-vc2-[0-4]

Please note image attaching/detaching will only take effect after you hard reboot
the node (power off and then power on).

Other commands:

You can also rename a compute node:

cm comet node rename vc2 vm-vc2-0 mynode0

How to get a virtual cluster?

	Obtain an allocation via XSEDE as documented at https://www.xsede.org/allocations
To get started quickly we recommend a trial allocation for comet as
discussed here: https://portal.xsede.org/allocations/announcements#trial

	Once you have aan allocation and added your virtuall cluster admins to
your allocation. Get in contact with XSEDE to identify the scope of your
project and allocation size (This may already be specified in the
allocation request).

At this time send e-mail to laszewski AT gmail DOT com and
kevinwangfg AT gmail DOT com

In future we will be using the XSEDE ticket system once it is set up
for us

	At this time the comet team will send you details about the name of your
virtual cluster, how many nodes you can use. Once you have this information
you can start a virtual cluster immediately.

	Please note that it will be up to you to provide an apropriate iso image.
A small number of sample images are provided and you can list tehm with

cm comet image list

	Next you need to attach an image to your compute nodes (we assume you
have 3 nodes called vm-vc2-0, vm-vc2-1, vm-vc2-2

cm image attach imagename.iso vc2 vm-vc2-[0-3]

Please note that the name of the cluster (vc2) will be different for you

	Now you can just power on and boot the node with:

cm comet power on vc2 vm-vc2-[0-3]

	To see the console of a node you can use for an individual node (here the

node 0):

cm comet console vc2 vm-vc2-0

Why are the names of the nodes so complicated?

And why do i also need to specify the name of the cluster? Can this not be
omitted?

Comet virtual cluster tools allow a user to manage multiple virtual clusters
at the same time and a node could be reassigned between virtual clusters.
This makes it necessary that you must specify the virtual cluster explicitly.
The names of the nodes are a default provided by comet and we expect that
for easier management you will at one point rename them while using the
comet rename command to a naming scheme that you desire.

For example assume my virtual cluster is called osg than you may want to
rename your nodes such as:

cm comet node rename osg vm-osg-0 osg-0
cm comet node rename osg vm-osg-1 osg-1
...

This wil than result in a cluster where the frontend name is osg (given to
you by the comet team), but you have renamed the nodes to osg-1, osg-2, ...

How do I get support?

At this time simply send mail to laszewski AT gmail DOT com and kevinwangfg AT gmail DOT com.
We will get back to you ASAP hopefully within one business day.

 Copyright 2015, Gregor von Laszewski.

 Reservation Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Reservation Command

Warning

This command is experimental and is not yet fully
integrated. It only stores reservations, but does not act
upon them.

One of the features of cloudmesh is to build a mesh of resources and
services. In some cases we which to reserve resources that allow
reservations. However we also may want to use a resource till a
particular time frame and release it. For this cases it is practical
to provide the concept of a reservation. A simple reservation is named
and contains a start and end point. We currently store named virtual
machines into a reservation for named clouds. Reservations are similar
to groups just that they have a time frame associated with them. A
timeless reservation is like a group.

The manual page of the key command can be found at: reservation

Adding a reservation

Please note that you have to escape the whitespaces with ‘\’ for commmand line arguments such as ‘–start’, ‘–end’.

$ cm reservation add --name=test3 --start='10/31/1988\ at\ 8:09\ pm' --end='10/21/2015\ at\ 9:00\ pm' --user=albert --project=cloudmesh --hosts=host001 --description=desc
Reservation test3 added successfully
info. OK.

List Reservation

$ cm reservation list
+----+-------+-----------------+-----------------+--------+-----------+---------+-------------+-------+
| id | name | start_time | end_time | user | project | hosts | description | cloud |
+----+-------+-----------------+-----------------+--------+-----------+---------+-------------+-------+
| 1 | test3 | 10-31-1988 20:9 | 10-21-2015 21:0 | albert | cloudmesh | host001 | desc | comet |
+----+-------+-----------------+-----------------+--------+-----------+---------+-------------+-------+

Update Reservation

Please note that you have to escape the whitespaces with ‘\’ for command line arguments such as ‘–start’, ‘–end’.

$ cm reservation update --name=test3 --project=cloudnauts
Reservation test3 updated successfully
info. OK.

Verify by listing:

$ cm reservation list
+----+-------+----------------+----------------+--------+------------+---------+-------------+-------+
| id | name | start_time | end_time | user | project | hosts | description | cloud |
+----+-------+----------------+----------------+--------+------------+---------+-------------+-------+
| 1 | test3 | 1-1-1901 19:30 | 12-31-2021 0:0 | albert | cloudnauts | host001 | desc | comet |
+----+-------+----------------+----------------+--------+------------+---------+-------------+-------+

Delete Reservation

$ cm reservation delete --name=test3
info. OK.

Verify by listing:

$ cm reservation list
None
info. OK.

 Copyright 2015, Gregor von Laszewski.

 Inventory Command

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	User Manual

Inventory Command

The manual page of the key command can be found at: Nova

Todo

reformat the inventory section to be a real manual.

Examples:

cm inventory add x[0-3] --service=openstack

 adds hosts x0, x1, x2, x3 and puts the string
 openstack into the service column

cm lists

 lists the repository

cm x[3-4] set temperature to 32

 sets for the resources x3, x4 the value of the
 temperature to 32

cm x[7-8] set ip 128.0.0.[0-1]

 sets the value of x7 to 128.0.0.0
 sets the value of x8 to 128.0.0.1

cm clone x[5-6] from x3

 clones the values for x5, x6 from x3

 Copyright 2015, Gregor von Laszewski.

 Commands

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Commands

banner

Command - banner:

Usage:
 banner [-c CHAR] [-n WIDTH] [-i INDENT] [-r COLOR] TEXT...

Arguments:
 TEXT... The text message from which to create the banner
 CHAR The character for the frame.
 WIDTH Width of the banner
 INDENT indentation of the banner
 COLOR the color

Options:
 -c CHAR The character for the frame. [default: #]
 -n WIDTH The width of the banner. [default: 70]
 -i INDENT The width of the banner. [default: 0]
 -r COLOR The color of the banner. [default: BLACK]

Prints a banner form a one line text message.

check

Command - check:

Usage:
 check --cloud=CLOUD
 check

 checks some elementary setting for cloudmesh

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name

Examples:
 cm check
 cm check --cloud=kilo

clear

Command - clear:

Usage:
 clear

Clears the screen.

cloud

Command - cloud:

Usage:
 cloud list [--cloud=CLOUD] [--format=FORMAT]
 cloud logon CLOUD
 cloud logout CLOUD
 cloud activate CLOUD
 cloud deactivate CLOUD
 cloud info CLOUD

managing the admins test test test test

Arguments:
 KEY the name of the admin
 VALUE the value to set the key to

Options:
 --cloud=CLOUD the name of the cloud
 --format=FORMAT the output format [default: table]

Description:
 Cloudmesh contains a cloudmesh.yaml file that contains
 templates for multiple clouds that you may or may not have
 access to. Hence it is useful to activate and deactivate clouds
 you like to use in other commands.

 To activate a cloud a user can simply use the activate
 command followed by the name of the cloud to be
 activated. To find out which clouds are available you can
 use the list command that will provide you with some
 basic information. As default it will print a table. Thus
 the commands cloud activate india
 cloud deactivate aws

 Will result in

 +----------------------+--------+-------------------+
 | Cloud name | Active | Type |
 +----------------------+--------+-------------------+
 | india | True | Openstack |
 +----------------------+--------+-------------------+
 | aws | False | AWS |
 +----------------------+--------+-------------------+

 To get ore information about the cloud you can use the command

 cloud info CLOUD

 It will call internally also the command uses in register

See also:
 register

cluster

Command - cluster:

Usage:
 cluster list [--format=FORMAT]
 cluster list NAME
 [--format=FORMAT]
 [--column=COLUMN]
 [--detail]
 cluster create NAME
 [--count=COUNT]
 [--login=USERNAME]
 [--cloud=CLOUD]
 [--image=IMAGE]
 [--flavor=FLAVOR]
 [--add]
 cluster delete NAME

Description:
 with the help of the cluster command you can create a number
 of virtual machines that are integrated in a named virtual cluster.
 You will be able to login between the nodes of the virtual cluster
 while using public keys.

Examples:
 cluster list
 list the clusters

 cluster create NAME --count=COUNT --login=USERNAME [options...]
 Start a cluster of VMs, and each of them can log into each other.
 CAUTION: you should specify defaults before using this command:
 1. select cloud to work on, e.g. cloud select kilo
 default cloud=kilo
 2. test if you can create a single VM on the cloud to see if
 everything is set up
 3. set the default key to start VMs, e.g. key default [USERNAME-key]
 5. set image of VMs, e.g. default image
 6. set flavor of VMs, e.g. default flavor
 7. Make sure to use a new unused group name

 cluster list NAME
 show the detailed information about the cluster VMs

 cluster delete NAME
 remove the cluster and its VMs

Arguments:
 NAME cluster name or group name

Options:
 --count=COUNT give the number of VMs to add into the cluster
 --login=USERNAME give a login name for the VMs, e.g. ubuntu
 --cloud=CLOUD give a cloud to work on
 --flavor=FLAVOR give the name of the flavor or flavor id
 --image=IMAGE give the name of the image or image id
 --add if a group exists and there are VMs in it
 additional vms will be added to this cluster and the
 keys will be added to each other so one can login between
 them
 FORMAT output format: table, json, csv
 COLUMN customize what information to display, for example:
 --column=status,addresses prints the columns status
 and addresses
 --detail for table print format, a brief version
 is used as default, use this flag to print
 detailed table

color

Command - color:

Usage:
 color FLAG

Arguments:

 FLAG color mode flag ON/OFF

Description:

 Global switch for the console color mode.
 One can switch the color mode on/off with
 cm color ON
 cm color OFF

 By default, the color mode is ON

Examples:
 color ON
 color OFF

comet

Command - comet:

Usage:
 comet ll [CLUSTERID] [--format=FORMAT]
 comet cluster [CLUSTERID]
 [--format=FORMAT]
 comet computeset [COMPUTESETID]
 comet power on CLUSTERID [--count=NUMNODES] [NODESPARAM]
 [--allocation=ALLOCATION]
 [--walltime=WALLTIME]
 comet power (off|reboot|reset|shutdown) CLUSTERID [NODESPARAM]
 comet console CLUSTERID [COMPUTENODEID]
 comet image list
 comet image upload [--imagename=IMAGENAME] PATHIMAGEFILE
 comet image attach IMAGENAME CLUSTERID [COMPUTENODEIDS]
 comet image detach CLUSTERID [COMPUTENODEIDS]
 comet node rename CLUSTERID OLDNAME NEWNAME

Options:
 --format=FORMAT Format is either table, json, yaml,
 csv, rest
 [default: table]
 --count=NUMNODES Number of nodes to be powered on.
 When this option is used, the comet system
 will find a NUMNODES number of arbitrary nodes
 that are available to boot as a computeset
 --allocation=ALLOCATION Allocation to charge when power on
 node(s)
 --walltime=WALLTIME Walltime requested for the node(s).
 Walltime could be an integer value followed
 by a unit (m, h, d, w, for minute, hour, day,
 and week, respectively). E.g., 3h, 2d
 --imagename=IMAGENAME Name of the image after being stored remotely.
 If not specified, use the original filename

Arguments:
 CLUSTERID The assigned name of a cluster, e.g. vc1
 COMPUTESETID An integer identifier assigned to a computeset
 NODESPARAM Specifying the node/nodes/computeset to act on.
 In case of integer, will be intepreted as a computesetid;
 in case of a hostlist format, e.g., vm-vc1-[0-3], a group
 of nodes; or a single host is also acceptable,
 e.g., vm-vc1-0
 If not provided, the requested action will be taken
 on the frontend node of the specified cluster
 COMPUTENODEID A compute node name, e.g., vm-vc1-0
 If not provided, the requested action will be taken
 on the frontend node of the specified cluster
 COMPUTENODEIDS A set of compute node names in hostlist format,
 e.g., vm-vc1-[0-3]
 One single node is also acceptable: vm-vc1-0
 If not provided, the requested action will be taken
 on the frontend node of the specified cluster
 IMAGENAME Name of an image at remote server
 PATHIMAGEFILE The full path to the image file to be uploaded

context

Command - context:

Usage:
 context

Description:
 Lists the context variables and their values

debug

Command - debug:

Usage:
 debug on
 debug off
 debug list

 switches on and off the debug messages

default

Command - default:

 Usage:
 default
 default list [--cloud=CLOUD] [--format=FORMAT] [--all]
 default delete KEY [--cloud=CLOUD]
 default KEY [--cloud=CLOUD]
 default KEY=VALUE [--cloud=CLOUD]

 Arguments:
 KEY the name of the default
 VALUE the value to set the key to

 Options:
 --cloud=CLOUD the name of the cloud
 --format=FORMAT the output format. Values include
 table, json, csv, yaml. [default: table]
 --all lists all the default values

Description:
 Cloudmesh has the ability to manage easily multiple
 clouds. One of the key concepts to manage multiple clouds
 is to use defaults for the cloud, the images, flavors,
 and other values. The default command is used to manage
 such default values. These defaults are used in other commands
 if they are not overwritten by a command parameter.

 The current default values can by listed with

 default list --all

 Via the default command you can list, set, get and delete
 default values. You can list the defaults with

 default list

 A default can be set with

 default KEY=VALUE

 To look up a default value you can say

 default KEY

 A default can be deleted with

 default delete KEY

 To be specific to a cloud you can specify the name of the
 cloud with the --cloud=CLOUD option. The list command can
 print the information in various formats iv specified.

Examples:
 default
 lists the default for the current default cloud

 default list --all
 lists all default values

 default list --cloud=kilo
 lists the defaults for the cloud with the name kilo

 default image=xyz
 sets the default image for the default cloud to xyz

 default image=abc --cloud=kilo
 sets the default image for the cloud kilo to xyz

 default image
 list the default image of the default cloud

 default image --cloud=kilo
 list the default image of the cloud kilo

 default delete image
 deletes the value for the default image in the
 default cloud

 default delete image --cloud=kilo
 deletes the value for the default image in the
 cloud kilo

echo

Command - echo:

Usage:
 echo [-r COLOR] TEXT

Arguments:
 TEXT The text message to print
 COLOR the color

Options:
 -r COLOR The color of the text. [default: BLACK]

Prints a text in the given color

EOF

Command - EOF:

Usage:
 EOF

Description:
 Command to the shell to terminate reading a script.

exec

Command - exec:

Usage:
 exec FILENAME

executes the commands in the file. See also the script command.

Arguments:
 FILENAME The name of the file

flavor

Command - flavor:

Usage:
 flavor refresh [--cloud=CLOUD] [-v]
 flavor list [ID] [--cloud=CLOUD] [--format=FORMAT] [--refresh] [-v]

 This lists out the flavors present for a cloud

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name
 --refresh refreshes the data before displaying it
 from the cloud

Examples:
 cm flavor refresh
 cm flavor list
 cm flavor list --format=csv
 cm flavor show 58c9552c-8d93-42c0-9dea-5f48d90a3188 --refresh

group

Command - group:

Usage:
 group add NAME [--type=TYPE] [--category=CLOUD] --id=IDs
 group list [--category=CLOUD] [--format=FORMAT] [NAME]
 group delete NAME [--category=CLOUD]
 group remove [--category=CLOUD] --name=NAME --id=ID
 group copy FROM TO
 group merge GROUPA GROUPB MERGEDGROUP

manage the groups

Arguments:

 NAME name of a group
 FROM name of a group
 TO name of a group
 GROUPA name of a group
 GROUPB name of a group
 MERGEDGROUP name of a group

Options:
 --category=CLOUD the name of the category
 --format=FORMAT the output format
 --type=TYPE the resource type
 --name=NAME the name of the group
 --id=IDS the ID(s) to add to the group

Description:

 Todo: design parameters that are useful and match
 description
 Todo: discuss and propose command

 cloudmesh can manage groups of resources and category related
 objects. As it would be cumbersome to for example delete
 many virtual machines or delete VMs that are in the same
 group, but are running in different clouds.

 Hence it is possible to add a virtual machine to a
 specific group. The group name to be added to can be set
 as a default. This way all subsequent commands use this
 default group. It can also be set via a command parameter.
 Another convenience function is that the group command can
 use the last used virtual machine. If a vm is started it
 will be automatically added to the default group if it is set.

 The delete command has an optional category parameter so that
 deletion of vms of a partial group by cloud can be
 achieved.

 If finer grained deletion is needed, it can be achieved
 with the delete command that supports deletion by name

 It is also possible to remove a VM from the group using the
 remove command, by supplying the ID

Example:
 default group mygroup

 group add --type=vm --id=albert-[001-003]
 adds the vms with teh given name using the Parameter
 see base

 group add --type=vm
 adds the last vm to the group

 group delete --name=mygroup
 deletes all objects in the group

h

Command - h:

Usage:
 history
 history list
 history last
 history ID

help

Command - help:

Usage:
 help
 help COMMAND

Description:
 List available commands with "help" or detailed help with
 "help COMMAND".

history

Command - history:

Usage:
 history
 history list
 history last
 history ID

hpc

Command - hpc:

Usage:
 hpc queue [--job=NAME][--cluster=CLUSTER][--format=FORMAT]
 hpc info [--cluster=CLUSTER][--format=FORMAT]
 hpc run list [ID] [--cluster=CLUSTER]
 hpc run output [ID] [--cluster=CLUSTER]
 hpc run rm [ID] [--cluster=CLUSTER]
 hpc run SCRIPT [--queue=QUEUE] [--t=TIME] [--N=nodes] [--name=NAME] [--cluster=CLUSTER][--dir=DIR][--group=GROUP][--format=FORMAT]
 hpc delete --job=NAME [--cluster=CLUSTER][--group=GROUP]
 hpc delete all [--cluster=CLUSTER][--group=GROUP][--format=FORMAT]
 hpc status [--job=name] [--cluster=CLUSTER] [--group=GROUP]
 hpc test --cluster=CLUSTER [--time=SECONDS]

Options:
 --format=FORMAT the output format [default: table]

Examples:

 Special notes

 if the group is specified only jobs from that group are
 considered. Otherwise the default group is used. If the
 group is set to None, all groups are used.

 cm hpc queue
 lists the details of the queues of the hpc cluster

 cm hpc queue --job=NAME
 lists the details of the job in the queue of the hpc cluster

 cm hpc info
 lists the details of the hpc cluster

 cm hpc run SCRIPT
 submits the script to the cluster. The script will be
 copied prior to execution into the home directory on the
 remote machine. If a DIR is specified it will be copied
 into that dir.
 The name of the script is either specified in the script
 itself, or if not the default naming scheme of
 cloudmesh is used using the same index incremented name
 as in vms fro clouds: cloudmes husername-index

 cm hpc delete all
 kills all jobs on the default hpc group

 cm hpc delete --job=NAME
 kills a job with a given name or job id

 cm default cluster=NAME
 sets the default hpc cluster

 cm hpc status
 returns the status of all jobs

 cm hpc status job=ID
 returns the status of the named job

 cm hpc test --cluster=CLUSTER --time=SECONDS
 submits a simple test job to the named cluster and returns
 if the job could be successfully executed. This is a
 blocking call and may take a long time to complete
 dependent on if the queuing system of that cluster is
 busy. It will only use one node/core and print the message

 #CLOUDMESH: Test ok

 in that is being looked for to identify if the test is
 successful. If time is used, the job is terminated
 after the time is elapsed.

Examples:
 cm hpc queue
 cm hpc queue --job=xxx
 cm hpc info
 cm hpc delete --job=6
 cm hpc delete all
 cm hpc status
 cm hpc status --job=6
 cm hpc run uname
 cm hpc run ~/test.sh --cluster=india

image

Command - image:

Usage:
 image refresh [--cloud=CLOUD]
 image list [ID] [--cloud=CLOUD] [--format=FORMAT] [--refresh]

 This lists out the images present for a cloud

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name
 --refresh live data taken from the cloud

Examples:
 cm image refresh
 cm image list
 cm image list --format=csv
 cm image list 58c9552c-8d93-42c0-9dea-5f48d90a3188 --refresh

inventory

Command - inventory:

Usage:
 inventory add NAMES [--label=LABEL]
 [--service=SERVICES]
 [--project=PROJECT]
 [--owners=OWNERS]
 [--comment=COMMENT]
 [--cluster=CLUSTER]
 [--ip=IP]
 inventory set NAMES for ATTRIBUTE to VALUES
 inventory delete NAMES
 inventory clone NAMES from SOURCE
 inventory list [NAMES] [--format=FORMAT] [--columns=COLUMNS]
 inventory info

Arguments:

 NAMES Name of the resources (example i[10-20])

 FORMAT The format of the output is either txt,
 yaml, dict, table [default: table].

 OWNERS a comma separated list of owners for this resource

 LABEL a unique label for this resource

 SERVICE a string that identifies the service

 PROJECT a string that identifies the project

 SOURCE a single host name to clone from

 COMMENT a comment

Options:

 -v verbose mode

Description:

 add -- adds a resource to the resource inventory

 list -- lists the resources in the given format

 delete -- deletes objects from the table

 clone -- copies the content of an existing object
 and creates new once with it

 set -- sets for the specified objects the attribute
 to the given value or values. If multiple values
 are used the values are assigned to the and
 objects in order. See examples

 map -- allows to set attibutes on a set of objects
 with a set of values

Examples:

 cm inventory add x[0-3] --service=openstack

 adds hosts x0, x1, x2, x3 and puts the string
 openstack into the service column

 cm lists

 lists the repository

 cm x[3-4] set temperature to 32

 sets for the resources x3, x4 the value of the
 temperature to 32

 cm x[7-8] set ip 128.0.0.[0-1]

 sets the value of x7 to 128.0.0.0
 sets the value of x8 to 128.0.0.1

 cm clone x[5-6] from x3

 clones the values for x5, x6 from x3

key

Command - key:

Usage:
 key -h | --help
 key list [--source=db] [--format=FORMAT]
 key list --source=cloudmesh [--format=FORMAT]
 key list --source=ssh [--dir=DIR] [--format=FORMAT]
 key load [--format=FORMAT]
 key list --source=git [--format=FORMAT] [--username=USERNAME]
 key add --git [--name=KEYNAME] FILENAME
 key add --ssh [--name=KEYNAME]
 key add [--name=KEYNAME] FILENAME
 key get NAME
 key default [KEYNAME | --select]
 key delete (KEYNAME | --select | --all) [--force]
 key upload [KEYNAME]
 [--cloud=CLOUD]
 [--name=NAME_ON_CLOUD]
 key map [--cloud=CLOUD]

Manages the keys

Arguments:

 SOURCE db, ssh, all
 KEYNAME The name of a key. For key upload it defaults to the default key name.
 FORMAT The format of the output (table, json, yaml)
 FILENAME The filename with full path in which the key
 is located
 NAME_ON_CLOUD Typically the name of the keypair on the cloud.

Options:

 --dir=DIR the directory with keys [default: ~/.ssh]
 --format=FORMAT the format of the output [default: table]
 --source=SOURCE the source for the keys [default: db]
 --username=USERNAME the source for the keys [default: none]
 --name=KEYNAME The name of a key
 --all delete all keys
 --force delete the key form the cloud
 --name_on_cloud=NAME_ON_CLOUD Typically the name of the keypair on the cloud.

Description:

key list --source=git [--username=USERNAME]

 lists all keys in git for the specified user. If the
 name is not specified it is read from cloudmesh.yaml

key list --source=ssh [--dir=DIR] [--format=FORMAT]

 lists all keys in the directory. If the directory is not
 specified the default will be ~/.ssh

key list --source=cloudmesh [--dir=DIR] [--format=FORMAT]

 lists all keys in cloudmesh.yaml file in the specified directory.
 dir is by default ~/.cloudmesh

key list [--format=FORMAT]

 list the keys in teh giiven format: json, yaml,
 table. table is default

key list

 Prints list of keys. NAME of the key can be specified

key add [--name=keyname] FILENAME

 adds the key specifid by the filename to the key
 database

key get NAME

 Retrieves the key indicated by the NAME parameter from database
 and prints its fingerprint.

key default [NAME]

 Used to set a key from the key-list as the default key
 if NAME is given. Otherwise print the current default
 key

key delete NAME

 deletes a key. In yaml mode it can delete only key that
 are not saved in the database

key rename NAME NEW

 renames the key from NAME to NEW.

launcher

Command - launcher:

 Usage:
 launcher list [--cloud=CLOUD] [--format=FORMAT] [--all]
 launcher delete KEY [--cloud=CLOUD]
 launcher run
 launcher resume
 launcher suspend
 launcher details
 launcher clear
 launcher refresh

 Arguments:

 KEY the name of the launcher

 Options:

 --cloud=CLOUD the name of the cloud
 --format=FORMAT the output format [launcher: table]
 --all lists all the launcher values

Description:

Launcher is a command line tool to test the portal launch functionalities through command

The current launcher values can by listed with --all option:(
if you have a launcher cloud specified. You can also add a
cloud parameter to apply the command to a specific cloud)

 launcher list

 A launcher can be deleted with

 launcher delete KEY

Examples:
 launcher list --all
 launcher list --cloud=general
 launcher delete <KEY>

limits

Command - limits:

Usage:
 limits list [--cloud=CLOUD] [--tenant=TENANT] [--format=FORMAT]

 Current list data with limits on a selected project/tenant.
 The --tenant option can be used by admin only

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name
 --tenant=TENANT the tenant name

Examples:
 cm limits list
 cm limits list --cloud=kilo --format=csv

list

Command - list:

Usage:
 list [--cloud=CLOUD] [--format=FORMAT] [--user=USER] [--tenant=TENANT] default
 list [--cloud=CLOUD] [--format=FORMAT] [--user=USER] [--tenant=TENANT] vm
 list [--cloud=CLOUD] [--format=FORMAT] [--user=USER] [--tenant=TENANT] flavor
 list [--cloud=CLOUD] [--format=FORMAT] [--user=USER] [--tenant=TENANT] image

List the items stored in the database

Options:
 --cloud=CLOUD the name of the cloud
 --format=FORMAT the output format
 --tenant=TENANT Name of the tenant, e.g. fg82.

Description:
 List command prints the values stored in the database
 for [default/vm/flavor/image].
 Result can be filtered based on the cloud, user & tenant arguments.
 If these arguments are not specified, it reads the default

Examples:
 $ list --cloud india default
 $ list --cloud india --format table flavor
 $ list --cloud india --user albert --tenant fg82 flavor

man

Command - man:

Usage:
 man COMMAND
 man [--noheader]

Options:
 --norule no rst header

Arguments:
 COMMAND the command to be printed

Description:
 man
 Prints out the help pages

 man COMMAND
 Prints out the help page for a specific command

network

Command - network:

Usage:
 network get fixed [ip] [--cloud=CLOUD] FIXED_IP
 network get floating [ip] [--cloud=CLOUD] FLOATING_IP_ID
 network reserve fixed [ip] [--cloud=CLOUD] FIXED_IP
 network unreserve fixed [ip] [--cloud=CLOUD] FIXED_IP
 network associate floating [ip] [--cloud=CLOUD] [--group=GROUP] [--instance=INS_ID_OR_NAME] [FLOATING_IP]
 network disassociate floating [ip] [--cloud=CLOUD] [--group=GROUP] [--instance=INS_ID_OR_NAME] [FLOATING_IP]
 network create floating [ip] [--cloud=CLOUD] [--pool=FLOATING_IP_POOL]
 network delete floating [ip] [--cloud=CLOUD] FLOATING_IP...
 network list floating pool [--cloud=CLOUD]
 network list floating [ip] [--cloud=CLOUD] [--instance=INS_ID_OR_NAME] [IP_OR_ID]
 network create cluster --group=demo_group
 network -h | --help

Options:
 -h help message
 --cloud=CLOUD Name of the IaaS cloud e.g. india_openstack_grizzly.
 --group=GROUP Name of the group in Cloudmesh
 --pool=FLOATING_IP_POOL Name of Floating IP Pool
 --instance=INS_ID_OR_NAME ID or Name of the vm instance

Arguments:
 IP_OR_ID IP Address or ID of IP Address
 FIXED_IP Fixed IP Address, e.g. 10.1.5.2
 FLOATING_IP Floating IP Address, e.g. 192.1.66.8
 FLOATING_IP_ID ID associated with Floating IP, e.g. 185c5195-e824-4e7b-8581-703abec4bc01

Examples:
 network get fixed ip --cloud=india 10.1.2.5
 network get fixed --cloud=india 10.1.2.5
 network get floating ip --cloud=india 185c5195-e824-4e7b-8581-703abec4bc01
 network get floating --cloud=india 185c5195-e824-4e7b-8581-703abec4bc01
 network reserve fixed ip --cloud=india 10.1.2.5
 network reserve fixed --cloud=india 10.1.2.5
 network unreserve fixed ip --cloud=india 10.1.2.5
 network unreserve fixed --cloud=india 10.1.2.5
 network associate floating ip --cloud=india --instance=albert-001 192.1.66.8
 network associate floating --cloud=india --instance=albert-001
 network associate floating --cloud=india --group=albert_group
 network disassociate floating ip --cloud=india --instance=albert-001 192.1.66.8
 network disassociate floating --cloud=india --instance=albert-001 192.1.66.8
 network create floating ip --cloud=india --pool=albert-f01
 network create floating --cloud=india --pool=albert-f01
 network delete floating ip --cloud=india 192.1.66.8 192.1.66.9
 network delete floating --cloud=india 192.1.66.8 192.1.66.9
 network list floating ip --cloud=india
 network list floating --cloud=india
 network list floating --cloud=india 192.1.66.8
 network list floating --cloud=india --instance=323c5195-7yy34-4e7b-8581-703abec4b
 network list floating pool --cloud=india
 network create cluster --group=demo_group

nova

Command - nova:

Usage:
 nova set CLOUD
 nova info [CLOUD] [--password]
 nova help
 nova [--group=GROUP] ARGUMENTS...

A simple wrapper for the openstack nova command

Arguments:
 GROUP The group to add vms to
 ARGUMENTS The arguments passed to nova
 help Prints the nova manual
 set reads the information from the current cloud
 and updates the environment variables if
 the cloud is an openstack cloud
 info the environment values for OS

Options:
 --group=GROUP Add VM to GROUP group
 --password Prints the password
 -v verbose mode

open

Command - open:

Usage:
 open FILENAME

ARGUMENTS:
 FILENAME the file to open in the cwd if . is
 specified. If file in in cwd
 you must specify it with ./FILENAME

Opens the given URL in a browser window.

pause

Command - pause:

Usage:
 pause [MESSAGE]

Displays the specified text then waits for the user to press RETURN.

Arguments:
 MESSAGE message to be displayed

portal

Command - portal:

Usage:
 portal start
 portal stop

Examples:
 portal start
 starts the portal and opens the default web page

 portal stop
 stops the portal

py

Command - py:

Usage:
 py
 py COMMAND

Arguments:
 COMMAND the command to be executed

Description:

 The command without a parameter will be executed and the
 interactive python mode is entered. The python mode can be
 ended with ``Ctrl-D`` (Unix) / ``Ctrl-Z`` (Windows),
 ``quit()``,'`exit()``. Non-python commands can be issued with
 ``cmd("your command")``. If the python code is located in an
 external file it can be run with ``run("filename.py")``.

 In case a COMMAND is provided it will be executed and the
 python interpreter will return to the command shell.

 This code is copied from Cmd2.

q

Command - q:

Usage:
 quit

Description:
 Action to be performed whne quit is typed

quit

Command - quit:

Usage:
 quit

Description:
 Action to be performed whne quit is typed

quota

Command - quota:

Usage:
 quota list [--cloud=CLOUD] [--tenant=TENANT] [--format=FORMAT]

 Prints quota limit on a current project/tenant

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name
 --tenant=TENANT the tenant id

Examples:
 cm quota list
 cm quota list --cloud=india --format=csv

refresh

Command - refresh:

Usage:
 refresh on
 refresh off
 refresh list

 switches on and off the refresh for clouds

register

Command - register:

Usage:
 register info
 register new
 register clean [--force]
 register list ssh [--format=FORMAT]
 register list [--yaml=FILENAME][--info][--format=FORMAT]
 register cat [--yaml=FILENAME]
 register edit [--yaml=FILENAME]
 register export HOST [--password] [--format=FORMAT]
 register source HOST
 register merge FILEPATH
 register form [--yaml=FILENAME]
 register check [--yaml=FILENAME]
 register test [--yaml=FILENAME]
 register json HOST
 register remote [CLOUD] [--force]
 register env [--provider=PROVIDER]
 register profile --username=[USERNAME]
 register CLOUD [--force]
 register CLOUD [--dir=DIR]

managing the registered clouds in the cloudmesh.yaml file.
It looks for it in the current directory, and than in
~/.cloudmesh. If the file with the cloudmesh.yaml name is
there it will use it. If neither location has one a new
file will be created in ~/.cloudmesh/cloudmesh.yaml. Some
defaults will be provided. However you will still need to
fill it out with valid entries.

Arguments:

 HOST the host name
 USER the user name
 FILEPATH the path of the file
 CLOUD the cloud name
 PROVIDER the provider or type of cloud [Default: openstack]
 USERNAME Username that would be registered in yaml. Defaults to OS username.

Options:

 --provider=PROVIDER Provider to be used for cloud. Values are:
 openstack, azure, ec2.
 --version=VERSION Version of the openstack cloud.
 --openrc=OPENRC The location of the openrc file
 --password Prints the password
 --force ignore interactive questions and execute
 the action

Description:

 register info
 It looks out for the cloudmesh.yaml file in the current
 directory, and then in ~/.cloudmesh

 register list [--yaml=FILENAME] [--name] [--info]
 lists the clouds specified in the cloudmesh.yaml file. If
 info is specified it also prints the location of the yaml
 file.

 register list ssh
 lists hosts from ~/.ssh/config

 register cat [--yaml=FILENAME]
 outputs the cloudmesh.yaml file

 register edit [--yaml=FILENAME]
 edits the cloudmesh.yaml file

 register export HOST [--format=FORMAT]

 prints the contents of an openrc.sh file based on the
 information found in the cloudmesh.yaml file.

 register remote CLOUD [--force]

 reads the Openstack OPENRC file from a remote host that
 is described in cloudmesh.yaml file. We assume that
 the file has already a template for this host. If
 not it can be created from other examples before
 you run this command.

 It uses the OS_OPENRC variable to locate the file and
 copy it onto your computer.

 register merge FILENAME
 Replaces the TBD in cloudmesh.yaml with the contents
 present in the named file

 register form [--yaml=FILENAME]
 interactively fills out the form wherever we find TBD.

 register check [--yaml=FILENAME]
 checks the yaml file for completness

 register test [--yaml=FILENAME]
 checks the yaml file and executes tests to check if
 we can use the cloud. TODO: maybe this should be in
 a test command

 register json host
 displays the host details in json format

 register remote CLOUD
 registers a remote cloud and copies the openrc file
 specified in the credentials of the cloudmesh.yaml

 register CLOUD --dir
 Copies the entire directory from the cloud and puts it in
 ~/.cloudmesh/clouds/host
 For kilo, The directory would be copied to
 ~/.cloudmesh/clouds/kilo

 register env [--provider=PROVIDER] [HOSTNAME]
 Reads env OS_* variables and registers a new cloud in yaml,
 interactively. Default PROVIDER is openstack and HOSTNAME
 is localhost.

 register username [USERNAME]
 Sets the username in yaml with the value provided.

reservation

Command - reservation:

Usage:
 reservation info --user=USER --project=PROJECT
 reservation list [--name=NAME]
 [--user=USER]
 [--project=PROJECT]
 [--hosts=HOSTS]
 [--start=TIME_START]
 [--end=TIME_END]
 [--format=FORMAT]
 reservation delete [all]
 [--user=USER]
 [--project=PROJECT]
 [--name=NAME]
 [--start=TIME_START]
 [--end=TIME_END]
 [--hosts=HOSTS]
 reservation delete --file=FILE
 reservation update --name=NAME
 [--start=TIME_START]
 [--end=TIME_END]
 [--user=USER]
 [--project=PROJECT]
 [--hosts=HOSTS]
 [--description=DESCRIPTION]
 reservation add --name=NAME
 [--start=TIME_START]
 [--end=TIME_END]
 [--user=USER]
 [--project=PROJECT]
 [--hosts=HOSTS]
 [--description=DESCRIPTION]
 reservation add --file=FILE

Arguments:

 NAME Name of the reservation
 USER Registration will be done for this user
 PROJECT Project to be used
 HOSTS Hosts to reserve
 TIME_START Start time of reservation
 TIME_END End time of reservation
 FORMAT Format of output
 DESCRIPTION Description for reservation
 FILE File that contains reservation data to be added/ deleted

Options:

 --name=NAME Names of the reservation
 --user=USER user name
 --project=PROJECT project id
 --start=TIME_START Start time of the reservation, in
 MM/DD/YYYY at hh:mm aa format. (default value: 01/01/1901 at 12:00 am])
 --end=TIME_END End time of the reservation, in
 MM/DD/YYYY at hh:mm aa format. (default value: 12/31/2100 at 11:59 pm])
 --host=HOSTS host name
 --description=DESCRIPTION description summary of the reservation
 --file=FILE Adding multiple reservations from one file
 --format=FORMAT Format is either table, json, yaml or csv
 [default: table]

Description:

 reservation info
 lists the resources that support reservation for
 a given user or project.

reset

Command - reset:

 Usage:
 reset

Description:

 DANGER: This method erases the database.

Examples:
 clean

rsync

Command - rsync:

Usage:
 rsync ARGUMENTS...

A simple wrapper for rsync command

Arguments:
 ARGUMENTS The arguments passed to nova

Options:
 -v verbose mode

secgroup

Command - secgroup:

Usage:
 secgroup list [--cloud=CLOUD] [--tenant=TENANT]
 secgroup create [--cloud=CLOUD] [--tenant=TENANT] LABEL
 secgroup delete [--cloud=CLOUD] [--tenant=TENANT] LABEL
 secgroup rules-list [--cloud=CLOUD] [--tenant=TENANT] LABEL
 secgroup rules-add [--cloud=CLOUD] [--tenant=TENANT] LABEL FROMPORT TOPORT PROTOCOL CIDR
 secgroup rules-delete [--cloud=CLOUD] [--tenant=TENANT] LABEL FROMPORT TOPORT PROTOCOL CIDR
 secgroup refresh [--cloud=CLOUD]
 secgroup -h | --help
 secgroup --version

Options:
 -h help message
 --cloud=CLOUD Name of the IaaS cloud e.g. india_openstack_grizzly.
 --tenant=TENANT Name of the tenant, e.g. fg82.

Arguments:
 LABEL The label/name of the security group
 FROMPORT Staring port of the rule, e.g. 22
 TOPORT Ending port of the rule, e.g. 22
 PROTOCOL Protocol applied, e.g. TCP,UDP,ICMP
 CIDR IP address range in CIDR format, e.g., 129.79.0.0/16

Description:
 security_group command provides list/add/delete
 security_groups for a tenant of a cloud, as well as
 list/add/delete of rules for a security group from a
 specified cloud and tenant.

Examples:
 secgroup list --cloud india --tenant fg82
 secgroup rules-list --cloud india --tenant fg82 default
 secgroup create --cloud india --tenant fg82 webservice
 secgroup rules-add --cloud india --tenant fg82 webservice 8080 8088 TCP "129.79.0.0/16"

select

Command - select:

Usage:
 select image [CLOUD] [--refresh]
 select flavor [CLOUD] [--refresh]
 select cloud [CLOUD]
 select key [CLOUD]

selects interactively the default values

Arguments:

 CLOUD the name of the cloud

Options:

 --refresh refreshes the data before displaying it
 from the cloud

server

Command - server:

Usage:
 server

Options:
 -h --help
 -v verbose mode

Description:
 Starts up a REST service and a WEB GUI so one can browse the data in an
 existing cloudmesh database.

 The location of the database is supposed to be in

 ~/.cloud,esh/cloudmesh.db

shell

Command - shell:

Usage:
 shell ARGUMENTS...

Description:
 Executes a shell command

shell_exec

Command - shell_exec:

Command documentation shell_exec missing, help_shell_exec

ssh

Command - ssh:

Usage:
 ssh table
 ssh list [--format=FORMAT]
 ssh cat
 ssh register NAME PARAMETERS
 ssh ARGUMENTS

conducts a ssh login on a machine while using a set of
registered machines specified in ~/.ssh/config

Arguments:

 NAME Name or ip of the machine to log in
 list Lists the machines that are registered and
 the commands to login to them
 PARAMETERS Register te resource and add the given
 parameters to the ssh config file. if the
 resoource exists, it will be overwritten. The
 information will be written in /.ssh/config

Options:

 -v verbose mode
 --format=FORMAT the format in which this list is given
 formats incluse table, json, yaml, dict
 [default: table]

 --user=USER overwrites the username that is
 specified in ~/.ssh/config

 --key=KEY The keyname as defined in the key list
 or a location that contains a pblic key

Description:

 ssh list
 lists the hostsnames that are present in the
 ~/.ssh/config file

 ssh cat
 prints the ~/.ssh/config file

 ssh table
 prints contents of the ~/.ssh/config file in table format

 ssh register NAME PARAMETERS
 registers a host i ~/.ssh/config file
 Parameters are attribute=value pairs
 Note: Note yet implemented

 ssh ARGUMENTS
 executes the ssh command with the given arguments
 Example:
 ssh myhost

 conducts an ssh login to myhost if it is defined in
 ~/.ssh/config file

submit

Command - submit:

Usage:
 submit ARGUMENTS...

We do not yet know what this command will do ;-)

Arguments:
 ARGUMENTS The arguments passed to nova

Options:
 -v verbose mode

sync

Command - sync:

Usage:
 sync put [--cloud=CLOUD] LOCALDIR [REMOTEDIR]
 sync get [--cloud=CLOUD] REMOTEDIR LOCALDIR

A simple wrapper for the openstack nova command

Arguments:
 LOCALDIR A directory on local machine
 REMOTEDIR A directory on remote machine

Options:
 --cloud=CLOUD Sync with cloud

timer

Command - timer:

Usage:
 timer on
 timer off
 timer list [NAME]
 timer start NAME
 timer stop NAME
 timer resume NAME
 timer reset [NAME]

Description:

 timer on | off
 switches timers on and off not yet implemented.
 If the timer is on each command will be timed and its
 time is printed after the command. Please note that
 background command times are not added.

 timer list
 list all timers

 timer start NAME
 starts the timer with the name. A start resets the timer to 0.

 timer stop NAME
 stops the timer

 timer resume NAME
 resumes the timer

 timer reset NAME
 resets the named timer to 0. If no name is specified all
 timers are reset

usage

Command - usage:

Usage:
 usage list [--cloud=CLOUD] [--start=START] [--end=END] [--tenant=TENANT] [--format=FORMAT]

 Show usage data.

Options:
 --format=FORMAT the output format [default: table]
 --cloud=CLOUD the cloud name
 --tenant=TENANT the tenant name
 --start=START Usage range start date ex 2012-01-20, default is: 4 weeks ago
 --end=END Usage range end date, ex 2012-01-20, default is: tomorrow

Examples:
 cm usage list

var

Command - var:

Usage:
 var list
 var delete NAMES
 var NAME=VALUE
 var NAME

Arguments:
 NAME Name of the variable
 NAMES Names of the variable separated by spaces
 VALUE VALUE to be assigned

special vars date and time are defined

verbose

Command - verbose:

Usage:
 verbose (True | False)
 verbose

NOTE: NOT YET IMPLEMENTED.
If it sets to True, a command will be printed before execution.
In the interactive mode, you may want to set it to False.
When you use scripts, we recommend to set it to True.

The default is set to False

If verbose is specified without parameter the flag is
toggled.

version

Command - version:

Usage:
 version [--format=FORMAT] [--check=CHECK]

Options:
 --format=FORMAT the format to print the versions in [default: table]
 --check=CHECK boolean tp conduct an additional check [default: True]

Description:
 Prints out the version number

vm

Command - vm:

Usage:
 vm default [--cloud=CLOUD][--format=FORMAT]
 vm refresh [--cloud=CLOUD]
 vm boot [--name=NAME]
 [--cloud=CLOUD]
 [--image=IMAGE_OR_ID]
 [--flavor=FLAVOR_OR_ID]
 [--group=GROUP]
 [--secgroup=SECGROUP]
 [--key=KEY]
 [--dryrun]
 vm start [NAME]...
 [--group=GROUP]
 [--cloud=CLOUD]
 [--force]
 vm stop [NAME]...
 [--group=GROUP]
 [--cloud=CLOUD]
 [--force]
 vm delete [NAME]...
 [--group=GROUP]
 [--cloud=CLOUD]
 [--force]
 vm ip assign [NAME]...
 [--cloud=CLOUD]
 vm ip show [NAME]...
 [--group=GROUP]
 [--cloud=CLOUD]
 [--format=FORMAT]
 [--refresh]
 vm login [NAME] [--user=USER]
 [--ip=IP]
 [--cloud=CLOUD]
 [--key=KEY]
 [--command=COMMAND]
 vm list [NAME_OR_ID]
 [--cloud=CLOUD|--all]
 [--group=GROUP]
 [--format=FORMAT]
 [--refresh]
 vm status [--cloud=CLOUD]
 vm info [--cloud=CLOUD]
 [--format=FORMAT]

Arguments:
 COMMAND positional arguments, the commands you want to
 execute on the server(e.g. ls -a) separated by ';',
 you will get a return of executing result instead of login to
 the server, note that type in -- is suggested before
 you input the commands
 NAME server name. By default it is set to the name of last vm from database.
 NAME_OR_ID server name or ID
 KEYPAIR_NAME Name of the openstack keypair to be used to create VM. Note this is not a path to key.

Options:
 --ip=IP give the public ip of the server
 --cloud=CLOUD give a cloud to work on, if not given, selected
 or default cloud will be used
 --count=COUNT give the number of servers to start
 --detail for table print format, a brief version
 is used as default, use this flag to print
 detailed table
 --flavor=FLAVOR_OR_ID give the name or id of the flavor
 --group=GROUP give the group name of server
 --secgroup=SECGROUP security group name for the server
 --image=IMAGE_OR_ID give the name or id of the image
 --key=KEY specify a key to use, input a string which
 is the full path to the private key file
 --keypair_name=KEYPAIR_NAME Name of the openstack keypair to be used to create VM.
 Note this is not a path to key.
 --user=USER give the user name of the server that you want
 to use to login
 --name=NAME give the name of the virtual machine
 --force delete vms without user's confirmation
 --command=COMMAND
 specify the commands to be executed

Description:
 commands used to boot, start or delete servers of a cloud

 vm default [options...] Displays default parameters that are set for VM boot.
 vm boot [options...] Boots servers on a cloud, user may specify
 flavor, image .etc, otherwise default values
 will be used, see how to set default values
 of a cloud: cloud help
 vm start [options...] Starts a suspended or stopped vm instance.
 vm stop [options...] Stops a vm instance .
 vm delete [options...] delete servers of a cloud, user may delete
 a server by its name or id, delete servers
 of a group or servers of a cloud, give prefix
 and/or range to find servers by their names.
 Or user may specify more options to narrow
 the search
 vm floating_ip_assign [options...] assign a public ip to a VM of a cloud
 vm ip show [options...] show the ips of VMs
 vm login [options...] login to a server or execute commands on it
 vm list [options...] same as command "list vm", please refer to it
 vm status [options...] Retrieves status of last VM booted on cloud and displays it.

Tip:
 give the VM name, but in a hostlist style, which is very
 convenient when you need a range of VMs e.g. sample[1-3]
 => ['sample1', 'sample2', 'sample3']
 sample[1-3,18] => ['sample1', 'sample2', 'sample3', 'sample18']

 Copyright 2015, Gregor von Laszewski.

 Exercises

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Exercises

Assignment A: Prerequisite

	A.1) Get account on futuresystems.org or any other cloud you have
access to. In case you take a class that uses cloudmesh and
futuresystems, make sure to be in a valid project. Communicate with
your teacher who will let you know.

	A.2) Why do you need to start assignment A.1 today and can not wait
with it till the day before the due date?

Assignment B: IaaS

	A.1) Is prerequisite

	B.1) Install cloudmesh on local machine (we recommend a virtual box)

	B.2) Start and stop vms on the kilo cloud

	B.3) Why do i need to shut down my VM?

	B.4) Can I leave my VM simply running?

	B.5) What will happen to your VM when there is a power outage that shuts down
the cloud?

	B.6) Assume you create 2 VMs. How do you log in securely from one to the
other VM. What needs to be done?

Assignment C: Ansible

	A.1) Is prerequisite

	C.1) Install cloudmesh on local machine (we recommend a virtual box)

	C.2) Develop automated script for the installation

	C.3) Generate an image on kilo cloud that uses the automated script and
install s cloudmesh in the image

	C.4) Develop an ansible script that generates an image that has cloudmesh
installed in it

	C.5) Bonus: use docopt to select from a command that you develop which OS is
used and conduct the ansible install for the OS
that you chose.

Assignment D: Key Management

	D.1) What is an RSA key?

	D.2) Where are such keys stored in a user environment?

	D.3) Describe the procedures needed to use the default key (rsa) in
Openstack with the openstack client commands.

	D.4) Describe the procedures to use the default key (rsa) in cloudmesh client

	D.5) do B.6 How can this be generalized to n virtual machines. Can you
write a script?

	D.6) What is a known_hosts file? Assume you have used a floating ip ip
previously for one vm, than you delete the vm and reuse the ip for another
vm, what impact has this for the known_hosts?

	D.7) Assume you like to log in from your current machine that started a vm
to that vm. What needs to be done?

	D.8) What is a private and a public key?

	D.9) What is the consequence of copying your private key from your current
machine to a virtual machine?

 Copyright 2015, Gregor von Laszewski.

 API

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

API

The complete API for cloudmesh is available through:

	Index

	Module Index

Cloud Database

Cloudmesh contains a convenient Cloud database to store its
objects. It also contains simple functions to synchronize the database
with objects that are found in clouds. This includes images, flavors,
and virtual machines.

The clouds are defined in ~/.cloudmesh/cloudmesh.yaml

All you need to do is to create a cm object:

cm = CloudmeshDatabase(cm_user="gregor")

To update a specific set of cloud object such as the flavors on the
cloud india you simply can say:

cm.update("flavor", "india")

Other examples include

cm.update(“image”, “india”)
cm.update(“vm”, “india”)

Multiple updates and clouds can be introduced with a parametrized call:

cm.update("vm,flavor,image", "india,aws,azure")

In our example all clouds specified update the virtual machines,
images, and flavors in the database. Please note that the keywords
used are singular.

Once the data is in the database its easy to query it either with the
native query functions or with specialized find functions exposed to
the cm object.

To query for example a vm with the name “gregor-001” you can use

vm = cm.find(“vm”, name=”gregor-001”).first()

Using the method:

d = cm.o_to_d(vm)

returns a dict in the object d. Alternatively you could also use the
native database format and for example get information via:

vm.name
vm.status
....

In some cases using dicts is more convenient. You may want to chose if
you use the native form or the dict representation.

Updating an element in the database

The cloud related data have a number of attributes that make it easy
to identify them. The most important one is ‘cm_id` which presents in
human readable format a unique id for the object in the database.

The id is generated fir the getID method.

Let us assume the following setup for our example:

cm = CloudmeshDatabase(cm_user="gregor")

this will create a cm database object in which the user gregor
stores its values. First we need to get a dictionary that we may want
to store and modify in the database. We can obtain such an object
changeme from a live cloud with:

cloud = OpenStack_libcloud(
 "acloudnamedefinedin_cludmesh.yaml",
 cm_user="yourusernameonthecloud")
flavors = cloud.list("flavor", output="flat")

internal_id = "1"

changeme = flavors[internal_id]

However such an object could also be created by hand. To store the
element in the database we first need to generate a unique cm_id. In
our case we use the cloud object type (here flavor), the unique
internal id that we obtain for each flavor, and the name of the cloud
on which the object belongs to.:

changeme["cm_id"] = cm.getID("flavor", internal_id, "india")

Just to be sure lest set the type to flavor:

changeme["cm_type"] = "flavor"

Now let us change the label of the object to:

changeme["label"] = "newlabel"

To update the new object to the database use:

cm.update_from_dict(f)
cm.save()

 Copyright 2015, Gregor von Laszewski.

 Hacking

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Hacking

Contributing

The project is open source and if you like you can help. Here are some contribution guidelines:

	we use the Apache 2.0 licence

	we recommend to use pycharm for editing and utlize the Inspect
Code feature regularly on the files you modify and fix the sensible
pep8 warnings. Look at other warnings and errors

	use .format instead of % in print statements

	use from __future__ import print_function at the beginning of the file and use
print("msg") instead of print msg

	use as much python 3 like code but use python 2

	use class name(object): and not just class name:

	use Console.error when printing errors if you develop a command
for the commandline

	use Console.ok when printing something that confirms the action
is ok. In many cases you may not want o use print, but
Console.ok. Please note that Console.ok, takesa string argument.

	use ConfigDict when reading yaml files. It even allows you to
read a yaml file in order, make changes to it and write it back

	use nosetests for testing your programs

An example is provided in tests/test_sample.py:

nosetests -v --nocapture tests/test_sample.py

you can copy this to tests/test_yourfile.py and then replace in
that file the occurrence of _sample with _yourfile

make sure to create meaningful tests.

	the documentation is write in RST http://sphinx-doc.org/rest.html

	look at http://python-future.org/compatible_idioms.html for tips to
make python 2 look more like python 3. Be careful with dicts to
make them not inefficient.

	we are using https://pypi.python.org/pypi/gitchangelog for creating
changelogs automatically. Thus you need to use a prefix in any
commit. It includes the type and the user for which the commit is
relevant. Examples are:

chg: usr: simple changes relevant for users (spelling, ...)
fix: usr: major changes for users
new: usr: new feature for users

chg: dev: simple changes relevant for developers (spelling, ...)
fix: dev: major changes for developers
new: dev: new feature for developers

Editor

Use PyCharam.

We made bad experience with people using editors other than emacs, vi, and PyCharm.
When working on Windows make sure your editor handles newlines properly with git.

Documentation

Creating the documentation with sphinx is easy

pip install -r requirements-doc.txt
make doc

View the documentation

make view

Testing

Tox

We assume that you checked out the newest version from cloudmesh client
and base from source and that they are located in:

~/github/cloudmesh/base
~/github/cloudmesh/client

We assume you have tox installed

pip install tox

in the client directory you call tox

cd ~/github/cloudmesh/client
tox

Nosetests

Nose tests can be started with

nosetests

Individual nosetests can be started with (here an example frm test_list.py
is used):

python setup.py install; nosetests -v --nocapture tests/test_list.py:Test_list.test_001

Git

Closing Issues via Commit Messages

To close an issue on github issues, you can use it in your commit messages as follows

git commit -m “Fix problem xyz, fixes #12”

SSH keys

You can get a list of public ssh keys in plain text format by visiting:

https://github.com/{user}.keys

Sheetsheet

	https://github.com/tiimgreen/github-cheat-sheet

	https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

	http://byte.kde.org/~zrusin/git/git-cheat-sheet.svg

	http://www.emoji-cheat-sheet.com

Empty Commits

Commits can be pushed with no code changes by adding –allow-empty:

git commit -m "Big-ass commit" --allow-empty

Styled Git Log

git log --all --graph --pretty=format:'%Cred%h%Creset -%C(auto)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit --date=relative

Tags

Tags are only created by Gregor von Laszewski.

Create a tag. Always use x.y.z

make tag

Remove a tag

make rmtag

Publish on Github

The documentation is only pushed by Gregor von
Laszewski.

make publish

Logging

from cloudmesh_client.common.LogUtil import LogUtil

log = LogUtil.get_logger()
log.info("Cloud: " + cloud + ", Arguments: " + str(arguments))

 Copyright 2015, Gregor von Laszewski.

 Appendix

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

Appendix

	Developer Notes
	OpenStack API Examples

	Changes
	Summary of Changes

	Changelog
	%%version%% (unreleased)

	2.0.4 (2016-02-11)

	2.0.3 (2016-02-10)

	2.0.2 (2016-02-10)

	2.0.1 (2016-02-10)

	2.0.0 (2016-02-10)

	1.1.6 (2016-02-09)
	New

	Changes

	Other

	1.1.5 (2016-02-02)

	1.1.4 (2016-02-01)
	New

	Changes

	Fix

	Other

	1.1.3 (2016-01-26)
	New

	Changes

	Fix

	Other

	1.1.2 (2016-01-13)

	1.1.1 (2016-01-13)
	New

	Other

	1.1.0 (2016-01-13)
	New

	Changes

	Fix

	Other

	1.0.2 (2015-11-25)
	New

	Other

	1.0.1 (2015-11-25)

	1.0.0 (2015-11-24)
	New

	Changes

	Other

	0.7.7 (2015-11-18)
	New

	Changes

	Other

	0.7.6 (2015-11-15)

	0.7.5 (2015-11-15)

	0.7.4 (2015-11-15)
	New

	Changes

	Fix

	Other

	0.7.3 (2015-10-31)
	New

	Changes

	Other

	0.7.2 (2015-10-30)
	New

	Changes

	Fix

	Other

	0.7.1 (2015-09-30)

	0.7.0 (2015-09-30)
	New

	Changes

	Fix

	Other

	0.6.9 (2015-09-06)

	0.6.8 (2015-09-06)

	0.6.7 (2015-09-05)

	0.6.6 (2015-09-04)

	0.6.5 (2015-09-04)

	0.6.4 (2015-09-02)

	0.6.3 (2015-09-01)

	0.6.2 (2015-09-01)

	0.6.1 (2015-08-31)

	0.6.0 (2015-08-29)

	0.5.8 (2015-06-28)

	0.5.7 (2015-06-17)

	0.5.6 (2015-06-17)

	0.5.5 (2015-06-17)

	0.5.4 (2015-06-17)

	ToDos

 Copyright 2015, Gregor von Laszewski.

 Developer Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

Developer Notes

	OpenStack API Examples

 Copyright 2015, Gregor von Laszewski.

 OpenStack API Examples

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

 	Developer Notes

OpenStack API Examples

The following documents show how to access Openstack with the native Openstack API.

	http://docs.pistoncloud.com/getting_started/tutorials/api_tutorial.html

	http://docs.openstack.org/developer/python-novaclient/api.html

	https://albertomolina.wordpress.com/2013/11/20/how-to-launch-an-instance-on-openstack-iii-python-novaclient-library/

	http://blog.briancurtin.com/posts/nice-apis-limits-in-openstack-sdk.html

	https://community.hpcloud.com/article/retrieving-your-resource-limits-quotas

 Copyright 2015, Gregor von Laszewski.

 Changes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

Changes

	Summary of Changes

	Changelog
	%%version%% (unreleased)

	2.0.4 (2016-02-11)

	2.0.3 (2016-02-10)

	2.0.2 (2016-02-10)

	2.0.1 (2016-02-10)

	2.0.0 (2016-02-10)

	1.1.6 (2016-02-09)

	1.1.5 (2016-02-02)

	1.1.4 (2016-02-01)

	1.1.3 (2016-01-26)

	1.1.2 (2016-01-13)

	1.1.1 (2016-01-13)

	1.1.0 (2016-01-13)

	1.0.2 (2015-11-25)

	1.0.1 (2015-11-25)

	1.0.0 (2015-11-24)

	0.7.7 (2015-11-18)

	0.7.6 (2015-11-15)

	0.7.5 (2015-11-15)

	0.7.4 (2015-11-15)

	0.7.3 (2015-10-31)

	0.7.2 (2015-10-30)

	0.7.1 (2015-09-30)

	0.7.0 (2015-09-30)

	0.6.9 (2015-09-06)

	0.6.8 (2015-09-06)

	0.6.7 (2015-09-05)

	0.6.6 (2015-09-04)

	0.6.5 (2015-09-04)

	0.6.4 (2015-09-02)

	0.6.3 (2015-09-01)

	0.6.2 (2015-09-01)

	0.6.1 (2015-08-31)

	0.6.0 (2015-08-29)

	0.5.8 (2015-06-28)

	0.5.7 (2015-06-17)

	0.5.6 (2015-06-17)

	0.5.5 (2015-06-17)

	0.5.4 (2015-06-17)

 Copyright 2015, Gregor von Laszewski.

 Summary of Changes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

 	Changes

Summary of Changes

TBD

 Copyright 2015, Gregor von Laszewski.

 Changelog

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

 	Changes

Changelog

%%version%% (unreleased)

	Comet: more cleaning up of code and debug messages. [fugangwang]

	Comet: cleaning up code/docs based on currently implemented features.
[fugangwang]

	Updating comet documentation. [fugangwang]

	Comet: enabling powering off/reboot/reset all nodes for an active
computeset. [fugangwang]

	Comet: changing docopt. [fugangwang]

	Comet: adding notes about powering off computeset. [fugangwang]

	Comet: updating quickstart guide. [fugangwang]

	Comet: Changing power management of nodes; Adding support of
allocation and customized walltime. [fugangwang]

	Chg;dev: pip instalation is not working notice. [Gregor von Laszewski]

2.0.4 (2016-02-11)

	2.0.3. [Gregor von Laszewski]

	Version 2.0.3. [Gregor von Laszewski]

2.0.3 (2016-02-10)

	2.0.2. [Gregor von Laszewski]

	Version 2.0.2. [Gregor von Laszewski]

2.0.2 (2016-02-10)

	2.0.1. [Gregor von Laszewski]

	Version 2.0.1. [Gregor von Laszewski]

2.0.1 (2016-02-10)

	2.0.0. [Gregor von Laszewski]

	Version 2.0.0. [Gregor von Laszewski]

2.0.0 (2016-02-10)

	1.1.6. [Gregor von Laszewski]

	Version 1.1.6. [Gregor von Laszewski]

1.1.6 (2016-02-09)

New

	Adding a “cm key load” command that loads the keys from the yaml file.
[Gregor von Laszewski]

	Auto-refresh images and flavors if the database does not contain
values for it. [Gregor von Laszewski]

	Reading default values from the db or the yaml file at cm start.
[Gregor von Laszewski]

	Adding a homework about keys. [Gregor von Laszewski]

	Pointer to the documentation on RTD. [Gregor von Laszewski]

Changes

	Improved the “cm register info” command. [Gregor von Laszewski]

	New location of the Cloudmesh presentation. [Gregor von Laszewski]

Other

	Version 1.1.5. [Gregor von Laszewski]

1.1.5 (2016-02-02)

	Version 1.1.4. [Gregor von Laszewski]

1.1.4 (2016-02-01)

New

	Change link to presentation. [Gregor von Laszewski]

	Adding the ppt. [Gregor von Laszewski]

	Improved script examples. [Gregor von Laszewski]

	Introduce variables to make .cloudmesh dependent scripts. [Gregor von
Laszewski]

	Commenting the cm scripts for the manual. [Gregor von Laszewski]

	Added a simplw quick start guide. [Gregor von Laszewski]

	Adding cybera configuration instructions. [Gregor von Laszewski]

	Removing IU juno cloud from the yaml file as it will be shut of Jan
30, 2016. [Gregor von Laszewski]

	One line curl based install for centos. [Gregor von Laszewski]

	Using bash prompt in sphinx documentation. [Gregor von Laszewski]

Changes

	Dev spelling and generalizing register remote. [Gregor von Laszewski]

	Add chameleon auth url. [Gregor von Laszewski]

	Removing juno cloud from most of the code. [Gregor von Laszewski]

Fix

	Simplified install instructions. [Gregor von Laszewski]

Other

	Adding comet CLI quick start guide. [fugangwang]

	Console URL could be unavailable. [fugangwang]

	Computeset state changed from started to running after slurm
integration. [fugangwang]

	Version 1.1.3. [Gregor von Laszewski]

1.1.3 (2016-01-26)

New

	Start of a reference card and a quick start guide. [Gregor von
Laszewski]

	Start of an integrated manual. [Gregor von Laszewski]

	Makeing the api documentation work. [Gregor von Laszewski]

	Added more user manual pages. [Gregor von Laszewski]

Changes

	New: homework examples. [Gregor von Laszewski]

	Improving the documentation. [Gregor von Laszewski]

	Add template for ec2 chameleon cloud. [Gregor von Laszewski]

	New chameleon cloud EC2 setup instructions. [Gregor von Laszewski]

	Improve the configuration documentation. [Gregor von Laszewski]

	Added –cloud=general note when no general default group is set.
[Gregor von Laszewski]

Fix

	Update ubuntu and centos instructions. [Gregor von Laszewski]

	Improced OSX install instructions. [Gregor von Laszewski]

	Enable date printing in hpc command submission. [Gregor von Laszewski]

	Removed docopt parsing from cm main command to allow parsing of
parameters in cm command. [Gregor von Laszewski]

Other

	Usr: new: improve API documentation. [Gregor von Laszewski]

	Apidoc dir. [Gregor von Laszewski]

	Version 1.1.2. [Gregor von Laszewski]

1.1.2 (2016-01-13)

	New state defined on comet backend. [fugangwang]

	Version 1.1.1. [Gregor von Laszewski]

1.1.1 (2016-01-13)

New

	Force cm help at install time to create the yaml files. [Gregor von
Laszewski]

Other

	Version 1.1.0. [Gregor von Laszewski]

1.1.0 (2016-01-13)

New

	Making a dickefile that creates a cloudmesh image. [Gregor von
Laszewski]

	Adding an automatic refresh command for clouds. [Gregor von Laszewski]

	Add id or name management to booting images. [Gregor von Laszewski]

	Add uuid to image list. [Gregor von Laszewski]

	Add template for cybera cloud. [Gregor von Laszewski]

	Improve key command options. [Gregor von Laszewski]

	Simplified the table when just saying “default” [Gregor von Laszewski]

	Change the way cm is started. [Gregor von Laszewski]

	Added cluster command prototype. [Gregor von Laszewski]

	Template for a cluster command to be implemented similar to the old
cloudmesh. [Gregor von Laszewski]

	Added yaml file variables to the manual. [Gregor von Laszewski]

	Allow “history” without the list option to behave just like history
list. [Gregor von Laszewski]

	Add variable support read from cloudmesh.yaml file; fix echo command.
[Gregor von Laszewski]

	Adding a bebug toggle command. [Gregor von Laszewski]

	Added docker makefile. [Gregor von Laszewski]

	Added a check command template. [Gregor von Laszewski]

	Adding more commands to the shell topic. [Gregor von Laszewski]

	Add simple history command. [Gregor von Laszewski]

	Adding var command and reorganizing documentation. [Gregor von
Laszewski]

	Add comment example. [Gregor von Laszewski]

	Detect if the line is a existing file than execute it. [Gregor von
Laszewski]

	Add a shell command so we can execute them from cm. [Gregor von
Laszewski]

	Added user manual for hpc kill. [Erika Dsouza]

	Documentation for hpc experiment runs. [Gregor von Laszewski]

	Moved the hpc experiment commands to hpc run commands. [Gregor von
Laszewski]

	Easy way to list remote experiments. [Gregor von Laszewski]

	List of experiments on remote clusters. [Gregor von Laszewski]

	Batch provider template. [Gregor von Laszewski]

	Database model for scripts. [Gregor von Laszewski]

	Transformed the hpc.run to a proper dict return. [Gregor von
Laszewski]

	Add credentials for project id to yaml file. [Gregor von Laszewski]

	Start of comet command definition. [Gregor von Laszewski]

	Added hpc info and queue user manual. [Erika Dsouza]

Changes

	Def: merge. [Gregor von Laszewski]

	Testing key management. [Gregor von Laszewski]

	Do not overwrite existing default values from cloudmesh.yaml in the
database. [Gregor von Laszewski]

	Fix default table printer, add -v to flavor. [Gregor von Laszewski]

	Moving towards kilo as default cloud. [Gregor von Laszewski]

	Addding demo script. [Erika Dsouza]

	Adding user manual for hpc run when transfering script. [Erika Dsouza]

	Introducing a better separation of the provider fro clouds. [Gregor
von Laszewski]

	Restructure the HPC provider in a separate subdir and introducing a
factory. [Gregor von Laszewski]

	Fix the sync command and also the topic assignment, start of an
echocommand. [Gregor von Laszewski]

	Sr: improved indentation. [Gregor von Laszewski]

	Improved heading. [Gregor von Laszewski]

Fix

	Fix the image nose test. [Gregor von Laszewski]

	Update the coloms in the image command. [Gregor von Laszewski]

	Added commands in cm shell. [Erika Dsouza]

Other

	Check and enabling secgroup rule to allow ssh login. [fugangwang]

	Set secgroup rule or default to allow ssh login. [fugangwang]

	Specifying default sshkey to login VM. [fugangwang]

	Always check if there is any allocated IPs already before acquiring
new ones. [fugangwang]

	Walltime_mins now required when booting a group of nodes due to the
integration with slurm. [fugangwang]

	Removing debugging message of nics management. [fugangwang]

	More robust handling of netid parameter. [fugangwang]

	Nics parameter for boot vm in india kilo. [fugangwang]

	Controlling if traceback is printed out when exception occured.
[fugangwang]

	Adding missing keystone client requirement. [Gregor von Laszewski]

	Usr: chg: adding hpc demo script for group. [Erika Dsouza]

	Separating action and display so the power functions could be properly
called by the portal. [fugangwang]

	Usr: chg: adding virtualenv to osx. [Erika Dsouza]

	Displaying the unescaped url in case of non compatible os.
[fugangwang]

	Making computeset_id semantically correct. [fugangwang]

	Console_url for portal embedding. [fugangwang]

	Username missing in config for comet. [fugangwang]

	Minor. [Hyungro Lee]

	Minor. [Hyungro Lee]

	Minor. [Hyungro Lee]

	Update README.rst. [Hyungro Lee]

	Minor. [Hyungro Lee]

	Hello world heat example. [Hyungro Lee]

	Excluding ‘completed’ computeset as they have no use at all.
[fugangwang]

	Handling redirection of the console url internally and open the final
url in browser. [fugangwang]

	Fixing platform check. [fugangwang]

	Better error handling when failed to authenticate. [fugangwang]

	Added console command; better/consistent parameter handling.
[fugangwang]

	Introduce portal command. [Gregor von Laszewski]

	Changing prefix of comet auth credentials. [fugangwang]

	Version 1.0.2. [Gregor von Laszewski]

1.0.2 (2015-11-25)

New

	Starting to import the heat templates. [Gregor von Laszewski]

Other

	Added httpsig in setup.py so pip install can install the library.
[fugangwang]

	Version 1.0.1. [Gregor von Laszewski]

1.0.1 (2015-11-25)

	Pep8 fixes. [Mangirish Wagle]

	Supporting both USERPASS and APIKEY auth method for comet.
[fugangwang]

	Choice of auth provider for comet as USERPASS/APIKEY in yaml config.
[fugangwang]

	Version 1.0.0. [Gregor von Laszewski]

1.0.0 (2015-11-24)

New

	Chg: add max_width for columns to dict printer. [Gregor von Laszewski]

	Fix to the regiter command upon first registration of a remote cloud.
[Gregor von Laszewski]

Changes

	Updated yaml file format. [Gregor von Laszewski]

	Fix the userid vs user fields caused by double nameing in header of
slurm. [Gregor von Laszewski]

	Add image for openmpi. [Gregor von Laszewski]

	Dev removing general. [Erika Dsouza]

Other

	Fix for slurm table to distingush “user” from “user ”. E.g. replace
the space wit _ [Gregor von Laszewski]

	Version 0.7.7. [Gregor von Laszewski]

0.7.7 (2015-11-18)

New

	Creating cloudmesh yaml file on first call if it does not exist.
[Gregor von Laszewski]

Changes

	Adding error msg where we need to get the cloudmesh yaml file from
when it does not exist. [Gregor von Laszewski]

	Fix the install in setup.py. [Gregor von Laszewski]

Other

	Fixing data_files format as tuple. [fugangwang]

	More error handling for nucleus service error. [fugangwang]

	Displaying mac/ip addresses for computeset. [fugangwang]

	Fixing for mac/ip address. [fugangwang]

	Version 0.7.6. [Gregor von Laszewski]

0.7.6 (2015-11-15)

	Version 0.7.5. [Gregor von Laszewski]

0.7.5 (2015-11-15)

	Version 0.7.4. [Gregor von Laszewski]

0.7.4 (2015-11-15)

New

	Template profiles for additional scripts. [Gregor von Laszewski]

	Implement a prototype (non working) for cm default. It does not yet
read from yaml files. THis may have not to be done here, but at
startup of cm if defaults are defined and the values in the database
are not set. [Gregor von Laszewski]

	Demo on how touse py. [Gregor von Laszewski]

	Adding a scripts directory with sample scripts. [Gregor von Laszewski]

	When a single argument is given to cm that ends in .cm it is
interpreted as script. cm demo.cm. [Gregor von Laszewski]

	Add a exec script command so it also works with cm –script=filename.
[Gregor von Laszewski]

	A simple demo script. [Gregor von Laszewski]

	Allowing commenst in cmd with #, // and /*, they must be on one line
and at the beginning. [Gregor von Laszewski]

	Added manual for flavor command. [ehdsouza]

	Added manual for image. [ehdsouza]

	Adding the rack diagram. [Gregor von Laszewski]

	Adapting the list command to the new comet rest interface. [Gregor von
Laszewski]

	Creating a simple comet command. [Gregor von Laszewski]

	Introducing dynamic class loading. [Gregor von Laszewski]

	Whois data structure. [Gregor von Laszewski]

Changes

	Placehoder for demo script. [Gregor von Laszewski]

	Updating the user documentation. [Gregor von Laszewski]

	Fix the default database class. [Gregor von Laszewski]

	Set default cloud and group at startup of cm if they do not exists.
[Gregor von Laszewski]

	Change CloudProvider.os_environ to CloudProvider.set. [Gregor von
Laszewski]

Fix

	Removed debug message. [ehdsouza]

	Added uniform user message for flavor refresh. [ehdsouza]

	Modifications to image list. [ehdsouza]

	Refactored default list to use cm database. [ehdsouza]

Other

	Changes to support more power actions. [fugangwang]

	Remove debug messages. [Gregor von Laszewski]

	Set a cluster default. [Gregor von Laszewski]

	Dev: usr: improved manual and pep8 formating. [Gregor von Laszewski]

	Removing the user name. [Gregor von Laszewski]

	More friendly output for power off. [fugangwang]

	Comet client and cluster updated due to changes on API. [fugangwang]

	Updating comet based on API and configuration changes. [fugangwang]

	Chk: dev: improving group command. [Gregor von Laszewski]

	Update index.rst. [Gregor von Laszewski]

	Version 0.7.3. [Gregor von Laszewski]

0.7.3 (2015-10-31)

New

	Fix the usage command and refactor the TableParser, chnage tables to
Printer. [Gregor von Laszewski]

	Switching to classmethods. [Gregor von Laszewski]

	Add a function cm register new that copies the etc/yaml file into
.cloudmesh. It does not ask [Gregor von Laszewski]

	Changing the credentials so that they can be used directly in
openstack api calls, removing OS_VERSION, as already defined as
cm_type_version. [Gregor von Laszewski]

Changes

	Improve the base class. [Gregor von Laszewski]

	Replace the authentication class. [Gregor von Laszewski]

Other

	Version 0.7.2. [Gregor von Laszewski]

0.7.2 (2015-10-30)

New

	Makong the cm limits command working. [Gregor von Laszewski]

	Refactorization of Authenticator to CloudProvider, introduction of
ListResources. [Gregor von Laszewski]

	Adding a command cm register source CLOUD that adds the environment
variables to your shell. [Gregor von Laszewski]

	Adding elementary support for chameleon cloud. [Gregor von Laszewski]

	Fix the cm register list command. [Gregor von Laszewski]

	Fixing cm register (list, ssh), adding some format options. [Gregor
von Laszewski]

	Replace the “register rc” and and a “register export” [Gregor von
Laszewski]

	Introducing inteligent serach on id, name, and uuid in image list.
[Gregor von Laszewski]

	Add flavor command. [Gregor von Laszewski]

	Changing some of the cloud api methods to use list and get more
uniformly. [Gregor von Laszewski]

	Working on an alternative remote registration. [Gregor von Laszewski]

	Working on an alternative remote registration. [Gregor von Laszewski]

	Introducing a simple table parser. [Gregor von Laszewski]

	Test and documentation for usage. [ehdsouza]

	Makeing the color on off cpommand much more convenient and working.
[Gregor von Laszewski]

	Adding format to comet list an ll commands. [Gregor von Laszewski]

	Comet docs command. [Gregor von Laszewski]

	Comet cluster list command. [Gregor von Laszewski]

	Introducing a simple comet command. [Gregor von Laszewski]

Changes

	First fixes to the cm nova command. [Gregor von Laszewski]

	Readding changing of permissions. [Gregor von Laszewski]

	Updating the documentation for cm register [Gregor von Laszewski]

	Adapting the authentication of kilo and modifying the register command
to do proper scp. [Gregor von Laszewski]

	Remove insecure option. [Gregor von Laszewski]

	Surpress cert warning. [Gregor von Laszewski]

	Remove the register.host method as it is replaced by register.remote.
[Gregor von Laszewski]

	Fixing the yaml file. [Gregor von Laszewski]

	Implementing a working remote register command taht uses the etc file
to locate the remote openrc file. [Gregor von Laszewski]

	Change format of cloudmesh yaml ant introduce openrc location. [Gregor
von Laszewski]

	Removing india from etc and replacing with kilo and juno. Fixing the
etc cloudmesh.yaml for juno and kilo. [Gregor von Laszewski]

	Returning an object in ll instead of printing it. [Gregor von
Laszewski]

	Add the manpage for the future comet command. [Gregor von Laszewski]

	Starting a prototype of the comet cluster command. [Gregor von
Laszewski]

	Adding a future hpc test cluster comand. [Gregor von Laszewski]

	Adding group attributes for future hpc commands. [Gregor von
Laszewski]

	Update of hpc manual page for future commands. [Gregor von Laszewski]

	Adding comet logon, logoff. [Gregor von Laszewski]

	Simple docopts changes. [ehdsouza]

	Modified register list user manual. [ehdsouza]

	Modified a sentence in quota user manual. [ehdsouza]

Fix

	Modified user manual for cm register rc. [ehdsouza]

Other

	Dealing with both v2 and v3 of keystone. [fugangwang]

	Example of working with keystone v3. [fugangwang]

	

	chg:	usr: moving the import statements of sandman into the command so

we do not see the sqlalchemy warning at startup. [Gregor von
Laszewski]

	Dev: new: Hpc command for squeue. [ehdsouza]

	Chr: dev: change version to __version__ [Gregor von Laszewski]

	Version 0.7.1. [Gregor von Laszewski]

0.7.1 (2015-09-30)

	Version 0.7.0. [Gregor von Laszewski]

0.7.0 (2015-09-30)

New

	Added rst and nosetests along with minor modifications for quota.
[ehdsouza]

	Inventory command. [Gregor von Laszewski]

	Simple docker makefile commands and elementary notes. [Gregor von
Laszewski]

	Dockerfile added. [Gregor von Laszewski]

	Add a vm name prototype function. [Gregor von Laszewski]

	Proposal of system preparation instructions for windows. [Gregor von
Laszewski]

	Adding models for VM, FLAVOR, IMAGE. [Gregor von Laszewski]

	Adding automatic changelog generation. [Gregor von Laszewski]

Changes

	Changed register command to specify albert and removed two commands
from user manual. [ehdsouza]

	Documentation of basic cm command and options. [Gregor von Laszewski]

	Improve the instalation instructions of the source code. [Gregor von
Laszewski]

	Adding ubuntu 15.04 instructions. [Gregor von Laszewski]

	Improving CentOS documentation. [Gregor von Laszewski]

	Reorganize the system preparation documentation and adding OSX
instructions. [Gregor von Laszewski]

	Remove documentation dependency for cmd3 in the instalation. [Gregor
von Laszewski]

	Provide a working install instruction for ssh and git on windows.
[Gregor von Laszewski]

	Improving documentation of group command. [Gregor von Laszewski]

	Update system.rst with installation steps for windows. [Gourav Shenoy]

Fix

	Enabled NovaCommand, added nosetests, fixing pyreadline version, fixed
pep08 warnings. [Mangirish Wagle]

Other

	

	chg:	dev: significant comments to the register command. [Gregor von

Laszewski]

	Add examples for group command in command_group.rst. [Gourav Shenoy]

	Add notifications for travis. [Gregor von Laszewski]

	Auto index in the commands doc dir. [Gregor von Laszewski]

	Added placeholder foe command documentation. [Gregor von Laszewski]

	Merge. [Gregor von Laszewski]

	Add simple git issue printer. [Gregor von Laszewski]

	Changing the filename to unix style. [Gregor von Laszewski]

	Improved the system windows install instructions. [Gregor von
Laszewski]

	

	chg:	dev: using –format=FORMAT instead of –output. [Gregor von

Laszewski]

commands. [Gregor von Laszewski]

	

	fix:	usr: improving cloud command documentation. [Gregor von

Laszewski]

	Made changes to setup.py so that cloudmesh.yaml is installed at
“~/.cloudmesh/cloudmesh.yaml” [Erika Dsouza]

	Dev: Update ChangeLog. [Gregor von Laszewski]

	Use old spelling of SSHCommand. [Gregor von Laszewski]

	Dev: Update ChangeLog. [Gregor von Laszewski]

	Dev: Update ChangeLog. [Gregor von Laszewski]

	Dev: Update ChangeLog. [Gregor von Laszewski]

	Using Config.path_expand from common.ConfigDict. [Gregor von
Laszewski]

	Ad travis test for flaten dict. [Gregor von Laszewski]

	Update version. [Gregor von Laszewski]

0.6.9 (2015-09-06)

	Using Config.path_expand from common.ConfigDict. [Gregor von
Laszewski]

	Ad travis test for flaten dict. [Gregor von Laszewski]

	Update version. [Gregor von Laszewski]

0.6.8 (2015-09-06)

	Add default test to travis. [Gregor von Laszewski]

	Add user key. [Gregor von Laszewski]

	Making Default set and get work. [Gregor von Laszewski]

	Adding more passing tests to travis. [Gregor von Laszewski]

	Make the config dictests more portable on windows. [Gregor von
Laszewski]

	Move some tests to an old dir for later usage. [Gregor von Laszewski]

	Version. [Gregor von Laszewski]

0.6.7 (2015-09-05)

	Travis cleanup. [Gregor von Laszewski]

	Testing doc and cm. [Gregor von Laszewski]

	Force renaming to SecureShellCommand. [Gregor von Laszewski]

	Explicit call of cm via python and not sh. [Gregor von Laszewski]

	Travis experiment. [Gregor von Laszewski]

	Pip install . [Gregor von Laszewski]

	Pip install . [Gregor von Laszewski]

	More travis esxperiments. [Gregor von Laszewski]

	A travis pythonpath set. [Gregor von Laszewski]

	Ignore pep8 warning. [Gregor von Laszewski]

	Modified travis script. [Gregor von Laszewski]

	Use SSHCommand. [Gregor von Laszewski]

	Use old spaleeing of SSHCommand. [Gregor von Laszewski]

	Add doc to travis. [Gregor von Laszewski]

	Cleanup. [Gregor von Laszewski]

0.6.6 (2015-09-04)

	Switchong the version command to use dict printer. [Gregor von
Laszewski]

	Adding a version command. [Gregor von Laszewski]

	Adding a build based on pip install -e . [Gregor von Laszewski]

	Remove the osx install in travis. [Gregor von Laszewski]

	Adding the pyreadline install. [Gregor von Laszewski]

	Adding path management for windows. [Gregor von Laszewski]

	Adding more os.pth.join. [Gregor von Laszewski]

	Start to use os.path.join. [Gregor von Laszewski]

	Integrate the model test into travis. [Gregor von Laszewski]

	Trying osx in travis. [Gregor von Laszewski]

0.6.5 (2015-09-04)

	Documentation for table commands in model. [Gregor von Laszewski]

	Automatically finding the tables din model.py. [Gregor von Laszewski]

	Improving table list commands and introducing a nosetest for it.
[Gregor von Laszewski]

	Print pip version. [Gregor von Laszewski]

	Remove help call. [Gregor von Laszewski]

	Remove documentation generation from travis. [Gregor von Laszewski]

	Remove ssh command temproarily. [Gregor von Laszewski]

	Rename the sssh command. [Gregor von Laszewski]

	Add .cloudmesh dir. [Gregor von Laszewski]

	Update to the new env script. [Gregor von Laszewski]

	Fixing the https. [Gregor von Laszewski]

	Add .txt ending. [Gregor von Laszewski]

	Update .travis.yml. [Gregor von Laszewski]

using https in git clone for travis

	Update travis with requirements. [Gregor von Laszewski]

	Travis from source. [Gregor von Laszewski]

	Improved README. [Gregor von Laszewski]

	Improve README. [Gregor von Laszewski]

	Adding the travis file. [Gregor von Laszewski]

	Sandman integration. [Gregor von Laszewski]

	Sandman integration. [Gregor von Laszewski]

	Adding rest via sandman. [Gregor von Laszewski]

	Adding the reservation object to the table list commands. [Gregor von
Laszewski]

	Reorganize absolute imports and @command decorator. [Gregor von
Laszewski]

	Optimize imports. [Gregor von Laszewski]

	Worked on the TODO list. [Erika Dsouza]

	RESERVATION db object. [Gregor von Laszewski]

	Reservation prototype placeholder class. [Gregor von Laszewski]

	Adding reservation prototype. [Gregor von Laszewski]

	Help help command added. [Gregor von Laszewski]

	Verbatim man pages. [Gregor von Laszewski]

	Case insensitive sorting in the man command. [Gregor von Laszewski]

	Add a browser open command just like in osx. [Gregor von Laszewski]

	Add command topics and new topica help command. [Gregor von Laszewski]

	Add banner and clear commands. [Gregor von Laszewski]

0.6.4 (2015-09-02)

	Adding a simple man command. [Gregor von Laszewski]

	Added default command prototype. [Gregor von Laszewski]

	Added the GROUP type to the table() so that cm info works. [Gregor von
Laszewski]

	Add group. [Gregor von Laszewski]

	Adedd select command. [Gregor von Laszewski]

	Trying from Windows 10. [Erika Dsouza]

	Added group proposal. [Gregor von Laszewski]

0.6.3 (2015-09-01)

	Improving imports. [Gregor von Laszewski]

0.6.2 (2015-09-01)

	Pep8 cleanup. [Gregor von Laszewski]

	Add the key prototype command. [Gregor von Laszewski]

	Add key table. [Gregor von Laszewski]

	Cleanup of the table info method. [Gregor von Laszewski]

	Added a reworked model and a simple DEFAULT object as example. [Gregor
von Laszewski]

	Simple ssh pass through. [Gregor von Laszewski]

	Adds ssh command template. [Gregor von Laszewski]

	0.6.1. [Gregor von Laszewski]

0.6.1 (2015-08-31)

	Rename command filenames. [Gregor von Laszewski]

	Added some comments what to do next. [Gregor von Laszewski]

	Changing the syntax at 2 other places. [Mangirish Wagle]

	Changed py files to use format and print() syntax. [Mangirish Wagle]

	Moving first commands to the new shell. [Gregor von Laszewski]

	Start draft of configuration instructions. [Gregor von Laszewski]

	Add some more windows instructions. [Gregor von Laszewski]

	Some documentation improvements for console and windows. [Gregor von
Laszewski]

	Add mysql example. [Gregor von Laszewski]

	Add simple nosetest examples. [Gregor von Laszewski]

	Code rules. [Gregor von Laszewski]

	Moving towards format instead of % [Gregor von Laszewski]

	Introducing portable colors between linux and windows. [Gregor von
Laszewski]

	Better splash handeling. [Gregor von Laszewski]

	Remove parameter from csv table. [Gregor von Laszewski]

	Delete cmd3.yaml file. [Gregor von Laszewski]

	Tag new version. [Gregor von Laszewski]

	0.6.0. [Gregor von Laszewski]

0.6.0 (2015-08-29)

	Remove junk file again. [Gregor von Laszewski]

	Cleanup dev dirs. [Gregor von Laszewski]

	Moving dirs. [Gregor von Laszewski]

	Commit python script to start/stop/reboot vm in any cloud env. [Gourav
Shenoy]

	Adding scripts to spawn VMs across clouds, including India. [Mangirish
Wagle]

	Fixing interactive and non interactive mode. [Gregor von Laszewski]

	Adding the @command decorator to generate functions with docopt
parameters. [Gregor von Laszewski]

	Basic cm command. [Gregor von Laszewski]

	Simplify cmd. [Gregor von Laszewski]

	Real simple cmd. [Gregor von Laszewski]

	Fix the formatting. [Gregor von Laszewski]

	Todo faker for larger example. [Gregor von Laszewski]

	Use configdict. [Gregor von Laszewski]

	Introduce classes. [Gregor von Laszewski]

	Tip on using format. [Gregor von Laszewski]

	Pep8. [Gregor von Laszewski]

	Comments to include a new class. [Gregor von Laszewski]

	Remove junk file. [Gregor von Laszewski]

	Moved developer code to dev. [Gregor von Laszewski]

	Ignore emacs backup files. [Gregor von Laszewski]

	Add missing file. [Gregor von Laszewski]

	Remove sh dependency. [Gregor von Laszewski]

	Removing fabric as it does not work in windows. [Gregor von Laszewski]

	Remove the idea file. [Gregor von Laszewski]

	Commit python script to start/stop/reboot VMs. [Gourav Shenoy]

	Adding the persistent dict. [Erika Dsouza]

	Gourav commit with passphrase. [Gourav Shenoy]

	Adding again. [Erika Dsouza]

	Erika added. [Erika Dsouza]

	Commiting README.rst with SSH. [Mangirish Wagle]

	Gourav commit. [Gourav Shenoy]

	Update .gitignore. [Gregor von Laszewski]

	Update .gitignore. [Gregor von Laszewski]

	Update .gitignore. [Gregor von Laszewski]

	Gregor test checkin. [Gregor von Laszewski]

	Changing gitignore. [mangirish]

	Remove fabric as fabric does not work on windows. [Gregor von
Laszewski]

	Remove the sh tag dependency. [Gregor von Laszewski]

	Adding comments to the non working windows documentation. [Gregor von
Laszewski]

	Update source documentation. [Gregor von Laszewski]

	Add dev docs. [Gregor von Laszewski]

	Update README.rst. [Gregor von Laszewski]

	Documentation framework. [Gregor von Laszewski]

	Remove autogenerated code. [Gregor von Laszewski]

	Position of kwrags. [Gregor von Laszewski]

	Remove pycharm files. [Gregor von Laszewski]

	Update .gitignore. [Gregor von Laszewski]

	Remove debug msg. [Gregor von Laszewski]

	Added group. [Gregor von Laszewski]

	Added priorities. [Gregor von Laszewski]

	Update map. [Gregor von Laszewski]

	Update map. [Gregor von Laszewski]

	Rename. [Gregor von Laszewski]

	Add mindmap and dictdb template. [Gregor von Laszewski]

	Base functions for flavor, image, etc. [Hyungro Lee]

	Merge. [Hyungro Lee]

	Sample yaml file. [Gregor von Laszewski]

	Working on servers. [Hyungro Lee]

	Add and delete keys api. [Gregor von Laszewski]

	Format update. [Hyungro Lee]

	Test exceptions. [Hyungro Lee]

	Typo. [Hyungro Lee]

	Key create. [Gregor von Laszewski]

	Remove debug msg. [Gregor von Laszewski]

	Use quota defaults instead of get by user as permission denied.
[Gregor von Laszewski]

	Limits. [Gregor von Laszewski]

	Simplified openstack interface. [Gregor von Laszewski]

	Towards python openstack api. [Gregor von Laszewski]

	Clear the defaults after tests. [Gregor von Laszewski]

	Adding tests for default and Default.clear images flavor group.
[Gregor von Laszewski]

	Ad an interactive cloud selector. [Gregor von Laszewski]

	Fixing the default selector for keys. [Gregor von Laszewski]

	Get function for registered cloud. [Gregor von Laszewski]

	Allow force in cloudmesh base yn_choice. [Gregor von Laszewski]

	Replace yn query with existing yn_choice. [Gregor von Laszewski]

	Fixing syntax and various bugs. [Gregor von Laszewski]

	Implement the missing get function. [Gregor von Laszewski]

	Fix the key add function. [Gregor von Laszewski]

	Git add keys. [Gregor von Laszewski]

	Debug. [Gregor von Laszewski]

	Add function was not doing the right thing. [Gregor von Laszewski]

	Start fisrt fix of the db key manager. [Gregor von Laszewski]

	Fixing the list functions in cm key. [Gregor von Laszewski]

	Creating command-register doc. [Daniel Silva]

	Updating test_vm. [Daniel Silva]

	Deleting a set of vm by name - vm delete sample-[1-10] [Daniel Silva]

	Deleting vm by name - vm command. [Daniel Silva]

	Fixing some functions. [Paulo Chagas]

	Implementing vm delete. [Daniel Silva]

	Updating some functions on mesh and sshkeydbmanager. [Paulo Chagas]

	Improving test_vm. [Daniel Silva]

	Fixing circular import. [Paulo Chagas]

	Fixing a bug. [Paulo Chagas]

	Removing a useless function in vm command. [Daniel Silva]

	Command vm start created. [Daniel Silva]

	Updating clear and dump. [Paulo Chagas]

	Removed unresolved reference to cloud/Cloud.py. [Daniel Silva]

	Mesh.clouds implemented. [Paulo Chagas]

	Created vm start command. [Daniel Silva]

	Updating cm key list. [Paulo Chagas]

	Updating get_from_yaml and other needed functions. [Paulo Chagas]

	Adding cloudmesh native provider. [Gregor von Laszewski]

	Introducing mesh. [Gregor von Laszewski]

	Updating key default and key delete. [Paulo Chagas]

	Updating key delete using –select. [Paulo Chagas]

	Fixing key command. [Paulo Chagas]

	Created doc for command_vm functions. [Daniel Silva]

	Created command_vm functions. [Daniel Silva]

	Some updates to key command (almost done) [Paulo Chagas]

	Adding some function to SSHKeyDBManager. [Paulo Chagas]

	Update function included. function usage documentation included.
[Paulo Chagas]

	Created tests for nova command. [Daniel Silva]

	–select option implemented. SSKeyDBManager created with some methods.
Some tests made. [Paulo Chagas]

	Fixed register tests. [Daniel Silva]

	Updating filename to uri. [Paulo Chagas]

	Adding requirements. [Gregor von Laszewski]

	Added test documentation. [Gregor von Laszewski]

	Adding tests for vm, flavor, image information from an openstack
cloud. [Gregor von Laszewski]

	Remove the : from the debug message string. [Gregor von Laszewski]

	Replace log.debug with sanitized self.DEBUG. [Gregor von Laszewski]

	Avoid printing the password in debug mode. [Gregor von Laszewski]

	Adding native openstack interface without libcloud. [Gregor von
Laszewski]

	Fixing the key management functions and tests. [Gregor von Laszewski]

	Completing cm admin command. [Gregor von Laszewski]

	Fixed path in host function in CloudRegister.py. [Daniel Silva]

	Split up cm_shell_cloud into cloud, list, register. [Gregor von
Laszewski]

	Rmove loglevel command that is already in cmd3. [Gregor von Laszewski]

	Removing try exceptions. [Paulo Chagas]

	Testing run method. [Gregor von Laszewski]

	Doing an improved usint test on register. [Gregor von Laszewski]

	Improved directory function in CloudRegister.py. [Daniel Silva]

	Refactor CloudRegister. [Gregor von Laszewski]

	Pep8. [Gregor von Laszewski]

	Fixing indentation. [Gregor von Laszewski]

	Start refactoring. [Gregor von Laszewski]

	Refactor the SSHkey classes and filenames. [Gregor von Laszewski]

	Editing keys, util and test_keys. [Paulo Chagas]

	Merge. [Gregor von Laszewski]

	Adding key for test. [Paulo Chagas]

	Fixing test_keys.py. [Paulo Chagas]

	Adding __init__.py. [Paulo Chagas]

	Updating test_keys. [Paulo Chagas]

	Updating test_keys. [Paulo Chagas]

	Updating test_keys. [Paulo Chagas]

	Updating documentation. [Paulo Chagas]

	Improve Key Management. [Gregor von Laszewski]

	Rename clas sto SSHkey. [Gregor von Laszewski]

	Adding SSHkey type derived from old ssh key cloudmesh key.util.py.
[Gregor von Laszewski]

	Editing “if”s on limits command. [Paulo Chagas]

	Editing “if”s on quota command. [Paulo Chagas]

	Editing “if”s on ssh command. [Paulo Chagas]

	Getting geys from .ssh and github. [Gregor von Laszewski]

	Improve the new-ENV script. [Gregor von Laszewski]

	Documentation management changes for changes and authors. [Gregor von
Laszewski]

	Changes in command cloud - register-dir function. [Daniel Silva]

0.5.8 (2015-06-28)

	Add bin commands to create a new environment from the commandline.
[Gregor von Laszewski]

	Move md to rst. [Gregor von Laszewski]

	Adding autoinstall. [Gregor von Laszewski]

	Rename README.rst to README.md. [Gregor von Laszewski]

	Update README.rst. [Gregor von Laszewski]

	Created register_CERT command in command_cloud.py. [Daniel Silva]

	Editing “if”s on volume command. [Paulo Chagas]

	Created command line arguments in cm_shell_[admin, key, loglevel and
status] [Daniel Silva]

	Editing “if”s on vm command. The –command has some issue: docopt
separate commands by space. [Paulo Chagas]

	Adding the home of hacking and CONTRIBUTING. [Gregor von Laszewski]

	Updare vm command. [Gregor von Laszewski]

	Cluster command. [Hyungro Lee]

	Indentation. [Hyungro Lee]

	Indentation. [Hyungro Lee]

	Launcher commands with examples and description. [Hyungro Lee]

	Stack update. [Hyungro Lee]

	Editing “if”s on secgroup command. [Paulo Chagas]

	Created register india command. [Daniel Silva]

	Editing “if”s on refresh command. [Paulo Chagas]

	Adding selector. [Gregor von Laszewski]

	Adding a select command. [Gregor von Laszewski]

	Finalizing the refersh command. [Gregor von Laszewski]

	Assignments. [Gregor von Laszewski]

	Editing volume. [Paulo Chagas]

	Editing volume. [Paulo Chagas]

	Editing volume. [Paulo Chagas]

	Updated register india command. [Daniel Silva]

	Updated cluster section in old.rst. [Daniel Silva]

	Editing volume. [Paulo Chagas]

	Editing volume documentation. [Paulo Chagas]

	Merge. [Gregor von Laszewski]

	Use full name of india to avoid dependency of ssh config. [fugangwang]

	79 character. [Gregor von Laszewski]

	Remove use of < > [Gregor von Laszewski]

	Merge. [Gregor von Laszewski]

	Merge. [Gregor von Laszewski]

	Security group docopt; urllib3 in requirements. [fugangwang]

	Improve vm command. [Gregor von Laszewski]

	Fix list commnd. [Gregor von Laszewski]

	Updating cm_shell_cloud. [Paulo Chagas]

	Removing file. [Paulo Chagas]

	Fixing key. [Paulo Chagas]

	Adding commands. [Paulo Chagas]

	Improve documentation. [Gregor von Laszewski]

	Add refresh command. [Gregor von Laszewski]

	Adding the missing rst docments. [Gregor von Laszewski]

	Adding a template. [Gregor von Laszewski]

	Fix verbatim vormatting of commands. [Gregor von Laszewski]

	Just adding import os. [Paulo Chagas]

	Finishing cm search. It is possible to filter with =,!=,<,<=,>,>=.
Test for cm search was added. [Paulo Chagas]

	Improving default and adding old manual pages. [Gregor von Laszewski]

	Summary change file. [Gregor von Laszewski]

	Adding a delete function. [Gregor von Laszewski]

	Fixing the use of Shell.scp. [Gregor von Laszewski]

	Removing debug messages. [Gregor von Laszewski]

	Just adding import getpass. [Paulo Chagas]

	Fixing the default command. [Gregor von Laszewski]

	Fixed search command. [Paulo Chagas]

	Improving documentation. [Gregor von Laszewski]

	Adding the set and get default methods. [Gregor von Laszewski]

	Adding a default get command. [Gregor von Laszewski]

	Add sample search. [Gregor von Laszewski]

	Test register_CERT. [Daniel Silva]

	Simple correction on how to use the os.system command. [Gregor von
Laszewski]

	Add todos for instalation instructions. [Gregor von Laszewski]

	Changes in command register_CERT. [Daniel Silva]

	Adding documentation. [Gregor von Laszewski]

	Updating some of the command ideas. [Gregor von Laszewski]

	Use code. [Gregor von Laszewski]

	Improving simple api documentation. [Gregor von Laszewski]

	First api documentation to use dicts for change. [Gregor von
Laszewski]

	Update from dict. [Gregor von Laszewski]

	Simplify tests. [Gregor von Laszewski]

	Adding a uniqe cm_id and cm_type. [Gregor von Laszewski]

	Created cm register CLOUD CERT command. [Daniel Silva]

	Updating search and default command. [Paulo Chagas]

	Filter for entries like [001-002] [Paulo Chagas]

	Created cm register india command. [Daniel Silva]

	Fix the module path. [Gregor von Laszewski]

	Remove unneeded files. [Gregor von Laszewski]

	Moving files into final position. [Gregor von Laszewski]

	Editing filter to get more than one option (AND) [Paulo Chagas]

	Adding a try-except for invalid search. [Paulo Chagas]

	Adding test if result query is empty. [Paulo Chagas]

	Test add command register test. [Daniel Silva]

	Updated on the examples for aws and azure. [Hyungro Lee]

	Outstanding checkins. [Gregor von Laszewski]

	Removing None from table print. [Gregor von Laszewski]

	Implementing a first cm list command. [Gregor von Laszewski]

	Removed plural of flavor, vm, image in kind strings. [Gregor von
Laszewski]

	Start reorganizing methods. [Gregor von Laszewski]

	Splitting classes. [Gregor von Laszewski]

	Start baseclass. [Gregor von Laszewski]

	Simple code cleanip. [Gregor von Laszewski]

	Assert Parameter.expand test. [Gregor von Laszewski]

	Pep8, switching hosstlist to Parameter.expand. [Gregor von Laszewski]

	Adding more comments. [Gregor von Laszewski]

	Improving the hostlist comment. [Gregor von Laszewski]

	Adding more command suggestions. [Gregor von Laszewski]

	Reformatting, reordering, and sellchecking the proposed commands.
[Gregor von Laszewski]

	Adding cloudmesh_search. [Paulo Chagas]

	Remove debug messages. [Gregor von Laszewski]

	Adding a test file to queries. [Paulo Chagas]

	Adding a test file for queries. [Paulo Chagas]

	Renaming the id to cm_id so it does not conflict with the SQL id.
[Gregor von Laszewski]

	Fixed commands_nova.rst format. [Daniel Silva]

	Change table data types. [Gregor von Laszewski]

	Updated suggestion commands_nova.rst. [Daniel Silva]

	Adding the export line match. [Gregor von Laszewski]

	Fix the plugin location. [Gregor von Laszewski]

	Libcloud install restored. [Hyungro Lee]

	Debug messages. [Gregor von Laszewski]

	Added __init__ [Gregor von Laszewski]

	Updated suggestion command nova doc. [Daniel Silva]

	Passing git+ strings to pbr does not work. [Gregor von Laszewski]

	Azure tested to create and delete a vm. [Hyungro Lee]

	Default image for azure. [Hyungro Lee]

	Created file suggestion commands nova in doc. [Daniel Silva]

	Fixing the module import. [Gregor von Laszewski]

	Changing more imports. [Gregor von Laszewski]

	Cahnge import statements. [Gregor von Laszewski]

	Reorganize the module. [Gregor von Laszewski]

	Dev version of libcloud from github ‘trunk’ [Hyungro Lee]

	Reorganize the modules. [Gregor von Laszewski]

	Preparing for update on vm and image. [Gregor von Laszewski]

	Abstracting the lister and inserter. [Gregor von Laszewski]

	Removing one test. [Gregor von Laszewski]

	Reduce code duplication. [Gregor von Laszewski]

	Update search functions to convert to dicts. [Gregor von Laszewski]

	Working on filtered get. [Gregor von Laszewski]

	Readding the deleted methods during a merge. [Gregor von Laszewski]

	Redoing the merge. [Gregor von Laszewski]

	Doc: updated to cloudmesh_cloud. [Paulo Chagas]

	Updated on azure. [Hyungro Lee]

	Azure example started. [Hyungro Lee]

	Doc: Changing cloudmesh_client for cloudmesh_cloud. [Paulo Chagas]

	Testing git commit on windows. [Paulo Chagas]

	Testing git commit on windows. [Paulo Chagas]

	Added cmd3.yaml example to etc directory. [Paulo Chagas]

	Rename. [Hyungro Lee]

	Aws example. [Hyungro Lee]

	Adding a simplified boot command. [Gregor von Laszewski]

	Adding cm_user cm_cloud cm_update attributes to the
dicts. [Gregor von Laszewski]

	Adding provider list queris for openstack. [Gregor von Laszewski]

	Adding IMAGE and FLAVOR to get_kind_from_string. [Gregor von
Laszewski]

	Adding the username to the vm name for better debugging. [Gregor von
Laszewski]

	Adding proper argument pass through to the nova command. [Gregor von
Laszewski]

	Assing more objects to the database. [Gregor von Laszewski]

	Adding database replace, add, and merge. [Gregor von Laszewski]

	Adding additional database methods. [Gregor von Laszewski]

	Next_name() [Gregor von Laszewski]

	Renaming the examples to avoid name conflict with existing package.
[Gregor von Laszewski]

	Doc: updated to cloudmesh_cloud. [Paulo Chagas]

	Updated on azure. [Hyungro Lee]

	Azure example started. [Hyungro Lee]

	Doc: Changing cloudmesh_client for cloudmesh_cloud. [Paulo Chagas]

	Testing git commit on windows. [Paulo Chagas]

	Testing git commit on windows. [Paulo Chagas]

	Added cmd3.yaml example to etc directory. [Paulo Chagas]

	Rename. [Hyungro Lee]

	Aws example. [Hyungro Lee]

	Pushing first data to the database. [Gregor von Laszewski]

	Adding documentation to the flatten methods. [Gregor von Laszewski]

	Flatten methods for libcloud image and vm. [Gregor von Laszewski]

	F = flatten(d) # function to flatten a dict. [Gregor von Laszewski]

	Adding a simplified boot command. [Gregor von Laszewski]

	Adding cm_user cm_cloud cm_update attributes to the
dicts. [Gregor von Laszewski]

	Adding provider list queris for openstack. [Gregor von Laszewski]

	Adding IMAGE and FLAVOR to get_kind_from_string. [Gregor von
Laszewski]

	Adding the username to the vm name for better debugging. [Gregor von
Laszewski]

	Adding proper argument pass through to the nova command. [Gregor von
Laszewski]

	Assing more objects to the database. [Gregor von Laszewski]

	Adding database replace, add, and merge. [Gregor von Laszewski]

	Adding additional database methods. [Gregor von Laszewski]

	Next_name() [Gregor von Laszewski]

	Renaming the examples to avoid name conflict with existing package.
[Gregor von Laszewski]

	Fixed the nosetests for table printers. [Gregor von Laszewski]

	Update the Changelog. [Gregor von Laszewski]

	Renaming the files for better readability. [Gregor von Laszewski]

	Moving examples to the examples dir. [Gregor von Laszewski]

	Moving examples to the example dir. [Gregor von Laszewski]

	Fixed test_005 in test_configdict. [Daniel Silva]

	Reorganizing the database code. [Gregor von Laszewski]

	Register default command. [Gregor von Laszewski]

	Reorganizing the cloudmesh_default directory. [Gregor von Laszewski]

	Improving the test dict. [Gregor von Laszewski]

	Add a sample dict for test printing. [Gregor von Laszewski]

	Created Configdict test. [Daniel Silva]

	Adding parameter parsing. [Gregor von Laszewski]

	Format the input to tt to make it more visible in the text. [Gregor
von Laszewski]

	Adding cygwin documentation. [Gregor von Laszewski]

	Documentation for next_name. [Gregor von Laszewski]

	Added automatic vm name generator. [Gregor von Laszewski]

	Adding the test method templates for tables. [Gregor von Laszewski]

	Table test template. [Gregor von Laszewski]

	Added testing methods to be implemented. [Gregor von Laszewski]

	Spellchecking. [Gregor von Laszewski]

	Pep8 cleanup; Cloud object template. [Gregor von Laszewski]

	Adding a mailmap. [Gregor von Laszewski]

	Add make view. [Gregor von Laszewski]

	Pep8 cleanup. [Gregor von Laszewski]

	Add developer notes. [Gregor von Laszewski]

	Tag management via makefile. [Gregor von Laszewski]

	Makefile for make doc. [Gregor von Laszewski]

	Adding sphinx documentation framework. [Gregor von Laszewski]

	Simplify CHangelog. [Gregor von Laszewski]

	Clean requirements. [Gregor von Laszewski]

	Add nosetests to tox. [Gregor von Laszewski]

	Imporved documentation. [Gregor von Laszewski]

	Fixing the nova command fixing libcoud example be using path_expand
removing timeparse from requirements. [Gregor von Laszewski]

	Changed table.py doc. [Daniel Silva]

	Created command_cloud.py doc. [Daniel Silva]

	Updated ConfigDict.py doc. [Daniel Silva]

0.5.7 (2015-06-17)

	Fixed the nosetests for table printers. [Gregor von Laszewski]

	Update the Changelog. [Gregor von Laszewski]

0.5.6 (2015-06-17)

	Renaming the files for better readability. [Gregor von Laszewski]

	Moving examples to the examples dir. [Gregor von Laszewski]

	Moving examples to the example dir. [Gregor von Laszewski]

	Fixed test_005 in test_configdict. [Daniel Silva]

	Reorganizing the database code. [Gregor von Laszewski]

0.5.5 (2015-06-17)

	Register default command. [Gregor von Laszewski]

	Reorganizing the cloudmesh_default directory. [Gregor von Laszewski]

	Improving the test dict. [Gregor von Laszewski]

	Add a sample dict for test printing. [Gregor von Laszewski]

	Created Configdict test. [Daniel Silva]

	Adding parameter parsing. [Gregor von Laszewski]

	Format the input to tt to make it more visible in the text. [Gregor
von Laszewski]

	Adding cygwin documentation. [Gregor von Laszewski]

	Documentation for next_name. [Gregor von Laszewski]

	Added automatic vm name generator. [Gregor von Laszewski]

	Adding the test method templates for tables. [Gregor von Laszewski]

	Table test template. [Gregor von Laszewski]

	Added testing methods to be implemented. [Gregor von Laszewski]

	Spellchecking. [Gregor von Laszewski]

	Pep8 cleanup; Cloud object template. [Gregor von Laszewski]

	Adding a mailmap. [Gregor von Laszewski]

	Add make view. [Gregor von Laszewski]

0.5.4 (2015-06-17)

	Pep8 cleanup. [Gregor von Laszewski]

	Add developer notes. [Gregor von Laszewski]

	Tag management via makefile. [Gregor von Laszewski]

	Makefile for make doc. [Gregor von Laszewski]

	Adding sphinx documentation framework. [Gregor von Laszewski]

	Simplify CHangelog. [Gregor von Laszewski]

	Clean requirements. [Gregor von Laszewski]

	Add nosetests to tox. [Gregor von Laszewski]

	Imporved documentation. [Gregor von Laszewski]

	Fixing the nova command fixing libcoud example be using path_expand
removing timeparse from requirements. [Gregor von Laszewski]

	Changed table.py doc. [Daniel Silva]

	Created command_cloud.py doc. [Daniel Silva]

	Updated ConfigDict.py doc. [Daniel Silva]

	Simple tests for configdict. [Gregor von Laszewski]

	Tests created. [Daniel Silva]

	Add tests template. [Gregor von Laszewski]

	Rtd theme. [Gregor von Laszewski]

	Adding sphinx placeholder. [Gregor von Laszewski]

	Add comment placeholder. [Gregor von Laszewski]

	Method needed cls. [Gregor von Laszewski]

	Remove ruamel as it doe snot work well on cygwin. [Gregor von
Laszewski]

	Remove ruamel. [Gregor von Laszewski]

	Introduce a Config class. [Gregor von Laszewski]

	Adding not implemented errors. [Gregor von Laszewski]

	Simple tox.ini. [Gregor von Laszewski]

	Adding cm register list ssh command to list the hosts defined in
.ssh/config. [Gregor von Laszewski]

	Added registration documentation. [Gregor von Laszewski]

	Added cm register rc host openrc. [Gregor von Laszewski]

	Checks in registration command. [Gregor von Laszewski]

	Uncomment the profile editor. [Gregor von Laszewski]

	Adding a simple form for openstack credentials. [Gregor von Laszewski]

	Fix the register command. [Gregor von Laszewski]

	Dealing with public ip. [fugangwang]

	Cm register commands. [Daniel Silva]

	Added libcloud example; added more requirements. [fugangwang]

	Reorganizing. [Gregor von Laszewski]

	Reorganization. [Gregor von Laszewski]

	Adding first commands. [Gregor von Laszewski]

	Remove version so we use git tags. [Gregor von Laszewski]

	Testing pbr. [Gregor von Laszewski]

	Testing new version of pbr. [Gregor von Laszewski]

	Simple default command. [Gregor von Laszewski]

	Setup. [Gregor von Laszewski]

	Print() [Gregor von Laszewski]

	Move confidict. [Gregor von Laszewski]

	Simple dict printer with corrections. [Gregor von Laszewski]

	Added defaults. [Gregor von Laszewski]

	Introducing os.path.sep instead of / [Gregor von Laszewski]

	Set test. [Gregor von Laszewski]

	Simple configdict based on ruaml.yaml. [Gregor von Laszewski]

	New config dict. [Gregor von Laszewski]

	Initial commit. [Gregor von Laszewski]

 Copyright 2015, Gregor von Laszewski.

 ToDos

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

ToDos

Todo

reformat the inventory section to be a real manual.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_inventory.rst, line 6.)

Todo

verify if this works

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 34.)

Todo

at this time we have not integrated our AWS and Azure IaaS
abstractions in the new cloudmesh client. We will make them available in
future.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 56.)

Todo

the description of what this is doing was ambigous, we need
to clarify if it only replaces to do or actually add things
that do not exist, or just overwrites.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 210.)

Todo

We used to have a .bak.# when we modified the yaml file, do
you still have this

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 220.)

Todo

setting a default format via defaults

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_templates.rst, line 28.)

Todo

put link to registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_templates.rst, line 70.)

Todo

not yet tested but should work. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 334.)

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 339.)

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 344.)

Todo

not tested, but should work as is regular openstack. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 349.)

Todo

not yet supported. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 354.)

 Copyright 2015, Gregor von Laszewski.

 Docker

 Navigation

 	
 index

 	
 previous |

 	cm client

Docker

This is an experimental effort with little documentation

Start a virtual machine that runs docker in it:

make docker-machine

The machine is called cloudmesh, do not confuse this with the docker image
that is bing created and is also called cloudmesh.

Login to the started vm so you can execute docker commands:

make docker-machine-login

Create the cloudmesh docker image with the name ‘cloudmesh’:

make docker-build

Publish the image on docker hub (only Gregor):

make docker-login

make docker-publish

Get the image (does not work):

make docker-pull

Not working or incomplete:

make docker-run
make docker-clean-images

 Copyright 2015, Gregor von Laszewski.

 ToDos

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cm client

 	Appendix

ToDos

Todo

reformat the inventory section to be a real manual.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_inventory.rst, line 6.)

Todo

verify if this works

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 34.)

Todo

at this time we have not integrated our AWS and Azure IaaS
abstractions in the new cloudmesh client. We will make them available in
future.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 56.)

Todo

the description of what this is doing was ambigous, we need
to clarify if it only replaces to do or actually add things
that do not exist, or just overwrites.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 210.)

Todo

We used to have a .bak.# when we modified the yaml file, do
you still have this

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_register.rst, line 220.)

Todo

setting a default format via defaults

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_templates.rst, line 28.)

Todo

put link to registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/commands/command_templates.rst, line 70.)

Todo

not yet tested but should work. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 334.)

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 339.)

Todo

not yet supported but used to be so we work on it ASAP. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 344.)

Todo

not tested, but should work as is regular openstack. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 349.)

Todo

not yet supported. add cloud registration here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cloudmesh-client/checkouts/latest/docs/source/configuration.rst, line 354.)

 Copyright 2015, Gregor von Laszewski.

 Index

 Navigation

 	
 index

 	cm client

Index

 Copyright 2015, Gregor von Laszewski.

_static/minus.png

_static/up-pressed.png

commands_nova.html

 Navigation

 		
 index

 		cm client »

Command Ideas

Summary of commands:

[daniel] cm register india
[daniel] cm register CLOUD CERT
[daniel] cm register CLOUD DIR
[daniel] cm test cloud CLOUD
[daniel] cm test ssh HOST
cm list cloud flavor
cm update cloud

cm nova list inactive
cm nova list gregor*

NOT SURE HWY WE NEED NOVA HERE

This section includes some new ideas from cm commands.

Register

Register futuresystems india cloud which includes openrc and cert:

cm register india

The next command copies the CERT to the ~/.cloudmesh/clouds/CLOUD directory and
registers that cert in the coudmeh.yaml file:

cm register CLOUD CERT

Finding the CACERT can be facilitated also while looking at the
actual values copied. If we find a file specified, in the cert
variable for that cloud, the file is also fetched. The location will
be reset to be where we copy the cert e.g. ~/.cloudmesh/clouds/CLOUD.

In some cases we need more than a single file and an entire directory
needs to be copied. For this we have the command:

cm register CLOUD DIR

where DIR specifies the directory that need to be fetched.

Test after Registration

To test if a cloud is properly registered and is functioning a test
can be performed:

cm test cloud CLOUD

To test the ssh connection to a machine we can use:

cm test ssh HOST

The host is specified in the .ssh/config file. The username and
hostname can be overwritten with user@host

List

List all virtual machines that are not active.

cm list inactive

Lists all virtual machines that starts with a specific character or
sequence of characters. After the virtual machine name, a ‘*’ can be
used as a regular expression. The following command lists all the
Virtual machines that has gregor as their prefix.

cm list gregor-*
cm list gregor-[001-008]
cm list gregor-[001-008,010]

The convenient specification to set multiple matches i applied
to all other commands and parameters where possible.

Q: is [01-02] the same as “01,02” or does it need to be
“[01-02]”. Looks like from documentation it works without []

We need an extensive manual on this derived from hostlist
https://www.nsc.liu.se/~kent/python-hostlist/
but much better. Section will be called Parameter Expansion.

Hostlist is pip installable and listed at
https://pypi.python.org/pypi/python-hostlist/1.14

We may declare its own type nad use that in :type paramter: MultiStr.
This type would than internally use hostlist. The reason why we do not
want the name hostlist is that we use this not only with hosts.

Update

Updates information from clouds and stores them in the database:

cm update india

Individual updates can be called as follows

cm update india flavor
cm update india vm
cm update india image

Combinations are possible:

cm update india,aws,azure image,vm

Delete

The following command deletes all machines that are not active.

cm nova delete inactive

Flavor

Changes the flavor of either one or several virtual machines so that
they will become faster. In order to run the following command, an
index must be created. Each virtual machine will have an index
associated with it so that commands can be used in several machines at
the same time. Virtual machines from the index 1 to 10 have their
flavor changeded after the command below is run (is it possible to
change the flavor on the fly?)

cm flavor-up [0:10]

Changes the flavor of either one or several virtual machines so that
they will become slower. The following command changes the flavor of
the virtual machines from 20 to 30 index.

cm flavor-down [20:30]

Security

The following command protects a set of virtual machine against
accidentally changes. Whenever the user wants to delete a virtual
machine, a password will be asked.

cm lock --vm-name

Order

Orders the virtual machines by flavor and displays them on the screen.

cm order-flavor

Orders the virtual machines by status and displays them on the screen.

cm order-status

Boot

Run the following command to fix errors that occurred during the boot
process. If there is no resources available, it tries to change the
virtual machine flavor in order to boot them correctly.

cm restart all-error

Creates a new virtual machine and adds a label to it. That label can
be used to identify what type of task a virtual machine is
running. Commands such as delete and flavor-up can be applied in
certain labels.

cm boot --flavor --image --key-name --name [label]

With this command, several virtual machines can be created at the same time.

cm boot --flavor --image --key-name --name [--quantity]

Deletes all machines that has a specific label.

cm delete --label

MORE COMMANDS

default active ATTRIBUTE=VALUE
default list
default [–cloud=CLOUD] ATTRIBUTE=VALUE

pprint(arguments)
if arguments[ATTRIBUTE=VALUE]:

(a, v) = split(“=”, 1)

if a = “activate”

cm default --cloud=india format-table-header="name,id"
cm default --cloud=india format-table-header=name,id
cm default --cloud=india format-table-order="name,id"
cm default active clouds=india,azure
cmd list clouds
cm default india image=abc
cm default india flavor=xyz

Nova Pass through

cm nova ...

simple nova pass through command

 © Copyright 2015, Gregor von Laszewski.

man.html

 Navigation

 		
 index

 		cm client »

Manual Pages

 © Copyright 2015, Gregor von Laszewski.

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

code/README.html

 Navigation

 		
 index

 		cm client »

 Here comes the slef generated code documentation

 © Copyright 2015, Gregor von Laszewski.

_static/down-pressed.png

install.html

 Navigation

 		
 index

 		cm client »

Setup

system
installation
configuration

 © Copyright 2015, Gregor von Laszewski.

_static/down.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

commands/command_loglevel.html

 Navigation

 		
 index

 		cm client »

Loglevel Command

The cloudmesh loglevel command provides you with the ability to easily
switch on and control the level of logging