

Welcome to CloudConductor’s documentation!

Contents:

Getting Started

	Getting Started

	Installation

	Beginner’s Tutorial

CloudConductor Fundamentals

	Understanding CloudConductor

	Creating a workflow

	Defining a resource kit

	Defining the running platform

	Creating a sample sheet

Advanced Topics

	Pipeline configuration
	Splittting and Merging tasks

	Additional configurationg for a pipeline

	Resource kit configuration
	Multi-tools Dockers

	Multiple resources of same type

Developer Zone

	Develop your own module

Glossary

	Glossary

About the authors

	Authors

Getting Started

Welcome to the CloudConductor documentation portal! Documentation is organized in following sections:

	Installation: Get CloudConductor on local linux running system.

	Beginner Tutorial: Learn to use CloudConductor with a quick and simple tutorial.

If you are Looking for more adavanced information about CloudCondutor, please check out our Advanced Topics section.

If you are looking forward to develop with and for CloudConductor, refer the How to create a module section.

If you couldn’t find what you were looking for?

	Post an issue on the issue tracker on GitHub [https://github.com/labdave/CloudConductor]

You can contribute to the CloudConductor by forking the Github [https://github.com/labdave/CloudConductor] repo and sending your pull request. We will be very happy to merge
your changes to the repo.

Installation

This section helps to get the CloudConductor up and running on your local machine. There are two ways in which you
can install CloudConductor on your local Linux running system.

	Install from source

	Install from Docker Hub

If you want to run your workflows on Google Cloud Platform [https://cloud.google.com/], please refer to the section
Install Google Cloud platform SDK.

Install from source

Pre-requisites

	Linux OS

	Python v.2.7.*

	Git

Following tools are required to run your workflows using CloudConductor:

	Python [https://www.python.org/] v2.7.*

You can check your pre-installed Python version by running the following command in your terminal:

$ python -V
Python 2.7.10

To install the correct version of Python, visit the official Python website [https://www.python.org/downloads/].

	Python packages: configobj, jsonschema, requests

You will need pip [https://packaging.python.org/guides/installing-using-linux-tools/] to install the above packages. After installing pip, run the following commands in your
terminal:

Upgrade pip
sudo pip install -U pip

Install Python modules
sudo pip install -U configobj jsonschema requests

	Git

Please follow the instructions on official Git [https://git-scm.com/downloads] website to download and install Git on your local system.

	Download the CloudConductor repository from the GitHub by executing following command line:


```bash
$ git clone https://github.com/labdave/CloudConductor.git
``` 


Install from Docker Hub

The only pre-requisite here is the Docker [https://www.docker.com/] client. Please execute the following command line to see if your system
already have Docker-client installed or not.

$ sudo docker --version

If the Dcoker is not installed on your system, you can get it from the website of Docker-client [https://docs.docker.com/install/].

After the Docker set up, please pull the CloudConductor Docker image from the Docker Hub [https://hub.docker.com/]. To do so, please run
the following command line:

$ sudo docker pull davelabhub/cloudconductor

You can run CloudConductor as Docker container as follows:

$ sudo docker run --rm --user root davelabhub/cloudconductor "CloudConductor --help"

Install Google Cloud Platform SDK

Follow the instructions [https://cloud.google.com/sdk/docs/downloads-interactive] on the official Google Cloud website.

Beginner’s Tutorial

Pre-requisites

Following are the requirments before you can use the CloudConductor. Please make sure your system is properly
setup for CloudConductor.

	Linux OS

	Python v.2.7.*

	CloudConductor

	Google Cloud SDK

If you have any question about the installation of required tools, please refer to our Installation section which
helps you to set up your system for CloudConductor.

Running CloudConductor

The CloudConductor reuires four types of configuration files as follows:

	Workflow config

	Resource Kit config

	Platform config

	Sample Sheet

Prepare Workflow Config

The workflow configuration exemplifies your data processing steps, where output of one tools becomes input of
consecutive tool. Following is workflow example which takes a raw FASTQ files from RNAseq experiment, perform
QC, and align to the Human reference genome to produce the aligned reads as BAM file. You can refer to Workflow
fundamentals for more details.

[split_samples]
module = SampleSplitter

[fastqc]
module = FastQC
docker_image = fastqc
input_from = split_samples
final_output = R1_fastqc, R2_fastqc

[trimmomatic]
module = Trimmomatic
docker_image = trimmomatic
input_from = split_samples
final_output = trim_report
 [[args]]
 MINLEN = 25

[star_bam]
module = Star
docker_image = star
input_from = trimmomatic
final_output = bam, transcriptome_mapped_bam, raw_read_counts, final_log
 [[args]]
 ref = star_genome_dir

[star_bam_index]
module = Samtools
docker_image = samtools
submodule = Index
input_from = star_bam
final_output = bam_idx

Prepare Resource Kit Config

The resource kit configuration defines the resources needed to run your workflow. The resouces can be path to the
reference files, tool executables, docker images, etc. Following is a resource kit example containing all the required
resource to produce aligned reads from raw FASTQ file for a RNAseq experiment. You can refer to Resouce Kit
fundamentals for more details.

[Docker]
 [[fastqc]]
 image = quay.io/biocontainers/fastqc:0.11.7--pl5.22.0_2
 [[[fastqc]]]
 resource_type = fastqc
 path = fastqc
 [[trimmomatic]]
 image = quay.io/biocontainers/trimmomatic:0.36--5
 [[[trimmomatic]]]
 resource_type = trimmomatic
 path = trimmomatic
 [[star]]
 image = quay.io/biocontainers/star:2.6.0b--0
 [[[star]]]
 resource_type = star
 path = STAR
 [[samtools]]
 image = quay.io/biocontainers/samtools:1.8--3
 [[[samtools]]]
 resource_type = samtools
 path = samtools
[Path]
 [[adapters]]
 resource_type = adapters
 path = gs://davelab_data/tools/Trimmomatic_0.36/adapters/adapters.fa
 [[star_genome_dir]]
 resource_type = ref
 path = gs://davelab_data/ref/hg19/RNA/star
 [[ref]]
 resource_type = ref
 path = gs://davelab_data/ref/hg19/RNA/ensembl.hg19.release84.fa

Prepare Platform Config

The platform configuration defines the runtime platform for the CloudConductor to run your workflow. The
Platform Config set several things for the runtime platform such as which zone, service account key, maximun
retires for command execution, etc. Following is a example of Platform Config to run on the workflow on Google Cloud
Platform [https://cloud.google.com/]. You can refer to Platform fundamentals for more details.

zone = us-east1-c
randomize_zone = False
service_account_key_file = var/GAP_new.json
report_topic = pipeline_reports

[task_processor]
disk_image = davelab-image-docker
max_reset = 3
is_preemptible = True
cmd_retries = 1
apt_packages = pigz

Prepare Sample Sheet

The sample sheet provide sample information to the CloudConductor. The sample information such as the
type of the sample (i.e. tumor, normal), sequencing platform on which the sample were sequenced, path to the sample
raw data, etc. Following is sample sheet example. You can refer to Sample Sheet fundamentals for more details.

{
 "paired_end": true,
 "seq_platform": "Illumina",
 "samples": [
 {
 "name": "s1",
 "paths": {
 "R1": "gs://your_desired_loc/s1_1_I13_0124.fastq.gz",
 "R2": "gs://your_desired_loc/s1_2_I13_0124.fastq.gz"
 },
 "is_tumor": false,
 "lib_name": "LIB_NAME"
 },
 {
 "name": "s2",
 "paths": {
 "R1": "gs://your_desired_loc/s2_1_I13_0124.fastq.gz",
 "R2": "gs://your_desired_loc/s2_2_I13_0124.fastq.gz"
 },
 "is_tumor": false,
 "lib_name": "LIB_NAME"
 }
]
}

Once, you have preapared all the required files you can run the CloudConductor as follows:

$./CloudConductor --name cc_run_1 \
 --input sample_sheet.json \
 --pipeline_config workflow.config \
 --res_kit_config res_kit.config \
 --plat_config gcp_platform.config \
 --plat_name Google \
 --output_dir gs://your_desired_loc/cc_run_1/ \
 -vvv

Understanding CloudConductor

CloudConductor requires four input configuration files:

	Pipeline graph - defines the analysis pipelines as the correct order of the bioinformatics tools

	Resource kit - defines the locations of the tools and the required resources

	Sample Sheet - defines the actual input data that needs to be analyzed

	Platform - defines the configuration for the processing platform.

Every analysis will be defined by these four configuration files.
In the following sections we will explain how to generate these files.

Creating a workflow

In bioinformatics, a pipeline is defined as a sequence of bioinformatics tools that transform and analyze the input data.
A pipeline in CloudConductor is representes as a directed graph of modules, where a module is a bioinformatics tool.
Consider Figure 1 as an example of a pipeline.

 [image: An example of a pipeline]
 Figure 1. An example of a pipeline
Before we explain how to define a pipeline, let’s first describe how to define a module in a pipeline.

Modules

A module is a bioinformatics tool and a submodule is a function that a bioinformatics tool is performing.
Some bioinformatics tools have only one function, thus their modules have only one submodule.
In Figure 1, Samtools is a module with two submodules: Index and Flagstat, while BWA is one module with one submodule with the same name.
Modules and submodules are predefined. Here is a list of currently available modules and submodules.
Please read the advanced topics if you would like to define your own modules and submodules

In a pipeline, a pipeline step is defined using the keywords module and submodule as following:

[*unique_name_of_pipeline_step*]
 module=*name_of_module*
 submodule=*name_of_submodule_used*

Each submodule is defined by a set of input keys, output keys and a command.
The submodule is running the command on the input keys and generates output as output_keys.
In Figure 1, submodule Index from module Samtools has
one input key (“bam” - the input BAM file) and one output key (“bam_idx” - the output BAM index file).

You can specify to keep an output file generated by a module using the keyword final_output in the module definition.
For example, if you want to keep the indexed file after running samtools index you would define the module as following:

[bam_indexing]
 module=Samtools
 submodule=Index
 final_output=bam_idx

Additionally, using the keyword docker_image you are able to specify which Docker image from resource kit you want CloudConductor to use.
If no docker_image is specified, then the tool executable is obtain from the external resources list from resource kit.

More information about resources and Docker will be presented in the definition of the resource kit.

Create a pipeline graph

To create a pipeline graph, you need to connect the modules using the keyword input_from.
For example, in Figure 1, BWA receives the input from Trimmomatic.

The value of an input_from key is a set of defined unique pipeline steps.
The pipeline presented in Figure 1 can be represented as following:

[trim_reads]
 module=Trimmomatic
 docker_image=Trimmomatic_docker

[align_reads]
 module=BWA
 input_from=trim_reads
 final_output=bam

[bam_indexing]
 module=Samtools
 submodule=Index
 docker_image=Samtools_docker
 input_from=align_reads
 final_output=bam_idx

[bam_summary]
 module=Samtools
 submodule=Flagstat
 docker_image=Samtools_docker
 input_from=align_reads
 final_output=flagstat

As you can observe, there is no need to specify the submodules for Trimmomatic or BWA as they have only one submodule with the same name.
Also, we decided to not keep the output of Trimmomatic, but you can always add fastq as final_output to keep it.

Available modules

Here is a list of currently implemented modules and their submodules:

 Defining a resource kit

Defining a resource kit

In CloudConductor, resources are defined by a configuration file named resource kit.
This section will explain how to create a resource kit.

Every resource kit is divided in two large sections.
The first section is named Docker and defines resources provided through Docker.
The second section is named PATH and defines resources available on an external storage system such as Google Cloud Storage.

Each resource is defined by a resource type, a path and sometimes a containing directory.

The resource type is represented in the resource kit by the mandatory keyword resource_type.
It has the same value as as the input key of a pipeline module that uses the specific resource.
For example, submodule Index from module Samtools has one input key, named samtools that defines the required resource type.
Consequently, the resource of type samtools will be connected to the input key samtools from submodule Index.

The executable path is represented in the resource kit by the mandatory keyword path.
Its value should be the executable path (absolute, relative to the source directory or basename with ‘*’) that CloudConductor will execute.

There are many examples of tools for which copying only their executable is not enough, so for these tools the entire directory needs to be transfered.
The containing directory of an executable is defined in the resource kit as the optional keyword containing_dir.
This keyword should be used when the resource requires an entire directory of dependencies in order to be functional.
When using this keyword, please ensure that the executable path specified by the keyword path is relative to this directory.

Docker

As expected, when defining a resource from Docker, you will need the path to the Docker image.
Additionally, you will need to specify what resources are provided in the Docker image.
Finally, the template of the Docker section of a resource kit is as follows:

[Docker]
 [[*unique_name_docker_resource*]]
 image=*path_docker_image*
 [[[*name_of_resource*]]]
 resource_type=*resource_input_key*
 path=*executable_path_on_docker*

For instance, the resource kit definition for Trimmomatic and Samtools is:

[Docker]
 [[Trimmomatic_docker]]
 image=quay.io/biocontainers/trimmomatic:0.36--5
 [[[trimmomatic]]]
 resource_type=trimmomatic
 path=trimmomatic

 [[Samtools_docker]]
 image=quay.io/biocontainers/samtools:1.8--3
 [[[samtools]]]
 resource_type=samtools
 path=samtools

External Resources

In general, we highly recommend that you use resource through the Docker system as it will ensure the reproducibility of your pipeline.
However, you can also use the resources available on an external storage system, such as Google Cloud Storage.

The template to define a resource from an external storage system is the following:

[Path]
 [[*name_of_resource*]]
 resource_type=*resource_input_key*
 path=*executable_path*

Here are a few examples of defined resources available only on an external storage systems:

[Path]
 [[gnomAD_exome]]
 resource_type=gnomad_ref
 path=gs://gnomad-public/release/2.0.2/vcf/exomes/gnomad.exomes.r2.0.2.sites.vcf.bgz
 [[gnomAD_exome_index]]
 resource_type=gnomad_ref_idx
 path=gs://gnomad-public/release/2.0.2/vcf/exomes/gnomad.exomes.r2.0.2.sites.vcf.bgz.tbi
 [[bwa]]
 resource_type=bwa
 path=bin/bedtools
 containing_dir=gs://path/to/bedtools/main/directory/

 Defining the running platform

Defining the running platform

Currently, CloudConductor is implemented and tested for Google Cloud Platform [https://cloud.google.com/],
however we are planning to develop new platform systems in the future.

Google Cloud Platform (GCP)

In order to use Google Cloud as the processing platform, you will need to complete and configure a few steps:

	Create a Google Cloud Platform account (if you do not have one already)

	Create a service account key for CloudConductor

	Identify your resource quota

	Create a reporting topic on Google Pub/Sub

	Generate a compute image

	Configure CloudConductor

Account

If you already have a GCP account and you can access your cloud console, then you can skip this step entirely.

Otherwise, please follow this link [https://console.cloud.google.com/] to access your cloud console and to start an account.
Please ensure that you configure your billing account as it is a requirement to have access to the cloud services.

Service account key

Now that you have access to the cloud, we should configure your account so that CloudConductor has access as well.
You will need to create [https://cloud.google.com/iam/docs/creating-managing-service-account-keys] a service account for CloudConductor.
Make sure you keep the generated private key only to yourself as anyone that has access to your private key will be able to
access your resources.

Resource quota

An important step when using CloudConductor is understanding your resource limits. CloudConductor is capable to run
thousands of instances and allocate petabytes of storage, but your GCP account might not be able to run at this scale yet (especially if you just created your account).
Also, as expected, the total processing cost will be higher when using many resources, but the results will come much faster.

Please follow and read the information in this link [https://cloud.google.com/compute/quotas].

Reporting topic

When CloudConductor is complete, it generates a final report that is transferred to the final output directory and
a topic on Google Pub/Sub [https://cloud.google.com/pubsub/docs/overview]. Having all analysis run reports sent to a single Pub/Sub topic will
ensure that, at the end of the day, all run statistics are centralized into one single location.

Follow this link [https://cloud.google.com/pubsub/docs/quickstart-console] to read the instructions on how to create your Pub/Sub topic.

Compute image

All instances [https://cloud.google.com/compute/docs/instances/] on Google Cloud require a disk image [https://cloud.google.com/compute/docs/images].
Also, CloudConductor requires Docker for the initialization step of the tools.

Configure CloudConductor

Now that you finally have your Google Cloud account ready to run CloudConductor, you need to configure CloudConductor.

Here is a template of what needs to be completed in a CloudConductor platform configuration file for Google Cloud:

PLAT_MAX_NR_CPUS = integer(min=1,max=300000) # Maximum vCPUs count (for the entire GCP project)
PLAT_MAX_MEM = integer(min=1,max=1000000) # Maximum memory RAM in GB (for the entire GCP project)
PLAT_MAX_DISK_SPACE = integer(min=1,max=2000000) # Maximum disk space in GB (for the entire GCP project)
PROC_MAX_NR_CPUS = integer(min=1,max=64) # Maximum vCPUs count (for one single instance)
PROC_MAX_MEM = integer(min=1,max=416) # Maximum memory RAM in GB (for one single instance)
PROC_MAX_DISK_SPACE = integer(min=1,max=64000) # Maximum disk space in GB (for one single instance)

report_topic = string # Pub/Sub topic where final reports are sent

service_account_key_file = string # Local path to CloudConductor service account private key

zone = string # The zone where all instances are created
randomize_zone = boolean # Specify if to randomize the zone

[task_processor]
disk_image = string # Disk image

is_preemptible = boolean # Specify if the running instances to be preemptible
max_reset = integer # Maximum number of preemptions before total stop

cmd_retries = integer # Maximum number of command reruns

An example of a platform configuration file is:

PLAT_MAX_NR_CPUS = 150000
PLAT_MAX_MEM = 500000
PLAT_MAX_DISK_SPACE = 1000000
PROC_MAX_NR_CPUS = 48
PROC_MAX_MEM = 312
PROC_MAX_DISK_SPACE = 64000

report_topic = pipeline_reports

zone = us-central1-c
randomize_zone = True

service_account_key_file = /home/cloudconductor/.priv_key/CC.json

[task_processor]
disk_image = CC-image-latest

is_preemptible = True
max_reset = 5

cmd_retries = 3

 Creating a sample sheet

Creating a sample sheet

In CloudConductor, the main input of a pipeline is specified in a sample sheet.
Except three mandatory keys (samples, name, paths) any additional input keys specified in the sample sheet
are related to the modules used in the pipeline graph.

The sample sheet is in JSON format and its template is as following:

{
 "samples":
 [
 {
 "name": *name_of_sample1*,
 "paths": {
 input_path_key1: *path1*,
 input_path_key2: *path2*,
 ...
 }
 sample_specific_input_key1: *value_key1*,
 sample_specific_input_key2: *value_key2*,
 ...
 },
 ...
],
 general_input_key1: *value1*,
 general_input_key2: *value2*,
 ...
}

In the above template, the keys samples, name and paths are mandatory as
they specify a list of samples, the name of the specific sample and the file data paths of the specific sample, respectively.
You can specify any additional input keys at any level in the sample sheet, however sample-specific information
should be specified at the sample level.

Here are two example sample sheets:

{
 "paired_end": true,
 "seq_platform": "Illumina",
 "samples":
 [
 {
 "name": "S1",
 "paths": {
 "R1": "Illumina_S1_R1.fastq.gz",
 "R2": "Illumina_S2_R2.fastq.gz"
 },
 "library_name": "PREP_S1",
 "is_tumor": true
 },
 {
 "name": "S2",
 "paths":{
 "R1": "Illumina_S2_R1.fastq.gz",
 "R2": "Illumina_S2_R2.fastq.gz"
 },
 "library_name": "PREP_S2",
 "is_tumor": false
 }
]
}

{
 "samples":
 [
 {
 "name": "Variant2",
 "paths": {
 "vcf": "variants_S1_S2.vcf.gz",
 "vcf_idx": "variants_S1_S2.vcf.gz.tbi"
 }
 }
]
}

 Pipeline configuration

Pipeline configuration

Splittting and Merging tasks

In CloudConductor, a large task can be processed as multiple smaller tasks using splitters and mergers.
In order to define a splitter and merger, please follow the instructions specified in module creation from developer’s guide.

An example use for splitters and mergers is processing the sequencing reads.
The input sequencing reads can be aligned independently, thus the aligning procedure can run in parallel.
For example, consider the simple pipeline presented in Figure 2.

 [image: An example of a small pipeline]
 Figure 2. An example of a small pipeline
The graph configuration file for the pipeline presented in Figure 2 is:

 [align_reads]
 module=BWA
 final_output=bam

 [bam_indexing]
 module=Samtools
 submodule=Index
 docker_image=Samtools_docker
 input_from=align_reads
 final_output=bam_idx

However, after implementing a .fastq file splitter and a .bam file merger, the new pipeline can be changed as presented in Figure 3.

 [image: An example of a parallel and fast pipeline]
 Figure 3. An example of a parallel and fast pipeline
… and the final graph configuration file becomes:

 [split_reads]
 module=FastqSplitter

 [align_reads]
 module=BWA
 input_from=split_reads

 [merge_align]
 module=MergeBams
 input_from=align_reads
 final_output=bam

 [bam_indexing]
 module=Samtools
 submodule=Index
 docker_image=Samtools_docker
 input_from=align_reads
 final_output=bam_idx

As you can observe, in the pipeline definition the new splitter and merger have been added as simple modules.
An important thing to notice is that the final_output has been moved from align_reads to merge_align.
If the final_output was declared at the level of align_reads, a set of all splitted alignments (not the final merged result) will be considered as final alignment result.

Additional configurationg for a pipeline

There are cases when in a specific pipeline run the user wants to override a setting (most times a constant) in a tool.
You can do that as well in the pipeline graph using the args subsection.
For example, let’s say we would like to override the default value of the constants MINLEN and SLIDINGWINDOW_SIZE from Trimmomatic.
In this case, the pipeline graph looks as following:

 [trim_reads]
 module=Trimmomatic
 docker_image=Trimmomatic_docker
 [[args]]
 MINLEN=20
 SLIDINGWINDOW_SIZE=5

These changes will affect only the CloudConductor runs that use the above pipeline graph.

 Resource kit configuration

Resource kit configuration

Multi-tools Dockers

There are (not recommended) situations when a Docker contains two separate tools as a command requires piping from one command to another.
You can solve this problem by simply defining additional resources in a Docker image.

For example, the aligning output of BWA is in SAM format, so to convert it to a more efficient format, BAM, we are piping the output from BWA to Samtools to convert the output format.
Thus, we are required to have a Docker image that has both tools. Here is how you define this situation in a resource kit:

[Docker]
 [[bwa]]
 image = thd7/bwasam:v.20180522
 [[[bwa]]]
 resource_type = bwa
 path = bwa

 [[[samtools]]]
 resource_type = samtools
 path = samtools

Multiple resources of same type

There are situations in which the user can have different definitions of the same resource type in the resource kit.
For instance, the analysis pipeline requires two different versions of the same tool.
This resource kit implementation will raise an error as CloudConductor cannot decide which resource definition of the
same resource type to choose from. Consequently, the user has to specify in the pipeline graph the exact resource name that they require.

Consider this part of a resource kit implementation as an example:

[Path]
 ...
 [[samtools_0.19]]
 resource_type=samtools
 path=samtools
 containing_dir=gs://path/to/samtools_0.19
 [[samtools_1.3]]
 resource_type=samtools
 path=samtools
 containing_dir=gs://path/to/samtools_1.3
 ...

… and the implementation of the pipeline graph using the above resource kit:

 ...
 [align_reads]
 module=BWA
 final_output=bam

 [bam_indexing]
 module=Samtools
 submodule=Index
 input_from=align_reads
 final_output=bam_idx
 [[args]]
 samtools=samtools_0.19

 [bam_summary]
 module=Samtools
 submodule=Flagstat
 input_from=align_reads
 final_output=flagstat
 [[args]]
 samtools=samtools_1.3
 ...

 Develop your own module

Develop your own module

There are three types of modules that can be developed in CloudConductor:

	Tool - represents a tool that can have one or multiple functions, represented as submodules

	Splitter - represents a tool that splits one input data entity into multiple chunks of data of the same type

	Merger - represents a tool that merges chunks of data of the same type, into one output data entity

Tool

To develop a new Tool, you will need to create a new actual Python module in the CloudConductor’s directory Modules/Tools with
the name you are interested to develop. Then, for each task that the new tool performs, create a class that extends Modules/Module.

Let’s name our new tool as NewTool and its subcommand/task as Subcommand. In this case, the Python module
Modules/Tools/NewTool.py should look as following:

from Modules import Module

class Subcommand(Module):

 def __init__(self, module_id, is_docker=False):
 """
 Initialize the new Subcommand class.

 Args:
 module_id (string) - the unique ID generated by CloudConductor for this object
 is_docker (boolean) - the current module should return a docker specific command
 """
 super(Subcommand, self).__init__(module_id, is_docker)

 # Define list of output_keys the command will generate data for
 self.output_keys = ["output_key1", "output_key2", "output_key3"]

 def define_input(self):
 """
 Define the input of the subcommand
 """
 pass

 def define_output(self):
 """
 Define the output of the subcommand
 """
 pass

 def define_command(self):
 """
 Generate the actual command
 """
 pass

In the new Subcommand class constructor, you should extend the base class Module and specify what are the output keys that the subcommand is generating.

In the define_input() method you should use the inherited method self.add_argument() to define any input key.
An input key has three properties that can be set with the self.add_argument() method:

	is_required - sets if the input_key is mandatory (False by default)

	is_resource - sets if the input_key represents a resource to be searched in resource kit (False by default)

	default_value - a default value for the input_key, in case it never gets set (None by default)

For example:

 def define_input(self):
 self.add_argument("R1", is_required=True)
 self.add_argument("R2")
 self.add_argument("bwa", is_required=True, is_resource=True)
 self.add_argument("samtools", is_required=True, is_resource=True)

In the define_output() method you should use the inherited method self.add_output() to define any output_key.
You can use self.get_argument() method to obtain any of the arguments value.
An output key has two properties that can be set with the self.add_output() method:

	value - represents the actual value of the output key. If file, you can use the inherited method self.generate_unique_file_name()
to obtain a unique file name for a generated output file

	is_path - sets if the value is a path (i.e. file or directory).

For example:

 def define_output(self):
 bam_output = self.generate_unique_file_name(extension=".bam")
 self.add_output("bam", bam_output)

In the define_command() method you should expect that both the input and output keys are already associated with the correct values.
If you need to obtain the value of an input key use self.get_argument() method.
If you need to obtain the value of an output key use self.get_output() method.
The method define_command() should return an actual command.

For example:

 def define_command(self):
 R1_fastq = self.get_argument("R1")
 R2_fastq = self.get_argument("R2")
 bwa = self.get_argument("bwa")
 samtools = self.get_argument("samtools")

 bam_output = self.get_output("bam")

 return "%s -M %s %s !LOG2! | %s view > %s !LOG2!" % (bwa, R1_fastq, R2_fastq, samtools, bam_output)

Note: When generating the command, you can use the following placeholders and CloudConductor will create a log file for you:

	“!LOG0!” - pipes the stdout and strerr to /dev/null

	“!LOG1!” - pipes only the stdout to a log file that will be available after the module finished running

	“!LOG2!” - pipes only the stderr to a log file that will be available after the module finished running

	“!LOG3!” - pipes both the stdout and the stderr to a log file that will be available after the module finished running

Example command with placeholders: “tool1 !LOG2! | tool2 !LOG2! | tool3 !LOG3!”

Splitter

There are only two differences between the way splitters and tools are created.

First different is that to create a splitter you will need to extend the Modules/Splitter abstract class instead of Modules/Module.

Second difference is that the output of a tool is a list of output keys associated with values, while the output of a splitter
if a list of splits, each split having a list of output_keys associated with values. Consequently, every output key has an additional
property and that is split_id, the ID of the split it is associated with. In order to define a new split ID, you will need to
call the self.make_split() method and then associate any output key to the newly created split id.

For example:

 def define_output(self):
 nr_splits = self.get_argument("nr_splits")

 for split_ID in xrange(nr_splits):
 self.make_split(split_ID)
 self.add_output(split_id=split_ID, key="square", value=split_ID**2, is_path=False)
 self.add_output(split_id=split_ID, key="cube", value=split_ID**3, is_path=False)

Merger

There is only one difference between the way mergers and tools are created. The difference if that you will need to extend
the Module/Merger abstract class instead of Modules/Module. Other than that, the whole logic is similar.

 Glossary

Glossary

 	 Run

 	 A completed, successful or failed, execution of a pipeline using CloudConductor.
 	 Pipeline

 	 A directed graph or bioinformatics tools that are executed in a certain order.
 	 Graph

 	 Synonym for Pipeline
 	 Module

 	 Node of a Pipeline graph. It can be a bioinformatics tool, a splitter, or a merger
 	 Submodule

 	 Functionality that one bioinformatics tools is providing. For example, index is Submodule for samtools Module
 	 Splitter

 	 A module that splits an input file into multiple output files.
 	 Merger

 	 A Module that merges multiple input files of the same type into one single output file.
 	 Resource Kit

 	 List of bioinformatics tools or input resources (e.g. reference genome) necessary for a Pipeline
 	 Sample Sheet

 	 Input files that are processed by a Pipeline
 	 Platform

 	 A cloud computing service that runs a Pipeline.
 	 Processor

 	 An instance/server on a cloud computing platform.
 	 Task

 	 A command or set of instructions that a processor has to execute.
 	 Worker

 	 A processor that executes a task.
 	 Final Report

 	 A file containing the entire run metadata and statistics
 	 Report topic

 	 A messenging service that receives the final report of a run

 Authors

Authors

Razvan Panea

 Index

Index

_static/comment-close.png

_static/comment.png

_static/cloud-conductor-logo-colored.png
Clm@
Conductor

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/Tushar.jpg

_static/ajax-loader.gif

_static/Figure3.png

_static/Razvan.png

nav.xhtml

 Table of Contents

 		
 Welcome to CloudConductor’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Install from source

 		
 Pre-requisites

 		
 Install from Docker Hub

 		
 Install Google Cloud Platform SDK

 		
 Beginner’s Tutorial

 		
 Pre-requisites

 		
 Running CloudConductor

 		
 Prepare Workflow Config

 		
 Prepare Resource Kit Config

 		
 Prepare Platform Config

 		
 Prepare Sample Sheet

 		
 Understanding CloudConductor

 		
 Creating a workflow

 		
 Modules

 		
 Create a pipeline graph

 		
 Available modules

 		
 Defining a resource kit

 		
 Docker

 		
 External Resources

 		
 Defining the running platform

 		
 Google Cloud Platform (GCP)

 		
 Account

 		
 Service account key

 		
 Resource quota

 		
 Reporting topic

 		
 Compute image

 		
 Configure CloudConductor

 		
 Creating a sample sheet

 		
 Pipeline configuration

 		
 Splittting and Merging tasks

 		
 Additional configurationg for a pipeline

 		
 Resource kit configuration

 		
 Multi-tools Dockers

 		
 Multiple resources of same type

 		
 Develop your own module

 		
 Tool

 		
 Splitter

