
Origami Documentation
Release

Avais Pagarkar, Ashish Chaudhary, Harsh Agarwal, Deshraj Yadav

Aug 26, 2017

Contents

1 Introduction 3
1.1 Origami Web app . 3
1.2 Library . 6

i

ii

Origami Documentation, Release

Contents 1

Origami Documentation, Release

2 Contents

CHAPTER 1

Introduction

Origami helps you build a web based demo out of Machine Learning Code. Origami provides a library to allow you
to integrate your code with Origami and a web app to view the demos.

Origami Web app

The web app provides an interface to interact with demos created by using the library.

Configuration

A root user is created for an installation of Origami. Origami requires some configuration before it can connect to
Github.

• Step 1: Create a Github developer application

Go to Github Developer Applications page and “Register a new application” and enter the application details.

Application Name Choose a suitable name for your application.

Homepage URL This is the base-URL of Origami application. This is the URL where this webapp is running.
For local deployments on default port, it is “http://localhost:8000/”. For the current Origami installation, it is “http:
//origami.cloudcv.org/”.

Application description Choose a suitable description for your application.

Authorization callback URL This URL is Homepage URL + “/auth/github/login/callback”. For local deployments
on default port, it is “http://localhost:8000/auth/github/login/callback”. For the current Origami installation, it is “http:
//origami.cloudcv.org/auth/github/login/callback”.

Now click on the “Register application” button to register this application. On the subsequent page, note down the
Client ID and Client Secret.

• Step 2: Input details of Github application on initial setup page.

3

http://localhost:8000/
http://origami.cloudcv.org/
http://origami.cloudcv.org/
http://localhost:8000/auth/github/login/callback
http://origami.cloudcv.org/auth/github/login/callback
http://origami.cloudcv.org/auth/github/login/callback

Origami Documentation, Release

This page is visible when the owner of this Origami installation runs this application for the first time. Following
inputs are required:

Root user’s Github username This is the Github username of the person who is the owner of this Origami installation.

Github Client ID This is the “Client ID” noted down in Step 1.

Github Client Secret This is the “Client Secret” noted down in Step 1.

Application IP address This is the IP address (or domain name) where the Origami webapp is running. It is pre-filled
with “0.0.0.0”.

Allow new users A root user can forbid other users (those who want to make demos) of this application from using it.
In that case, only the root user can login and create demos.

Is this deployment by CloudCV Check this option if the deployment is by CloudCV. This adds some customizations.

Origami requires a Dropbox App key if you intend to allow users to download/upload from Dropbox

• Step 3: Create a Dropbox developer application (optional)

Do this step if you intend to allow users to upload images from their dropbox as input to the demos. Go to Dropbox
Developers Page page and click on “Create your app”.

In step 1, choose the Dropbox API

In step 2, select Full Dropbox. This allows the app access to the users full dropbox.

Now, Name your app and click on create app. The name needs to be unique.

Once the app is created, Dropbox redirects you to its configuration page. Note down the App Key

Also, find Chooser/Saver domains and add the domains 0.0.0.0 localhost origami.cloudcv.org

Paste the App Key into outCalls/config.js.

Creating a new app

• Step 1: Login and provision an App

After the initial setup, click on Create a Demo button on the homepage. This takes you to github for login. Authorize
the application there when asked. Upon successful login, you are taken to the user profile that lists all his deployed
apps.

Click on the + button here to create a new application. This takes you to the Registration page.

• Step 2: Create an App

Following inputs are required:

Appname This is the name of your application. This appears on the top of demo page.

IP of service This is the IP address of the system that will be running your machine learning code using Origami-lib.
For local deployments, it is 0.0.0.0.

Port for service This is the preferred port for the service (machine learning code). This port must be free for Origami-
lib to work.

Description (optional) Description for your application. This will be displayed below the application name of demo
page.

Show Terminal on demo page This displays a Terminal style text box below the I/O components on the demo page.
Additional data can be sent to this terminal using Origami-lib.

If an error box says “This webapp cannot be reached on it’s public IP”, you need to check the “Webapp is running
locally” checkbox. Checking this checkbox will make the webapp check local connectivity to itself.

4 Chapter 1. Introduction

Origami Documentation, Release

If you see a green tick symbol next to the token, your app is configured correctly. Copy this token for use in Origami-lib
and click on “Save” button.

If you see a red hand symbol next to the token, your app is configured incorrectly. You may not be able to connect to
your app.

I/O Components

The following procedure applies to both Input and Ouput components.

• Step 1: Configuring the Input component

After registering the application, you are taken to the input component selection page.

Choose the kind of Input component your machine learning code requires. If your code requires processing 1 (or
more) images, you need Image Input component. If it requires both an image and a text input with it, you need Text
Image Input component and so on.

After choosing the Input component of your choice, click on Modify button on the component you want. This opens
the modification modal for that component. Each component can have different type of configuration. For example,
Text Input component has an Add Label option that adds a new text field for input. The text entered here appears
in the placeholder for the field in the Input component on demo page. You can add or delete any number of fields in
Input component. Press OK to save the component.

• Step 2: Previewing the Input component

After configuring the Input component, you can preview it by pressing the Preview button on the component. This
opens a modal that shows how the Input component will look like on the demo page.

If you are satisfied with the preview, you can click on OK and move to the next step. Otherwise you can edit the Input
component and see the preview again.

• Step 3: Using the Input component

Once you are satisfied with the preview, you can press the Use button on the component to add to the demo page.

You can come back to this page anytime from the user profile page by clicking on Modify on the project and selecting
Input thereafter.

Refreshing the page or going back refreshes the app-state. In that case, you have to go back to the Input component
page from the user profile page by clicking Modify and selecting Input thereafter.

Publish a demo

A demo is published as soon as the app is registered.

The demo can be accessed by clicking on Demo button on the app on user profile page. A shortened URL for the
demo can be created from the user profile page by clicking Get permalink on the app.

Modify/Delete an App

• Modifying

Registration data and I/O components can be modified later on as well from the user profile page by clicking on
Modify button on the component and then in the modal that appears:

Modify Registration data Click on “Metadata”

Modify Input data Click on “Input”

1.1. Origami Web app 5

Origami Documentation, Release

Modify Output data Click on “Output”

• Deleting

An application can be deleted by visiting the user profile page and clicking on Delete button on the component.

Library

The origami-lib library lets you integrate your machine learning code with the Origami web app. All it takes is a
couple of function calls. Let’s get started!

Configuration

origami-lib supports python2 (on OSX and Linux) only as of now. Download origami.py from Github to your projects
root directory (where the launcher python script is).

origami-lib requires installation of some additional packages:

sudo apt install python-pip python-dev python-numpy python-opencv

origami-lib has a file requirements.txt that contains dependency python packages:

pip install -r requirements.txt

Register a new app

origami-lib registration requires a TOKEN from the Origami webapp. This TOKEN can be copied from the registration
page of the application. Or by clicking Get Token on the app on user profile page.

For a complete example, see this Gist. origami.py is imported to the launcher python script:

from origami import origami

origami-lib is registered with:

app = origami.register($TOKEN)

Note that $TOKEN here is replaced by the TOKEN obtained from Origami webapp. origami-lib requires a main
function that is executed when a request is received. This function must be decorated with both:

@origami.crossdomain
@app.listen()

This function must return ‘OK’ in the end. Lastly, it should have a statement that starts the app,:

app.run()

Input functions

• getTextArray():

Arguments: None

6 Chapter 1. Introduction

https://gist.github.com/tocttou/021c51a9055dea0ac002b7657c01fc25

Origami Documentation, Release

Returns: Array of text elements

This function works with: Text Input Component

Text Image Input Component An example can bee seen at this gist.

• getImageArray():

Arguments:

Mode (String):

– file_path

Returns an array of local paths to the uploaded images. This is the default mode. An example can
be seen at this gist.

– numpy_array

Returns an Array/Tuple of the uploaded images as “numpy array” elements (like the image objects
used in OpenCV) An example can be seen at this gist.

Returns: Array of “local path of images” in text obtained after saving images to disk receievd from
Origami webapp.

This function works with: Image Input Component

Text Image Input Component An example can be seen at this gist.

• Hybrid components that require multiple types of Input (like Text Image input component)

Such components require usage of multiple functions at once. For example, for Text Image Input
component,:

all_text = origami.getTextArray()
all_image_paths = origami.getImageArray()

Output functions

• sendTextArray() sendTextArray injects an array of text into fields in Output component.

Arguments: Array/Tuple of text elements

Returns: None

This function works with: Text Output Component An example can bee seen at this gist.

• sendImageArray() origami.sendImageArray() injects an array of images into fields in Output component.

Arguments: Array/Tuple of image data objects. These data objects can be of multiple types depending
upon the mode.

Mode (String)

– file_path

Array/Tuple of “local path of images on the disk” in text

An example can be seen at this gist.

– numpy_array

Array/Tuple of “numpy array” elements (like the image objects used in OpenCV)

An example can be seen at this gist.

1.2. Library 7

https://gist.github.com/tocttou/ceae739c32855a657546aa8420c4bbb7
https://gist.github.com/tocttou/1fd770483294fab36cd17a163e21c4c9
https://gist.github.com/AvaisP/85b74c1a76c79bae0003c0a685b7eb95
https://gist.github.com/tocttou/1fd770483294fab36cd17a163e21c4c9
https://gist.github.com/tocttou/da35d86376f134d232907d626bccee9e
https://gist.github.com/tocttou/591d28bb89641ba7b94783687be65fdb
https://gist.github.com/tocttou/58ef4c77d06c0190443ec721e1a233d4

Origami Documentation, Release

Returns: None

This function works with: Image Output Component

• sendGraphArray() origami.sendGraphArray() injects an array of plot data into graph in Output component.

Arguments: Array/Tuple of “arrays of plot dictionaries”. Each entry in these arrays of plot dictionaries
have two keys, ‘x’ and ‘y’ which take different values depending upon the type of graph.

Type of Graph

– Bar Graph

x: INTEGER y: INTEGER ‘x’ and ‘y’ correspond to X-Axis and Y-Axis on the graph.

An example can be seen at this gist.

– Scatter Graph

x: INTEGER y: INTEGER ‘x’ and ‘y’ correspond to X-Axis and Y-Axis on the graph.

An example can be seen at this gist.

– Area Graph

x: INTEGER y: INTEGER ‘x’ and ‘y’ correspond to X-Axis and Y-Axis on the graph.

An example can be seen at this gist.

– Pie Chart

x: STRING y: INTEGER ‘x’ correponds to the sectio name, ‘y’ correponds to share of that
section in the pie.

An example can be seen at this gist.

Returns: None

This function works with: Bar Graph Output Component Scatter Graph Component Area Graph Com-
ponent Pie Chart Component

Terminal functions

To use the terminal, it must first be enabled for the app on its registration page. Go to user profile page and click on
Modify button on the app then select Metadata thereafter to go to registration page. Tick the Show Terminal of demo
page checkbox here.

sendTextArrayToTerminal() origami.sendTextArrayToTerminal() allows you to send text feedback to a terminal style
interface on the demo page. This text data can be sent at any time (before or after the request processing is
complete). Each element of the array will be put on a newline in the terminal.

Arguments: Array/Tuple of text elements

Returns: None

This function works with: All components An example can bee seen at this gist.

8 Chapter 1. Introduction

https://gist.github.com/tocttou/f82f730be453f872395c5f30df89b763
https://gist.github.com/tocttou/f82f730be453f872395c5f30df89b763
https://gist.github.com/tocttou/f82f730be453f872395c5f30df89b763
https://gist.github.com/tocttou/c0885ce4077d972765b00c56f79b5445
https://gist.github.com/tocttou/403196805e33af9d7fe0900e7ee5c4c2

	Introduction
	Origami Web app
	Library

