
Clixon
Release 7.0

Olof Hagsand

Apr 03, 2024

TABLE OF CONTENTS

1 1 Overview 3
1.1 1.1 System Architecture . 3
1.2 1.2 Platforms . 5
1.3 1.3 Standards . 5
1.4 1.4 How to get Clixon . 5
1.5 1.5 Support . 6
1.6 1.6 Bug reports . 6
1.7 1.7 Reference docs . 6

2 2 Installation 7
2.1 2.1 Ubuntu Linux . 7
2.2 2.2 FreeBSD . 9
2.3 2.3 Systemd . 10
2.4 2.4 Docker . 11
2.5 2.5 Vagrant . 11
2.6 2.6 OpenWRT . 11
2.7 2.7 Prereqs from source . 11
2.8 2.8 SSH subsystem . 12
2.9 2.9 Configure options . 12
2.10 2.10 macOS . 13

3 3 Quick start 15
3.1 3.1 Host native . 15
3.2 3.2 Using the CLI . 16
3.3 3.3 Netconf . 17
3.4 3.4 Restconf . 17
3.5 3.5 Docker container . 18
3.6 3.6 Next steps . 18

4 4 Standards 19
4.1 4.1 YANG . 19
4.2 4.2 NETCONF . 20
4.3 4.3 RESTCONF . 22
4.4 4.4 SNMP . 23
4.5 4.5 XML and XPath . 23
4.6 4.6 Pagination . 24
4.7 4.7 Unicode . 24
4.8 4.8 JSON . 24

5 5 Configuration 25

i

5.1 5.1 Example . 25
5.2 5.2 Loading the configuration . 26
5.3 5.3 Runtime modification . 26
5.4 5.4 Features . 26
5.5 5.5 Finding YANG files . 27
5.6 5.6 Standard YANG files . 28
5.7 5.7 Extending the configuration . 28

6 6 Plugins 29
6.1 6.1 Clixon_plugin_init . 29
6.2 6.2 Registered callbacks . 31
6.3 6.3 Plugin callback guidelines . 33

7 7 Backend 35
7.1 7.1 Command-line options . 36
7.2 7.2 Startup . 37
7.3 7.3 IPC Socket . 38
7.4 7.4 Backend files . 38
7.5 7.5 Backend plugins . 38
7.6 7.6 Transactions . 39
7.7 7.7 Privileges . 43

8 8 Datastore 45
8.1 8.1 Datastore files . 45
8.2 8.2 Datastore and file formats . 46
8.3 8.3 Module library support . 48
8.4 8.4 Datastore caching . 49

9 9 CLI 51
9.1 9.1 Overview . 51
9.2 9.2 Configure options . 54
9.3 9.3 CLI callbacks . 56
9.4 9.4 Show commands . 57
9.5 9.5 Output pipes . 59
9.6 9.6 Autocli . 61
9.7 9.7 Advanced . 67

10 10 NETCONF 75
10.1 10.1 Overview . 75
10.2 10.2 Starting . 77
10.3 10.3 NACM . 77
10.4 10.4 Confirm-commit . 79
10.5 10.5 Callhome . 79
10.6 10.6 Internal NETCONF . 81

11 11 RESTCONF 83
11.1 11.1 Architecture . 83
11.2 11.2 Installation . 84
11.3 11.3 Command-line options . 84
11.4 11.4 Configuration options . 85
11.5 11.5 Advanced config . 85
11.6 11.6 Starting . 89
11.7 11.7 Plugin callbacks . 91
11.8 11.8 FCGI . 92
11.9 11.9 Callhome . 93

ii

11.10 11.10 HTTP data . 96
11.11 11.11 RESTCONF streams . 97

12 12 SNMP 99
12.1 12.1 Architecture . 99
12.2 12.2 Configuration . 100
12.3 12.3 MIB mapping . 101

13 13 YANG 103
13.1 13.1 Leafrefs . 103
13.2 13.2 YANG Library . 104
13.3 13.3 Extensions . 105
13.4 13.4 Unique . 107
13.5 13.5 If-feature and anydata . 107
13.6 13.6 Schema mounts . 108

14 14 Usecases 113
14.1 14.1 CLI read . 113
14.2 14.2 CLI write . 114
14.3 14.3 Commit . 115
14.4 14.4 RESTCONF RPC . 116

15 15 Client API 117
15.1 15.1 Clixon and ConfD Examples . 118

16 16 XML and paths 121
16.1 16.1 Paths . 121
16.2 16.2 XML trees . 123
16.3 16.3 Creating XML . 125
16.4 16.4 Modifying XML . 128
16.5 16.5 Searching in XML . 130
16.6 16.6 Internal representation . 134
16.7 16.7 Character encoding . 135

17 17 Pagination 137
17.1 17.1 Overview . 137
17.2 17.2 Locked pagination . 138
17.3 17.3 Pagination protocol . 138
17.4 17.4 CLI scrolling . 139
17.5 17.5 Backend pagination API . 140

18 18 Upgrade 141
18.1 18.1 General-purpose . 141
18.2 18.2 Module-specific upgrade . 142
18.3 18.3 Extra XML . 144
18.4 18.4 Failsafe mode . 145
18.5 18.5 Repair . 145
18.6 18.6 Automatic upgrades . 146

19 19 Errors and debug 149
19.1 19.1 Error reporting . 149
19.2 19.2 Debugging . 151
19.3 19.3 Customization . 153

20 20 Misc 155

iii

20.1 20.1 High availability . 155
20.2 20.2 Process handling . 155
20.3 20.3 Event notifications . 157

iv

Clixon, Release 7.0

Clixon is a YANG-based configuration manager, with interactive CLI, NETCONF and RESTCONF interfaces, an
embedded database and a transaction mechanism.

TABLE OF CONTENTS 1

Clixon, Release 7.0

2 TABLE OF CONTENTS

CHAPTER

ONE

1 OVERVIEW

Clixon is a configuration management framework used by networking devices and other computer systems. Clixon
provides a datastore, CLI, NETCONF and RESTCONF interfaces all defined by YANG.

Clixon links:

• Source code at github.

• Project.

• Docs.

Most of the projects using Clixon are for networking devices. But Clixon can be used for other YANG-based systems
as well due to a modular and pluggable architecture.

Clixon has a transaction mechanism that ensures configuration operations are atomic. It also features a generated
interactive command-line interface using CLIgen.

The goal of Clixon is to provide a useful, production-grade, scalable and free YANG based configuration tool.

Clixon is open-source and dual licensed. Either Apache License, Version 2.0 or GNU General Public License Version
2.

1.1 1.1 System Architecture

Clixon provides YANG functionality with Netconf, Restconf and CLI that can be integrated with an existing “base
system” in several ways. The integrations are:

• A plugin integration where clixon handles all user interaction with the base system using backend plugins. This
is the _primary_ Clixon usage model.

• A client integration where the base system uses clixon for configurations as a “side-car”. There is some ongoing
work to make Clixon also work for this usage.

3

http://www.github.com/clicon/clixon
http://www.clicon.org
https://clixon-docs.readthedocs.io/en/latest/
http://www.cligen.se

Clixon, Release 7.0

1.1.1 1.1.1 Plugin integration

This describes how to integrate a base system with Clixon using plugins.

The Clixon architecture consists of a backend daemon with configuration datastores and a set of internal clients: cli,
restconf, netconf and snmp.

The clients provide frontend interfaces to users of the system, such as a Network Management System (NMS) or an
interactive human user. The external interfaces include interactive CLI, RESTCONF over HTTP/HTTPS, and XML
NETCONF over TCP or SSH. Internally, the clients and backend communicate over an inter-process communication
(IPC) bus via NETCONF over a UNIX socket. It is possible to run over an INET socket as well.

The backend manages configuration datastores and implements a transaction mechanism for configuration operations
(eg, create, read, update, delete) . The datastore supports candidate, running and startup configurations.

A system integrating Clixon using plugins, typically starts with a set of YANG specifications. Backend plugins are
written that interact with the base system. The plugins are written in C using the Clixon API and a set of plugin
callbacks. The main callback is a transaction callback, where you specify how configuration changes are made to your
system.

You can also design an interactive CLI using CLIgen, where you specify the CLI commands and write CLI plugins.
You will have to write CLI rules, but Clixon can generate the configuration part of the CLI, including set, delete, show
commands for a specific syntax.

Notifications (streams) are supported both for CLI, NETCONF and RESTCONF clients.

4 Chapter 1. 1 Overview

http://www.cligen.se

Clixon, Release 7.0

1.1.2 1.1.2 Client integration

In a client architecture, the base system keeps existing APIs and only YANG-based configurations are exposed via
Clixon. The base system acts as a clixon client and uses the clixon client module to subscribe to configuration events
using Netconf message passing.

In comparison, the tighter plugin architecture uses dynamically loaded plugins, callbacks and a shared datastore. See
clixon client api for more details.

1.2 1.2 Platforms

Clixon supports GNU/Linux, FreeBSD and Docker. MacOS may work. Linux platforms include Ubuntu, Alpine,
Centos, and Raspian. CPU architectures include x86_64, i686, and ARM32.

1.3 1.3 Standards

Clixon supports standards including YANG, NETCONF, RESTCONF, XML and XPath. See Standards section for
more details.

1.4 1.4 How to get Clixon

Get the Clixon source code from Github:

git clone https://github.com/clicon/clixon.git

1.2. 1.2 Platforms 5

http://github.com/clicon/clixon

Clixon, Release 7.0

1.5 1.5 Support

Clixon interaction is best done posting issues, pull requests, or joining the Matrix clixon forum https://matrix.
to/#/#clixonforum:matrix.org.

1.6 1.6 Bug reports

Report bugs via Github issues

1.7 1.7 Reference docs

The user-manual is this document. For reference documentation of the C-code, Doxygen is used. To build the reference
documentation you need to check out the source code, and type make doc, eg:

git clone git@github.com:clicon/clixon.git
cd clixon
./configure
make doc

direct your browser to:

file:///<your home path>/clixon/doc/html/index.html

6 Chapter 1. 1 Overview

https://matrix.to
https://matrix.to
https://github.com/clicon/clixon/issues

CHAPTER

TWO

2 INSTALLATION

2.1 2.1 Ubuntu Linux

This section describes how to build Clixon from source on Ubuntu Linux. You can use this as a base for other platforms
as well since many steps (such as prereqs) are similar.

Further, the vagrant scripts show how to build for some other Linux variants.

2.1.1 2.1.1 Prerequisites

General prerequisites

Install packages:

sudo apt-get install flex bison

Install and build CLIgen:

git clone https://github.com/clicon/cligen.git
cd cligen;
configure
make;
sudo make install

Add a clixon user and group, using useradd and usermod:

sudo useradd -M -U clixon
sudo usermod -a -G clixon <youruser> # Remember to re-log in for this to take effect
sudo usermod -a -G clixon www-data # Only if RESTCONF

If you do not require RESTCONF, then continue with Build clixon from source.

7

Clixon, Release 7.0

RESTCONF HTTP Support

The RESTCONF implementation supports two HTTP configurations:

1. Clixon native HTTP server

2. FastCGI for reverse proxy

Clixon native HTTP server

Native http server requires openssl 1.1 or later.

Install TLS:

sudo apt-get install libssl-dev

Thereafter configure using default options:

configure

FastCGI for reverse proxy

FastCGI requires support for Nginx or similar reverse HTTP proxy:

sudo apt-get install nginx libfcgi-dev

Then, when building clixon from source (see below), configure clixon with:

configure --with-restconf=fcgi

Note that the libfcgi-dev package might not exist in Ubuntu 18 bionic or later, in which case need to build fcgi from
source.

Note also that the ‘fcgi’ installation package might have a different name on other Linux distributions, such as “fcgi-dev”
(alpine), “fcgi” (arch), “fcgi-devkit” (freebsd).

2.1.2 2.1.2 Build Clixon from source

Download clixon source code:

git clone https://github.com/clicon/clixon.git

Configure Clixon using one of the following RESTCONF configurations:

configure --with-restconf=native # clixon native HTTP server
configure --with-restconf=fcgi # FastCGI support for reverse proxy, the default

when no '--with-restconf' option is specified
configure --without-restconf # Do not build restconf

For more configure options see: Configure options.

Build and install:

8 Chapter 2. 2 Installation

Clixon, Release 7.0

make # Compile
sudo make install # Install libs, binaries, config-files and include-files
sudo ldconfig # To link new dynamic libraries

Building the example and utils

To build and install the example app, from the top level clixon directory:

make example
cd example
sudo make install

To build the utils for running the tests, from the top level clixon directory:

sudo apt install libcurl4-openssl-dev
cd util
make
sudo make install

See also the Quickstart section section for building a complete hello world example.

2.2 2.2 FreeBSD

FreeBSD has ports for both cligen and clixon available. You can install them as binary packages, or you can build them
in a ports source tree locally.

If you install using binary packages or build from the ports collection, the installation locations comply with FreeBSD
standards and you have some assurance that the installed package is correct and functional.

The Nginx setup for RESTCONF is altered - the system user www is used, and the restconf daemon is placed in
/usr/local/sbin.

2.2.1 2.2.1 Binary package install

To install the pre-built binary package, use the FreeBSD pkg command:

% pkg install clixon

This will install clixon and all the dependencies needed.

2.2.2 2.2.2 Build from source on FreeBSD

If you prefer you can also build clixon from the FreeBSD ports collection

Once you have the Ports Collection installed, you build clixon like this

% cd /usr/ports/devel/clixon
% make && make install

One issue with using the Ports Collection is that it may not install the latest version from GitHub. The port is generally
updated soon after an official release, but there is still a lag between it and the master branch. The maintainer for the
port tries to assure that the master branch will compile always, but no FreeBSD specific functional testing is done.

2.2. 2.2 FreeBSD 9

https://www.freebsd.org/doc/handbook/ports-using.html

Clixon, Release 7.0

2.3 2.3 Systemd

Once installed, Clixon can be setup using systemd. The following shows an example with the back-
end and restconf daemons from the main example. Install them as /etc/systemd/system/example.service and
/etc/systemd/system/example_restconf.service, for example.

2.3.1 2.3.1 Systemd backend

The backend service is installed at /etc/systemd/system/example.service, for example. Note that in this example, the
backend installation requires the restconf service, which is not necessary.

[Unit]
Description=Starts and stops a clixon example service on this system
Wants=example_restconf.service
[Service]
Type=forking
User=root
RestartSec=60
Restart=on-failure
ExecStart=/usr/local/sbin/clixon_backend -s running -f /usr/local/etc/example.xml
[Install]
WantedBy=multi-user.target

2.3.2 2.3.2 Systemd restconf

The Restconf service can be installed at, for example, /etc/systemd/system/example_restconf.service:

[Unit]
Description=Starts and stops an example clixon restconf service on this system
Wants=example.service
After=example.service
[Service]
Type=simple
User=root
Restart=on-failure
ExecStart=/usr/local/sbin/clixon_restconf -f /usr/local/etc/example.xml
[Install]
WantedBy=multi-user.target

The restconf daemon can also be started internally using the clixon-lib process-control RPC. For more info, see Restconf
section.

10 Chapter 2. 2 Installation

Clixon, Release 7.0

2.4 2.4 Docker

Clixon can run in a docker container. As an example the docker directory has boilerplate code for building Clixon in a
container:

cd docker/base
make docker

For complete examples see:

• Hello world

• Clixon CI test container

• Openconfig

2.5 2.5 Vagrant

Clixon uses vagrant in testing. For example to start a Freebsd vagrant host, install Clixon and run the test suite, do

cd test/vagrant
./vagrant.sh generic/freebsd12

Other platforms include: ubuntu/bionic64 and generic/centos8. To look at how Clixon is installed natively on those
platforms please look in the build scripts under test/vagrant/.

2.6 2.6 OpenWRT

See Clixon cross-compiler for Openwrt

2.7 2.7 Prereqs from source

2.7.1 2.7.1 FCGI

For RESTCONF using fcgi build fcgi from source as follows:

git clone https://github.com/FastCGI-Archives/fcgi2
cd fcgi2
./autogen.sh
./configure --prefix=/usr
make
sudo make install

2.4. 2.4 Docker 11

https://github.com/clicon/clixon-examples/tree/master/hello/docker
https://github.com/clicon/clixon/tree/master/docker/main
https://github.com/clicon/clixon-examples/tree/master/openconfig/docker
https://github.com/clicon/clixon-openwrt

Clixon, Release 7.0

2.8 2.8 SSH subsystem

You can expose clixon_netconf as an SSH subsystem according to RFC 6242. Register the subsystem in /etc/
sshd_config:

Subsystem netconf /usr/local/bin/clixon_netconf

and then invoke it from a client using:

ssh -s <host> netconf

2.9 2.9 Configure options

The Clixon configure script (generated by autoconf) includes several options apart from the standard ones.

These include (standard options are omitted)

--enable-debug Build with debug symbols, default: no

--enable-yang-patch Enable RFC 8072 YANG patch (plain patch is always enabled)

--enable-publish Enable publish of notification streams using SSE and curl

--disable-http1 Disable native http/1.1 (ie http/2 only)

--disable-nghttp2 Disable native http/2 using libnghttp2 (ie http/1 only)

--with-cligen=dir Use CLIGEN here

--with-restconf=native RESTCONF using native http. (DEFAULT)

--with-restconf=fcgi RESTCONF using fcgi/ reverse proxy.

--without-restconf No RESTCONF

--with-configfile=FILE Set default path to config file

--with-libxml2 Use gnome/libxml2 regex engine

--without-sigaction Disable sigaction logic (some platforms do not support SA_RESTART
mode)

--with-yang-installdir=DIR Install Clixon yang files here (default: ${prefix}/share/clixon)

--with-yang-standard-dir=DIR Location of standard IETF/IEEE YANG specs for tests and ex-
ample (default: $prefix/share/yang/standard). You can retrieve the standard
files at https://github.com/YangModels/yang

--with-clicon-user=user Run as this user in example and test

--with-clicon-group=group Run as this group in example and test

There are also some variables that can be set, such as:

./configure LINKAGE=static # Build static libraries

./configure CFLAGS="-O1 -Wall" INSTALLFLAGS="" # Use other CFLAGS

Note, you need to reconfigure and recompile from scratch if you want to build static libs

12 Chapter 2. 2 Installation

https://github.com/YangModels/yang

Clixon, Release 7.0

2.10 2.10 macOS

Clixon can be built on macOS, however not all tests will pass at this moment and there might be pieces which will not
run properly.

A few packages must be installed using for example HomeBrew:

brew install openssl nghttp2

Since we install a few libraries from HomeBrew we might want to set C and library paths:

$ export LIBRARY_PATH=$LIBRARY_PATH:/opt/homebrew/opt/openssl/lib
$ export C_INCLUDE_PATH=/opt/homebrew/opt/openssl/include/

Then Cligen and Clixon can be built as normal. Since Clixon will install things in “/usr/local/sbin/” you might want to
add this to PATH. Either temporarily using:

export PATH=$PATH:/usr/local/sbin/

Or permanently by adding the above to .bash_profile or similar.

Since macOS don’t use systemd or similar you’ll have to start and stop clixon_backend etc manually.

2.10. 2.10 macOS 13

Clixon, Release 7.0

14 Chapter 2. 2 Installation

CHAPTER

THREE

3 QUICK START

This section describes how to run the hello world example available in source code at: clixon hello example.

Clixon is not a system in itself, it is a support system for an application. In this case, the “application” is hello world.
The hello world application is very simple where the application semantics is completely described by a YANG and
CLI specification.

A more advanced application have backend and frontend plugins that define application-specific semantics. No plugins
are present in the hello world application.

The hello world example can be run both natively on the host and in a docker container.

3.1 3.1 Host native

3.1.1 3.1.1 Clixon

Go through the install instructions to install Clixon on your platform. This includes installing CLIgen, Clixon, creating
users, groups, etc.

In short:

git clone https://github.com/clicon/cligen.git
cd cligen
./configure
make && sudo make install
git clone https://github.com/clicon/clixon.git
cd clixon
./configure
make && sudo make install

Then proceed with host application install.

15

https://github.com/clicon/clixon-examples/tree/master/hello/src

Clixon, Release 7.0

3.1.2 3.1.2 Files

Files relevant to the hello world example are:

• hello.xml: the XML configuration file

• clixon-hello@2019-04-17.yang: the YANG spec

• hello_cli.cli: the CLIgen spec

• startup_db: The startup datastore containing restconf port configuration

• Makefile: install of specs, normally compile of plugins

3.1.3 3.1.3 Install and run

Checkout and configure the examples on the top-level:

git clone https://github.com/clicon/clixon-examples.git
cd clixon-examples
./configure

Compile and install:

cd hello/src
make && sudo make install

Start backend in the background:

sudo clixon_backend

Start cli:

clixon_cli

3.2 3.2 Using the CLI

The example CLI allows you to modify and view the data model using set, delete and show via generated code.

The following example shows how to add a very simple configuration hello world using the generated CLI. The config
is added to the candidate database, shown, committed to running, and then deleted.

olof@vandal> clixon_cli
cli> set <?>
hello

cli> set hello world
cli> show configuration
hello world;
cli> commit
cli> delete <?>
all Delete whole candidate configuration
hello

cli> delete hello
cli> show configuration

(continues on next page)

16 Chapter 3. 3 Quick start

https://github.com/clicon/clixon-examples/tree/master/hello/src/hello.xml
https://github.com/clicon/clixon-examples/tree/master/hello/yang/clixon-hello@2019-04-17.yang
https://github.com/clicon/clixon-examples/tree/master/hello/src/hello_cli.cli
https://github.com/clicon/clixon-examples/tree/master/hello/src/startup_db
https://github.com/clicon/clixon-examples/tree/master/hello/src/Makefile.in

Clixon, Release 7.0

(continued from previous page)

cli> commit
cli> quit
olof@vandal>

3.3 3.3 Netconf

Clixon also provides a Netconf interface. The following example starts a netconf client form the shell vi stdio, adds the
hello world config, commits it, and shows it:

olof@vandal> clixon_netconf -q
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><capabilities><capability>
→˓urn:ietf:params:netconf:base:1.1</capability></capabilities></hello>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config><target><candidate/></
→˓target><config><hello xmlns="urn:example:hello"><world/></hello></config></edit-config>
→˓</rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><ok/></rpc-reply>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><commit/></rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><ok/></rpc-reply>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><get-config><source><running/></
→˓source></get-config></rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><data><hello xmlns=
→˓"urn:example:hello"><world/></hello></data></rpc-reply>]]>]]>
olof@vandal>

3.4 3.4 Restconf

By default, Clixon uses Native http: supporting http/1 and http/2 (libnghttp2). The http server is integrated with the
clixon restconf daemon and needs no extra installations, apart from ensuring you have server and client certs for https.

As an alternative, you can use the FCGI solution, where instead a reverse proxy such as Nginx uses an internal FCGI
socket communication to communicate with Clixon. A reverse proxy, such as NGINX, needs to be configured. For
more info about the fcgi solution, see Restconf section.

3.4.1 3.4.1 Start and run

Regardless of which RESTCONF variant is used, start the restconf daemon as follows:

sudo clixon_restconf

Start sending restconf commands (using Curl):

olof@vandal> curl -X POST http://localhost/restconf/data -d '{"clixon-hello:hello":{
→˓"world":null}}'
olof@vandal> curl -X GET http://localhost/restconf/data
{

"data": {
"clixon-hello:hello": {

(continues on next page)

3.3. 3.3 Netconf 17

https://nginx.org

Clixon, Release 7.0

(continued from previous page)

"world": null
}

}
}

3.5 3.5 Docker container

You can run the hello example as a pre-built docker container, on a x86_64 Linux. See instructions in the clixon docker
hello example.

First, the container is started with the backend running:

$ sudo docker run --rm -p 8080:80 --name hello -d clixon/hello

Then a CLI is started

$ sudo docker exec -it hello clixon_cli
cli> set ?
hello
cli> set hello world
cli> show configuration
hello world;

Or Netconf:

$ sudo docker exec -it clixon/clixon clixon_netconf
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><capabilities><capability>
→˓urn:ietf:params:netconf:base:1.1</capability></capabilities></hello>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><get-config><source><candidate/></
→˓source></get-config></rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><data/></rpc-reply>]]>]]>

Or using restconf using curl on exposed port 8080:

$ curl -X GET http://localhost:8080/restconf/data/hello:system

3.6 3.6 Next steps

The hello world example only has a Yang spec and a template CLI spec. For more advanced applications, customized
backend, CLI, netconf and restconf code callbacks becomes necessary.

Further, you may want to add upgrade, RPC:s, state data, notification streams, authentication and authorization. The
main example contains such capabilities.

18 Chapter 3. 3 Quick start

https://github.com/clicon/clixon-examples/tree/master/hello/docker
https://github.com/clicon/clixon-examples/tree/master/hello/docker
https://github.com/clicon/clixon/tree/master/example/main

CHAPTER

FOUR

4 STANDARDS

4.1 4.1 YANG

YANG and XML are central to Clixon. Yang modules are used as a specification for encoding XML or JSON configu-
ration and state data. The YANG spec is also used to generate an interactive CLI, NETCONF and RESTCONF clients,
as well as the format of the XML datastore.

The YANG standards that Clixon follows include (see also netconf):

• YANG 1.0 RFC 6020

• YANG 1.1 RFC 7950

• YANG library RFC 8525 (partly)

Clixon deviates from the YANG standard as follows (reference to RFC7950 sections in parenthesis):

Not implemented:

• augment in a uses sub-clause (7.17) (module-level augment is implemented)

• instance-identifier type (9.13)

• status (7.21.2)

• YIN (13)

• Default values on leaf-lists (7.7.2)

• error-message is not implemented as sub-statement of “range”, “length” and “pattern”

Further:

Clixon supports the following extended XPath functions (10):

• current()

• deref()

• derived-from(),

• derived-from-or-self()

• bit-is-set()

• The following extended XPath functions are not supported (10):

– re-match()

– enum-value()

See also support of standard XPath functions XML and XPath

19

https://www.rfc-editor.org/rfc/rfc6020.txt
https://www.rfc-editor.org/rfc/rfc7950.txt
http://www.rfc-editor.org/rfc/rfc8525.txt

Clixon, Release 7.0

4.1.1 4.1.1 Regular expressions

Clixon supports two regular expression engines:

Posix
The default method, The regexps:s are translated to posix before matching with the standard Linux regex engine.
This translation is not complete but can be considered “good-enough” for most yang use-cases. For reference,
all standard Yang models have been tested.

Libxml2
Libxml2 uses the XSD regex engine. This is a complete XSD engine but you need to compile and link with
libxml2 which may add overhead.

To use libxml2 in clixon you need enable libxml2 in both cligen and clixon:

./configure --with-libxml2 # both cligen and clixon

You then need to set the following configure option:

<CLICON_YANG_REGEXP>libxml2</CLICON_YANG_REGEXP>

4.1.2 4.1.2 Metadata

Clixon implements Defining and Using Metadata with YANG RFC 7952 for XML and JSON.

This means that Yang-derived meta-data defined with:

md:annotation <name>

is defined for attributes so that they can be mapped from XML to JSON, for example.

Assigned meta-data are hardcoded. The following attributes are defined:

• ietf-netconf-with-defaults:default from RFC 6243 / RFC 8040

4.1.3 4.1.3 Schema mount

Yang schema mount is supported as defined in: RFC 8528: YANG Schema Mount .

Enable by enable the CLICON_YANG_SCHEMA_MOUNT configuration option.

4.2 4.2 NETCONF

Clixon implements the following NETCONF RFC:s:

• RFC 5277: NETCONF Event Notifications

• RFC 6022: YANG Module for NETCONF Monitoring.

• RFC 6241: NETCONF Configuration Protocol

• RFC 6242: Using the NETCONF Configuration Protocol over Secure Shell (SSH)

• RFC 6243 With-defaults Capability for NETCONF * RFC 8071: NETCONF Call Home and RESTCONF Call
Home. NETCONF over SSH (external) and RESTCONF call home (internal) over TLS are implemented.

• RFC 8341: Network Configuration Access Control Model (NACM). Notification not implemented.

20 Chapter 4. 4 Standards

https://github.com/YangModels/yang
http://www.rfc-editor.org/rfc/rfc7952.txt
http://www.rfc-editor.org/rfc/rfc8528.txt
http://www.rfc-editor.org/rfc/rfc5277.txt
http://www.rfc-editor.org/rfc/rfc6022.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc6242.txt
http:www.rfc-editor.org/rfc/rfc6243.txt
http://www.rfc-editor.org/rfc/rfc8071.txt
http://www.rfc-editor.org/rfc/rfc8071.txt
http://www.rfc-editor.org/rfc/rfc8341.txt

Clixon, Release 7.0

The following RFC6241 capabilities/features are hardcoded in Clixon:

• :candidate (RFC6241 8.3)

• :validate (RFC6241 8.6)

• :xpath (RFC6241 8.9)

• :notification (RFC5277)

• :with-defaults (RFC6243)

The following features are optional and can be enabled by setting CLICON_FEATURE:

• :confirmed-commit:1.1 (RFC6241 8.4)

• :startup (RFC6241 8.7)

• :writable-running (RFC6241 8.2) - just write to running, no commit semantics

Clixon does not support the following NETCONF features:

• :url capability

• copy-config source config

• edit-config testopts

• edit-config erropts

• edit-config config-text

• edit-config operation

Further, in get-config filter expressions, the RFC6241 XPath Capability is preferred over default subtrees. This has two
reasons:

1. XPath has better performance since the underlying system uses xpath, and subtree filtering is done after the
complete tree is retrieved.

2. Subtree filtering does not support namespaces yet.

Clixon supports netconf locks in default settings but not if CLICON_DATASTORE_CACHE is nocache mode.

4.2.1 4.2.1 RFC 6022

Clixon extends the RFC 6022 session parameter transportwith “cli”, “restconf”, “netconf” and “snmp”. In particular,
the clixon_netconf application uses stdio to get input and print output and is used in a “piping” fashion, for example
directly in a terminal shell or as a part of a SSH sub-system, and therefore has no direct knowledge of whether the
NETCONF transport is over SSH or not.

The source-host parameter is set only in certain circumstances when the source host is in fact known. This includes
native RESTCONF for example.

Further, hello counters are backend based, ie the internal protocol, which means hellos from RESTCONF, SNMP and
CLI clients are included and that eventual dropped hello messages from external NETCONF sessions are not.

4.2. 4.2 NETCONF 21

Clixon, Release 7.0

4.2.2 4.2.2 Default handling

Clixon treats default data according to what is defined as explicit basic mode in RFC 6243: With-defaults Capability
for NETCONF, i.e. the server consider any data node that is not explicitly set data to be default data.

One effect is that if you view the contents of datastores (or import/export them), they should be in explicit basic mode.

The :with-defaults capability indicates that clixon default behaviour is explicit and also indicates that additional retrieval
modes supported by the server are:.

• explicit

• trim

• report-all

• report-all-tagged

Internally in memory, however, report-all is used.

4.3 4.3 RESTCONF

Clixon supports the two RESTCONF compile-time variants: FCGI and Native. Both implements RFC 8040: REST-
CONF Protocol.

The following features of RFC8040 are supported:

• OPTIONS, HEAD, GET, POST, PUT, DELETE, PATCH

• Stream notifications (Sec 6)

• Query parameters: insert, point, content, depth, start-time, stop-time and with-defaults.

• Monitoring (Sec 9)

The following features are not implemented:

• ETag/Last-Modified

• Query parameters: fields and filter

RESTCONF event notification as described in RFC7950 section 6 is supported as follows:

• is not supported by native

• is supported by FCGI

NMDA is partly supported according to RFC 8324 and RFC 8527. With-defaults and with-origin are not implemented.

RFC 8072: YANG Patch Media Type is not implemented.

In the native mode, Clixon also supports:

• HTTP/1.1 as transport using a native implementation (RFC 7230),

• HTTP/2 as transport implemented by libnghttp2 (RFC7540),

• Transport Layer Security (TLS) implemented by libopenssl, versions 1.1.1 and 3.0

• ALPN as defined in RFC 7301 for http/1, http/2 protocol selection by libopenssl

22 Chapter 4. 4 Standards

http://www.rfc-editor.org/rfc/rfc6243.txt
http://www.rfc-editor.org/rfc/rfc6243.txt
https://www.rfc-editor.org/rfc/rfc8040.txt
https://www.rfc-editor.org/rfc/rfc8040.txt
https://tools.ietf.org/html/rfc8342
https://tools.ietf.org/html/rfc8527
https://www.rfc-editor.org/rfc/rfc8072.txt

Clixon, Release 7.0

4.4 4.4 SNMP

The Clixon-SNMP frontend implements the MIB-YANG mapping as defined in RFC 6643.

4.5 4.5 XML and XPath

Clixon has its own implementation of XML and XPath. See more in the detailed API reference.

The XML-related standards include:

• XML 1.0. (DOCTYPE/ DTD not supported)

• Namespaces in XML 1.0

• XPath 1.0

Clixon XML supports version and UTF-8 only.

The following XPath axes are supported:

• child,

• descendant,

• descendant-or-self,

• self

• parent

The following xpath axes are not supported: preceding, preceding_sibling, namespace, following_sibling, following,
ancestor,ancestor_or_self, and attribute

The following XPath functions as defined in Section 2.3 / 4 of the XPath 1.0 standard are supported:

• contains()

• count()

• false()

• name()

• node()

• boolean()

• not()

• position()

• text()

• true()

The following standard XPath functions are not supported:

• ceiling

• comment

• concat

• floor

• id

4.4. 4.4 SNMP 23

https://www.w3.org/TR/2008/REC-xml-20081126
https://www.w3.org/TR/2009/REC-xml-names-20091208
https://www.w3.org/TR/xpath-10

Clixon, Release 7.0

• lang

• last

• local-name

• namespace-uri

• normalize-space

• number

• processing-instructions

• round

• starts-with

• string

• substring

• substring-after

• substring-before

• sum

• translate

4.6 4.6 Pagination

The pagination solution is based on the following drafts:

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-00.html

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-nc-00.html

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-rc-00.html

See Pagination section for more info.

4.7 4.7 Unicode

Unicode is not supported in YANG and XML.

4.8 4.8 JSON

Clixon implements JSON according to:

• ECMA JSON Data Interchange Syntax

• RFC 7951 JSON Encoding of Data Modeled with YANG.

• RFC 8259 The JavaScript Object Notation (JSON) Data Interchange Format

24 Chapter 4. 4 Standards

https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-00.html
https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-nc-00.html
https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-rc-00.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.rfc-editor.org/rfc/rfc7951.txt
https://www.rfc-editor.org/rfc/rfc8259.txt

CHAPTER

FIVE

5 CONFIGURATION

Clixon configuration files are encoded in XML and modeled by YANG. By default, the main config file is installed as
/usr/local/etc/clixon.xml, but can be changed by the -f <file> command-line option.

The YANG specification for Clixon configuration is clixon-config.yang. This configuration file is updated regularly.

Normally, all Clixon processes (backend, cli, netconf, restconf) use the same configuration, although some options
are not valid for all processes. You can however have different configuration files for different clients by using the -f
option.

Loading an obsolete config option will result in an error.

Please consult the clixon-config YANG spec directly if you want detailed description of config options.

5.1 5.1 Example

The following is the configuration file of a simple example:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/clixon.xml</CLICON_CONFIGFILE>
<CLICON_CONFIGDIR>/usr/local/etc/clixon.d</CLICON_CONFIGDIR>
<CLICON_FEATURE>*:*</CLICON_FEATURE>
<CLICON_YANG_DIR>/usr/local/share/clixon</CLICON_YANG_DIR>
<CLICON_YANG_MODULE_MAIN>clixon-hello</CLICON_YANG_MODULE_MAIN>
<CLICON_CLI_MODE>hello</CLICON_CLI_MODE>
<CLICON_CLISPEC_DIR>/usr/local/lib/hello/clispec</CLICON_CLISPEC_DIR>
<CLICON_SOCK>/usr/local/var/hello.sock</CLICON_SOCK>
<CLICON_BACKEND_PIDFILE>/usr/local/var/hello.pidfile</CLICON_BACKEND_PIDFILE>
<CLICON_XMLDB_DIR>/usr/local/var/hello</CLICON_XMLDB_DIR>
<CLICON_STARTUP_MODE>init</CLICON_STARTUP_MODE>
<restconf>

<enable>true</enable>
</restconf>

</clixon-config>

The option CLICON_CONFIGFILE is special, it must be available before the configuration file is found (see Loading the
configuration), which means that the value in the file is a no-op.

The restconf clause defines RESTCONF configuration options as described in the restconf section section.

25

https://github.com/clicon/clixon/blob/master/yang/clixon/clixon-config@2021-11-11.yang
https://github.com/clicon/clixon/blob/master/yang/clixon/clixon-config@2021-11-11.yang

Clixon, Release 7.0

5.2 5.2 Loading the configuration

Clixon finds its configuration files, according to the following method:

1. Start a clixon program with the -f <FILE> option. For example:

clixon_backend -f FILE

2. At install time, Use the --with-configfile=FILE option to configure a default location:

./configure --with-configfile=FILE

3. At install time: ./configure --with-sysconfig=<dir> when configuring. Then FILE is <dir>/clixon.
xml

4. At install time: ./configure --sysconfig=<dir> when configuring. Then FILE is <dir>/etc/clixon.
xml

5. If none of the above: FILE is /usr/local/etc/clixon.xml

The following options control the Clixon configuration:

CLICON_CONFIGFILE
The configure file itself. Due to bootstrapping reasons, its value is meaningless in a file but can be useful for
documentation purposes.

CLICON_CONFIGDIR
A directory of extra configuration files loaded after the main configuration. It can also be specified using the
-E <dir> command-line option. These extra configuration files are read in alphabetical order after the main
configuration as follows:

• leaf values are overwritten

• leaf-list values are appended

5.3 5.3 Runtime modification

You can modify clixon options at runtime by using the -o option to modify the configuration specified in the configu-
ration file. For example, add usr/local/share/ietf to the list of directories where yang files are searched for:

clixon_cli -o CLICON_YANG_DIR=/usr/local/share/ietf

5.4 5.4 Features

CLICON_FEATURE is a list of values, describing how Clixon supports features.

A value is specified as one of the following:

• <module>:<feature> : enable a specific feature in a specific module

• *:* : enable all features in all modules

• <module>:* : enable all features in the specified module

• *:<feature> : enable the specific feature in all modules.

Example:

26 Chapter 5. 5 Configuration

Clixon, Release 7.0

<CLICON_FEATURE>ietf-netconf:startup</CLICON_FEATURE>
<CLICON_FEATURE>ietf-netconf:*</CLICON_FEATURE>
<CLICON_FEATURE>*:*</CLICON_FEATURE>

Supplying the -o option adds a value to the feature list.

Clixon have three hardcoded features:

• ietf-netconf:candidate (RFC6241 8.3)

• ietf-netconf:validate (RFC6241 8.6)

• ietf-netconf:xpath (RFC6241 8.9)

5.5 5.5 Finding YANG files

The example have two options for finding Yang files:

<CLICON_YANG_DIR>/usr/local/share/clixon</CLICON_YANG_DIR>
<CLICON_YANG_MODULE_MAIN>clixon-hello</CLICON_YANG_MODULE_MAIN>

which means that Yang files are searched for in /usr/local/share/clixon and that module clixon-hello is
loaded. Note:

• clixon-hello.yang must be present in /usr/local/share/clixon

• Clixon itself may load several YANG files as part of the system startup, such as clixon-config.yang. These
must all reside in the list of CLICON_YANG_DIR:s.

• When a Yang file is loaded, it may contain references to other Yang files (eg using import and include). They
must also be found in the list of CLICON_YANG_DIR:s.

The following configuration file options control the loading of Yang files:

CLICON_YANG_DIR
A list of directories (yang dir path) where Clixon searches for module and submodules recursively.

CLICON_YANG_MAIN_FILE
Load a specific Yang module given by a file.

CLICON_YANG_MODULE_MAIN
Specifies a single module to load. The module is searched for in the yang dir path.

CLICON_YANG_MODULE_REVISION
Specifies a revision to the main module.

CLICON_YANG_MAIN_DIR
Load all yang modules in this directory, not recursively.

Note that the special YANG_INSTALLDIR autoconf configure option, by default /usr/local/share/clixon should
be included in the yang dir path for Clixon system files to be found.

You can combine the options, however, if there are different variants of the same module, more specific options override
less specific. The precedence of the options are as follows:

1. CLICON_YANG_MAIN_FILE

2. CLICON_YANG_MODULE_MAIN

3. CLICON_YANG_MAIN_DIR

5.5. 5.5 Finding YANG files 27

Clixon, Release 7.0

Note that using CLICON_YANG_MAIN_DIR Clixon may find several files containing the same Yang module. Clixon will
prefer the one without a revision date if such a file exists. If no file has a revision date, Clixon will prefer the newest.

5.6 5.6 Standard YANG files

The main examples and tests require IETF RFC standard YANGs. If you want to run the main example or run tests,
you need to make them locally available by checking out https://github.com/YangModels/yangwhich has subdir
standard. By default this directory is /usr/local/share/yang You can change this location by:

./configure --with-yang-standard-dir=DIR

Note that you do not need this for the clixon runtime.

5.7 5.7 Extending the configuration

You can extend the options with an application-specific YANG file where you augment the regular “clixon-config” as
follows:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/clixon.xml</CLICON_CONFIGFILE>
<CLICON_CONFIG_EXTEND>clixon-myconfig</CLICON_CONFIG_EXTEND>
...

You then install your own “clixon-myconfig.yang” where you add your own config options. Example:

module clixon-myconfig {
yang-version 1.1;
namespace "http://example.org/myconfig";
...
import clixon-config {

prefix "cc";
}
augment "/cc:clixon-config" {

description
"My extended options";

leaf MYOPT {
type string;

}

You can now use your extended options in the regular config file, along with the basic ones, but with another namespace:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/clixon.xml</CLICON_CONFIGFILE>
<CLICON_CONFIG_EXTEND>clixon-myconfig</CLICON_CONFIG_EXTEND>
...
<MYOPT xmlns="http://example.org/myconfig">/usr/local/share/myopt</MYOPT>

You can also use the regular C-API to access the values of the options, eg:

char *val = clicon_option_str(h, "MYOPT");

28 Chapter 5. 5 Configuration

CHAPTER

SIX

6 PLUGINS

Plugins are the “glue” that binds the underlying system to Clixon and where application semantics is added by an
application developer.

The backend, CLI, Restconf and Netconf applications may use plugins, although the main use of plugins are the Backend
section plugins.

Plugins are written in C as dynamically loaded modules (.so files). At startup, the application looks in the assigned
directory and loads all files with .so suffixes from that dir in alphabetical order.

Plugins are located as follows:

• Backend plugins are are in CLICON_BACKEND_DIR

• CLI plugins are are in CLICON_CLI_DIR

• NETCONF plugins are in CLICON_NETCONF_DIR

• RESTCONF plugins are in CLICON_CLI_DIR;

For example, to load all backend plugins from: /usr/local/lib/example/backend:

<CLICON_BACKEND_DIR>/usr/local/lib/example/backend</CLICON_BACKEND_DIR>

Callbacks are registered in two ways:

• clixon_plugin_init : Return an API struct containing a fixed set of callbacks

• register functions : Register callback functions for more complex interaction

Further, CLI callbacks as described in CLI section are special in the way that they are invoked from CLIgen specifica-
tions, not from the application itself.

6.1 6.1 Clixon_plugin_init

On startup, the application loads each plugin and calls clixon_plugin_init in that plugin. The function is expected
to return an API struct clixon_plugin_api defining a set of static callbacks. The init function may return NULL in
which case it is logged and ignored.

Once the plugin is loaded, it awaits callbacks from the application.

An example of a minimal plugin is as follows:

static clixon_plugin_api api = {
"example", /* Plugin name */
clixon_plugin_init, /* init - must be called clixon_plugin_init */

(continues on next page)

29

Clixon, Release 7.0

(continued from previous page)

example_start, /* start */
example_exit, /* exit */
example_extension, /* yang extensions */
.ca_daemon=example_daemon, /* Plugin daemonized () (backend only) */

};

clixon_plugin_api *
clixon_plugin_init(clixon_handle h)
{
return &api;

}

First the clixon_plugin_api struct defines the callbacks. There are two blocks of callbacks:

• Common callbacks for backend, cli, netconf, and restconf

• Application-specific callbacks. In the example, only ca_daemon is specific to backends. By far, the backend
have most specific callbacks.

Second, the clixon_plugin_init() function is defined and (at a minimum) returns the struct.

The following callbacks are common plugins for all Clixon applications:

init
Clixon plugin init function, called immediately after plugin is loaded into the application. The name of the
function must be called clixon_plugin_init. It returns a struct with the name of the plugin, and all other
callback names.

start
Called when application is started and initialization is complete, but before the application is placed in the back-
ground and privileges are dropped (if applicable)

exit
Called just before plugin is unloaded at exit

extension
Called at parsing of yang modules containing an extension statement. A plugin may identify the extension by its
name, and perform actions on the yang statement, such as transforming the yang in-memory. A callback is made
for every statement, which means that several calls per extension can be made. See Misc section and the main
example on how to use extensions.

yang_mount
Called when populating a RFC8525 mount-point. See YANG section for more info.

yang_patch
Patch a yang module. This may be necessary with an imported faulty or non-compliant YANG module

errmsg
Customize a netconf error message for CLI return, log or debug messages. See Error section and the main
example.

version
Print a plugin-specific version stringh

See Backend section for backend specific callbacks, as well as corresponding manual sections for netconf/restconf/cli
callbacks.

30 Chapter 6. 6 Plugins

Clixon, Release 7.0

6.2 6.2 Registered callbacks

A second group of callbacks use register functions. This is a more detailed mechanism than the fixed callbacks described
previously, but are only defined to a limited sets of functions:

• rpc_callback_register() - for user-defined RPC callbacks. Applicable for NETCONF, RESTCONF and
backend.

• action_callback_register() - for user-defined Action callbacks. Applicable for backend.

• upgrade_callback_register() - for upgrading, see Upgrade section. Applicable only for backend.

• clixon_pagination_cb_register() - for pagination, as described in Pagination section. Applicable only
for backend.

A user may register may register a callback for an incoming RPC, and that function will be called.

There may be several callbacks for the same RPC. The order the callbacks are registered are as follows:

1. plugin_init

2. backend_rpc_init (where system callbacks are registered)

3. plugin_start

Which means if you register a copy-config callback in (1), it will be called before the system copy-config callback
registered from (2) backend_rpc_init. If you register a copy-config in (3) plugin-start it will be called after the system
copy-config.

Second, if there are more than one reply (eg <rpc-reply/><rpc-reply/>) only the first reply will be parsed and
used by the cli/netconf/restconf clients.

If you want to take the original and modify it, you should therefore register the callback in plugin_start (3) so that your
callback will be called after the system RPC. Then you should modify the original reply (not add a new reply).

6.2.1 6.2.1 Example: RPC callback

This example shows how to define a new RPC in YANG for the backend, register a callback function in C, read and
write a parameter. It is revised slightly from the main example.

YANG:

module clixon-example {
namespace "urn:example:clixon";
...
rpc example {

input {
leaf x {
type string;
...

output {
leaf y {
type string;
...

Register RPC in clixon_plugin_init():

6.2. 6.2 Registered callbacks 31

Clixon, Release 7.0

clixon_plugin_api *clixon_plugin_init(clixon_handle h)
{

...
rpc_callback_register(h, example_rpc, NULL, "urn:example:clixon", "example");

Callback function reading value input x, modifying value and writing it as output value y:

static int
example_rpc(clixon_handle h, /* Clicon handle */

cxobj *xe, /* Request: <rpc><xn></rpc> */
cbuf *cbret, /* Reply eg <rpc-reply>... */
void *arg, /* client_entry */
void *regarg) /* Argument given at register */

{
char *val;
val = xml_find_body(xe, "x"); /* Read x value of incoming rpc */
cprintf(cbret, "<rpc-reply xmlns=\"%s\">", NETCONF_BASE_NAMESPACE);
val[0]++; /* Increment first char */
/* Construct reply */
cprintf(cbret, "<y xmlns=\"urn:example:clixon\">%s</y>", val);
cprintf(cbret, "</rpc-reply>");

Result netconf session:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="42">
<example xmlns="urn:example:clixon">

<x>42</x>
</example>

</rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="42">

<y xmlns="urn:example:clixon">52</y>
</rpc-reply>]]>]]>

6.2.2 6.2.2 Example: Action callback

This example follows RFC 7950 7.15.3.

An action is associated with a YANG node and can therefore not be registered at init, instead the start callback can be
used, for example.

Register Action in example_reset():

int
example_start(clixon_handle h)
{

...
if (action_callback_register(h, ya, example_action_reset, NULL) < 0)

goto done;

32 Chapter 6. 6 Plugins

Clixon, Release 7.0

6.3 6.3 Plugin callback guidelines

Note: This information is important to understand for the stability of clixon

The Clixon programs run as non-blocking single-threaded applications. It calls functions from within dynamically
loaded modules. The callback code must be written with this programming model in mind. The behavior of the
callback directly impacts the behavior of the caller and the whole system.

The most serious effect is when crash within a callback happens. This will cause the whole program to crash.

A more subtle problem is the environment of the program. Clixon will configure the environment, and it expects that
the callback will return with the exact same environment intact. If you change a signal handler, a terminal configuration,
etc. you must restore the state as it was on entry. Failure to do this can cause problems that are difficult to isolate and
fix.

A list of things to watch out for (but not complete!):

• a crash in the plugin

• change of signal behaviour, such as blocking or assigning signal handlers

• change of terminal settings (for CLI callbacks)

• change of process privileges

• asynchronous calls

• If you fork or create threads, ensure the main program continues uninterrupted

The following config option is related to checking callbacks:

CLICON_PLUGIN_CALLBACK_CHECK
Enable check of resources before and after each callback. Checks are currently limited to signal and terminal
settings

6.3. 6.3 Plugin callback guidelines 33

Clixon, Release 7.0

34 Chapter 6. 6 Plugins

CHAPTER

SEVEN

7 BACKEND

The backend daemon is the central component in the Clixon architecture. It consists of a main module and a number
of dynamically loaded plugins. The backend has four APIs:

configuration
An XML file read at startup, possibly amended with -o options.

Internal interface / IPC
A NETCONF socket to frontend clients. This is by default a UNIX domain socket but can also be an IPv4 or
IPv6 TCP socket but with limited functionality.

Datastores
XML (or JSON) files storing configuration. The three main datastores are candidate, running and startup. A
user edits the candidate datastore, commits the changes to running which triggers callbacks in plugins.

Application
Backend plugins configure the base system with application-specific APIs. These API:s depend on how the
underlying system is configured, examples include configuration files or a socket.

Note that a user typically does not access the datastores directly, it is possible to read, but write operations should not
be done, since the backend daemon in most cases uses a datastore cache.

35

Clixon, Release 7.0

7.1 7.1 Command-line options

The backend have the following command-line options:

-h Help

-D <level> Debug level

-f <file> Clixon config file

-E <dir> Extra configuration directory

-l <option> Log on (s)yslog, std(e)rr, std(o)ut, (n)one or (f)ile. Syslog is default. If
foreground, then syslog and stderr is default.

-C <format> Dump configuration options on stdout after loading. Format is one of
xml|json|text

-d <dir> Specify backend plugin directory

-p <dir> Add Yang directory path (see CLICON_YANG_DIR)

-b <dir> Specify datastore directory

-F Run in foreground, do not run as daemon

-z Kill other config daemon and exit

-a <family> Internal backend socket family: UNIX|IPv4|IPv6

-u <path|addr> Internal socket domain path or IP addr (see -a)

-P <file> Process ID filename

-1 Run once and then quit (do not wait for events)

-s <mode> Specify backend startup mode: none|startup|running|init)

-c <file> Load extra XML configuration file, but do not commit.

-q Quit startup directly after upgrading and print result on stdout

-U <user> Run backend daemon as this user AND drop privileges permanently

-g <group> Client membership required to this group (default: clicon)

-y <file> Load yang spec file (override yang main module)

-o <option=value> Give configuration option overriding config file (see clixon-config.yang)

7.1.1 7.1.1 Logging and debugging

In case of debugging, the backend can be run in the foreground and with debug flags:

clixon_backend -FD 1

Note that debug levels can be combined as described in Section debugging.

Logging is by default on syslog. Alternatively, logging can be made on a file using the -l option:

clixon_backend -lf<file>

36 Chapter 7. 7 Backend

Clixon, Release 7.0

When run in foreground, logging is by default done on both syslog and stderr.

In a debugging mode, it can be useful to run in once-only mode, where the backend quits directly after starting up,
instead of waiting for events:

clixon_backend -F1D 1

It may be useful to see all config options after load, taking into account default values, config-dirs and option overriding.
This is normally dumped in debug level 1.

But you can also make an explicit dump of all config options on stdout using the -C option:

clixon_backend -1C xml

7.2 7.2 Startup

The backend can perform startup in four different modes. The difference is how the running state is handled, i.e., what
state the system is in when you start the daemon and how loading the configuration affects it:

none
Do not touch running state. Typically after crash when running state and db are synched.

init
Initialize running state. Start with a completely clean running state.

running
Commit running db configuration into running state. Typically after reboot if a persistent running db exists.

startup
Commit startup configuration into running state. After reboot when no persistent running db exists.

Use the -s option to select startup mode, example:

clixon_backend -s running

You may also add a default method in the configuration file:

<clixon-config xmlns="http://clicon.org/config">
...
<CLICON_STARTUP_MODE>init</CLICON_STARTUP_MODE

</clixon-config>

When loading the startup/tmp configuration, the following actions are performed by the system:

• Check syntax errors,

• Upgrade callbacks.

• Validation of the XML against the current Yang models

• If errors are detected, enter failsafe mode.

The following config option is related to startup:

CLICON_BACKEND_RESTCONF_PROCESS
Enable process-control of restconf daemon, ie start/stop restconf daemon internally using fork/exec. Disable if
you start the restconf daemon by other means.

7.2. 7.2 Startup 37

Clixon, Release 7.0

7.3 7.3 IPC Socket

Frontends: +----------+
CLI, IPC | backend |
netconf <---> | daemon |
restconf | |

+----------+

The Clixon backend creates a socket that the frontend clients can connect to. Communication is made over this IPC
socket using internal Netconf. The following config options are related to the internal socket:

CLICON_SOCK_FAMILY
Address family for communicating with clixon_backend. One of: UNIX, IPv4, or IPv6. Can also be set with -a
command-line option. Default is UNIX which denotes a UNIX domain socket.

CLICON_SOCK
If the address family of the socket is AF_UNIX: Unix socket for communicating with clixon_backend. If the family
is AF_INET it denottes the IPv4 address;

CLICON_SOCK_PORT
Inet socket port for communicating with clixon_backend (only IPv4|IPv6). Default is port 4535.

CLICON_SOCK_GROUP
Group membership to access clixon_backend UNIX socket. Default is clicon. This is not available for IP sockets.

7.4 7.4 Backend files

The following config options control files related to the backend:

CLICON_BACKEND_DIR
Location of backend .so plugins. Load all .so plugins in this dir as backend plugins in alphabetical order

CLICON_BACKEND_REGEXP
Regexp of matching backend plugins in CLICON_BACKEND_DIR. default: *.so

CLICON_BACKEND_PIDFILE
Process-id file of backend daemon

7.5 7.5 Backend plugins

This section describes backend-specific plugins, see Plugin section for a general description of plugins.

7.5.1 7.5.1 Clixon_plugin_init

Apart from the generic plugin callbacks (init, start, etc), the following callbacks are specific to the backend:

pre_daemon
Called just before server daemonizes(forks). Not called if in foreground.

daemon
Called after the server has daemonized and before privileges are dropped.

statedata
Provide state data XML from a plugin

38 Chapter 7. 7 Backend

Clixon, Release 7.0

reset
Reset system status

upgrade
General-purpose upgrade called once when loading the startup datastore

trans_{begin,validate,complete,commit,commit_done,revert,end,abort}
Transaction callbacks are invoked for two reasons: validation requests or commits. These callbacks are further
described in transactions section.

7.5.2 7.5.2 Registered callbacks

The callback also supports three forms of registered callbacks:

• rpc_callback_register() - for user-defined RPC callbacks, see Plugin section.

• action_callback_register() - for user-defined Action callbacks.

• upgrade_callback_register() - for upgrading, see Upgrade section.

• clixon_pagination_cb_register() - for pagination, as described in Pagination section.

7.6 7.6 Transactions

Clixon follows NETCONF in its validate and commit semantics. Using the CLI or another frontend, you edit the
candidate configuration, which is first validated for consistency and then committed to the running configuration.

A clixon developer writes commit functions to incrementally update a system state based on configuration changes.
Writing transsaction callbacks is a core function of the clixon system.

The NETCONF validation and commit operation is implemented in clixon by a transaction mechanism, which ensures
that user-written plugin callbacks are invoked atomically and revert on error.

Note: Clixon currently runs in a single thread and all transactions run from begin, to end without interruption.
However, it is strongly recommended that the callbaks be thread-safe for future compatibility.

Warning: Clixon can only guarantee a consistent system state if you follow the guidelines below. Behavior that is
not documented here is not guaranteed and subject to change without notice.

The phases of a transaction are:

begin
The begin callback indicates that a transaction is starting, but that the system level validation has not be-
gun yet. Not much has happened at this point, and you should not rely on the transaction data or the XML
ADD/DEL/CHANGE flags.

The intent of this callback is to notify the plugin that a transaction is beginning, and that it should allocate any
resources necessary to handle the coming transaction.

validate
The validate callback is triggered by a client requesting a validation of the current change set. Before this callback,
clixon has completed the system level YANG validation. All transaction data is valid at this point (including XML
flags). In this callback, the plugin further validates the transaction data and returns a success/failure indication. It
must not change the state of the system in any way. Successful completion should guarantee that the commit will

7.6. 7.6 Transactions 39

Clixon, Release 7.0

be without error. See the commit information below on why it is important to try. If a failure status is returned
to clixon then the transaction is cancelled, and the transaction abort callback will be called from clixon.

You should place as much of the validation in the YANG model specification as possible. This does two things;
it allows the user of the YANG model to understand the constraints clearly, and it is more efficient when the
YANG validation catches problems before a transaction cycle happens.

complete
This callback is used to indicate to the plugin that the validation was successful and indicates that the commit
is coming next. The transaction data will be valid when this callback is called. The complete callback must not
change the state of the system.

The usefulness of this callback is debatable, and it is possible that this callback will be removed in a future
version.

commit
This callback is called when the client requests a commit. The transaction data is valid, and both the system and
plugin validations of the transaction data has completed without error.

The callback should perform the actions required to change the system state as indicated by the transaction target
database.

Ideally all possible errors should be detected in the validate callback, but this clearly is a dream. A commit failure
is a major event and leaves the system in an inconsistent state. In the event of an error, the callback must return
an error status. Clixon will initiate its error processing to roll back the system to its state prior to the beginning
of the transaction.

commit_done
Transaction when commit done. After this, the source db is copied to target and default values removed.

end
The end callback is called when a transaction has successfully completed.

You should not depend upon transaction data being valid at this point and no changes to the system state may
occur (changes at this point prevent the possibility of error handling).

Any resources allocated in the begin callback should be released at this point. When the callback returns, the
transaction is complete.

revert
When the revert callback is called the plugin must revert the system to the state prior (atomicity) to the beginning
of the transaction. The transaction data is valid and is the same as in the commit callback. The code in the revert
callback must assure that the system state matches the source database before returning.

A revert callback will be followed by an abort callback.

abort
If a validate or commit operation fails, the terminal action is to call the abort callback rather than the end callback.
The common purpose of this callback is to release any resources allocated in the begin callback.

If an abort callback occurs after a commit, then the revert callback will be called prior to the abort. The plugin
developer may do the actual reversion of the commit in the revert or abort callback, or split the duties as desired,
but upon completion of the abort callback, it must be guaranteed that the system state will be as before the begin
callback.

40 Chapter 7. 7 Backend

Clixon, Release 7.0

7.6.1 7.6.1 Transaction Examples

In a system with two plugins, for example, a transaction sequence looks like the following:

Backend Plugin1 Plugin2
| | |
+--------->+--------->+ begin
| | |
+--------->+--------->+ validate
| | |
+--------->+--------->+ complete
| | |
+--------->+--------->+ commit
| | |
+--------->+--------->+ commit_done
| | |
+--------->+--------->+ end

If an error occurs in the commit call of plugin2, for example, the transaction is aborted and the commit reverted:

Backend Plugin1 Plugin2
| | |
+--------->+--------->+ begin
| | |
+--------->+--------->+ validate
| | |
+--------->+---->X + commit error
| | |
+--------->+ + revert
| | |
+--------->+--------->+ abort

7.6.2 7.6.2 Callbacks

In the the context of a callback, there are two XML trees:

src
The original XML tree, such as “running”

target
The new XML tree, such as “candidate”

There are three vectors pointing into the XML trees:

delete
The delete vector consists of XML nodes in “src” that are removed in “target”

add
The add vector consists of nodes that exists in “target” and do not exist in “src”

change
The change vector consists of nodes that exists in both “src” and “target” but are different

All transaction callbacks are called with a transaction-data argument (td). The transaction data describes a system
transition from a src to target state. The struct contains source and target XML tree (e.g. candidate/running) in the
form of XML tree vectors (dvec, avec, cvec) and associated lengths. These contain the difference between src and

7.6. 7.6 Transactions 41

Clixon, Release 7.0

target XML, ie “what has changed”. It is up to the validate callbacks to ensure that these changes are OK. It is up to
the commit callbacks to enforce these changes in the configuration of the system.

The “td” parameter can be accessed with the following functions:

uint64_t transaction_id(transaction_data td)
Get the unique transaction-id

void *transaction_arg(transaction_data td)
Get plugin/application specific callback argument

int transaction_arg_set(transaction_data td, void *arg)
Set callback argument

cxobj *transaction_src(transaction_data td)
Get source database xml tree

cxobj *transaction_target(transaction_data td)
Get target database xml tree

cxobj **transaction_dvec(transaction_data td)
Get vector of xml nodes that are deleted src->target

size_t transaction_dlen(transaction_data td)
Get length of delete xml vector

cxobj **transaction_avec(transaction_data td)
Get vector of xml nodes that are added src->target

size_t transaction_alen(transaction_data td)
Get length of add xml vector

cxobj **transaction_scvec(transaction_data td)
Get vector of xml nodes that changed

cxobj **transaction_tcvec(transaction_data td)
Get vector of xml nodes that changed

size_t transaction_clen(transaction_data td)
Get length of changed xml vector

Flags

A programmer can also use XML flags that are set in “src” and “target” XML trees to identify what has changed. The
following flags are used to makr the trees:

XML_FLAG_DEL
All deleted XML nodes in “src” and all its descendants

XML_FLAG_ADD
All added XML nodes in “target” and all its descendants

XML_FLAG_CHANGE
All changed XML nodes in both “src” and “target” and all its descendants. Also all ancestors of all added, deleted
and changed nodes.

For example, assume the tree (A B) is replaced with (B C), then the two trees are marked with the following flags:

src target
o CHANGE o CHANGE
| |

(continues on next page)

42 Chapter 7. 7 Backend

Clixon, Release 7.0

(continued from previous page)

o CHANGE o CHANGE
/| |\

DELETE A B B C ADD

You can use functions, such as xpath_vec_flag() to query for changed nodes:

if (xpath_vec_flag(xcur, nsc, "//symbol/foo", XML_FLAG_ADD, &vec, &veclen) < 0)
err;

for (i=0; i<veclen; i++){
xn = vec[i];

...
}

7.7 7.7 Privileges

The backend process itself does not really require any specific access, but it may be an important topic for an application
using clixon when the plugins are designed. A plugin may need to access privileged system resources (such as configure
files).

The backend itself is usually started as root: sudo clixon_backend -s init, which means that the plugins also run as root
(being part of the same process).

The backend can also be started as a non-root user. However, you may need to set some config options to allow user
write access, for example as follows(there may be others):

<CLICON_SOCK>/tmp/example.sock</CLICON_SOCK>
<CLICON_BACKEND_PIDFILE>/tmp/mytest/example.pid</CLICON_BACKEND_PIDFILE>
<CLICON_XMLDB_DIR>/tmp/mytest</CLICON_XMLDB_DIR>

7.7.1 7.7.1 Dropping privileges

You may want to start the backend as root and then drop privileges to a non-root user which is a common technique to
limit exposure of exploits.

This can be done either by command line-options: sudo clicon_backend -s init -U clicon or (more generally) using
configure options:

<CLICON_BACKEND_USER>clicon</CLICON_BACKEND_USER>
<CLICON_BACKEND_PRIVILEGES>drop_perm</CLICON_BACKEND_PRIVILEGES>

This will initialize resources as root and then permanently drop uid:s to the unprivileged user (clicon in the example
abobe). It will also change ownership of several files to the user, including datastores and the clicon socket (if the socket
is unix domain).

Note that the unprivileged user must exist on the system, see Install section.

7.7. 7.7 Privileges 43

Clixon, Release 7.0

7.7.2 7.7.2 Drop privileges temporary

If you drop privileges permanently, you need to access all privileged resources initially before the drop. For a plugin
designer, this means that you need to access privileges system resources in the plugin_init or plugin_start callbacks.
The transaction callbacks, for example, will be run in unprivileged mode.

An alternative is to drop privileges temporary and then be able to raise privileges when needed:

<CLICON_BACKEND_USER>clicon</CLICON_BACKEND_USER>
<CLICON_BACKEND_PRIVILEGES>drop_temp</CLICON_BACKEND_PRIVILEGES>

In this mode, a plugin callback (eg commit), can temporarily raise the privileges when accessing system resources, and
the lower them when done.

An example C-code for raising privileges in a plugin is as follows:

uid_t euid = geteuid();
restore_priv();
... make high privilege stuff...
drop_priv_temp(euid);

44 Chapter 7. 7 Backend

CHAPTER

EIGHT

8 DATASTORE

Clixon configuration datastores follow the Netconf model (from RFC 6241: NETCONF Configuration Protocol):

Candidate
A configuration datastore that can be manipulated without impacting the device’s current configuration and that
can be committed to the running configuration datastore.

Running
A configuration datastore holding the complete configuration currently active on the device.

Startup
The configuration datastore holding the configuration loaded by the device when it boots. Only present on devices
that separate the startup configuration datastore from the running configuration datastore.

There are also other datastores, Clixon is not limited to the three datastores above. For example:

tmp
The tmp datastore appears in several cases as an intermediate datastore.

Rollback
If the confirmed-commit feature is enabled, the rollback datastore holds the running datastore as it existed before
the confirm commit. If a cancel or timeout occurs, the rollback datastore is used to revert to.

8.1 8.1 Datastore files

The mandatory CLICON_XMLDB_DIR option determines where the datastores are placed. Example:

<CLICON_XMLDB_DIR>/usr/local/var/example</CLICON_XMLDB_DIR>

The permission of the datastores files is accessible to the user that starts the backend only. Typically this is root, but if
the backend is started as a non-privileged user, or if privileges are dropped (see Backend section) this may be another
user, such as in the following example where clicon is used:

sh> ls -l /usr/local/var/example
-rwx------ 1 clicon clicon 0 sep 15 17:02 candidate_db

(continues on next page)

45

http://rfc-editor.org/rfc/rfc6241.txt

Clixon, Release 7.0

(continued from previous page)

-rwx------ 1 clicon clicon 0 sep 15 17:02 running_db
-rwx------ 1 clicon clicon 0 sep 14 18:12 startup_db

Note that a user typically does not access the datastores directly, it is possible to read, but write operations should not
be done, since the backend daemon may use a datastore cache, see Datastore caching.

8.2 8.2 Datastore and file formats

By default, the datastore files use pretty-printed XML, with the top-symbol config. The following is an example of a
valid datastore:

<config>
<hello xmlns="urn:example:hello">
<world/>

</hello>
</config>

The format of the datastores can be changed using the following options:

CLICON_XMLDB_FORMAT
Datastore format. xml is the primary alternative. json is also available, while text and cli are available as file
formats but not specifically for the datastore.

CLICON_XMLDB_PRETTY
XMLDB datastore pretty print. The default value is true, which inserts spaces and line-feeds making the
XML/JSON human readable. If false, the XML/JSON is more compact.

Note that the format settings applies to all datastores.

8.2.1 8.2.1 Other formats

While only XML and JSON are currently supported as datastore formats, Clixon also supports CLI and TEXT formats
for printing, and saving and loading files.

The main example contains example code showing how to load and save a config using other formats.

Example of showing a config as XML, JSON, TEXT and CLI:

cli> show configuration xml
<table xmlns="urn:example:clixon">

<parameter>
<name>a</name>
<value>17</value>

</parameter>
<parameter>

<name>b</name>
<value>99</value>

</parameter>
</table>
cli> show configuration json
{
"clixon-example:table": {

(continues on next page)

46 Chapter 8. 8 Datastore

Clixon, Release 7.0

(continued from previous page)

"parameter": [
{
"name": "a",
"value": "17"

},
{
"name": "b",
"value": "99"

}
]

}
}
cli> show configuration text
clixon-example:table {

parameter a {
value 17;

}
parameter b {

value 99;
}

}
cli> show configuration cli
set table parameter a
set table parameter a value 17
set table parameter b
set table parameter b value 99

Save and load a file using TEXT:

cli> save foo.txt text
cli> load foo.txt replace text

Internal C API

CLI show and save commands uses an internal API for print, save and load of the formats. Such CLI functions include:
cli_show_config, cli_pagination, load_config_file, save_config_file.

The following internal C API is available for output:

• XML: clixon_xml2file() and clixon_xml2cbuf() to file and memory respectively.

• JSON: clixon_json2file() and clixon_json2cbuf()

• CLI: clixon_cli2file()

• TEXT: clixon_txt2file()

The arguments of these functions are similar with some local variance. For example:

int
clixon_xml2file(FILE *f,

cxobj *xn,
int level,
int pretty,

(continues on next page)

8.2. 8.2 Datastore and file formats 47

Clixon, Release 7.0

(continued from previous page)

clicon_output_cb *fn,
int skiptop,
int autocliext)

where:

• f is the output stream (such as stdout)

• xn is the top-level XML node

• level is indentation level to start with, normally 0

• pretty makes the output indented and use newlines

• fn is the output function to use. NULL means fprintf, cligen_output is used for scrolling in CLI

• skiproot only prints the children by skipping the top-level XML node xn

• autocliext Set if you want to activate autocli extensions (eg hide extensions)

8.3 8.3 Module library support

Clixon can store Yang module-state information according to RFC 8525: YANG library in the datastores. With module
state, you know which Yang version the XML belongs to, which is useful when upgrading, see upgrade.

To enable yang module-state in the datastores add the following entry in the Clixon configuration:

<CLICON_YANG_LIBRARY>true</CLICON_YANG_LIBRARY> # (default true)
<CLICON_XMLDB_MODSTATE>true</CLICON_XMLDB_MODSTATE>

If the datastore does not contain module-state, general-purpose upgrade is the only upgrade mechanism available.

A backend with CLICON_XMLDB_MODSTATE disabled will silently ignore module state.

Example of a (simplified) datastore with Yang module-state:

<config>
<yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
<content-id>42</content-id>
<module-set>
<name>default</name>
<module>
<name>A</name>
<revision>2019-01-01</revision>
<namespace>urn:example:a</namespace>

</module>
</module-set>

</yang-library>
<a1 xmlns="urn:example:a">some text</a1>

</config>

Note that the module-state is not available to the user, the backend datastore handler strips the module-state info. It is
only shown in the datastore itself.

48 Chapter 8. 8 Datastore

http://www.rfc-editor.org/rfc/rfc8525.txt

Clixon, Release 7.0

8.4 8.4 Datastore caching

Clixon datastore cache behaviour is controlled by the CLICON_DATASTORE_CACHE and can have the following
values:

nocache
No cache, always read and write directly with datastore file.

cache
Use in-memory write-through cache. Make copies of the XML when accessing internally by callbacks and
plugins. This is the default.

cache-zerocopy
Use in-memory write-through cache and do not copy when doing callbacks. This is the fastest but opens up for
callbacks changing the cache. That is, plugin callbacks may not edit the XML in any way.

Note: Netconf locks are not supported for nocache mode

8.4. 8.4 Datastore caching 49

Clixon, Release 7.0

50 Chapter 8. 8 Datastore

CHAPTER

NINE

9 CLI

9.1 9.1 Overview

The Clixon CLI provides an interactive command-line interface to a user. Each usage instantiates a new process which
communicates via NETCONF with the backend daemon over an IPC socket.

The Clixon CLI uses CLIgen, an interactive interpreter of commands. Syntax is given as cli-specifications which
specify callbacks defined in plugins.

For details on CLIgen syntax and behavior, please consult the CLIgen tutorial.

Clixon comes with a generated CLI, the autocli, where all configuration-related syntax is generated from YANG.

You can also create a completely manually-made CLI.

The CLI depends on the following:

• Clixon-config: The Clixon config-file contains initial CLI configuration, such as where to find cli-specs, plugins
and autocli configuration.

• Cli-specs: CLI specification files written in CLIgen syntax.

• Plugins: Dynamic loadable plugin files loaded at startup. Callbacks from cli-spec files are resolved and need to
exist as symbols either in the Clixon libs or in the plugin file.

51

https://www.cligen.se
https://github.com/clicon/cligen/blob/master/cligen_tutorial.pdf
https://github.com/clicon/cligen/blob/master/cligen_tutorial.pdf

Clixon, Release 7.0

The following example from the main example. First, a cli-spec file containing two commands:

set("Set configuration symbol") @datamodel, cli_auto_set();
show("Show a particular state of the system") configuration("Show configuration"), cli_
→˓show_config("candidate", "text", "/");
example("Callback example") <var:int32>("any number"), mycallback("myarg");

In the CLI, these generate CLI commands such as:

set interfaces interface eth9
show config
example 23

The effect of typing the commands above is calling callbacks, either library functions in Clixon
libs(cli_show_config()), or application-defined in a plugin(mycallback())

In this way, a designer writes cli command specifications which invokes C-callbacks. If there are no appropriate
callbacks the designer must write a new callback function.

9.1.1 9.1.1 Example usage

The following example shows an auto-cli session from the main example how to add an interface in candidate, validate
and commit it to running, then look at it as xml and cli and finally delete it:

clixon_cli -f /usr/local/etc/example.xml
user@host> set interfaces interface eth9 ?
description enabled ipv4
ipv6 link-up-down-trap-enable type

user@host> set interfaces interface eth9 type ex:eth
user@host> validate
user@host> commit
user@host> show configuration xml
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
<name>eth9</name>
<type>ex:eth</type>
<enabled>true</enabled>

</interface>
</interfaces>
user@host> show configuration cli
set interfaces interface eth9
set interfaces interface eth9 type ex:eth
set interfaces interface eth9 enabled true
user@host> delete interfaces interface eth9

52 Chapter 9. 9 CLI

https://github.com/clicon/clixon/tree/master/example/main
https://github.com/clicon/clixon/tree/master/example/main

Clixon, Release 7.0

9.1.2 9.1.2 Command-line options

The clixon_cli client has the following command-line options:

-h Help

-V Show version and exit

-D <level> Debug level

-f <file> Clixon config file

-E <dir> Extra configuration directory

-l <option> Log on (s)yslog, std(e)rr, std(o)ut, (n)one or (f)ile. Stderr is default.

-C <format> Dump configuration options on stdout after loading. Format is one of
xml|json|text

-F <file> Read commands from file (default stdin)

-1 Run once, do not enter interactive mode

-a <family> Internal IPC backend socket family: UNIX|IPv4|IPv6

-u <path|addr> Internal IPC socket domain path or IP addr (see -a)

-d <dir> Specify cli plugin directory

-m <mode> Specify plugin syntax mode

-q Quiet mode, do not print greetings or prompt, terminate on ctrl-C

-p <dir> Add Yang directory path (see CLICON_YANG_DIR)

-G Print auo-cli CLI syntax generated from YANG

-L Debug print dynamic CLI syntax including completions and expansions

-y <file> Load yang spec file (override yang main modul)e

-c <file> Specify cli spec file

-U <user> Over-ride unix user with a pseudo user for NACM.

-o <option=value> Give configuration option overriding config file (see clixon-config.yang)

Inline CLI commands

CLI commands can be given directly after the options. These are executed directly:

clixon_cli -f example.xml show config

One can also add extra application-dependent plugin options after – which can be read with clicon_argv_get():

clixon_cli -f example.xml show config -- -x extra-option

9.1. 9.1 Overview 53

Clixon, Release 7.0

9.2 9.2 Configure options

The following config options are related to clispec and plugin files (clixon config options), ie they are set in the XML
Clixon config file:

CLICON_CLI_DIR
Directory containing frontend cli loadable plugins. Load all .so plugins in this directory as CLI object plugins.

CLICON_CLISPEC_DIR
Directory containing frontend cligen spec files. Load all .cli files in this directory as CLI specification files.

CLICON_CLISPEC_FILE
Specific frontend cligen spec file as alternative or complement to CLICON_CLISPEC_DIR. Also available as -c
in clixon_cli.

9.2.1 9.2.1 Terminal I/O

Clixon CLI have the following configuration options related to terminal I/O:

CLICON_CLI_LINESCROLLING
Set to 0 if you want CLI to wrap to next line. Set to 1 if you want CLI to scroll sideways when approaching right
margin (default).

CLICON_CLI_LINES_DEFAULT Set to number of CLI terminal rows for pagination/scrolling. 0 means unlimited.
The number is set statically UNLESS:

• there is no terminal, such as file input, in which case nr lines is 0

• there is a terminal sufficiently powerful to read the number of lines from ioctl calls.

In other words, this setting is used ONLY on raw terminals such as serial consoles.

CLICON_CLI_TAB_MODE
Set CLI tab mode. See detailed info in YANG source

9.2.2 9.2.2 History

Clixon CLI supports persistent command history. There are two CLI history related configuration options:

CLICON_CLI_HIST_FILE
The file containing the history, default value is: ~/.clixon_cli_history

CLICON_CLI_HIST_SIZE
Max number of history line, default value is 300.

The design is similar to bash history but is simpler in some respects:

• The CLI loads/saves its complete history to a file on entry and exit, respectively

• The size (number of lines) of the file is the same as the history in memory

• Only the latest session dumping its history will survive (bash merges multiple session history).

Further, tilde-expansion is supported and if history files are not found or lack appropriate access will not cause an exit
but are logged at debug level

54 Chapter 9. 9 CLI

Clixon, Release 7.0

9.2.3 9.2.3 Help strings

Help strings are specified using the following example syntax: ("help string"). help strings are shown at queries,
eg “?”:

user@host> show <?>
all Show all
routing Show routing
files Show files

For long or multi-line help strings the following configure options exists:

CLICON_CLI_HELPSTRING_TRUNCATE
Set to 0 to wrap long help strings to the next line. (default) Set to 1 to truncate long help strings at the right
margin

CLICON_CLI_HELPSTRING_LINES
Set to 0 to have no limit on the number of help string lines per command Set to <n> to limit the the number of
help string lines

Long and multi-line help strings may especially be needed in the auto-cli, see autocli.

9.2.4 9.2.4 Modes

The CLI can have different modes which is controlled by a config option and some internal clispec variables. The
config options are:

CLICON_CLI_MODE
Startup CLI mode. This should match a CLICON_MODE variable setting in one of the clispec files. Default is
“base”.

CLICON_CLI_VARONLY
Do not include keys in cvec in cli vars callbacks

Inside the clispec files CLICON_MODE is used to specify to which modes the syntax in a specific file defines. For example,
if you have major modes configure and operation you can have a file with commands for only that mode, or files with
commands in both, (or in all).

First, lets add a single command in the configure mode:

CLICON_MODE="configure";
show configure;

Then add syntax to both modes:

CLICON_MODE="operation:configure";
show("Show") files("Show files");

Finally, add a command to all modes:

CLICON_MODE="*";
show("Show") all("Show all");

Note that CLI command trees are merged so that show commands in other files are shown together. Thus, for example,
using the clispecs above the two modes are the three commands in total for the configure mode:

9.2. 9.2 Configure options 55

Clixon, Release 7.0

> clixon_cli -m configure
user@host> show <TAB>
all routing files

but only two commands in the operation mode:

> clixon_cli -m operation
user@host> show <TAB>
all files

9.2.5 9.2.5 Cli-spec variables

A CLI specification file (note not clixon config file) typically starts with the following variables:

CLICON_MODE
A colon-separated list of CLIgen modes. The CLI spec in the file are added to all modes specified in the list.
You can also use wildcards * and ‘?`.

CLICON_PROMPT
A string describing the CLI prompt using a very simple format with: %H (host) , %U (user) , %T (tty), %W (last
element of working path), %w (full working path).

CLICON_PLUGIN
The name of the object file containing callbacks in this file.

CLICON_PIPETREE
Name of a pipe output tree as described in

9.3 9.3 CLI callbacks

CLI callback functions are “library” functions that an application may call from a clispec. A user is expected to create
new application-specific callbacks.

As an example, consider the following clispec:

example("Callback example") <var:int32>("any number"), mycallback("myarg");

containing a keyword (example) and a variable (var) and mycallback is a cli callback with argument: (myarg).

In C, the callback has the following signature:

int mycallback(clixon_handle h, cvec *cvv, cvec *argv);

Suppose a user enters the following command in the CLI:

user@host> example 23

The callback is called with the following parameters:

cvv:
0: example 23
1: 23

argv:
0: "myarg"

56 Chapter 9. 9 CLI

Clixon, Release 7.0

which means that cvv contains dynamic values set by the user, and argv contains static values set by the clispec designer.

9.4 9.4 Show commands

Clixon includes show commands for showing datastore and state content.An application may use these functions as
basis for more specialized show functions. Some show functions are:

• cli_show_config() - Multi-purpose show function for manual CLI show commands

• cli_show_auto() - Used in conjunction with the autocli with expansion trees

• cli_show_auto_mode() - Used in conjunction with the autocli with edit-modes

• cli_pagination() - Show paginated data of a large list

The CLI show functions are utility functions in the sense that they are not part of the core functionality and a user or
product may want to specialize them.

Note: CLI library functions are subject to change in new releases

9.4.1 9.4.1 cli_show_config

The cli_show_config is a basic function to display datastore and state data. A typical use in a cli spec is as follows:

show("Show configuration"), cli_show_config("candidate", "text");

Using this command in the CLI could provicde the following output:

cli> show
<table xmlns="urn:example:clixon">

<parameter>
<name>a</name>
<value>x</value>

</parameter>
</table>

The callback has the following parameters, only the first is mandatory:

• dbname : Name of datastore to show, such as “running”, “candidate” or “startup”

• format : Show format, one of text, xml, json, cli, or netconf (see datastore formats)

• xpath : Static xpath (only present in this API function)

• namespace : Default namespace for xpath (only present in this API function)

• pretty : If true, make output pretty-printed

• state : If true, include non-config data in output

• default : Optional default retrieval mode: one of report-all, trim, explicit, report-all-tagged. See also extended
values below

• prepend : Optional prefix to prepend before cli syntax output, only valid for CLI format.

• fromroot : If false show from xpath node, if true show from root

9.4. 9.4 Show commands 57

Clixon, Release 7.0

9.4.2 9.4.2 cli_show_auto

The cli_show_auto() callback is used together with the autocli to show sub-parts of a configured tree using expan-
sion. A typical definition is as follows:

show("Show expand") @datamodelshow, cli_show_auto("candidate", "xml");

That is, it must always be used together with a tree-reference as described in Section autocli.

An example CLI usage is:

cli> show table parameter a
<parameter>

<name>a</name>
<value>x</value>

</parameter>

The arguments are similar to cli_show_config with the difference that the xpath is implicitly defined by the current
position of the tree reference:

* `dbname` : Name of datastore to show, such as "running", "candidate" or "startup"
* `format` : Show format, one of `text`, `xml`, `json`, `cli`, or `netconf` (see␣
→˓:ref:`datastore formats <clixon_datastore>`)
* `pretty` : If `true`, make output pretty-printed
* `state` : If `true`, include non-config data in output
* `default` : Optional default retrieval mode: one of `report-all`, `trim`, `explicit`,␣
→˓`report-all-tagged`. See also extended values below
* `prepend` : Opional prefix to print before cli syntax output, only valid for CLI␣
→˓format.

9.4.3 9.4.3 cli_show_auto_mode

The cli_show_auto_mode() callback also used together with the autocli but instead of exapansion uses the edit-
modes (see Section edit modes). A typical definition is:

show, cli_show_auto_mode("candidate");

An example usage using edit-modes is:

cli> edit table
cli> show
<parameter>

<name>a</name>
<value>x</value>

</parameter>

Same parameters as cli_show_auto

58 Chapter 9. 9 CLI

Clixon, Release 7.0

9.4.4 9.4.4 Common show parameters

with-default parameter

All show commands have an optional with-default retrieval mode: one of report-all, trim, explicit, report-all-tagged.
There are also extra propriatary modes of default serving as examples:

• NULL, default with-default value, usually report-all

• report-all-tagged-default, which gets the config as report-all-tagged but strips the tags/attributes (same as report-
all).

• report-all-tagged-strip, which also gets the config as report-all-tagged but strips the nodes associated with the
default tags (same as trim).

pretty parameter

All show commands have a pretty-print parameter. If true the putput is pretty-printed. Indentation level is controlled
by the PRETTYPRINT_INDENT compile-time option

9.5 9.5 Output pipes

Output pipes resemble UNIX shell pipes and are useful to filter or modify CLI output. Example:

cli> print all | grep parameter
<parameter>5</parameter>
<parameter>x</parameter>

cli> show config | showas json
{
"table": {
"parameter": [

...
cli>

Output pipe functions are declared using a special variant of a CLI tree with a name starting with a vertical bar.
Example:

CLICON_MODE="|mypipe";
\| {

grep <arg:rest>, pipe_grep_fn("-e", "arg");
showas json, pipe_json_fn();

}

where pipe_grep_fn and pipe_json_fn are special callbacks that use stdio to modify output.

Such a pipe tree can be referenced with either an explicit reference, or an implicit rule.

Only a single level of pipes is possibly in this release. For example, a|b|c is not possible.

Note: Only one level of pipes is supported

9.5. 9.5 Output pipes 59

Clixon, Release 7.0

9.5.1 9.5.1 Explicit reference

An explicit reference is for single commands. For example, adding a pipe to the print commands:

print, print_cb("all");{
@|mypipe, print_cb("all");
all @|mypipe, print_cb("all");
detail;

}

where a pipe tree is added as a tree reference, appending pipe functions to the regular print_cb callback. Note that
the following commands are possible in this example:

print
print | count
print all | count
print detail

9.5.2 9.5.2 Implicit rule

An implicit rule adds pipes to all commands in a cli mode. An example of an implicit rule is as follows:

CLICON_PIPETREE="|mypipe";
print, print_cb("all");{

all, print_cb("all");
detail, print_cb("detail);

}

where the pipe tree is added implicitly to all commands in that file, and possibly on other files with the same mode.

Pipe trees also work for sub-trees, ie a subtree referenced by the top-level tree may also use output pipes.

9.5.3 9.5.3 Combinations

It is possible to combine an implicit (default) rule with an explict rule as follows:

CLICON_MODE="|commonpipe";
print, print_cb("all");{

@|mypipe, print_cb("all");
all @|mypipe, print_cb("all");
detail;

}

In this example, print and print all use the ¡mypipe menu, while print detail uses the |common menu

60 Chapter 9. 9 CLI

Clixon, Release 7.0

9.5.4 9.5.4 Inheriting

Sub-trees inherit pipe commands from the top-level according to the following rules:

1. Top-level implicit rules are inherited to all sub-trees, unless

2. Explicit rules are present at the tree-reference

3. No pipe commands are allowed in a pipe-command (only single level allowed)

Rules 1 and 2 are illustrated as follows:

CLICON_MODE="|commonpipe";
aaa {

@datamodel, cli_show();
@|mypipe, cli_show();

}
bbb {

@datamodel, cli_show();
}

Pipe commands in the datamodel tree are |mypipe if preceeded by aaa, but |commonpipe if preceeded by bbb

9.5.5 9.5.5 Pipe functions

Clixon contains several example pipe functions primarily for testing, users of Clixon should review these and consider
implementing their own.

9.6 9.6 Autocli

The Clixon CLI contains parts that are generated from a YANG specification. This autocli is generated from YANG
into CLI specifications, parsed and merged into the top-level Clixon CLI.

The autocli is configured using three basic mechanisms:

1. Config file : Modify behavior of the generated tree

2. Tree expansion: How the generated cli is merged into the overall CLI

3. YANG Extensions: Modify CLI behavior via YANG

Each mechanism is described in sub-sections below, but first an overview of autocli usage.

9.6.1 9.6.1 Overview

Consider a (simplified) YANG specification, such as:

module example {
container table {
list parameter{
key name;
leaf name{
type string;

}
(continues on next page)

9.6. 9.6 Autocli 61

Clixon, Release 7.0

(continued from previous page)

}
}

}

An example of a generated syntax is as follows (again simplified):

table; {
parameter <name:string>;

}

The auto-cli syntax is loaded using a sub-tree operator such as @datamodel into the Clixon CLI as follows:

CLICON_PROMPT="%U@%H %W> ";
set @datamodel, cli_auto_set();
merge @datamodel, cli_auto_merge();
delete @datamodel, cli_auto_del();
show config, cli_auto_show("datamodel", "candidate", "text", true, false);{

@datamodel, cli_show_auto("candidate", "text");
}

For example, the set part is expanded using the CLIgen tree-operator to something like:

set table, cli_auto_set(); {
parameter <name:string>, cli_auto_set();

}

An example run of the above example is as follows:

> clixon_cli
user@host /> set table ?
<cr>
parameter

user@host /> set table parameter 23
user@host /> show config
table {

parameter {
name 23;

}
}
user@host />

where the generated autocli extends the Clixon CLI with YANG-derived configuration statements.

9.6.2 9.6.2 Config file

The clixon config file has a <autocli> sub-clause for global autocli configurations. A typical CLI configuration with
default autocli settings is as follows:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/example.xml</CLICON_CONFIGFILE>
...
<autocli>

(continues on next page)

62 Chapter 9. 9 CLI

Clixon, Release 7.0

(continued from previous page)

<module-default>true</module-default>
<list-keyword-default>kw-nokey</list-keyword-default>
<treeref-state-default>false</treeref-state-default>
<edit-mode-default>list container</edit-mode-default>
<completion-default>true</completion-default>

</autocli>
</clixon-config>

The autocli configuration consists of a set of default options, followed by a set of rules. For more info see the
clixon-autocli.yang specification.

Options

The following options set default values to the auto-cli, some of these may be further refined by successive rules.

module-default
How to generate the autocli from modules:

• If true, all modules with a top-level datanode are generated, ie they get a top-level entry in the @basemodel
tree. This is default

• If false, you need to explicitly enable modules for autocli generation using module enable rules.

list-keyword-default
How to generate the autocli from YANG lists. There are several variants defined. To understand the different
variants, consider a simple YANG LIST defintion as follows:

list a {
key x;
leaf x;
leaf y;

}

The different variants with the resulting autocli are as follows:

• kw-none : No extra keywords, only variables: a <x> <y>

• kw-nokey : Keywords on non-key variables: a <x> y <y>. This is default.

• kw-all : Keywords on all variables: a x <x> y <y>

treeref-state-default
If generate autocli from YANG state data. The motivation for this option is that many specs have very large state
parts. In particular, some openconfig YANG specifications have ca 10 times larger state than config parts.

• If true, generate CLI from YANG state/non-config statements, not only from config data.

• If false do not generate autocli commands from YANG state data. This is default.

edit-mode-default
Open automatic edit-modes for some YANG keywords and do not allow others. A CLI edit mode opens a
carriage-return option and changes the context to be in that local context. For example:

user@host> interfaces interface e0<cr>
eth0>

Default is to generate edit-modes for all YANG containers and lists. For more info see edit modes

9.6. 9.6 Autocli 63

Clixon, Release 7.0

completion-default
Generate code for CLI completion of existing db symbols. That is, check existing configure database for com-
pletion options. This is normally always enabled.

grouping-treeref
Controls the behaviour when generating CLISPEC of YANG ‘uses’ statements into the corresponding ‘grouping’
definition. If ‘true’, use indirect tree reference ‘@treeref’ to reference the grouping definition. This may reduces
memory footprint of the CLI.

Rules

To complement options, a set of rules to further define the autocli can be defined. Common rule fields are:

name
Arbitrary name assigned for the rule, must be unique.

operation
Rule operation, There are currently two operations defined: module enable and command compress.

module-name
Name of the module associated with this rule. Wildchars ‘*’ and ‘?’ can be used (glob pattern). Revision and
yang suffix are omitted. Example: openconfig-*

Module enable rules

Module enable rules are used in combination with module-default=false to enable CLI generation for a limited set
of YANG modules.

For example, assume you want to enable modules example1, example2 and no others:

<autocli>
<module-default>false</module-default>
<rule>

<name>include example</name>
<operation>enable</operation>
<module-name>example*</module-name>

</rule>
</autocli>

If the option module-default is true, module enable rules have no effect since all modules are already enabled.

Compress rules

Compress rules are used to skip CLI commands, making the complete command name shorter.

For example, assume YANG definition:

container interfaces {
list interface {

...
}

}

Instead of typing interfaces interface e0 you would want to type only interface e0. The following rule
matches all YANG containers with lists as its only child, and removes the keyword interfaces:

64 Chapter 9. 9 CLI

mailto:'@treeref

Clixon, Release 7.0

<rule>
<name>compress</name>
<operation>compress</operation>
<yang-keyword>container</yang-keyword>
<yang-keyword-child>list</yang-keyword-child>

</rule>

Note that this matches the openconfig compress rule: The surrounding ‘container’ entities are removed from ‘list’ nodes

A second openconfig compress rule is The ‘config’ and ‘state’ containers are “compressed” out of the schema. as
examplified here (for ‘config’ only):

<rule>
<name>openconfig compress</name>
<operation>compress</operation>
<yang-keyword>container</yang-keyword>
<schema-nodeid>config</schema-nodeid>
<module-name>openconfig*</module-name>

</rule>

Specific fields for compress are:

yang-keyword
If present identifes a YANG keyword which the rule applies to. Example: container

schema-nodeid
A single <id> identifying a YANG schema-node identifier as defined in RFC 7950 Sec 6.5. Example: config

yang-keyword-child
The YANG statement has a single child, and the yang type of the child is the value of this option. Example: :
container

extension
The extension is set either in the node itself, or in the module the node belongs to. Extension prefix must be set.
Example: oc-ext:openconfig-version

9.6.3 9.6.3 Tree expansion

In the example above, the tree-reference @datamodel is used to merge the YANG-generated cli-spec into the overall
cli-spec. There are several variants of how the generated tree is expanded with slight differences in which symbols are
shown, how completion works, etc.

They are all derivates of the basic @basemodel tree. The following tree variants are defined:

• @basemodel - The most basic tree including everything

• @datamodel - The most common tree for configuration with state

• @datamodelshow - A tree made for showing configuration syntax

• @datamodelmode - A tree for editing modes

• @datamodelstate - A tree for showing state as well as configuration

Note to use @datamodelstate config option treeref-state-default must be set.

9.6. 9.6 Autocli 65

https://github.com/openconfig/ygot/blob/master/docs/design.md#openconfig-path-compression
https://github.com/openconfig/ygot/blob/master/docs/design.md#openconfig-path-compression

Clixon, Release 7.0

9.6.4 9.6.4 YANG Extensions

A third method to define the autocli is using YANG extensions, where a YANG specification is annotated with extension.

Clixon provides a dedicated YANG extension for the autocli for this purpose: clixon-lib:autocli.

The following example shows the main example usage of the “hide” extension of the “hidden” leaf:

import clixon-autocli{
prefix autocli;

}
container table{

list parameter{
...
leaf hidden{

type string;
autocli:hide;

}
}

}

The CLI hidden command is not shown but the command still exists:

cli /> set table parameter a ?
value
<cr>
cli /> set table parameter a hidden 99
cli /> show configuration
table {
parameter {

name a;
hidden 99;

}
}

The following autocli extensions are defined:

hide
Do not show the command in eg auto-completion. This was primarily intended for operational commands such
as start shell but is this context used for hiding commands generated from the associated YANG node.

skip
Skip the command altogether.

hide-show
Do not show the config in show configuration commands. However, retreiving a config via NETCONF or exam-
ining the datastore directly shows the hidden configure commands.

strict-expand
Only show exactly the expanded options of a variable. It shuld not be possible to add a new value that is not in
the expanded list.o

alias
Replace the command with another value, only implemented for YANG leaves.

66 Chapter 9. 9 CLI

Clixon, Release 7.0

9.6.5 9.6.5 Edit modes

The autocli supports automatic edit modes where by entering a <cr>, you enter an edit mode. An edit mode is created
for every YANG container or list.

For example, the example YANG previously given and the following cli-spec:

edit @datamodelmode, cli_auto_edit("basemodel");
up, cli_auto_up("basemodel");
top, cli_auto_top("basemodel");
set @datamodel, cli_auto_set();

Then an example session for illustration is as follows, where first a small config is created, then a list instance mode is
entered(parameter a), a value changed, and a container mode (table):

user@host /> set table parameter a value 42
user@host /> set table parameter b value 77
user@host /> edit table parameter a
user@host parameter=a/>
user@host parameter=a/> show configuration
name a;
value 42;

user@host parameter=a/> set value 99
user@host parameter=a/> up
user@host table> show configuration
parameter {

name a;
value 99;

}
parameter {

name b;
value 77;

}
user@host table> top
user@host />

9.7 9.7 Advanced

This section describes some advanced options in the Clixon CLI not described elsewhere.

9.7.1 9.7.1 Backend socket

By default, the CLI uses a UNIX socket as an IPC to communicate with the backend. It is possible to use an IP socket
but with a restricted functionality, see backend section.

9.7. 9.7 Advanced 67

Clixon, Release 7.0

Start session

The session creation is “lazy” in the sense that a NETCONF session is only established when needed. After the session
has been established, it is maintained (cached) by the CLI client to keep track of candidate edits and locks, as described
in 7.5 of RFC 6241.

If there is no backend running at the time of session establishment, a warning is printed:

cli /> show config
Mar 18 11:53:43: clicon_rpc_connect_unix: 541: Protocol error: /usr/local/var/example/
→˓example.sock: config daemon not running?: No such file or directory
Protocol error: /usr/local/var/example/example.sock: config daemon not running?: No such␣
→˓file or directory
cli />

If at a later time, the backend is started, the session is established normally

Close session

After a session is established and the backend exits, crashes or restarts, any state associated with the session will be
lost, including:

• explicit locks

• edits in candidate-db

If the backend exits during an existing session, it will close with the same error message as above:

cli /> show config
Mar 18 11:53:43: clicon_rpc_connect_unix: 541: Protocol error: /usr/local/var/example/
→˓example.sock: config daemon not running?: No such file or directory
Protocol error: /usr/local/var/example/example.sock: config daemon not running?: No such␣
→˓file or directory
cli />

If the backend restarts, a new session is created with a warning:

cli /> show configuration
Mar 18 11:57:55: The backend was probably restarted and the client has reconnected to␣
→˓the backend. Any locks or candidate edits are lost.
cli />

Alternative

It is possible to change the default behavior by undefining the compile-option: #undef
PROTO_RESTART_RECONNECT. If so, the CLI is exited when the existing session is closed in anyway:

cli /> show configuration
Mar 18 12:02:57: clicon_rpc_msg: 210: Protocol error: Unexpected close of CLICON_SOCK.␣
→˓Clixon backend daemon may have crashed.: Cannot send after transport endpoint shutdown
Protocol error: Unexpected close of CLICON_SOCK. Clixon backend daemon may have crashed.
→˓: Cannot send after transport endpoint shutdown
bash#

68 Chapter 9. 9 CLI

https://www.rfc-editor.org/rfc/rfc6241.html/

Clixon, Release 7.0

9.7.2 9.7.2 Sub-tree operator

Sub-trees are defined using the tree operator @. Every mode gets assigned a tree which can be referenced as @name.
This tree can be either on the top-level or as a sub-tree. For example, create a specific sub-tree that is used as sub-trees
in other modes:

CLICON_MODE="subtree";
subcommand{
a, a();
b, b();

}

then access that subtree from other modes:

CLICON_MODE="configure";
main @subtree;
other @subtree,c();

The configure mode will now use the same subtree in two different commands. Additionally, in the other command,
the callbacks are overwritten by c. That is, if other a, or other b is called, callback function c is invoked.

9.7.3 9.7.3 Translators

CLIgen supports wrapper functions that can take the output of a callback and transform it to something else.

The CLI can perform variable translation. This is useful if you want to process the input, such as hashing, encrypting
or in other way translate the input.

The following example is based on the main Clixon example and is included in the regression tests. In the following
CLI specification, a “translate” command sets a modifed value to the “table/parameter=translate/value”:

translate <value:string translate:cli_incstr()>, cli_set("/clixon-example:table/
→˓parameter=translate/value");

If you run this example using the cli_incstr() function which increments the characters in the input, you get this result:

user@host> translate HAL
user@host> show configuration
table {

parameter {
name translate;
value IBM;

}
}

The example is very simple and based on strings, but can be used also for other types and more advanced functions.

9.7. 9.7 Advanced 69

Clixon, Release 7.0

9.7.4 9.7.4 Autocli tree labels

The autocli trees described in tree expansion are implemented using filtering of CLIgen labels. While @basemodel
includes all labels, the other trees have removed some labels.

For most uses, the pre-defined trees above are enough, using explicit label filtering is more powerful.

The currently defined labels are:

• act-list : Terminal entries of YANG LIST nodes.

• act-container : Terminal entries of YANG CONTAINER nodes.

• ac-leaf : Leaf/leaf-list nodes

• act-prekey : Terminal entries of LIST leaf keys, except the last keys in multi-key cases.

• act-lastkey : Terminal entries of LIST leaf keys, except the last keys in multi-key cases.

• act-leafconst : Terminal entries of non-empty non-key YANG LEAF/LEAF_LISTs command nodes.

• act-leafvar : Terminal entries of non-key YANG LEAF/LEAF_LISTs variable nodes.

• ac-state : Nodes which have YANG config false as child

• ac-config : Nodes nodes which do not have any state nodes as siblings

Labels with prefix act_ are terminal labels in the sense that they mark a terminal command, ie the node itself; while
labels with ac_ represent the non-terminal, ie the whole sub-tree.

As an example, the @datamodel tree is basemodel with labels removed as follows:

@basemodel, @remove:act-prekey, @remove:act-list, @remove:act-leaf, @remove:ac-state;

which is an alternative way of specifying the datamodel tree.

9.7.5 9.7.5 Extensions to CLIgen

Clixon adds some features and structure to CLIgen which include:

• A plugin framework for both textual CLI specifications(.cli) and object files (.so)

• Object files contains compiled C functions referenced by callbacks in the CLI specification. For example, in the
cli spec command: a,fn(), fn must exist in the object file as a C function.

• The CLIgen treename syntax does not work.

• A CLI specification file is enhanced with the CLIgen variables CLICON_MODE, CLICON_PROMPT, CLI-
CON_PLUGIN and CLICON_PIPETREE.

• Clixon generates a command syntax from the Yang specification that can be referenced as @datamodel. This is
useful if you do not want to hand-craft CLI syntax for configuration syntax.

Example of @datamodel syntax:

set @datamodel, cli_set();
merge @datamodel, cli_merge();
create @datamodel, cli_create();
show @datamodel, cli_show_auto("running", "xml");

The commands (eg cli_set) will be called with the first argument an api-path to the referenced object.

70 Chapter 9. 9 CLI

Clixon, Release 7.0

9.7.6 9.7.6 Running CLI scripts

The CLI can run scripts using either the -1 option for single commands:

clixon_cli -1 show version
4.8.0.PRE

Or using the -F <file> command-line option to redirect input from file

clixon_cli -F file

Or using “shebang”:

#!/usr/local/bin/clixon_cli -F
show version
quit

Two caveats regarding “shebang”:

1. The clixon config file is /usr/local/etc/clixon.xml

2. The mode is CLICON_CLI_MODE

You may mod this by using soft links or creating a new executable to use use in the “shebang” with other default values.

9.7.7 9.7.7 How to deal with large specs

CLIgen is designed to handle large specifications in runtime, but it may be difficult to handle large specifications from
a design perspective.

Here are some techniques and hints on how to reduce the complexity of large CLI specs:

Sub-modes

The CLICON_MODE is used to specify in which modes the syntax in a specific file should be added. For example,
if you have major modes configure and operation you can have a file with commands for only that mode, or files with
commands in both, (or in all).

First, lets add a basic set in each:

CLICON_MODE="configure";
show configure;

and

CLICON_MODE="operation";
show configure;

Note that CLI command trees are merged so that show commands in other files are shown together. Thus, for example:

CLICON_MODE="operation:files";
show("Show") files("files");

will result in both commands in the operation mode:

9.7. 9.7 Advanced 71

Clixon, Release 7.0

> clixon_cli -m operation
user@host> show <TAB>
configure files

but

> clixon_cli -m configure
user@host> show <TAB>
configure

Sub-trees

You can also use sub-trees and the the tree operator @. Every mode gets assigned a tree which can be referenced as
@name. This tree can be either on the top-level or as a sub-tree. For example, create a specific sub-tree that is used as
sub-trees in other modes:

CLICON_MODE="subtree";
subcommand{
a, a();
b, b();

}

then access that subtree from other modes:

CLICON_MODE="configure";
main @subtree;
other @subtree,c();

The configure mode will now use the same subtree in two different commands. Additionally, in the other command,
the callbacks will be overwritten by c. That is, if other a, or other b is called, callback function c will be invoked.

C-preprocessor

You can also add the C preprocessor as a first step. You can then define macros, include files, etc. Here is an example
of a Makefile using cpp:

C_CPP = clispec_example1.cpp clispec_example2.cpp
C_CLI = $(C_CPP:.cpp=.cli
CLIS = $(C_CLI)
all: $(CLIS)
%.cli : %.cpp

$(CPP) -P -x assembler-with-cpp $(INCLUDES) -o $@ $<

72 Chapter 9. 9 CLI

Clixon, Release 7.0

9.7.8 9.7.8 Bits

The Yang bits built-in type as defined in RFC 7950 Sec 9.7 provides a set of bit names. In the CLI, the names should
be given in a white-spaced delimited list, such as "fin syn rst".

The RFC defines a “canonical form” where the bits appear ordered by their position in YANG, but Clixon validation
accepts them in any order.

Given them in XML and JSON follows thus, eg XML:

<flags>fin rst syn</flags>

Clixon CLI does not treat individual bits as “first-level objects”. Instead it only validates the whole string of bit names.
Operations (add/remove) are made atomically on the whole string.

9.7.9 9.7.9 Api-path-fmt

The clixon CLI uses an internal meta-format called api_path_fmt which is used to generate api-paths, as described i
Section XML.

An api-path-fmt extends an api-path with % flag characters (like printf) as follows:

• %s: The value of a cligen-variable

• %k: The key of a YANG list

Example, an explicit clispec expansion variable could be:

<name:string expand_dbvar("candidate","/interface=%s/%k")>

which could expand to /interface=eth0/mykey if “eth0” is given as the “name” variable and “mykey” is the YANG
interface list key.

9.7. 9.7 Advanced 73

Clixon, Release 7.0

74 Chapter 9. 9 CLI

CHAPTER

TEN

10 NETCONF

10.1 10.1 Overview

Netconf is an external client interface (cli and restconf are other external interfaces). Netconf is also used in the internal
IPC.

Netconf is defined in RFC 6241 (see Standards section) and implemented by the clixon_netconf client.

Any number of netconf clients can be created, each creating a new session to the backend. The netconf client commu-
nicates to the outside world via stdio. Usually one sets up an SSH sub-system to communicate from external nodes.

Note that Netconf supports chunked framing defined in RFC 6241 from Clixon 5.7, but examples may not be updated.

75

Clixon, Release 7.0

10.1.1 10.1.1 Command-line options

The clixon_netconf client has the following command-line options:

-h Help

-V Show version and exit

-D <level> Debug level

-f <file> Clixon config file

-E <dir> Extra configuration directory

-l <option> Log on (s)yslog, std(e)rr, std(o)ut or (f)ile. Syslog is default. If foreground,
then syslog and stderr is default.

-C <format> Dump configuration options on stdout after loading and quit. Format is one
of xml|json|text

-q Quiet mode, server does not send hello message on startup

-0 Set netconf base capability to 0, server does not expect hello, force EOM
framing

-1 Set netconf base capability to 1, server does not expect hello, force chunked
framing

-a <family> Internal IPC backend socket family: UNIX|IPv4|IPv6

-u <path|addr> Internal IPC socket domain path or IP addr (see -a)

-d <dir> Specify netconf plugin directory

-p <dir> Add Yang directory path (see CLICON_YANG_DIR)

-y <file> Load yang spec file (override yang main module)

-U <user> Over-ride unix user with a pseudo user for NACM.

-t <sec> Timeout in seconds. Quit after this time.

-e Do not ignore errors on packet input.

-o <option=value> Give configuration option overriding config file (see clixon-config.yang)

10.1.2 10.1.2 Configure options

The configuration file options related to NETCONF are the following:

CLICON_NETCONF_DIR
Location of netconf .so plugins loaded alphabetically

CLICON_NETCONF_HELLO_OPTIONAL
If true, an RPC can be processed directly with no preceeding hello message. This is not according to the standard
RFC 6241 Sec 8.1.

CLICON_NETCONF_MESSAGE_ID_OPTIONAL
If true, an RPC can be sent without a message-id. This is not according to the standard RFC 6241 Sec 4.1.

76 Chapter 10. 10 NETCONF

Clixon, Release 7.0

10.2 10.2 Starting

The Netconf client (clixon_netconf) can be started on the command line using stdin/stdout:

> clixon_netconf -qf /usr/local/etc/clixon.conf < my.xml

It then reads and parses Netconf commands on stdin, eventually invokes Netconf plugin callbacks, then establishes a
connection to the backend and usually sends the Netconf message over IPC to the backend. Some commands (eg hello)
are terminated in the client. The reply from the backend is then displayed on stdout.

10.2.1 10.2.1 SSH subsystem

You can expose clixon_netconf as an SSH subsystem according to RFC 6242. Register the subsystem in /etc/
sshd_config:

Subsystem netconf /usr/local/bin/clixon_netconf

and then invoke it from a client using:

ssh -s <host> netconf

10.3 10.3 NACM

Clixon implements the Network Configuration Access Control Model (NACM / RFC8341). NACM rpc and datanode
access validation is supported, not outgoing notifications.

NACM rules apply to all datastores.

10.3.1 10.3.1 Restrictions

Access notification authorization (Sec 3.4.6) is NOT implemented.

Data-node paths, eg <rule>...<path>ex:table/ex:parameter</path></rule> instance-identifiers are re-
stricted to canonical namespace identifiers for both XML and JSON encoding. That is, if a symbol (such as table
above) is a symbol in a module with prefix ex, another prefix cannot be used, even though defined with a xmlns rule.

10.3.2 10.3.2 Config options

The following configuration options are related to NACM:

CLICON_NACM_MODE
NACM mode is either: disabled, internal, or external. Default: disabled.

CLICON_NACM_FILE
If NACM mode is external, this file contains the NACM config.

CLICON_NACM_CREDENTIALS
Verify NACM user credentials with unix socket peer credentials. This means that a NACM user must match a
UNIX user accessing CLIXON_SOCK. Credentials are either: none, exact or except. Default: except.

10.2. 10.2 Starting 77

http://www.rfc-editor.org/rfc/rfc8341.txt

Clixon, Release 7.0

CLICON_NACM_RECOVERY_USER
RFC8341 defines a ‘recovery session’ as outside its scope. Clixon defines this user as having special admin rights
to exempt from all access control enforcements.

CLICON_NACM_DISABLED_ON_EMPTY
RFC 8341 defines enable-nacm as true by default. Since also write-default is deny by default it leads to that
empty configs can not be edited. Default: false.

10.3.3 10.3.3 Mode

NACM rules are either internal or external. If external, rules are loaded from a separate file, specified by the option
CLICON_NACM_FILE.

If the NACM mode is internal, the NACM configuration is a part of the regular candidate/running datastore. NACM
rules are read from the running datastore, ie they need to be committed.

Since NACM rules are part of the config itself it means that there may be bootstrapping issues. In particular, NACM
default is enabled with read/exec permit, and write deny. Loading an empty config therefore leads to a “deadlock”
where no user can edit the datastore.

Work-arounds include restarting the backend with a NACM config in the startup db, or using a recovery user.

10.3.4 10.3.4 Access control

NACM is implemented in the Clixon backend at:

• Incoming RPC (module-name/protocol-operation)

• Before modifying the data store (data create/delete/update)

• After retrieving data (data read)

User credentials

Access control relies on a user and groups. When an internal Clixon client communicates with the backend, it piggy-
backs the name of the user in the request, See Internal netconf username:

<rpc username="myuser"><get-config><source><running/></source></get-config></rpc>

The authentication of the username needs to be done in the client by either SSL certs (such as in RESTCONF auth
callback) or by SSH (as in NETCONF/CLI over SSH).

The Clixon backend can check credentials of the client if it uses a UNIX socket (not IP socket) for internal communi-
cation between clients and backend. In this way, a username claimed by a client can be verified against the UNIX user
credentials.

The allowed values of CLICON_NACM_CREDENTIALS is:

• none: Do not match NACM user to any user credentials. Any user can pose as any other user. Set this for IP
sockets, or do not use NACM.

• exact: Exact match between NACM user and unix socket peer user.

• except: Exact match between NACM user and unix socket peer user, except for root and wwwuser. This is default.

78 Chapter 10. 10 NETCONF

Clixon, Release 7.0

10.3.5 10.3.5 Recovery user

RFC 8341 defines a NACM emergency recovery session mechanism. Clixon implements a recovery user set by option
CLICON_NACM_RECOVERY_USER. If a client accesses the backend as that user, all NACM rules will be bypassed. By
default there is no such user.

Moreover, this mechanism is controlled by user credentials which means you can control who can act as the recovery
user.

For example, by setting CLICON_NACM_CREDENTIALS to except the RESTCONF daemon can make backend calls
posing as the recovery user, even though it runs as wwwuser.

Alternatively, CLICON_NACM_CREDENTIALS can be set to exact and the recovery user as root, in which case only a
netconf or cli session running as root can make recovery operations.

10.4 10.4 Confirm-commit

Confirm as defined in RFC 6241 Sec 8.4 is enabled by:

<CLICON_FEATURE>ietf-netconf:confirmed-commit</CLICON_FEATURE>

Confirmed-commit adds the <cancel-commit> operation and more parameters to <commit>.

The “rollback” datastore is added and is used as a temporary revert datastore.

10.5 10.5 Callhome

With Clixon, you can make a solution following RFC 8071: NETCONF Call Home and RESTCONF Call Home over
SSH as a utility using openssh.

The solution is built “around” Clixon meaning that Clixon itself is used as-is. This may be referred to as “external”
callhome since it is done using external tools, not clixon itself. In contrast, rstconf call-home is “internal”, see callhome
section in Restconf section.

Other solutions are possible as well, especially on the client side, and a full system integration requires a callhome
framework to determine when and how callhomes are made as well as addressing the security implications addressed
by RFC 8071.

Overview of a callhome architecture with a device (where clixon resides) and a client:

device/server client
+-----------------+ 2b) tcp connect +---------------------+
| 2a) callhome | ----------------> | 1c) callhome-client |
+-----------------+ +---------------------+

| 3) ^ |
v 1b)| v

+-----------------+ 4) ssh session +---------------------+ 5) stdio
| sshd -i | <----------------> | 1a) ssh | <------ <rpc>...</rpc>"
+-----------------+ |---------------------+

| stdio
+-----------------+
| clixon_netconf |
+-----------------+

|
(continues on next page)

10.4. 10.4 Confirm-commit 79

http://www.rfc-editor.org/rfc/rfc8071.txt

Clixon, Release 7.0

(continued from previous page)

+-----------------+
| clixon_backend |
+-----------------+

Requirement for the netconf callhome solutions are openssh and openssh-server.

The steps to make a Netconf callhome is as follows:

1) Start the ssh client using -o ProxyUseFdpass=yes -o ProxyCommand="callhome-client". Callhome-
client listens on port 4334 for incoming TCP connections.

2) Start the callhome program on the server making tcp connect to client on port 4334 establishing a tcp stream
with the client

3) The callhome program starts sshd -i using the established stream socket

4) The callhome-client returns with an open stream socket to the ssh client establishing an SSH stream to the server

5) Netconf messages are sent on stdin to the ssh client in turn using the established SSH stream and the Netconf
subsystem to clixon, which returns a reply.

The callhome and callhome-client referred to above are implemented by the utility functions: util/
clixon_netconf_ssh_callhome and util/clixon_netconf_ssh_callhome_client.

Example:

Start ssh on client: bind to 1.2.3.4:4334 sending an rpc on stdin
client> echo '<?xml version="1.0" encoding="UTF-8"?><hello xmlns=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0"><capabilities><capability>
→˓urn:ietf:params:netconf:base:1.1</capability></capabilities></hello>]]>]]><rpc xmlns=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0"><get-config><source><candidate/></source></
→˓get-config></rpc>]]>]]>' > msg
client> ssh -s -v -o ProxyUseFdpass=yes -o ProxyCommand="clixon_netconf_ssh_callhome_
→˓client -a 1.2.3.4" . netconf < msg

Start callhome on server: connect to 1.2.3.4:4334
server> sudo clixon_netconf_ssh_callhome -a 1.2.3.4

Reply on client stdout: (skipping hello):
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><data/></rpc-reply>]]>]]>

The example is implemented as a regression test in test/test_netconf_ssh_callhome.sh

The RFC lists several security issues that need to be addressed in a solution, including “pinning” of host keys etc.

Note: Warning: there are security implications of using this example as noted in RFC 8071: NETCONF Call Home
and RESTCONF Call Home

80 Chapter 10. 10 NETCONF

http://www.rfc-editor.org/rfc/rfc8071.txt
http://www.rfc-editor.org/rfc/rfc8071.txt

Clixon, Release 7.0

10.6 10.6 Internal NETCONF

Clixon uses NETCONF in the internal IPC protocol between its clients (cli/netconf/restconf) and the backend. This
internal Netconf (IPC) is slightly different from regular Netconf:

• A different framing

• Netconf extentions

Note: The IPC is an internal interface, do not use externally

10.6.1 10.6.1 Framing

A fixed header using session id and message length before the netconf message:

struct clicon_msg {
uint32_t op_len; /* length of whole message: body+header, network byte order.␣

→˓*/
uint32_t op_id; /* session-id. network byte order. */
char op_body[0]; /* rest of message, actual data */

};

The session-id is a number determined by the server. In the first hello, the client can assign zero, and assign the
correct session-id in subsequent messages. The server hello contains the assigned session-id.

10.6.2 10.6.2 Extensions

The internal IPC protocol have a couple of attributes that are extensions to the Netconf protocol. These attributes are
all in the clixon-lib namespace (http://clicon.org/lib)

• content - for get command with values “config”, “nonconfig” or “all”, to indicate which parts of state and config
are requested. This option is taken from RESTCONF. Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get cl:content="nonconfig" xmlns:cl="http://clicon.org/lib"/>

</rpc>

• depth - for get and get-config how deep a tree is requested. Also from RESTCONF. Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get cl:depth="2" xmlns:cl="http://clicon.org/lib"/>

</rpc>

• username - for top-level rpc command. Indicates which user the client represents (“pseudo-user”). This is
either the actual user logged in as the client (eg “peer-user”) or can represent another user. The credentials mode
determines the trust-level of the pseudo-username. Example:

<rpc username="root" xmlns:cl="http://clicon.org/lib" xmlns=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0">

<close-session/>
</rpc>

10.6. 10.6 Internal NETCONF 81

Clixon, Release 7.0

• autocommit - for edit-config. If true, perform a commit operation immediately after an edit. If this fails,
make a discard operation. Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config cl:autocommit="true" xmlns:cl="http://clicon.org/lib">

<target><candidate/></target>
<config>...</config>

</edit-config>
</rpc>

• copystartup - for edit-config combined with autocommit. If true, copy the running db to the startup db after
a commit. The combination with autocommit is the default for RESTCONF operations. Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config cl:autocommit="true" cl:copystartup="true" xmlns:cl="http://clicon.

→˓org/lib">
<target><candidate/></target>
<config>...</config>

</edit-config>
</rpc>

• transport - for hello from RFC 6022. Example:

<hello cl:transport="netconf" xmlns:cl="http://clicon.org/lib" xmlns=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0" >

• source-host - for hello from RFC 6022. Example:

<hello cl:source-host="10.10.0.42" xmlns:cl="http://clicon.org/lib" xmlns=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0" >

• objectcreate and objectexisted - in the data field of edit-config XML data tree. In the request set objectcreate
to false/true whether an object should be created if it does not exist or not. If such a request exists, then the ok
reply should contain “objectexists” to indicate whether the object existed or not (eg prior to the operation). The
reason for this protocol is to implement some RESTCONF PATCH and PUT functionalities. Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config objectcreate="false"><target><candidate/></target>

<config>
<protocol objectcreate="true">tcp</protocol>

</config>
</edit-config>

</rpc>]]>]]>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok objectexisted="true"/>
</rpc-reply>]]>]]>

The reason for introducing the objectcreate/objectexisted attributes are as follows:

• RFC 8040 4.5 PUT: if the PUT request creates a new resource, a “201 Created” status-line is returned. If
an existing resource is modified, a “204 No Content” status-line is returned.

• RFC 8040 4.6 PATCH: If the target resource instance does not exist, the server MUST NOT create it.

82 Chapter 10. 10 NETCONF

CHAPTER

ELEVEN

11 RESTCONF

Clixon supports two RESTCONF compile-time variants: FCGI and Native.

11.1 11.1 Architecture

The restconf deamon provides a http/https RESTCONF interface to the Clixon backend. It comes in two variants, as
shown in the figure above:

1. Native http, which combines a HTTP and Restconf server. Further, HTTP configuration is made using Clixon.

2. A reverse proxy (such as NGINX) and FastCGI where web and restconf function is separated. NGINX is used
to make all HTTP configuration.

The restconf daemon communicates with the backend using internal netconf over the CLIXON_SOCK. If FCGI is used,
there is also a FCGI socket specified by fcgi-socket in clixon-config/restconf.

The restconf daemon reads its initial config options from the configuration file on startup. The native http variant can
read config options from the backend as an alternative to reading everything from clixon options.

You can add plugins to the restconf daemon, where the primary usecase is authentication, using the ca_auth callback.

Note that there is some complexity in the configuration of the different variants of native Clixon restconf involving
HTTP/1 vs HTTP/2, TLS vs plain HTTP, client cert vs basic authentication and external vs internal daemon start.

Further, ALPN is used to select http/1 or http/2 in HTTPS.

83

Clixon, Release 7.0

11.2 11.2 Installation

The RESTCONF daemon can be configured for compile-time (by autotools) as follows:

--disable-http1 Disable native http/1.1 (ie http/2 only)

--disable-nghttp2 Disable native http/2 using libnghttp2 (ie http/1 only)

--with-restconf=native RESTCONF using native http. (DEFAULT)

--with-restconf=fcgi RESTCONF using fcgi/ reverse proxy.

--without-restconf No RESTCONF

After that perform system-wide compilation:

make && sudo make install

11.3 11.3 Command-line options

The restconf daemon have the following command-line options:

-h Help

-V Show version and exit

-D <level> Debug level

-f <file> Clixon config file

-E <dir> Extra configuration directory

-l <option> Log on (s)yslog, std(e)rr, std(o)ut, (n)one or (f)ile. Syslog is default. If
foreground, then syslog and stderr is default.

-C <format> Dump configuration options on stdout after loading and quit. Format is one
of xml|json|text

-p <dir> Add Yang directory path (see CLICON_YANG_DIR)

-y <file> Load yang spec file (override yang main module)

-a <family> Internal backend socket family: UNIX|IPv4|IPv6

-u <path|addr> Internal socket domain path or IP addr (see -a)

-r Do not drop privileges if run as root

-W <user> Run restconf daemon as this user, drop according to
CLICON_RESTCONF_PRIVILEGES

-R <xml> Restconf configuration in-line overriding config file

-o <option=value> Give configuration option overriding config file (see clixon-config.yang)

Note that the restconf daemon started as root, drops privileges to wwwuser, unless the -r command-line option is used,
or CLICON_RESTCONF_PRIVILEGES is defined.

84 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

11.4 11.4 Configuration options

The following RESTCONF configuration options can be defined in the clixon configuration file:

CLICON_RESTCONF_DIR
Location of restconf .so plugins. Load all .so plugins in this dir as restconf code plugins.

CLICON_RESTCONF_INSTALLDIR
Path to dir of clixon-restconf daemon binary as used by backend if started internally

CLICON_RESTCONF_STARTUP_DONTUPDATE
Disable automatic update of startup on restconf edit operations This is not according to standard RFC 8040 Sec
1.4.

CLICON_RESTCONF_USER
Run clixon_restconf daemon as this user, default is www-data.

CLICON_RESTCONF_PRIVILEGES
Restconf daemon drop privileges mode, one of: none, drop_perm, drop_temp

CLICON_RESTCONF_HTTP2_PLAIN
Enable plain (non-tls) HTTP/2.

CLICON_BACKEND_RESTCONF_PROCESS
Start restconf daemon internally from backend daemon. The restconf daemon reads its config from the backend
running datastore.

CLICON_ANONYMOUS_USER
If RESTCONF authentication auth-type=none then use this user

CLICON_RESTCONF_API_ROOT
RESTCONF API root path as defined in RFC 8040, default is /restconf

CLICON_NOALPN_DEFAULT
Fallback if no ALPN for https. valid values are “http/1.1” and “http/2”

More more documentation of the options, see the source YANG file.

11.5 11.5 Advanced config

Apart from options, there is also structured restconf data primarily for native mode encapsulated with <restconf>..
.</restconf> as defined in clixon-restconf.yang.

The first-level fields of the advanced restconf structure are the following:

enable
Enable the RESTCONF daemon. If disabled, the restconf daemon will not start

auth-type
Authentication method (see auth types)

debug
Enable debug

log-destination
Either syslog or file (/var/log/clixon_restconf.log)

pretty
Restconf vallues are pretty printed by default. Disable to turn this off

The advanced config can be given using three different methods

11.4. 11.4 Configuration options 85

Clixon, Release 7.0

1. inline - as command-line option using -R

2. config-file - as part of the regular config file

3. datastore - committed in the regular running datastore

11.5.1 11.5.1 Inline

When starting the restconf daemon, structured data can be directly given as a command-line option:

-R <restconf xmlns="http://clicon.org/restconf"><enable>true</enable></restconf>

11.5.2 11.5.2 Config file

The restconf config can also be defined locally within the clixon config file, such as:

<CLICON_FEATURE>clixon-restconf:fcgi</CLICON_FEATURE>
<CLICON_BACKEND_RESTCONF_PROCESS>false</CLICON_BACKEND_RESTCONF_PROCESS>
<restconf>

<enable>true</enable>
<fcgi-socket>/wwwdata/restconf.sock</fcgi-socket>

</restconf>

11.5.3 11.5.3 Datastore

Alternatively if CLICON_BACKEND_RESTCONF_PROCESS is set, the restconf configuration is:

<CLICON_FEATURE>clixon-restconf:fcgi</CLICON_FEATURE>
<CLICON_BACKEND_RESTCONF_PROCESS>false</CLICON_BACKEND_RESTCONF_PROCESS>

And the detailed restconf is defined in the regular running datastore by adding something like:

<restconf xmlns="http://clicon.org/restconf">
<enable>true</enable>
<fcgi-socket>/wwwdata/restconf.sock</fcgi-socket>

</restconf>

In the latter case, the restconf daemon reads its config from the running datastore on startup.

Note: If CLICON_BACKEND_RESTCONF_PROCESS is enabled, the restconf config must be in the regular datastore.

86 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

11.5.4 11.5.4 Features

The Restconf config has two features:

fcgi
The restconf server supports the fast-cgi reverse proxy mode. Set this if fcgi/nginx is used.

allow-auth-none
Authentication supports a none mode.

Example, add this in the config file to enable fcgi:

<clixon-config xmlns="http://clicon.org/config">
...
<CLICON_FEATURE>clixon-restconf:fcgi</CLICON_FEATURE>

11.5.5 11.5.5 Auth types

The RESTCONF daemon uses the following authentication types:

none
Messages are not authenticated and set to the value of CLICON_ANONYMOUS_USER. A callback can revise this
behavior. Note, must set allow-auth-none feature.

client-cert
Set to authenticated and extract the username from the SSL_CN parameter. A callback can revise this behavior.

user
User-defined behaviour as implemented by the auth callback. Typically done by basic auth, eg
HTTP_AUTHORIZATION header, and verify password

11.5.6 11.5.6 FCGI mode

Applies if clixon is configured with --with-restconf=fcgi. Fcgi-specific config options are:

fcgi-socket
Path to FCGI unix socket. This path should be the same as specific in fcgi reverse proxy

Need also fcgi feature enabled: features

11.5.7 11.5.7 Native mode

Applies if clixon is configured with --with-restconf=native. Native specific config options are:

server-cert-path
Path to server certificate file

server-key-path
Path to server key file

server-ca-cert-path
Path to server CA cert file

socket
List of server sockets that the restconf daemon listens to with the following fields:

socket namespace
Network namespace

11.5. 11.5 Advanced config 87

Clixon, Release 7.0

socket address
IP address to bind to

socket port
TCP port to bind to

socket ssl
If true: HTTPS; if false: HTTP protocol

11.5.8 11.5.8 Examples

Configure a single HTTP on port 80 in the default config file:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/clixon.xml</CLICON_CONFIGFILE>
...
<restconf>

<enable>true</enable>
<auth-type>user</auth-type>
<socket>

<description>HTTP listen</description>
<namespace>default</namespace>
<address>0.0.0.0</address>
<port>80</port>
<ssl>false</ssl>

</socket>
</restconf>

</clixon-config>

Configure two HTTPS listeners in two different namespaces:

<restconf xmlns="https://clicon.org/restconf">
<enable>true</enable>
<auth-type>client-certificate</auth-type>
<server-cert-path>/etc/ssl/certs/clixon-server-crt.pem</server-cert-path>
<server-key-path>/etc/ssl/private/clixon-server-key.pem</server-key-path>
<server-ca-cert-path>/etc/ssl/certs/clixon-ca_crt.pem</server-ca-cert-path>
<socket>

<description>HTTPS listen</description>
<namespace>default</namespace>
<address>0.0.0.0</address>
<port>443</port>
<ssl>true</ssl>

</socket>
<socket>

<description>HTTPS listen on myns</description>
<namespace>myns</namespace>
<address>0.0.0.0</address>
<port>443</port>
<ssl>true</ssl>

</socket>
</restconf>

88 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

11.5.9 11.5.9 SSL Certificates

If you use native RESTCONF you may want to have server/client certs. If you use FCGI, certs are configured according
to the reverse proxy documentation, such as NGINX. The rest of this section applies to native restconf only.

If you already have certified server certs, ensure CLICON_SSL_SERVER_CERT and CLICON_SSL_SERVER_KEY points
to them.

If you do not have them, you can generate self-signed certs, for example as follows:

openssl req -x509 -nodes -newkey rsa:4096 -keyout /etc/ssl/private/clixon-server-key.pem␣
→˓-out /etc/ssl/certs/clixon-server-crt.pem -days 365

You can also generate client certs (not shown here) using CLICON_SSL_CA_CERT. Example using client certs and curl
for client andy:

curl -Ssik --key andy.key --cert andy.crt -X GET https://localhost/restconf/data/
→˓example:x

11.6 11.6 Starting

You can start the RESTCONF daemon in several ways:

1. systemd , externally started

2. internally using the process-control RPC (see below)

3. docker mechanisms, see the docker container docs

11.6.1 11.6.1 Start with Systemd

The Restconf service can be installed at, for example, /etc/systemd/system/example_restconf.service:

[Unit]
Description=Starts and stops an example clixon restconf service on this system
Wants=example.service
After=example.service
[Service]
Type=simple
User=root
Restart=on-failure
ExecStart=/usr/local/sbin/clixon_restconf -f /usr/local/etc/example.xml
[Install]
WantedBy=multi-user.target

11.6. 11.6 Starting 89

Clixon, Release 7.0

11.6.2 11.6.2 Internal start

For starting restconf internally, you need to enable CLICON_BACKEND_RESTCONF_PROCESS option. See Section data-
store.

Thereafter, you can either use the clixon-restconf.yang configuration or use the clixon-lib.yang process con-
trol RPC:s to start/stop/restart the daemon or query status.

The algorithm for starting and stopping the clixon-restconf internally is as follows:

1. on RPC start, if enable is true, start the service, if false, error or ignore it

2. on RPC stop, stop the service

3. on backend start make the state as configured

4. on enable change, make the state as configured

Example 1, using netconf edit-config to start the process:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities><capability>urn:ietf:params:netconf:base:1.1</capability></capabilities>
</hello>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">

<edit-config>
<default-operation>merge</default-operation>
<target><candidate/></target>
<config>

<restconf xmlns="http://clicon.org/restconf">
<enable>true</enable>

</restconf>
</config>

</edit-config
</rpc>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">

<ok/>
</rpc-reply>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="11">

<commit/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">
<ok/>

</rpc-reply>

Example 2, using netconf RPC to restart the process:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities><capability>urn:ietf:params:netconf:base:1.1</capability></capabilities>
</hello>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">

<process-control xmlns="http://clicon.org/lib">
<name>restconf</name>
<operation>restart</operation>

</process-control>
</rpc>

(continues on next page)

90 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

(continued from previous page)

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">
<pid xmlns="http://clicon.org/lib">1029</pid>

</rpc-reply>

Note that the backend daemon must run as root (no lowering of privileges) to use this feature.

11.7 11.7 Plugin callbacks

Restconf plugins implement callbacks, some are same as for backend plugins.

init
Clixon plugin init function, called immediately after plugin is loaded into the restconf daemon.

start
Called when application is started and initialization is complete, and after drop privileges.

exit
Called just before plugin is unloaded

extension
Called at parsing of yang modules containing an extension statement.

auth
See auth callback

11.7.1 11.7.1 Auth callback

The role of the authentication callback is, given a message (its headers) and authentication type, determine if the
message passes authentication and return an associated user.

The auth callback is invoked after incoming processing, including cert validation, if any, but before relaying the message
to the backend for NACM checks and datastore processing.

If the message is not authenticated, an error message is returned with tag: access denied and HTTP error code 401
Unauthorized.

There are default handlers for TLS client certs and for “none” authentication. But other variants, such as http basic
authentication, oauth2 or the remapping of client certs to NACM usernames, can be implemented by this callback

If the message is authenticated, a user is associated with the message. This user can be derived from the headers or
mapped in an application-dependent way. This user is used internally in Clixon and sent via the IPC protocol to the
backend where it may be used for NACM authorization.

The signature of the auth callback is as follows:

int ca_auth(clixon_handle h, void *req, clixon_auth_type_t auth_type, char **authp);

where:

h
Clixon handle

req
Per-message request www handle to use with restconf_api.h

auth-type
Specifies how the authentication is made and what default value

11.7. 11.7 Plugin callbacks 91

Clixon, Release 7.0

authp
NULL if credentials failed, otherwise malloced string of authentoicated user

The return value is one of:

• -1: Fatal error, close socket

• 0: Ignore, undecided, not handled, same as no callback. Fallback to default handler.

• 1: OK see authp parameter whether the result is authenticated or not, and the associated user.

If there are multiple callbacks, the first result which is not “ignore” is returned. This is to allow for different callbacks
registering different classes, or grouping of authentication.

The main example contains example code.

11.8 11.8 FCGI

This section describes the RESTCONF FCGI mode using NGINX.

You need to configure the following:

1. Configure clixon with --with-restconf=fcgi

2. Restconf config in the Clixon config file

3. Reverse proxy configuration

4. Start the restconf daemon (see starting)

11.8.1 11.8.1 Restconf config

The restconf daemon can be started in several ways as described in Section auth types. In all cases however, the
configuration is simpler than in native mode. For example:

<clixon-config xmlns="http://clicon.org/config">
...
<CLICON_FEATURE>clixon-restconf:fcgi</CLICON_FEATURE>
<restconf>

<enable>true</enable>
<fcgi-socket>/wwwdata/restconf.sock</fcgi-socket>

</restconf>
</clixon-config>

11.8.2 11.8.2 Reverse proxy config

If you use FCGI, you need to configure a reverse-proxy, such as NGINX. A typical configuration is as follows:

server {
...
location / {
fastcgi_pass unix:/www-data/fastcgi_restconf.sock;
include fastcgi_params;

}
}

92 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

where fastcgi_pass setting should match by fcgi-socket in clixon-config/restconf.

11.9 11.9 Callhome

Clixon supports RESTCONF callhome according to RFC 8071: NETCONF Call Home and RESTCONF Call Home
using native RESTCONF and TLS and server/client certs.

11.9.1 11.9.1 Overview

device/server (n) client (n)
+-----------------+ (1) connect +---------------------+
	--------------->	
clixon-restconf	(2) TLS	callhome-client
	<---------------	
	(3) data	
	<---------------	
+-----------------+ +---------------------+

| (4) IPC
v

+-----------------+
| clixon-backend |
+-----------------+

The operation of RESTCONF callhome is as follows:

1. The RESTCONF server initiates a TCP connection to a client, either persistently or periodically

2. The client sets up a TLS connection to the server using the existing TCP session

3. The client sends data as HTTP requests over TLS to the server

4. The RESTCONF server receives data, authenticates the client-cert, transforms the request to NETCONF
and sends it internally to the clicon backend.

5. Status replies are returned to the client

Note: Clixon does not implement client-side call-home functionality, only server-side

11.9.2 11.9.2 Callback clients

A server may configure multiple HTTP callback clients, for fault-tolerance purposes, for example.

A callback “controller” client typically serves multiple servers.

11.9. 11.9 Callhome 93

http://www.rfc-editor.org/rfc/rfc8071.txt

Clixon, Release 7.0

Bootstrap controller

A typical callback client scenario is a bootstrap controller. The HTTP requests by the client are stored waiting for an
inital connect from a minimally deployed server. The controller may then store pre-configured configurations. In such
a scenario, the server needs at least the following initial information:

1. A callback IP address

2. A server cert

3. A CA to validate the client cert OR a list of exactly matching client-certs

Once the controller accepts a connection from a server, it may send RESTCONF requests over HTTP and fully configure
the new server.

Such a controller can also be used for more “intelligent” configuration as well, such as setting up tunnels or other
configurations spanning multiple servers.

The controller may also provide an interactive CLI or GUI for example once a connection is established.

11.9.3 11.9.3 Description

The callhome function is “internal” in the sense that it is integrated in Clixon and uses the openssl lib and extends the
regular “listen” RESTCONF functionality.

The callhome mechanism is a server-side implementation. There is an example client-side implementation
(util/clixon_restconf_callhome_client.c) which is not a part of the actual Clixon code. A user needs to write a client to
use this functionality.

The existing clixon-restconf YANG has been extended to support callhome. The ietf restconf server draft (https://
datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26) which is used as a basis for the extensions.
While not complying to the draft’s structure, the YANG fields covering callhome are similar. Please see the draft for
detailed description of scenarios and configuration fields.

The callhome features include:

• Persistent and periodic connection types, ie continuous callhome attempts, or at specific time intervals.

• Periodic connections support idle-timeout, ie close the TCP connection if no traffic after timeout.

• Max-attempts reconnect strategy, ie how many times to retry a connect attempt before timeout

11.9.4 11.9.4 Setup

A callhome session is setup by adding a call-home section to a native RESTCONF socket declaration. For example:

<restconf xmlns="https://clicon.org/restconf">
<enable>true</enable>
<auth-type>client-certificate</auth-type>
<server-cert-path>/etc/ssl/certs/clixon-server-crt.pem</server-cert-path>
<server-key-path>/etc/ssl/private/clixon-server-key.pem</server-key-path>
<server-ca-cert-path>/etc/ssl/certs/clixon-ca_crt.pem</server-ca-cert-path>
<socket>

<description>callhome session</description>
<namespace>default</namespace>
<address>12.13.14.15</address>
<port>4336</port>
<ssl>true</ssl>

(continues on next page)

94 Chapter 11. 11 RESTCONF

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26

Clixon, Release 7.0

(continued from previous page)

<call-home>
<!-- ... call-home section ... -->

</call-home>
</socket>

Some notes for callhome sockets:

1. The address field denotes a remote client, not the server which is the case for “listen” sockets.

2. The default port for RESTCONF callhome is 4336

3. A callhome socket must have ssl enabled

4. Client certs must be used as auth-type

5. You can mix regular “listen” sockets with “callhome” sockets.

6. You can have multiple (concurrent) callhome sockets.

11.9.5 11.9.5 Persistent connection

If the callhome session is persistent, the server tries to hold the connection open at all times. The default re-connect
strategy is 1 second.

Example socket configuration:

<call-home>
<connection-type>

<persistent/>
</connection-type>

</call-home>

11.9.6 11.9.6 Periodic connection

Periodic call-home sessions try to establish a callhome connections at regular intervals, such as once a minute, or once
a day.

Example periodic configuration:

<call-home>
<connection-type>

<periodic>
<period>3600</period>
<idle-timeout>60</idle-timeout>

</periodic>
</connection-type>
<reconnect-strategy>

<max-attempts>3</max-attempts>
</reconnect-strategy>

</call-home>

Notes:

1. The period is in seconds, while the draft uses minutes. The example therefore shows a period of one hour.

2. The idle-timeout field means that the TCP session is closed by the server if no data is sent in 1 minute.

11.9. 11.9 Callhome 95

Clixon, Release 7.0

3. The max-attempts setting means that every start of period the server makes several attempts to reconnect. If all
attempts fail, it waits another period before re-trying.

4. If the connection is active when the new period starts, no reconnect attempt is made.

11.10 11.10 HTTP data

As an extension to the native restconf implementation, Clixon provides a limited http-data server for displaying web
pages. To use the http-data feature, you need to configure clixon with --with-restconf=native and also enable the
http-data feature as described below.

Note: The http data feature is limited and can only be used for very simple web content

11.10.1 11.10.1 Configuration options

First, you also need to define <CLICON_FEATURE>clixon-restconf:http-data</CLICON_FEATURE> to enable
http-data.

The following configuration options can be defined in the clixon configuration file:

CLICON_HTTP_DATA_ROOT
Directory in the local file system where http-data files are searched for. Soft links, .., ~ etc are not followed.
Default is /var/www.

CLICON_HTTP_DATA_PATH
Prefix to match with URI to match for http-data. This path is appended to CLICON_HTTP_DATA_ROOT to find a
matching file. Default is /. Note that the restconf match prefix is /restconf.

Example

The following is an example of a config file for setting up an http-data service at /var/www/data:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_FEATURE>clixon-restconf:http-data</CLICON_FEATURE>
<CLICON_HTTP_DATA_ROOT>/var/www</CLICON_HTTP_DATA_ROOT>
<CLICON_HTTP_DATA_PATH>/data</CLICON_HTTP_DATA_PATH>
...

An example curl call could be:

curl -X GET -H 'Accept: text/html' http://localhost/data/

The call will retrieve the file at /var/www/data/index.hmtl.

96 Chapter 11. 11 RESTCONF

Clixon, Release 7.0

11.10.2 11.10.2 Features and limitation

The http server is very limited in functionality:

• No dynamic pages, ie backend scripts, only static pages are supported.

• Operations are limited to GET, HEAD, and OPTIONS

• Query parameters are not supported

• Indata is not supported

• Supported media is: html, css, js, fonts, and some images. All other content is default octet-stream

All applicable features of the native restconf implementation are available for the http-data as well. This includes http/1
and http/2 and TLS using openssl.

There is support for URI path internal redirect to a file called index.html. This can be changed by compile-time option
HTTP_DATA_INTERNAL_REDIRECT.

11.11 11.11 RESTCONF streams

Clixon has an experimental RESTCONF event stream implementations following RFC8040 Section 6 using Server-Sent
Events (SSE). Currently this is implemented in FCGI/Nginx only (not native).

Note: RESTCONF streams are experimental and only implemented for FCGI.

Example: set the Clixon configuration options:

<CLICON_STREAM_PATH>streams</CLICON_STREAM_PATH>
<CLICON_STREAM_URL>https://example.com</CLICON_STREAM_URL>
<CLICON_STREAM_RETENTION>3600</CLICON_STREAM_RETENTION>

In this example, the stream example is accessed with https://example.com/streams/example.

Clixon defines an internal in-memory (not persistent) replay function controlled by the configure option above. In this
example, the retention is configured to 1 hour, i.e., the stream replay function will only save timeseries one hour, but if
the restconf daemon is restarted, the history will be lost.

In the Nginx configuration, add the following to extend the nginx configuration file with the following statements (for
example):

location /streams {
fastcgi_pass unix:/www-data/fastcgi_restconf.sock;
include fastcgi_params;
proxy_http_version 1.1;
proxy_set_header Connection "";

}

An example of a stream access is as follows:

curl -H "Accept: text/event-stream" -s -X GET http://localhost/streams/EXAMPLE
data: <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"><eventTime>
→˓2018-11-04T14:47:11.373124</eventTime><event><event-class>fault</event-class>
→˓<reportingEntity><card>Ethernet0</card></reportingEntity><severity>major</severity></

(continues on next page)

11.11. 11.11 RESTCONF streams 97

Clixon, Release 7.0

(continued from previous page)

→˓event></notification>
data: <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"><eventTime>
→˓2018-11-04T14:47:16.375265</eventTime><event><event-class>fault</event-class>
→˓<reportingEntity><card>Ethernet0</card></reportingEntity><severity>major</severity></
→˓event></notification>

You can also specify start and stop time. Start-time enables replay of existing samples, while stop-time is used both for
replay, but also for stopping a stream at some future time:

curl -H "Accept: text/event-stream" -s -X GET http://localhost/streams/EXAMPLE?start-
→˓time=2014-10-25T10:02:00&stop-time=2014-10-25T12:31:00

11.11.1 11.11.1 Fcgi stream options

The following options apply only for fcgi mode and notification streams:

CLICON_STREAM_DISCOVERY_RFC8040
Enable monitoring information for the RESTCONF protocol from RFC 8040 (only fcgi)

CLICON_STREAM_PATH
Stream path appended to CLICON_STREAM_URL to form stream subscription URL (only fcgi)

98 Chapter 11. 11 RESTCONF

CHAPTER

TWELVE

12 SNMP

Clixon supports SNMP for retreiving and setting values via netsnmp using a MIB-YANG mapping defined in RFC6643.

12.1 12.1 Architecture

The SNMP frontend acts as an intermediate daemon between the Net-SNMP daemon (snmpd) and the Clixon backend.
Clixon-snmp communicates over the AgentX protocol to snmpd typically via a UNIX socket, and over the internal IPC
protocol to the Clixon backend.

Clixon-snmp implements RFC 6643 Translation of Structure of Management Information Version 2 (SMIv2) MIB Mod-
ules to YANG Modules. The RFC defines how a MIB is translated to YANG using extensions that define a mapping
between YANG statements and SMI object IDs and types in the MIB.

In principle, it is also possible to construct a MIB from YANG using the same method, although this is more limited
and may involve manual work.

A user can then communicate with snmpd using any of the SNMP v2/v3 tools, such as snmpget, snmpwalk and others.

99

Clixon, Release 7.0

Note: SNMP support is introduced in Clixon version 5.8

12.2 12.2 Configuration

12.2.1 12.2.1 Net-SNMP

Note: Use Net-SNMP version 5.9 or later

To set up AgentX communication between clixon_snmp and snmpd a Unix or TCP socket is configured. This socket
is also configured in Clixon (see below). An example /etc/snmp/snmpd.conf is as follows:

master agentx
agentaddress 127.0.0.1,[::1]
rwcommunity public localhost
agentXSocket unix:/var/run/snmp.sock
agentxperms 777 777

It is necessary to ensure snmpd does not to load modules implemented by Clixon. For example, if Clixon implements the
IF-MIB and system MIBs, snmpd should not load those modules. This can be done using the “-I” flag and prepending
a “-” before each module:

-I -ifTable -I -system_mib -I -sysORTable

Further, Clixon itself does not start netsnmp itself, you need to ensure that netsnmp is running when clixon_snmp is
started. Likewise, if snmpd is restarted, clixon_snmp must also be restarted.

Note: Net-snmp must be started via systemd or some other external mechanism before clixon_snmp is started.

12.2.2 12.2.2 Clixon

To build the snmp support, netsnmp is enabled at configure time. Two configure options are added for SNMP:

• --enable-netsnmp Enable SNMP support.

• --with-mib-generated-yang-dir For tests: Directory of generated YANG specs (default: $pre-
fix/share/mibyang)

Then type “make” to build the “clixon_snmp” executable and “make install” to install.

100 Chapter 12. 12 SNMP

Clixon, Release 7.0

12.2.3 12.2.3 clixon_snmp command line options

$ clixon_snmp -h
usage:clixon_snmp
where options are

-h Help
-V Show version and exit
-D <level> Debug level
-f <file> Configuration file (mandatory)
-l (e|o|s|f<file>) Log on std(e)rr, std(o)ut, (s)yslog(default), (f)ile
-C <format> Dump configuration options on stdout after loading and exit. Format␣

→˓is one of xml|json|text
-z Kill other clixon_snmp daemon and exit
-o "<option>=<value>" Give configuration option overriding config file (see␣

→˓clixon-config.yang)

12.2.4 12.2.4 clixon_snmp configuration

There are two SNMP related options in the Clixon configuration:

CLICON_SNMP_AGENT_SOCK
String description of the AgentX socket that clixon_snmp listens to.

CLICON_SNMP_MIB
Names of MIBs that are used by clixon_snmp.

Example:

<CLICON_SNMP_AGENT_SOCK>unix:/var/run/snmp.sock</CLICON_SNMP_AGENT_SOCK>
<CLICON_SNMP_MIB>IF-MIB</CLICON_SNMP_MIB>

Note that the socket /var/run/snmp.sock is the same as configured in “snmpd.conf” above.

12.3 12.3 MIB mapping

Clixon registers MIBs with netsnmp by using YANG specifications. To achieve this, the MIB is first converted (ac-
cording to RFC6643) to YANG format.

12.3.1 12.3.1 Generating YANG

MIB to YANG conversion can be done using the smidump tool, version 0.5 or later. Manual mapping is also possible.
In Debian smidump is available in the package “smitools”. You may also find existing repos with converted MIBs.

To convert a MIB to YANG, invoke smidump with the “-f yang” flag and point it to a MIB. MIBs will usually be in the
directory “/usr/share/snmp/mibs/”:

$ smidump -f yang /usr/share/snmp/mibs/IF-MIB.txt > IF-MIB.yang

Note: smidump 0.5 or later must be used

Once a MIB is converted to YANG, two things should be done:

12.3. 12.3 MIB mapping 101

Clixon, Release 7.0

1) The YANG is registered as an SNMP module using the CLICON_SNMP_MIB configuration option

2) The YANG file must be placed so that it can be found using the regular Clixon YANG finding mechanism, as
described in Finding YANG files

12.3.2 12.3.2 Config vs state

By default, all RFC6643 mappings are config false, ie, no configuration data.

To change to configuration data, a deviation statement is made as the following example illustrates:

deviation "/clixon-types:CLIXON-TYPES-MIB" {
deviate replace {

config true;
}

}

For more info, see Section 11 in RFC 6643.

12.3.3 12.3.3 Types

Scalar types are mapped between SMI and YANG types using RFC6643. All types as used by IF-MIB, System and
Entity MIBs are supported.

12.3.4 12.3.4 Tables

SNMP tables are supported for config and state and are mapped to YANG lists. It is possible to get and set individual
values either via the SNMP API, or via any of the other CLIXON frontends.

Table indexes can be integers and non-integers. Multiple table indexes are supported.

As an implementation detail, Clixon uses the table abstraction in the netsnmp agent library, not table-data or table-
instance.

12.3.5 12.3.5 RowStatus

Clixon supports SMIv2 RowStatus for table handling. Where RowStatus is used, the status of the row is returned and
set to either active, notInService or notReady.

When writing the status of the row can be set to either createAndGo, createAndWait, active or destroy.

The rowstatus firled itself and all row values in createAndWait mode uses an internal cache which is held in memory
by the clixon snmp agent. This internal cache is flushed to Clixon when setting a row to active, like a “pre-commit
phase”. When clixon_snmp is restarted, the cache is cleared.

102 Chapter 12. 12 SNMP

CHAPTER

THIRTEEN

13 YANG

This chapter describes some aspects of the YANG implementation in Clixon. Regarding standard compliance, see
Standards.

13.1 13.1 Leafrefs

Some notes on YANG leafref implementation in Clixon, especially as used in openconfig modules, which rely heavily
on leafrefs.

Typically, a YANG leafref declaration looks something like this:

container c {
leaf x {
type leafref {
path "../config/name"; /* "deferring node" */
require-instance <bool>; /* determines existing deferred node */

}
}
container config {
leaf name {
type unit32; /* "deferred node" */

}
}

}

This YANG example is typical of Openconfig lists defined in the openconfig modeling, where a key leaf references a
“config” node further down in the tree.

Other typical uses is where the path is an absolute path, such as eg path "/network-instances/
network-instance/config/name";

13.1.1 13.1.1 Types

Consider the YANG example above, the type of x is the deferred node:s, in this example uint32. The valida-
tion/commit process, as well as the autocli type system and completion handles accordingly.

For example, if the deferred node is a more complex type such as identityref with options “a, b”, the completion of “x”
will show the options “a,b”.

103

https://www.rfc-editor.org/rfc/rfc7950.html#section-9.9.3
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01#section-8.1.2

Clixon, Release 7.0

13.1.2 13.1.2 Require-instance

Assume the yang above have the following two XML trees:

<c>
<x>foo</x>

</c>

and:

<c>
<x>foo</x>
<config>
<name>foo</name>

</config>
</c>

The validity of the trees is controlled by the require-instance property . According to this semantics:

• If require-instance is false, both trees above are valid,

• If require-instance is true(or not present), the upper tree is invalid and the lower is valid

In most models defined by openconfig and ietf, require-instance is typically false.

13.2 13.2 YANG Library

Clixon partially supports YANG library RFC 8525 that provides information about YANG modules and datastores,

The following configure options are associated to the YANG library

CLICON_YANG_LIBRARY
Enable YANG library support as state data according to RFC8525. Default: true

CLICON_MODULE_SET_ID
Contains a server-specific identifier representing the current set of modules and submodules.

CLICON_XMLDB_MODSTATE
Tag datastores with RFC 8525 YANG Module Library info. See datastore for details on how to tag datastores
with Module-set info.

The module-set of RFC8525 can be retrieved using NETCONF get or RESTCONF GET as operational data. The fields
that are supported are the following:

• Content-id of the whole module-set

• Name of each module

• Namespace

• Revision

• Feature

• Submodules

The following fields are not supported

• import-only-module

• deviation

104 Chapter 13. 13 YANG

https://www.rfc-editor.org/rfc/rfc7950.html#section-9.9.3
http://www.rfc-editor.org/rfc/rfc8525.txt

Clixon, Release 7.0

• schema

• datastore

13.2.1 13.2.1 Example

An example of a NETCONF get reply with module-state data of the main example is the following:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="42">
<data>
<yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
<module-set>
<name>default</name>
<module>
<name>clixon-autocli</name>
<revision>2022-02-11</revision>
<namespace>http://clicon.org/autocli</namespace>

</module>
<module>
<name>clixon-example</name>
<revision>2020-12-01</revision>
<namespace>urn:example:clixon</namespace>

</module>
...

</module-set>
</yang-library>

</data>
</rpc-reply>

13.3 13.3 Extensions

Clixon implements YANG extensions. There are several uses, but one is to “annotate” a YANG specification with
application-specific data that can be used in plugin code for some reason.

An extension with an argument is introduced in YANG as follows:

module example-lib {
namespace "urn:example:lib";
extension mymode {

argument annotation;
}

Such an extension can then be used in YANG declarations in two ways, either inline or augmented.

An inlined extension is useful in a YANG module that the designer has control over and can add extension reference
directly in the YANG specification.

Assume for example that an interface declaration is extended with the extension declared above, as follows:

module my-interface {
import example-lib{
prefix exl;

}
(continues on next page)

13.3. 13.3 Extensions 105

Clixon, Release 7.0

(continued from previous page)

container "interfaces" {
list "interface" {
exl:mymode "my-interface";
...

If you instead use an external YANG, where you cannot edit the YANG itself, you can use augmentation instead, as
follows:

module my-augments {
import example-lib{

prefix exl;
}
import ietf-interfaces{

prefix if;
}
augment "/if:interfaces/if:interface"{

exl:mymode "my-interface";
}
...

When this is done, it is possible to access the extension value in plugin code and use that value to perform application-
specific actions. For example, assume an XML interface object x retrieve the annotation argument:

char *value = NULL;
int exist = 0;
yang_stmt *y = xml_spec(x);

if (yang_extension_value(y, "mymode", "urn:example:lib", &exist, &value) < 0)
err;

if (exist){
// use extension value
if (strcmp(value, "my-interface") == 0)

...

A more advanced usage is possible via an extension callback (ca_callback) which is defined for backend, cli, netconf
and restconf plugins. This allows for advanced YANG transformations. Please consult the main example to see how
this could be done.

106 Chapter 13. 13 YANG

Clixon, Release 7.0

13.4 13.4 Unique

The YANG unique statement is described in Section 7.8.3 of RFC 7950. However, the RFC is somewhat vague in the
descriptions of its arguments.

Clixon therefore supports two simultaneous distinct cases: multiple direct children and single descendants

13.4.1 13.4.1 Multiple direct children

This is examplified in the RFC, such as:

list server {
key "name";
unique "ip port";
leaf ip...
leaf port...

where ip and port are direct children of server and the uniquess applies to their combination in all list instances.

13.4.2 13.4.2 Single descendants

The RFC says:
schema node identifiers, which MUST be given in the descendant form

This does not exclude more elaborate schema nodes than direct children but are not explicitly allowed.

Therefore, Clixon also supports a single advanced schema node id. Such a schema node id may define a set of leafs.
The uniqueness is then validated against all instances, such as for example:

list server {
key "name";
unique c/inner/value;
container c {

list inner {
leaf value...

However, only a single such argument is allowed. The reason is that such a schema node may potentially refer to a set
of instances (not just one) and the semantics of a combination of multiple such ids is unclear.

13.5 13.5 If-feature and anydata

The YANG if-feature statement is described in Section 7.20.2 of RFC 7950. The RFC states that:

Definitions tagged with “if-feature” are ignored when the server does not support that feature.

This is implemented by doing the following to disabled YANG nodes:

(1) Configuration data nodes are replaced locally to a single ANYDATA data. This means that XML derived from
disabled features are accepted but no validation is possible.

(2) Other YANG nodes, such as RPCs or state data are removed.

Example, assume the following YANG:

13.4. 13.4 Unique 107

https://www.rfc-editor.org/rfc/rfc7950.html/
https://www.rfc-editor.org/rfc/rfc7950.html/

Clixon, Release 7.0

container c{
if-feature A;
leaf b {

type string;
}

}
rpc r {

input {
leaf x {

if-feature A;
type string;

}
}

}

If feature A is NOT enabled, the YANG is transformed to:

anydata c{
}
rpc r {

input {
}

}

The following config option is related:

CLICON_YANG_UNKNOWN_ANYDATA
Treat unknown XML/JSON nodes as anydata when loading from startup db.

13.6 13.6 Schema mounts

Clixon implements Yang schema mounts as defined in: RFC 8528: YANG Schema Mount with the following restric-
tions:

1. A YANG mount-point can only be defined in a presence container.

2. Only inline mount-points are supported

3. config false mount-points are not supported

13.6.1 13.6.1 Configuration

The following configure options are associated to mount-points:

CLICON_YANG_SCHEMA_MOUNT
Enable YANG library support as state data according to RFC8525. Should be set to: true

108 Chapter 13. 13 YANG

http://www.rfc-editor.org/rfc/rfc8528.txt

Clixon, Release 7.0

13.6.2 13.6.2 YANG

Mount-points are enabled by importing ietf-yang-schema-mount and then apply the mount-point extension at a presence
container. Example:

module mymod {
namespace "urn:example:my";
...
import ietf-yang-schema-mount {

prefix yangmnt;
}
list mylist {

key name;
leaf name{

type string;
}
container myroot{

presence "Otherwise root is not visible";
yangmnt:mount-point "mylabel"{

description "Root for other yang models";
}

}
}

}

Once declared in the YANG schema, moint-points will appear dynamically in the data as they are added. For example,
if a NETCONF <edit-config> adds the myroot container above, it will be recognized as a mount-point and populated
with another set of YANG modules than the top-level.

Populating a moint-point with YANG schemas is made by an application-dependent callback as described in Section
Mount callback.

13.6.3 13.6.3 State

The moint-points appear in the state-data and can be retrieved using NETCONF get. The data appears in two places.

First, on the top-level schema-mounts:

<schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">
<mount-point>

<module>mymod</module>
<label>mylabel</label>
<config>true</config>
<inline/>

</mount-point>
</schema-mounts>

Second, at the mount-point level for all dynamically added moint-points:

<mylist xmlns="urn:example:my">
<name>x</name>
<myroot>

<yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
<module-set>

(continues on next page)

13.6. 13.6 Schema mounts 109

Clixon, Release 7.0

(continued from previous page)

<name>mylabel</name>
<module>

<name>clixon-mount1</name>
<namespace>urn:example:mount1</namespace>
<revision>2023-05-01</revision>

</module>
</module-set>

</yang-library>
</myroot>

</mylist>

In this example, there is one dynamically created moint-point in the list x where the single YANG module clixon-mount1
is mounted.

13.6.4 13.6.4 Mount callback

Mount-points need to be populated with YANG schemas. This is done by defining the ca_yang_mount callback. The
following example illustrates how this is done in a C plugin:

static clixon_plugin_api api = {
...
.ca_yang_mount=example_mount,

As input the callback takes the XML mount-point, and as output a yang-lib module-set tree. It also provides how to
validate the YANG schemas and whether it is read-only or read-write:

int
main_yang_mount(clixon_handle h,

cxobj *xt,
int *config,
validate_level *vl,
cxobj **yanglib)

For example, the callback could return something like:

<yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
<module-set>

<name>mount</name>
<module>

<name>clixon-mount1</name>
<namespace>urn:example:mount1</namespace>
<revision>2023-05-01</revision>

</module>
</module-set>

</yang-library>

Clixon calls this callback when needed, such as when a new mount-point is created.

110 Chapter 13. 13 YANG

Clixon, Release 7.0

13.6.5 13.6.5 CLI

It is possible to extend the Autocli with mount-points. However, it is application-dependent. For the interested user,
the Clixon controller has an adapted autocli for mount-points.

13.6. 13.6 Schema mounts 111

https://clixon-controller-docs.readthedocs.io

Clixon, Release 7.0

112 Chapter 13. 13 YANG

CHAPTER

FOURTEEN

14 USECASES

This section contains usecases which illustrate the flow of data from a user via Clixon frontends, backend to the under-
lying system and back.

14.1 14.1 CLI read

+----------+
1 2 | backend |

<---> CLI <---> | daemon |
5 4 | |

+----------+
3 ^

|
+-----------+

Datastore: | running |
+-----------+

The first usecase illustrates how a retrieval of a configured value from the system is made.

1. The user makes a show config call using the hello world example(see Quickstart section). In the following examples
uses text as modifier, and filters on hello top-level symbol:

cli> show configuration text hello
hello world;

2. The CLI string show configuration text hello is translated to internal NETCONF and sent to the backend:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities><capability>urn:ietf:params:netconf:base:1.1</capability></capabilities>

</hello>]]>]]>
<rpc username="myuser" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source><candidate/></source>
<nc:filter nc:type="xpath" nc:select="hello" xmlns="urn:example:hello"/>

</get-config>
</rpc>

3. The backend receives the internal Netconf message, reads the running datastore and filters the output according
to the XPath expression.

4. The backend returns the filtered output to the client:

113

Clixon, Release 7.0

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<hello xmlns="urn:example:hello">
<world/>

</hello>
</data>

</rpc-reply>

5. The CLI client translates the netconf to “text” output: hello world;

The user can also retrieve state data. Instead of reading from the running datastore, the backend reads state data either
from a plugin, or from itself (if backend internal).

14.2 14.2 CLI write

+----------+
1 2 | backend |

<---> CLI <---> | daemon |
4 | |

+----------+
3 |
v

+-----------+
Datastore: | candidate |

+-----------+

The figure illustrates the way messages flow through the system. The numbers illustrate the enumeration below.

When setting a config value, the candidate datastore is modified and the committed to running which triggers a plugin
commit transaction:

1. CLI example command:

cli> set hello world
cli>

2. Internal netconf containing a “replace” operation:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities><capability>urn:ietf:params:netconf:base:1.1</capability></capabilities>

</hello>]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:nc=
→˓"urn:ietf:params:xml:ns:netconf:base:1.0" username="clicon">
<edit-config>
<target><candidate/></target>
<default-operation>none</default-operation>
<config>
<hello xmlns="urn:example:hello">
<world nc:operation="replace"/>

</hello>
</config>

(continues on next page)

114 Chapter 14. 14 Usecases

Clixon, Release 7.0

(continued from previous page)

</edit-config>
</rpc>

3. The backend modifies the candidate datastore. If there was no previous content it will look like the following after
the edit:

<config>
<hello xmlns="urn:example:hello">
<world/>

</hello>
</config>

4. The backend will reply with an OK:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply

14.3 14.3 Commit

3,
+----------+--------+ 4

1 | backend | plugin | <--> Underlying
Frontend <--> | daemon |--------+ System

6 | | plugin | <-->
+----------+--------+

^ 2 | 5
| v

+-----------+ +-----------+
Datastores: | candidate | | running |

+-----------+ +-----------+

After one, or several, edits, the user can commit the changes to running which triggers commit callbacks that will actu-
ally change the underlying system. Often, commits are made at once after every edit (such as RESTCONF operations).
In that case, the edit described in the previous sections and commit are made in series by the client.

1. The client sends the commit message (frontend is not specified in this usecase):

<rpc username="olof">
<commit/>

</rpc>

2. When the backend receives the commit message, it computes the differences between candidate and running
datastores, creates a transaction data structure and initiates a transaction.

3. Each plugin in turn gets callbacks to validate the transaction. The plugins verifies that the proposed changes to
the system is sound. If not, the commit fails.

4. Each plugin in turn gets callbacks to commit the transaction to the underlying system. In this step, the application-
dependent API:s are used to push the changes made.

5. If all validation and callbacks succeed, running is replaced with current

6. An OK is returned to the user.

14.3. 14.3 Commit 115

Clixon, Release 7.0

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply

14.4 14.4 RESTCONF RPC

4 1
+----------+--------+ 5

2 3 | backend | plugin | <--> Underlying
CURL <--> Restconf <--> | daemon |--------+ System

7 frontend 6 | |
+----------+

A plugin can register an application-dependent RPC, and a client can then access it.

1. A plugin registers example-rpc:

rpc_callback_register(h, example_rpc, NULL, "urn:example:clixon", "example");

2. A user makes an RPC call, in this case RESTCONF:

curl -is -X POST -H "Content-Type: application/yang-data+json" -d '{"clixon-example:input
→˓":{"x":0}}' http://localhost/restconf/operations/clixon-example:example

3. The restconf client receives the HTTP POST message (via a reverse proxy such as nginx) and translates the JSON
to internal NETCONF:

<rpc username="none">
<example xmlns="urn:example:clixon">
<x>0</x>

</example>
</rpc>

4. The backend receives the Netconf message and calls the registered callback example_rpc() in the plugin.

5. The plugin processes the rpc, for example by accessing state in the underlying system

6. The plugin returns a reply which is returned to the restonf client (for example):

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<x xmlns="urn:example:clixon">0</x>
<y xmlns="urn:example:clixon">42</y>

</rpc-reply>

7. The restconf client translates the Netconf message to JSON and returns to the client (via a reverse proxy):

{
"clixon-example:output":{

"x":"0",
"y":"42"

}
}

116 Chapter 14. 14 Usecases

CHAPTER

FIFTEEN

15 CLIENT API

Note: This section is not complete and outdated. A new Client API is developed as part of the Clixon controller.

Clixon’s client API provides a way to communicate with the built-in XML datastore. This can be used to fetch or
manipulate configurations handled by Clixon from any other application running on a host system. For example, a
deamon running on a host system may need to read a configured value from the Clixon datastore.

Clixon integration normally uses dynamic plugins, but the client API shown here is an alternative.

Below is a minimal example application which connects to Clixon to get a value stored under “/table/parameter” in the
XML store:

#include <unistd.h>
#include <stdio.h>
#include <stdint.h>

#include <clixon/clixon_client.h>

int main(int argc, char **argv)
{

clixon_handle h = NULL;
clixon_client_handle ch = NULL;

uint32_t n = 0;

if ((h = clixon_client_init("/usr/local/etc/example.xml")) == NULL)
return -1;

if ((ch = clixon_client_connect(h, CLIXON_CLIENT_NETCONF)) == NULL)
return -1;

if (clixon_client_get_uint32(ch, &n, "urn:example:clixon", "/table/parameter[name='a
→˓']/value") < 0)

return -1;

printf("Response: %n\n", u);

clixon_client_disconnect(ch);
clixon_client_terminate(h);

(continues on next page)

117

https://clixon-controller-docs.readthedocs.io

Clixon, Release 7.0

(continued from previous page)

return 0;
}

Clixon data paths use full XPATHs:

/table/parameter[name='a']/value

One can make the same index access as well (eg [0]). This means that one can make direct indexed accesses as an
alternative to looping.

15.1 15.1 Clixon and ConfD Examples

This describes how to create a minimal YANG specification and use it together with Clixon. First, a YANG model is
added. Then, NETCONF messages are sent to Clixon which is thereafter accessed in the Clixon CLI.

This guide assumes that you have Clixon installed and running. Please refer to the respective for installation and initial
configuration.

15.1.1 15.1.1 YANG model

The YANG model consists of a table with a list of parameters where each parameter have a name and a value:

module example {
yang-version 1.1;
namespace "urn:example:clixon";
description
"Tiny example to be used with Clixon and ConfD.

";
revision 2021-01-26 {
description "Added example.";

}

container example{
list parameter{

key name;
leaf name{

type string;
}
leaf value{

type string;
}

}
}

}

The YANG model is saved as example.yang.

118 Chapter 15. 15 Client API

Clixon, Release 7.0

15.1.2 15.1.2 Installating the YANG model

It is assumed that the example application shipped with Clixon is installed. If not it can be found in the source tree
under “example/main”.

The YANG file example.yang is copied to the folder where Clixon expects to find YANG models (usually
/usr/local/share/clixon):

$ sudo cp example.yang /usr/local/share/clixon/example.yang

The Clixons configuration should look something like:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/example.xml</CLICON_CONFIGFILE>
<CLICON_FEATURE>ietf-netconf:startup</CLICON_FEATURE>
<CLICON_YANG_DIR>/usr/local/share/clixon</CLICON_YANG_DIR>
<CLICON_YANG_MODULE_MAIN>example</CLICON_YANG_MODULE_MAIN>
<CLICON_CLI_MODE>example</CLICON_CLI_MODE>
<CLICON_BACKEND_DIR>/usr/local/lib/example/backend</CLICON_BACKEND_DIR>
<CLICON_NETCONF_DIR>/usr/local/lib/example/netconf</CLICON_NETCONF_DIR>
<CLICON_RESTCONF_DIR>/usr/local/lib/example/restconf</CLICON_RESTCONF_DIR>
<CLICON_CLI_DIR>/usr/local/lib/example/cli</CLICON_CLI_DIR>
<CLICON_CLISPEC_DIR>/usr/local/lib/example/clispec</CLICON_CLISPEC_DIR>
<CLICON_SOCK>/usr/local/var/example/example.sock</CLICON_SOCK>
<CLICON_BACKEND_PIDFILE>/usr/local/var/example/example.pidfile</CLICON_BACKEND_PIDFILE>
<CLICON_XMLDB_DIR>/usr/local/var/example</CLICON_XMLDB_DIR>
<CLICON_CLI_LINESCROLLING>0</CLICON_CLI_LINESCROLLING>
<CLICON_STARTUP_MODE>init</CLICON_STARTUP_MODE>
<CLICON_NACM_MODE>disabled</CLICON_NACM_MODE>
<CLICON_STREAM_DISCOVERY_RFC5277>true</CLICON_STREAM_DISCOVERY_RFC5277>

</clixon-config>

After this is done, the Clixon backend can be restarted, and the new model should be present.

15.1.3 15.1.3 Testing with NETCONF

The next step is to modify configuration values with NETCONF. A new test parameter is added with value 1234.

In the example, NETCONF is running over SSH. The SSH configuration needs to contain the following line:

Subsystem netconf /usr/local/bin/clixon_netconf -f /usr/local/etc/example.xml

The following NETCONF operation is used:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>

</capabilities>
</hello>
]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<edit-config>
<target>

(continues on next page)

15.1. 15.1 Clixon and ConfD Examples 119

Clixon, Release 7.0

(continued from previous page)

<running/>
</target>
<config>
<table xmlns="urn:example:clixon">
<parameter>
<name>test</name>
<value>1234</value>

</parameter>
</table>

</config>
</edit-config>

</rpc>
]]>]]>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<commit/>

</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<close-session/>

</rpc>
]]>]]>

The XML is saved as “example.xml” and use the following commands to test it:

$ ssh 192.168.1.56 -s netconf < example.xml

If everything went fine, a reply is returned saying OK:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<ok/>

</rpc-reply>
]]>]]>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<ok/>

</rpc-reply>
]]>]]>

Finally, the config can be viewed from the CLI:

root@debian10-clixon /> show configuration
example {

parameter {
name test;
value 1234;

}
}

120 Chapter 15. 15 Client API

CHAPTER

SIXTEEN

16 XML AND PATHS

This section describes XML trees and how to navigate in trees using paths.

Clixon represents its internal data in an in “in-memory” tree representation. In the C API, this data structure is called
cxobj (Clixon XML object) and is used to represent config and state data. Typically, a cxobj is parsed from or printed
to XML or JSON, but is really a generic representation of a tree.

16.1 16.1 Paths

Clixon uses paths to navigate in XML trees. Clixon uses the following three methods:

• XML Path Language defined in XPath 1.0 as part of XML and used in NETCONF.

• Instance-identifier defined in RFC 7950: The YANG 1.1 Data Modeling Language, a subset of XPath and used
in NACM,

• Api-path defined and used in RFC 8040: RESTCONF Protocol

16.1.1 16.1.1 XPath

Example of XPath in a NETCONF get-config RPC using the XPath capability:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source>
<candidate/>

</source>
<filter type="xpath" select="/interfaces/interface[name='eth0']/description" />

</get-config>
</rpc>

XPath is a powerful language for addressing parts of an XML document, including types and expressions. The following
is a valid but complex XPath:

/assembly[name="robot_4"]//shape/name[contains(text(),'bolt')]/surface/roughness

Clixon uses XPaths extensively due to their expressive power. However, it is recommended to use instance-identifiers
instead if you want optimized access.

121

https://www.w3.org/TR/xpath-10
http://www.rfc-editor.org/rfc/rfc6241.txt
https://www.rfc-editor.org/rfc/rfc7950.txt
https://www.rfc-editor.org/rfc/rfc8341.txt
https://www.rfc-editor.org/rfc/rfc8040.txt

Clixon, Release 7.0

16.1.2 16.1.2 Namespaces in XPaths

XPath uses XML names, requiring an XML namespace context using the xmlns attribute to bind namespaces and
prefixes. An XML namespace context can specify both:

• A default namespace for unprefixed names (/x/), defined by for example: xmlns=”urn:example:default”.

• An explicit namespace for prefixed names prefix (/ex:x/), defined by for example:
xmlns:ex=”urn:example:example”.

Further, XML prefixes are not inherited, each symbol must be prefixed with a prefix or default. That is, /ex:x/y is not
the same as /ex:x/ex:y, unless ex is also default.

Example: Assume an XML namespace context:

with an associated XPath:

/x/ex:y/ex:z[ex:i='w']`,

then symbol x belongs to “urn:example:default” and symbols y, z and i belong to “urn:example:example”.

16.1.3 16.1.3 Instance-identifier

Instance-id:s are defined in YANG for some minor usage but appears in for example NACM and provides a useful
subset of XPath. The subset is as follows (see Section 9.13 in YANG 1.1):

• Child paths using slashes: /ex:system/ex:services

• List entries for one or several keys: /ex:system[ex:ip='192.0.2.1'][ex:port='80']

• Leaf-list entries for one key: /ex:system/ex:cipher[.='blowfish-cbc']

• Position in lists: /ex:stats/ex:port[3]

Example of instance-id in NACM:

<path xmlns:acme="http://example.com/ns/itf">
/acme:interfaces/acme:interface[acme:name='dummy']

</path>

Namespaces in instance-identifiers are the same as in XPaths.

16.1.4 16.1.4 Api-path

RESTCONF defines api-paths as a YANG-based path language. Keys are implicit which make path expressions more
concise, but they are also less powerful

Example of Api-path in a restconf GET request:

curl -s -X GET http://localhost/restconf/data/ietf-interfaces:interfaces/interface=eth0/
→˓description

Clixon uses Api-paths internally in some cases when accessing xml keys, but more commonly translates Api-paths to
XPaths.

Api-path is in comparison to XPaths limited to pure path expressions such as, for example:

122 Chapter 16. 16 XML and paths

https://www.w3.org/TR/REC-xml-names/
urn:example:default
urn:example:example
https://www.rfc-editor.org/rfc/rfc7950.txt

Clixon, Release 7.0

a/b=3,4/c

which corresponds to the XPath: a[i=3][j=4]/c. Note that you cannot express any other index variables than the YANG
list keys.

16.1.5 16.1.5 Namespaces in Api-paths

In contrast to XPath, Api-path namespaces are defined implicitly by a YANG context using module-names as prefixes.
The namespace is defined in the Yang module by the namespace keyword. Api-paths must have a Yang definition
whereas XPaths can be completely defined in XML.

A prefix/module-name is inherited, such that a child inherits the prefix of a parent, and there are no defaults. For
example, /moda:x/y is the same as /moda:a/moda:y.

Further, an Api-path uses a shorthand for defining list indexes. For example, /modx:z=w denotes the element in a list
of z:s whose key is the value w. This assumes that z is a Yang list (or leaf-list) and the index value is known.

Example: Assume two YANG modules moda and modx with namespaces “urn:example:default” and “urn:example:
example” respectively, with the following Api-path (equivalent to the XPath example above):

/moda:x/modx:y/z=w

where, as above, x belongs to “urn:example:default” and y, and z belong to “urn:example:example”.

16.2 16.2 XML trees

XML objects are typed as follows XML 1.0:

• Element: non-terminal node with child nodes

• Attribute: name value pair

• Body: text between tags

Elements and attributes have names. An element has a set of children while body and attribute have values.

For example, the following XML tree:

<y xmlns="urn:example:a">
<x>

<k>a</k>
</x>

</y>

can have an internal tree representation as follows (e represents XML element, b body and a attribute:

y:e ---------> xmlns:a (value:"urn:example:a")
\
+-----> x:e ---------> k:e ---------> :b (value:"a")

16.2. 16.2 XML trees 123

urn:example:default
urn:example:example
urn:example:example
urn:example:default
urn:example:example
https://www.w3.org/TR/2008/REC-xml-20081126

Clixon, Release 7.0

16.2.1 16.2.1 Yang binding

Typically, XML elements are associated with a YANG data node specification(yang_stmt). A YANG data node is
either a container, leaf, leaf-list, list, or anydata.

A YANG bound XML node have some constraints with respect to children as follows:

• All elements may have attributes

• A leaf or leaf-list has at most one body child.

• A leaf or leaf-list have no elements children

• A container or list have no body children

• A container or list may have one or many element children

• An anydata node may have both elements and one body child(?>

The XML example given earlier could have the following YANG specification:

module mod_a{
prefix a;
namespace "urn:example:a";
container y {
list x{
key k;
leaf k{
type string;

}
}

}
}

Annotating the tree representation with YANG specification, could yield the following YANG bound tree:

container y
y:e ---------> xmlns:a (value:"urn:example:a")
\
\ list x leaf k
+------> x:e ---------> k:e ---------> :b (value:"a")

16.2.2 16.2.2 Sorted tree

Once an XML tree is bound to YANG, it can be sorted.

The tree is sorted using a “multi-layered” approach:

1. XML type: attributes come before elements and bodies.

2. Yang nodename: XML nodes with same nodename are adjacent and follow the order they are given in the Yang
specification. If XML nodes belong to different modules, they follow the order they were loaded into the system.

3. Sorting lists and leaf-lists. There are two variants:

a) Ordered-by-system: This is the default. Elements are sorted according to key value. Key value comparison is
typed: if the key type is string, strcmp is used, if the key value is an integer, integer <>= is used, etc.

b) Ordered-by-user: the list items follow the ordered they were entered, regardless of list keys. Ordered-by-user is
not recommended in clixon since the optimized searching algorithms uses sorted lists.

124 Chapter 16. 16 XML and paths

Clixon, Release 7.0

Extending the example above slightly with a new list x2 as follows:

list x2{
key k2;
leaf k2{
type int32;

}
}

could give the following sorted XML tree:

<y xmlns="urn:example:a">
<x>

<k>a</k>
</x>
<x>
<k>b</k>

</x>
<x2>

<k2>9</k2>
</x2>
<x2>

<k2>100</k2>
</x2>

</y>

Note that among y:s children, the attribute is the first (layer 1), then follows the group of x elements and the group of
x2 elements as they are given in the YANG specification (layer 2). Finally, the lists are internally sorted according to
key values.

Note: Sorting is necessary to achieve fast searching as described in Section Searching in XML.

16.3 16.3 Creating XML

The creation of and XML tree goes thorough three steps:

1. Syntactic creation. This is done either via parsing or via manual API calls.

2. Bind to YANG. Assure that the XML tree complies to a YANG specification.

3. Semantic validation. Ensuring that the XML tree complies to the backend validation rules.

Steps 2 and 3 are optional.

16.3. 16.3 Creating XML 125

Clixon, Release 7.0

16.3.1 16.3.1 Creating XML from a string

A simple way to create an cxobj is to parse it from a string:

cxobj *xt = NULL;
if ((ret = clixon_xml_parse_string("<y xmlns='urn:example:a'><x><k1>a</k2></x></y>",

YB_MODULE, yspec, &xt, NULL)) < 0)
err;

if (ret == 0)
err; /* yang error */

where

• YB_MODULE is the default Yang binding mode, see Binding YANG to XML.

• xt is a top-level cxobj containing the XML tree.

• yspec is the top-level yang spec obtained by e.g., clicon_dbspec_yang(h)

If printed with for example: xml_print(stdout, xt) the tree looks as follows:

<top>
<y xmlns="urn:example:a">
<x>
<k1>a</k1>

</x>
</y>

</top>

Note that a top-level node (top) is always created to encapsulate all trees parsed and that the default namespace in this
example is “urn:example:a”.

The XML parse API has several other functions, including:

• clixon_xml_parse_file() Parse a file containing XML

• clixon_xml_parse_va() Parse a string using variable argument strings

16.3.2 16.3.2 Creating JSON from a string

You can create an XML tree from JSON as well:

cxobj *xt = NUL;L
cxobj *xerr = NULL;

if ((ret = clixon_json_parse_string("{\"mod_a:y\":{\"x\":{\"k1\":\"a\"}}}",
YB_MODULE, yspec, &xt, NULL)) < 0)

err;

yielding the same xt tree as in Creating XML from a string.

In JSON, namespace prefixes use YANG module names, making the JSON format dependent on a correct YANG
binding.

The JSON parse API also includes:

• clixon_json_parse_file() Parse a file containing JSON

126 Chapter 16. 16 XML and paths

urn:example:a

Clixon, Release 7.0

16.3.3 16.3.3 Creating XML programmatically

You may also manually create a tree by xml_new(), xml_new_body(), xml_addsub(), xml_merge() and other
functions. Instead of parsing a string, a tree is built manually. This may be more efficient but more work to program.

The following example creates the same XML tree as in the above examples using API calls:

cxobj *xt, *xy, *x, *xa;
if ((xt = xml_new("top", NULL, CX_ELMNT)) == NULL)

goto done;
if ((xy = xml_new("y", xt, CX_ELMNT)) == NULL)

goto done;
if ((xa = xml_new("xmlns", y, CX_ATTR)) == NULL)

goto done;
if (xml_value_set(xa, "urn:example:a") < 0)

goto done;
if ((x = xml_new("xy", xt, CX_ELMNT)) == NULL)

goto done;
if (xml_new_body("k1", x, "a") == NULL)

goto done;

Note: If you create the XML tree manually, you may have to explicitly call a yang bind function.

16.3.4 16.3.4 Binding YANG to XML

A further step is to ensure that the XML tree complies to a YANG specification. This is an optional step since you
can handle XML without YANG, but often necessary in Clixon, since some functions require YANG bindings to be
performed correctly. This includes sort, validate, merge and insert functions, for example.

Yang binding may be done already in the XML parsing phase, and is mandatory for JSON parsing. If XML is manually
created, you need to explicitly call the Yang binding functions.

For the XML in the example above, the YANG module could look something like:

module mod_a{
prefix a;
namespace "urn:example:a";
container y {
list x{
key k1;
leaf k1{
type string;

}
}

}
}

Binding is made with the xml_bind_yang() API. The bind API can be done in some different ways as follows:

• YB_MODULE Search for matching yang binding among top-level symbols of Yang modules. This is default.

• YB_PARENT Assume yang binding of existing parent and match its children by name

• YB_NONE Do not bind

16.3. 16.3 Creating XML 127

Clixon, Release 7.0

In the example above, the binding is YB_MODULE since the top-level symbol x is a top-level symbol of a module.

But assume instead that the string <k1 xmlns="urn:example:a">a</k1> is parsed or created manually. You can
determine which module it belongs to from the namespace, but there may be many k1 symbols in that module, you do
not know if the “leaf” one in the Yang spec above is the correct one.

The following is an example of how to bind yang to an XML tree xt:

cxobj *xt;
cxobj *xerr = NULL;
/* create xt as example above */
if ((ret = xml_bind_yang(h, xt, YB_MODULE, yspec, NULL)) < 0)

goto done; /* fatal error */
if (ret == 0)

goto noyang; /* yang binding error */

The return values from the bind API are same as parsing, as follows:

• 1 OK yang assignment made

• 0 Partial or no yang assignment made (at least one failed) and xerr set

• -1 Error

As an example of YB_PARENT Yang binding, the k1 subtree is inserted under an existing XML tree which has already
been bound to YANG. Such as an XML tree with the x symbol.

16.3.5 16.3.5 Config data

To create a copy of configuration data, a user retrieve a copy from the datastore to get a cxobj handle. This tree is fully
bound, sorted and defaults set. Read-only operations may then be done on the in-memory tree.

The following example code gets a copy of the whole running datastore to cxobj xt:

cxobj *xt = NULL;
if (xmldb_get(h, "running", NULL, NULL, &xt) < 0)

err;

Note: In the case of config data, in-memory trees are read-only caches of the datastore and can normally not be
written back to the datastore. Changes to the config datastore should be made via the backend netconf API, eg using
edit-config.

16.4 16.4 Modifying XML

Once an XML tree has been created and bound to YANG, it can be modified in several ways.

128 Chapter 16. 16 XML and paths

Clixon, Release 7.0

16.4.1 16.4.1 Merging

If you have two trees, you can merge them with xml_merge as follows:

if ((ret = xml_merge(xt, x2, yspec, &reason)) < 0)
err;

if (ret == 0)
err; /* yang failure */

where both xt and x2 are root XML trees (directly under a module) and fully YANG bound. For example, if x2 is:

<top>
<y xmlns="urn:example:a">
<x>
<k1>z</k1>

</x>
</y>

</top>

the result tree xt after merge is:

<top>
<y xmlns="urn:example:a">
<x>
<k1>a</k1>

</x>
<x>
<k1>z</k1>

</x>
</y>

</top>

Note that the result tree is sorted and YANG bound as well.

16.4.2 16.4.2 Inserting

Inserting a subtree can be made in several ways. The most straightforward is using parsing and the YB_PARENT YANG
binding:

cxobj *xy;
xy = xpath_first(xt, NULL, "%s", "y");
if ((ret = clixon_xml_parse_string("<x><k1>z</k2></x>", YB_PARENT, yspec, &xy, NULL)) <␣
→˓0)
if (ret == 0)

err; /* yang error */

with the same result as in tree merge.

Note that xy in this example points at the y node and is where the new tree is pasted. Neither tree need to be a root tree.

Another way to insert a subtree is to use xml_insert:

if (xml_insert(xy, xi, INS_LAST, NULL, NULL) < 0)
err;

16.4. 16.4 Modifying XML 129

Clixon, Release 7.0

where both xy and xi are YANG bound trees. It is possible to specify where the new child is inserted (last in the
example), but this only applies if ordered-by user is specified in YANG. Otherwise, the system will order the
insertion of the subtree automatically.

16.4.3 16.4.3 Removing

A subtree can be permanently removed, or just pruned in order to insert it somewhere else. and graft subtrees.

Permanently deleting a (sub)tree x and remove or from its parent is done as follows:

xml_purge(x);

Removing a subtree x from its parent is done as follows:

xml_rm(x);

or alternatively remove child number i from parent xp:

xml_child_rm(xp, i);

In both these cases, the child x can be used as a stand-alone tree, or being inserted under another parent.

16.4.4 16.4.4 Copying

An XML tree x0 can be copied as follows:

cxobj *x1;
x1 = xml_new("new", NULL, xml_type(x0));
if (xml_copy(x0, x1) < 0)

err;

Alternatively, a tree can be duplicated as follows:

x1 = xml_dup(x0);

In these cases, the new object x1 can be use as a separate tree for insertion, for example.

16.5 16.5 Searching in XML

Clixon search indexes are either implicitly created from the YANG specification, or explicitly created using the API.

From YANG it is only list and leaf-list that are candidates for optimized lookup, direct leaf and container
lookup is fast either way.

Binary search is used by search indexes and works by ordering list items alphabetically (or numerically), and then
dividing the search interval in two equal parts depending on if the requested item is larger than, or less than, the middle
of the interval.

Binary search complexity is O(log N), whereas linear search is is O(n). For example, a search in a vector of one million
children will take up to 20 lookups, whereas linear search takes up to 1.000.000 lookups.

Therefore, if you have a large number of children and you need to make searches, it is important that you use indexes,
either implicit, or explicit.

130 Chapter 16. 16 XML and paths

Clixon, Release 7.0

16.5.1 16.5.1 Auto-generated indexes

Auto-generated (or implicit) YANG-based search indexes are based on list and leaf-lists. For any list with keys
k1,...kn, a set of indexes are created and an optimized search can be made using the keys in the order they are defined.

For example, assume the following YANG (this YANG is reused in later examples):

module mod_a{
prefix a;
namespace "urn:example:a";
import clixon-config {
prefix "cc";

}
list x{
key "k1 k2";
leaf k1{
type string;

}
leaf k2{
type string;

}
leaf-list y{
type string;

}
leaf z{
type string;

}
leaf w{
type string;
cc:search_index;

}
...

Assume also an example XML tree as follows:

<top xmlns="urn:example:a">
<x>
<k1>a</k1>
<k2>a</k2>
<y>cc</y>
<y>dd</y>
<z>ee</z>
<w>ee</w>

</x>
<x>
<k1>a</k1>
<k2>b</k2>
<y>cc</y>
<y>dd</y>
<z>ff</z>
<w>ff</w>

</x>
<x>
<k1>b</k1>

(continues on next page)

16.5. 16.5 Searching in XML 131

Clixon, Release 7.0

(continued from previous page)

...
</top>

Then there will be two implicit search indexes created for all XML nodes x so that they can be accessed with O(log N)
with e.g.:

• XPath or Instance-id: x[k1="a"][k2="b"].

• Api-path: x=a,b.

If other search variables are used, such as: x[z="ff"] the time complexity will be O(n) since there is no explicit
index for z. The same applies to using key variables in another order than they appear in the YANG specification, eg:
x[k2="b"][k1="a"].

A search index is also generated for leaf-lists, using x as the base node, the following searches are optimized:

• XPath or Instance-id: y[.="bb"].

• Api-path: y=bb.

In the following cases, implicit indexes are not created:

• No YANG definition of the XML children exists. There are several use-cases. For example that YANG is not
used or the tree is part of YANG ANYXML.

• The list represents state data

• The list is ordered-by user instead of the default YANG ordered-by system.

16.5.2 16.5.2 Explicit indexes

In those cases where implicit YANG indexes cannot be used, indexes can be explicitly declared for fast access. Clixon
uses a YANG extension to declare such indexes: search_index as shown in the example above for leaf w:

leaf w{
type string;
cc:search_index;

}

In this example, w can be used as a search index with O(log N) in the search API.

The corresponding direct API call is: yang_list_index_add()

16.5.3 16.5.3 Direct children

The basic C API for searching direct children of a cxobj is the clixon_xml_find_index() API.

An example call is as follows:

clixon_xvec *xv = NULL;
cvec *cvk = NULL;

if ((xv = clixon_xvec_new()) == NULL)
goto done;

/* Populate cvk with key/values eg k1=a k2:b */
if (clixon_xml_find_index(xp, yp, namespace, name, cvk, xv) < 0)

err;
(continues on next page)

132 Chapter 16. 16 XML and paths

Clixon, Release 7.0

(continued from previous page)

/* Loop over found children*/
for (i = 0; i < clixon_xvec_len(xv); i++) {

x = clixon_xvec_i(xvec, i);
...

}
if (xv)

clixon_xvec_free(xv);

where

xp is an XML parent
yp is the YANG specification of xp
name is the name of the wanted children
cvk is a vector of index name and value pairs
xvec is a result vector of XML nodes.

For example, using the previous XML tree and if name=x and cvk contains the single pair: k1=a, then xvec will
contain both x entries after calling the function:

0: <x><k1>a</k1><k2>a</k2><y>cc</y><y>dd</y><z>foo</x>
1: <x><k1>a</k1><k2>b</k2><y>cc</y><y>dd</y><z>bar</x>

and the search was done using O(logN).

16.5.4 16.5.4 Using paths in XML

If deeper searches are needed, i.e., not just to direct children, Clixon paths can be used to make a search request. There
are three path variants, each with its own pros and cons:

• XPath is most expressive, but only supports O(logN) search for YANG list entries (not leaf-lists), and adds
overhead in terms of memory and cycles.

• Api-path is least expressive since it can only express YANG list and leaf-list key search.

• Instance-identifier can express all optimized searches as well as non-key searches. This is the recommended
option.

Assume the same YANG as in the previous example, a path to find y entries with a specific value could be:

• XPath or instance-id: /a:x[a:k1="a"][a:k2="b"]/a:y[.="bb"]

• Api-path: /mod_a:x=a,b/y=bb

which results in the following result:

0: <y>bb</y>

An example call using instance-id:s is as follows:

cxobj **vec = NULL;
size_t len = 0;
if (clixon_xml_find_instance_id(xt, yt, &vec, &len,

"/a:x[a:k1=\"a\"][k2=\"b\"]/a:y[.=\"bb\"") < 0)
goto err;

(continues on next page)

16.5. 16.5 Searching in XML 133

Clixon, Release 7.0

(continued from previous page)

for (i=0; i<len; i++){
x = vec[i];

...
}

The example shows the usage of auto-generated key indexes which makes this work in O(logN), with the same exception
rules as for direct children state in Auto-generated indexes.

An example call using api-path:s instead is as follows:

cxobj **vec = NULL;
size_t len = 0;
if (clixon_xml_find_api_path(xt, yt, &vec, &len,

"/mod_a:x=a,b/y=bb") < 0)
goto err;

for (i=0; i<len; i++){
x = vec[i];

...
}

The corresponding API for XPath is xpath_vec().

16.5.5 16.5.5 Multiple keys

Optimized O(logN) lookup works with multiple key YANG lists but not for explicit indexes. Further, less significant
keys can be omitted which may result multiple result nodes.

For example, the following lookups can be made using O(logN) using implicit indexes:

x[k1="a"][k2="b"]/y[.="cc"]
x[k1="a"]/y[.="cc"]
x[k1="a"][k2="b"]

The following lookups are made with O(N):

x[k2="b"][k1="a"]
x[k1="a"][z="foo"]

16.6 16.6 Internal representation

A cxobj has several components, which are all accessible via the API. For example:

name Name of node
prefix Optional prefix denoting a localname according to XML namespaces
type A node is either an element, attribute or body text
value Attributes and bodies may have values.
children Elements may have a set of XML children
spec A pointer to a YANG specification of this XML node

The most basic way to traverse an cxobj tree is to linearly iterate over all children from a parent element node.

134 Chapter 16. 16 XML and paths

Clixon, Release 7.0

cxobj *x = NULL;
while ((x = xml_child_each(xt, x, CX_ELMNT)) != NULL) {

...
}

where CX_ELMNT selects element children (no attributes or body text).

However, it is recommended to use the Searching in XML for more efficient searching.

16.7 16.7 Character encoding

Clixon implements encoding of character data as defined in XML 1.0, Section 2.4.

It can be illustrated by some examples. Assume a data-field “value” of type “string” including some special characters
(wrt XML): “<description/>”. This string can be input using NETCONF or RESTCONF using XML and JSON as
follows:

1. Restconf POST using JSON, eg: {"value": "<description/>"}

2. Restconf POST using XML regular x3 encoding, eg: <value><description/></value>

3. Restconf POST using XML and CDATA: <value><![CDATA[<description/>]]></value>

4. Netconf edit-config using XML regular encoding: <value><description/></value>

5. Netconf edit-config using XML CDATA: <value><![CDATA[<description/>]]></value>

The input is received by the backend where the value is stored in the backend as follows:

1. <value><description/></value>

2. <value><description/></value>

3. <value><![CDATA[<description/>]]></value>

4. <value><description/></value>

5. <value><![CDATA[<description/>]]></value>

Note that in most cases, the data is just propagated from input to datastore, except in the JSON to XML translation(case
1).

For output assuming the value above, there are two data formats to consider in the datastore above: 1) with regular x3
encoding and 2) using CDATA.

There are the following cases:

1. Restconf GET datastore entry 1 using JSON: "{"value": "<description/>"}

2. Restconf GET datastore entry 2 using JSON: "{"value": "<![CDATA[<description/>]]>"} (recently
changed)

3. Restconf GET datastore entry 1 using XML: <value><description/></value>

4. Restconf GET datastore entry 2 using XML: <value><![CDATA[<description/>]]></value>

5. Netconf get-config datastore entry 1: <value><description/></value>

6. Netconf get-config datastore entry 2: <value><![CDATA[<description/>]]></value>

Internally, data is saved in cleartext which is encoded when translated to XML. CDATA encoding is an exception where
it is stored internally as well.

16.7. 16.7 Character encoding 135

https://www.w3.org/TR/2008/REC-xml-20081126

Clixon, Release 7.0

136 Chapter 16. 16 XML and paths

CHAPTER

SEVENTEEN

17 PAGINATION

Pagination and scrolling is the technique of showing large amount of data in smaller chunks. Pagination was introduced
in Clixon 5.3 and updated in 5.4. Expect further development and changes.

17.1 17.1 Overview

The pagination solution is based on the following drafts:

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-00.html

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-nc-00.html

• https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-rc-00.html

The drafts define two YANGs:

• ietf-list-pagination@2022-07-24.yang

• ietf-list-pagination-nc@2022-07-24.yang

The pagination in Clixon is currently restricted to the offset and limit attributes. For example, the following requests a
list of 120 items in chunks of 20:

get offset=0 limit=20
get offset=20 limit=20
...
get offset=100 limit=20

This is referred to as stateless pagination, since the state may change between “get” calls. For paging of a consistent
snapshot view, consider locked pagination.

Clixon pagination encompasses several aspects:

1. Locked pagination

2. NETCONF/RESTCONF protocol extensions

3. CLI scrolling

4. Plugin state API

137

https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-00.html
https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-nc-00.html
https://www.ietf.org/archive/id/draft-ietf-netconf-list-pagination-rc-00.html
mailto:ietf-list-pagination@2022-07-24.yang
mailto:ietf-list-pagination-nc@2022-07-24.yang

Clixon, Release 7.0

17.2 17.2 Locked pagination

Using NETCONF, one can lock the datastore during a session to ensure that the data is unchanged, such as:

lock-db
get offset=0 limit=20
get offset=20 limit=20
...
get offset=100 limit=20
unlock-db

The use of locks guarantees a consistent view (snapshot) of config data, but risks undefinite blocking in a CLI pagination
situation for example.

For state pagination data, database locks are not useful. Instead clixon extends the database lock mechanism with a
specific state-paginate-lock lock that can be used by the state paginate callback developer. It works the same way as a
database lock, but there is no config database associated with it, it is specially made for paginated state data only.

17.3 17.3 Pagination protocol

In RESTCONF a pagination request looks as follows:

GET /localhost/restconf/data/example-social:members/uint8-numbers?offset=20&limit=10␣
→˓HTTP/1.1
Host: example.com
Accept: application/yang-collection+json

In NETCONF a similar request is:

<rpc>
<get>

<filter type="xpath" select="/es:members/es:uint8-numbers" xmlns:es="http://
→˓example.com/ns/example-social"/>

<list-pagination xmlns="urn:ietf:params:xml:ns:yang:ietf-list-pagination-nc">
<offset>20</offset>
<limit>10</limit>

</list-pagination>
</get>

</rpc>

In return, Clixon returns a reply with the requested number of entries (in NETCONF):

<rpc-reply>
<data>

<members xmlns="http://example.com/ns/example-social">
<member>

<member-id>alice</member-id>
<privacy-settings>

<post-visibility>public</post-visibility>
</privacy-settings>
<favorites>

<uint8-numbers>20</uint8-numbers>
(continues on next page)

138 Chapter 17. 17 Pagination

Clixon, Release 7.0

(continued from previous page)

<uint8-numbers>21</uint8-numbers>
...
<uint8-numbers>29</uint8-numbers>

</favorites>
</member>

</members>
</data>

</rpc-reply>

17.4 17.4 CLI scrolling

CLIgen has a scrolling mechanism that can be integrated with pagination. For example, showing the list from the
example above:

clixon_cli
cli> show state /es:members/es:member[es:member-id=\'bob\']/es:favorites/es:uint64-
→˓numbers cli
uint64-numbers 0
uint64-numbers 1
...
uint64-numbers 9
--More--

17.4.1 17.4.1 CLI callbacks

CLI scrolling is implemented by the cligen_output function similar to printf in syntax. By using cligen_output for all
output, CLIgen ensures a scrolling mechanism.

Clixon includes an example CLI callback function that combines the scrolling mechanism of the CLI with NETCONF
pagination called cli_pagination with the following arguments:

• xpath : XPath of a leaf-list or list

• prefix : Prefix used in XPath (only one can be specified)

• namespace : Namespace associated with prefix

• format : one of xml, text, json, or cli

• limit : Number of lines of the pagination window

In the main example, cli_pagination is called as follows:

show state <xpath:string> cli, cli_pagination("", "es", "http://example.com/ns/example-
→˓social", "cli", "10");

An application can use the cli_pagination callback, or create a tailor-made CLI callback based on the example callback.

17.4. 17.4 CLI scrolling 139

Clixon, Release 7.0

17.5 17.5 Backend pagination API

While pagination of config data is built-in, state data needs backend plugin callbacks. There is a special state pagination
callback API where a callback is bound to an xpath, and is called when a pagination request is made on an xpath.

Such a callback is registered with an XPath and a callback as follows:

clixon_pagination_cb_register(h, mycallback, "/myxpath", myarg);

where the callback has the following signature:

int
mycallback(void *h,

char *xpath,
pagination_data pd,
void *arg)

The pd parameter has the following accessor functions:

uint32_t pagination_offset(pagination_data pd)
uint32_t pagination_limit(pagination_data pd)
int pagination_locked(pagination_data pd)
cxobj* pagination_xstate(pagination_data pd)

Essentially, the state callback requests state data for list/leaf-list xpath in the interval [offset. . . offset+limit].

If locked is true, the plugin can cache the state data, return further requests from the same cache until the lock on the
“runníng” database is released, thus forming an (implicit) transaction. For this, the ca_lockdb callback can be used as
an end to the transaction of state-paginate-lock. Note that there is not explicit “start transaction”, the first locked
pagination request acts as one.

See a detailed example in the main example.

140 Chapter 17. 17 Pagination

CHAPTER

EIGHTEEN

18 UPGRADE

When Clixon starts, the backend reads a startup configuration (see startup modes) parses it, checks for upgrades, and
validates the configuration. It can also add extra XML, outside of the normal startup. On errors, it can enter a failsafe
mode.

Clixon has three upgrade methods:

• General-purpose datastore upgrade.

• Module-specific manual upgrade

• Automatic upgrade (experimental)

18.1 18.1 General-purpose

A plugin registers a ca_datastore_upgrade function which gets called once on startup. This upgrade should be seen
as a generic wrapper function to basic repair or upgrade of existing datastores. The module-specific upgrade callbacks
are more fine-grained.

The general-purpose upgrade callback is usable if module-state is not available, or actions such as the following need
to be done in the whole datastore:

• Remove or rename nodes

• Rename namespaces

• Add nodes

A recommended method, as shown in the example, is to make a pattern matching using XPath and then perform actions
on the resulting nodes.

Example:

static clixon_plugin_api api = {
...
.ca_datastore_upgrade=example_upgrade

};

/*! General-purpose datastore upgrade callback called once on startup
* @param[in] h Clicon handle
* @param[in] db Name of datastore, eg "running", "startup" or "tmp"
* @param[in] xt XML tree. Upgrade this "in place"
* @param[in] msd Info on datastore module-state, if any
*/
int

(continues on next page)

141

Clixon, Release 7.0

(continued from previous page)

example_upgrade(clixon_handle h,
char *db,
cxobj *xt,
modstate_diff_t *msd)

{
cxobj **xvec = NULL; /* vector of result nodes */
size_t xlen;
cvec *nsc = NULL; /* Canonical namespace */
int i;

/* Skip other than startup datastore */
if (strcmp(db, "startup") != 0)
return 0;

/* Skip if there is proper module-state in datastore */
if (msd->md_status)
return 0;

/* Get canonical namespaces for using "normalized" prefixes */
if (xml_nsctx_yangspec(yspec, &nsc) < 0)

err;
/* Get all xml nodes matching path */
if (xpath_vec(xt, nsc, "/a:x/a:y", &xvec, &xlen) < 0)

err;
/* Iterate through nodes and remove them */
for (i=0; i<xlen; i++){
if (xml_purge(xvec[i]) < 0)

err;
}

}

The example above first checks whether it is the startup datastore and that it does not contain module-state. It then
matches all nodes matching the XPath /a:x/a:y using canonical prefixes, which are then deleted.

18.2 18.2 Module-specific upgrade

Module-specific upgrade is only available if module-state is enabled, see Module library support.

If the module-state of the startup configuration does not match the module-state of the backend daemon, a set of
module-specific upgrade callbacks are made. This allows a user to program upgrade funtions in the backend plugins
to automatically upgrade the XML to the current version.

A user registers upgrade callbacks per YANG module. A user can register many callbacks, or choose wildcards. When
an upgrade occurs, the callbacks will be called if they match the module and the modules have changed.

A module has changed if one of the following is true: - A module present in the startup is no longer present in the
system (DEL) - A module in the system is not present in the startup (ADD) - A module present in both the startup and
the system has a different revision date (CHANGE)

142 Chapter 18. 18 Upgrade

Clixon, Release 7.0

18.2.1 18.2.1 Registering a callback

A user registers upgrade callbacks in the backend clixon_plugin_init() function. The signature of upgrade callback is
as follows:

upgrade_callback_register(h, cb, ns, arg);

where:

• h is the Clicon handle,

• cb is the name of the callback function,

• ns defines the namespace of a Yang module. NULL denotes all modules.

• arg is a user defined argument which can be passed to the callback.

One example of registering an upgrade of an interface module:

upgrade_callback_register(h, upgrade_interfaces, "urn:example:interfaces", NULL);

18.2.2 18.2.2 Upgrade callback

When Clixon loads a startup datastore with outdated modules, the matching upgrade callbacks will be called.

The signature of an upgrade callback is as follows:

int upgrade_interfaces(h, xt, ns, op, from, to, arg, cbret)

where:

• xt is the XML tree to be upgraded

• ns is the namespace of the YANG module.

• op is a flag indicating upgrading operation, one of: XML_FLAG_ADD, XML_FLAG_DEL, XML_FLAG_CHANGE. Note
that this applies to per-module: whether a module has been added, deleted or changed.

• from is the revision date in the startup file of the module. It is zero if the operation is ADD

• to is the revision date of the YANG module in the system. It is zero if the operation is DEL

If no action is made by the upgrade callback, and thus the XML is not upgraded, the next step is XML/Yang validation.

An out-dated XML may still pass validation and the system will go up in normal state.

However, if the validation fails, the backend will try to enter the failsafe mode so that the user may perform manual
upgrading of the configuration.

18.2.3 18.2.3 Example upgrade

The Clixon main example shows code for upgrading of an interface module. The example is inspired by the ietf-
interfaces module that made a subset of the upgrades shown in the examples.

The code is split in two steps. The upgrade_2014_to_2016 callback does the following transforms:

• Move /if:interfaces-state/if:interface/if:admin-status to /if:interfaces/if:interface/

• Move /if:interfaces-state/if:interface/if:statistics to if:interfaces/if:interface/

• Rename /interfaces/interface/description to /interfaces/interface/descr

18.2. 18.2 Module-specific upgrade 143

https://github.com/clicon/clixon/blob/master/example/main/example_backend.c

Clixon, Release 7.0

The upgrade_2016_to_2018 callback does the following transforms:

• Delete /if:interfaces-state

• Wrap /interfaces/interface/descr to /interfaces/interface/docs/descr

• Change type /interfaces/interface/statistics/in-octets to decimal64 and divide all values
with 1000

18.3 18.3 Extra XML

If the Yang validation succeeds and the startup configuration has been committed to the running database, a user may
add “extra” XML.

There are two ways to add extra XML to running database after start. Note that this XML is “merged” into running,
not “committed”.

The extra-xml feature is not available if startup mode is none. It will also not occur in failsafe mode.

18.3.1 18.3.1 Via file

The first way is via a file. Assume you want to add this xml:

<config>
<x xmlns="urn:example:clixon">extra</x>

</config>

You add this via the -c option:

clixon_backend ... -c extra.xml

18.3.2 18.3.2 Reset callback

The second way is by programming the plugin_reset() in the backend plugin. The following code illustrates how to do
this (see also example_reset() in example_backend.c):

int
example_reset(clixon_handle h,

const char *db)
{

cxobj *xt = NULL;
yang_stmt *yspec;

yspec = clicon_dbspec_yang(h);
/* Parse extra XML */
if (clixon_xml_parse_string("<x xmlns=\"urn:example:clixon\">extra</x>"

YB_MODULE, yspec, &xt, NULL) < 0)
err;

xml_name_set(xt, "config");
/* Write to db */
if (xmldb_put(h, (char*)db, OP_MERGE, xt, NULL, NULL) < 0)

err;
(continues on next page)

144 Chapter 18. 18 Upgrade

Clixon, Release 7.0

(continued from previous page)

}
static clixon_plugin_api api = {

...

.ca_reset=example_reset,

...
}

The example_reset function is registered in the plugin init code and is then called with an empty temp database (db).
The code writes the extra XML into db (xmldb_put).

After exit of the callback, the system merges the temporary db into the running datastore in the same way as via file, ie
not via a commit.

18.4 18.4 Failsafe mode

If the startup fails, the backend looks for a failsafe configuration in <CLICON_XMLDB_DIR>/failsafe_db. If such a
config is not found, the backend terminates. In this mode, running and startup mode are unchanged.

If the failsafe is found, the running-db is copied to tmp-db and the failsafe config is loaded and committed into the
running db.

If the startup mode was startup, the startup database will contain syntax errors or invalidated XML.

If the startup mode was running, the the tmp database will contain syntax errors or invalidated XML.

18.5 18.5 Repair

If the system is in failsafe mode (or fails to start), a user can repair a broken configuration and then restart the backend.
This can be done out-of-band by editing the startup db and then restarting clixon.

In some circumstances, it is also possible to repair the startup configuration on-line without restarting the backend.
This section shows how to repair a startup datastore on-line.

However, on-line repair cannot be made in the following circumstances:

• The broken configuration contains syntactic errors - the system cannot parse the XML.

• The startup mode is running. In this case, the broken config is in the tmp datastore that is not a recognized
Netconf datastore, and has to be accessed out-of-band.

• Netconf must be used. Restconf cannot separately access the different datastores.

First, copy the (broken) startup config to candidate. This is necessary since you cannot make edit-config calls to the
startup db:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<source><startup/></source>
<target><candidate/></target>

</copy-config>
</rpc>

You can now edit the XML in candidate. However, there are some restrictions on the edit commands. For example, you
cannot access invalid XML (eg that does not have a corresponding module) via the edit-config operation. For example,
assume x is obsolete syntax, then this is not accepted:

18.4. 18.4 Failsafe mode 145

Clixon, Release 7.0

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config>
<x xmlns="example" operation='delete'/>

</config>
</edit-config>

</rpc>

Instead, assuming y is a valid syntax, the following operation is allowed since x is not explicitly accessed:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config operation='replace'>
<y xmlns="example"/>

</config>
</edit-config>

</rpc>

Finally, the candidate is validate and committed:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>

</rpc>

The example shown in this Section is also available as a regression repair test script.

18.6 18.6 Automatic upgrades

There is an EXPERIMENTAL xml changelog feature based on “draft-wang-netmod-module-revision-management-
01” (Zitao Wang et al) where changes to the Yang model are documented and loaded into Clixon. The implementation
is not complete.

When upgrading, the system parses the changelog and tries to upgrade the datastore automatically. This feature is
experimental and has several limitations.

You enable the automatic upgrading by registering the changelog upgrade method in clixon_plugin_init() using
wildcards:

upgrade_callback_register(h, xml_changelog_upgrade, NULL, 0, 0, NULL);

The transformation is defined by a list of changelogs. Each changelog defined how a module (defined by a namespace)
is transformed from an old revision to a new. Example from auto upgrade test script:

<changelogs xmlns="http://clicon.org/xml-changelog">
<changelog>
<namespace>urn:example:b</namespace>
<revfrom>2017-12-01</revfrom>
<revision>2017-12-20</revision>
...

<changelog>
</changelogs>

146 Chapter 18. 18 Upgrade

https://github.com/clicon/clixon/tree/master/test/test_upgrade_repair.sh
https://github.com/clicon/clixon/tree/master/test/test_upgrade_auto.sh

Clixon, Release 7.0

Each changelog consists of set of (ordered) steps:

<step>
<name>1</name>
<op>insert</op>
<where>/a:system</where>
<new><y>created</y></new>

</step>
<step>
<name>2</name>
<op>delete</op>
<where>/a:system/a:x</where>

</step>

Each step has an (atomic) operation:

• rename - Rename an XML tag

• replace - Replace the content of an XML node

• insert - Insert a new XML node

• delete - Delete and existing node

• move - Move a node to a new place

A step has the following arguments:

• where - An XPath node-vector pointing at a set of target nodes. In most operations, the vector denotes the target
node themselves, but for some operations (such as insert) the vector points to parent nodes.

• when - A boolean XPath determining if the step should be evaluated for that (target) node.

Extended arguments:

• tag - XPath string argument (rename)

• new - XML expression for a new or transformed node (replace, insert)

• dst - XPath node expression (move)

Step summary:

• rename(where:targets, when:bool, tag:string)

• replace(where:targets, when:bool, new:xml)

• insert(where:parents, when:bool, new:xml)

• delete(where:parents, when:bool)

• move(where:parents, when:bool, dst:node)

18.6. 18.6 Automatic upgrades 147

Clixon, Release 7.0

148 Chapter 18. 18 Upgrade

CHAPTER

NINETEEN

19 ERRORS AND DEBUG

19.1 19.1 Error reporting

19.1.1 19.1.1 Initialization

Clixon core applications typically have a command-line option controlling the logs as follows:

-l <option> Log on (s)yslog, std(e)rr, std(o)ut or (f)ile. Syslog is default. If fore-
ground, then syslog and stderr is default. Filename is given after -f
as follows: -lf<file>.

An example of a clixon error as it may appear in a syslog:

Mar 24 10:30:48 Alarik clixon_restconf[3993]: clixon_restconf openssl: 3993 Started

In C-code, clixon error and logging is initialized by clixon_log_init:

clixon_log_init(h, prefix, upto, flags);

where:

• prefix: appears first in the error string

• upto: log priority as defined by syslog(3), eg: LOG_DEBUG, LOG_INFO,..

• flags: a bitmask of where logs appear, values are: CLIXON_LOG_STDERR, _STDOUT, _SYSLOG, _FILE.

19.1.2 19.1.2 Error call

An error is typically called by clixon_err() and a return value of -1 as follows:

clixon_err(category, errno, format, ...)
return -1;

where:

• category is an error “category” including for example “yang”, “xml” See enum clixon_err for more examples.

• errno if given, usually errors as given by errno.h

• format A variable arg string describing the error.

149

Clixon, Release 7.0

19.1.3 19.1.3 CLI Errors

There are several types of error messages in the CLI. The first class is “syntax” errors with things like:

cli> command
CLI syntax error: "foo": Unknown command
cli>

These are errors immediately detected by the CLIgen parser and are internally generated in CLIgen. Errors include
command, syntax and type checking. They are shown on stderr, the CLI continues, without logging.

A second type of errors are “semantic” errors detected when processing CLI callbacks. These errors are more heavy-
weight than syntax errors and are declared in code using standard clixon Error call. They are logged and can be directed
to syslog, and are by default printed on stderr. The CLI continues after the error message is printed. Typical places
are user callbacks, backend rpc errors, validation, etc, either system-defined or user-defined callbacks. They are on the
form:

cli> command
Nov 15 15:42:56: acl_get_list: 334: Yang error: no ACLs defined
CLI command error
cli>

A third class of CLI errors are similar to the previous class but quits the CLI:

cli> command
Nov 15 15:42:56: acl_get_list: 334: Yang error: no ACLs defined
sh#

These errors are typically due to system functions failing in a fatal way.

19.1.4 19.1.4 Error categories

An application can specialize error handling for a specific category by using clixon_err_cat_reg() and a log callback.
Example:

/* Clixon error category log callback
* @param[in] handle Application-specific handle
* @param[out] cb Read log/error string into this buffer
*/
static int
my_log_cb(void *handle,

cbuf *cb)
{

cprintf(cb, "Myerror");
return 0;

}

main(){
...
/* Register error callback for category */
clixon_err_cat_reg(OE_SSL, h, openssl_cat_log_cb);

In this example, “Myerror” will appear in the log string.

150 Chapter 19. 19 Errors and debug

Clixon, Release 7.0

19.2 19.2 Debugging

19.2.1 19.2.1 Debug flags

Each clixon application has a -D <level> command-line option to enable debug flags when starting a program. Levels
can be combined and use either symbolic or numerical values. Example:

clixon_cli -D default -D detail

Levels are separated into subject-area and detail.

The subject-area levels are the following:

• default Default logs

• msg In/out messages and datastore reads

• init Initialization

• xml XML logs

• xpath XPath processing logs

• yang YANG processing logs

• backend Backend-specific processing

• cli CLI-frontend

• netconf Netconf-frontend

• restconf Restconf-frontend

• snmp SNMP-frontend

• nacm Netconf access control model

• proc Process handling

• datastore Datastore handling

• event Event handling

• rpc RPC handling

• rpc Notification streams

• app Application-specific handling, ie any application using clixon can use this

• app2 Application-specific 2

• app3 Application-specific 3

• all All subject-area flags

The detail area levels are the following:

• detail Detail logging

• detail2 Extra details

• detail3 Probably more detail than you want

You can combine flags, so that, for example -D 5 means default + detailed, but no packet debugs. Similarly, some
messages require multiple flags, like XML + DETAIL would be -D 20.

You can direct the debug logs using the -l <option> as follows:

19.2. 19.2 Debugging 151

Clixon, Release 7.0

• s : syslog

• e : stderr

• o : stdout

• n : none

• f : file, followed by a filename, eg -f/tmp/foo

Example:

clixon_backend -D 5 -f/tmp/log.txt

19.2.2 19.2.2 Change debug

You can also change debug level in run-time in different ways. For example, using netconf to change debug level in
backend:

echo "<rpc username=\"root\" xmlns=\"urn:ietf:params:xml:ns:netconf:base:1.0\"><debug␣
→˓xmlns=\"http://clicon.org/lib\"><level>1</level></debug></rpc>]]>]]>" | clixon_netconf␣
→˓-q0

In this example, netconf is run using EOM encoding and does not require hello:s.

Using curl to change debug in backend via the restconf daemon:

curl -Ssik -X POST -H "Content-Type: application/yang-data+json" http://localhost/
→˓restconf/operations/clixon-lib:debug -d '{"clixon-lib:input":{"level":1}}'

19.2.3 19.2.3 Debugger

Enable debugging when configuring (compile-time):

./configure --enable-debug

which includes symbol table info so that you can make breakpoints on functions(output is omitted):

> sudo gdb clixon_backend
(gdb) run -FD 1 -l e
Starting program: /usr/local/sbin/clixon_backend -FD 1 -l e
(gdb) b main
Breakpoint 1 at 0x55555555bcea: file backend_main.c, line 492.
(gdb) where
#0 main (argc=5, argv=0x7fffffffe4e8) at backend_main.c:492

In the example, the backend runs in the foreground(-F), runs with debug level 1 and directs the debug messages to
stderr.

152 Chapter 19. 19 Errors and debug

Clixon, Release 7.0

19.2.4 19.2.4 Valgrind and callgrind

Examples of using valgrind for memeory checks:

valgrind --leak-check=full --show-leak-kinds=all clixon_netconf -qf /tmp/myconf.xml -y /
→˓tmp/my.yang

Example of using callgrind for profiling:

LD_BIND_NOW=y valgrind --tool=callgrind clixon_netconf -qf /tmp/myconf.xml -y /tmp/my.
→˓yang
sudo kcachegrind

Or massif for memory usage:

valgrind --tool=massif clixon_netconf -qf /tmp/myconf.xml -y /tmp/my.yang
massif-visualizer

19.3 19.3 Customization

Errors, logs and denugs can be customized by plugins via the ca_errmsg API.

Customized errors applies to all clixon applications. For example, logs for the backend and return output in the CLI.

The API provides a single function callback which can be used in a various ways. The example shows one simple way
as described here.

First define an error message callback as part of the plugin initialization:

static clixon_plugin_api api = {
...

.ca_errmsg=example_cli_errmsg,
};

The errmsg callback has many parameters. Some are not always applicable:

• h : Clixon handle

• fn : name of source file (only err)

• line: line of source file (only err)

• type: log, err or debug (actual types called LOG_TYPE_LOG etc)

• category: Error category (see Section Error categories) (only err)

• suberr: Error number, eg errno (only err)

• xerr: XML structure, either NETCONF (for err) or just generic XML (debug, log)

• format: Format string similar to printf

• ap: Variable argument list assciated with format. Similar to vprintf

• cbmsg: Customized error message as output of the function. If NULL, use regular message.

A simple way to replace all error messages would be:

19.3. 19.3 Customization 153

Clixon, Release 7.0

int
example_cli_errmsg(clixon_handle h,

const char *fn,
const int line,
enum clixon_log_type type,
int *category,
int *suberr,
cxobj *xerr,
const char *format,
va_list ap,
cbuf **cbmsg)

{
if (type != LOG_TYPE_ERR)
return 0;

if ((*cberr = cbuf_new()) == NULL){
fprintf(stderr, "cbuf_new: %s\n", strerror(errno));
return -1;

}
cprintf(*cberr, "My error message");
*category = 0;
suerr = 0;
retval = 0;

done:
return retval;

}

All error message are now:

My error message

Which may not be useful.

More logic needs to be added, for example a more advanced classification and translation/changing of error messages.
Any field can be used to classify. The format string and the ap objects may be translated/converted which is out-of-scope
of this document.

19.3.1 19.3.1 Indirection

The customized callback may also be changed dynamically. The example shows an extra indirection layer, where a new
function is registered before a call, and deregistered after.

Please see the main example, where example_cli_errmsg just dispatches the call to a dynamic myerrmsg.

154 Chapter 19. 19 Errors and debug

CHAPTER

TWENTY

20 MISC

These are sections that do not fit into the rest of the document.

20.1 20.1 High availability

This is a brief note on a potential future feature.

Clixon is mainly a stand-alone app tightly coupled to the application/device with “shared fate”, that is, if clixon fails,
so does the application.

That said, the primary state is the backend holding the configuration database that can be shared in several
ways. This is not implemented in Clixon, but potential implementation strategies include:

• Active/standby: With a standard failure/liveness detection of a master backend, a standby could be started
when the master fails using “-s running” (just picking up the state from the failed master). The default
cache write-through can be used (CLICON_DATASTORE_CACHE = cache). Would suffer from outage dur-
ing standby boot.

• Active/active: The config-db cache is turned off (CLICON_DATASTORE_CACHE = nocache) and two back-
end process started with a load-balancing in front. Turning the cache off would suffer from performance
degradation (and its not currently tested in regression tests). Would also need a failure/liveness detection.

In both cases the config-db would be a single-point-of-failure but could be mitigated by a replicated file system, for
example.

Regarding clients:

• the CLI and NETCONF clients are stateless and spun up on demand.

• the RESTCONF daemon is stateless and can run as multiple instances (with a load-balancer)

20.2 20.2 Process handling

Clixon has a simple internal process handling currently used for internal restconf but can also be used for user ap-
plications. The process data structure has a unique name with pids created for “active” processes. There are three
states:

STOPPED
pid=0, No process running

RUNNING
pid is set, Process started and assumed running

155

Clixon, Release 7.0

EXITING
pid set, Process is killed by parent but not waited for (eg not

There are three operations that a client can perform on processes:

start
Start a process

restart
Restart a process

stop
Stop a process

20.2.1 20.2.1 State machine

The state machine for a process is as follows:

--> STOPPED --(re)start--> RUNNING(pid)
^ <--1.wait(kill)--- | ^
| stop/| |
| restart| | restart
| v |
wait(stop) ------- EXITING(dying pid)

The Process struct is created by calling clixon_process_register() with static info such as name, description, namespace,
start arguments, etc. Starts in STOPPED state:

--> STOPPED

On operation “start” or “restart” it gets a pid and goes into RUNNING state:

STOPPED -- (re)start --> RUNNING(pid)

When running, several things may happen:

1. It is killed externally: the process gets a SIGCHLD triggers a wait and it goes to STOPPED:

RUNNING --sigchld/wait--> STOPPED

2. It is stopped due to a rpc or configuration remove: The parent kills the process and enters EXITING waiting for
a SIGCHLD that triggers a wait, therafter it goes to STOPPED:

RUNNING --stop--> EXITING --sigchld/wait--> STOPPED

3. It is restarted due to rpc or config change (eg a server is added, a key modified, etc). The parent kills the process
and enters EXITING waiting for a SIGCHLD that triggers a wait, therafter a new process is started and it goes
to RUNNING with a new pid:

RUNNING --restart--> EXITING --sigchld/wait + restart --> RUNNING(pid)

156 Chapter 20. 20 Misc

Clixon, Release 7.0

20.3 20.3 Event notifications

Clixon implements RFC 5277 NETCONF Event Notifications

The main example illustrates an EXAMPLE stream notification that triggers every 5s. First, declare a notification in
YANG:

notification event {
description "Example notification event.";
leaf event-class {
type string;
description "Event class identifier.";

}
...

To start a notification stream via netconf:

<rpc><create-subscription xmlns="urn:ietf:params:xml:ns:netmod:notification"><stream>
→˓EXAMPLE</stream></create-subscription></rpc>]]>]]>
<rpc-reply><ok/></rpc-reply>]]>]]>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"><eventTime>2019-01-
→˓02T10:20:05.929272</eventTime><event><event-class>fault</event-class><reportingEntity>
→˓<card>Ethernet0</card></reportingEntity><severity>major</severity></event></
→˓notification>]]>]]>

This can also be triggered via the CLI:

clixon_cli -f /usr/local/etc/example.xml
cli> notify
cli> event-class fault;
reportingEntity {
card Ethernet0;

}
severity major;

cli> no notify
cli>

Restconf notifications (FCGI only) is also supported,

20.3. 20.3 Event notifications 157

	1 Overview
	1.1 System Architecture
	1.1.1 Plugin integration
	1.1.2 Client integration

	1.2 Platforms
	1.3 Standards
	1.4 How to get Clixon
	1.5 Support
	1.6 Bug reports
	1.7 Reference docs

	2 Installation
	2.1 Ubuntu Linux
	2.1.1 Prerequisites
	General prerequisites
	RESTCONF HTTP Support
	Clixon native HTTP server
	FastCGI for reverse proxy

	2.1.2 Build Clixon from source
	Building the example and utils

	2.2 FreeBSD
	2.2.1 Binary package install
	2.2.2 Build from source on FreeBSD

	2.3 Systemd
	2.3.1 Systemd backend
	2.3.2 Systemd restconf

	2.4 Docker
	2.5 Vagrant
	2.6 OpenWRT
	2.7 Prereqs from source
	2.7.1 FCGI

	2.8 SSH subsystem
	2.9 Configure options
	2.10 macOS

	3 Quick start
	3.1 Host native
	3.1.1 Clixon
	3.1.2 Files
	3.1.3 Install and run

	3.2 Using the CLI
	3.3 Netconf
	3.4 Restconf
	3.4.1 Start and run

	3.5 Docker container
	3.6 Next steps

	4 Standards
	4.1 YANG
	4.1.1 Regular expressions
	4.1.2 Metadata
	4.1.3 Schema mount

	4.2 NETCONF
	4.2.1 RFC 6022
	4.2.2 Default handling

	4.3 RESTCONF
	4.4 SNMP
	4.5 XML and XPath
	4.6 Pagination
	4.7 Unicode
	4.8 JSON

	5 Configuration
	5.1 Example
	5.2 Loading the configuration
	5.3 Runtime modification
	5.4 Features
	5.5 Finding YANG files
	5.6 Standard YANG files
	5.7 Extending the configuration

	6 Plugins
	6.1 Clixon_plugin_init
	6.2 Registered callbacks
	6.2.1 Example: RPC callback
	6.2.2 Example: Action callback

	6.3 Plugin callback guidelines

	7 Backend
	7.1 Command-line options
	7.1.1 Logging and debugging

	7.2 Startup
	7.3 IPC Socket
	7.4 Backend files
	7.5 Backend plugins
	7.5.1 Clixon_plugin_init
	7.5.2 Registered callbacks

	7.6 Transactions
	7.6.1 Transaction Examples
	7.6.2 Callbacks
	Flags

	7.7 Privileges
	7.7.1 Dropping privileges
	7.7.2 Drop privileges temporary

	8 Datastore
	8.1 Datastore files
	8.2 Datastore and file formats
	8.2.1 Other formats
	Internal C API

	8.3 Module library support
	8.4 Datastore caching

	9 CLI
	9.1 Overview
	9.1.1 Example usage
	9.1.2 Command-line options
	Inline CLI commands

	9.2 Configure options
	9.2.1 Terminal I/O
	9.2.2 History
	9.2.3 Help strings
	9.2.4 Modes
	9.2.5 Cli-spec variables

	9.3 CLI callbacks
	9.4 Show commands
	9.4.1 cli_show_config
	9.4.2 cli_show_auto
	9.4.3 cli_show_auto_mode
	9.4.4 Common show parameters
	with-default parameter
	pretty parameter

	9.5 Output pipes
	9.5.1 Explicit reference
	9.5.2 Implicit rule
	9.5.3 Combinations
	9.5.4 Inheriting
	9.5.5 Pipe functions

	9.6 Autocli
	9.6.1 Overview
	9.6.2 Config file
	Options
	Rules
	Module enable rules
	Compress rules

	9.6.3 Tree expansion
	9.6.4 YANG Extensions
	9.6.5 Edit modes

	9.7 Advanced
	9.7.1 Backend socket
	Start session
	Close session
	Alternative

	9.7.2 Sub-tree operator
	9.7.3 Translators
	9.7.4 Autocli tree labels
	9.7.5 Extensions to CLIgen
	9.7.6 Running CLI scripts
	9.7.7 How to deal with large specs
	Sub-modes
	Sub-trees
	C-preprocessor

	9.7.8 Bits
	9.7.9 Api-path-fmt

	10 NETCONF
	10.1 Overview
	10.1.1 Command-line options
	10.1.2 Configure options

	10.2 Starting
	10.2.1 SSH subsystem

	10.3 NACM
	10.3.1 Restrictions
	10.3.2 Config options
	10.3.3 Mode
	10.3.4 Access control
	User credentials

	10.3.5 Recovery user

	10.4 Confirm-commit
	10.5 Callhome
	10.6 Internal NETCONF
	10.6.1 Framing
	10.6.2 Extensions

	11 RESTCONF
	11.1 Architecture
	11.2 Installation
	11.3 Command-line options
	11.4 Configuration options
	11.5 Advanced config
	11.5.1 Inline
	11.5.2 Config file
	11.5.3 Datastore
	11.5.4 Features
	11.5.5 Auth types
	11.5.6 FCGI mode
	11.5.7 Native mode
	11.5.8 Examples
	11.5.9 SSL Certificates

	11.6 Starting
	11.6.1 Start with Systemd
	11.6.2 Internal start

	11.7 Plugin callbacks
	11.7.1 Auth callback

	11.8 FCGI
	11.8.1 Restconf config
	11.8.2 Reverse proxy config

	11.9 Callhome
	11.9.1 Overview
	11.9.2 Callback clients
	Bootstrap controller

	11.9.3 Description
	11.9.4 Setup
	11.9.5 Persistent connection
	11.9.6 Periodic connection

	11.10 HTTP data
	11.10.1 Configuration options
	Example

	11.10.2 Features and limitation

	11.11 RESTCONF streams
	11.11.1 Fcgi stream options

	12 SNMP
	12.1 Architecture
	12.2 Configuration
	12.2.1 Net-SNMP
	12.2.2 Clixon
	12.2.3 clixon_snmp command line options
	12.2.4 clixon_snmp configuration

	12.3 MIB mapping
	12.3.1 Generating YANG
	12.3.2 Config vs state
	12.3.3 Types
	12.3.4 Tables
	12.3.5 RowStatus

	13 YANG
	13.1 Leafrefs
	13.1.1 Types
	13.1.2 Require-instance

	13.2 YANG Library
	13.2.1 Example

	13.3 Extensions
	13.4 Unique
	13.4.1 Multiple direct children
	13.4.2 Single descendants

	13.5 If-feature and anydata
	13.6 Schema mounts
	13.6.1 Configuration
	13.6.2 YANG
	13.6.3 State
	13.6.4 Mount callback
	13.6.5 CLI

	14 Usecases
	14.1 CLI read
	14.2 CLI write
	14.3 Commit
	14.4 RESTCONF RPC

	15 Client API
	15.1 Clixon and ConfD Examples
	15.1.1 YANG model
	15.1.2 Installating the YANG model
	15.1.3 Testing with NETCONF

	16 XML and paths
	16.1 Paths
	16.1.1 XPath
	16.1.2 Namespaces in XPaths
	16.1.3 Instance-identifier
	16.1.4 Api-path
	16.1.5 Namespaces in Api-paths

	16.2 XML trees
	16.2.1 Yang binding
	16.2.2 Sorted tree

	16.3 Creating XML
	16.3.1 Creating XML from a string
	16.3.2 Creating JSON from a string
	16.3.3 Creating XML programmatically
	16.3.4 Binding YANG to XML
	16.3.5 Config data

	16.4 Modifying XML
	16.4.1 Merging
	16.4.2 Inserting
	16.4.3 Removing
	16.4.4 Copying

	16.5 Searching in XML
	16.5.1 Auto-generated indexes
	16.5.2 Explicit indexes
	16.5.3 Direct children
	16.5.4 Using paths in XML
	16.5.5 Multiple keys

	16.6 Internal representation
	16.7 Character encoding

	17 Pagination
	17.1 Overview
	17.2 Locked pagination
	17.3 Pagination protocol
	17.4 CLI scrolling
	17.4.1 CLI callbacks

	17.5 Backend pagination API

	18 Upgrade
	18.1 General-purpose
	18.2 Module-specific upgrade
	18.2.1 Registering a callback
	18.2.2 Upgrade callback
	18.2.3 Example upgrade

	18.3 Extra XML
	18.3.1 Via file
	18.3.2 Reset callback

	18.4 Failsafe mode
	18.5 Repair
	18.6 Automatic upgrades

	19 Errors and debug
	19.1 Error reporting
	19.1.1 Initialization
	19.1.2 Error call
	19.1.3 CLI Errors
	19.1.4 Error categories

	19.2 Debugging
	19.2.1 Debug flags
	19.2.2 Change debug
	19.2.3 Debugger
	19.2.4 Valgrind and callgrind

	19.3 Customization
	19.3.1 Indirection

	20 Misc
	20.1 High availability
	20.2 Process handling
	20.2.1 State machine

	20.3 Event notifications

