

Welcome to climt’s documentation!

[image: climt logo]

climt (Climate Modelling and Diagnostics Toolkit) is a Python based library which provides a
modular and intuitive approach to writing numerical models of the climate system. climt provides
state-of-the art components and an easy-to-use interface to allow writing research quality models
without the hassle of modifying Fortran code.

The modular nature of climt allows re-use of model code, allowing users to build progressively
complicated models without having to rewrite the same code at each level of complexity.

climt uses sympl [https://sympl.readthedocs.io] for its modelling infrastructure, making climt components and model scripts highly readable
and self-documenting.

Contents:

	Introduction

	Installation
	Stable release

	Installing from source

	Quickstart

	Interacting with climt
	Model State

	Model Components

	A Realistic Model

	Component Types

	Configuring climt
	Algorithmic Configuration

	Memory/Array Configuration

	Physical Configuration

	Interfacial Configuration

	Compositional Configuration

	Components
	Dynamics

	Radiation

	Convection

	Surface Processes

	Ice and Snow

	Test Cases

	Component Manual
	RRTMG - The Rapid Radiative Transfer Model

	Initialisation
	climt.get_default_state

	climt.get_grid

	General Utilities
	Constants

	Miscellaneous

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Style

	Tips

	Credits
	Original Creator

	Development Lead

	Contributors

	History
	v.0.17.0

	v.0.16.15

	v.0.16.11

	v.0.16.8

	v.0.16.6

	v.0.16.5

	v.0.16.4

	v.0.16.3

	v.0.16.2

	v.0.16.1

	v0.16.0

	Breaking Changes

	v.0.14.8

	Breaking Changes

	v.0.14.7

	v.0.14.3

	v.0.14.1

	v.0.14.0

	v.0.12.0

	v.0.9.4

	v.0.9.3

	v.0.9.2

	Breaking Changes

	v.0.9.1

	Breaking Changes

	Latest

	v.0.9

Indices and tables

	Index

	Module Index

	Search Page

Introduction

climt (pronounced klimt) is an attempt to build a climate modelling
infrastructure that is easy to use, easy to understand and easy to learn.

Most climate model components are written in fortran for performance reasons.
For that very reason, it is difficult to change model configurations and
behaviour easily, which is something scientists tend to do all the time during
their research. The earth-science community is converging towards Python as the
language of choice for data analysis tasks, thanks to Python’s flexibility and
emphasis on clean, readable code. climt aims to use Python for climate modelling
for these very reasons – clearly documented components, self documenting
model scripts, and a flexible configuration system will make climate modelling more
reproducible and make the learning curve less steep.

climt is aimed at a wide spectrum of users – from students who are curious to learn
about the climate system to researchers who want state-of-the-art components. climt
aims to provide multiple levels of abstraction which will allow the user to tradeoff
ease of use vs. flexibility, depending on their particular needs and experience in
modelling and Python programming.

Installation

Stable release

You can install climt by simply typing

$ pip install climt

This is the preferred method to install climt, as it will always install the most recent stable release.
On Ubuntu Linux, you might need to prefix the above command with sudo. This command should
work on Linux, Mac and Windows. For Mac and Windows, it is recommended to use the anaconda [https://www.continuum.io/downloads] python
distribution to make installation simpler.

Note

If you are not using Anaconda, please ensure you have the libpython library installed.
See the next section for instructions to install libpython.

Since by default pip attempts to install a binary wheel, you won’t need a compiler on your system.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Installing from source

The sources for climt can be downloaded from the Github repo [https://github.com/climt/climt].

You can either clone the public repository:

$ git clone git://github.com/CliMT/climt

Or download the tarball [https://github.com/CliMT/climt/tarball/master]:

$ curl -OL https://github.com/CliMT/climt/tarball/master

Once you have a copy of the source, you can install it with:

$ pip install -r requirements_dev.txt
$ python setup.py install

Both commands may require the use of sudo.

Dependencies for source installations

climt depends on some easily installable libraries. For
an installation from source, it also requires that C and fortran
compilers be installed.

On Ubuntu Linux, for example, these dependencies can be
installed by:

$ sudo apt-get install gcc
$ sudo apt-get install gfortran
$ sudo apt-get install python-dev
$ sudo pip install -U cython
$ sudo pip install -U numpy

use pip3 and python3-dev if you use Python 3.

On Mac OSX, it is recommended that you use anaconda [https://www.continuum.io/downloads] as your python distribution.
This will eliminate the need to install cython, numpy and python-dev.
Once you have anaconda installed, you will need to do the following:

$ brew install gcc
$ export CC=gcc-x
$ export FC=gfortran-x

Where gcc-x,gfortran-x are the names of the C,Fortran compilers that Homebrew installs.
Exporting the name of the compiler is essential on Mac since the
default compiler that ships with Mac (called gcc, but is actually a
different compiler) cannot
compile OpenMP programs, like the dynamical core in climt.

Quickstart

Let us start with a simple climt model which is not very useful,
but helps illustrate how to use climt:

In [1]: import climt

Create some components
In [2]: radiation = climt.GrayLongwaveRadiation()

In [3]: surface = climt.SlabSurface()

Get a state dictionary filled with required quantities
for the components to run
In [4]: state = climt.get_default_state([radiation, surface])

Run components
In [5]: tendencies, diagnostics = radiation(state)

See output
In [6]: tendencies.keys()
Out[6]: dict_keys(['air_temperature'])

In [7]: tendencies['air_temperature']
Out[7]:
<xarray.DataArray (mid_levels: 28, lat: 1, lon: 1)>
array([[[-8.65953484e-06]],

 [[-8.82597967e-06]],

 [[-9.10930142e-06]],

 [[-9.50816216e-06]],

 [[-1.00211876e-05]],

 [[-1.06462877e-05]],

 [[-1.13814120e-05]],

 [[-1.22239221e-05]],

 [[-1.31708319e-05]],

 [[-1.42185500e-05]],

...

 [[-2.69670979e-05]],

 [[-2.85017885e-05]],

 [[-2.99815186e-05]],

 [[-3.13776165e-05]],

 [[-3.26612456e-05]],

 [[-3.38033767e-05]],

 [[-3.47767484e-05]],

 [[-3.55573827e-05]],

 [[-3.61242997e-05]],

 [[-3.64632192e-05]]])
Dimensions without coordinates: mid_levels, lat, lon
Attributes:
 units: degK s^-1

Here, all the essential aspects of creating and running a model
in climt are present:

	Import the climt package

	Create one or many components

	Create a state dictionary using get_default_state

	Run the components

	Do something with the output

Variables radiation and surface are two components that we
create. All climt components take a lot of optional arguments: However, by
design, the default options (which are used if you don’t specify any arguments)
are meant to be scientifically meaningful.

The variables state, tendencies and
diagnostics are dictionaries which contain quantities
which act either as inputs to components or outputs from components.

The function get_default_state(), if called only with a list of components,
will provide a set of quantities which represent
a single column of the atmosphere. These default values may or may not be
meaningful in your context, so it is best to see what they are and change them
according to your needs.

Note

The square brackets are required in the call to get_default_state, even
if it is one component: climt.get_default_state([radiation]) is the
correct syntax.

Building more sophisticated models and running them is merely an extended version
of the above simple example. climt makes heavy use of Sympl [http://sympl.readthedocs.io], and knowledge of
Sympl is necessary to use climt to its full capabilities. So, do go through Sympl’s
docs!

Interacting with climt

As we saw in the Quickstart section, climt has two
kinds of entities for the user to interact with:
model components and model state. Here, we will take
a closer look at both these elements.

Model State

The model state is a dictionary whose keys are names of
quantities and values are sympl [http://sympl.readthedocs.io] DataArrays. The sympl [http://sympl.readthedocs.io] DataArray is
a thin wrapper over the xarray [http://xarray.pydata.org] DataArray that makes it units aware. To ensure
model scripts are readable not just by specialists, names
of quantities use the descriptive CF Convention [http://cfconventions.org/Data/cf-standard-names/41/build/cf-standard-name-table.html]. Only
in the case where the CF Convention names are really
unwieldy, like air_temperature_at_effective_cloud_top_defined_by_infrared_radiation for
example, we use more convenient names.

DataArrays are a more human-friendly way of handling numerical arrays.
DataArrays label the dimensions of an array and provide
various mathematical functions which can be directly
applied to arrays. sympl [http://sympl.readthedocs.io] DataArrays in addition allow conversion
between units, a feature required to allow interoperability between
components which expect inputs in different units.

Let’s create a 3-d model state to see how useful DataArrays are:

In [1]: import climt

In [2]: import matplotlib.pyplot as plt

In [3]: import numpy as np

Create some components
In [4]: radiation = climt.GrayLongwaveRadiation()

In [5]: convection = climt.DryConvectiveAdjustment()

We need to tell climt what the model dimensions are. This is done
by the get_grid function. This function takes three arguments
which are the number of grid points in the three directions, and
provides a state dictionary containing the definition of a grid.

Passing this grid state dictionary onto get_default_state makes
climt aware of the dimensions required by the model:

In [6]: grid = climt.get_grid(ny=3, nz=5)

Get a state dictionary filled with required quantities
for the components to run
In [7]: state = climt.get_default_state([radiation, convection], grid_state=grid)

In [8]: state['air_temperature']
Out[8]:
<xarray.DataArray 'air_temperature' (mid_levels: 5, lat: 3, lon: 1)>
array([[[290.],
 [290.],
 [290.]],

 [[290.],
 [290.],
 [290.]],

 [[290.],
 [290.],
 [290.]],

 [[290.],
 [290.],
 [290.]],

 [[290.],
 [290.],
 [290.]]])
Dimensions without coordinates: mid_levels, lat, lon
Attributes:
 units: degK

climt does not interpret any of the dimension attributes in
state quantities other than units. The values and labels of coordinates
are mainly for users and components. For instance, SimplePhysics
requires that the y dimension be called latitude. So, any
model that uses SimplePhysics has to label one of the
dimensions as latitude.

As you can see, air_temperature has

	a uniform value of 290

	coordinates of latitude and mid_levels

	units of degK, which is the notation used in climt (and Sympl) for
degrees Kelvin.

It is also fairly easy to change units. The to_units() method can
be used as below to return a DataArray with the equivalent temperature in degrees Farenheit:

In [9]: state['air_temperature'].to_units('degF')
Out[9]:
<xarray.DataArray 'air_temperature' (mid_levels: 5, lat: 3, lon: 1)>
array([[[62.33],
 [62.33],
 [62.33]],

 [[62.33],
 [62.33],
 [62.33]],

 [[62.33],
 [62.33],
 [62.33]],

 [[62.33],
 [62.33],
 [62.33]],

 [[62.33],
 [62.33],
 [62.33]]])
Dimensions without coordinates: mid_levels, lat, lon
Attributes:
 units: degF

Note

climt always names the vertical coordinate as mid_levels or interface_levels,
however, the state dictionary will contain a key corresponding to the name
of the vertical coordinate specified by get_grid.

As mentioned previously, DataArrays are a user-friendly way of handling numerical or numpy
arrays. The numpy array underlying any DataArray is easily accessed using the values
attribute:

In [10]: type(state['air_temperature'].values)
Out[10]: numpy.ndarray

and can also be modified easily:

In [11]: state['air_temperature'].values[:] = 291

The right hand side can also be any numpy array, as long as it has the same dimensions (or can
be broadcasted to the same dimensions) as the
current numpy array.

Note

It is recommended to use the syntax ...values[:] = ... rather than ...values =
..., as the former modifies the numpy array in-place. In either case, DataArrays check to
ensure the dimensions (or shape) of the new data matches with the current dimensions.

You can perform any of the functions supported [http://xarray.pydata.org/en/stable/computation.html] by xarray on
the model state quantities.

In [12]: state['air_temperature'].sum()
Out[12]:
<xarray.DataArray 'air_temperature' ()>
array(4365.)

You can also directly plot DataArrays:

In [13]: state['air_temperature'].plot()
Out[13]: <matplotlib.collections.QuadMesh at 0x7ff2a511b3c8>

DataArrays are a very powerful way of dealing with array-oriented data, and
you should read more about xarray [http://xarray.pydata.org], and not just for using climt!

Model Components

Components are representations of physical processes. You can see
all available components in climt in the section Components.

All components take some inputs from the model state, and return outputs or
tendencies along with diagnostics (if any).

Diagnostics are quantities computed while calculating outputs or tendencies.
For example, a radiation component calculates heating rates. However, in the process
of calculating these heating rates, it also calculates the radiative flux at each
interface level.

These are the tendencies returned by radiation
In [14]: radiation.tendency_properties
Out[14]: {'air_temperature': {'units': 'degK s^-1'}}

These are the diagnostics returned by radiation
In [15]: radiation.diagnostic_properties
Out[15]:
{'downwelling_longwave_flux_in_air': {'dims': ['interface_levels', '*'],
 'units': 'W m^-2',
 'alias': 'lw_down'},
 'upwelling_longwave_flux_in_air': {'dims': ['interface_levels', '*'],
 'units': 'W m^-2',
 'alias': 'lw_up'},
 'longwave_heating_rate': {'dims': ['mid_levels', '*'],
 'units': 'degK day^-1'}}

These are the outputs returned by convection
In [16]: convection.output_properties
Out[16]: {'air_temperature': {'units': 'degK'}, 'specific_humidity': {'units': 'kg/kg'}}

convection returns no diagnostics
In [17]: convection.diagnostic_properties
Out[17]: {}

No component will return both outputs and tendencies. The
tendency of a quantity \(X\) is given by \(\frac{dX}{dt}\), and so
the units of a quantity returned as a tendency will always have per second
as as suffix: i.e, if a component is returning air_temperature as
a tendency, then its units will be degK/s.

A Realistic Model

As mentioned before, climt includes some components
which returns the a new version of the model state,
and some which return just tendencies.

Since tendencies by themselves are not useful for much
other than plotting, we need to couple them with numerical
integration components to march the model forward in time.
Again, we will use the grey radiation scheme as an example.

The following script is used to obtain the temperature profile
of the atmosphere if no physical process other than radiation
(specifically, grey gas radiation in this example) are present.
The temperature profile obtained is called the radiative equilibrium
profile.

As before, we will create the radiation component and the model state:

In [1]: import climt

In [2]: import matplotlib.pyplot as plt

In [3]: import numpy as np

Two new imports
In [4]: from sympl import AdamsBashforth

In [5]: from datetime import timedelta

Create some components
In [6]: radiation = climt.GrayLongwaveRadiation()

Get a state dictionary filled with required quantities
for the components to run
In [7]: state = climt.get_default_state([radiation])

We have two new imports, AdamsBashforth and timedelta.
The former is a numerical integrator [https://en.wikipedia.org/wiki/Linear_multistep_method] which will step the model forward
in time, and the latter is a standard python module which will be used to represent
the time step of the model.

Now, to create the integrator and the timestep:

In [8]: model_time_step = timedelta(hours=1)

In [9]: model = AdamsBashforth([radiation])

We now have a model ready to run! The integrator will return the new model
state and any diagnostics that radiation has generated. We can then
update the current model state with the new model state and continue to step
the model forward in time:

In [10]: for step in range(10):
 : diagnostics, new_state = model(state, model_time_step)
 : ''' Update state with diagnostics.
 : This updated state can be saved if necessary '''
 : state.update(diagnostics)
 : '''Update state quantities'''
 : state.update(new_state)
 : '''Update model time'''
 : state['time'] += model_time_step
 : '''See if the maximum temperature is changing'''
 : print(state['time'], ': ', state['air_temperature'].max().values)
 :
2000-01-01 01:00:00 : 289.96882567458607
2000-01-01 02:00:00 : 289.9377097152726
2000-01-01 03:00:00 : 289.9066289418279
2000-01-01 04:00:00 : 289.8755896761563
2000-01-01 05:00:00 : 289.844584776716
2000-01-01 06:00:00 : 289.81362324988896
2000-01-01 07:00:00 : 289.78269480027757
2000-01-01 08:00:00 : 289.7518063986025
2000-01-01 09:00:00 : 289.72095925683254
2000-01-01 10:00:00 : 289.6901474644026

And voila, we have a model that actually evolves over time! Many example
scripts that illustrate standard model configurations used in climate
modelling are available in the github repository [https://github.com/CliMT/climt/tree/master/examples]. These scripts include
examples which setup graphics to view the evolution of the model over time.

Note

A more user friendly API called Federation will be available in
a later version of climt. However, setting up models is easy enough even
without Federation once you get used to the workflow.

Component Types

Deriving from Sympl [http://sympl.readthedocs.io], most components in climt are either TendencyComponent,
DiagnosticComponent, ImplicitTendencyComponent
or Stepper.

	TendencyComponent takes the model state as input and returns tendencies and optional
diagnostics. A radiation component is a good example of such components: any radiation component
returns the heating rate of each layer of the atmosphere (in \(degK/s\))

	DiagnosticComponent takes the model state as input and returns some other diagnostic
quantities. An example would be a component that takes the model state and returns the optical
depth.

	Stepper takes the model state, and returns new values for some some quantities
in the model state. A dynamical core is a good example, which returns new values of winds,
temperature and pressure.

	ImplicitTendencyComponent takes the model state and outputs tendencies (like a TendencyComponent)
but require the model timestep (like a Stepper) for various reasons, including to ensure
that a vertical CFL [https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition] criterion is met.

You can read more about this schema of model components in Sympl’s
documentation [http://sympl.readthedocs.io/en/latest/computation.html].

Configuring climt

A typical climate model allows the user the following
kinds of configuration:

	Algorithmic Configuration: Changing the “tuning” parameters
of the algorithms underlying various components. For example,
the kind of advection used in a dynamical core could be configured.

	Memory/Array Configuration: Deciding the grid shapes, and distribution
over multiple processors, if using MPI.

	“Physical” Configuration: Choosing the physical constants that are used
during the simulation. For example, gravitational acceleration or planetary
rotation rate could be varied.

	Behavioural Configuration: Allows modification of component behaviour. For example,
radiative transfer components are called only once every N (>> 1) time steps and the
output is kept constant for the remaining N-1 time steps.

	Compositional Configuration: Describing the components that make up the model, the order
in which components need to be called, among other things.

Climate models can be configured in many ways, including hard coded configurations, namelists,
shell environment variables. These diverse ways of configuring a climate model make it difficult
to keep track of all configurations and changes made.

climt aims to keep all configuration in the main run script, but separated logically to ensure
the script is still intuitive to read.

Algorithmic Configuration

Configuring the algorithm used by each component is done by various keyword arguments passed
to the component while creating it. See, for example, the documentation for
climt.RRTMGShortwave.

Memory/Array Configuration

climt does not yet support MPI, so there is no API yet to handle distributed arrays.
However, the shape of arrays used by a model can be set while calling
climt.get_default_state(). See, for example, the configuration of arrays in a
GCM [https://github.com/CliMT/climt/blob/a69a23fc2470cc516a41c057976bb3d31ac6f0d7/examples/grey_gcm.py#L56-L59].

Physical Configuration

climt provides an interface to set and reset constants
required by various components. The constants are put into different categories (boltzmann_constant
is a ‘physical constant’ whereas planetary_rotation_rate is a ‘planetary constant’, for example).

The constants can be reset to their default values so that climt is in a known state at the end of
a simulation. In the future, climt will provide a context manager to clean up modified constants
at the end of a run.

You can read more about this functionality in General Utilities.

Interfacial Configuration

Wrappers are the preferred way of changing the inputs or outputs of a component to make
it apparently work in a different way.

	Piecewise constant output: Computationally expensive modules like radiative transfer
are sometimes called only once every few timesteps, and the same values is used for
the intermediate timesteps of a model. For example a GCM with a time step of 10 minutes
might only call radiation after 1 hour of model time has elapsed. To allow for such
behaviour, sympl.UpdateFrequencyWrapper can be used.
See how this can be used practically in this example [https://github.com/CliMT/climt/blob/a69a23fc2470cc516a41c057976bb3d31ac6f0d7/examples/full_radiation_gcm_energy_balanced.py#L61].

	TendencyComponent version: Spectral dynamical cores step the model forward in spectral space,
and therefore, they do not play well with Stepper
components that step forward the model in grid space. Typically, this is handled by
finite differencing the output of Stepper components and providing them as time tendencies.
Stepper components can be wrapped with sympl.TimeDifferencingWrapper which
returns a component which provides the
time differenced tendencies. The time differencing is done using a first order scheme:

\(\frac{dX}{dt} = (X_{out} - X_{in})/\delta t\).

See how this is used in the Grey GCM [https://github.com/CliMT/climt/blob/a69a23fc2470cc516a41c057976bb3d31ac6f0d7/examples/grey_gcm.py#L48].

	Scaled version: Very often, we perform experiments where we want to study the sensitivity of the simulation
to a particular quantity or the effect of a certain quantity on the output (mechanism denial).
This is in some instances done by scaling the quantity or setting it to zero (which
is also a scaling). To allow for this kind of modification, sympl.ScalingWrapper can be used. This is a method
available to all kinds of components (Stepper, TendencyComponent, etc.,). See the documentation for this
method in the description of the base components in Components.

Compositional Configuration

This kind of configuration will allow the automatic building of models given certain
components selected by the user.
Currently, the user has to write the script to build the model and run it. It is clear that
a lot of this code is repetitive and can be replaced by an entity (Which will be called
Federation).

Note

This functionality is currently unavailble, and will be present in a future version of climt.

Components

This page documents the different components available through climt.

Dynamics

	GFSDynamicalCore

	

	GFSDynamicalCore.__call__

	

Radiation

	RRTMGLongwave([calculate_change_up_flux, …])

	The Rapid Radiative Transfer Model (RRTMG).

	RRTMGLongwave.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	RRTMGShortwave([cloud_overlap_method, …])

	The Rapid Radiative Transfer Model (RRTMG).

	RRTMGShortwave.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	GrayLongwaveRadiation([…])

	

	GrayLongwaveRadiation.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Frierson06LongwaveOpticalDepth([…])

	

	Frierson06LongwaveOpticalDepth.__call__(state)

	Gets diagnostics from the passed model state.

	Instellation(**kwargs)

	Calculates the zenith angle and star-planet correction factor given orbital parameters.

	Instellation.__call__(state)

	Gets diagnostics from the passed model state.

Convection

	EmanuelConvection([…])

	The Emanuel convection scheme from `[Emanuel and Zivkovic-Rothman]`_

	EmanuelConvection.__call__(state, timestep)

	Gets tendencies and diagnostics from the passed model state.

	DryConvectiveAdjustment([…])

	A conservative scheme to keep the temperature profile close to the dry adiabat if it is super-adiabatic.

	DryConvectiveAdjustment.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Surface Processes

	SimplePhysics([simulate_cyclone, …])

	Interface to the simple physics package.

	SimplePhysics.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

	SlabSurface([tendencies_in_diagnostics, name])

	Calculate the surface energy balance.

	SlabSurface.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	BucketHydrology([soil_moisture_max, …])

	Manages surface energy and moisture balance This component assumes that the surface is a slab with some heat capacity and moisture holding capacity.

	BucketHydrology.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Ice and Snow

	IceSheet([maximum_snow_ice_height])

	1-d snow-ice energy balance model.

	IceSheet.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

Test Cases

	HeldSuarez([sigma_boundary_layer_top, k_f, …])

	Provide the Held-Suarez forcing.

	HeldSuarez.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	DcmipInitialConditions([condition_type, …])

	Climt interface to the DCMIP initial conditions.

	DcmipInitialConditions.__call__(state)

	Gets diagnostics from the passed model state.

climt.RRTMGLongwave

	
class climt.RRTMGLongwave(calculate_change_up_flux=False, cloud_overlap_method=None, cloud_optical_properties='liquid_and_ice_clouds', cloud_ice_properties='ebert_curry_two', cloud_liquid_water_properties='radius_dependent_absorption', calculate_interface_temperature=True, mcica=False, random_number_generator='mersenne_twister', **kwargs)

	The Rapid Radiative Transfer Model (RRTMG).

This module wraps RRTMG for longwave radiation
(i.e, emission from the earth’s surface).

	
__init__(calculate_change_up_flux=False, cloud_overlap_method=None, cloud_optical_properties='liquid_and_ice_clouds', cloud_ice_properties='ebert_curry_two', cloud_liquid_water_properties='radius_dependent_absorption', calculate_interface_temperature=True, mcica=False, random_number_generator='mersenne_twister', **kwargs)

	
	Parameters

	
	calculate_change_up_flux (bool) – calculate derivative of flux change with respect to
surface temperature alone. Can be used to adjust fluxes in between radiation calls
only due to change of surface temperature. Default value is False, meaning this quantity
is not calculated.

	cloud_overlap_method (string) – Choose the method to do overlap with:

	clear_only = Clear only (no clouds)

	random = Random

	maximum_random = Maximum/Random

	maximum = Maximum.

	cloud_optical_properties (string) – Choose how cloud optical properties are calculated:

	direct_input = Both cloud fraction and cloud optical depth are input directly.
Other cloud properties (ie cloud particle size) are irrelevant.

	single_cloud_type = Cloud fraction and cloud physical properties are input, ice
and liquid clouds are treated together, cloud absorptivity is a constant value (0.060241).
Not available with McICA.

	liquid_and_ice_clouds = Cloud fraction and cloud physical properties are input, ice and liquid
clouds are treated separately. Cloud optical depth is calculated from the cloud ice and water particle
sizes and the mass content of cloud ice and cloud water.

	cloud_ice_properties (string) – set bounds on ice particle size. This is not used if ‘cloud_optical_properties’ == ‘direct_input’

	ebert_curry_one = ice particle has effective radius >= 10.0 micron [Ebert and Curry 1992] [http://onlinelibrary.wiley.com/doi/10.1029/91JD02472/abstract]

	ebert_curry_two = ice particle has effective radius between 13.0 and 130.0 micron [Ebert and Curry 1992] [http://onlinelibrary.wiley.com/doi/10.1029/91JD02472/abstract]

	key_streamer_manual = ice particle has effective radius between 5.0 and 131.0 micron
[Key, Streamer Ref. Manual, 1996] [https://stratus.ssec.wisc.edu/streamer/userman.pdf]

	fu = ice particle has generalised effective size (dge) between 5.0 and 140.0 micron
[Fu, 1996] [http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1996)009%3C2058%3AAAPOTS%3E2.0.CO%3B2]. (dge = 1.0315 * r_ec)

Default value is 0.

	cloud_liquid_water_properties (string) – set treatment of cloud liquid water. This is not used if ‘cloud_optical_properties’ == ‘direct_input’.

	radius_independent_absorption = use radius independent absorption coefficient

	radius_dependent_absorption = use radius dependent absorption coefficient (radius between 2.5 and 60 micron)

	calculate_interface_temperature (bool) – if True, the interface temperature is calculated internally using a weighted
interpolation routine. If False, the quantity called
air_temperature_on_interface_levels in the input state needs to be manually
updated by user code.

	mcica (bool) –
	mcica = True: use the McICA version of the longwave component of RRTMG

	mcica = False: use the nomcica version of the longwave component of RRTMG

	random_number_generator (string) – Different methods of generating random numbers for McICA.
* kissvec
* mersenne_twister

Methods

	__init__([calculate_change_up_flux, …])

	
	param calculate_change_up_flux

	calculate derivative of flux change with respect to

	array_call(state)

	Gets tendencies and diagnostics from the passed model state.

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	num_longwave_bands

	

	num_reduced_g_intervals

	

	rrtm_iplon

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.RRTMGLongwave.__call__

	
RRTMGLongwave.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.RRTMGShortwave

	
class climt.RRTMGShortwave(cloud_overlap_method=None, cloud_optical_properties='liquid_and_ice_clouds', cloud_ice_properties='ebert_curry_two', cloud_liquid_water_properties='radius_dependent_absorption', solar_variability_method=0, use_solar_constant_from_fortran=False, ignore_day_of_year=False, facular_sunspot_amplitude=None, solar_variability_by_band=None, aerosol_type='no_aerosol', mcica=False, random_number_generator='mersenne_twister', **kwargs)

	The Rapid Radiative Transfer Model (RRTMG).

This module wraps RRTMG for shortwave radiation
(i.e, emission from the sun).

	
__init__(cloud_overlap_method=None, cloud_optical_properties='liquid_and_ice_clouds', cloud_ice_properties='ebert_curry_two', cloud_liquid_water_properties='radius_dependent_absorption', solar_variability_method=0, use_solar_constant_from_fortran=False, ignore_day_of_year=False, facular_sunspot_amplitude=None, solar_variability_by_band=None, aerosol_type='no_aerosol', mcica=False, random_number_generator='mersenne_twister', **kwargs)

	
	Parameters

	
	cloud_overlap_method (int) – Choose the method to do overlap with:

	’clear_only’ = Clear only (no clouds)

	’random’ = Random

	’maximum_random’ = Maximum/Random

	’maximum’ = Maximum.

	cloud_optical_properties (string) – Choose how cloud optical properties are calculated:

	direct_input = Cloud fraction, cloud optical depth, single scattering albedo, cloud
asymmetry parameter and cloud forward scattering fraction are input. Cloud forward scattering
fraction is used to scale the optical depth, single scattering albedo and asymmetry parameter.
The latter three parameters are then used in the radiative transfer calculations.
Other cloud properties (ie cloud particle size) are irrelevant.

	single_cloud_type = Cloud fraction and cloud physical properties are input,
ice and liquid clouds are treated together, cloud absorptivity is a constant value (0.060241).
Not available with McICA.

	liquid_and_ice_clouds = Cloud fraction and cloud physical properties are input, ice and liquid
clouds are treated separately. Cloud optical depth, single scattering albedo and cloud asymmetry
parameter are calculated from the cloud ice and water particle sizes and the mass content of cloud
ice and cloud water.

	cloud_ice_properties (string) – set bounds on ice particle size. This is not used if ‘cloud_optical_properties’ == ‘direct_input’.

	ebert_curry_one = ice particle has effective radius >= 10.0 micron [Ebert and Curry 1992] [http://onlinelibrary.wiley.com/doi/10.1029/91JD02472/abstract]
Not available with McICA.

	ebert_curry_two = ice particle has effective radius between 13.0 and
130.0 micron [Ebert and Curry 1992] [http://onlinelibrary.wiley.com/doi/10.1029/91JD02472/abstract]

	key_streamer_manual = ice particle has effective radius between 5.0 and 131.0 micron
[Key, Streamer Ref. Manual, 1996] [https://stratus.ssec.wisc.edu/streamer/userman.pdf]

	fu = ice particle has generalised effective size (dge) between 5.0 and 140.0 micron
[Fu, 1996] [http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1996)009%3C2058%3AAAPOTS%3E2.0.CO%3B2]. (dge = 1.0315 * r_ec)

Default value is 0.

	cloud_liquid_water_properties (string) – set treatment of cloud liquid water. This is not used if ‘cloud_optical_properties’ == ‘direct_input’.

	radius_independent_absorption = use radius independent absorption coefficient
Not available with McICA.

	radius_dependent_absorption = use radius dependent absorption coefficient (radius between 2.5 and 60 micron)

	solar_variability_method (int) – set the solar variability model used by RRTMG.

	solar_variability_method = -1:

	If use_solar_constant_from_fortran = True: No solar variability and no solar cycle
with a solar constant of 1368.22 \(W m^{-2}\).

	If use_solar_constant_from_fortran = False: Solar variability defined by setting
non-zero scale factors in solar_variability_by_band.

	solar_variability_method = 0:

	If use_solar_constant_from_fortran = True: No solar variability and no solar cycle
with a solar constant of 1360.85 \(W m^{-2}\), with facular and
sunspot effects fixed to the mean of solar cycles 13-24.

	If use_solar_constant_from_fortran = False: No solar variability and no solar cycle.

	solar_variability_method = 1: Solar variability using the NRLSSI2 solar model
with solar cycle contribution determined by solar_cycle_fraction in
the model state, and facular and sunspot adjustment scale factors specified
in facular_sunspot_amplitude.

	solar_variability_method = 2: Solar variability using the NRLSSI2 solar model
using solar cycle determined by direct specification of Mg (facular)
and SB (sunspot) indices provided in facular_sunspot_amplitude.
solar_constant is ignored.

	solar_variability_method = 3:

	If use_internal_solar_constant = True: No solar variability and no solar cycle
with a solar constant of 1360.85 \(W m^{-2}\).

	If use_internal_solar_constant = False: scale factors in solar_variability_by_band.

	use_solar_constant_from_fortran (bool) – If False, the solar constant is taken from the constants library. The default
value is False.

	ignore_day_of_year (bool) – If True, the solar output does not vary by day of year (i.e, higher close to the
solstices and lesser close to the equinoxes). Default value is False.

	facular_sunspot_amplitude (array of dimension 2) – Facular and Sunspot amplitude variability parameters, described previously.

	solar_variability_by_band (array of dimension 14 = number of spectral bands) – scale factors for solar variability in all spectral bands.

	aerosol_type (string) – Type of aerosol inputs to RRTMG.

	no_aerosol: No Aerosol.

	ecmwf: ECMWF method. Requires aerosol optical depth at 55 micron as the
state quantity aerosol_optical_depth_at_55_micron.

	all_aerosol_properties: Input all aerosol optical properties.

	mcica (bool) –
	mcica = True: use the McICA version for the shortwave component of RRTMG

	mcica = False: use the nomcica version for the shortwave component of RRTMG

	random_number_generator (string) – Different methods of generating random numbers for McICA.
* kissvec
* mersenne_twister

Methods

	__init__([cloud_overlap_method, …])

	
	param cloud_overlap_method

	Choose the method to do overlap with:

	array_call(state)

	Get heating tendencies and shortwave fluxes.

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	num_ecmwf_aerosols

	

	num_reduced_g_intervals

	

	num_shortwave_bands

	

	rrtm_iplon

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.RRTMGShortwave.__call__

	
RRTMGShortwave.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.GrayLongwaveRadiation

	
class climt.GrayLongwaveRadiation(tendencies_in_diagnostics=False, name=None)

	
	
__init__(tendencies_in_diagnostics=False, name=None)

	Initializes the Stepper object.

	Parameters

	
	tendencies_in_diagnostics (bool, optional) – A boolean indicating whether this object will put tendencies of
quantities in its diagnostic output.

	name (string, optional) – A label to be used for this object, for example as would be used for
Y in the name “X_tendency_from_Y”. By default the class name in
lowercase is used.

Methods

	__init__([tendencies_in_diagnostics, name])

	Initializes the Stepper object.

	array_call(state)

	Gets tendencies and diagnostics from the passed model state.

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.GrayLongwaveRadiation.__call__

	
GrayLongwaveRadiation.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.Frierson06LongwaveOpticalDepth

	
class climt.Frierson06LongwaveOpticalDepth(linear_optical_depth_parameter=0.1, longwave_optical_depth_at_equator=6, longwave_optical_depth_at_poles=1.5, **kwargs)

	
	
__init__(linear_optical_depth_parameter=0.1, longwave_optical_depth_at_equator=6, longwave_optical_depth_at_poles=1.5, **kwargs)

	
	Parameters

	
	linear_optical_depth_parameter (float, optional) – The constant \(f_l\) which
determines how much of the variation of \(\tau\) with pressure
is linear rather than quartic.
\(\tau = \tau_0 [f_l \frac{p}{p_s} + (1 - f_l) (\frac{p}{p_s})^4]\)
Default is 0.1 as in [Frierson et al., 2006] [http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1].

	longwave_optical_depth_at_equator (float, optional) – The value of \(\tau_0\)
at the equator.
Default is 6 as in [Frierson et al., 2006] [http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1].

	longwave_optical_depth_at_poles (float, optional) – The value of \(\tau_0\)
at the poles.
Default is 1.5 as in [Frierson et al., 2006] [http://journals.ametsoc.org/doi/abs/10.1175/JAS3753.1].

Methods

	__init__([linear_optical_depth_parameter, …])

	
	param linear_optical_depth_parameter

	The constant \(f_l\) which

	array_call(state)

	Gets diagnostics from the passed model state.

Attributes

	diagnostic_properties

	

	input_properties

	

climt.Frierson06LongwaveOpticalDepth.__call__

	
Frierson06LongwaveOpticalDepth.__call__(state)

	Gets diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	diagnostics – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Return type

	dict

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.Instellation

	
class climt.Instellation(**kwargs)

	Calculates the zenith angle and star-planet correction
factor given orbital parameters. Currently useful only
for Earth-sun system.

	
__init__(**kwargs)

	Initializes the Stepper object.

Methods

	__init__(**kwargs)

	Initializes the Stepper object.

	array_call(state)

	Calculate zenith angle.

Attributes

	diagnostic_properties

	

	input_properties

	

climt.Instellation.__call__

	
Instellation.__call__(state)

	Gets diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	diagnostics – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Return type

	dict

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.EmanuelConvection

	
class climt.EmanuelConvection(minimum_convecting_layer=1, autoconversion_water_content_threshold=0.0011, autoconversion_temperature_threshold=-55, entrainment_mixing_coefficient=1.5, downdraft_area_fraction=0.05, precipitation_fraction_outside_cloud=0.12, speed_water_droplets=50.0, speed_snow=5.5, rain_evaporation_coefficient=1.0, snow_evaporation_coefficient=0.8, convective_momentum_transfer_coefficient=0.7, downdraft_surface_velocity_coefficient=10.0, convection_bouyancy_threshold=0.9, mass_flux_relaxation_rate=0.1, mass_flux_damping_rate=0.1, reference_mass_flux_timescale=300.0, **kwargs)

	The Emanuel convection scheme from [Emanuel and Zivkovic-Rothman] [http://journals.ametsoc.org/doi/abs/10.1175/1520-0469(1999)056%3C1766%3ADAEOAC%3E2.0.CO%3B2]

	
__init__(minimum_convecting_layer=1, autoconversion_water_content_threshold=0.0011, autoconversion_temperature_threshold=-55, entrainment_mixing_coefficient=1.5, downdraft_area_fraction=0.05, precipitation_fraction_outside_cloud=0.12, speed_water_droplets=50.0, speed_snow=5.5, rain_evaporation_coefficient=1.0, snow_evaporation_coefficient=0.8, convective_momentum_transfer_coefficient=0.7, downdraft_surface_velocity_coefficient=10.0, convection_bouyancy_threshold=0.9, mass_flux_relaxation_rate=0.1, mass_flux_damping_rate=0.1, reference_mass_flux_timescale=300.0, **kwargs)

	
	Parameters

	
	minimum_convecting_layer (int, optional) – The least model level from which convection can be initiated. Normally set
to 1 if using bulk PBL schemes. Else, it should be set to the first
model level at which the temperature is defined.

	autoconversion_water_content_threshold (float, optional) – The amount of water vapour in \(kg/kg\)
above which condensation occurs in warm (above freezing point of water)
clouds. This value linearly reduces to zero between the freezing point and
the autoconversion_temperature_threshold.

	autoconversion_temperature_threshold (float, optional) – The temperature in \(^\circ C\) below which
all water vapour is converted to rain/snow.

	entrainment_mixing_coefficient (float, optional) – The coefficient of mixing for entrainment of environmental air into
the cloud.

	downdraft_area_fraction (float, optional) – The fractional area covered by unsaturated downdrafts.

	precipitation_fraction_outside_cloud (float, optional) – The fraction of precipitation falling outside the cloud.

	speed_water_droplets (float, optional) – The speed of descent of water droplets in \(Pa/s\).

	speed_snow (float, optional) – The speed of descent of snow in \(Pa/s\).

	rain_evaporation_coefficient (float, optional) – Coefficient governing the rate of evaporation of rain.

	snow_evaporation_coefficient (float, optional) – Coefficient governing the rate of evaporation of snow.

	convective_momentum_transfer_coefficient (float, optional) – Coefficient between 0 and 1 governing momentum transport
by clouds. A value of 1 shuts off momentum transport.

	downdraft_surface_velocity_coefficient (float, optional) – Coefficient mulitplying the downdraft mass flux to calculate
the downdraft velocity scale.

	convection_bouyancy_threshold (float, optional) – The maximum negative temperature perturbation in \(degK\) a parcel can
have below the temperature at its level of free convection.
If difference is greater, and previous cloud base mass flux
is zero, there is no convection.

	mass_flux_relaxation_rate (float, optional) – Coefficient governing the rate of relaxation to subcloud-layer
quasi-equilibrium.

	mass_flux_damping_rate (float, optional) – Coefficient which damps the currently calculated mass flux towards
the value from the previous time step.

	reference_mass_flux_timescale (float, optional) – Timescale used to calculate the actual damping coefficient along with
mass_flux_damping_rate and the current time step.

Methods

	__init__([minimum_convecting_layer, …])

	
	param minimum_convecting_layer

	The least model level from which convection can be initiated. Normally set

	array_call(raw_state, timestep)

	Get convective heating and moistening.

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.EmanuelConvection.__call__

	
EmanuelConvection.__call__(state, timestep)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	
	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	timestep (timedelta) – The time over which the model is being stepped.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.DryConvectiveAdjustment

	
class climt.DryConvectiveAdjustment(tendencies_in_diagnostics=False, name=None)

	A conservative scheme to keep the temperature profile close to the
dry adiabat if it is super-adiabatic.

	
__init__(tendencies_in_diagnostics=False, name=None)

	Initializes the Stepper object.

	Parameters

	
	tendencies_in_diagnostics (bool, optional) – A boolean indicating whether this object will put tendencies of
quantities in its diagnostic output based on first order time
differencing of output values.

	name (string, optional) – A label to be used for this object, for example as would be used for
Y in the name “X_tendency_from_Y”. By default the class name in
lowercase is used.

Methods

	__init__([tendencies_in_diagnostics, name])

	Initializes the Stepper object.

	array_call(state, time_step)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

	gas_constant(q)

	Calculate gas constant based on amount of q

	heat_capacity(q)

	Calculate heat capacity based on amount of q

Attributes

	diagnostic_properties

	

	input_properties

	

	output_properties

	

	tendencies_in_diagnostics

	

	time_unit_name

	

	time_unit_timedelta

	

	tracer_dims

	

	uses_tracers

	

climt.DryConvectiveAdjustment.__call__

	
DryConvectiveAdjustment.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state
forward in time according to the timestep.

	Parameters

	
	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	timestep (timedelta) – The amount of time to step forward.

	Returns

	
	diagnostics (dict) – Diagnostics from the timestep of the input state.

	new_state (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the timestep after input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the Stepper instance
for other reasons.

climt.SimplePhysics

	
class climt.SimplePhysics(simulate_cyclone=False, large_scale_condensation=True, boundary_layer=True, surface_fluxes=True, use_external_surface_temperature=True, use_external_surface_specific_humidity=False, top_of_boundary_layer=85000.0, boundary_layer_influence_height=20000.0, drag_coefficient_heat_fluxes=0.0011, base_momentum_drag_coefficient=0.0007, wind_dependent_momentum_drag_coefficient=6.5e-05, maximum_momentum_drag_coefficient=0.002, **kwargs)

	Interface to the simple physics package.

Reed and Jablonowski 2012:
title = {Idealized tropical cyclone simulations of intermediate complexity: a test case for {AGCMs}}
journal = {Journal of Advances in Modeling Earth Systems}

	
__init__(simulate_cyclone=False, large_scale_condensation=True, boundary_layer=True, surface_fluxes=True, use_external_surface_temperature=True, use_external_surface_specific_humidity=False, top_of_boundary_layer=85000.0, boundary_layer_influence_height=20000.0, drag_coefficient_heat_fluxes=0.0011, base_momentum_drag_coefficient=0.0007, wind_dependent_momentum_drag_coefficient=6.5e-05, maximum_momentum_drag_coefficient=0.002, **kwargs)

	
	Parameters

	
	simulate_cyclone (bool) – Option indicating whether the package must
simulate a tropical cyclone. This was the original test case this
physics package was used for.
Default value is False.

	large_scale_condensation (bool) – Option indicating whether the package
must add moisture and heating tendencies due to large scale condensation.
Default value is True.

	boundary_layer (bool) – Option indicating whether the package must simulate
a simple boundary layer. It is recommended that this option remain True
unless another boundary layer component is being used.
Default value is True.

	surface_fluxes (bool) – Option indicating whether the package must calculate
surface fluxes. It is recommended that this option remain True unless the
fluxes are being calculated by another component.
Default value is True.

	use_external_surface_temperature (bool) – Option indicating whether the package
must use surface temperature available in the model state.
If False, an internally generated surface temperature is used.
Default value is True.

	top_of_boundary_layer (float) – The nominal top of the boundary layer in \(Pa\).

	boundary_layer_influence_height (float) – The decay of the influence of the boundary layer above
top_of_boundary_layer in \(Pa\). The influence
reduces to \(1/e\) times the boundary layer value at
a pressure given by top_of_boundary_layer+boundary_layer_influence_height.

	drag_coefficient_heat_fluxes (float) – The wind speed independent drag coefficient for latent and sensible
heat fluxes.

	base_momentum_drag_coefficient (float) – The minimum drag coefficient for winds.

	wind_dependent_momentum_drag_coefficient (float) – The part of the momentum drag coefficient that depends on the surface wind
speed. The total drag coefficient is given by
base_momentum_drag_coefficient + wind_dependent_momentum_drag_coefficient*u_base,
where u_base is the surface wind speed.

	maximum_momentum_drag_coefficient (float) – This drag coefficient is used for surface wind speeds exceeding \(20 m/s\).

Methods

	__init__([simulate_cyclone, …])

	
	param simulate_cyclone

	Option indicating whether the package must

	array_call(state, timestep)

	Calculate surface and boundary layer tendencies.

Attributes

	diagnostic_properties

	

	input_properties

	

	output_properties

	

	tendencies_in_diagnostics

	

	time_unit_name

	

	time_unit_timedelta

	

	tracer_dims

	

	uses_tracers

	

climt.SimplePhysics.__call__

	
SimplePhysics.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state
forward in time according to the timestep.

	Parameters

	
	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	timestep (timedelta) – The amount of time to step forward.

	Returns

	
	diagnostics (dict) – Diagnostics from the timestep of the input state.

	new_state (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the timestep after input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the Stepper instance
for other reasons.

climt.SlabSurface

	
class climt.SlabSurface(tendencies_in_diagnostics=False, name=None)

	Calculate the surface energy balance.

This component assumes the surface is a slab of possibly
varying heat capacity, and calculates the surface temperature.

	
__init__(tendencies_in_diagnostics=False, name=None)

	Initializes the Stepper object.

	Parameters

	
	tendencies_in_diagnostics (bool, optional) – A boolean indicating whether this object will put tendencies of
quantities in its diagnostic output.

	name (string, optional) – A label to be used for this object, for example as would be used for
Y in the name “X_tendency_from_Y”. By default the class name in
lowercase is used.

Methods

	__init__([tendencies_in_diagnostics, name])

	Initializes the Stepper object.

	array_call(raw_state)

	Gets tendencies and diagnostics from the passed model state.

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.SlabSurface.__call__

	
SlabSurface.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.BucketHydrology

	
class climt.BucketHydrology(soil_moisture_max=0.15, beta_parameter=0.75, specific_latent_heat_of_water=2260000, bulk_coefficient=0.0011, **kwargs)

	Manages surface energy and moisture balance
This component assumes that the surface is a slab with some heat capacity and moisture holding capacity.
Calculates the sensible and latent heat flux, takes precipitation values as input.

	
__init__(soil_moisture_max=0.15, beta_parameter=0.75, specific_latent_heat_of_water=2260000, bulk_coefficient=0.0011, **kwargs)

	Args:
soil_moisture_max:

The maximum moisture that can be held by the surface_temperature

	beta_parameter:

	A constant value that is used in the beta_factor calculation.

	bulk_coefficient:

	The bulk transfer coefficient that is used to calculate
maximum evaporation rate and sensible heat flux

Methods

	__init__([soil_moisture_max, …])

	Args: soil_moisture_max: The maximum moisture that can be held by the surface_temperature beta_parameter: A constant value that is used in the beta_factor calculation.

	array_call(state, timestep)

	Calculates sensible and latent heat flux and returns surface temperature and soil moisture after timestep.

Attributes

	diagnostic_properties

	

	input_properties

	

	output_properties

	

	tendencies_in_diagnostics

	

	time_unit_name

	

	time_unit_timedelta

	

	tracer_dims

	

	uses_tracers

	

climt.BucketHydrology.__call__

	
BucketHydrology.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state
forward in time according to the timestep.

	Parameters

	
	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	timestep (timedelta) – The amount of time to step forward.

	Returns

	
	diagnostics (dict) – Diagnostics from the timestep of the input state.

	new_state (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the timestep after input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the Stepper instance
for other reasons.

climt.IceSheet

	
class climt.IceSheet(maximum_snow_ice_height=10, **kwargs)

	1-d snow-ice energy balance model.

	
__init__(maximum_snow_ice_height=10, **kwargs)

	
	Parameters

	
	maximum_snow_ice_height (float) – The maximum combined height of snow and ice handled by the model in \(m\).

	levels (int) – The number of levels on which temperature must be output.

Methods

	__init__([maximum_snow_ice_height])

	
	param maximum_snow_ice_height

	The maximum combined height of snow and ice handled by the model in \(m\).

	array_call(raw_state, timestep)

	Gets diagnostics from the current model state and steps the state forward in time according to the timestep.

	calculate_new_ice_temperature(rho, …[, …])

	

Attributes

	diagnostic_properties

	

	input_properties

	

	output_properties

	

	tendencies_in_diagnostics

	

	time_unit_name

	

	time_unit_timedelta

	

	tracer_dims

	

	uses_tracers

	

climt.IceSheet.__call__

	
IceSheet.__call__(state, timestep)

	Gets diagnostics from the current model state and steps the state
forward in time according to the timestep.

	Parameters

	
	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	timestep (timedelta) – The amount of time to step forward.

	Returns

	
	diagnostics (dict) – Diagnostics from the timestep of the input state.

	new_state (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the timestep after input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the Stepper instance
for other reasons.

climt.HeldSuarez

	
class climt.HeldSuarez(sigma_boundary_layer_top=0.7, k_f=1.1574074074074073e-05, k_a=2.8935185185185185e-07, k_s=2.8935185185185184e-06, equator_pole_temperature_difference=60, delta_theta_z=10, **kwargs)

	Provide the Held-Suarez forcing.

Produces the forcings proposed by Held and Suarez for the intercomparison
of dynamical cores of AGCMs. Relaxes the temperature field to a zonally
symmetric equilibrium state, and uses Rayleigh damping of low-level winds
to represent boundary-layer friction. Details can be found in
[Held and Suarez (1994)] [http://journals.ametsoc.org/doi/pdf/10.1175/1520-0477(1994)075%3C1825%3AAPFTIO%3E2.0.CO%3B2].

References

	Held, I. and M. Suarez, 1994:

	A Proposal for the Intercomparison of the
Dynamical Cores of Atmospheric General Circulation Models.
Bull. Amer. Meteor. Soc., 75, 1825-1830,
doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

	
__init__(sigma_boundary_layer_top=0.7, k_f=1.1574074074074073e-05, k_a=2.8935185185185185e-07, k_s=2.8935185185185184e-06, equator_pole_temperature_difference=60, delta_theta_z=10, **kwargs)

	
	Parameters

	
	sigma_boundary_layer_top (float) – The height of the boundary
layer top in sigma coordinates. Corresponds to $sigma_b$
in Held and Suarez, 1994. Default is 0.7.

	k_f (float) – Velocity damping coefficient at the surface in \(s^{-1}\).
Default is \(1\ day^{-1}\).

	k_a (float) – Parameter used in defining vertical profile of the
temperature damping in \(s^{-1}\), as outlined in
Held and Suarez, 1994.
Default is \(1/40\ day^{-1}\).

	k_s (float) – Parameter used in defining vertical profile of the
temperature damping in \(s^{-1}\), as outlined in
Held and Suarez, 1994.
Default is \(1/4\ day^{-1}\).

	equator_pole_temperature_difference (float) – Equator to pole
temperature difference, in K.
Default is 60K.

	delta_theta_z (float) – Parameter used in defining the equilibrium
temperature profile as outlined in Held and Suarez, 1994, in K.
Default is 10K.

Methods

	__init__([sigma_boundary_layer_top, k_f, …])

	
	param sigma_boundary_layer_top

	The height of the boundary

	array_call(raw_state)

	Get the Held-Suarez forcing tendencies

Attributes

	diagnostic_properties

	

	input_properties

	

	name

	

	tendencies_in_diagnostics

	

	tendency_properties

	

	tracer_tendency_time_unit

	

	uses_tracers

	

climt.HeldSuarez.__call__

	
HeldSuarez.__call__(state)

	Gets tendencies and diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	
	tendencies (dict) – A dictionary whose keys are strings indicating
state quantities and values are the time derivative of those
quantities in units/second at the time of the input state.

	diagnostics (dict) – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

climt.DcmipInitialConditions

	
class climt.DcmipInitialConditions(condition_type='baroclinic_wave', add_perturbation=True, moist=False, **kwargs)

	Climt interface to the DCMIP initial conditions.
Currently only provides interfaces to tests 4 and 5.

	
__init__(condition_type='baroclinic_wave', add_perturbation=True, moist=False, **kwargs)

	Initialize the DCMIP module.

	Parameters

	
	condition_type (str, optional) – The type of initial conditions desired. Can be
one of 'baroclinic_wave' or
'tropical_cyclone'.

	add_perturbation (bool, optional) – Whether a perturbation must be added. Only applies
to the baroclinic wave test.

Methods

	__init__([condition_type, add_perturbation, …])

	Initialize the DCMIP module.

	array_call(state)

	Gets diagnostics from the passed model state.

Attributes

	diagnostic_properties

	

	input_properties

	

climt.DcmipInitialConditions.__call__

	
DcmipInitialConditions.__call__(state)

	Gets diagnostics from the passed model state.

	Parameters

	state (dict) – A model state dictionary satisfying the input_properties of this
object.

	Returns

	diagnostics – A dictionary whose keys are strings indicating
state quantities and values are the value of those quantities
at the time of the input state.

	Return type

	dict

	Raises

	
	KeyError – If a required quantity is missing from the state.

	InvalidStateError – If state is not a valid input for the TendencyComponent instance.

Component Manual

	RRTMG - The Rapid Radiative Transfer Model
	Introduction
	Treatment of Clouds
	McICA

	nomcica

	Calculation of radiative fluxes
	Longwave

	Clouds with McICA
	Cloud properties

	Calculation of cloud properties
	Longwave

	Shortwave

	Cloud ice properties
	ebert_curry_one

	ebert_curry_two

	key_streamer_manual

	fu

	Cloud liquid properties

	Cloud overlap method

	Differences in cloud input with nomcica
	Cloud properties

	Cloud overlap method

RRTMG - The Rapid Radiative Transfer Model

Introduction

Treatment of Clouds

There are two methods in RRTMG, which handle clouds in different ways.

McICA

McICA allows us to have fractional cloud areas,
by randomly assigning some wavelengths to see cloud
and other wavelengths to see no cloud.
For example if we have a cloud fraction of 40%,
then 40% of the wavelengths see cloud, while the other 60%
do not.

nomcica

With nomcica, all of the wavelengths see some cloud.
Using this method for the shortwave we can only have cloud area fractions of
zero and one, representing clear and completely overcast skies.
On the other hand, if we are calculating longwave fluxes, we can also use
fractional cloud area fractions.

Calculation of radiative fluxes

Longwave

Two properties are needed to calculate the longwave radiative fluxes;
the absorptivity (or transmittance which equals one minus the absorptivity)
and the emissivity.
Values of these two properties are needed for each model layer,
for both cloudy and clear sky regimes and for each waveband.

radld = radld * (1 - atrans(lev)) * (1 - efclfrac(lev,ib)) + &
 gassrc * (1 - cldfrac(lev)) + bbdtot * atot(lev) * cldfrac(lev)

The radiative fluxes at each layer(radld
on the left hand side of the equations) are calculated from the
radiative fluxes from the layer above (radld
on the right hand side of the equation) and the properties of
the layer.
The first term in the equation above is fraction of radiative
flux from the layer above that is transmitted through the layer.
atrans(lev) is the gaseous absorptivity and
efclfrac is the absorptivity of the cloud weighted by the
cloud area fraction (here for nomcica [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrn.f90#L307]).
The other two terms in the above equation are emission terms.
The first of these represents emission from gases in the area of clear sky
and the second represents emission from gases and cloud from the area of cloud.
The equation for the upward longwave flux radlu is very similar: the flux
is calculated from the radiative flux from the layer below and the properties
of the layer.

These equations are used with nomcica when the rrtmg_cloud_overlap_method
is set to random and the cloud area fraction is greater
than 10-6. These calculations are in the rrtmg_lw_rtrn.f90 file,
in the downward radiative transfer loop [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrn.f90#L350-L417] and
upward radiative transfer loop [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrn.f90#L482-L485] respectively.
These equations are also used with McICA. In this case, efclfrac is either zero or the non-weighted
absorptivity of the cloud and this is allocated randomly to each waveband,
with the number of waveband receiving each depending on the cloud area fraction.
For McICA, these calculations are in the rrtmg_lw_rtrnmc.f90 file, in the
downward loop [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrnmc.f90#L339-L406] and upward loop [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrnmc.f90#L471-L474] respectively.
In both files, in the downward loop there are three different ways of calculating
the absorptivity, which use different approximations for the exponential of the
optical depth. The one that is used depends on the optical depth of the clear sky
and of the total sky.

With nomcica, if the rrtmg_cloud_overlap_method is set to any of the
other options except random, the rrtmg_lw_rtrnmr.f90 file
is called. Then, the radiative fluxes are calculated as follows, at the end of the
downward radiative transfer loop [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/rrtmg_lw_rtrnmr.f90#L571-L575].

cldradd = cldradd * (1._rb - atot(lev)) + cldfrac(lev) * bbdtot * atot(lev)
clrradd = clrradd * (1._rb-atrans(lev)) + (1._rb - cldfrac(lev)) * gassrc
radld = cldradd + clrradd

The downward radiative flux is split into the clear sky and cloudy components,
clrradd and cldradd respectively.
Both components contain a transmittance term from the clear or cloudy part,
respectively, of the layer above and an emission term. The emission terms are
identical to those described above.
The fluxes clrradd and cldradd are modified by an amount that depends on the change in
cloud fraction between layers before they are used for the calculation of fluxes
in the layer below.

Clouds with McICA

A brief description of the different options that can be used in RRTMG with McICA and the input parameters required in each case.

Cloud properties

There are three options for the RRTMG inflag, as given in the climt dictionary: rrtmg_cloud_props_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L18-L22]

 rrtmg_cloud_props_dict = {
 'direct_input': 0,
 'single_cloud_type': 1,
 'liquid_and_ice_clouds': 2
}

With McICA, we cannot use single_cloud_type, but can choose between direct_input and liquid_and_ice_clouds.
If we choose direct_input, we input the longwave_optical_thickness_due_to_cloud, shortwave_optical_thickness_due_to_cloud, as well as the shortwave parameters single_scattering_albedo_due_to_cloud, cloud_asymmetry_parameter and cloud_forward_scattering_fraction.
The cloud_forward_scattering_fraction is used to scale the other shortwave parameters (shortwave_optical_thickness_due_to_cloud, single_scattering_albedo_due_to_cloud and cloud_asymmetry_parameter), but it is not directly used in the radiative transfer calculations.
If the cloud_forward_scattering_fraction is set to zero, no scaling is applied.
The other cloud properties, namely cloud_ice_particle_size and cloud_water_droplet_radius, mass_content_of_cloud_ice_in_atmosphere_layer, and mass_content_of_cloud_liquid_water_in_atmosphere_layer are completely unused.
The RRTMG iceflag and liqflag are irrelevant.

On the other hand, if we choose liquid_and_ice_clouds,
any input values for longwave_optical_thickness_due_to_cloud, shortwave_optical_thickness_due_to_cloud, single_scattering_albedo_due_to_cloud and cloud_asymmetry_parameter are irrelevant.
Instead, these parameters are calculated from the cloud ice and water droplet particle sizes (cloud_ice_particle_size and cloud_water_droplet_radius), as well as the cloud ice and water paths (mass_content_of_cloud_ice_in_atmosphere_layer, mass_content_of_cloud_liquid_water_in_atmosphere_layer).
The methods used for the calculations depend on the cloud ice and water properties; iceflag and liqflag in RRTMG.

Regardless of the other cloud input type, cloud_area_fraction_in_atmosphere_layer is required,
and is used in McICA to determine how much of the wavelength spectrum sees cloud and how much does not.

Calculation of cloud properties

Longwave

For the longwave, the only cloud property of interest for calculating radiative fluxes in RRTMG, is the optical depth. This is calculated at the end of the longwave cldprmc submodule [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_lw/rrtmg_lw_cldprmc.f90#L246-L247] as:

taucmc(ig,lay) = ciwpmc(ig,lay) * abscoice(ig) + &
 clwpmc(ig,lay) * abscoliq(ig)

Values of cloud optical depth taucmc are calculated for each model layer (pressure), lay, and each g-interval, ig.
The cloud ice and liquid absorption coefficients (abscoice and abscoliq) are multiplied by the cloud ice and liquid water paths (ciwpmc and clwpmc) respectively, to give the ice cloud optical depth and the liquid water cloud optical depth.
The cloud ice and liquid water paths are input by the user, in climt as mass_content_of_cloud_ice_in_atmosphere_layer and mass_content_of_cloud_liquid_water_in_atmosphere_layer respectively.
The cloud ice and liquid absorption coefficients are calculated based on the ice and liquid water particle sizes (specified by the user), and this calculation depends on the choice of iceflag and liqflag.

Shortwave

For the shortwave, there are three cloud properties, which affect the radiative flux calculation in RRTMG, namely the optical depth, the single scattering albedo and the asymmetry parameter.

The shortwave optical depth is calculated as:

taucmc(ig,lay) = tauice + tauliq

with

tauice = (1 - forwice(ig) + ssacoice(ig)) * ciwpmc(ig,lay) * extcoice(ig)
tauliq = (1 - forwliq(ig) + ssacoliq(ig)) * clwpmc(ig,lay) * extcoliq(ig)

The single scattering albedo is calculated as:

ssacmc(ig,lay) = (scatice + scatliq) / taucmc(ig,lay)

with

scatice = ssacoice(ig) * (1._rb - forwice(ig)) / (1._rb - forwice(ig) * ssacoice(ig)) * tauice
scatliq = ssacoliq(ig) * (1._rb - forwliq(ig)) / (1._rb - forwliq(ig) * ssacoliq(ig)) * tauliq

The asymmetry parameter is given by:

asmcmc(ig,lay) = 1.0_rb / (scatliq + scatice) * (&
 scatliq * (gliq(ig) - forwliq(ig)) / (1.0_rb - forwliq(ig)) + &
 scatice * (gice(ig) - forwice(ig)) / (1.0_rb - forwice(ig)))

The original RRTMG code for these calculations is at the end of the shortwave cldprmc submodule [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_sw/rrtmg_sw_cldprmc.f90#L297-L337].

Values of optical depth, single scattering albedo and asymmetry parameter are calculated for each model layer (pressure), lay, and each g-interval, ig. The cloud ice and liquid water paths (ciwpmc and clwpmc) are input by the user.
The other parameters (extcoice, extcoliq, ssacoice, ssacoliq, gice, gliq, forwice, forwliq) are calculated based on the ice and liquid water particle sizes and this calculation depends on the choice of iceflag and liqflag.

Cloud ice properties

There are four options for the RRTMG iceflag. These are given in the climt dictionary: rrtmg_cloud_ice_props_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L29-L34]

rrtmg_cloud_ice_props_dict = {
 'ebert_curry_one': 0,
 'ebert_curry_two': 1,
 'key_streamer_manual': 2,
 'fu': 3
}

ebert_curry_one

For the longwave, ebert_curry_one gives an absorption coefficient of

abscoice = 0.005 + 1.0 / radice

Here, radice is the ice particle size and the absorption coefficient is the same for all wavebands.

ebert_curry_one should not be used for the shortwave component with McICA.

ebert_curry_two

ebert_curry_two is the default choice for cloud ice optical properties in climt.
In this case, the longwave absorption coefficient is calculated in the lw_cldprmc file [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_lw/rrtmg_lw_cldprmc.f90#L188-L193] as follows.

abscoice(ig) = absice1(1,ib) + absice1(2,ib)/radice

The absorption coefficient abscoice is a function of g-interval ig and is made up of two contributions.
The first of these absice1(1, ib) comes from a look up table and is given in [m2/ g].
ib provides an index for the look up table, based on the waveband of the g-interval.
absice1(2,ib) also comes from a look up table and is given in [microns m2/ g]. It is divided by radice, the cloud ice particle size, providing an ice particle size dependence of the absorption coefficient.
Although the syntax does not emphasise it, the absorption coefficient may also depend on model layer (pressure), as radice can have model layer dependence.
radice comes from the input property labeled cloud_ice_particle_size in climt.
The ice particle size dependent term is more important than the independent term (absice1(2,ib)/radice > absice1(1,ib)) at all wavebands for ice particle sizes less than 88 microns.
Using ebert_curry_two, the ice particle size must be in the range [13, 130] microns, and even for larger particle sizes (> 88), the ice particle size dependent term is more important than the independent term for four of the five wavebands.

For the shortwave, the parameters (required for the optical depth, single scattering albedo and asymmetry) are calculated in the sw_cldprmc file [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_sw/rrtmg_sw_cldprmc.f90#L182-L208] as follows.

extcoice(ig) = abari(icx) + bbari(icx)/radice
ssacoice(ig) = 1._rb - cbari(icx) - dbari(icx) * radice
gice(ig) = ebari(icx) + fbari(icx) * radice
forwice(ig) = gice(ig)*gice(ig)

abari, bbari, cbari, dbari, ebari and fbari are all look up tables, containing five values, which correspond to five different wavebands.
The choice of waveband is indicated by icx.
The particle size dependence comes from radice, so each parameter consists of both a size independent and a size dependent contribution.

[image: _images/ice_cloud_optical_depth.png]

The dependence of cloud optical depth taucmc on cloud ice particle size (with an ice water path of 1), with different lines representing the different wavebands.

key_streamer_manual

In this case, both the longwave absorption coefficient and three of the shortwave parameters (excoice, ssacoice, gice) are interpolated from look up tables.
Comments in the RRTMG code state that these look up tables are for a spherical ice particle parameterisation.
The look up tables contain 42 values for each of the 16 longwave and 14 shortwave wavebands.
The 42 values correspond to different ice particle radii, evenly spaced in the range [5, 131] microns.
Ice particles must be within this range, otherwise an error is thrown.

The shortwave parameter forwice is calculated as the square of gice.

fu

The longwave absorption coefficient and shortwave parameters extcoice, ssacoice and gice are interpolated from look up tables.
The look up tables differ to those in key_streamer_manual, and
comments in the RRTMG code state that the look up tables for fu are for a hexagonal ice particle parameterisation.
The look up tables for fu are slightly larger than those for key_streamer_manual, and the range of allowed values for the ice particle size is corresponding larger ([5, 140] microns).

The shortwave parameter forwice is calculated from fdelta (again taken from look up tables) and ssacoice as follows.

forwice(ig) = fdelta(ig) + 0.5_rb / ssacoice(ig)

The longwave and shortwave parameter calculations can be found in the longwave cldprmc [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_lw/rrtmg_lw_cldprmc.f90#L211-L223] and shortwave cldprmc [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_lib/rrtmg_sw/rrtmg_sw_cldprmc.f90#L235-L262] subroutines respectively.

Cloud liquid properties

There are two options for the RRTMG liqflag. These are given in the climt dictionary: rrtmg_cloud_liquid_props_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L41-L44]

rrtmg_cloud_liquid_props_dict = {
 'radius_independent_absorption': 0,
 'radius_dependent_absorption': 1
}

For radius_independent_absorption, the longwave absorption coefficient is 0.0903614 for all wavebands.
This option should not be used for the shortwave.

radius_dependent_absorption is the default choice for cloud liquid water properties in climt.
In this case, the longwave absorption coefficient and the shortwave parameters extcoliq, ssacoliq, and gliq are interpolated from look up tables.
The look up tables have values for particle sizes in the range [2.5, 59.5] microns in 1 micron intervals (58 values) for each of the 16 longwave and 14 shortwave wavebands.
The shortwave parameter forwliq is calculated as the square of gliq.

[image: _images/liquid_cloud_optical_depth.png]

The dependence of cloud optical depth taucmc on cloud liquid water particle size (with a liquid water path of 1), with different lines representing the different wavebands.

Cloud overlap method

This is the RRTMG icld and is given in the climt dictionary: rrtmg_cloud_overlap_method_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L6-L11]

rrtmg_cloud_overlap_method_dict = {
 'clear_only': 0,
 'random': 1,
 'maximum_random': 2,
 'maximum': 3
}

If we choose clear_only, there are no clouds, regardless of the other input.
If we choose random, the g-intervals which see cloud are chosen randomly for
each model layer. This means that there is a dependence on vertical resolution:
if vertical resolution is increased, more layers contain the same cloud
and a larger portion of the wavelength spectrum sees some of the cloud.
With maximum_random, the g-intervals that see cloud in one model layer are
the same as those that see cloud in a neighbouring model layer.
This maximises the cloud overlap between neighbouring layers (within a single
cloud). If the cloud area fraction changes between layers, the additional
g-intervals that see (or don’t see) cloud are assigned randomly. Therefore, if
there are two clouds at different altitudes, separated by clear sky, the two
clouds overlap randomly with respect to each other. If maximum is selected,
cloud overlap is maximised both within and between clouds.

The implementation is in the mcica_subcol_gen_sw [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_sw/mcica_subcol_gen_sw.f90#L374-L497] and mcica_subcol_gen_lw [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/mcica_subcol_gen_lw.f90#L347-L470]
files, and consists firstly of assigning each g-interval a random number in the
range [0, 1]. For random, and maximum_random (cases 1 and 2 in
mcica_subcol_gen_sw [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_sw/mcica_subcol_gen_sw.f90#L374-L497] and mcica_subcol_gen_lw [https://github.com/CliMT/climt/blob/b74d69003bc6c88e99580fa3ff05d4ca886da033/climt/_lib/rrtmg_lw/mcica_subcol_gen_lw.f90#L347-L470]), random numbers are generated
for each layer, whereas for maximum (case 3) only one set of random numbers
is generated and applied to all the layers. For maximum_random, the random
numbers are recalculated to fulfill the assumption about overlap (this
recalculation is described below).
Whether a g-interval at a certain layer sees cloud depends on both the random
number it has been assigned and the cloud fraction at that layer. For example,
if the cloud area fraction is 30%, all g-intervals that have been assigned a
random number > 0.7 (approximately 30% of the g-intervals) will see cloud.
The other g-intervals will see clear-sky. If the cloud fraction is 20%, only
g-intervals with a random number > 0.8 will see cloud.
The recalculation of random numbers in the maximum_random case for a certain
model layer (layer 2), considers the assigned random numbers and cloud area
fraction of the layer above (layer 1).
If the g-interval sees cloud in layer 1, its random number in layer 2 is
changed so that it matches that in layer 1. This does not necessarily mean that
it will see cloud in layer 2, because the cloud fraction could be smaller in
layer 2 than layer 1 (so the requirement for seeing cloud would be increased).
The random numbers for the g-intervals in layer 2, which do not see cloud in
layer 1, are multiplied by one minus the cloud area fraction of layer 1, so that
the set of random numbers assigned to layer 2 are still randomly distributed in
the range [0, 1]. This is required so that the right proportion of g-intervals
in layer 2 see cloud.

Differences in cloud input with nomcica

Regarding the options that can be used with nomcica,
there are a few differences to those that can be used with McICA.

Cloud properties

For the longwave, we can choose single_cloud_type in the rrtmg_cloud_props_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L18-L22].
The longwave cloud optical depth is calculated as follows.

taucloud(lay,ib) = abscld1 * (ciwp(lay) + clwp(lay))

This gives us a cloud optical depth based on a single constant value, abscld1
and the total cloud water path.
Thus, for this option, the mass_content_of_cloud_ice_in_atmosphere_layer, and
mass_content_of_cloud_liquid_water_in_atmosphere_layer are needed as input.
single_cloud_type is not available for the shortwave.

If we choose liquid_and_ice_clouds, the calculations of the longwave and shortwave
optical properties from the cloud mass and particle sizes are the same as for McICA,
but are calculated for each waveband instead of each g-interval.

Cloud overlap method

With nomcica choosing a cloud overlap of random in the
rrtmg_cloud_overlap_method_dict [https://github.com/CliMT/climt/blob/39c1bcacd3b348ec63000d4b57d525e523203883/climt/_components/rrtmg/rrtmg_common.py#L6-L11] is different to choosing either
maximum_random or maximum. The latter two options do not differ.
If we choose random, the radiative flux transmitted from one layer to the next
does not care if it came from cloud or clear sky,
whereas with maximum_random, the cloudy and clear fluxes are separated and
treated separately from one model layer to the next.

Initialisation

	get_default_state(component_list[, …])

	Retrieves a reasonable initial state for the set of components given.

	get_grid([nx, ny, nz, …])

	
	param nx

	int, optional

climt.get_default_state

	
climt.get_default_state(component_list, grid_state=None, n_ice_interface_levels=30)

	Retrieves a reasonable initial state for the set of components given.

	Parameters

	
	component_list (list) – Components for which to retrieve an
initial state.

	grid_state (dict, optional) – An initial state containing grid
quantities. If none is given, a default will be created.

	n_ice_interface_levels (int, optional) – Number of vertical
interface levels to use for ice. Use None to disable the ice
vertical grid.

	Returns

	A reasonable initial state.

	Return type

	default_state (dict)

climt.get_grid

	
climt.get_grid(nx=None, ny=None, nz=28, n_ice_interface_levels=10, p_surf_in_Pa=None, p_toa_in_Pa=None, proportion_sigma_levels=0.1, proportion_isobaric_levels=0.25, x_name='lon', y_name='lat', latitude_grid='gaussian')

	
	Parameters

	
	nx – int, optional
Number of longitudinal points.

	ny – int, optional
Number of latitudinal points.

	nz – int, optional
Number of vertical mid levels.

	n_ice_interface_levels (int, optional) – Number of vertical
interface levels to use for ice. Use None to disable the ice
vertical grid.

	p_surf_in_Pa – float, optional
Surface pressure in Pa.

	x_name – str, optional
Name of latitudinal dimension

	y_name – str, optional
Name of longitudinal dimension

	latitude_grid – ‘gaussian’ or ‘regular’
Type of spacing to use for the latitudinal grid.

	Returns

	
	dict

	A model state containing grid quantities.

	Return type

	grid_state

General Utilities

This documents some utility functions available in climt.
Most of the constants functionality is inherited from sympl.

Constants

	list_available_constants()

	Prints all the constants currently registered with sympl.

	set_constants_from_dict(constant_descriptions)

	Modify/Add constants in the library.

Miscellaneous

	mass_to_volume_mixing_ratio(mass_mixing_ratio)

	g/g or g/kg to mole/mole

	get_interface_values(mid_level_values, …)

	Calculate interface values given mid-level values.

climt.list_available_constants

	
climt.list_available_constants()

	Prints all the constants currently registered with sympl.

climt.set_constants_from_dict

	
climt.set_constants_from_dict(constant_descriptions)

	Modify/Add constants in the library.

	Parameters

	constant_descriptions (dict) – Dictionary containing the description of the constants.
The key should be the name of the constant, and the value
should be a dictionary containing the following keys:

	
	value (float):

	The value assigned.

	
	units (string):

	The units of the value, e.g, m/s, J/kg.

climt.mass_to_volume_mixing_ratio

	
climt.mass_to_volume_mixing_ratio(mass_mixing_ratio, molecular_weight=None, molecular_weight_air=28.964)

	g/g or g/kg to mole/mole

Converts from mass mixing ratio (mass per unit mass) to volume
mixing ratio (volume per unit volume)

	Parameters

	
	mass_mixing_ratio (array) – The quantity to be transformed in units of \(g/g\).

	molecular_weight (float) – The molecular weight of the gas in \(g/mol\).

	molecular_weight_air (float,optional) – The molecular weight of dry air.
If it is not provided, the value for dry air on earth (28.964 g/mol)
is used.

	Returns

	The volume mixing ratio of the gas.

	Return type

	volume_mixing_ratio (array)

	Raises

	ValueError – if the molecular weight is not provided.

climt.get_interface_values

	
climt.get_interface_values(mid_level_values, surface_value, mid_level_pressure, interface_level_pressure)

	Calculate interface values given mid-level values.

Given 3D values of a quantity on model mid levels (cell centers) and the 2D surface
value, return the 3D values of that quantity on model full levels (cell interfaces).
If the vertical dimension of mid_level_values is length K, the returned array will have a
vertical dimension of length K+1.

Routine borrowed from CESM (radiation.F90 in rrtmg folder)

	Parameters

	
	mid_level_values (array) – The values of the quantity on mid-levels.

	surface_value (array) – The value of the quantity at the surface. Must be in the
same units as mid_level_values

	mid_level_pressure (array) – Pressure values on mid-levels. Can be in any units.

	interface_level_pressure (array) – Pressure values on interface levels. Must be in
in the same units as mid_level_pressure.

	Returns

	values of the quantity on mid-levels.

	Return type

	interface_values (array)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Usage in Publications

If you use CliMT to perform research, your publication is a valuable resource
for others looking to learn the ways they can leverage CliMT’s capabilities.
If you have used CliMT in a publication, please let us know so we can add it to
the list.

Presenting CliMT to Others

CliMT is meant to be an accessible, community-driven model. You can help the
community of users grow and be more effective in many ways, such as:

	Running a workshop

	Offering to be a resource for others to ask questions

	Presenting research that uses CliMT

If you or someone you know is contributing to the CliMT community by presenting
it or assisting others with the model, please let us know so we can add that
person to the contributors list.

Report Bugs

Report bugs at https://github.com/CliMT/climt/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

CliMT could always use more documentation. You could:

	Clean up or add to the official CliMT docs and docstrings.

	Write useful and clear examples that are missing from the examples folder.

	Create a Jupyter notebook that uses CliMT and share it with others.

	Prepare reproducible model scripts to distribute with a paper using CliMT.

	Anything else that communicates useful information about CliMT.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/CliMT/climt/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up climt for local development.

	Fork the climt repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/climt.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv climt
$ cd climt/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 climt tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4 and 3.5. Check
https://travis-ci.org/CliMT/climt/pull_requests
and make sure that the tests pass for all supported Python versions.

Style

In the CliMT code, we follow PEP 8 style guidelines (tested by flake8). You can
test style by running “tox -e flake8” from the root directory of the repository.
There are some exceptions to PEP 8:

	All lines should be shorter than 80 characters. However, lines
longer than this are permissible if this increases readability (particularly
for lines representing complicated equations).

	Space should be assigned around arithmetic operators in a way that maximizes
readability. For some cases, this may mean not including whitespace around
certain operations to make the separation of terms clearer,
e.g. “Cp*T + g*z + Lv*q”.

	While state dictionary keys are full and verbose, within components they may
be assigned to shorter names if it makes the code clearer.

	We can take advantage of known scientific abbreviations for quantities within
components (e.g. “T” for “air_temperature”) even thought they do not follow
pothole_case.

Tips

To run a subset of tests:

$ py.test tests.test_timestepping

Credits

Original Creator

	Rodrigo Caballero <rodrigo.caballero@misu.su.se>

Development Lead

	Joy Monteiro <joy.monteiro@misu.su.se>

Contributors

	Jeremy McGibbon <mcgibbon@uw.edu>

	Sergey Kosukhin <sergey.kosukhin@mpimet.mpg.de>

	Sally Dacie <sally.dacie@mpimet.mpg.de>

	Raymond Pierrehumbert <raymond.pierrehumbert@physics.ox.ac.uk>

	Dargan Frierson <dargan@atmos.washington.edu>

	Jonathan Mitchell <jonmitch@ucla.edu>

	Suhas D L <suhasd@iisc.ac.in>

	Abel Shibu <abel.shibu@students.iiserpune.ac.in>

	Monali Vadje <monali.sv4@gmail.com>

History

v.0.17.0

	Removed dycore to move it to independent package

v.0.16.15

	Move to Github Actions tentatively finished!

v.0.16.11

	New component BucketHydrology that implements Manabe first generation land model

	BucketHydrology calculates the sensible and latent heat flux within the component

	Conservation test for the component also added

	Moving CI to Github Actions

v.0.16.8

	Fix timeout for all MAC builds

v.0.16.6

	Prevent MAC OS builds from timing out

v.0.16.5

	Fix formatting errors which prevent pypi deployment

v.0.16.4

	Fix MCICA for the shortwave component of RRTMG

	Revise random number generation for MCICA

	Improvement of the user interface to control MCICA

v.0.16.3

	update numpy requirement to avoid binary incompatibility error

	Fix error in documentation

v.0.16.2

	Fix wheel build on Mac

v.0.16.1

	Fixed issue with Mac build

	Few changes in the dry convection component. Significantly improves the performance.

	Changed logo!

	Fixed failing docs build

v0.16.0

	Added some documentation for using RRTMG with McICA

	CI Testing for Mac and py37 added.

	Refactored initialisation code

	Enable the McICA version of RRTMG Longwave for consistency
with the Shortwave component.

	Fix bugs in IceSheet

	Add tests to verify conservation of quantities

	Fix bugs in initialisation

	Fix energy conservation in surface flux scheme

	Enable the McICA version of RRTMG Shortwave,
so that partial cloud fractions can be used.

	Add GMD example scripts to repository.

	Fix docs to reflect API changes after refactor.

	Fix wrong initialisation to use sigma values instead of pressure values
of optical depth for GrayLongwaveRadiation

Breaking Changes

	The flux outputs of GrayLongwaveRadiation have been renamed to eliminate
on_interface_levels to keep consistency with other components.

	All arrays are now 3/2d by default based on their expected dimensions.

	horizontal dimensions are now lon, lat, but inputs
used by components remain the same (latitude, longitude).

v.0.14.8

Many of the changes in this version come from changes in Sympl 0.4.0. We recommend
reading those changes in the Sympl documentation.

	Updated component APIs to work with Sympl 0.4.0

	Many components which previously required horizontal dimensions now use
wildcard matches for column dimensions.

	Switched many print statements to logging calls.

	Fixed bugs in some components

Breaking Changes

	get_constant and set_constant have been removed, use the ones in Sympl.

	Emanuel convection scheme can no longer be set to perform dry adiabatic
adjustment to the boundary layer. This has been implemented in a separate
component.

	ClimtPrognostic, ClimtImplicitPrognostic, ClimtDiagnostic, ClimtImplicit have
been removed. Use the base types in Sympl.

	State initialization has been entirely re-worked. get_default_state now takes in
an optional grid state instead of options to do with the state grid. A function
get_grid is provided which can create a grid state, or one can be created manually.
A grid state is a state containing air pressure and sigma on mid and interface
levels, as well as surface pressure.

	Replaced references to “thermal_capacity” with references to “heat_capacity” in
component quantity names.

v.0.14.7

	Fix issue with pip v10 and pandas 0.22 conflicts

v.0.14.3

	Fix release issue because of pip API change

v.0.14.1

	Fix appveyor fail due to pip changes

v.0.14.0

	Fixed broken version numbers

v.0.12.0

	new release to fix version numbers and create zenodo ID

v.0.9.4

	Added attributes to inputs/outputs/ etc., to work with ScalingWrapper
Added tests as well.

	Added tests for constants functions

	Fixed requirements to ensure this version of climt installs
the correct versions of sympl and numpy.

v.0.9.3

	Released because of a labelling issue. See 0.9.2 for details.

v.0.9.2

	Updated documentation

	Cleaned up examples

	Added (*)_properties as a property to all components

	The gas constant for dry air in the Emanuel scheme is now renamed _Rdair

	RRTMG LW and SW are now OpenMP parallel

	Added Instellation component to calculate zenith angle

	Added tests to increase coverage

	New constants handling functionality added

	Travis builds now use stages

	Appveyor CI up and running

	Pre-installation of cython and numpy no longer necessary for source builds

	Added snow-ice component

	Ozone profiles do not need to be specified externally

	Now also tested on Python 3.6

Breaking Changes

	API for constants setting changed to set_constant_from_dict and add_constants_from_dict

	GfsDynamicalCore renamed to GFSDynamicalCore for consistency

	get_prognostic_version method of ClimtImplicit renamed to prognostic_version, and
no longer accepts timestep as an argument. The current timestep should be set in
ClimtImplicit.current_time_step during each iteration.

	RRTMGShortwave now uses sympl’s solar constant by default instead of from fortran.

v.0.9.1

	Held-Suarez and moist GCM with grey radiation work!

	Added DCMIP initial conditions, test 4 tried out.

	Dynamical core integrated now.

	BIG change in the build system. Tests pass on Mac as well

	Arrays can now have arbitrary dtype (to use qualitative, string, quantities)

	Added Emanuel Convection, surface energy balance model and ice sheet energy balance

	2D coordinates are now supported for horizontal coordinates

	Replaced create_output_arrays() with a more general
get_state_dict_for() and get_numpy_arrays_from_state()
combination.

	State arrays now have coordinates

	Updated documentation

	RTD finally working, phew!

	Added RRTMG Longwave, Simple Physics

	Added helper functions to reduce boilerplate code in components

Breaking Changes

Latest

	method to obtain piecewise constant prognostic has been renamed to
piecewise_constant_version

	Ozone profile has been modified

	Heating rate for RRTMG top-of-atmosphere is no longer manually set to zero

	Components no longer accept constants during initialisation. All constant handling
is done internally.

v.0.9

	SlabSurface no longer uses depth_slab_surface as input

	changed order of outputs of GfsDynamicalCore and SimplePhysics to conform
to TimeStepper order of diagnostics, new_state

	get_default_state now accepts mid_levels and interface_levels instead of z
to specify vertical coordinates.

	mass_to_volume_mixing_ratio now uses numpy arrays instead of DataArrays.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 climt	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | R
 | S

_

 	
 	__call__() (climt.BucketHydrology method)

 	(climt.DcmipInitialConditions method)

 	(climt.DryConvectiveAdjustment method)

 	(climt.EmanuelConvection method)

 	(climt.Frierson06LongwaveOpticalDepth method)

 	(climt.GrayLongwaveRadiation method)

 	(climt.HeldSuarez method)

 	(climt.IceSheet method)

 	(climt.Instellation method)

 	(climt.RRTMGLongwave method)

 	(climt.RRTMGShortwave method)

 	(climt.SimplePhysics method)

 	(climt.SlabSurface method)

 	
 	__init__() (climt.BucketHydrology method)

 	(climt.DcmipInitialConditions method)

 	(climt.DryConvectiveAdjustment method)

 	(climt.EmanuelConvection method)

 	(climt.Frierson06LongwaveOpticalDepth method)

 	(climt.GrayLongwaveRadiation method)

 	(climt.HeldSuarez method)

 	(climt.IceSheet method)

 	(climt.Instellation method)

 	(climt.RRTMGLongwave method)

 	(climt.RRTMGShortwave method)

 	(climt.SimplePhysics method)

 	(climt.SlabSurface method)

B

 	
 	BucketHydrology (class in climt)

C

 	
 	climt (module)

D

 	
 	DcmipInitialConditions (class in climt)

 	
 	DryConvectiveAdjustment (class in climt)

E

 	
 	EmanuelConvection (class in climt)

F

 	
 	Frierson06LongwaveOpticalDepth (class in climt)

G

 	
 	get_default_state() (in module climt)

 	get_grid() (in module climt)

 	
 	get_interface_values() (in module climt)

 	GrayLongwaveRadiation (class in climt)

H

 	
 	HeldSuarez (class in climt)

I

 	
 	IceSheet (class in climt)

 	
 	Instellation (class in climt)

L

 	
 	list_available_constants() (in module climt)

M

 	
 	mass_to_volume_mixing_ratio() (in module climt)

R

 	
 	RRTMGLongwave (class in climt)

 	
 	RRTMGShortwave (class in climt)

S

 	
 	set_constants_from_dict() (in module climt)

 	
 	SimplePhysics (class in climt)

 	SlabSurface (class in climt)

climt package

Module contents

Memory Management

Arrays

If possible, you should try to be aware of when there are two code references
to the same in-memory array. This can help avoid some common bugs. Let’s start
with an example. Say you create a ConstantTendencyComponent object like so:

>>> import numpy as np
>>> from climt import ConstantTendencyComponent, DataArray
>>> array = DataArray(
 np.ones((5, 5, 10)),
 dims=('lon', 'lat', 'lev'), attrs={'units': 'K/s'})
>>> tendencies = {'air_temperature': array}
>>> prognostic = ConstantTendencyComponent(tendencies)

This is all fine so far. But it’s important to know that now array is the
same array stored inside prognostic:

>>> out_tendencies, out_diagnostics = prognostic({})
>>> out_tendencies['air_temperature'] is array # same place in memory
True

So if you were to modify array, it would change the output given by
prognostic:

>>> array[:] = array[:] * 5.
>>> out_tendencies, out_diagnostics = prognostic({})
>>> out_tendencies['air_temperature'] is array
True
>>> np.all(out_tendencies['air_temperature'].values == array.values)
True

When in doubt, assume that any array you put into a component when it is
initialized should not be modified any more, unless changing the values in the
component is intentional. Below is some less (but potentially) useful
information for those interested.

If instead of modifying array, you make a new array for the python variable
array to refer to, it doesn’t modify the array in prognostic:

>>> array = array * 5.
>>> out_tendencies, out_diagnostics = prognostic({})
>>> out_tendencies['air_temperature'] is array
False
>>> np.all(out_tendencies['air_temperature'].values == array.values)
False

This is because having the [:] on the left hand side of the assignment
operator \= tells python that you want to modify the existing memory of the
array on the left hand side. More precisely, having array = tells python
that you want to change what the variable array refers to, and set it to
be the thing on the right hand side, while array[:] = tells python to
call the __setitem__(key, value) method of array with the contents
of the square parentheses as the key and the right hand side as the value.

Interestingly, array = array * 5. has different behavior from
array *= 5.. The first one will change what array refers to, as before,
while the second one will modify array in-place without changing the
reference. All similarly written operations (-=, +=, /=, etc.) are
in-place operations. When you want to avoid copying data, array *= 5. is
better since the values of the array will be modified where they already are
in memory, instead of allocating an entirely new array.

Dictionaries

Unlike arrays, the dictionary containers are copied when passed in. Copying
dictionaries is fairly cheap, since the new dictionary will still refer to the
same values (arrays) as before, and all that has to be copied is the key-value
pairs:

>>> tendencies['new_quantity'] = array
>>> out_tendencies, out_diagnostics = prognostic({})
>>> 'new_quantity' in out_tendencies.keys()
False

climt

	climt package
	Module contents

Naming Quantities

	Any quantity that is on vertical interface levels should be
named using the form “<variable>_on_interface_levels”, while quantities
on mid levels should not have anything appended to the variable name.
Quantities that do not specify “_on_interface_levels” are assumed to be on
mid levels.
This must be in the name rather than as an attribute so that the same
coordinate may be present on both half and full levels (with different names).

climt

[image: PyPI]
 [https://pypi.python.org/pypi/climt][image: Continuous Integration]
 [https://travis-ci.org/climt/climt][image: Continuous Integration]
 [https://ci.appveyor.com/project/JoyMonteiro/climt][image: Coverage]
 [https://travis-ci.org/climt/climt][image: Documentation Status]
 [https://climt.readthedocs.io/en/latest/?badge=latest][image: Zenodo DOI]
 [https://zenodo.org/badge/latestdoi/74854230][image: ./docs/climt_logo.jpg]
climt is a Toolkit for building Earth system models in Python. climt stands for Climate Modelling
and Diagnostics Toolkit – it is meant both for creating models and for generating diagnostics
(radiative fluxes for an atmospheric column, for example). However, since it might eventually
include model components for purposes other than climate modelling (local area models, large-eddy
simulation), we prefer to keep the abbreviation un-expanded!

climt hopes to enable researchers to easily perform online analysis and make
modifications to existing models by increasing the ease with which models
can be understood and modified. It also enables educators to write
accessible models that serve as an entry point for students into Earth
system modeling, while also containing state-of-the-art components.

Initially climt contains only components for the atmosphere, and does not yet
include a coupler. But there are plans to extend climt to a fully coupled Earth
system model in the future. The toolkit is also written in such a way that it
could enable the development of non-climate models (e.g. weather prediction,
large-eddy simulation). To do so requires only that the prognostic and
diagnostic schemes are wrapped into the correct Python-accessible interface.

climt builds on sympl [https://github.com/mcgibbon/sympl], which provides the base classes and array and constants handling
functionality. Thanks to sympl [https://github.com/mcgibbon/sympl] and Pint [https://pint.readthedocs.io], climt is also a fully units aware model. It is
useful to know how sympl [https://github.com/mcgibbon/sympl] works to use climt better. Read more about sympl [https://github.com/mcgibbon/sympl] at
https://sympl.readthedocs.io.

	Free software: BSD license

	Documentation: https://climt.readthedocs.io.

Installation

climt can be installed directly from the python package index using pip.

pip install climt

should work on most systems. From version 0.9.2 onwards, this command will
install binary wheels, eliminating the requirement of a compiler on your
system.

Detailed instructions for Mac and Linux systems are available in the documentation [http://climt.readthedocs.io/en/latest/installation.html].

Features

	climt is fully units-aware!

	Uses the xarray [http://xarray.pydata.org] DataArray abstraction to build self describing model arrays.

	Provides different levels of abstraction towards building a climate model.

	Like sympl [https://github.com/mcgibbon/sympl], climt consciously uses descriptive names in the user API to ensure
model scripts are self-documenting.

	Allows for quick prototyping of earth system model components.

	Provides a clean and convenient interface to add new components.

Citing climt

If you use climt in your research, please cite the following paper documenting sympl [https://github.com/mcgibbon/sympl] and climt

https://www.geosci-model-dev.net/11/3781/2018/

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 nav.xhtml

 Table of Contents

 		
 Welcome to climt’s documentation!

 		
 Introduction

 		
 Installation

 		
 Stable release

 		
 Installing from source

 		
 Dependencies for source installations

 		
 Quickstart

 		
 Interacting with climt

 		
 Model State

 		
 Model Components

 		
 A Realistic Model

 		
 Component Types

 		
 Configuring climt

 		
 Algorithmic Configuration

 		
 Memory/Array Configuration

 		
 Physical Configuration

 		
 Interfacial Configuration

 		
 Compositional Configuration

 		
 Components

 		
 Dynamics

 		
 Radiation

 		
 climt.RRTMGLongwave

 		
 climt.RRTMGLongwave.__call__

 		
 climt.RRTMGShortwave

 		
 climt.RRTMGShortwave.__call__

 		
 climt.GrayLongwaveRadiation

 		
 climt.GrayLongwaveRadiation.__call__

 		
 climt.Frierson06LongwaveOpticalDepth

 		
 climt.Frierson06LongwaveOpticalDepth.__call__

 		
 climt.Instellation

 		
 climt.Instellation.__call__

 		
 Convection

 		
 climt.EmanuelConvection

 		
 climt.EmanuelConvection.__call__

 		
 climt.DryConvectiveAdjustment

 		
 climt.DryConvectiveAdjustment.__call__

 		
 Surface Processes

 		
 climt.SimplePhysics

 		
 climt.SimplePhysics.__call__

 		
 climt.SlabSurface

 		
 climt.SlabSurface.__call__

 		
 climt.BucketHydrology

 		
 climt.BucketHydrology.__call__

 		
 Ice and Snow

 		
 climt.IceSheet

 		
 climt.IceSheet.__call__

 		
 Test Cases

 		
 climt.HeldSuarez

 		
 climt.HeldSuarez.__call__

 		
 climt.DcmipInitialConditions

 		
 climt.DcmipInitialConditions.__call__

 		
 Component Manual

 		
 RRTMG - The Rapid Radiative Transfer Model

 		
 Introduction

 		
 Calculation of radiative fluxes

 		
 Clouds with McICA

 		
 Differences in cloud input with nomcica

 		
 Initialisation

 		
 climt.get_default_state

 		
 climt.get_grid

 		
 General Utilities

 		
 Constants

 		
 climt.list_available_constants

 		
 climt.set_constants_from_dict

 		
 Miscellaneous

 		
 climt.mass_to_volume_mixing_ratio

 		
 climt.get_interface_values

 		
 Contributing

 		
 Types of Contributions

 		
 Usage in Publications

 		
 Presenting CliMT to Others

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Style

 		
 Tips

 		
 Credits

 		
 Original Creator

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 v.0.17.0

 		
 v.0.16.15

 		
 v.0.16.11

 		
 v.0.16.8

 		
 v.0.16.6

 		
 v.0.16.5

 		
 v.0.16.4

 		
 v.0.16.3

 		
 v.0.16.2

 		
 v.0.16.1

 		
 v0.16.0

 		
 Breaking Changes

 		
 v.0.14.8

 		
 Breaking Changes

 		
 v.0.14.7

 		
 v.0.14.3

 		
 v.0.14.1

 		
 v.0.14.0

 		
 v.0.12.0

 		
 v.0.9.4

 		
 v.0.9.3

 		
 v.0.9.2

 		
 Breaking Changes

 		
 v.0.9.1

 		
 Breaking Changes

 		
 Latest

 		
 v.0.9

_images/climt_logo.jpg

_images/ice_cloud_optical_depth.png
o o o o o
o = = N N)
a o [o u

Optical depth / ice water path

o
o
S

ebert_curry_two

—— shortwave
—— longwave

20 40 60 80 100 120
Cloud ice particle size [micrometers]

_images/liquid_cloud_optical_depth.png
==
o N

o
o

o
IS

o
N

Optical depth / liquid water path
o
o

o
=)

radius_dependent_absorption

—— longwave
—— shortwave

o

10 20 30 40 50 60
Liquid droplet size [micrometers]

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

