
D-Wave Cloud Client
Release 0.6.2

Dec 24, 2019

Contents

1 Example 3

2 Documentation 5

3 Indices and tables 49

Python Module Index 51

Index 53

i

ii

D-Wave Cloud Client, Release 0.6.2

D-Wave Cloud Client is a minimal implementation of the REST interface used to communicate with D-Wave Sampler
API (SAPI) servers.

SAPI is an application layer built to provide resource discovery, permissions, and scheduling for quantum annealing
resources at D-Wave Systems. This package provides a minimal Python interface to that layer without compromising
the quality of interactions and workflow.

Contents 1

D-Wave Cloud Client, Release 0.6.2

2 Contents

CHAPTER 1

Example

This example instantiates a D-Wave Cloud Client and solver based on the local system‘s auto-detected default config-
uration file and samples a random Ising problem tailored to fit the solver‘s graph.

import random
from dwave.cloud import Client

Connect using the default or environment connection information
with Client.from_config() as client:

Load the default solver
solver = client.get_solver()

Build a random Ising model to exactly fit the graph the solver supports
linear = {index: random.choice([-1, 1]) for index in solver.nodes}
quad = {key: random.choice([-1, 1]) for key in solver.undirected_edges}

Send the problem for sampling, include solver-specific parameter 'num_reads'
computation = solver.sample_ising(linear, quad, num_reads=100)

Print the first sample out of a hundred
print(computation.samples[0])

3

D-Wave Cloud Client, Release 0.6.2

4 Chapter 1. Example

CHAPTER 2

Documentation

2.1 Introduction

D-Wave Cloud Client is a minimal implementation of the REST interface used to communicate with D-Wave Sampler
API (SAPI) servers.

SAPI is an application layer built to provide resource discovery, permissions, and scheduling for quantum annealing
resources at D-Wave Systems. This package provides a minimal Python interface to that layer without compromising
the quality of interactions and workflow.

The D-Wave Cloud Client Solver class enables low-level control of problem submission. It is used, for example, by
the dwave-system DWaveSampler, which enables quick incorporation of the D-Wave system as a sampler in your
code.

2.1.1 Configuration

It’s recommended you set up your D-Wave Cloud Client configuration through the interactive CLI utility.

As described in the Using a D-Wave System section of Ocean Documentation, for your code to access remote D-Wave
compute resources, you must configure communication through SAPI; for example, your code needs your API token
for authentication. D-Wave Cloud Client provides multiple options for configuring the required information:

• One or more locally saved configuration files

• Environment variables

• Direct setting of key values in functions

These options can be flexibly used together.

Configuration Files

If a D-Wave Cloud Client configuration file is not explicitly specified when instantiating a client or solver, auto-
detection searches for candidate files in a number of standard directories, depending on your local system’s operating

5

https://docs.ocean.dwavesys.com/projects/system/en/latest/index.html
https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/samplers.html#dwave.system.samplers.DWaveSampler
https://docs.ocean.dwavesys.com/en/latest/overview/dwavesys.html

D-Wave Cloud Client, Release 0.6.2

system. You can see the standard locations with the get_configfile_paths() method.

For example, on a Unix system, depending on its flavor, these might include (in order):

/usr/share/dwave/dwave.conf
/usr/local/share/dwave/dwave.conf
~/.config/dwave/dwave.conf
./dwave.conf

On Windows 7+, configuration files are expected to be located under:

C:\\Users\\<username>\\AppData\\Local\\dwavesystem\\dwave\\dwave.conf

On Mac OS X, configuration files are expected to be located under:

~/Library/Application Support/dwave/dwave.conf

(For details on the D-Wave API for determining platform-independent paths to user data and configuration folders see
the homebase tool.)

You can check the directories searched by get_configfile_paths() from a console using the interactive CLI
utility; for example:

$ dwave config ls -m
/etc/xdg/xdg-ubuntu/dwave/dwave.conf
/usr/share/upstart/xdg/dwave/dwave.conf
/etc/xdg/dwave/dwave.conf
/home/jane/.config/dwave/dwave.conf
./dwave.conf

A single D-Wave Cloud Client configuration file can contain multiple profiles, each defining a separate combination
of communication parameters such as the URL to the remote resource, authentication token, solver, etc. Configuration
files conform to a standard Windows INI-style format: profiles are defined by sections such as, [profile-a] and [profile-
b]. Default values for undefined profile keys are taken from the [defaults] section.

For example, if the configuration file, ~/.config/dwave/dwave.conf, selected through auto-detection as the default con-
figuration, contains the following profiles:

[defaults]
token = ABC-123456789123456789123456789

[first-available-qpu]
solver = {"qpu": true}

[software]
client = sw
solver = c4-sw_sample
token = DEF-987654321987654321987654321
proxy = http://user:pass@myproxy.com:8080/

[backup-dwave2000q]
endpoint = https://url.of.my.backup.dwavesystem.com/sapi
solver = {"num_qubits__gt": 2000}

You can instantiate clients for a D-Wave system and a CPU with:

>>> from dwave.cloud import Client
>>> client_qpu = Client.from_config()
>>> client_cpu = Client.from_config(profile='software')

6 Chapter 2. Documentation

https://github.com/dwavesystems/homebase

D-Wave Cloud Client, Release 0.6.2

Environment Variables

In addition to files, you can set configuration information through environment variables; for example:

• DWAVE_CONFIG_FILE may select the configuration file path.

• DWAVE_PROFILE may select the name of a profile (section).

• DWAVE_API_TOKEN may select the API token.

For details on supported environment variables and prioritizing between these and values set explicitly or through a
configuration file, see dwave.cloud.config.

Interactive CLI Configuration

As part of the installation of the D-Wave Cloud Client package, a dwave executable is installed; for example, in a
virtual environment it might be installed as <virtual_environment>\Scripts\dwave.exe. Running this file from your
system’s console opens an interactive command line interface (CLI) that guides you through setting up a D-Wave
Cloud Client configuration file. It also provides additional helpful functionality; for example:

• List and update existing configuration files on your system

• Establish a connection to (ping) a solver and return timing information

• Show information on configured solvers

Run dwave –help for information on all the CLI options.

Note: If you work in a Bash shell and want command completion for dwave, add

eval "$(_DWAVE_COMPLETE=source <path>/dwave)"

to your shell’s .bashrc configuration file, where <path> is the absolute path to the installed dwave executable, for
example /home/Mary/my-quantum-app/env/bin.

2.1.2 Work Flow

A typical workflow may include the following steps:

1. Instantiate a Client to manage communication with remote solver resources, selecting and authenticating
access to available solvers; for example, you can list all solvers available to a client with its get_solvers()
method and select and return one with its get_solver() method.

Preferred use is with a context manager—a with Client.from_config(...) as construct—to en-
sure proper closure of all resources. The following example snippet creates a client based on an auto-detected
configuration file and instantiates a solver.

>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver(qpu=True)

Alternatively, the following example snippet creates a client for software resources that it later explicitly closes.

>>> client = Client.from_config(client='sw') # doctest: +SKIP
>>> # code that uses client
>>> client.close() # doctest: +SKIP

2. Instantiate a selected Solver, a resource for solving problems. Solvers are responsible for:

2.1. Introduction 7

D-Wave Cloud Client, Release 0.6.2

• Encoding submitted problems

• Checking submitted parameters

• Adding problems to a client’s submission queue

Solvers that provide sampling for solving Ising and QUBO problems, such as a D-Wave 2000Q sampler
DWaveSampler or software sampler SimulatedAnnealingSampler, might be remote resources.

3. Submit your problem, using your solver, and then process the returned Future, instantiated by your solver to
handle remotely executed problem solving.

2.1.3 Terminology

Ising Traditionally used in statistical mechanics. Variables are “spin up” (↑) and “spin down” (↓), states that cor-
respond to +1 and −1 values. Relationships between the spins, represented by couplings, are correlations or
anti-correlations. The objective function expressed as an Ising model is as follows:

E𝑖𝑠𝑖𝑛𝑔(𝑠𝑠𝑠) =

𝑁∑︁
𝑖=1

ℎ𝑖𝑠𝑖 +

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝐽𝑖,𝑗𝑠𝑖𝑠𝑗(2.1)

where the linear coefficients corresponding to qubit biases are ℎ𝑖, and the quadratic coefficients corresponding to
coupling strengths are 𝐽𝑖,𝑗 .

A collection of variables with associated linear and quadratic biases.

Quadratic unconstrained binary optimization. QUBO problems are traditionally used in computer science. Variables
are TRUE and FALSE, states that correspond to 1 and 0 values. A QUBO problem is defined using an upper-diagonal
matrix 𝑄, which is an 𝑁 x 𝑁 upper-triangular matrix of real weights, and 𝑥, a vector of binary variables, as minimizing
the function

𝑓(𝑥) =
∑︁
𝑖

𝑄𝑖,𝑖𝑥𝑖 +
∑︁
𝑖<𝑗

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗(2.2)

where the diagonal terms 𝑄𝑖,𝑖 are the linear coefficients and the nonzero off-diagonal terms are the quadratic coeffi-
cients 𝑄𝑖,𝑗 . This can be expressed more concisely as

min
𝑥∈{0,1}𝑛

𝑥𝑇𝑄𝑥.(2.3)

In scalar notation, the objective function expressed as a QUBO is as follows:

E𝑞𝑢𝑏𝑜(𝑎𝑖, 𝑏𝑖,𝑗 ; 𝑞𝑖) =
∑︁
𝑖

𝑎𝑖𝑞𝑖 +
∑︁
𝑖<𝑗

𝑏𝑖,𝑗𝑞𝑖𝑞𝑗 .(2.4)

8 Chapter 2. Documentation

https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/samplers.html#dwave.system.samplers.DWaveSampler
https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html#neal.sampler.SimulatedAnnealingSampler

D-Wave Cloud Client, Release 0.6.2

A process that samples from low energy states of a problem’s objective function. A binary quadratic model (BQM)
sampler samples from low energy states in models such as those defined by an Ising equation or a Quadratic Uncon-
strained Binary Optimization (QUBO) problem and returns an iterable of samples, in order of increasing energy. A
dimod sampler provides ‘sample_qubo’ and ‘sample_ising’ methods as well as the generic BQM sampler method.

A resource that runs a problem. Some solvers interface to the QPU; others leverage CPU and GPU resources.

2.2 Reference Documentation

Release 0.6.2

Date Dec 24, 2019

noindex

2.2.1 Configuration

Configuration for communicating with a solver.

Communicating with a solver—submitting a problem, monitoring its progress, receiving samples—requires configu-
ration of several parameters such as the selected solver, its URL, an API token, etc. D-Wave Cloud Client provides
multiple options for configuring those parameters:

• One or more locally saved configuration files.

• Environment variables

• Direct setting of key values in functions

These options can be flexibly used together. The standard use is through the from_config() classmethod.

Configuration values can be specified in multiple ways, ranked in the following order (with 1 the highest ranked):

1. Values specified as keyword arguments

2. Values specified as environment variables

3. Values specified in the configuration file

Configuration files comply with standard Windows INI-like format, parsable with Python’s configparser. An
optional defaults section provides default key-value pairs for all other sections. User-defined key-value pairs (unrec-
ognized keys) are passed through to the client.

Typically configuration files are created, inspected, and changed using interactive CLI commands from your system’s
console, such as dwave config create and dwave config inspect (run dwave --help for informa-
tion on CLI options).

Environment variables:

DWAVE_CONFIG_FILE: Configuration file path.

DWAVE_PROFILE: Name of profile (section).

DWAVE_API_CLIENT: API client class. Supported values are qpu or sw.

DWAVE_API_ENDPOINT: API endpoint URL.

2.2. Reference Documentation 9

https://docs.python.org/3/library/configparser.html#module-configparser

D-Wave Cloud Client, Release 0.6.2

DWAVE_API_TOKEN: API authorization token.

DWAVE_API_SOLVER: Default solver.

DWAVE_API_PROXY: URL for proxy connections to D-Wave API.

DWAVE_API_HEADERS: Optional additional HTTP headers.

Examples

The following are typical examples of using from_config() to create a configured client.

This first example initializes Client from an explicitly specified configuration file,
“~/jane/my_path_to_config/my_cloud_conf.conf”:

[defaults]
token = ABC-123456789123456789123456789

[first-qpu]
solver = {"qpu": true}

[feature]
endpoint = https://url.of.some.dwavesystem.com/sapi
token = DEF-987654321987654321987654321
solver = {"num_qubits__gte": 2000, "max_anneal_schedule_points__gte": 4}

The example code below creates a client object that connects to a D-Wave QPU, using dwave.cloud.qpu.
Client and the first available online D-Wave system at the default API endpoint URL (https://cloud.dwavesys.com/
sapi). The feature profile specifies a solver selected based on available features, namely we’re requesting the first
solver that has at least 2000 qubits and the anneal schedule can be described with at least 4 points.

>>> from dwave.cloud import Client
>>> client = Client.from_config(config_file='~/jane/my_path_to_config/my_cloud_conf.
→˓conf') # doctest: +SKIP
>>> # code that uses client
>>> client.close()

This second example auto-detects a configuration file on the local system following the user/system configuration
paths of get_configfile_paths(). It passes through to the instantiated client an unrecognized key-value pair
my_param=‘my_value‘.

>>> from dwave.cloud import Client
>>> client = Client.from_config(my_param=`my_value`)
>>> # code that uses client
>>> client.close()

This third example instantiates two clients, for managing both QPU and software solvers. Common key-value pairs
are taken from the defaults section of a shared configuration file:

[defaults]
token = ABC-123456789123456789123456789

[primary-qpu]
solver = {"qpu": true}

[sw-solver]
client = sw
solver = c4-sw_sample

(continues on next page)

10 Chapter 2. Documentation

https://cloud.dwavesys.com/sapi
https://cloud.dwavesys.com/sapi

D-Wave Cloud Client, Release 0.6.2

(continued from previous page)

endpoint = https://url.of.some.software.resource.com/my_if
token = DEF-987654321987654321987654321

[backup-qpu]
solver = {"qpu": true, "num_qubits__gte": 2000}
endpoint = https://url.of.some.dwavesystem.com/sapi
proxy = http://user:pass@myproxy.com:8080/
token = XYZ-0101010100112341234123412341234

The example code below creates client objects for two QPU solvers (at the same URL but each with its own solver ID
and token) and one software solver.

>>> from dwave.cloud import Client
>>> client_qpu1 = Client.from_config(profile='primary-qpu') # doctest: +SKIP
>>> client_qpu1 = Client.from_config(profile='backup-qpu') # doctest: +SKIP
>>> client_sw1 = Client.from_config(profile='sw-solver') # doctest: +SKIP
>>> client_qpu1.default_solver # doctest: +SKIP
u'EXAMPLE_2000Q_SYSTEM_A'
>>> client_qpu2.endpoint # doctest: +SKIP
u'https://url.of.some.dwavesystem.com/sapi'
>>> # code that uses client
>>> client_qpu1.close() # doctest: +SKIP
>>> client_qpu2.close() # doctest: +SKIP
>>> client_sw1.close() # doctest: +SKIP

This fourth example loads configurations auto-detected in more than one configuration file, with the higher priority file
(in the current working directory) supplementing and overriding values from the lower priority user-local file. After
instantiation, an endpoint from the default section and client from the profile section is provided from the user-local
/usr/local/share/dwave/dwave.conf file:

[defaults]
solver = {"qpu": true}

[dw2000]
endpoint = https://int.se.dwavesystems.com/sapi
token = ABC-123456789123456789123456789

A solver is supplemented from the file in the current working directory, which also overrides the token value. ./
dwave.conf is the file in the current directory:

[dw2000]
token = DEF-987654321987654321987654321

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> client.default_solver # doctest: +SKIP
u'EXAMPLE_2000Q_SYSTEM_A'
>>> client.endpoint # doctest: +SKIP
u'https://int.se.dwavesystems.com/sapi'
>>> client.token # doctest: +SKIP
u'DEF-987654321987654321987654321'
>>> # code that uses client
>>> client.close() # doctest: +SKIP

The next example uses load_config() to load profile values. Most users do not need to use this method. It loads
from the following configuration file, dwave_c.conf, located in the current working directory, and specified explicitly:

2.2. Reference Documentation 11

D-Wave Cloud Client, Release 0.6.2

[defaults]
endpoint = https://url.of.some.dwavesystem.com/sapi
solver = {"qpu": true}

[dw2000a]
solver = {"software": true, "name": "EXAMPLE_2000Q"}
token = ABC-123456789123456789123456789

[dw2000b]
solver = {"qpu": true}
token = DEF-987654321987654321987654321

This configuration file contains two profiles in addition to the defaults section. In the following example code, first no
profile is specified, and the first profile after the defaults section is loaded with the solver overridden by the environment
variable. Next, the second profile is selected with the explicitly named solver overriding the environment variable
setting.

>>> import dwave.cloud as dc
>>> import os
>>> os.environ['DWAVE_API_SOLVER'] = 'EXAMPLE_2000Q_SYSTEM' # doctest: +SKIP
>>> dc.config.load_config("./dwave_c.conf") # doctest: +SKIP
{'client': u'sw',
'endpoint': u'https://url.of.some.dwavesystem.com/sapi',
'proxy': None,
'headers': None,
'solver': 'EXAMPLE_2000Q_SYSTEM',
'token': u'ABC-123456789123456789123456789'}

>>> dc.config.load_config("./dwave_c.conf", profile='dw2000b', solver='Solver3') #
→˓doctest: +SKIP
{'client': u'qpu',
'endpoint': u'https://url.of.some.dwavesystem.com/sapi',
'proxy': None,
'headers': None,
'solver': 'Solver3',
'token': u'DEF-987654321987654321987654321'}

Methods

Most users do not need to use these methods.

Loading Configuration

These functions deploy D-Wave Cloud Client settings from a configuration file.

load_config([config_file, profile, client, . . .]) Load D-Wave Cloud Client configuration based on a
configuration file.

dwave.cloud.config.load_config

dwave.cloud.config.load_config(config_file=None, profile=None, client=None, endpoint=None,
token=None, solver=None, proxy=None, headers=None)

Load D-Wave Cloud Client configuration based on a configuration file.

12 Chapter 2. Documentation

D-Wave Cloud Client, Release 0.6.2

Configuration values can be specified in multiple ways, ranked in the following order (with 1 the highest ranked):

1. Values specified as keyword arguments in load_config(). These values replace values read from a
configuration file, and therefore must be strings, including float values for timeouts, boolean flags (tested
for “truthiness”), and solver feature constraints (a dictionary encoded as JSON).

2. Values specified as environment variables.

3. Values specified in the configuration file.

Configuration-file format is described in dwave.cloud.config.

If the location of the configuration file is not specified, auto-detection searches for existing configuration files in
the standard directories of get_configfile_paths().

If a configuration file explicitly specified, via an argument or environment variable, does not exist or is unread-
able, loading fails with ConfigFileReadError. Loading fails with ConfigFileParseError if the
file is readable but invalid as a configuration file.

Similarly, if a profile explicitly specified, via an argument or environment variable, is not present in the loaded
configuration, loading fails with ValueError. Explicit profile selection also fails if the configuration file is
not explicitly specified, detected on the system, or defined via an environment variable.

Environment variables: DWAVE_CONFIG_FILE, DWAVE_PROFILE, DWAVE_API_CLIENT,
DWAVE_API_ENDPOINT, DWAVE_API_TOKEN, DWAVE_API_SOLVER, DWAVE_API_PROXY,
DWAVE_API_HEADERS.

Environment variables are described in dwave.cloud.config.

Parameters

• config_file (str/[str]/None/False/True, default=None) – Path to con-
figuration file(s).

If None, the value is taken from DWAVE_CONFIG_FILE environment variable if defined.
If the environment variable is undefined or empty, auto-detection searches for existing con-
figuration files in the standard directories of get_configfile_paths().

If False, loading from file(s) is skipped; if True, forces auto-detection (regardless of the
DWAVE_CONFIG_FILE environment variable).

• profile (str, default=None) – Profile name (name of the profile section in the
configuration file).

If undefined, inferred from DWAVE_PROFILE environment variable if defined. If the envi-
ronment variable is undefined or empty, a profile is selected in the following order:

1. From the default section if it includes a profile key.

2. The first section (after the default section).

3. If no other section is defined besides [defaults], the defaults section is promoted and
selected.

• client (str, default=None) – Client type used for accessing the API. Supported
values are qpu for dwave.cloud.qpu.Client and sw for dwave.cloud.sw.
Client.

• endpoint (str, default=None) – API endpoint URL.

• token (str, default=None) – API authorization token.

• solver (dict/str, default=None) – solver features, as a JSON-encoded dictio-
nary of feature constraints, the client should use. See get_solvers() for semantics of
supported feature constraints.

2.2. Reference Documentation 13

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

D-Wave Cloud Client, Release 0.6.2

If undefined, the client uses a solver definition from environment variables, a configuration
file, or falls back to the first available online solver.

For backward compatibility, solver name in string format is accepted and converted to
{"name": <solver name>}.

• proxy (str, default=None) – URL for proxy to use in connections to D-Wave API.
Can include username/password, port, scheme, etc. If undefined, client uses the system-
level proxy, if defined, or connects directly to the API.

• headers (dict/str, default=None) –

Header lines to include in API calls, each line formatted as Key: value, or a
parsed dictionary.

Returns Mapping of configuration keys to values for the profile (section), as read from the config-
uration file and optionally overridden by environment values and specified keyword arguments.
Always contains the client, endpoint, token, solver, and proxy keys.

Return type dict

Raises

• ValueError – Invalid (non-existing) profile name.

• ConfigFileReadError – Config file specified or detected could not be opened or read.

• ConfigFileParseError – Config file parse failed.

Examples This example loads the configuration from an auto-detected configuration file in the home directory
of a Windows system user.

>>> from dwave.cloud import config
>>> config.load_config()
{'client': 'qpu',
'endpoint': 'https://url.of.some.dwavesystem.com/sapi',
'proxy': None,
'solver': 'EXAMPLE_2000Q_SYSTEM_A',
'token': 'DEF-987654321987654321987654321',
'headers': None}

>>> See which configuration file was loaded
>>> config.get_configfile_paths()
['C:\Users\jane\AppData\Local\dwavesystem\dwave\dwave.conf']

Additional examples are given in dwave.cloud.config.

Managing Files

These functions manage your D-Wave Cloud Client configuration files. It’s recommended you set up your configura-
tion through the interactive CLI utility instead.

get_configfile_paths([system, user, local,
. . .])

Return a list of local configuration file paths.

get_configfile_path() Return the highest-priority local configuration file.
get_default_configfile_path() Return the default configuration-file path.

14 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

D-Wave Cloud Client, Release 0.6.2

dwave.cloud.config.get_configfile_paths

dwave.cloud.config.get_configfile_paths(system=True, user=True, local=True,
only_existing=True)

Return a list of local configuration file paths.

Search paths for configuration files on the local system are based on homebase and depend on operating system;
for example, for Linux systems these might include dwave.conf in the current working directory (CWD),
user-local .config/dwave/, and system-wide /etc/dwave/.

Parameters

• system (boolean, default=True) – Search for system-wide configuration files.

• user (boolean, default=True) – Search for user-local configuration files.

• local (boolean, default=True) – Search for local configuration files (in CWD).

• only_existing (boolean, default=True) – Return only paths for files that exist
on the local system.

Returns List of configuration file paths.

Return type list[str]

Examples

This example displays all paths to configuration files on a Windows system running Python 2.7 and then finds
the single existing configuration file.

>>> import dwave.cloud as dc
>>> # Display paths
>>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP
[u'C:\ProgramData\dwavesystem\dwave\dwave.conf',
u'C:\Users\jane\AppData\Local\dwavesystem\dwave\dwave.conf',
'.\dwave.conf']
>>> # Find existing files
>>> dc.config.get_configfile_paths() # doctest: +SKIP
[u'C:\Users\jane\AppData\Local\dwavesystem\dwave\dwave.conf']

dwave.cloud.config.get_configfile_path

dwave.cloud.config.get_configfile_path()
Return the highest-priority local configuration file.

Selects the top-ranked configuration file path from a list of candidates returned by
get_configfile_paths(), or None if no candidate path exists.

Returns Configuration file path.

Return type str

Examples

This example displays the highest-priority configuration file on a Windows system running Python 2.7.

2.2. Reference Documentation 15

https://github.com/dwavesystems/homebase
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

D-Wave Cloud Client, Release 0.6.2

>>> import dwave.cloud as dc
>>> # Display paths
>>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP
[u'C:\ProgramData\dwavesystem\dwave\dwave.conf',
u'C:\Users\jane\AppData\Local\dwavesystem\dwave\dwave.conf',
'.\dwave.conf']
>>> # Find highest-priority local configuration file
>>> dc.config.get_configfile_path() # doctest: +SKIP
u'C:\Users\jane\AppData\Local\dwavesystem\dwave\dwave.conf'

dwave.cloud.config.get_default_configfile_path

dwave.cloud.config.get_default_configfile_path()
Return the default configuration-file path.

Typically returns a user-local configuration file; e.g: ~/.config/dwave/dwave.conf.

Returns Configuration file path.

Return type str

Examples

This example displays the default configuration file on an Ubuntu Unix system running IPython 2.7.

>>> import dwave.cloud as dc
>>> # Display paths
>>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP
['/etc/xdg/xdg-ubuntu/dwave/dwave.conf',
'/usr/share/upstart/xdg/dwave/dwave.conf',
'/etc/xdg/dwave/dwave.conf',
'/home/mary/.config/dwave/dwave.conf',
'./dwave.conf']
>>> # Find default configuration path
>>> dc.config.get_default_configfile_path() # doctest: +SKIP
'/home/mary/.config/dwave/dwave.conf'

2.2.2 Clients

The solvers that provide sampling for solving Ising and QUBO problems, such as a D-Wave 2000Q QPU or a software
sampler such as the dimod simulated annealing sampler, are typically remote resources. The D-Wave Cloud Client
Client class manages such remote solver resources.

Preferred use is with a context manager—a with Client.from_config(...) as construct—to ensure proper
closure of all resources. The following example snippet creates a client based on an auto-detected configuration file
and instantiates a solver.

>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver(num_qubits__gt=2000)

Alternatively, the following example snippet creates a client for software resources that it later explicitly closes.

16 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/dwavesystems/dimod

D-Wave Cloud Client, Release 0.6.2

>>> client = Client.from_config(software=True) # doctest: +SKIP
>>> # code that uses client
>>> client.close() # doctest: +SKIP

Typically you use the Client class. By default, it instantiates a QPU client. You can also use the specialized QPU
and CPU/GPU clients directly.

Client (Base Client)

D-Wave API clients handle communications with solver resources: problem submittal, monitoring, samples retrieval,
etc.

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file, which is con-
figured to access a D-Wave 2000Q QPU, submits a QUBO problem (a Boolean NOT gate represented by a penalty
model), and samples 5 times.

>>> from dwave.cloud import Client
>>> Q = {(0, 0): -1, (0, 4): 0, (4, 0): 2, (4, 4): -1}
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... computation = solver.sample_qubo(Q, num_reads=5)
...
>>> for i in range(5): # doctest: +SKIP
... print(computation.samples[i][0], computation.samples[i][4])
...
(1, 0)
(1, 0)
(0, 1)
(0, 1)
(0, 1)

Class

class dwave.cloud.client.Client(endpoint=None, token=None, solver=None,
proxy=None, permissive_ssl=False, request_timeout=60,
polling_timeout=None, connection_close=False, head-
ers=None, **kwargs)

Base client class for all D-Wave API clients. Used by QPU and software sampler classes.

Manages workers and handles thread pools for submitting problems, cancelling tasks, polling problem status,
and retrieving results.

Parameters

• endpoint (str) – D-Wave API endpoint URL.

• token (str) – Authentication token for the D-Wave API.

• solver (dict/str) – Default solver features (or simply solver name).

• proxy (str) – Proxy URL to be used for accessing the D-Wave API.

• permissive_ssl (bool, default=False) – Disables SSL verification.

2.2. Reference Documentation 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

D-Wave Cloud Client, Release 0.6.2

• request_timeout (float, default=60) – Connect and read timeout (in seconds)
for all requests to the D-Wave API.

• polling_timeout (float, default=None) – Problem status polling timeout (in
seconds), after which polling is aborted.

• connection_close (bool, default=False) – Force HTTP(S) connection close
after each request.

• headers (dict/str) – Additional HTTP headers.

Other Parameters Unrecognized keys (str) – All unrecognized keys are passed through to the
appropriate client class constructor as string keyword arguments.

An explicit key value overrides an identical user-defined key value loaded from a configuration
file.

Examples

This example directly initializes a Client. Direct initialization uses class constructor arguments, the minimum
being a value for token.

>>> from dwave.cloud import Client
>>> client = Client(token='secret')
>>> # code that uses client
>>> client.close()

Methods

client.Client.from_config([config_file,
. . .])

Client factory method to instantiate a client instance
from configuration.

client.Client.solvers([refresh]) Deprecated in favor of get_solvers().
client.Client.get_solver([name, refresh]) Load the configuration for a single solver.
client.Client.get_solvers([refresh, or-
der_by])

Return a filtered list of solvers handled by this client.

client.Client.is_solver_handled(solver) Determine if the specified solver should be handled by
this client.

client.Client.close() Perform a clean shutdown.

dwave.cloud.client.Client.from_config

classmethod Client.from_config(config_file=None, profile=None, client=None, endpoint=None,
token=None, solver=None, proxy=None, headers=None,
legacy_config_fallback=False, **kwargs)

Client factory method to instantiate a client instance from configuration.

Configuration values can be specified in multiple ways, ranked in the following order (with 1 the highest ranked):

1. Values specified as keyword arguments in from_config()

2. Values specified as environment variables

3. Values specified in the configuration file

Configuration-file format is described in dwave.cloud.config.

18 Chapter 2. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

D-Wave Cloud Client, Release 0.6.2

If the location of the configuration file is not specified, auto-detection searches for existing configuration files in
the standard directories of get_configfile_paths().

If a configuration file explicitly specified, via an argument or environment variable, does not exist or is unread-
able, loading fails with ConfigFileReadError. Loading fails with ConfigFileParseError if the
file is readable but invalid as a configuration file.

Similarly, if a profile explicitly specified, via an argument or environment variable, is not present in the loaded
configuration, loading fails with ValueError. Explicit profile selection also fails if the configuration file is
not explicitly specified, detected on the system, or defined via an environment variable.

Environment variables: DWAVE_CONFIG_FILE, DWAVE_PROFILE, DWAVE_API_CLIENT,
DWAVE_API_ENDPOINT, DWAVE_API_TOKEN, DWAVE_API_SOLVER, DWAVE_API_PROXY,
DWAVE_API_HEADERS.

Environment variables are described in dwave.cloud.config.

Parameters

• config_file (str/[str]/None/False/True, default=None) – Path to con-
figuration file.

If None, the value is taken from DWAVE_CONFIG_FILE environment variable if defined.
If the environment variable is undefined or empty, auto-detection searches for existing con-
figuration files in the standard directories of get_configfile_paths().

If False, loading from file is skipped; if True, forces auto-detection (regardless of the
DWAVE_CONFIG_FILE environment variable).

• profile (str, default=None) – Profile name (name of the profile section in the
configuration file).

If undefined, inferred from DWAVE_PROFILE environment variable if defined. If the envi-
ronment variable is undefined or empty, a profile is selected in the following order:

1. From the default section if it includes a profile key.

2. The first section (after the default section).

3. If no other section is defined besides [defaults], the defaults section is promoted and
selected.

• client (str, default=None) – Client type used for accessing the API. Supported
values are qpu for dwave.cloud.qpu.Client and sw for dwave.cloud.sw.
Client.

• endpoint (str, default=None) – API endpoint URL.

• token (str, default=None) – API authorization token.

• solver (dict/str, default=None) – Default solver features to use in
get_solver().

Defined via dictionary of solver feature constraints (see get_solvers()). For backward
compatibility, a solver name, as a string, is also accepted and converted to {"name":
<solver name>}.

If undefined, get_solver() uses a solver definition from environment variables, a con-
figuration file, or falls back to the first available online solver.

• proxy (str, default=None) – URL for proxy to use in connections to D-Wave API.
Can include username/password, port, scheme, etc. If undefined, client uses the system-
level proxy, if defined, or connects directly to the API.

2.2. Reference Documentation 19

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

D-Wave Cloud Client, Release 0.6.2

• headers (dict/str, default=None) – Newline-separated additional HTTP head-
ers to include with each API request, or a dictionary of (key, value) pairs.

• legacy_config_fallback (bool, default=False) – If True and loading from
a standard D-Wave Cloud Client configuration file (dwave.conf) fails, tries loading a
legacy configuration file (~/.dwrc).

Other Parameters Unrecognized keys (str) – All unrecognized keys are passed through to the
appropriate client class constructor as string keyword arguments.

An explicit key value overrides an identical user-defined key value loaded from a configuration
file.

Returns Appropriate instance of a QPU or software client.

Return type Client (dwave.cloud.qpu.Client or dwave.cloud.sw.Client, de-
fault=:class:dwave.cloud.qpu.Client)

Raises

• ConfigFileReadError – Config file specified or detected could not be opened or read.

• ConfigFileParseError – Config file parse failed.

Examples

A variety of examples are given in dwave.cloud.config.

This example initializes Client from an explicitly specified configuration file,
“~/jane/my_path_to_config/my_cloud_conf.conf”:

>>> from dwave.cloud import Client
>>> client = Client.from_config(config_file='~/jane/my_path_to_config/my_cloud_
→˓conf.conf')
>>> # code that uses client
>>> client.close()

dwave.cloud.client.Client.solvers

Client.solvers(refresh=False, **filters)
Deprecated in favor of get_solvers().

dwave.cloud.client.Client.get_solver

Client.get_solver(name=None, refresh=False, **filters)
Load the configuration for a single solver.

Makes a blocking web call to {endpoint}/solvers/remote/{solver_name}/, where {endpoint} is a URL configured
for the client, and returns a Solver instance that can be used to submit sampling problems to the D-Wave API
and retrieve results.

Parameters

• name (str) – ID of the requested solver. None returns the default solver. If de-
fault solver is not configured, None returns the first available solver in Client’s class
(QPU/software/base).

20 Chapter 2. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

D-Wave Cloud Client, Release 0.6.2

• **filters (keyword arguments, optional) – Dictionary of filters over features
this solver has to have. For a list of feature names and values, see: get_solvers().

• order_by (callable/str, default='id') – Solver sorting key function (or
Solver attribute name). By default, solvers are sorted by ID/name.

• refresh (bool) – Return solver from cache (if cached with get_solvers()), unless
set to True.

Returns Solver

Examples

This example creates two solvers for a client instantiated from a local system’s auto-detected default configu-
ration file, which configures a connection to a D-Wave resource that provides two solvers. The first uses the
default solver, the second explicitly selects another solver.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> client.get_solvers() # doctest: +SKIP
[Solver(id='2000Q_ONLINE_SOLVER1'), Solver(id='2000Q_ONLINE_SOLVER2')]
>>> solver1 = client.get_solver() # doctest: +SKIP
>>> solver2 = client.get_solver(name='2000Q_ONLINE_SOLVER2') # doctest: +SKIP
>>> solver1.id # doctest: +SKIP
'2000Q_ONLINE_SOLVER1'
>>> solver2.id # doctest: +SKIP
'2000Q_ONLINE_SOLVER2'
>>> # code that uses client
>>> client.close() # doctest: +SKIP

dwave.cloud.client.Client.get_solvers

Client.get_solvers(refresh=False, order_by=’avg_load’, **filters)
Return a filtered list of solvers handled by this client.

Parameters

• refresh (bool, default=False) – Force refresh of cached list of
solvers/properties.

• order_by (callable/str/None, default='avg_load') – Solver sorting key
function (or Solver attribute/item dot-separated path). By default, solvers are sorted
by average load. To explicitly not sort the solvers (and use the API-returned order), set
order_by=None.

Signature of the key callable is:

key :: (Solver s, Ord k) => s -> k

Basic structure of the key string path is:

"-"? (attr|item) ("." (attr|item))*

For example, to use solver property named max_anneal_schedule_points, avail-
able in Solver.properties dict, you can either specify a callable key:

2.2. Reference Documentation 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

D-Wave Cloud Client, Release 0.6.2

key=lambda solver: solver.properties['max_anneal_schedule_points']

or, you can use a short string path based key:

key='properties.max_anneal_schedule_points'

Solver derived properties, available as Solver properties can also be used (e.g.
num_active_qubits, online, avg_load, etc).

Ascending sort order is implied, unless the key string path does not start with -, in which
case descending sort is used.

Note: the sort used for ordering solvers by key is stable, meaning that if multiple solvers
have the same value for the key, their relative order is preserved, and effectively they are in
the same order as returned by the API.

Note: solvers with None for key appear last in the list of solvers. When providing a key
callable, ensure all values returned are of the same type (particularly in Python 3). For
solvers with undefined key value, return None.

• **filters – See Filtering forms and Operators below.

Solver filters are defined, similarly to Django QuerySet filters, with keyword arguments of form
<key1>__. . . __<keyN>[__<operator>]=<value>. Each <operator> is a predicate (boolean) function that acts
on two arguments: value of feature <name> (described with keys path <key1.key2. . . keyN>) and the required
<value>.

Feature <name> can be:

1) a derived solver property, available as an identically named Solver’s property (name, qpu, software,
online, num_active_qubits, avg_load)

2) a solver parameter, available in Solver.parameters

3) a solver property, available in Solver.properties

4) a path describing a property in nested dictionaries

Filtering forms are:

• <derived_property>__<operator> (object <value>)

• <derived_property> (bool)

This form ensures the value of solver’s property bound to derived_property, after applying operator equals
the value. The default operator is eq.

For example:

>>> client.get_solvers(avg_load__gt=0.5)

but also:

>>> client.get_solvers(online=True)
>>> # identical to:
>>> client.get_solvers(online__eq=True)

• <parameter>__<operator> (object <value>)

• <parameter> (bool)

22 Chapter 2. Documentation

D-Wave Cloud Client, Release 0.6.2

This form ensures that the solver supports parameter. General operator form can be used but usually
does not make sense for parameters, since values are human-readable descriptions. The default operator is
available.

Example:

>>> client.get_solvers(flux_biases=True)
>>> # identical to:
>>> client.get_solvers(flux_biases__available=True)

• <property>__<operator> (object <value>)

• <property> (bool)

This form ensures the value of the solver’s property, after applying operator equals the righthand side
value. The default operator is eq.

Note: if a non-existing parameter/property name/key given, the default operator is eq.

Operators are:

• available (<name>: str, <value>: bool): Test availability of <name> feature.

• eq, lt, lte, gt, gte (<name>: str, <value>: any): Standard relational operators that compare feature
<name> value with <value>.

• regex (<name>: str, <value>: str): Test regular expression matching feature value.

• covers (<name>: str, <value>: single value or range expressed as 2-tuple/list): Test feature <name>
value (which should be a range) covers a given value or a subrange.

• within (<name>: str, <value>: range expressed as 2-tuple/list): Test feature <name> value (which can
be a single value or a range) is within a given range.

• in (<name>: str, <value>: container type): Test feature <name> value is in <value> container.

• contains (<name>: str, <value>: any): Test feature <name> value (container type) contains <value>.

• issubset (<name>: str, <value>: container type): Test feature <name> value (container type) is a subset
of <value>.

• issuperset (<name>: str, <value>: container type): Test feature <name> value (container type) is a su-
perset of <value>.

Derived properies are:

• name (str): Solver name/id.

• qpu (bool): Is solver QPU based?

• software (bool): Is solver software based?

• online (bool, default=True): Is solver online?

• num_active_qubits (int): Number of active qubits. Less then or equal to num_qubits.

• avg_load (float): Solver’s average load (similar to Unix load average).

Common solver parameters are:

• flux_biases: Should solver accept flux biases?

• anneal_schedule: Should solver accept anneal schedule?

Common solver properties are:

• num_qubits (int): Number of qubits available.

2.2. Reference Documentation 23

D-Wave Cloud Client, Release 0.6.2

• vfyc (bool): Should solver work on “virtual full-yield chip”?

• max_anneal_schedule_points (int): Piecewise linear annealing schedule points.

• h_range ([int,int]), j_range ([int,int]): Biases/couplings values range.

• num_reads_range ([int,int]): Range of allowed values for num_reads parameter.

Returns List of all solvers that satisfy the conditions.

Return type list[Solver]

Note: Client subclasses (e.g. dwave.cloud.qpu.Client or dwave.cloud.sw.Client) already
filter solvers by resource type, so for qpu and software filters to have effect, call get_solvers() on base
class Client.

Examples:

client.get_solvers(
num_qubits__gt=2000, # we need more than 2000 qubits
num_qubits__lt=4000, # ... but fewer than 4000 qubits
num_qubits__within=(2000, 4000), # an alternative to the previous two lines
num_active_qubits=1089, # we want a particular number of active

→˓qubits
vfyc=True, # we require a fully yielded Chimera
vfyc__in=[False, None], # inverse of the previous filter
vfyc__available=False, # we want solvers that do not advertize

→˓the vfyc property
anneal_schedule=True, # we need support for custom anneal

→˓schedule
max_anneal_schedule_points__gte=4, # we need at least 4 points for our

→˓anneal schedule
num_reads_range__covers=1000, # our solver must support returning 1000

→˓reads
extended_j_range__covers=[-2, 2], # we need extended J range to contain

→˓subrange [-2,2]
couplers__contains=[0, 128], # coupler (edge between) qubits (0,128)

→˓must exist
couplers__issuperset=[[0,128], [0,4]],

two couplers required: (0,128) and (0,4)
qubits__issuperset={0, 4, 215}, # qubits 0, 4 and 215 must exist
supported_problem_types__issubset={'ising', 'qubo'},

require Ising, QUBO or both to be
→˓supported

name='DW_2000Q_5', # full solver name/ID match
name__regex='.*2000.*', # partial/regex-based solver name match
chip_id__regex='DW_.*', # chip ID prefix must be DW_
topology__type__eq="chimera" # topology.type must be chimera

)

dwave.cloud.client.Client.is_solver_handled

static Client.is_solver_handled(solver)
Determine if the specified solver should be handled by this client.

24 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#list

D-Wave Cloud Client, Release 0.6.2

Default implementation accepts all solvers (always returns True). Override this predicate function with a sub-
class if you want to specialize your client for a particular type of solvers.

Examples

This function accepts only solvers named “My_Solver_*”.

@staticmethod
def is_solver_handled(solver):

return solver and solver.id.startswith('My_Solver_')

dwave.cloud.client.Client.close

Client.close()
Perform a clean shutdown.

Waits for all the currently scheduled work to finish, kills the workers, and closes the connection pool.

Note: Ensure your code does not submit new work while the connection is closing.

Where possible, it is recommended you use a context manager (a with Client.from_config(...) as
construct) to ensure your code properly closes all resources.

Examples

This example creates a client (based on an auto-detected configuration file), executes some code (represented by
a placeholder comment), and then closes the client.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> # code that uses client
>>> client.close()

Specialized Clients

Typically you use the Client class. By default, it instantiates a QPU client. You can also instantiate a QPU or
CPU/GPU client directly.

QPU Client

An implementation of the REST API for D-Wave Solver API (SAPI) servers.

SAPI servers provide authentication, queuing, and scheduling services, and provide a network interface to solvers.
This API enables you submit a binary quadratic (Ising or QUBO) model and receive samples from a distribution over
the model as defined by a selected solver.

SAPI server workflow is roughly as follows:

1. Submitted problems enter an input queue. Each user has an input queue per solver.

2. Drawing from all input queues for a solver, problems are scheduled.

2.2. Reference Documentation 25

D-Wave Cloud Client, Release 0.6.2

3. Results are cached for retrieval by the client.

Class

class dwave.cloud.qpu.Client(endpoint=None, token=None, solver=None, proxy=None, permis-
sive_ssl=False, request_timeout=60, polling_timeout=None, con-
nection_close=False, headers=None, **kwargs)

D-Wave API client specialized to work with QPU solvers.

This class is instantiated by default, or explicitly when client=qpu, with the typical base client instantiation
with Client.from_config() as client: of a client. (You should not instantiate this class with
client=sw or use it with solver feature constraint software=True.)

Examples

This example explicitly instantiates a dwave.cloud.qpu.client based on the local system‘s default D-
Wave Cloud Client configuration file to sample a random Ising problem tailored to fit the client‘s default solver‘s
graph.

import random
from dwave.cloud.qpu import Client

Use context manager to ensure resources (thread pools used by Client) are
→˓released
with Client.from_config() as client:

solver = client.get_solver()

Build problem to exactly fit the solver graph
linear = {index: random.choice([-1, 1]) for index in solver.nodes}
quad = {key: random.choice([-1, 1]) for key in solver.undirected_edges}

Sample 100 times and print out the first sample
computation = solver.sample_ising(linear, quad, num_reads=100)
print(computation.samples[0])

Methods

qpu.Client.is_solver_handled(solver) Determine if the specified solver should be handled by
this client.

dwave.cloud.qpu.Client.is_solver_handled

static Client.is_solver_handled(solver)
Determine if the specified solver should be handled by this client.

This predicate function overrides superclass to filter out any non-QPU solvers.

Current implementation filters out D-Wave software clients with solver IDs prefixed with c4-sw. If needed,
update this method to suit your solver naming scheme.

26 Chapter 2. Documentation

D-Wave Cloud Client, Release 0.6.2

Examples

This example filters solvers for those prefixed 2000Q.

@staticmethod
def is_solver_handled(solver):

return solver and solver.id.startswith('2000Q')

Software-Samplers Client

Class

class dwave.cloud.sw.Client(endpoint=None, token=None, solver=None, proxy=None, permis-
sive_ssl=False, request_timeout=60, polling_timeout=None, connec-
tion_close=False, headers=None, **kwargs)

D-Wave API client specialized to work with remote software solvers (samplers).

This class is instantiated by default, or explicitly when client=sw, with the typical base client instantiation with
Client.from_config() as client: of a client. (You should not instantiate this class with client=qpu
or use it with solver feature constraint qpu=True.)

Examples

This example indirectly instantiates a dwave.cloud.sw.client based on the local system‘s default D-
Wave Cloud Client configuration file to sample a random Ising problem tailored to fit the client‘s default solver‘s
graph.

import random
from dwave.cloud import Client

Use context manager to ensure resources (thread pools used by Client) are
→˓released
with Client.from_config(solver={"software": True}) as client:

solver = client.get_solver()

Build problem to exactly fit the solver graph
linear = {index: random.choice([-1, 1]) for index in solver.nodes}
quad = {key: random.choice([-1, 1]) for key in solver.undirected_edges}

Sample 100 times and print out the first sample
computation = solver.sample_ising(linear, quad, num_reads=100)
print(computation.samples[0])

Methods

sw.Client.is_solver_handled(solver) Determine if the specified solver should be handled by
this client.

2.2. Reference Documentation 27

D-Wave Cloud Client, Release 0.6.2

dwave.cloud.sw.Client.is_solver_handled

static Client.is_solver_handled(solver)
Determine if the specified solver should be handled by this client.

This predicate function overrides superclass to allow only remote software solvers.

Current implementation allows only D-Wave software clients with solver IDs prefixed with c4-sw. If needed,
update this method to suit your solver naming scheme.

Examples

This example filters solvers for those prefixed My_SW_Solver.

@staticmethod
def is_solver_handled(solver):

return solver and solver.id.startswith('My_SW_Solver')

2.2.3 Solver

A solver is a resource for solving problems.

Solvers are responsible for:

• Encoding submitted problems

• Checking submitted parameters

• Decoding answers

• Adding problems to a client’s submission queue

You can list all solvers available to a Client with its get_solvers() method and select and return one with its
get_solver() method.

Class

dwave.cloud.solver.Solver
alias of dwave.cloud.solver.StructuredSolver

class dwave.cloud.solver.BaseSolver(client, data)
Base class for a general D-Wave solver.

This class provides Ising, QUBO and BQM sampling methods and encapsulates the solver description returned
from the D-Wave cloud API.

Parameters

• client (Client) – Client that manages access to this solver.

• data (dict) – Data from the server describing this solver.

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file and checks
the identity of its default solver.

28 Chapter 2. Documentation

https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm

D-Wave Cloud Client, Release 0.6.2

>>> from dwave.cloud import Client
>>> with Client.from_config() as client:
... solver = client.get_solver()
... solver.id # doctest: +SKIP
'EXAMPLE_2000Q_SYSTEM'

class dwave.cloud.solver.StructuredSolver(*args, **kwargs)
Class for D-Wave structured solvers.

This class provides Ising, QUBO and BQM sampling methods and encapsulates the solver description returned
from the D-Wave cloud API.

Parameters

• client (Client) – Client that manages access to this solver.

• data (dict) – Data from the server describing this solver.

class dwave.cloud.solver.UnstructuredSolver(client, data)
Class for D-Wave unstructured solvers.

This class provides Ising, QUBO and BQM sampling methods and encapsulates the solver description returned
from the D-Wave cloud API.

Parameters

• client (Client) – Client that manages access to this solver.

• data (dict) – Data from the server describing this solver.

Methods

StructuredSolver.check_problem(linear,
quadratic)

Test if an Ising model matches the graph provided by
the solver.

StructuredSolver.sample_ising(linear, . . .) Sample from the specified Ising model.
StructuredSolver.sample_qubo(qubo,
**params)

Sample from the specified QUBO.

StructuredSolver.
max_num_reads(**params)

Returns the maximum number of reads for the given
solver parameters.

UnstructuredSolver.sample_ising(linear,
. . .)

Sample from the specified BQM.

UnstructuredSolver.sample_qubo(qubo,
**params)

Sample from the specified QUBO.

UnstructuredSolver.sample_bqm(bqm,
**params)

Sample from the specified BQM.

dwave.cloud.solver.StructuredSolver.check_problem

StructuredSolver.check_problem(linear, quadratic)
Test if an Ising model matches the graph provided by the solver.

Parameters

• linear (list/dict) – Linear terms of the model (h).

• quadratic (dict[(int, int), float]) – Quadratic terms of the model (J).

Returns boolean

2.2. Reference Documentation 29

https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file, which is
configured to access a D-Wave 2000Q QPU, and tests a simple Ising model for two target embeddings (that is,
representations of the model’s graph by coupled qubits on the QPU’s sparsely connected graph), where only the
second is valid.

>>> from dwave.cloud import Client
>>> print((0, 1) in solver.edges) # doctest: +SKIP
False
>>> print((0, 4) in solver.edges) # doctest: +SKIP
True
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... print(solver.check_problem({0: -1, 1: 1},{(0, 1):0.5}))
... print(solver.check_problem({0: -1, 4: 1},{(0, 4):0.5}))
...
False
True

dwave.cloud.solver.StructuredSolver.sample_ising

StructuredSolver.sample_ising(linear, quadratic, **params)
Sample from the specified Ising model.

Parameters

• linear (list/dict) – Linear terms of the model (h).

• quadratic (dict[(int, int), float]) – Quadratic terms of the model (J),
stored in a dict. With keys that are 2-tuples of variables and values are quadratic biases
associated with the pair of variables (the interaction).

• **params – Parameters for the sampling method, solver-specific.

Returns Future

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file, which
is configured to access a D-Wave 2000Q QPU, submits a simple Ising problem (opposite linear biases on two
coupled qubits), and samples 5 times.

>>> from dwave.cloud import Client
>>> with Client.from_config() as client:
... solver = client.get_solver()
... u, v = next(iter(solver.edges))
... computation = solver.sample_ising({u: -1, v: 1}, {}, num_reads=5) #
→˓doctest: +SKIP
... for i in range(5):
... print(computation.samples[i][u], computation.samples[i][v])
...
...
(1, -1)
(1, -1)
(1, -1)

(continues on next page)

30 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

(continued from previous page)

(1, -1)
(1, -1)

dwave.cloud.solver.StructuredSolver.sample_qubo

StructuredSolver.sample_qubo(qubo, **params)
Sample from the specified QUBO.

Parameters

• qubo (dict[(int, int), float]) – Coefficients of a quadratic unconstrained bi-
nary optimization (QUBO) model.

• **params – Parameters for the sampling method, solver-specific.

Returns Future

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file, which is
configured to access a D-Wave 2000Q QPU, submits a QUBO problem (a Boolean NOT gate represented by a
penalty model), and samples 5 times.

>>> from dwave.cloud import Client
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... u, v = next(iter(solver.edges))
... Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
... computation = solver.sample_qubo(Q, num_reads=5)
... for i in range(5):
... print(computation.samples[i][u], computation.samples[i][v])
...
...
(0, 1)
(1, 0)
(1, 0)
(0, 1)
(1, 0)

dwave.cloud.solver.StructuredSolver.max_num_reads

StructuredSolver.max_num_reads(**params)
Returns the maximum number of reads for the given solver parameters.

Parameters **params – Parameters for the sampling method. Relevant to num_reads:

• annealing_time

• readout_thermalization

• num_reads

• programming_thermalization

Returns The maximum number of reads.

2.2. Reference Documentation 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

Return type int

dwave.cloud.solver.UnstructuredSolver.sample_ising

UnstructuredSolver.sample_ising(linear, quadratic, **params)
Sample from the specified BQM.

Parameters

• bqm (BinaryQuadraticModel) – A binary quadratic model.

• **params – Parameters for the sampling method, solver-specific.

Returns Future

Note: To use this method, dimod package has to be installed.

dwave.cloud.solver.UnstructuredSolver.sample_qubo

UnstructuredSolver.sample_qubo(qubo, **params)
Sample from the specified QUBO.

Parameters

• qubo (dict[(int, int), float]) – Coefficients of a quadratic unconstrained bi-
nary optimization (QUBO) model.

• **params – Parameters for the sampling method, solver-specific.

Returns Future

Note: To use this method, dimod package has to be installed.

dwave.cloud.solver.UnstructuredSolver.sample_bqm

UnstructuredSolver.sample_bqm(bqm, **params)
Sample from the specified BQM.

Parameters

• bqm (BinaryQuadraticModel/str) – A binary quadratic model, or a reference to one
(Problem ID returned by .upload_bqm method).

• **params – Parameters for the sampling method, solver-specific.

Returns Future

Note: To use this method, dimod package has to be installed.

Properties

32 Chapter 2. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/bqm/binary_quadratic_model.html#dimod.BinaryQuadraticModel
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.ocean.dwavesys.com/en/latest/glossary.html#term-bqm
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/bqm/binary_quadratic_model.html#dimod.BinaryQuadraticModel

D-Wave Cloud Client, Release 0.6.2

BaseSolver.name
BaseSolver.online Is this solver online (or offline)?
BaseSolver.avg_load Solver’s average load, at the time of description fetch.
BaseSolver.qpu Is this a QPU-based solver?
BaseSolver.software Is this a software-based solver?
StructuredSolver.num_active_qubits The number of active (encoding) qubits.
StructuredSolver.num_qubits Nominal number of qubits on chip (includes active

AND inactive).
StructuredSolver.is_vfyc Is this a virtual full-yield chip?
StructuredSolver.has_flux_biases Solver supports/accepts flux_biases.
StructuredSolver.has_anneal_schedule Solver supports/accepts anneal_schedule.
StructuredSolver.lower_noise

dwave.cloud.solver.BaseSolver.name

BaseSolver.name

dwave.cloud.solver.BaseSolver.online

BaseSolver.online
Is this solver online (or offline)?

dwave.cloud.solver.BaseSolver.avg_load

BaseSolver.avg_load
Solver’s average load, at the time of description fetch.

dwave.cloud.solver.BaseSolver.qpu

BaseSolver.qpu
Is this a QPU-based solver?

dwave.cloud.solver.BaseSolver.software

BaseSolver.software
Is this a software-based solver?

dwave.cloud.solver.StructuredSolver.num_active_qubits

StructuredSolver.num_active_qubits
The number of active (encoding) qubits.

dwave.cloud.solver.StructuredSolver.num_qubits

StructuredSolver.num_qubits
Nominal number of qubits on chip (includes active AND inactive).

2.2. Reference Documentation 33

D-Wave Cloud Client, Release 0.6.2

dwave.cloud.solver.StructuredSolver.is_vfyc

StructuredSolver.is_vfyc
Is this a virtual full-yield chip?

dwave.cloud.solver.StructuredSolver.has_flux_biases

StructuredSolver.has_flux_biases
Solver supports/accepts flux_biases.

dwave.cloud.solver.StructuredSolver.has_anneal_schedule

StructuredSolver.has_anneal_schedule
Solver supports/accepts anneal_schedule.

dwave.cloud.solver.StructuredSolver.lower_noise

StructuredSolver.lower_noise

2.2.4 Computation

Computation manages the interactions between your code and a solver, which manages interactions between the
remote resource and your submitted problems.

Your solver instantiates a Future object for its calls, via D-Wave Sampler API (SAPI) servers, to the remote resource.

You can interact through the Future object with pending (running) or completed computation—sampling on a QPU
or software solver—executed remotely, monitoring problem status, waiting for and retrieving results, cancelling en-
queued jobs, etc.

Some Future methods are blocking.

Class

class dwave.cloud.computation.Future(solver, id_, return_matrix=False)
Class for interacting with jobs submitted to SAPI.

Solver uses Future to construct objects for pending SAPI calls that can wait for requests to complete and
parse returned messages.

Objects are blocked for the duration of any data accessed on the remote resource.

Warning: Future objects are not intended to be directly created. Problem submittal is initiated by one of
the solvers in solver module and executed by one of the clients.

Parameters

• solver (Solver) – Solver responsible for this Future object.

• id (str, optional, default=None) – Identification for a query submitted by a
solver to SAPI. May be None following submission until an identification number is set.

34 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#str

D-Wave Cloud Client, Release 0.6.2

• return_matrix (bool, optional, default=False) – Return values for this
Future object are NumPy matrices.

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a simple QUBO problem to a remote D-Wave resource for 100 samples, and checks a couple of times whether
the sampling is completed.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = solver.sample_qubo(Q, num_reads=100) # doctest: +SKIP
>>> computation.done() # doctest: +SKIP
False
>>> computation.id # doctest: +SKIP
u'1cefeb6d-ebd5-4592-87c0-4cc43ec03e27'
>>> computation.done() # doctest: +SKIP
True
>>> client.close()

Methods

Future.result() Results for a submitted job.
Future.as_completed(fs[, timeout]) Yield Futures objects as they complete.
Future.wait([timeout]) Wait for the solver to receive a response for a submitted

problem.
Future.wait_multiple(futures[, min_done, . . .]) Wait for multiple Future objects to complete.
Future.done() Check whether the solver received a response for a sub-

mitted problem.
Future.cancel() Try to cancel the problem corresponding to this result.

dwave.cloud.computation.Future.result

Future.result()
Results for a submitted job.

Retrives raw result data in a Future object that the solver submitted to a remote resource. First calls to access
this data are blocking.

Returns Results of the submitted job. Should be considered read-only.

Return type dict

Note: Helper properties on Future object are preferred to reading raw results, as they abstract away the
differences in response between some solvers like. Available methods are: samples(), energies(),
occurrences(), variables(), timing(), problem_type(), sampleset() (only if dimod pack-
age is installed).

2.2. Reference Documentation 35

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

D-Wave Cloud Client, Release 0.6.2

Warning: The dictionary returned by result() depends on the solver used. Starting with version 0.7.0
we will not try to standardize them anymore, on client side. For QPU solvers, please replace ‘samples’
with ‘solutions’ and ‘occurrences’ with ‘num_occurrences’. Better yet, use Future.samples() and
Future.occurrences() instead.

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits a
simple QUBO problem (representing a Boolean NOT gate by a penalty function) to a remote D-Wave resource
for 5 samples, and prints part of the returned result (the relevant samples).

>>> from dwave.cloud import Client
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... u, v = next(iter(solver.edges))
... Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
... computation = solver.sample_qubo(Q, num_reads=5)
... for i in range(5):
... result = computation.result()
... print(result['solutions'][i][u], result['solutions'][i][v])
...
...
(0, 1)
(1, 0)
(1, 0)
(0, 1)
(0, 1)

dwave.cloud.computation.Future.as_completed

static Future.as_completed(fs, timeout=None)
Yield Futures objects as they complete.

Returns an iterator over the specified list of Future objects that yields those objects as they complete. Com-
pletion occurs when the submitted job is finished or cancelled.

Emulates the behavior of the concurrent.futures.as_completed() function.

Parameters

• fs (list) – List of Future objects to iterate over.

• timeout (float, optional, default=None) – Maximum number of seconds to
await completion. If None, awaits indefinitely.

Returns Listed Future objects as they complete.

Return type Generator (Future objects)

Raises

• concurrent.futures.TimeoutError is raised if per-future timeout is

• exceeded.

36 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits a
simple QUBO problem to a remote D-Wave resource 3 times for differing numers of samples, and yields timing
information for each job as it completes.

>>> import dwave.cloud as dc
>>> client = dc.Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = [solver.sample_qubo(Q, num_reads=1000),
... solver.sample_qubo(Q, num_reads=50),
... solver.sample_qubo(Q, num_reads=10)] # doctest: +SKIP
>>> for tasks in dc.computation.Future.as_completed(computation, timeout=10)
... print(tasks.timing) # doctest: +SKIP
...
{'total_real_time': 17318, ... 'qpu_readout_time_per_sample': 123}
{'total_real_time': 10816, ... 'qpu_readout_time_per_sample': 123}
{'total_real_time': 26285, ... 'qpu_readout_time_per_sample': 123}
...
>>> client.close()

dwave.cloud.computation.Future.wait

Future.wait(timeout=None)
Wait for the solver to receive a response for a submitted problem.

Blocking call that waits for a Future object to complete.

Parameters timeout (float, optional, default=None) – Maximum number of sec-
onds to await completion. If None, waits indefinitely.

Returns True if solver received a response.

Return type Boolean

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a simple QUBO problem to a remote D-Wave resource for 100 samples, and tries waiting for 10 seconds for
sampling to complete.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = solver.sample_qubo(Q, num_reads=100) # doctest: +SKIP
>>> computation.wait(timeout=10) # doctest: +SKIP
False
>>> computation.remote_status
'IN_PROGRESS'
>>> computation.wait(timeout=10) # doctest: +SKIP
True
>>> computation.remote_status # doctest: +SKIP

(continues on next page)

2.2. Reference Documentation 37

https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

(continued from previous page)

'COMPLETED'
>>> client.close()

dwave.cloud.computation.Future.wait_multiple

static Future.wait_multiple(futures, min_done=None, timeout=None)
Wait for multiple Future objects to complete.

Blocking call that uses an event object to emulate multi-wait for Python.

Parameters

• futures (list of Futures) – List of Future objects to await.

• min_done (int, optional, default=None) – Minimum required completions to
end the waiting. The wait is terminated when this number of results are ready. If None,
waits for all the Future objects to complete.

• timeout (float, optional, default=None) – Maximum number of seconds to
await completion. If None, waits indefinitely.

Returns completed and not completed submitted tasks. Similar to concurrent.futures.wait()
method’s returned two-tuple of done and not_done sets.

Return type Two-tuple of Future objects

See also:

as_completed() for a blocking iterable of resolved futures similar to concurrent.futures.as_completed()
method.

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits a
simple QUBO problem to a remote D-Wave resource 3 times for differing numers of samples, and waits for sam-
pling to complete on any two of the submissions. The wait ends with the completion of two submissions while
the third is still in progress. (A more typical approach would use something like first = next(Future.
as_completed(computation)) instead.)

>>> import dwave.cloud as dc
>>> client = dc.Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = [solver.sample_qubo(Q, num_reads=1000),
... solver.sample_qubo(Q, num_reads=50),
... solver.sample_qubo(Q, num_reads=10)] # doctest: +SKIP
>>> dc.computation.Future.wait_multiple(computation, min_done=1) # doctest:
→˓+SKIP
([<dwave.cloud.computation.Future at 0x17dde518>,
<dwave.cloud.computation.Future at 0x17ddee80>],

[<dwave.cloud.computation.Future at 0x15078080>])
>>> print(computation[0].done()) # doctest: +SKIP
False
>>> print(computation[1].done()) # doctest: +SKIP
True

(continues on next page)

38 Chapter 2. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

D-Wave Cloud Client, Release 0.6.2

(continued from previous page)

>>> print(computation[2].done()) # doctest: +SKIP
True
>>> client.close()

dwave.cloud.computation.Future.done

Future.done()
Check whether the solver received a response for a submitted problem.

Non-blocking call that checks whether the solver has received a response from the remote resource.

Returns True if solver received a response.

Return type Boolean

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a simple QUBO problem to a remote D-Wave resource for 100 samples, and checks a couple of times whether
sampling is completed.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = solver.sample_qubo(Q, num_reads=100) # doctest: +SKIP
>>> computation.done() # doctest: +SKIP
False
>>> computation.done() # doctest: +SKIP
True
>>> client.close()

dwave.cloud.computation.Future.cancel

Future.cancel()
Try to cancel the problem corresponding to this result.

Non-blocking call to the remote resource in a best-effort attempt to prevent execution of a problem.

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a simple QUBO problem to a remote D-Wave resource for 100 samples, and tries (and in this case succeeds) to
cancel it.

>>> from dwave.cloud import Client
>>> client = Client.from_config()
>>> solver = client.get_solver()
>>> u, v = next(iter(solver.edges))
>>> Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
>>> computation = solver.sample_qubo(Q, num_reads=100) # doctest: +SKIP

(continues on next page)

2.2. Reference Documentation 39

D-Wave Cloud Client, Release 0.6.2

(continued from previous page)

>>> computation.cancel() # doctest: +SKIP
>>> computation.done() # doctest: +SKIP
True
>>> computation.remote_status # doctest: +SKIP
u'CANCELLED'
>>> client.close()

Properties

Future.samples State buffer for the submitted job.
Future.variables List of active variables in response/answer.
Future.energies Energy buffer for the submitted job.
Future.occurrences Occurrences buffer for the submitted job.
Future.sampleset Return SampleSet representation of the results.
Future.problem_type Submitted problem type for this computation, as re-

turned by the solver API.
Future.timing Timing information about a solver operation.

dwave.cloud.computation.Future.samples

Future.samples
State buffer for the submitted job.

First calls to access data of a Future object are blocking; subsequent access to this property is non-blocking.

Returns Samples on the nodes of solver’s graph.

Return type list of lists or NumPy matrix

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits a
simple QUBO problem (representing a Boolean NOT gate by a penalty function) to a remote D-Wave resource
for 5 samples, and prints part of the returned result (the relevant samples).

>>> from dwave.cloud import Client
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... u, v = next(iter(solver.edges))
... Q = {(u, u): -1, (u, v): 0, (v, u): 2, (v, v): -1}
... computation = solver.sample_qubo(Q, num_reads=5)
... for i in range(5):
... print(computation.samples[i][u], computation.samples[i][v])
...
...
(1, 0)
(0, 1)
(0, 1)
(1, 0)
(0, 1)

40 Chapter 2. Documentation

https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/sampleset.html#dimod.SampleSet

D-Wave Cloud Client, Release 0.6.2

dwave.cloud.computation.Future.variables

Future.variables
List of active variables in response/answer.

dwave.cloud.computation.Future.energies

Future.energies
Energy buffer for the submitted job.

First calls to access data of a Future object are blocking; subsequent access to this property is non-blocking.

Returns Energies for each set of samples.

Return type list or NumPy matrix of doubles

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a random Ising problem (+1 or -1 values of linear and quadratic biases on all nodes and edges, respectively, of
the solver’s garph) to a remote D-Wave resource for 10 samples, and prints the returned energies.

>>> import random
>>> from dwave.cloud import Client
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... linear = {index: random.choice([-1, 1]) for index in solver.nodes}
... quad = {key: random.choice([-1, 1]) for key in solver.undirected_edges}
... computation = solver.sample_ising(linear, quad, num_reads=10)
... print(computation.energies)
...
[-3976.0, -3974.0, -3972.0, -3970.0, -3968.0, -3968.0, -3966.0,
-3964.0, -3964.0, -3960.0]

dwave.cloud.computation.Future.occurrences

Future.occurrences
Occurrences buffer for the submitted job.

First calls to access data of a Future object are blocking; subsequent access to this property is non-blocking.

Returns Occurrences. When returned results are ordered in a histogram, occurrences indicates the
number of times a particular solution recurred.

Return type list or NumPy matrix of doubles

Examples

This example creates a solver using the local system’s default D-Wave Cloud Client configuration file, submits
a simple Ising problem with several ground states to a remote D-Wave resource for 20 samples, and prints the
returned results, which are ordered as a histogram. The problem’s ground states tend to recur frequently, and so
those solutions have occurrences greater than 1.

2.2. Reference Documentation 41

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

D-Wave Cloud Client, Release 0.6.2

>>> from dwave.cloud import Client
>>> with Client.from_config() as client: # doctest: +SKIP
... solver = client.get_solver()
... quad = {(16, 20): -1, (17, 20): 1, (16, 21): 1, (17, 21): 1}
... computation = solver.sample_ising({}, quad, num_reads=500, answer_mode=
→˓'histogram')
... for i in range(len(computation.occurrences)):
... print(computation.samples[i][16], computation.samples[i][17],
... computation.samples[i][20], computation.samples[i][21],

' --> ', computation.energies[i], computation.occurrences[i])
...
(-1, 1, -1, -1, ' --> ', -2.0, 41)
(-1, -1, -1, 1, ' --> ', -2.0, 53)
(1, -1, 1, 1, ' --> ', -2.0, 55)
(1, 1, -1, -1, ' --> ', -2.0, 52)
(1, 1, 1, -1, ' --> ', -2.0, 60)
(1, -1, 1, -1, ' --> ', -2.0, 196)
(-1, 1, -1, 1, ' --> ', -2.0, 15)
(-1, -1, 1, 1, ' --> ', -2.0, 28)

dwave.cloud.computation.Future.sampleset

Future.sampleset
Return SampleSet representation of the results.

dwave.cloud.computation.Future.problem_type

Future.problem_type
Submitted problem type for this computation, as returned by the solver API. Typical values are ‘ising’ and
‘qubo’.

dwave.cloud.computation.Future.timing

Future.timing
Timing information about a solver operation.

Mapping from string keys to numeric values representing timing details for a submitted job as returned from the
remote resource. Keys are dependant on the particular solver.

First calls to access data of a Future object are blocking; subsequent access to this property is non-blocking.

Returns Mapping from string keys to numeric values representing timing information.

Return type dict

Examples

This example creates a client using the local system’s default D-Wave Cloud Client configuration file, which
is configured to access a D-Wave 2000Q QPU, submits a simple Ising problem (opposite linear biases on two
coupled qubits) for 5 samples, and prints timing information for the job.

42 Chapter 2. Documentation

https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/sampleset.html#dimod.SampleSet
https://docs.python.org/3/library/stdtypes.html#dict

D-Wave Cloud Client, Release 0.6.2

>>> from dwave.cloud import Client
>>> with Client.from_config() as client:
... solver = client.get_solver()
... u, v = next(iter(solver.edges))
... computation = solver.sample_ising({u: -1, v: 1},{}, num_reads=5) #
→˓doctest: +SKIP
... print(computation.timing)
...
{'total_real_time': 10961, 'anneal_time_per_run': 20, ...}

2.2.5 Exceptions

exception dwave.cloud.exceptions.CanceledFutureError
An exception raised when code tries to read from a canceled future.

exception dwave.cloud.exceptions.ConfigFileError
Base exception for all config file processing errors.

exception dwave.cloud.exceptions.ConfigFileParseError
Invalid format of config file.

exception dwave.cloud.exceptions.ConfigFileReadError
Non-existing or unreadable config file specified or implied.

exception dwave.cloud.exceptions.InvalidAPIResponseError
Raised when an invalid/unexpected response from D-Wave Solver API is received.

exception dwave.cloud.exceptions.InvalidProblemError
Solver cannot handle the given binary quadratic model.

exception dwave.cloud.exceptions.PollingTimeout
Problem polling timed out.

exception dwave.cloud.exceptions.ProblemUploadError
Problem multipart upload failed.

exception dwave.cloud.exceptions.RequestTimeout
REST API request timed out.

exception dwave.cloud.exceptions.SolverAuthenticationError
An exception raised when there is an authentication error.

exception dwave.cloud.exceptions.SolverError
Generic base class for all solver-related errors.

exception dwave.cloud.exceptions.SolverFailureError
An exception raised when there is a remote failure calling a solver.

exception dwave.cloud.exceptions.SolverNotFoundError
Solver with matching feature set not found / not available.

exception dwave.cloud.exceptions.SolverOfflineError
Action attempted on an offline solver.

exception dwave.cloud.exceptions.SolverPropertyMissingError
The solver we received from the API does not have required properties.

exception dwave.cloud.exceptions.Timeout
General timeout error.

2.2. Reference Documentation 43

D-Wave Cloud Client, Release 0.6.2

exception dwave.cloud.exceptions.UnsupportedSolverError
The solver we received from the API is not supported by the client.

2.3 Bibliography

2.4 Installation

Compatible with Python 2 and 3:

pip install dwave-cloud-client

To install from source (available on GitHub in dwavesystems/dwave-cloud-client repo):

pip install -r requirements.txt
python setup.py install

2.5 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other

44 Chapter 2. Documentation

https://github.com/dwavesystems/dwave-cloud-client
http://www.apache.org/licenses/

D-Wave Cloud Client, Release 0.6.2

modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

2.5. License 45

D-Wave Cloud Client, Release 0.6.2

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

46 Chapter 2. Documentation

http://www.apache.org/licenses/LICENSE-2.0

D-Wave Cloud Client, Release 0.6.2

express or implied. See the License for the specific language governing permissions and limitations under
the License.

2.5. License 47

D-Wave Cloud Client, Release 0.6.2

48 Chapter 2. Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

• Glossary

49

https://docs.python.org/3/glossary.html#glossary

D-Wave Cloud Client, Release 0.6.2

50 Chapter 3. Indices and tables

Python Module Index

d
dwave.cloud.client, 17
dwave.cloud.computation, 34
dwave.cloud.config, 9
dwave.cloud.exceptions, 43
dwave.cloud.qpu, 25
dwave.cloud.solver, 28

51

D-Wave Cloud Client, Release 0.6.2

52 Python Module Index

Index

A
as_completed() (dwave.cloud.computation.Future

static method), 36
avg_load (dwave.cloud.solver.BaseSolver attribute),

33

B
BaseSolver (class in dwave.cloud.solver), 28

C
cancel() (dwave.cloud.computation.Future method),

39
CanceledFutureError, 43
check_problem() (dwave.cloud.solver.StructuredSolver

method), 29
Client (class in dwave.cloud.client), 17
Client (class in dwave.cloud.qpu), 26
Client (class in dwave.cloud.sw), 27
close() (dwave.cloud.client.Client method), 25
ConfigFileError, 43
ConfigFileParseError, 43
ConfigFileReadError, 43

D
done() (dwave.cloud.computation.Future method), 39
dwave.cloud.client (module), 17
dwave.cloud.computation (module), 34
dwave.cloud.config (module), 9
dwave.cloud.exceptions (module), 43
dwave.cloud.qpu (module), 25
dwave.cloud.solver (module), 28

E
energies (dwave.cloud.computation.Future attribute),

41

F
from_config() (dwave.cloud.client.Client class

method), 18

Future (class in dwave.cloud.computation), 34

G
get_configfile_path() (in module

dwave.cloud.config), 15
get_configfile_paths() (in module

dwave.cloud.config), 15
get_default_configfile_path() (in module

dwave.cloud.config), 16
get_solver() (dwave.cloud.client.Client method), 20
get_solvers() (dwave.cloud.client.Client method),

21

H
has_anneal_schedule

(dwave.cloud.solver.StructuredSolver at-
tribute), 34

has_flux_biases (dwave.cloud.solver.StructuredSolver
attribute), 34

I
InvalidAPIResponseError, 43
InvalidProblemError, 43
is_solver_handled() (dwave.cloud.client.Client

static method), 24
is_solver_handled() (dwave.cloud.qpu.Client

static method), 26
is_solver_handled() (dwave.cloud.sw.Client

static method), 28
is_vfyc (dwave.cloud.solver.StructuredSolver at-

tribute), 34
Ising, 8

L
load_config() (in module dwave.cloud.config), 12
lower_noise (dwave.cloud.solver.StructuredSolver

attribute), 34

53

D-Wave Cloud Client, Release 0.6.2

M
max_num_reads() (dwave.cloud.solver.StructuredSolver

method), 31

N
name (dwave.cloud.solver.BaseSolver attribute), 33
num_active_qubits

(dwave.cloud.solver.StructuredSolver at-
tribute), 33

num_qubits (dwave.cloud.solver.StructuredSolver at-
tribute), 33

O
occurrences (dwave.cloud.computation.Future at-

tribute), 41
online (dwave.cloud.solver.BaseSolver attribute), 33

P
PollingTimeout, 43
problem_type (dwave.cloud.computation.Future at-

tribute), 42
ProblemUploadError, 43

Q
qpu (dwave.cloud.solver.BaseSolver attribute), 33

R
RequestTimeout, 43
result() (dwave.cloud.computation.Future method),

35

S
sample_bqm() (dwave.cloud.solver.UnstructuredSolver

method), 32
sample_ising() (dwave.cloud.solver.StructuredSolver

method), 30
sample_ising() (dwave.cloud.solver.UnstructuredSolver

method), 32
sample_qubo() (dwave.cloud.solver.StructuredSolver

method), 31
sample_qubo() (dwave.cloud.solver.UnstructuredSolver

method), 32
samples (dwave.cloud.computation.Future attribute),

40
sampleset (dwave.cloud.computation.Future at-

tribute), 42
software (dwave.cloud.solver.BaseSolver attribute),

33
Solver (in module dwave.cloud.solver), 28
SolverAuthenticationError, 43
SolverError, 43
SolverFailureError, 43
SolverNotFoundError, 43

SolverOfflineError, 43
SolverPropertyMissingError, 43
solvers() (dwave.cloud.client.Client method), 20
StructuredSolver (class in dwave.cloud.solver), 29

T
Timeout, 43
timing (dwave.cloud.computation.Future attribute), 42

U
UnstructuredSolver (class in dwave.cloud.solver),

29
UnsupportedSolverError, 43

V
variables (dwave.cloud.computation.Future at-

tribute), 41

W
wait() (dwave.cloud.computation.Future method), 37
wait_multiple() (dwave.cloud.computation.Future

static method), 38

54 Index

	Example
	Documentation
	Indices and tables
	Python Module Index
	Index

