
Deploying Cloud Foundry on Private
Cloud Documentation

Release 1

EniWARE

Jan 16, 2019

Contents

1 1. Install MAAS 3
1.1 1.1. Requirements . 3
1.2 1.2. Installation . 4
1.3 1.3. On-boarding . 4
1.4 1.4. Connectivity and images . 5
1.5 1.5. SSH key . 5
1.6 1.6. Networking . 6

1.6.1 Extending a reserved dynamic IP range: . 6
1.6.2 Enabling DHCP: . 7

1.7 1.7. Images . 8
1.8 1.8. Network services . 8
1.9 1.9. Adding nodes . 9
1.10 1.10. Commission nodes . 11
1.11 1.11. Next steps . 13

2 2. Install Juju 15
2.1 2.1. Package installation . 15
2.2 2.2. Client configuration . 16
2.3 2.3. Testing the environment . 17
2.4 2.4. Opening the Juju GUI . 18
2.5 2.5. Next steps . 18

3 3. Install OpenStack 21
3.1 3.1. Juju controller deployment . 21
3.2 3.2. OpenStack deployment . 22
3.3 3.3. OpenStack testing . 27
3.4 3.4. Next steps . 28

4 4. Configure OpenStack 29
4.1 4.1. Installing clients for different OpenStack operations . 29
4.2 4.2. Environment variables . 30
4.3 4.3. Define an external network . 31

4.3.1 Define an external network using web UI: . 31
4.3.2 Define an external network using CLI: . 32

4.4 4.4. Cloud images . 34
4.5 4.5. Working with flavors . 34

4.5.1 Working with flavors using web UI: . 35

i

4.5.2 Working with flavors using CLI: . 37
4.6 4.6. Working with domains, projects and users . 38

4.6.1 Working with domains and projects using web UI: . 38
4.6.2 Working with domains and projects using CLI: . 40

4.7 4.7. View and manage quotas . 41
4.7.1 View and manage quotas using web UI: . 41
4.7.2 View and manage quotas using CLI: . 42

4.8 4.8. Next steps . 44

5 5. Deploying CloudFoundry with BOSH Director on OpenStack 45
5.1 5.1. Prerequisites . 45
5.2 5.2. CF-OpenStack-Validator installation . 46

5.2.1 5.2.1. Prerequisites for CF-OpenStack-Validator . 46
5.2.2 5.2.2. Installation of CF-OpenStack-Validator . 46
5.2.3 5.2.3. Additional configurations . 47

5.3 5.3. Validate the OpenStack configuration . 47
5.4 5.4. Prepare OpenStack environment for BOSH and Cloud Foundry via Terraform 48

5.4.1 5.4.1. Install Terraform module . 48
5.4.2 5.4.2. OpenStack environment for BOSH . 48

5.4.2.1 Setup an OpenStack project to install BOSH: . 48
5.4.2.2 Terraform tempalte file configuration for BOSH: 49

5.4.3 5.4.3. OpenStack environment for Cloud Foundry . 50
5.4.3.1 Setup an OpenStack project to install Cloud Foundry: 50
5.4.3.2 Terraform tempalte file configuration for Cloud Foundry: 50

5.5 5.5. Install BOSH . 51
5.6 5.6. Cloud Config . 51
5.7 5.7. Deploy Cloud Foundry . 52

6 6. Install BOSH 53
6.1 6.1. Getting Started . 53
6.2 6.2. Installing the BOSH CLI . 53

6.2.1 Using the binary directly . 54
6.2.2 Using Homebrew on macOS . 54

6.3 6.3. Additional Dependencies . 54
6.3.1 Ubuntu Trusty . 54

6.4 6.4. Quick Start . 55
6.4.1 Prerequisites . 55
6.4.2 Install . 55
6.4.3 Deploy . 56
6.4.4 Clean up . 56

6.5 6.5. Initialize New Environment on OpenStack . 56

7 Indices and tables 57

ii

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Version 1

Language en

Description

EniWARE Deploying Cloud Foundry on Private Cloud

Author EniWARE

Rendered Jan 16, 2019

Contents:

Contents 1

http://eniware.org

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

2 Contents

CHAPTER 1

1. Install MAAS

MAAS (Metal As A Service) - provides the management of physical servers like virtual machines in the cloud. MAAS
can work at any scale, from a test deployment using a handful of machines to thousands of machines deployed across
multiple regions.

The typical MAAS environment includes as a framework for deployment the following:

• A Region controller interacts with and controls the wider environment for a region.

• One or more Rack controllers manage locally grouped hardware, usually within a data centre rack.

• Multiple Nodes are individual machines managed by the Rack controller, and ultimately, the Region controller.

• Complex Networking topologies can be modelled and implemented by MAAS, from a single fabric to multiple
zones and many overlapping spaces.

Note: See Concepts and Terms in the MAAS documentation for clarification on the terminology used within MAAS.

1.1 1.1. Requirements

The minimum requirements for the machines that run MAAS vary widely depending on local implementation and
usage. The minimum requirements for the machines that run MAAS are considered in the MAAS documentation.

The hardware that will be used for the purpose of this documentation is based on the following specifications:

• 1 x MAAS Rack with Region controller: 8GB RAM, 2 CPUs, 2 NIC (one for IPMI and one for the network),
40GB storage

Your hardware could differ considerably from the above and both MAAS and Juju will easily adapt. The Juju node
could operate perfectly adequately with half the RAM (this would need to be defined as a bootstrap constraint) and
adding more nodes will obviously improve performance.

Note: It will be used the web UI whenever possible. However it can also be used CLI and the API.

3

https://maas.io
https://docs.maas.io
https://docs.maas.io/2.4/en/intro-requirements
https://docs.maas.io/2.4/en/manage-cli
https://docs.maas.io/2.4/en/api

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

1.2 1.2. Installation

First, you need to have fresh install of Ubuntu Server 18.04 LTS on the machine that will be hosting both the MAAS
Rack and Region Controllers.

In our case, as a hosting machine is used VM machine created in ESXi 6.5 (VMware ESXi). You can use the ESXi
client vSphere Client.

The configuration of the network is depends on your own infrastructure (see the Ubuntu Server Network Configuration
documentation for further details on modifying your network configuration).

For the purposes of this documentation, the IP address configured for the MAAS machine hosted on Ubuntu is set to
be 192.168.40.16.

To update the package database and install MAAS, issue the following commands:

sudo apt update
sudo apt install maas

Before MAAS can be configured an administrator account need to be created:

sudo maas createadmin

An ussername, password and email address should be filled in. After that you need to specify if you want to import
an SSH key. MAAS uses the public SSH key of a user to manage and secure access to deployed nodes. If you want to
skip this, press Enter. In the next step you can do this from the web UI.

1.3 1.3. On-boarding

MAAS is now running without being configured. You can check this by pointing your browser to
http://<your.maas.ip>:5240/MAAS/. Now you sign in with the login credentials, and the web interface will launch
the ‘Welcome to MAAS’ on-boarding page:

4 Chapter 1. 1. Install MAAS

http://releases.ubuntu.com/18.04/
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/go/download-vsphere#open_source
https://help.ubuntu.com/lts/serverguide/network-configuration.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

1.4 1.4. Connectivity and images

There are two steps left necessary for MAAS to get up and running. Unless you have specific requirements, most of
these options can be left at their default values:

• Connectivity: important services that default to being outside of your network. These include package archives
and the DNS forwarder.

• Ubuntu: for deployed nodes, MAAS needs to import the versions and image architectures. Specify 18.04 LTS
as well as 16.04 LTS to add additional image.

1.5 1.5. SSH key

You have several options for importing your public SSH key(s). One is to import the key from Launchpad or Github
by entering your user ID for these services. Another option is to add a local public key file, usually HOME/ssh/id.
rsa.pub by selecting Upload button and placing the content in the box that appears. Click Import to complete the
setting.

Adding SSH keys completes this initial MAAS configuration. Press Go to the dashboard to move to the MAAS
dashboard and the device discovery process

You can generate a local SSH public/private key pair from the Linux account you are using for managing MAAS.
When asked for a passphrase, leave it blank.

1.4. 1.4. Connectivity and images 5

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

ssh-keygen -t rsa

This completes the initial setup of MAAS. Press Go button to the dashboard to go to the device discovery process.

1.6 1.6. Networking

By default, MAAS will monitor local network traffic and report any devices it discovers on the Network discovery
page of the web UI. This page is basic and is the first one to load after finishing installation.

Before taking the configuration further, you need to tell MAAS about your network and how y’d like connections to
be configured.

1.6.1 Extending a reserved dynamic IP range:

Note: If you do not have DHCP reserved ranges in your network, you can skip to the step Enabling DHCP.

If DHCP reserved ranges are defined in your network, you have to set the appropriate settings described below.

6 Chapter 1. 1. Install MAAS

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

These options are managed from the Subnets page of the web UI. The subnets page defaults to listing connections by
fabric and MAAS creates one fabric per physical NIC on the MAAS server. Once you are set up a machine with a
single NIC, a single fabric will be be listed linked to the external subnet.

You should select the untagged VLAN the subnet to the right of fabric-0 and add in the Reserved ranges field the
reserved portions of the subnet to the dynamic IP range:

Furthermore, since DHCP is enabled on a VLAN basis and a VLAN can contain multiple subnets, it is possible to add
a portion from those subnets as well. Just select the subnet under the ‘Subnets’ page and reserve a dynamic range.

1.6.2 Enabling DHCP:

You can add DHCP by selecting untagged VLAN the subnet to the right of fabric-0.

The page that appears will be labelled something similar to Default VLAN in fabric-0. From here, click the Take
action button at the top right and select Provide DHCP.

If you do not have reserved ranges of IP addresses, a new pane will appear that allows you to specify the start and end
IP addresses for the DHCP range. Select Provide DHCP to accept the default values. The VLAN summary should
now show DHCP as Enabled.

If you have reserved ranges of IP addresses, a new pane will appear that shows us the current Rack controller. Select
Provide DHCP to accept the settings and the VLAN summary should now show DHCP as Enabled.

1.6. 1.6. Networking 7

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

1.7 1.7. Images

You have already downloaded the images you need as part of the on-boarding process, but it’s worth checking that
both the images you requested are available. To do this, select the Images page from the top menu of the web UI.

The Images page allows you to download new images, use a custom source for images, and check on the status of any
images currently downloaded. These appear at the bottom, and both 18.04 LTS and 16.04 LTS should be listed with a
status of Synced.

1.8 1.8. Network services

Before adding new nodes, it is necessary to configure the network services. From the Settings menu select Network
services.

Warning: In the Proxy field for HTTP proxy used by MAAS to download images is celected MAAS Built-in
by default. It is necessary to select Do not use a proxy.

8 Chapter 1. 1. Install MAAS

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

In the DNS field, it is necessary to set Upstream DNS used to resolve domains not managed by this MAAS. In our
case, we assign DNS address 8.8.8.8 (which is Google Public DNS IP addresses).

1.9 1.9. Adding nodes

MAAS is now ready to accept new nodes. To do this, first ensure your four cloud nodes and single Juju node are set
to boot from a PXE image. Now simply power them on. MAAS will add these new nodes automatically by taking the
following steps:

• Detect each new node on the network

• Probe and log each node’s hardware (using an ephemeral boot image)

• Add each node to the Machines page with a status of New

While it is not the most appropriate way, at this stage it is advisable to include each node individually in order to trace
each one strictly.

In order for MAAS to fully manage a node it must be able to power cycle it. This is done via a communication channel
with the BMC card of the node’s underlying system. A newly added node is therefore incomplete until its power type
has been configured.

Note: See the MAAS documentation for more information on power types, including a table showing a feature
comparison for the supported BMC drivers.

1.9. 1.9. Adding nodes 9

https://developers.google.com/speed/public-dns/docs/using
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface#Baseboard_management_controller
https://docs.maas.io/2.4/en/nodes-power-types
https://docs.maas.io/2.4/en/nodes-power-types#bmc-driver-support

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

To configure a node’s power type, begin by clicking on the node from the Machines page of the web UI followed by
its Configuration tab. Scroll down for Power configuration. If the power type is undefined the following will be
displayed:

Choose a type in the dropdown menu that corresponds to the node’s underlying machine’s BMC card.

Use the drop-down Power type menu to open the configuration options for your node’s specific power configuration
and enter any further details that the configuration may require. When you make the necessary changes, click Save
changes. The machine can now be turned off from the Take option menu in the top right.

By default, the machine gets a random name. It is recommended that the name of each new machine be edited in
accordance with its intended purpose. This can be done by selecting the corresponding machine from the Machines
page. A Machine summary field opens where in the upper left corner we have to click and change the name of the
selected machine and save the change with the Save button:

10 Chapter 1. 1. Install MAAS

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Warning: If you add a node (machine) and then remove it without deleting the disks, you will not be able to
add this node again! To add the node manually, please see the official documentation or follow the steps outlined
above in this section.

To add the node, you need the following information about your machine: the MAC address of your IPMI interface
and the MAC addres of your PXE interface. After entering the information, you have to restart the processes MAAS
controler and Region controler using the following commands:

sudo service maas-rackd restart
sudo service maas-regiond restart

1.10 1.10. Commission nodes

Once a node is added to MAAS (see Adding nodes) the next logical step is to commission it.

To commission, the underlying machine needs to be configured to netboot (this should already have been done during
the enlistment stage). Such a machine will undergo the following process:

1. DHCP server is contacted

2. kernel and initrd are received over TFTP

3. machine boots

4. initrd mounts a Squashfs image ephemerally over HTTP

5. cloud-init runs commissioning scripts

6. machine shuts down

The commissioning scripts will talk to the region API server to ensure that everything is in order and that eventual
deployment will succeed.

The image used is, by default, the latest Ubuntu LTS release and should not require changing. However, it can be
configured in the Settings page of the web UI by selecting the General tab and scrolling down to the Commissioning
section.

To commission, on the Machines page, select a node and choose Commission under the Take action drop-down
menu.

You have the option of selecting some extra parameters (checkboxes) and performing hardware tests. These options
include:

• Allow SSH access and prevent machine powering off: Machines are normally powered off after commission-
ing. This option keeps the machine on and enables SSH so you can access the machine.

• Retain network configuration: When enabled, preserves any custom network settings previously configured
for the machine. See Networking for more information.

1.10. 1.10. Commission nodes 11

https://docs.maas.io/2.4/en/nodes-add

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

• Retain storage configuration: When enabled, preserves any storage settings previously configured for the
machine. See Storage for more details.

• Update firmware: Runs scripts tagged with update_firmware. See Testing scripts for more details.

• Configure HBA: Runs scripts tagged with configure_hba. As above, see Testing scripts for further details.

Click the Hardware tests field to reveal a drop-down list of tests to add and run during commissioning. See Hardware
testing) for more information on hardware testing scripts.

From the Hardware tests field, we deactivate smartctl-validate, which will speed up work as SMART health
for all drivers in paralell will not be validated.

Finalise the directive by hitting Commission machine. While a node is commissioning its status will change to
Commissioning. During this time the node’s network topology will be discovered. This will prompt one of the node’s
network interfaces to be connected to the fabric, VLAN, and subnet combination that will allow it to be configured.
By default, a static IP address will be assigned out of the reserved IP range for the subnet. That is, an IP assignment
mode of Auto assign will be used.

After a few minutes, successfully commissioned nodes will change their status to Ready. The CPU cores, RAM,
number of drives and storage fields should now correctly reflect the hardware on each node.

Tags are normally used to identify nodes with specific hardware, such GPUs for GPU-accelerated CUDA processing.
This allows Juju to target these capabilities when deploying applications that may use them. But they can also be used
for organisational and management purposes. This is how you are going to use them, by adding a compute tag to the
four cloud nodes and a juju tag to the node that will act as the Juju controller.

Tags are added from the Machine summary section of the same individual node page we used to rename a node. Click
Edit on the Tags section. A tag is added by activated Edit function in Machine configuration field and entering a

12 Chapter 1. 1. Install MAAS

https://docs.maas.io/2.4/en/installconfig-storage
https://docs.maas.io/2.4/en/nodes-scripts#automatic-script-selection-by-hardware-type
https://docs.maas.io/2.4/en/nodes-scripts#automatic-script-selection-by-hardware-type
https://docs.maas.io/2.4/en/nodes-hw-testing
https://docs.maas.io/2.4/en/nodes-hw-testing
https://docs.maas.io/2.4/en/nodes-tags

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

name for the tag in the empty field and clicking Save changes.

A common picture of the state of the nodes that have already been added to the MAAS. You can see the names, tags,
and hardware information on each node:

Node name Tag(s) CPU(s) RAM Drives Storage
os-compute01.maas compute 2 6.0 3 85.9
os-compute02.maas compute 2 6.0 3 85.9
os-compute03.maas compute 2 6.0 3 85.9
os-compute04.maas compute 2 6.0 3 85.9
os-juju01.maas juju 2 4.0 1 42.9

1.11 1.11. Next steps

The next step is to deploy the Juju controller onto its own node. From there, you will be using Juju and MAAS together
to deploy OpenStack into the four remaining cloud nodes.

1.11. 1.11. Next steps 13

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

14 Chapter 1. 1. Install MAAS

CHAPTER 2

2. Install Juju

Juju is an open source application modelling tool that allows you to deploy, configure, scale and operate your software
on public and private clouds.

In the previous step, we installed, deployed and configured MAAS to use as a foundation for Juju to deploy a fully
fledged OpenStack cloud.

We are now going to install and configure the following two core components of Juju to use our MAAS deployment:

• The controller is the management node for a cloud environment. We will be using the MAAS node we tagged
with juju to host the Juju controller.

• The client is used by the operator to talk to one or more controllers, managing one or more different cloud
environments. As long as it can access the controller, almost any machine and operating system can run the Juju
client.

2.1 2.1. Package installation

We’re going to start by installing the Juju client on a VM machine created in ESXI 6.5 with the following parameters:

• 1 x Juju node: 4GB RAM, 2 CPUs, 1 NIC, and 40 GB Storage

• installed Ubuntu Server 18.04 LTS with network access to the MAAS deployment.

For other installation options, see Getting started with Juju.

Important: When you install the operation system do not forget to install SSH agent (Open SSH for Ubuntu Server
18.04 LTS)!

To install Juju, enter the following in the terminal:

sudo add-apt-repository -yu ppa:juju/stable
sudo apt install juju

15

https://jujucharms.com/about
https://www.vmware.com/products/esxi-and-esx.html
http://releases.ubuntu.com/18.04/
https://docs.jujucharms.com/2.4/en/getting-started
https://help.ubuntu.com/lts/serverguide/openssh-server.html.en
https://help.ubuntu.com/lts/serverguide/openssh-server.html.en

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Note: If you have problems to clone juju repository use the following command:

sudo apt install software-properties-common

For the purposes of this documentation, the IP address configured for the Juju client hosted on Ubuntu is set to be
192.168.40.17. After the instalation is complete you can change the IP addres (if it necesary).

Go to /etc/netplan/ directory and edit the file 01-netcfg.yaml using the following command:

sudo nano /etc/netplan/01-netcfg.yaml

To stop DHCP use the networkd deamon to configure your network interface:

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:

version: 2
renderer: networkd
ethernets:
ens160:
dhcp4: no
addresses: [192.168.40.17/24]
gateway4: 192.168.40.1
nameservers:
addresses: [8.8.8.8,8.8.4.4]

Save and apply your changes by running the command below:

sudo netplan apply

2.2 2.2. Client configuration

The Juju client needs two pieces of information before it can control our MAAS deployment.

1. A cloud definition for the MAAS deployment. This definition will include where MAAS can be found and how
Juju can authenticate itself with it.

2. A separate credentials definition that’s used when accessing MAAS. This links the authentication details to the
cloud definition.

To create the cloud definition, type juju add-cloud mymaas to add a cloud called mymaas. This will produce
output similar to the following:

Cloud Types
maas
manual
openstack
vsphere

Select cloud type:

Enter maas as the cloud type and you will be asked for the API endpoint URL. This URL is the same as the URL
used to access the MAAS web UI in the previous step: http://<your.maas.ip>:5240/MAAS/.

16 Chapter 2. 2. Install Juju

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

With the endpoint added, Juju will inform you that mymass was successfully added. The next step is to add credentials.
This is initiated by typing juju add-credential mymaas. Enter admin when asked for a credential name.
Juju will output the following:

Enter credential name: admin

Using auth-type "oauth1".

Enter maas-oauth:

The oauth1 credential value is the MAAS API key for the admin user. To retrieve this, login to the MAAS web UI
and click on the admin username near the top right. This will show the user preferences page. The top field will hold
your MAAS keys:

Copy and paste this key into the terminal and press return. You will be informed that credentials have been added for
cloud mymaas. You can check the cloud definition has been added with the juju clouds command, and you can
list credentials with the juju credentials command.

2.3 2.3. Testing the environment

The Juju client now has everything it needs to instruct MAAS to deploy a Juju controller.

But before we move on to deploying OpenStack, it’s worth checking that everything is working first. To do this, we’ll
simply ask Juju to create a new controller for our cloud:

juju bootstrap --constraints tags=juju mymaas maas-controller

The constraint in the above command will ask MAAS to use any nodes tagged with juju to host the controller for the
Juju client. We tagged this node within MAAS in the previous step.

The output to a successful bootstrap will look similar to the following:

Creating Juju controller "maas-controller" on mymaas
Looking for packaged Juju agent version 2.4-alpha1 for amd64
Launching controller instance(s) on mymaas...
- 7cm8tm (arch=amd64 mem=48G cores=24)

Fetching Juju GUI 2.14.0
Waiting for address
Attempting to connect to 192.168.40.185:22
Bootstrap agent now started
Contacting Juju controller at 192.168.40.185 to verify accessibility...

(continues on next page)

2.3. 2.3. Testing the environment 17

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

Bootstrap complete, "maas-controller" controller now available.
Controller machines are in the "controller" model.
Initial model "default" added.

If you’re monitoring the nodes view of the MAAS web UI, you will notice that the node we tagged with juju starts
deploying Ubuntu 18.04 LTS automatically, which will be used to host the Juju controller.

2.4 2.4. Opening the Juju GUI

Juju has a graphical user interface (GUI) available to help with the tasks of managing and monitoring your Juju
environment. The GUI is a JavaScript and HTML web application that is encapsulated in its own charm. Once
installed, the GUI will talk with Juju over a websocket to provide a real-time interface with the applications installed,
the units that comprise them, and the machines available. Additionally, the GUI can talk with the charm store in order
to search, browse, and deploy charms to your environment.

To view the URL and login credentials for Juju GUI, use the following command:

juju gui

The username and password will be displayed for log in Juju which will be something like this:

GUI 2.14.0 for model "admin/default" is enabled at:
https://192.168.40.52:17070/gui/u/admin/default

Your login credential is:
username: admin
password: 1e4e614eee21b2e1355671300927ca52

You have to open the GIU IP address in your braowser and to copy and enter the username and password into the
GUI:

Tip: If you don’t want to copy and paste the URL manually, typing juju gui --browser will open the link in
your default browser automatically.

Note: If you’d rather not have your login credentials displayed in the output of juju gui, they can be suppressed
by adding the --hide-credential argument.

2.5 2.5. Next steps

The next step will be to use Juju to deploy and link the various components required by OpenStack.

18 Chapter 2. 2. Install Juju

https://docs.jujucharms.com/2.4/en/controllers-gui

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

2.5. 2.5. Next steps 19

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

20 Chapter 2. 2. Install Juju

CHAPTER 3

3. Install OpenStack

Prerequisites of an OpenStack open cloud platform deployment are as follows:

1. Installed and configured MAAS.

2. Successfully deployed Juju controller.

In general, there are two options for installing OpenStack:

1. Separate installation and configuration of individual OpenStack components and applications. This allows you
control capabilities and a better understanding of the OpenStack deployment processes - you can keep track of
exactly what MAAS and JuJu are doing.

2. The second option is to use ready-made bundle. A bundle is an encapsulation of a working deployment, includ-
ing all configuration, resources and references. That allows you to deploy OpenStack with a single command or
share that deployment.

Important: The installation of the OpenScan applications on the EniWARE platform is based on the second option
- using bundle (see section 3.2. Deploy OpenStack).

Note: You can find more information at Deploying OpenStack as a bundle to learn about deploying as a bundle.

3.1 3.1. Juju controller deployment

In section 2.3. Testing the environment, we’ve demonstrated how you can deploy a new JuJu controller called maas-
controller in order to test the environment (MAAS and Juju configuration).

• JuJu controller operation status:

To check the operating state of the created JuJu controller, use the command juju status. With the
Juju controller running, the output will look similar to the following:

21

https://www.openstack.org
https://docs.jujucharms.com/2.4/en/charms-bundles
https://docs.openstack.org/project-deploy-guide/charm-deployment-guide/rocky/install-openstack-bundle.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Model Controller Cloud/Region Version SLA Timestamp
default maas-controller mymaas 2.4.4 unsupported 15:04:54+03:00

In case you need to remove the controller (called maas-controler in this case), use the following command:

juju kill-controller maas-controller

Important: In addition to the above command, the machine on which the Juju controller is located must be
deleted from MAAS. To add the machine again, you can follow the instructions in section “1.9. Adding nodes”
and do not forget to commision it as described in section “1.10. Commission nodes” (use tag juju!).

You can redeploy this JuJu controller with the following command:

juju bootstrap --constraints tags=juju mymaas maas-controller

During the bootstrap process, Juju will create a model called default, as shown in the output from juju
status command above. Models act as containers for applications.

• Create a new model:

The next step is to create a new model called test that will be used for the purposes of OpenStack deployment
exclusively, making the entire deployment easier to manage and maintain. To create a model called test (and
switch to it), type the following command:

juju add-model test

After you add these model you can log in to the Juju GUI. To view the URL and login credentials for Juju GUI,
use the following command:

juju gui

This will produce output similar to the following:

GUI 2.14.0 for model "admin/test" is enabled at:
https://192.168.40.53:17070/gui/u/admin/test

Your login credential is:
username: admin
password: 67d4c5dbbb2c56990c3fdaab1d5a355c

Open your browser at the specified IP address and enter the given login credentials:

3.2 3.2. OpenStack deployment

We are now going to step through adding the OpenStack components to the new model. The applications will be
installed from the eniware-org/openstack-bundles repository. We’ll be providing the configuration for the charms as a
yaml file which we include as we deploy it.

After you Clone the repository to your Juju machine, go to folder stable/openstack-base. The configuration
is held in the file called bundle.yaml. Deployment requires no further configuration than running the following
command:

juju deploy bundle.yaml

22 Chapter 3. 3. Install OpenStack

https://docs.jujucharms.com/2.4/en/models
https://github.com/eniware-org/openstack-bundles

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Warning: Do not use autocomplete with Tab button.

To get the status of the deployment, run juju status. For constant updates, combine it with the watch command:

watch juju status

This will produce output similar to the following:

Model Controller Cloud/Region Version SLA Timestamp
test maas-controller mymaas 2.4.4 unsupported 16:23:02+03:00

App Version Status Scale Charm
→˓Store Rev OS Notes
ceph-mon waiting 2/3 ceph-mon
→˓jujucharms 26 ubuntu
ceph-osd 13.2.1+dfsg1 blocked 3 ceph-osd
→˓jujucharms 269 ubuntu
ceph-radosgw maintenance 1 ceph-radosgw
→˓jujucharms 259 ubuntu
cinder waiting 0/1 cinder
→˓jujucharms 273 ubuntu
cinder-ceph waiting 0 cinder-ceph
→˓jujucharms 234 ubuntu
glance waiting 0/1 glance
→˓jujucharms 268 ubuntu
keystone maintenance 1 keystone
→˓jujucharms 283 ubuntu

(continues on next page)

3.2. 3.2. OpenStack deployment 23

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

mysql 5.7.20-29.24 active 1 percona-cluster
→˓jujucharms 269 ubuntu
neutron-api maintenance 1 neutron-api
→˓jujucharms 262 ubuntu
neutron-gateway 13.0.1 waiting 1 neutron-gateway
→˓jujucharms 253 ubuntu
neutron-openvswitch 13.0.1 waiting 3 neutron-openvswitch
→˓jujucharms 251 ubuntu
nova-cloud-controller waiting 0/1 nova-cloud-controller
→˓jujucharms 311 ubuntu
nova-compute 18.0.1 waiting 3 nova-compute
→˓jujucharms 287 ubuntu
ntp 4.2.8p10+dfsg maintenance 4 ntp
→˓jujucharms 27 ubuntu
openstack-dashboard maintenance 1 openstack-dashboard
→˓jujucharms 266 ubuntu
rabbitmq-server 3.6.10 active 1 rabbitmq-server
→˓jujucharms 78 ubuntu

Unit Workload Agent Machine Public address Ports
→˓Message
ceph-mon/0 maintenance executing 1/lxd/0 192.168.40.110
→˓(install) installing charm software
ceph-mon/1 waiting allocating 2/lxd/0
→˓waiting for machine
ceph-mon/2* maintenance executing 3/lxd/0 192.168.40.105
→˓(install) installing charm software
ceph-osd/0* waiting idle 1 192.168.40.58
→˓Incomplete relation: monitor
ceph-osd/1 blocked idle 2 192.168.40.59
→˓Missing relation: monitor
ceph-osd/2 waiting idle 3 192.168.40.101
→˓Incomplete relation: monitor
ceph-radosgw/0* maintenance executing 0/lxd/0 192.168.40.103
→˓(install) Installing radosgw packages
cinder/0 waiting allocating 1/lxd/1
→˓waiting for machine
glance/0 waiting allocating 2/lxd/1
→˓waiting for machine
keystone/0* maintenance executing 3/lxd/1 192.168.40.109
→˓(install) installing charm software
mysql/0* active idle 0/lxd/1 192.168.40.102 3306/tcp
→˓Unit is ready
neutron-api/0* maintenance executing 1/lxd/2 192.168.40.108
→˓(install) installing charm software
neutron-gateway/0* waiting idle 0 192.168.40.57
→˓Incomplete relations: network-service, messaging
ntp/0* active idle 192.168.40.57 123/udp

→˓Ready
nova-cloud-controller/0 waiting allocating 2/lxd/2
→˓waiting for machine
nova-compute/0* waiting idle 1 192.168.40.58
→˓Incomplete relations: image, messaging, storage-backend
neutron-openvswitch/0* waiting idle 192.168.40.58

→˓Incomplete relations: messaging
ntp/1 active idle 192.168.40.58 123/udp

→˓Ready
(continues on next page)

24 Chapter 3. 3. Install OpenStack

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

nova-compute/1 waiting executing 2 192.168.40.59
→˓Incomplete relations: messaging, storage-backend, image
neutron-openvswitch/2 maintenance executing 192.168.40.59

→˓(install) Installing apt packages
ntp/3 maintenance executing 192.168.40.59

→˓(install) installing charm software
nova-compute/2 waiting executing 3 192.168.40.101
→˓Incomplete relations: messaging, image, storage-backend
neutron-openvswitch/1 maintenance executing 192.168.40.101

→˓(install) Installing apt packages
ntp/2 maintenance executing 192.168.40.101

→˓(install) installing charm software
openstack-dashboard/0* maintenance executing 3/lxd/2 192.168.40.106
→˓(install) installing charm software
rabbitmq-server/0* active executing 0/lxd/2 192.168.40.104
→˓(config-changed) Enabling queue mirroring

Machine State DNS Inst id Series AZ Message
0 started 192.168.40.57 skyhk8 bionic default Deployed
0/lxd/0 started 192.168.40.103 juju-4052d2-0-lxd-0 bionic default Container
→˓started
0/lxd/1 started 192.168.40.102 juju-4052d2-0-lxd-1 bionic default Container
→˓started
0/lxd/2 started 192.168.40.104 juju-4052d2-0-lxd-2 bionic default Container
→˓started
1 started 192.168.40.58 t678hy bionic default Deployed
1/lxd/0 started 192.168.40.110 juju-4052d2-1-lxd-0 bionic default Container
→˓started
1/lxd/1 pending juju-4052d2-1-lxd-1 bionic default Container
→˓started
1/lxd/2 started 192.168.40.108 juju-4052d2-1-lxd-2 bionic default Container
→˓started
2 started 192.168.40.59 dsktqg bionic default Deployed

The deployed bundle.yaml file includes the following applications:

3.2. 3.2. OpenStack deployment 25

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

• Openstack Dashboard - it provides a Django based web interface for use by both administrators and users of
an OpenStack Cloud. It allows you to manage Nova, Glance, Cinder and Neutron resources within the cloud.

• Keystone - this charm provides Keystone, the OpenStack identity service. Its target platform is (ideally)
Ubuntu LTS + OpenStack.

• Glance - The Glance project provides an image registration and discovery service and an image delivery
service. These services are used in conjunction by Nova to deliver images from object stores, such as
OpenStack’s Swift service, to Nova’s compute nodes.

• MySQL - Percona XtraDB Cluster is a high availability and high scalability solution for MySQL clustering.
Percona XtraDB Cluster integrates Percona Server with the Galera library of MySQL high availability solu-
tions in a single product package which enables you to create a cost-effective MySQL cluster. This charm
deploys Percona XtraDB Cluster onto Ubuntu.

• Cinder - Cinder is the block storage service for the OpenStack. This charm provides the Cinder volume
service for OpenStack. It is intended to be used alongside the other OpenStack components. Cinder is made
up of 3 separate services: an API service, a scheduler and a volume service. This charm allows them to be
deployed in different combination, depending on user preference and requirements.

• Cinder Ceph - This charm provides a Ceph storage backend for Cinder charm. This allows multiple Ceph
storage clusters to be associated with a single Cinder deployment, potentially alongside other storage back-
ends from other vendors.

• RabbitMQ - RabbitMQ is an implementation of AMQP, the emerging standard for high performance enter-
prise messaging. The RabbitMQ server is a robust and scalable implementation of an AMQP broker. This
charm deploys RabbitMQ server and provides AMQP connectivity to clients.

• Nova Compute - this charm is a cloud computing fabric controller which provides the OpenStack compute
service. This charm provides the Nova Compute hypervisor service and should be deployed directly to
physical servers. Its target platform is Ubuntu (preferably LTS) + OpenStack.

• Ceph OSD - Ceph is a distributed storage and network file system designed to provide excellent performance,
reliability, and scalability. This charm deploys additional Ceph OSD storage service units and should be used
in conjunction with the Ceph-mon charm to scale out the amount of storage available in a Ceph cluster.

• Ceph Mon - This charm deploys a Ceph monitor cluster.

• Ceph Radosgw - This charm provides the RADOS HTTP gateway supporting S3 and Swift protocols for
object storage.

• Neutron API - Neutron is a virtual network service for OpenStack. Neutron provides an API to dynamically
request and configure virtual networks. These networks connect “interfaces” from other OpenStack services
(e.g., virtual NICs from Nova VMs). The Neutron API supports extensions to provide advanced network
capabilities (e.g., QoS, ACLs, network monitoring, etc.). This principle charm provides the OpenStack
Neutron API service which was previously provided by the Nova-cloud-controller charm. When this charm
is related to the Nova-cloud-controller charm the Nova-cloud controller charm will shutdown its api service,
de-register it from Keystone and inform the compute nodes of the new Neutron url.

• Nova Cloud Controller - OpenStack Compute, codenamed Nova, is a cloud computing fabric controller. This
charm provides the cloud controller service for OpenStack Nova and includes nova-scheduler, nova-api and
nova-conductor services.

• Neutron OpenvSwitch - This charm provides the OpenStack Neutron Open vSwitch agent, managing L2
connectivity on nova-compute services. This subordinate charm provides the Neutron OpenvSwitch config-
uration for a compute node. Once deployed it takes over the management of the Neutron base and plugin
configuration on the compute node.

• Neutron Gateway - This charm provides central Neutron networking services as part of a Neutron based
OpenStack deployment.

• NTP - NTP, the Network Time Protocol, provides network based time services to ensure synchronization of
time across computers. This charm can be deployed alongside principal charms to enable NTP management
across deployed services.

26 Chapter 3. 3. Install OpenStack

https://jujucharms.com/openstack-dashboard/
https://jujucharms.com/keystone/
https://jujucharms.com/glance/
https://jujucharms.com/percona-cluster/
https://jujucharms.com/cinder/
https://jujucharms.com/cinder-ceph/
https://jujucharms.com/rabbitmq-server/
https://jujucharms.com/nova-compute/
https://jujucharms.com/ceph-osd/
https://jujucharms.com/ceph-mon/
https://jujucharms.com/ceph-radosgw/
https://jujucharms.com/neutron-api/
https://jujucharms.com/nova-cloud-controller/
https://jujucharms.com/neutron-openvswitch/
https://jujucharms.com/neutron-gateway
https://jujucharms.com/ntp/

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Note: Remember, you can check on the status of a deployment using the juju status command. To see the status
of a single charm of application, append the charm name. For example, for a Ceph OSD charm:

juju status ceph-osd

3.3 3.3. OpenStack testing

After everything has deployed and the output of juju status settles, you can check to make sure OpenStack is
working by logging into the Horizon Dashboard.

The quickest way to get the IP address for the Dashboard is with the following command:

juju status --format=yaml openstack-dashboard | grep public-address | awk '{print $2}'

he following commands may alternatively be used:

• to get the IP address for the OpenStack Dashboard:

juju status | grep dashboard

• to get the IP address for the OpenStack Keystone node for authentication.:

juju status | grep keystone

The OpenStack Dashboard URL will be http://<IP ADDRESS>/horizon. When you enter this into your browser you
will need a login domain, username and a password. The admin login domain is admin_domain. To login with user
admin you will need a password that can be called with the following command:

juju run --unit keystone/0 leader-get admin_passwd

If everything works, you will see something similar to the following:

3.3. 3.3. OpenStack testing 27

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

3.4 3.4. Next steps

With this final step you’ve successfully deployed a working OpenStack environment using both Juju and MAAS. The
next step is to configure OpenStack for use within a production environment.

28 Chapter 3. 3. Install OpenStack

CHAPTER 4

4. Configure OpenStack

In previous sections we’ve deployed OpenStack using both Juju and MAAS. The next step is to configure OpenStack
for use within a production environment.

The steps te be followed are:

• Installing a client for OpenStack Nova API (the novaclient module)

• Installing a client for OpenStack Identity API (the keystoneclient modules)

• Installing a client for OpenStack Images API (the glanceclient module)

• Installing a client for OpenStack Networking API (the neutronclient module)

• Installing a command-line client for OpenStack (the OpenStackClient - OSC)

• Setting up the environment variables

• Creating the necessary flavors

• Adding a domain, project and user

• Managing quotas

• External network access and Ubuntu cloud image deployment

Some of the procedures can be made either from the web UI (Horizon) or from the command line interface (CLI).

4.1 4.1. Installing clients for different OpenStack operations

To install the clients for OpenStack Nova API, OpenStack Identity API, OpenStack Images API, OpenStack Network-
ing API and OpenStackClient, execute the following commands:

sudo add-apt-repository cloud-archive:rocky -y
sudo apt-get update
sudo apt-get install python-novaclient python-keystoneclient python-glanceclient
→˓python-neutronclient python-openstackclient -y

29

https://docs.openstack.org/python-novaclient/latest/
https://docs.openstack.org/python-keystoneclient/latest/
https://docs.openstack.org/python-glanceclient/latest/
https://docs.openstack.org/python-neutronclient/latest/
https://docs.openstack.org/python-openstackclient/pike/

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

4.2 4.2. Environment variables

When accessing OpenStack from the command line, specific environment variables need to be set:

• OS_AUTH_URL

• OS_USER_DOMAIN_NAME

• OS_USERNAME

• OS_PROJECT_DOMAIN_NAME

• OS_PROJECT_NAME

• OS_PROJECT_NAME

• OS_REGION_NAME

• OS_IDENTITY_API_VERSION

• OS_AUTH_VERSION

The OS_AUTH_URL is the address of the OpenStack Keystone node for authentication. To retrieve this IP address
by Juju use the following command (or as shown here):

juju status --format=yaml keystone/0 | grep public-address | awk '{print $2}'

The specific environment variables are included in a file called openrc. It is located in openstack_bundles/
stable/openstack-base or you can download it. It can easily be sourced (made active).

The openrc file contains the following:

_OS_PARAMS=$(env | awk 'BEGIN {FS="="} /^OS_/ {print $1;}' | paste -sd ' ')
for param in $_OS_PARAMS; do

if ["$param" = "OS_AUTH_PROTOCOL"]; then continue; fi
if ["$param" = "OS_CACERT"]; then continue; fi
unset $param

done
unset _OS_PARAMS

_keystone_unit=$(juju status keystone --format yaml | \
awk '/units:$/ {getline; gsub(/:$/, ""); print $1}')

_keystone_ip=$(juju run --unit ${_keystone_unit} 'unit-get private-address')
_password=$(juju run --unit ${_keystone_unit} 'leader-get admin_passwd')

export OS_AUTH_URL=${OS_AUTH_PROTOCOL:-http}://${_keystone_ip}:5000/v3
export OS_USERNAME=admin
export OS_PASSWORD=${_password}
export OS_USER_DOMAIN_NAME=admin_domain
export OS_PROJECT_DOMAIN_NAME=admin_domain
export OS_PROJECT_NAME=admin
export OS_REGION_NAME=RegionOne
export OS_IDENTITY_API_VERSION=3
Swift needs this:
export OS_AUTH_VERSION=3
Gnocchi needs this
export OS_AUTH_TYPE=password

The environment variables can be enabled/sourced with the following command:

source openstack-bundles/stable/openstack-base/openrc

30 Chapter 4. 4. Configure OpenStack

https://github.com/eniware-org/openstack-bundles/blob/master/stable/shared/openrcv3_project

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

After the openrc is created, you can use OpenStack’s Horizon web UI to download the file, which automatically
adjusts the environment variables. You should be loged with the given username. Right click on the user dropdown
menu in the the upper right corner and select openrc -v3 from the list.

Note: If the openrc file is manually edited, it is important that all variables are correctly entered.

You can check the variables have been set correctly by seeing if your OpenStack endpoints are visible with the
openstack endpoint list command. The output will look something like this:

+----------------------------------+-----------+--------------+--------------+
| ID | Region | Service Name | Service Type |
+----------------------------------+-----------+--------------+--------------+
060d704e582b4f9cb432e9ecbf3f679e	RegionOne	cinderv2	volumev2
269fe0ad800741c8b229a0b305d3ee23	RegionOne	neutron	network
3ee5114e04bb45d99f512216f15f9454	RegionOne	swift	object-store
68bc78eb83a94ac48e5b79893d0d8870	RegionOne	nova	compute
59c83d8484d54b358f3e4f75a21dda01	RegionOne	s3	s3
bebd70c3f4e84d439aa05600b539095e	RegionOne	keystone	identity
1eb95d4141c6416c8e0d9d7a2eed534f	RegionOne	glance	image
8bd7f4472ced40b39a5b0ecce29df3a0	RegionOne	cinder	volume
+----------------------------------+-----------+--------------+--------------+

If the endpoints aren’t visible, it’s likely your environment variables aren’t configured correctly.

Hint: As with both MAAS and Juju, most OpenStack operations can be accomplished using either the command line
or a web UI.

4.3 4.3. Define an external network

To allow OpenStack network access, it is necessary to enter external network settings.

You should be logged as an user admin in the OpenStack Dashboard Horizon. To do this, you need to know the
following:

• the IP address for OpenStack Dashboard

• the user credential (domain, user name and password)

4.3.1 Define an external network using web UI:

Using the commands shown in section “3.3. OpenStack testing” log in to the Dashboard with the following:

• Dashboard IP address: 192.168.40.145

• Domain: admin_domain

• User Name: admin

• Password: your_password

First step is to define a network called ext_net. It will use a subnet within the range of addresses reserved in MAAS.

From the panel on the left, click on Admin and choose section Network, subsection Networks. Then press the button
+ Create Network:

4.3. 4.3. Define an external network 31

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

images/4.1-cfconfig_horizon.png

images/4.2-cfconfig_net_create.png

After opening the Create network window, you should enter the following settings:

• Name: ext_net

• Project: admin

• Network type: flat

• Phusical network: physnet1

• Marked checkboxes Enable Admin State, Shared, External Network and Create Subnet

images/4.3-cfconfig_net_settings.png

The second step is to create a subnet for the network using the various addresses from our MAAS and Juju configura-
tion:

• Subnet Name: ext_net_subnet

• Network address (the network address where OpenStack is deployed): 192.168.40.0/24

• IP Version: IPv4

• Gateway IP: 192.168.40.1

In the Subnet details tab it is important do unmark the Enable DHCP checkbox. An Allocation Pools should
be defined (in format: start_IP_address, end_IP_address) as well as DNS Name Servers (on the first line: the IP
address of the MAAS server, which in this case is 192.168.40.16 - see section “1.2. Installation”), on the second line:
the DNS uset to resolve domains not managed by MAAS which in this case is 8.8.8.8 - see section “1.8. Network
services”):

4.3.2 Define an external network using CLI:

To define a network called ext_net type the following command:

openstack network create ext_net --share --external

The output from this command will show the various fields and values for the chosen configuration option. To show
the new network ID alongside its name type the command openstack network list:

32 Chapter 4. 4. Configure OpenStack

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

images/4.4-cfconfig_net_subnet.png

images/4.5-cfconfig_net_subdetails.png

+--------------------------------------+---------+---------+
| ID | Name | Subnets |
+--------------------------------------+---------+---------+
| fc171d22-d1b0-467d-b6fa-109dfb77787b | ext_net | |
+--------------------------------------+---------+---------+

To create a subnet for the network using the various addresses from our MAAS and Juju configuration type the
following command:

openstack subnet create ext_net_subnet --allocation-pool \
start=192.168.40.191,end=192.168.40.254 --subnet-range 192.168.40.0/24 \
--no-dhcp --gateway 192.168.40.1 --dns-nameserver 192.168.40.16 \
--dns-nameserver 8.8.8.8 --network ext_net

The output from the previous command provides a comprehensive overview of the new subnet’s configuration:

+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
allocation_pools	192.168.40.191-192.168.40.254
cidr	192.168.40.0/24
created_at	2019-01-04T13:43:48
description	
dns_nameservers	192.168.40.16, 8.8.8.8
enable_dhcp	False
gateway_ip	192.168.40.1
host_routes	
id	563ecd06-bbc3-4c98-b93e
ip_version	4
ipv6_address_mode	None
ipv6_ra_mode	None
name	ext_net_subnet
network_id	fc171d22-d1b0-467d-b6fa-109dfb77787b
project_id	4068710688184af997c1907137d67c76
revision_number	None
segment_id	None
service_types	None
subnetpool_id	None
updated_at	2019-01-04T13:43:48
use_default_subnet_pool	None
+-------------------------+--------------------------------------+

4.3. 4.3. Define an external network 33

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Note: OpenStack has deprecated the use of the neutron command for network configuration, migrating most of its
functionality into the Python OpenStack client. Version 2.4.0 or later of this client is needed for the subnet create
command.

4.4 4.4. Cloud images

You need to download an Ubuntu image locally in order to be able to dd it to a Glance. Canonical’s Ubuntu cloud
images can be found here:

https://cloud-images.ubuntu.com

You could use wget to download the image of Ubuntu 18.04 LTS (Bionic):

wget https://cloud-images.ubuntu.com/bionic/current/bionic-server-cloudimg-amd64.img

To add this image to Glance use the following command:

openstack image create --public --min-disk 3 --container-format bare \
--disk-format qcow2 --property architecture=x86_64 \
--property hw_disk_bus=virtio --property hw_vif_model=virtio \
--file bionic-server-cloudimg-amd64.img \
"bionic x86_64"

Typing openstack image list you can make sure the image was successfully imported:

+--------------------------------------+---------------+--------+
| ID | Name | Status |
+--------------------------------------+---------------+--------+
| d4244007-5864-4a2d-9cfd-f008ade72df4 | bionic x86_64 | active |
+--------------------------------------+---------------+--------+

The Compute > Images page of OpenStack’s Horizon web UI lists many more details about imported images. In
particular, note their size as this will limit the minimum root storage size of any OpenStack flavours used to deploy
them.

4.5 4.5. Working with flavors

The flavors define the compute, memory, and storage capacity of nova computing instances. A flavor is an available
hardware configuration for a server. It defines the size of a virtual server that can be launched.

Hint: For information on the flavors and flavor extra specs, refer to Flavors.

The following flavors should be created:

34 Chapter 4. 4. Configure OpenStack

https://docs.openstack.org/python-neutronclient/latest/
https://cloud-images.ubuntu.com
https://docs.openstack.org/nova/rocky/user/flavors.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Name CPUs RAM (MiB) Root Disk
(GiB)

Ephemeral
Disk (GiB)

minimal 1 3840 3 10
small 2 7680 3 14
small-50GB-ephemeral-disk 2 7680 3 50
small-highmem 4 31232 3 10
small-highmem-100GB-ephemeral-disk 4 31232 3 100
m1.xlarge 8 16384 160 0

4.5.1 Working with flavors using web UI:

From the panel on the left, click on Admin and choose section Compute, subsection Flavors. Then press the button
+ Create Flavor.

After opening the Create Flavor window, you should enter the following settings (for m1.xlarge flavor, for example):

• Name: m1.xlarge

• ID: auto

• VCPUs: 8

• RAM (MB): 16384

• Root Disk (GB): 160

• Ephemeral Disk (GB): 0

• Swap Disk (MB): 0

• RX/TX Factor: 1

In the Flavor Access tab select the project where the created flavor will be used:

4.5. 4.5. Working with flavors 35

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

36 Chapter 4. 4. Configure OpenStack

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

Note: If no projects are selected, then the flavor will be available in all projects.

Click the Create Flavor button to save changes.

4.5.2 Working with flavors using CLI:

Admin users can use the openstack flavor command to create, customize and manage flavor.

To create a flavor using an openstack flavor create command, you should specify the following parameters:

• flavour name

• ID

• RAM size

• disk size

• the number of vCPUs for the flavor

For the purpose of OpenStack configuration and CloudFoundry deployment, you need to create flavors with the fol-
lowing names and configuration:

openstack flavor create --vcpus 1 --ram 3840 --disk 3 --ephemeral 10 minimal
openstack flavor create --vcpus 2 --ram 7680 --disk 3 --ephemeral 14 small
openstack flavor create --vcpus 2 --ram 7680 --disk 3 --ephemeral 50 small-50GB-
→˓ephemeral-disk
openstack flavor create --vcpus 4 --ram 31232 --disk 3 --ephemeral 10 small-highmem
openstack flavor create --vcpus 4 --ram 31232 --disk 3 --ephemeral 100 small-highmem-
→˓100GB-ephemeral-disk
openstack flavor create --vcpus 8 --ram 16384 --disk 160 --ephemeral 0 m1.xlarge

To list the created flavors and show the ID and name, the amount of memory, the amount of disk space for the root
partition and for the ephemeral partition, the swap, and the number of virtual CPUs for each flavor, type the command:

4.5. 4.5. Working with flavors 37

https://docs.openstack.org/nova/rocky/admin/flavors.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

openstack flavor list

4.6 4.6. Working with domains, projects and users

The following is vital part of OpenStack operations:

• Domains - abstract resources; a domain is a collection of users and projects that exist within the OpenStack
environment.

• Projects - organizational units in the cloud to which you can assign users (a project is a group of zero or more
users).

• Users - members of one or more projects.

• Roles - define which actions users can perform. You assign roles to user-project pairs.

4.6.1 Working with domains and projects using web UI:

To create a domain using Dashboard, click on Identity from the panel on the left and choose section Domains. Then
press the button + Create Domain:

images/4.6-cfconfig_domain_create.png

You need to create domain with name cf_domain.

After the cf_domain is created you need to locate it in the table with domains and press the corresponding bitton Set
Domain Context from the Actions column. In this way, all subsequent operations will be executed in the context of
this domain.

images/4.7-cfconfig_domain_context.png

To create a Project in the context of cf_domain domain click on Identity from the panel on the left and choose section
Projects. Then press the button + Create Project and enter the name cludfoundry for this new project:

images/4.8-cfconfig_project_create.png

To create a User with a role member of cludfoundry project, click on Identity from the panel on the left and choose
section Users. Then press the button + Create User and enter the name eniware for the User Name:

38 Chapter 4. 4. Configure OpenStack

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

4.6. 4.6. Working with domains, projects and users 39

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

You should specify a password your_password for this user.

After the project and user are created, you should go back into Identity / Domains section and press the button Clear
Domain Context to complete the execution of procedures in the context of cf_domain:

images/4.10-cfconfig_domain_clctx.png

The finall step is to log out user admin_domain from the Dashboard.

Now you can log in to Dashboard with the created domain cf_domain:

• Domain: cf_domain

• User: eniware

• Password: your_password

images/4.11-cfconfig_domain_cflogin.png

4.6.2 Working with domains and projects using CLI:

To create a single domain with a single project and single user for a new deployment, start with the domain:

openstack domain create cf_domain

To add a project cludfoundry to the domain cf_domain:

openstack project create cloudfoundry --domain cf_domain

To add a user eniware with a role member and assign that user to the project cloudfoundry within cf_domain:

openstack user create eniware --domain cf_domain --project cloudfoundry --password
→˓your_password
openstack role add --project cloudfoundry --project-domain cf_domain --user eniware --
→˓user-domain cf_domain Member

The output to the previous command will be similar to the following:

+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
default_project_id	914e59223944433dbf12417ac4cd4031
domain_id	7993528e51344814be2fd53f1f8f82f9
enabled	True
id	e980be28b20b4a2190c41ae478942ab1
name	cf_domain

(continues on next page)

40 Chapter 4. 4. Configure OpenStack

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

| options | {} |
| password_expires_at | None |
+---------------------+----------------------------------+

Every subsequent action will now be performed by eniware user within the new cf_project project.

4.7 4.7. View and manage quotas

To prevent system capacities from being exhausted without notification, you can set up quotas. Quotas are operational
limits. The Compute and Block Storage service quotas are described here.

4.7.1 View and manage quotas using web UI:

Log in to the Dashboard and select the admin project from the drop-down list. On the Admin tab, open the System
tab and click the Defaults category. The default quota values are displayed:

• Compute Quotas:

• Volume Quotas:

• Network Quotas:

4.7. 4.7. View and manage quotas 41

https://docs.openstack.org/horizon/rocky/admin/set-quotas.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

To update project quotas click the Update Defaults button. In the Update Default Quotas window, you can edit the
default quota values. Click the Update Defaults button to save changes.

Note: Network quotas can not be edited in this way because they depend on the network settings that are configured

4.7.2 View and manage quotas using CLI:

The dashboard does not show all possible project quotas. To view and update the quotas for a service, you can use
OpenStackClient CLI.

To list all default quotas for all projects use the following command:

openstack quota show --default

To list the currently set quota values for a cloudfondry project use the following command:

openstack quota show cloudfoundry

To update quota values for a given existing project:

openstack quota set --QUOTA_NAME QUOTA_VALUE PROJECT_OR_CLASS

To update quotas for cloudfoundry project use the following commands:

42 Chapter 4. 4. Configure OpenStack

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/quota.html

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

4.7. 4.7. View and manage quotas 43

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

openstack quota set --instances 100 --cores 96 --ram 153600 --key-pairs 100
→˓cloudfoundry
openstack quota set --volumes 100 --per-volume-gigabytes 500 --gigabytes 4096
→˓cloudfoundry
openstack quota set --secgroup-rules 100 --secgroups 100 --networks 500 --subnets
→˓1000 --ports 2000 --routers 1000 --vips 100 --subnetpools 500 cloudfoundry

• The first command will update the the OpenStack Compute service quota instances - number of instances or
amount of CPU that a for cloudfoundry project can use.

• The second one wiil update the OpenStack Block Storage service quotas - volumes allowed for the project.

• The third command will update the the OpenStack Compute service quotas - security group rules allowed for
the project.

4.8 4.8. Next steps

You have now successfully deployed and configured OpenStack, taking full advantage of both Juju and MAAS. The
next step is to deploy CloudFoundry with BOSH Director on OpenStack.

44 Chapter 4. 4. Configure OpenStack

CHAPTER 5

5. Deploying CloudFoundry with BOSH Director on OpenStack

Todo: Draft: to be deleted after the documentation is ready:

1. Configure OpenStack Domain,Project, User, Network for the deployment - Done in Section “4. Configure
OpenStack”

2. Validate the OpenStack configuration using: https://github.com/eniware-org/cf-openstack-validator :

• cf-openstack-validator installation done in section 5.2. CF-OpenStack-Validator installation

3. Setup the OpenStack projects for the BOSH and CloudFoundry installation using TerraForm modules from here:
https://github.com/eniware-org/bosh-openstack-environment-templates

4. Install BOSH: https://bosh.io/docs/init-openstack/#deploy

5. Prepare and upload cloud-config.yml to BOSH to finilize the cloud configuration.

6. Deploy CloudFoundry.

In previous section we’ve configured OpenStack for use within a production environment. Various types of clients
were installed for different OpenStack operations. We have set environment variables, external network, flavors,
domain, project and user.

In this section we’ll create an environment that consists of a BOSH Director and Cloudfoudry deployment that it
orchestrates.

5.1 5.1. Prerequisites

To be able to proceed, you need to the following:

• Working OpenStack environment using both Juju and MAAS.

• A user able to create/delete resource in this environment.

• Flavors with properly configured names and settings.

45

https://github.com/eniware-org/cf-openstack-validator
https://github.com/eniware-org/bosh-openstack-environment-templates
https://bosh.io/docs/init-openstack/#deploy

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

5.2 5.2. CF-OpenStack-Validator installation

CF OpenStack Validator is an extension that verifies whether the OpenStack installation is ready to run BOSH and
install Cloud Foundry. The intended place to run the validator is a VM within your OpenStack.

5.2.1 5.2.1. Prerequisites for CF-OpenStack-Validator

OpenStack configuration requirements are as follows:

• Keystone v.2/v.3 Juju charm installed.

• Created OpenStack project.

• Created user with access to the previously created project (ideally you don’t want to run as admin).

• Created network - connect the network with a router to your external network.

• Allocated a floating IP.

• Allowed ssh access in the default security group - create a key pair by executing:

$ ssh-keygen -t rsa -b 4096 -N "" -f cf-validator.rsa_id

Upload the generated public key to OpenStack as cf-validator.

• A public image available in Glance.

The validator runs on Linux. Please ensure that the following packages are installed on your system:

• ruby 2.4.x or newer

• make

• gcc

• zlib1g-dev

• libssl-dev

• ssh

5.2.2 5.2.2. Installation of CF-OpenStack-Validator

To clone the CF-OpenStack-Validator repository:

git clone https://github.com/eniware-org/cf-openstack-validator

Navigate to the cf-openstack-validator folder:

cd cf-openstack-validator

Copy the generated private key into the cf-openstack-validator folder.

Copy validator.template.yml to validator.yml and replace occurrences of <replace-me> with appro-
priate values (see prerequisites):

• If using Keystone v.3, ensure there are values for domain and project.

• If using Keystone v.2, remove domain and project, and ensure there is a value for tenant. Also use the Keystone
v.2 URL as auth_url.

46 Chapter 5. 5. Deploying CloudFoundry with BOSH Director on OpenStack

https://github.com/eniware-org/cf-openstack-validator/tree/master/extensions/object_storage
https://packages.ubuntu.com/bionic/ruby
https://packages.ubuntu.com/bionic/make
https://packages.ubuntu.com/bionic/gcc
https://packages.ubuntu.com/bionic/zlib1g-dev
https://packages.ubuntu.com/bionic/libssl-dev
https://packages.ubuntu.com/bionic/ssh

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

$ cp validator.template.yml validator.yml

Download a stemcell from OpenStack stemcells bosh.io:

$ wget --content-disposition https://bosh.io/d/stemcells/bosh-openstack-kvm-ubuntu-
→˓trusty-go_agent

Install the following dependencies:

$ gem install bundler
$ bundle install

5.2.3 5.2.3. Additional configurations

• CPI:

Validator downloads CPI release from the URL specified in the validator configuration. You can override
this by specifying the --cpi-release command line option with the path to a CPI release tarball.

If you already have a CPI compiled, you can specify the path to the executable in the environment variable
OPENSTACK_CPI_BIN. This is used when no CPI release is specified on the command line. It overrides
the setting in the validator configuration file.

• Extensions:

You can extend the validator with custom tests. For a detailed description and examples, please have a
look at the extension documentation.

The eniware-org repository already contains some extensions. Each extension has its own documentation
which can be found in the corresponding extension folder.

To learn about available cf-validator options run the following command:

$./validate --help

You can find more additional OpenStack related configuration options for possible solutions here.

5.3 5.3. Validate the OpenStack configuration

Before deploying Cloud Foundry, make sure to successfully run the CF-OpenStack-Validator against your project:

• Make sure you have the required flavors on OpenStack by enabling the flavors extension with the flavors.yml
file in this directory. Flavor names need to match those specified in the cloud config.

• If you plan using the Swift ops file to enable Swift as blobstore for the Cloud Controller, you should also run
the Swift extension.

To start the validation process type the following command:

$./validate --stemcell bosh-stemcell-<xxx>-openstack-kvm-ubuntu-trusty-go_agent.tgz -
→˓-config validator.yml

5.3. 5.3. Validate the OpenStack configuration 47

https://bosh.io/stemcells/bosh-openstack-kvm-ubuntu-trusty-go_agent
https://github.com/eniware-org/cf-openstack-validator/blob/master/docs/extensions.md
https://github.com/eniware-org/cf-openstack-validator/tree/master/extensions
https://github.com/eniware-org/cf-openstack-validator/blob/master/docs/openstack_configurations.md
https://github.com/eniware-org/cf-openstack-validator
https://github.com/eniware-org/cf-openstack-validator/tree/master/extensions/flavors
https://github.com/eniware-org/cf-deployment/blob/master/iaas-support/openstack/flavors.yml
https://github.com/eniware-org/cf-deployment/blob/master/operations/use-swift-blobstore.yml
https://github.com/eniware-org/cf-openstack-validator/tree/master/extensions/object_storage

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

5.4 5.4. Prepare OpenStack environment for BOSH and Cloud
Foundry via Terraform

You can use a Terraform environment template to configure your OpenStack project automatically. You will need
to create a terraform.tfvars file with information about the environment.

Important: The terraform scripts will output the OpenStack resource information required for the BOSH manifest.
Make sure to treat the created terraform.tfstate files with care.

Hint: Instead of using Terraform, you can prepare an OpenStack environment manually as described here.

5.4.1 5.4.1. Install Terraform module

Make sure you have updated package database and installed unzip package:

sudo apt-get update
sudo apt-get install -y git unzip

To install the Terraform module:

git clone https://github.com/eniware-org/bosh-openstack-environment-templates.git
wget https://releases.hashicorp.com/terraform/0.11.11/terraform_0.11.11_linux_amd64.
→˓zip
unzip terraform_0.11.11_linux_amd64.zip
chmod +x terraform
sudo mv terraform /usr/local/bin/

5.4.2 5.4.2. OpenStack environment for BOSH

5.4.2.1 Setup an OpenStack project to install BOSH:

To setup an OpenStack project to install BOSH please use the following Terraform module. Adapt terraform.
tfvars.template to your needs.

1. Create a working folder:

mkdir tmp

2. Copy the template file:

cp bosh-openstack-environment-templates/bosh-init-tf/terraform.tfvars.
→˓template tmp/terraform.tfvars

3. Generate a key pair executing the following script:

sh bosh-openstack-environment-templates/bosh-init-cf/generate_ssh_keypair.sh

4. Move the generated key pair to your working folder tmp:

48 Chapter 5. 5. Deploying CloudFoundry with BOSH Director on OpenStack

https://bosh.io/docs/init-openstack/#configuration-of-a-new-openstack-project
https://github.com/eniware-org/bosh-openstack-environment-templates/tree/master/bosh-init-tf

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

mv bosh.* tmp/

5. Navigate to the working folder tmp:

cd tmp

6. Configure the Terraform environment template terraform.tfvars.

7. Run the following commands:

terraform init ../bosh-openstack-environment-templates/bosh-init-tf/
terraform apply ../bosh-openstack-environment-templates/bosh-init-tf/

8. Save the terraform.tfvars and terraform.tfstate files for bosh-init-tf:

mv terraform.tfvars bosh_terraform.tfvars
mv terraform.tfstate bosh_terraform.tfstate

5.4.2.2 Terraform tempalte file configuration for BOSH:

The content of the terraform tempalte file terraform.tfvars for BOSH is as follows:

auth_url = "<auth_url>"
domain_name = "<domain_name>"
user_name = "<ostack_user>"
password = "<ostack_pw>"
tenant_name = "<ostack_tenant_name>"
region_name = "<region_name>"
availability_zone = "<availability_zone>"

ext_net_name = "<ext_net_name>"
ext_net_id = "<ext_net_id>"

in case your OpenStack needs custom nameservers
dns_nameservers = 8.8.8.8

Disambiguate keypairs with this suffix
keypair_suffix = "<keypair_suffix>"

Disambiguate security groups with this suffix
security_group_suffix = "<security_group_suffix>"

in case of self signed certificate select one of the following options
cacert_file = "<path-to-certificate>"
insecure = "true"

To edit the terraform.tfvars for BOSH using the described in this documentation scenario:

nano terraform.tfvars

Enter the following settings:

auth_url="http://192.168.40.228:5000/v3"
domain_name="cf_domain"
user_name="eniware"
password= <your_password>

(continues on next page)

5.4. 5.4. Prepare OpenStack environment for BOSH and Cloud Foundry via Terraform 49

https://github.com/eniware-org/bosh-openstack-environment-templates/blob/master/bosh-init-tf/terraform.tfvars.template

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

tenant_name="cloudfoundry"
region_name="RegionOne"
availability_zone="nova"
ext_net_name="ext_net"
ext_net_id="db178716-7d8a-444b-854a-685feb5bf7ea"

• auth_url is the URL of the Keystone service, which is http://192.168.40.228:5000/v3 in our case
(it can be retrieved by using juju status | grep keystone/0 command).

• The created domain cf_domain, with project cloudfondry and user eniware are set in the template in the
domain_name, user_name, password, and tenant_name fields.

• region_name can be retrieved when editing the Neutron config file or from here.

• The defined external network is set in ext_net_name filed.

• The ext_name_id identificator can be retrieved from the OpenStack web UI (go to Project > Network >
Networks, click on ext_net and go to Overview tab) or by using the command openstack network list.

5.4.3 5.4.3. OpenStack environment for Cloud Foundry

5.4.3.1 Setup an OpenStack project to install Cloud Foundry:

To setup the project to install Cloud Foundry please use the following Terraform module. Adapt terraform.
tfvars.template to your needs. Variable bosh_router_id is output of the previous BOSH terraform module.

1. Copy the template file terraform.tfvars file for cf-deployment-tf:

cp ../bosh-openstack-environment-templates/cf-deployment-tf/terraform.tfvars.
→˓template ./terraform.tfvars

2. Configure the Terraform environment template terraform.tfvars for cf-deployment-tf:

3. Run the following commands:

terraform init ../bosh-openstack-environment-templates/cf-deployment-tf/
terraform apply ../bosh-openstack-environment-templates/cf-deployment-tf/

5.4.3.2 Terraform tempalte file configuration for Cloud Foundry:

The content of the terraform tempalte file terraform.tfvars for Cloud Foundry is as follows:

auth_url = "<auth-url>"
domain_name = "<domain>"
user_name = "<user>"
password = "<password>"
project_name = "<project-name>"
region_name = "<region-name>"
availability_zones = ["<az-1>","<az-2>","<az-3>"]
ext_net_name = "<external-network-name>"

the OpenStack router id which can be used to access the BOSH network
bosh_router_id = "<bosh-router-id>"

in case Openstack has its own DNS servers

(continues on next page)

50 Chapter 5. 5. Deploying CloudFoundry with BOSH Director on OpenStack

https://github.com/eniware-org/bosh-openstack-environment-templates/tree/master/cf-deployment-tf
https://github.com/eniware-org/bosh-openstack-environment-templates/blob/master/cf-deployment-tf/terraform.tfvars.template

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

dns_nameservers = ["<dns-server-1>","<dns-server-2>"]

does BOSH use a local blobstore? Set to 'false', if your BOSH Director uses e.g. S3
→˓to store its blobs
use_local_blobstore = "<true or false>" #default is true

enable TCP routing setup
use_tcp_router = "<true or false>" #default is true
num_tcp_ports = <number> #default is 100, needs to be > 0

in case of self signed certificate select one of the following options
cacert_file = "<path-to-certificate>"
insecure = "true"

To edit the terraform.tfvars for Cloud Foundry using the described in this documentation scenario:

nano terraform.tfvars

Enter the following settings:

auth_url="http://192.168.40.228:5000/v3"
domain_name="cf_domain"
user_name="eniware"
password= <your_password>
tenant_name="cloudfoundry"
region_name="RegionOne"
availability_zones = ["nova", "nova", "nova"]
bosh_router_id = ""
dns_nameservers = ["8.8.8.8"]
use_local_blobstore = "true"
use_tcp_router = "true"
num_tcp_ports = 100

• auth_url, domain_name, user_name, password, tenant_name, and region_name are the same
as in terraform.tfvars template file for BOSH.

• bosh_router_id can be retrieved from the output of the previous terraform script for BOSH.

5.5 5.5. Install BOSH

To install the BOSH director please follow the instructions on section 6. Isntall BOSH of this documentation.

For additional information you can visit bosh.io.

Make sure the BOSH director is accessible through the BOSH cli, by following the instructions on bosh.io. Use this
mechanism in all BOSH cli examples in this documentation.

5.6 5.6. Cloud Config

After the BOSH director has been installed, you can prepare and upload a cloud config based on the cloud-config.yml
file.

Take the variables and outputs from the Terraform run of cf-deployment-tf to finalize the cloud config.

Use the following command to upload the cloud config.

5.5. 5.5. Install BOSH 51

https://bosh.io/docs/init-openstack/#deploy
https://bosh.io/docs/cli-envs.html
https://github.com/eniware-org/cf-deployment/blob/master/iaas-support/openstack/cloud-config.yml

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

bosh update-cloud-config \
-v availability_zone1="<az-1>" \
-v availability_zone2="<az-2>" \
-v availability_zone3="<az-3>" \
-v network_id1="<cf-network-id-1>" \
-v network_id2="<cf-network-id-2>" \
-v network_id3="<cf-network-id-3>" \
cf-deployment/iaas-support/openstack/cloud-config.yml

5.7 5.7. Deploy Cloud Foundry

To deploy Cloud Foundry run the following command filling in the necessary variables. system_domain is the user
facing domain name of your Cloud Foundry installation.

bosh -d cf deploy cf-deployment/cf-deployment.yml \
-o cf-deployment/operations/use-compiled-releases.yml \
-o cf-deployment/operations/openstack.yml \
-v system_domain="<system-domain>"

With Swift as Blobstore

• Create four containers in Swift, which are used to store the artifacts for buildpacks, app-packages, droplets, and
additional resources, respectively. The container names need to be passed in as variables in the below command
snippet

• Set a Temporary URL Key for your Swift account

Add the following lines to the deploy cmd:

-o cf-deployment/operations/use-swift-blobstore.yml \
-v auth_url="<auth-url>" \
-v openstack_project="<project-name>" \
-v openstack_domain="<domain>" \
-v openstack_username="<user>" \
-v openstack_password="<password>" \
-v openstack_temp_url_key="<temp-url-key>" \
-v app_package_directory_key="<app-package-directory-key>" \
-v buildpack_directory_key="<buildpack-directory-key>" \
-v droplet_directory_key="<droplet-directory-key>" \
-v resource_directory_key="<resource-directory-key>" \

52 Chapter 5. 5. Deploying CloudFoundry with BOSH Director on OpenStack

https://docs.openstack.org/swift/latest/api/temporary_url_middleware.html#secret-keys

CHAPTER 6

6. Install BOSH

BOSH is a project that unifies release engineering, deployment, and lifecycle management of small and large-scale
cloud software. BOSH can provision and deploy software over hundreds of VMs. It also performs monitoring, failure
recovery, and software updates with zero-to-minimal downtime.

While BOSH was developed to deploy Cloud Foundry PaaS, it can also be used to deploy almost any other software
(Hadoop, for instance). BOSH is particularly well-suited for large distributed systems. In addition, BOSH supports
multiple Infrastructure as a Service (IaaS) providers like VMware vSphere, Google Cloud Platform, Amazon Web
Services EC2, Microsoft Azure, and OpenStack. There is a Cloud Provider Interface (CPI) that enables users to
extend BOSH to support additional IaaS providers such as Apache CloudStack and VirtualBox.

6.1 6.1. Getting Started

The bosh CLI is the command line tool used for interacting with all things BOSH. Release binaries are available on
GitHub. See Installation for more details on how to download and install.

6.2 6.2. Installing the BOSH CLI

Choose your preferred installation method below to get the latest version of bosh.

53

https://bosh.io
https://bosh.io/docs/cli-v2/
https://github.com/cloudfoundry/bosh-cli/releases
https://bosh.io/docs/cli-v2-install/

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

6.2.1 Using the binary directly

To install the BOSH binary directly:

1. Navigate to the BOSH CLI GitHub release page and choose the correct download for your operating system.

2. Make the bosh binary executable and move the binary to your PATH:

$ chmod +x ./bosh
$ sudo mv ./bosh /usr/local/bin/bosh

3. You should now be able to use bosh. Verify by querying the CLI for its version:

$ bosh -v
version 5.3.1-8366c6fd-2018-09-25T18:25:51Z

Succeeded

6.2.2 Using Homebrew on macOS

If you are on macOS with Homebrew, you can install using the Cloud Foundry tap.

1. Use brew to install bosh-cli:

$ brew install cloudfoundry/tap/bosh-cli

2. You should now be able to use bosh. Verify by querying the CLI for its version:

$ bosh -v
version 5.3.1-8366c6fd-2018-09-25T18:25:51Z

Succeeded

Note: We currently do not publish BOSH CLI via apt or yum repositories.

6.3 6.3. Additional Dependencies

When you are using bosh to bootstrap BOSH or other standalone VMs, you will need a few extra dependencies
installed on your local system.

Note: If you will not be using create-env and delete-env commands, you can skip this section.

6.3.1 Ubuntu Trusty

If you are running on Ubuntu Trusty, ensure the following packages are installed on your system:

$ sudo apt-get install -y build-essential zlibc zlib1g-dev ruby ruby-dev openssl
→˓libxslt-dev libxml2-dev libssl-dev libyaml-dev libsqlite3-dev sqlite3

(continues on next page)

54 Chapter 6. 6. Install BOSH

https://github.com/cloudfoundry/bosh-cli/releases
https://brew.sh
https://github.com/cloudfoundry/homebrew-tap

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

(continued from previous page)

wget http://archive.ubuntu.com/ubuntu/pool/main/r/readline6/libreadline6_6.3-8ubuntu2_
→˓amd64.deb
wget http://archive.ubuntu.com/ubuntu/pool/main/r/readline6/libreadline6-dev_6.3-
→˓8ubuntu2_amd64.deb
sudo dpkg -i libreadline6_6.3-8ubuntu2_amd64.deb
sudo dpkg -i libreadline6-dev_6.3-8ubuntu2_amd64.deb

6.4 6.4. Quick Start

The easiest ways to get started with BOSH is by running on your local workstation with VirtualBox. If you are
interested in bringing up a director in another environment, like Google Cloud Platform, choose your IaaS from the
navigation for more detailed instructions.

6.4.1 Prerequisites

Before trying to deploy the Director, make sure you have satisfied the following requirements:

1. For best performance, ensure you have at least 8GB RAM and 50GB of free disk space.

2. Install the bosh CLI and its additional dependencies.

3. Install VirtualBox.

6.4.2 Install

First, create a workspace for our virtualbox environment. This directory will keep some state and configuration files
that we will need.

$ mkdir -p ~/bosh-env/virtualbox
$ cd ~/bosh-env/virtualbox

Next, we’ll use bosh-deployment, the recommended installation method, to bootstrap our director.

$ git clone https://github.com/cloudfoundry/bosh-deployment.git

Now, we can run the virtualbox/create-env.sh script to create our test director and configure the environ-
ment with some defaults.

$./bosh-deployment/virtualbox/create-env.sh

During the bootstrap process, you will see a few stages:

• Creating BOSH Director - dependencies are downloaded, the VM is created, and BOSH is installed, configured,
and started.

• Adding Network Routes - a route to the virtual network is added to ensure you will be able to connect to
BOSH-managed VMs.

• Generating .envrc - a settings file is generated so you can easily connect to the environment later.

• Configuring Environment Alias - an alias is added for the bosh command so you can reference the environment
as vbox.

• Updating Cloud Config - default settings are applied to the Director so you easily deploy software later.

6.4. 6.4. Quick Start 55

https://www.virtualbox.org
https://cloud.google.com/
https://github.com/cloudfoundry/bosh-deployment

Deploying Cloud Foundry on Private Cloud Documentation, Release 1

After a few moments, BOSH should be started. To verify, first load your connection settings, and then run your first
bosh command where you should see similar output.

$ source .envrc
$ bosh -e vbox env
Using environment '192.168.50.6' as client 'admin'

Name bosh-lite
UUID 7ce65259-471a-424b-88cb-9d3cee85db2c
Version 265.2.0 (00000000)
CPI warden_cpi
User admin

Congratulations - BOSH is running! Now you’re ready to deploy.

Note: Troubleshooting If you run into any trouble, please continue to the VirtualBox Troubleshooting section.

6.4.3 Deploy

Run through quick steps below or follow deploy workflow that goes through the same steps but with more explanation.

1. Update cloud config

$ bosh -e vbox update-cloud-config bosh-deployment/warden/cloud-config.yml

2. Upload stemcell

$ bosh -e vbox upload-stemcell https://bosh.io/d/stemcells/bosh-warden-
→˓boshlite-ubuntu-trusty-go_agent?v=3468.17 \ --sha1
→˓1dad6d85d6e132810439daba7ca05694cec208ab

3. Deploy example deployment

$ bosh -e vbox -d zookeeper deploy <(wget -O- https://raw.githubusercontent.
→˓com/cppforlife/zookeeper-release/master/manifests/zookeeper.yml)

4. Run Zookeeper smoke tests

$ bosh -e vbox -d zookeeper run-errand smoke-tests

6.4.4 Clean up

The test director can be deleted using the virtualbox/delete-env.sh script.

$./bosh-deployment/virtualbox/delete-env.sh

6.5 6.5. Initialize New Environment on OpenStack

TODO

56 Chapter 6. 6. Install BOSH

https://bosh.io/docs/basic-workflow/
https://bosh.io/docs/init-openstack/

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

57

	1. Install MAAS
	1.1. Requirements
	1.2. Installation
	1.3. On-boarding
	1.4. Connectivity and images
	1.5. SSH key
	1.6. Networking
	Extending a reserved dynamic IP range:
	Enabling DHCP:

	1.7. Images
	1.8. Network services
	1.9. Adding nodes
	1.10. Commission nodes
	1.11. Next steps

	2. Install Juju
	2.1. Package installation
	2.2. Client configuration
	2.3. Testing the environment
	2.4. Opening the Juju GUI
	2.5. Next steps

	3. Install OpenStack
	3.1. Juju controller deployment
	3.2. OpenStack deployment
	3.3. OpenStack testing
	3.4. Next steps

	4. Configure OpenStack
	4.1. Installing clients for different OpenStack operations
	4.2. Environment variables
	4.3. Define an external network
	Define an external network using web UI:
	Define an external network using CLI:

	4.4. Cloud images
	4.5. Working with flavors
	Working with flavors using web UI:
	Working with flavors using CLI:

	4.6. Working with domains, projects and users
	Working with domains and projects using web UI:
	Working with domains and projects using CLI:

	4.7. View and manage quotas
	View and manage quotas using web UI:
	View and manage quotas using CLI:

	4.8. Next steps

	5. Deploying CloudFoundry with BOSH Director on OpenStack
	5.1. Prerequisites
	5.2. CF-OpenStack-Validator installation
	5.2.1. Prerequisites for CF-OpenStack-Validator
	5.2.2. Installation of CF-OpenStack-Validator
	5.2.3. Additional configurations

	5.3. Validate the OpenStack configuration
	5.4. Prepare OpenStack environment for BOSH and Cloud Foundry via Terraform
	5.4.1. Install Terraform module
	5.4.2. OpenStack environment for BOSH
	Setup an OpenStack project to install BOSH:
	Terraform tempalte file configuration for BOSH:

	5.4.3. OpenStack environment for Cloud Foundry
	Setup an OpenStack project to install Cloud Foundry:
	Terraform tempalte file configuration for Cloud Foundry:

	5.5. Install BOSH
	5.6. Cloud Config
	5.7. Deploy Cloud Foundry

	6. Install BOSH
	6.1. Getting Started
	6.2. Installing the BOSH CLI
	Using the binary directly
	Using Homebrew on macOS

	6.3. Additional Dependencies
	Ubuntu Trusty

	6.4. Quick Start
	Prerequisites
	Install
	Deploy
	Clean up

	6.5. Initialize New Environment on OpenStack

	Indices and tables

