CLIMADA documentation

Release 4.0.1

Sep 27, 2023
Fast and basic Python introduction

Contents

- Numbers and Strings ... 233
- Lists .. 234
- Tuples .. 235
- Sets .. 236
- Dictionaries ... 236
- Functions ... 237
- Objects ... 238

Hazard Tutorials

Hazard class ... 241

Hazard: Tropical cyclones 262

Hazard: winter windstorms / extratropical cyclones in Europe ... 276

Exposures Tutorials

Exposures class .. 283

LitPop class .. 299

How to use polygons or lines as exposure 316

Impact Tutorials

END-TO-END IMPACT CALCULATION 345

Impact Functions .. 377

Adaptation Measures .. 389

DiscRates class .. 404

Impact Data functionalities 407

END-TO-END COST BENEFIT CALCULATION 414

Calculate probabilistic impact yearset 435

Uncertainty Quantification Tutorials

Unsequa - a module for uncertainty and sensitivity analysis ... 439

Helper methods for InputVar 476

Forecast class

Example: forecast of building damages due to wind in Switzerland .. 515

Example 2: forecast of wind warnings in Switzerland ... 519

Example: Tropical Cylcone 522

Google Earth Engine (GEE) and Image Analysis

Connect to Google Earth Engine API 523

Obtain images ... 524

Download images .. 527

Image Visualization and Processing 528

Data API

Contents ... 535

Finding datasets ... 535

Basic impact calculation 537

Technical Information .. 542

Development and Git and CLIMADA

... 549
15.1 Contents ... 549
15.2 Git and GitHub ... 549
15.3 Gitflow ... 551
15.4 Installing CLIMADA for development 554
15.5 Features and branches .. 555
15.6 Pull requests .. 557
15.7 General tips and tricks ... 560

16 CLIMADA Tutorial Template 565
16.1 Content ... 565
16.2 Why tutorials ... 565
16.3 Basic structure ... 565
16.4 Good examples .. 566
16.5 Use only Markdown for headers and table of content 566
16.6 Table of content .. 567
16.7 Content ... 568

17 Constants and Configuration 569
17.1 Content ... 569
17.2 Constants ... 569
17.3 Configuration .. 571

18 Testing and Continuous Integration 577
18.1 Content ... 577
18.2 Testing CLIMADA .. 577
18.3 Notes on Testing .. 578
18.4 Continuous Integration ... 581

19 Reviewer Checklist ... 585

20 Coding in Python: Dos and Don'ts 587
20.1 Content ... 587
20.2 To Code or Not to Code? ... 587
20.3 Clean Code .. 588
20.4 Commenting & Documenting 593
20.5 Exception Handling and Logging 595
20.6 Importing ... 598
20.7 How to structure a method or function 598
20.8 Debugging .. 599

21 Python performance tips and best practice for CLIMADA developers .. 601
21.1 Contents ... 601
21.2 Profiling ... 601
21.3 General considerations ... 602
21.4 NumPy-related tips and best practice 604
21.5 Miscellaneous ... 608
21.6 Take-home messages .. 610

22 Miscellaneous CLIMADA conventions 611
22.1 Contents ... 611
22.2 Dependencies (python packages) 611
22.3 Class inheritance .. 612
22.4 Does it belong into CLIMADA? 612
22.5 Paper repository .. 612
22.6 Utility function ... 612
CLIMADA stands for CLIMate ADAPtation and is a probabilistic natural catastrophe impact model, that also calculates averted damage (benefit) thanks to adaptation measures of any kind (from grey to green infrastructure, behavioural, etc.).

CLIMADA is primarily developed and maintained by the Weather and Climate Risks Group at ETH Zürich.

If you use CLIMADA for your own scientific work, please reference the appropriate publications according to the Citation Guide.

This is the documentation of the CLIMADA core module which contains all functionalities necessary for performing climate risk analysis and appraisal of adaptation options. Modules for generating different types of hazards and other specialized applications can be found in the CLIMADA Petals module.

Jump right in:

- **README**
- **Getting Started**
- **Installation**
- **Overview**
- **GitHub Repository**
- **Module Reference**

Hint: ReadTheDocs hosts multiple versions of this documentation. Use the drop-down menu on the bottom left to switch versions. **stable** refers to the most recent release, whereas **latest** refers to the latest development version.

Copyright Notice

Copyright (C) 2017 ETH Zurich, CLIMADA contributors listed in **AUTHORS.md**.

CLIMADA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3.

CLIMADA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with CLIMADA. If not, see https://www.gnu.org/licenses/.
CHAPTER
ONE

INTRODUCTION

CLIMADA implements a fully probabilistic risk assessment model. According to the IPCC [1], natural risks emerge through the interplay of climate and weather-related hazards, the exposure of goods or people to this hazard, and the specific vulnerability of exposed people, infrastructure and environment. The unit chosen to measure risk has to be the most relevant one in a specific decision problem, not necessarily monetary units. Wildfire hazard might be measured by burned area, exposure by population or replacement value of homes and hence risk might be expressed as number of affected people in the context of evacuation, or repair cost of buildings in the context of property insurance.

Risk has been defined by the International Organization for Standardization as the “effect of uncertainty on objectives” as the potential for consequences when something of value is at stake and the outcome is uncertain, recognizing the diversity of values. Risk can then be quantified as the combination of the probability of a consequence and its magnitude:

\[
\text{risk} = \text{probability} \times \text{severity}
\]

In the simplest case, \(\times\) stands for a multiplication, but more generally, it represents a convolution of the respective distributions of probability and severity. We approximate the severity as follows:

\[
\text{severity} = F(\text{hazard intensity, exposure, vulnerability}) = \text{exposure} \ast f_{imp}(\text{hazard intensity})
\]

where \(f_{imp}\) is the impact function which parametrizes to what extent an exposure will be affected by a specific hazard. While ‘vulnerability function’ is broadly used in the modelers community, we refer to it as ‘impact function’ to explicitly include the option of opportunities (i.e. negative damages). Using this approach, CLIMADA constitutes a platform to analyse risks of different hazard types in a globally consistent fashion at different resolution levels, at scales from multiple kilometres down to meters, depending on the purpose.

1.1 References

GETTING STARTED WITH CLIMADA

This is a short summary of the guides to help you find the information that you need to get started. To learn more about CLIMADA, have a look at the introduction. You can also have a look at the paper repository to get an overview of research projects.

2.1 Installation

The first step to getting started is installing CLIMADA. To do so you will need:

1. To get the lastest release from the git repository CLIMADA releases or clone the project with git if you are interested in contributing to the development.

2. To build a conda environment with the dependencies needed by CLIMADA.

For details see the Installation Instructions.

If you need to run a model on a computational cluster, have a look at this guide to install CLIMADA and run your jobs.

2.2 Programming in Python

It is best to have some basic knowledge of Python programming before starting with CLIMADA. But if you need a quick introduction or reminder, have a look at the short Python Tutorial. Also have a look at the python Python Dos and Don’t guide and at the Python Performance Guide for best practice tips.

2.3 Tutorials

A good way to start using CLIMADA is to have a look at the Tutorials. The Main Tutorial will introduce you the structure of CLIMADA and how to calculate you first impacts, as well as your first appraisal of adaptation options. You can then look at the specific tutorials for each module (for example if you are interested in a specific hazard, like Tropical Cyclones, or in learning to estimate the value of asset exposure,…).
2.4 Documentation

You can find the documentation of CLIMADA on Read the Docs online. Note that the documentation has several versions: ‘latest’, ‘stable’ and explicit version numbers, such as ‘v3.1.1’, in the url path. ‘latest’ is created from the ‘develop’ branch and has the latest changes of the developers, ‘stable’ from the latest release. For more details about documentation versions, please have a look at here.

2.5 Contributing

If you would like to participate in the development of CLIMADA, carefully read the Git and Development Guide. Before making a new feature, discuss with one of the repository admins (Now Chahan, Emmanuel and David). Every new feature or enhancement should be done on a separate branch, which will be merged in the develop branch after being reviewed (see Checklist). Finally, the develop branch is merged in the main branch in each CLIMADA release. Each new feature should come with a tutorial and with Unit and Integration Tests.

2.6 Other Questions

If you have any other questions, you might find some information in the Miscellaneous guide. If you cannot find you answer in the guides, you can open an issue for somebody to help you.
CHAPTER
THREE

INSTALLATION

The following sections will guide you through the installation of CLIMADA and its dependencies.

Attention: CLIMADA has a complicated set of dependencies that cannot be installed with `pip` alone. Please follow the installation instructions carefully! We recommend to use Anaconda for creating a suitable software environment to execute CLIMADA.

All following instructions should work on any operating system (OS) that is supported by Anaconda, including in particular: Windows, macOS, and Linux.

Note: When mentioning the terms “terminal” or “command line” in the following, we are referring to the “Terminal” apps on macOS or Linux and the “Anaconda Prompt” on Windows.

3.1 Prerequisites

- Make sure you are using the **latest version** of your OS. Install any outstanding **updates**.
- Free up at least 10 GB of **free storage space** on your machine. Anaconda and the CLIMADA dependencies will require around 5 GB of free space, and you will need at least that much additional space for storing the input and output data of CLIMADA.
- Ensure a **stable internet connection** for the installation procedure. All dependencies will be downloaded from the internet. Do **not** use a metered, mobile connection!
- Install Anaconda, following the **installation instructions** for your OS.

Hint: If you need help with the vocabulary used on this page, refer to the *Glossary.*
3.1.1 Decide on Your Entry Level!

Depending on your level of expertise, we provide two different approaches:

- If you have never worked with a command line, or if you just want to give CLIMADA a try, follow the simple instructions.
- If you want to use the very latest development version of CLIMADA or even develop new CLIMADA code, follow the advanced instructions.

Both approaches are not mutually exclusive. After successful installation, you may switch your setup at any time.

3.1.2 Notes on the CLIMADA Petals Package

CLIMADA is divided into two packages, CLIMADA Core (climada_python) and CLIMADA Petals (climada_petals). The Core contains all the modules necessary for probabilistic impact, averted damage, uncertainty and forecast calculations. Data for hazard, exposures and impact functions can be obtained from the CLIMADA Data API. Hazard and Exposures subclasses are included as demonstrators only.

Attention: CLIMADA Petals is not a standalone module and requires CLIMADA Core to be installed!

CLIMADA Petals contains all the modules for generating data (e.g., TC_Surge, WildFire, OpenStreeMap, ...). New modules are developed and tested here. Some data created with modules from Petals is available to download from the Data API. This works with just CLIMADA Core installed. CLIMADA Petals can be used to generate additional data of this type, or to have a look at the tutorials for all data types available from the API.

Both installation approaches mentioned above support CLIMADA Petals. If you are unsure whether you need Petals, you can install the Core first and later add Petals in both approaches.

3.2 Simple Instructions

These instructions will install the most recent stable version of CLIMADA without cloning its repository.

1. Open the command line. Create a new conda environment with CLIMADA by executing

   ```bash
   conda create -n climada_env -c conda-forge climada
   ```

2. Activate the environment:

   ```bash
   conda activate climada_env
   ```

 You should now see `(climada_env)` appear in the beginning of your command prompt. This means the environment is activated.

3. Verify that everything is installed correctly by executing a single test:

   ```bash
   python -m unittest climada.engine.test.test_impact
   ```

 Executing CLIMADA for the first time will take some time because it will generate a directory tree in your home/user directory. After a while, some text should appear in your terminal. In the end, you should see an “Ok”. If so, great! You are good to go.

4. Optional: Install CLIMADA Petals into the environment:
conda install -n climada_env -c conda-forge climada-petals

3.3 Advanced Instructions

For advanced Python users or developers of CLIMADA, we recommend cloning the CLIMADA repository and installing the package from source.

1. If you are using a **Linux** OS, make sure you have **git** installed (Windows and macOS users are good to go once Anaconda is installed). On Ubuntu and Debian, you may use **APT**:

   ```
   apt update
   apt install git
   ```

 Both commands will probably require administrator rights, which can be enabled by prepending **sudo**.

2. Create a **workspace directory**. To make sure that your user can manipulate it without special privileges, use a subdirectory of your user/home directory. Do **not** use a directory that is synchronized by cloud storage systems like OneDrive, iCloud or Polybox!

3. Open the command line and navigate to the workspace directory you created using **cd**. Replace `<path/to/workspace>` with the path of the directory that contains the workspace folder:

   ```
   cd <path/to/workspace>
   ```

4. Clone CLIMADA from its GitHub repository. Enter the directory and check out the branch of your choice. The latest development version will be available under the branch **develop**.

   ```
   git clone https://github.com/CLIMADA-project/climada_python.git
cd climada_python
git checkout develop
   ```

5. Create an Anaconda environment called **climada_env** for installing CLIMADA. Use the default environment specs in **env_climada.yml** to create it. Then activate the environment:

   ```
   conda env create -n climada_env -f requirements/env_climada.yml
   conda activate climada_env
   ```

6. Install the local CLIMADA source files as Python package using **pip**:

   ```
   python -m pip install -e ./
   ```

 Hint: Using a path ./ (referring to the path you are currently located at) will instruct **pip** to install the local files instead of downloading the module from the internet. The `-e` (for “editable”) option further instructs **pip** to link to the source files instead of copying them during installation. This means that any changes to the source files will have immediate effects in your environment, and re-installing the module is never required.

7. Verify that everything is installed correctly by executing a single test:

   ```
   python -m unittest climada.engine.test.test_impact
   ```

Executing CLIMADA for the first time will take some time because it will generate a directory tree in your home/user directory. If this test passes, great! You are good to go.
3.3.1 Install Developer Dependencies (Optional)

Building the documentation and running the entire test suite of CLIMADA requires additional dependencies which are not installed by default. They are also not needed for using CLIMADA. However, if you want to develop CLIMADA, we recommend you install them.

With the climada_env activated, enter the workspace directory and then the CLIMADA repository as above. Then, add the dev extra specification to the pip install command (mind the quotation marks, and see also pip install examples):

```
python -m pip install -e "./[dev]"
```

The CLIMADA Python package defines the following extras:

<table>
<thead>
<tr>
<th>Extra</th>
<th>Includes Dependencies...</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc</td>
<td>for building documentation</td>
</tr>
<tr>
<td>test</td>
<td>for running and evaluating tests</td>
</tr>
<tr>
<td>dev</td>
<td>combination of doc and test</td>
</tr>
</tbody>
</table>

For executing the pre-defined test scripts in exactly the same way as they are executed by the automated CI pipeline, you will need make to be installed. On macOS and on Linux it is pre-installed. On Windows, it can easily be installed with conda:

```
conda install -n climada_env make
```

Instructions for running the test scripts can be found in the *Testing and CI Guide*.

3.3.2 Install CLIMADA Petals (Optional)

If you are unsure whether you need Petals, see the notes above.

To install CLIMADA Petals, we assume you have already installed CLIMADA Core with the advanced instructions above.

1. Open the command line and navigate to the workspace directory.

2. Clone CLIMADA Petals from its repository. Enter the directory and check out the branch of your choice. The latest development version will be available under the branch develop.

```
git clone https://github.com/CLIMADA-project/climada_petals.git
cd climada_petals
git checkout develop
```

3. Update the Anaconda environment with the specifications from Petals and activate it:

```
conda env update -n climada_env -f requirements/env_climada.yml
conda env update -n climada_env -f requirements/env_developer.yml
conda activate climada_env
```

4. Install the CLIMADA Petals package:

```
python -m pip install -e ./
```
3.4 Apps for Programming in Python

To work with CLIMADA, you will need an application that supports Jupyter Notebooks. There are plugins available for nearly every code editor or IDE, but if you are unsure about which to choose, we recommend JupyterLab, Visual Studio Code or Spyder.

3.4.1 JupyterLab

1. Install JupyterLab into the Anaconda environment:

   ```
   conda install -n climada_env -c conda-forge jupyterlab
   ```

2. Make sure that the `climada_env` is activated (see above) and then start JupyterLab:

   ```
   conda env activate climada_env
   jupyter-lab
   ```

 JupyterLab will open in a new window of your default browser.

3.4.2 Visual Studio Code (VSCode)

Basic Setup

1. Download and install VSCode following the instructions on https://code.visualstudio.com/.

2. Install the Python and Jupyter extensions. In the left sidebar, select the “Extensions” symbol, enter “Python” in the search bar and click **Install** next to the “Python” extension. Repeat this process for “Jupyter”.

3. Open a Jupyter Notebook or create a new one. On the top right, click on **Select Kernel**, select **Python Environments…** and then choose the Python interpreter from the `climada_env`.

See the VSCode docs on [Python](https://code.visualstudio.com/docs/python) and [Jupyter Notebooks](https://code.visualstudio.com/docs/python) for further information.

Workspace Setup

Setting up a workspace for the CLIMADA source code is only available for *advanced installations*.

1. Open a new VSCode window. Below **Start**, click **Open…**, select the `climada_python` repository folder in your workspace directory, and click on **Open** on the bottom right.

2. Click **File > Save Workspace As…** and store the workspace settings file next to (not in!) the `climada_python` folder. This will enable you to load the workspace and all its specific settings in one go.

3. Open the Command Palette by clicking **View > Command Palette** or by using the shortcut keys `Ctrl+Shift+P` (Windows, Linux) / `Cmd+Shift+P` (macOS). Start typing “Python: Select Interpreter” and select it from the dropdown menu. If prompted, choose the option to set the interpreter for the workspace, not just the current folder. Then, choose the Python interpreter from the `climada_env`.

For further information, refer to the VSCode docs on [Workspaces](https://code.visualstudio.com/docs/editor/workspaces).
Test Explorer Setup

After you set up a workspace, you might want to configure the test explorer for easily running the CLIMADA test suite within VSCode.

Note: Please install the additional test dependencies before proceeding.

1. In the left sidebar, select the “Testing” symbol, and click on Configure Python Tests.
2. Select “pytest” as test framework and then select climada as the directory containing the test files.
3. Select “Testing” in the Activity Bar on the left or through View > Testing. The “Test Explorer” in the left sidebar will display the tree structure of modules, files, test classes and individual tests. You can run individual tests or test subtrees by clicking the Play buttons next to them.
4. By default, the test explorer will show test output for failed tests when you click on them. To view the logs for any test, click on View > Output, and select “Python Test Log” from the dropdown menu in the view that just opened. If there are errors during test discovery, you can see what’s wrong in the “Python” output.

For further information, see the VSCode docs on Python Testing.

3.4.3 Spyder

Installing Spyder into the existing Anaconda environment for CLIMADA might fail depending on the exact versions of dependencies installed. Therefore, we recommend installing Spyder in a separate environment, and then connecting it to a kernel in the original climada_env.

1. Follow the Spyder installation instructions. Make sure you install it with conda!
2. Check the version of the Spyder kernel in the new environment:

   ```bash
   conda env export -n spyder-env | grep spyder-kernels
   ```

 This will return a line like this:

   ```
   - spyder-kernels=X.Y.Z=<hash>
   ```

 Copy the part `spyder-kernels=X.Y.Z` (until the second `=`) and paste it into the following command to install the same kernel version into the climada_env:

   ```bash
   conda install -n climada_env spyder-kernels=X.Y.Z
   ```

3. Obtain the path to the Python interpreter of your climada_env. Execute the following commands:

   ```bash
   conda activate climada_env
   python -c "import sys; print(sys.executable)"
   ```

 Copy the resulting path.

4. Open Spyder. You can do so from the Anaconda Navigator, or by activating the new environment and launching it through the command line:

   ```bash
   conda activate spyder-env
   spyder
   ```

5. Set the Python interpreter used by Spyder to the one of climada_env. Select Preferences > Python Interpreter > Use the following interpreter and paste the interpreter path you copied from the climada_env.
3.5 FAQs

Answers to frequently asked questions.

3.5.1 Updating CLIMADA

We recommend keeping CLIMADA up-to-date. To update, follow the instructions based on your *installation type*:

- **Simple Instructions:** Update CLIMADA using `conda`:

  ```bash
  conda update -n climada_env -c conda-forge climada
  ```

- **Advanced Instructions:** Move into your local CLIMADA repository and pull the latest version of your respective branch:

  ```bash
  cd <path/to/workspace>/climada_python
  git pull
  ```

 Then, update the environment:

  ```bash
  conda env update -n climada_env -f requirements/env_climada.yml
  conda env update -n climada_env -f requirements/env_developer.yml
  ```

 The same instructions apply for CLIMADA Petals.

3.5.2 Installing More Packages

You might use CLIMADA in code that requires more packages than the ones readily available in the CLIMADA Anaconda environment. If so, prefer installing these packages via Anaconda, and only rely on pip if that fails. The default channels of Anaconda sometimes contain outdated versions. Therefore, use the `conda-forge` channel:

```bash
conda install -n climada_env -c conda-forge <package>
```

Only if the desired package (version) is not available, go for pip:

```bash
conda activate climada_env
python -m pip install <package>
```

3.5.3 Verifying Your Installation

If you followed the installation instructions, you already executed a single unit test. This test, however, will not cover all issues that could occur within your installation setup. If you are unsure if everything works as intended, try running all unit tests. This is only available for *advanced setups*! Move into the CLIMADA repository, activate the environment and then execute the tests:

```bash
cd <path/to/workspace>/climada_python
conda activate climada_env
python -m unittest discover -s climada -p "test*.py"
```
3.5.4 Error: ModuleNotFoundError

Something is wrong with the environment you are using. After each of the following steps, check if the problem is solved, and only continue if it is not:

1. Make sure you are working in the CLIMADA environment:

   ```bash
   conda activate climada_env
   ```

2. Update the conda environment and CLIMADA.

3. Anaconda will notify you if it is not up-to-date. In this case, follow its instructions to update it. Then, repeat the last step and update the environment and CLIMADA (again).

4. Install the missing package manually. Follow the instructions for installing more packages.

5. If you reached this point, something is severely broken. The last course of action is to delete your CLIMADA environment:

   ```bash
   conda deactivate
   conda env remove -n climada_env
   ```

 Now repeat the installation process.

6. Still no good? Please raise an issue on GitHub to get help.

3.5.5 Logging Configuration

Climada makes use of the standard logging package. By default, the “climada”-Logger is detached from logging.root, logging to stdout with the level set to WARNING.

If you prefer another logging configuration, e.g., for using Climada embedded in another application, you can opt out of the default pre-configuration by setting the config value for logging.climada_style to false in the configuration file climada.conf.

Changing the logging level can be done in multiple ways:

- Adjust the configuration file climada.conf by setting a the value of the global.log_level property. This only has an effect if the logging.climada_style is set to true though.

- Set a global logging level in your Python script:

  ```python
  import logging
  logging.getLogger('climada').setLevel(logging.ERROR)  # to silence all warnings
  ```

- Set a local logging level in a context manager:

  ```python
  from climada.util import log_level
  with log_level(level = "INFO"):  
      # This also emits all info log messages
  foo()
  
  # Default logging level again
  bar()
  ```

All three approaches can also be combined.
3.5.6 Mamba Instead of Anaconda

If you prefer using Mamba, you should be able to simply replace all conda commands with mamba. Note that we can only provide limited support for Mamba installations!

3.5.7 Error: operation not permitted

Conda might report a permission error on macOS Mojave. Carefully follow these instructions: https://github.com/conda/conda/issues/8440#issuecomment-481167572

3.5.8 No impf_TC Column in GeoDataFrame

This may happen when a demo file from CLIMADA was not updated after the change in the impact function naming pattern from if_ to impf_ when CLIMADA v2.2.0 was released. Execute

```bash
conda activate climada_env
python -c "import climada; climada.setup_climada_data(reload=True)"
```

3.6 The What Now? (Glossary)

You might have become confused about all the names thrown at you. Let’s clear that up:

Terminal, Command Line A text-only program for interacting with your computer (the old fashioned way).

Anaconda, conda The program that installs all requirements and creates a suitable environment for CLIMADA.

Environment (Programming) A setup where only a specific set of modules and programs can interact. This is especially useful if you want to install programs with mutually incompatible requirements.

pip The Python package installer.

git A popular version control software for programming code (or any text-based set of files).

GitHub A website that publicly hosts git repositories.

git Repository A collection of files and their entire revision/version history, managed by git.

Cloning The process and command (git clone) for downloading a git repository.

IDE Integrated Development Environment. A fancy source code editor tailored for software development and engineering.
CHAPTER
FOUR

USING CLIMADA ON THE EULER CLUSTER (ETH INTERNAL)

4.1 Content

• Access to Euler
• Installation and working directories
• Pre-installed version of Climada
• Working with Git branches
• Fallback: Conda installation
• Run a Jupyter Notebook on Euler
• Trouble shooting

4.2 Access to Euler

See https://scicomp.ethz.ch/wiki/Getting_started_with_clusters for details on how to register at and get started with Euler. For all steps below, first enter the Cluster via SSH.

4.3 Installation and working directories

Please, get familiar with the various Euler storage options: https://scicomp.ethz.ch/wiki/Storage_systems. As a general rule: use /cluster/project for installation and /cluster/work for data processing.

For ETH WCR group members, the suggested installation and working directories are /cluster/project/climate/$USER and /cluster/work/climate/$USER respectively. You may have to create the installation directory:

```
mkdir -p /cluster/project/climate/$USER \
/cluster/work/climate/$USER
```
4.4 Pre-installed version of Climada

Climada is pre-installed and available in the default pip environment of Euler.

4.4.1 1. Load dependencies

```bash
env2lmod
module load gcc/8.2.0 python/3.9.9 gdal/3.4.3 geos/3.9.1 proj/8.2.1 libspatialindex/1.9.3 netcdf/4.6.3 eccodes/2.22.1 zlib/1.2.9 libtiff/4.2.0 sqlite/3.35.5
```

You need to execute these two lines every time you login to Euler before Climada can be used. To safe yourself from doing it manually, one can append these lines to the ~/.bashrc script, which is automatically executed upon logging in to Euler.

4.4.2 2. Check installation

```bash
python -c 'import climada; print(climada.__file__)'
```

should output something like this:

```
/cluster/apps/nss/gcc-8.2.0/python/3.9.9/x86_64/lib64/python3.9/site-packages/climada/__init__.py
```

4.4.3 3. Adjust the Climada configuration

Edit a configuration file according to your needs (see Guide_Configuration). Create a climada.conf file e.g., in /cluster/home/$USER/.config with the following content:

```json
{
    "local_data": {
        "system": "/cluster/work/climate/USERNAME/climada/data",
        "demo": "/cluster/project/climate/USERNAME/climada/data/demo",
        "save_dir": "/cluster/work/climate/USERNAME/climada/results"
    }
}
```

(Replace USERNAME with your nethz-id.)

4.4.4 4. Run a job

Please see the docs at https://slurm.schedmd.com/ on how to use the slurm batch system and the Wiki https://scicomp.ethz.ch/wiki/Transition_from_LSF_to_Slurm for a mapping of lsf commands to their slurm equivalents.

```bash
cd /cluster/work/climate/$USER  # change to the working directory
sbatch [slurm options*] --wrap 'python climada_job_script.py'  # submit the job
```
4.5 Working with Git branches

If the Climada version of the default installation is not according to your needs, you can install Climada from a local Git repository.

4.5.1 1. Load dependencies

See Load dependencies above.

4.5.2 2. Create installation environment

```
python -m venv --system-site-packages /cluster/project/climate/$USER/climada_venv
```

4.5.3 3. Checkout sources

```
cd /cluster/project/climate/$USER
git clone https://github.com/CLIMADA-project/climada_python.git
cd climada_python
git checkout develop  # i.e., your branch of interest
```

4.5.4 4. Pip install Climada

```
source /cluster/project/climate/$USER/climada_venv/bin/activate
pip install -e /cluster/project/climate/$USER/climada_python
```

4.5.5 5. Check installation

```
cd /cluster/work/climate/$USER
python -c 'import climada; print(climada.__file__)'  
```

should output exactly this (with explicit $USER):

```
/cluster/project/climate/$USER/climada_python/climada/__init__.py
```

4.5.6 6. Adjust the Climada configuration

See Adjust the Climada configuration above.
4.5.7 7. Run a job

See Run a job above.

4.6 Fallback: Conda

If Climada cannot be installed through pip because of changed dependency requirements, there is still the possibility to install Climada through the Conda environment.

WARNING: This approach is highly discouraged, as it imposes a heavy and mostly unnecessary burden on the file system of the cluster.

4.6.1 Installation

1. Conda

Download or update to the latest version of Miniconda. Installation is done by execution of the following steps:

```
 cd /cluster/project/climate/USERNAME
 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
 bash Miniconda3-latest-Linux-x86_64.sh
 miniconda3/bin/conda init
 rm Miniconda3-latest-Linux-x86_64.sh
```

During the installation process of Miniconda, you are prompted to set the working directory according to your choice. Set it to `/cluster/project/climate/USERNAME/miniconda3`. Once the installation has finished, log out of Euler and in again. The command prompt should be preceded by `(base)`, indicating that the installation was a success and that you login in into conda’s base environment by default.

2. Checkout sources

See Checkout sources above.

3. Climada environment

Create the conda environment:

```
 cd /cluster/project/climate/USERNAME/climada_python
 conda env create -f requirements/env_climada.yml --name climada_env
 conda env update -n climada_env -f requirements/env_developer.yml
 conda activate climada_env
 conda install conda-build
 conda develop .
```
4. Adjust the Climada configuration

See Adjust the Climada configuration above.

5. Climada scripts

Create a bash script for executing python scripts in the climada environment, `climadajob.sh`:

```bash
#!/bin/bash
PYTHON_SCRIPT=$1
shift
. ~/.bashrc
conda activate climada_env
python $PYTHON_SCRIPT $@
echo $PYTHON_SCRIPT completed
```

Make it executable:

```
chmod +x climadajob.sh
```

Create a python script that executes climada code, e.g., `climada_smoke_test.py`:

```python
import sys
from climada import CONFIG, SYSTEM_DIR
from climada.util.test.test_finance import TestNetpresValue
TestNetpresValue().test_net_pres_val_pass()
print(SYSTEM_DIR)
print(CONFIG.local_data.save_dir.str())
print("the script ran with arguments ", sys.argv)
```

6. Run a job

With the scripts from above you can submit the python script as a job like this:

```
sbatch [slurm options] --wrap "/path/to/climadajob.sh /path/to/climada_smoke_test.py...arg1 arg2"
```

After the job has finished the slurm output file should look something like this:

```
/home/cluster/work/climate/USERNAME/climada/data
/home/cluster/work/climate/USERNAME/climada/results
the script ran with arguments ['/path/to/climada_smoke_test.py', 'arg1' 'arg2']
python_script.sh completed
```

Please see the docs at https://slurm.schedmd.com/ on how to use the slurm batch system and the Wiki https://scicomp.ethz.ch/wiki/Transition_from_LSF_to_Slurm for a mapping of lsf commands to their slurm equivalents.

4.6. Fallback: Conda
4.6.2 Deinstallation

1. Conda

Remove the miniconda3 directory from the installation directory:

```
rm -rf /cluster/project/climate/USERNAME/miniconda3/
```

Delete the conda related parts from `/cluster/home/USERNAME/.bashrc`, i.e., everything between

```
# >>> conda initialize >>>
and
# <<< conda initialize <<<
```

2. Climada

Remove the climada sources and config file:

```
rm -rf /cluster/project/climate/USERNAME/climada_python
rm -f /cluster/home/USERNAME/climada.conf /cluster/home/USERNAME/*/climada.conf
```

4.7 Run Jupyter Notebook on Euler

It is possible to run a Jupyter Notebook on Euler and access it through a browser from your local machine. To make this possible you have to do some preparation steps on both, your local machine and on Euler.

Windows Users: to run the commands given below on your local computer you have to use `git-bash` (or WSL `bash` if Ubuntu on Windows is installed).

4.7.1 1. Get the *Jupyter on Euler* scripts and documentation

on your local computer, run these commands:

```
git clone git@gitlab.ethz.ch:sfux/Jupyter-on-Euler-or-Leonhard-Open.git
cd Jupyter-on-Euler-or-Leonhard-Open
git checkout add_slurm
```

4.7.2 2. Create an SSH key pair

on your local computer, run this command:

```
ssh-keygen ssh-keygen -t ed25519 -f $HOME/.ssh/id_ed25519_euler
```

When prompted, enter a *strong* passphrase.

Then, run

```
ssh-add $HOME/.ssh/id_ed25519_euler
```
and provide the passphrase from above.

Windows Users: `ssh-add` is working together with an SSH-Agent, which is not running out of the box in `git-bash`. Follow the instructions here to make it available.

4.7.3 3. Copy the public key into the authorized_keys file on Euler

```
ssh-copy-id -i $HOME/.ssh/id_ed25519_euler.pub USERNAME@euler.ethz.ch
```

replace `USERNAME` with your ETH user name. When prompted to enter the password provide your LADP password (i.e., it is the same as your E-mail password).

At this point you should be able to access Euler through `ssh` without password:

```
ssh USERNAME@euler.ethz.ch
```

should bring you directly to the Euler cluster.

4.7.4 4. Prepare Euler environment

It is highly recommended to use a python environment and a github clone as described above under Working with Git Branches.

Login to Euler.

Unless you have done so already you need to permanently switch to the new software stack:

```
set_software_stack.sh new
```

Unless you have done so already you need to append the default module selection in your `~/.bashrc` file:

```
echo >> ~/.bashrc
```

```
echo module load gcc/8.2.0 python/3.9.9 gdal/3.4.3 geos/3.9.1 proj/8.2.1
   -libspatialindex/1.9.3 netcdf/4.6.3 eccodes/2.22.1 zlib/1.2.9 libtiff/4.2.0 sqlite/3.35.5 >> ~/.bashrc
```

Activate your python environment:

```
source /cluster/project/climate/$USER/climada_venv/bin/activate
```

Install an IPyton-kernel:

```
python -m ipykernel install --user --name climada_venv
```

Logout.
4.7.5 5. Adjust the script

Open the script `start_jupyter_nb.sh` in an editor and change the gcc and python version numbers in lines 421/422 so they look like this:

```
[421] JNB_MODULE_COMMAND="gcc/8.2.0 r/4.0.2 python/3.9.9 eth_proxy $JNB_→JULIA"
[422] echo -e "Using new software stack (gcc/8.2.0 python/3.9.9 eth_proxy
→$JNB_JULIA)"
```

make the script executable:

```
chmod +x start_jupyter_nb.sh
```

4.7.6 6. Start a Jupyter Notebook on Euler

At this point everything is ready. You should be able to start a Jupyter Notebook remotely running on Euler.

Check out the script:

```
./start_jupyter_nb.sh
```

Run Jupyter on Euler on a single cpu (default) with 1G of memory (default) in your projects directory with the slurm batch system:

```
./start_jupyter_nb.sh -u NETHZID -b SLURM -w /cluster/project/climate/USERNAME
```

If all went fine your default browser will be opened after some time with Jupyter running in your project directory. When opening or creating a notebook make sure you select the `climada_venv` kernel.

4.8 Trouble shooting

4.8.1 1. Python Module not found or available

- Make sure your python environment is activated.
- Run `pip install --upgrade MISSING_MODULE`.
CHAPTER FIVE

SOFTWARE DOCUMENTATION PER PACKAGE

5.1 climada.engine package

5.1.1 climada.engine.unsequa package

climada.engine.unsequa.calc_base module

class climada.engine.unsequa.calc_base.Calc
 Bases: object

 Base class for uncertainty quantification
 Contains the generic sampling and sensitivity methods. For computing the uncertainty distribution for specific
 CLIMADA outputs see the subclass CalcImpact and CalcCostBenefit.

 _input_var_names
 Names of the required uncertainty variables.
 Type tuple(str)

 _metric_names
 Names of the output metrics.
 Type tuple(str)

Notes

Parallelization logics: for computation of the uncertainty users may specify a number N of processes on which to
perform the computations in parallel. Since the computation for each individual sample of the input parameters is
independent of one another, we implemented a simple distribution on the processes.

1. The samples are divided in N equal sub-sample chunks
2. Each chunk of samples is sent as one to a node for processing

Hence, this is equivalent to the user running the computation N times, once for each sub-sample. Note that for
each process, all the input variables must be copied once, and hence each parallel process requires roughly the same
amount of memory as if a single process would be used.

This approach differs from the usual parallelization strategy (where individual samples are distributed), because
each sample requires the entire input data. With this method, copying data between processes is reduced to a
minimum.

Parallelization is currently not available for the sensitivity computation, as this requires all samples simultaneously
in the current implementation of the SaLib library.
__init__()
 Empty constructor to be overwritten by subclasses

check_distr()
 Log warning if input parameters repeated among input variables

 Return type True.

property input_vars
 Uncertainty variables

 Returns All uncertainty variables associated with the calculation

 Return type tuple(UncVar)

property distr_dict
 Dictionary of the input variable distribution

 Probability density distribution of all the parameters of all the uncertainty variables listed in self.InputVars

 Returns distr_dict – Dictionary of all probability density distributions.

 Return type dict(sp.stats objects)

est_comp_time(n_samples, time_one_run, processes=None)
 Estimate the computation time

 Parameters

 • n_samples (int/float) – The total number of samples

 • time_one_run (int/float) – Estimated computation time for one parameter set in seconds

 • pool (pathos.pool, optional) – pool that would be used for parallel computation. The default is None.

 Return type Estimated computation time in secs.

make_sample(N, sampling_method='saltelli', sampling_kwargs=None)
 Make samples of the input variables

 For all input parameters, sample from their respective distributions using the chosen sampling_method from SALib. https://salib.readthedocs.io/en/latest/api.html

 This sets the attributes unc_output.samples_df, unc_output.sampling_method, unc_output.sampling_kwargs.

 Parameters

 • N (int) – Number of samples as used in the sampling method from SALib

 • sampling_kwargs (kwargs, optional) – Optional keyword arguments passed on to the SALib sampling_method. The default is None.

 Returns unc_output – Uncertainty data object with the samples

 Return type climada.engine.uncertainty.unc_output.UncOutput()

See also:

SALib.sample sampling methods from SALib SALib.sample

Compute the sensitivity indices using SALib.

Prior to doing the sensitivity analysis, one must compute the uncertainty (distribution) of the output values (with self.uncertainty()) for all the samples (rows of self.samples_df).

According to Wikipedia, sensitivity analysis is “the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs.” The sensitivity of each input is often represented by a numeric value, called the sensitivity index. Sensitivity indices come in several forms.

This sets the attributes: sens_output.sensistivity_method sens_output.sensitivity_kwargs sens_output.xxx_sens_df for each metric unc_output.xxx_unc_df

Parameters

- **unc_output** (climada.engine.uncertainty.unc_output.UncOutput) – Uncertainty data object in which to store the sensitivity indices
- **sensitivity_kwargs** (dict, optional) – Keyword arguments of the chosen SALib analyse method. The default is to use SALib's default arguments.

Returns sens_output – Uncertainty data object with all the sensitivity indices, and all the uncertainty data copied over from unc_output.

Return type climada.engine.uncertainty.unc_output.UncOutput()

climada.engine.unsequa.calc_cost_benefit module

class climada.engine.unsequa.calc_cost_benefit.CalcCostBenefit

- **haz_input_var** (climada.engine.unsequa.input_var.InputVar, climada.hazard.base.Hazard, Union[climada.engine.unsequa.input_var.InputVar, climada.hazard.base.Hazard]) = None
- **ent_input_var** (climada.engine.unsequa.input_var.InputVar, climada.entity.entity_def.Entity, Union[climada.engine.unsequa.input_var.InputVar, climada.entity.entity_def.Entity]) = None
- **haz_fut_input_var** (Optional[Union[climada.engine.unsequa.input_var.InputVar, climada.hazard.base.Hazard]])
- **ent_fut_input_var** (Optional[Union[climada.engine.unsequa.input_var.InputVar, climada.entity.entity_def.Entity]])

bases: climada.engine.unsequa.calc_base.Calc

Cost Benefit uncertainty analysis class

This is the base class to perform uncertainty analysis on the outputs of climada.engine.costbenefit.CostBenefit().

5.1. climada.engine package
value_unit
 Unit of the exposures value
 Type str

haz_input_var
 Present Hazard uncertainty variable
 Type InputVar or Hazard

ten_input_var
 Present Entity uncertainty variable
 Type InputVar or Entity

haz_unc_fut_Var
 Future Hazard uncertainty variable
 Type InputVar or Hazard

ten_fut_input_var
 Future Entity uncertainty variable
 Type InputVar or Entity

_input_var_names
 Names of the required uncertainty variables ('haz_input_var', 'ent_input_var', 'haz_fut_input_var', 'ent_fut_input_var')
 Type tuple(str)

_metric_names
 Names of the cost benefit output metrics ('tot_climate_risk', 'benefit', 'cost_ben_ratio', 'imp_meas_present', 'imp_meas_future')
 Type tuple(str)

__init__ (haz_input_var: Union[climada.engine.uncertainty.input_var.InputVar, climada.hazard.base.Hazard],
 ent_input_var: Union[climada.engine.uncertainty.input_var.InputVar,
 climada.entity.entity_def.Entity],
 haz_fut_input_var: Optional[Union[climada.engine.uncertainty.input_var.InputVar,
 climada.hazard.base.Hazard]] = None,
 ent_fut_input_var: Optional[Union[climada.engine.uncertainty.input_var.InputVar,
 climada.entity.entity_def.Entity]] = None)

Initialize UncCalcCostBenefit

Sets the uncertainty input variables, the cost benefit metric_names, and the units.

Parameters

- **haz_input_var** (climada.engine.uncertainty.input_var.InputVar) – or climada.hazard.Hazard Hazard uncertainty variable or Hazard for the present Hazard in climada.engine.CostBenefit.calc

- **ent_input_var** (climada.engine.uncertainty.input_var.InputVar) – or climada.entity.Entity Entity uncertainty variable or Entity for the present Entity in climada.engine.CostBenefit.calc

- **haz_fut_input_var** (climada.engine.uncertainty.input_var.InputVar) – or climada.hazard.Hazard, optional Hazard uncertainty variable or Hazard for the future Hazard The Default is None.
• `ent_fut_input_var` (climada.engine.uncertainty.input_var.InputVar) – or climada.entity.Entity, optional Entity uncertainty variable or Entity for the future Entity in climada.engine.CostBenefit.calc

uncertainty (unc_sample, processes=1, chunksize=None, **cost_benefit_kwargs)

Computes the cost benefit for each sample in unc_output.sample_df.

By default, imp_meas_present, imp_meas_future, tot_climate_risk, benefit, cost_ben_ratio are computed.

This sets the attributes: unc_output.imp_meas_present_unc_df, unc_output.imp_meas_future_unc_df, unc_output.tot_climate_risk_unc_df, unc_output.benefit_unc_df, unc_output.cost_ben_ratio_unc_df.

Parameters

- `unc_sample` (climada.engine.uncertainty.unc_output.UncOutput) – Uncertainty data object with the input parameters samples
- `processes` (int, optional) – Number of CPUs to use for parallel computations. The default is 1 (not parallel)
- `cost_benefit_kwargs` (keyword arguments) – Keyword arguments passed on to climada.engine.CostBenefit.calc()
- `chunksize` (int, optional) – Size of the sample chunks for parallel processing. Default is equal to the number of samples divided by the number of processes.

Returns `unc_output` – Uncertainty data object in with the cost benefit outputs for each sample and all the sample data copied over from unc_sample.

Return type climada.engine.uncertainty.unc_output.UncCostBenefitOutput

Raises `ValueError` – If no sampling parameters defined, the uncertainty distribution cannot be computed.

Notes

Parallelization logic is described in the base class here **Calc**

See also:

`climada.engine.cost_benefit` compute risk and adption option cost benefits.

climada.engine.unsequa.calc_impact module

class climada.engine.unsequa.calc_impact.CalcImpact (exp_input_var:

Union[climada.engine.unsequa.input_var.InputVar,
climada.entity.exposures.base.Exposures],
impf_input_var:

Union[climada.engine.unsequa.input_var.InputVar,
climada.entity.impact_funcs.impact_func_set.ImpactFuncSet],
haz_input_var:

Union[climada.engine.unsequa.input_var.InputVar,
climada.hazard.base.Hazard])

Bases: climada.engine.unsequa.calc_base.Calc
Impact uncertainty calculation class.

This is the class to perform uncertainty analysis on the outputs of a climada.engine.impact.Impact() object.

rp
List of the chosen return periods.
 Type list(int)

calc_eai_exp
Compute eai_exp or not
 Type bool

calc_at_event
Compute eai_exp or not
 Type bool

value_unit
Unit of the exposures value
 Type str

exp_input_var
Exposure uncertainty variable
 Type InputVar or Exposures

impf_input_var
Impact function set uncertainty variable
 Type InputVar if ImpactFuncSet

haz_input_var
Hazard uncertainty variable
 Type InputVar or Hazard

_input_var_names
Names of the required uncertainty input variables ('exp_input_var', 'impf_input_var', 'haz_input_var')
 Type tuple(str)

_metric_names
Names of the impact output metrics ('aai_agg', 'freq_curve', 'at_event', 'eai_exp')
 Type tuple(str)

__init__
Initialize UncCalcImpact
Sets the uncertainty input variables, the impact metric_names, and the units.

Parameters
 • exp_input_var (climada.engine.uncertainty.input_var.InputVar or climada.entity.Exposure)
 – Exposure uncertainty variable or Exposure
impf_input_var (climada.engine.uncertainty.input_var.InputVar or climada.entity.ImpactFuncSet) – Impact function set uncertainty variable or Impact function set

haz_input_var (climada.engine.uncertainty.input_var.InputVar or climada.hazard.Hazard) – Hazard uncertainty variable or Hazard

uncertainty (unc_sample, rp=None, calc_eai_exp=False, calc_at_event=False, processes=1, chunksize=None)

Computes the impact for each sample in unc_data.sample_df. By default, the aggregated average impact within a period of 1/frequency_unit (impact.aai_agg) and the exceedance impact at return periods rp (impact.calc_freq_curve(self.rp).impact) is computed. Optionally, eai_exp and at_event is computed (this may require a larger amount of memory if the number of samples and/or the number of centroids and/or exposures points is large).

This sets the attributes self.rp, self.calc_eai_exp, self.calc_at_event, self.metrics. This sets the attributes: unc_output.aai_agg_unc_df, unc_output.freq_curve_unc_df, unc_output.eai_exp_unc_df, unc_output.at_event_unc_df, unc_output.unit

Parameters

• unc_sample (climada.engine.uncertainty.unc_output.UncOutput) – Uncertainty data object with the input parameters samples

• rp (list(int), optional) – Return periods in years to be computed. The default is [5, 10, 20, 50, 100, 250].

• calc_eai_exp (boolean, optional) – Toggle computation of the impact at each centroid location. The default is False.

• calc_at_event (boolean, optional) – Toggle computation of the impact for each event. The default is False.

• processes (int, optional) – Number of CPUs to use for parallel computations. The default is 1 (not parallel)

• chunksize (int, optional) – Size of the sample chunks for parallel processing. Default is equal to the number of samples divided by the number of processes.

Returns unc_output – Uncertainty data object with the impact outputs for each sample and all the sample data copied over from unc_sample.

Return type climada.engine.uncertainty.unc_output.UncImpactOutput

Raises ValueError: – If no sampling parameters defined, the distribution cannot be computed.

Notes

Parallelization logic is described in the base class here Calc

See also:

climada.engine.impact compute impact and risk.
climada.engine.unsequa.input_var module

class climada.engine.unsequa.input_var.InputVar (func: callable, distr_dict: Dict)

 Bases: object

 Input variable for the uncertainty analysis

 An uncertainty input variable requires a single or multi-parameter function. The parameters must follow a given
distribution. The uncertainty input variables are the input parameters of the model.

 distr_dict
 Distribution of the uncertainty parameters. Keys are uncertainty parameters names and Values are probability
density distribution from the scipy.stats package https://docs.scipy.org/doc/scipy/reference/stats.html

 Type dict

 labels
 Names of the uncertainty parameters (keys of distr_dict)

 Type list

 func
 User defined python function with the uncertainty parameters as keyword arguments and which returns a
climada object.

 Type function

Notes

A few default Variables are defined for Hazards, Exposures, Impact Fucntions, Measures and Entities.

Examples

Categorical variable function: LitPop exposures with m,n exponents in [0,5]

 >>> import scipy as sp
 >>> def litpop_cat(m, n):
 ... exp = Litpop.from_countries('CHE', exponent=[m, n])
 ... return exp
 >>> distr_dict = {
 ... 'm': sp.stats.randint(low=0, high=5),
 ... 'n': sp.stats.randint(low=0, high=5)
 ... }
 >>> iv_cat = InputVar(func=litpop_cat, distr_dict=distr_dict)

Continuous variable function: Impact function for TC

 >>> import scipy as sp
 >>> def imp_fun_tc(G, v_half, vmin, k, _id=1):
 ... intensity = np.linspace(0, 150, num=100)
 ... wasd = np.repeat(1, len(intensity))
 ... paa = np.array([sigmoid_function(v, G, v_half, vmin, k)
 ... for v in intensity])
 ... imp_fun = ImpactFunc(haz_type='TC',
 ... id=_id,
 ... intensity_unit='m/s',
 ...
 (continues on next page)
... intensity=intensity,
... mdd=mdd,
... paa=paa)
... imp_fun.check()
... impf_set = ImpactFuncSet([imp_fun])
... return impf_set
>>> distr_dict = {
... "G": sp.stats.uniform(0.8, 1),
... "v_half": sp.stats.uniform(50, 100),
... "vmin": sp.stats.norm(loc=15, scale=30),
... "k": sp.stats.randint(low=1, high=9)
... }
>>> iv_cont = InputVar(func=imp_fun_tc, distr_dict=distr_dict)

__init__ (func: callable, distr_dict: Dict)

Initialize InputVar

Parameters

- **func** *(function)* – Variable defined as a function of the uncertainty parameters

- **distr_dict** *(dict)* – Dictionary of the probability density distributions of the uncertainty parameters, with keys matching the keyword arguments (i.e. uncertainty parameters) of the func function. The distribution must be of type scipy.stats https://docs.scipy.org/doc/scipy/reference/stats.html

evaluate (**params**)

Return the value of uncertainty input variable.

By default, the value of the average is returned.

Parameters **params** *(optional)* – Input parameters will be passed to self.func.

Returns **unc_func** (**params**) – Output of the uncertainty variable.

Return type climada object

plot (figsize=None)

Plot the distributions of the parameters of the uncertainty variable.

Parameters **figsize** *(tuple(int or float, int or float), optional)* – The figsize argument of matplotlib.pyplot.subplots() The default is derived from the total number of plots (nplots) as:

```python
>>> nrows, ncols = int(np.ceil(nplots / 3)), min(nplots, 3)
>>> figsize = (ncols * FIG_W, nrows * FIG_H)
```

Returns axes – The figure and axes handle of the plot.

Return type matplotlib.pyplot.figure, matplotlib.pyplot.axes

static var_to_inputvar (var)

Returns an uncertainty variable with no distribution if var is not an InputVar. Else, returns var.

Parameters var *(climada.uncertainty.InputVar or any other CLIMADA object)*

Returns var if var is InputVar, else InputVar with var and no distribution.

Return type InputVar

static haz (haz_list, n_ev=None, bounds_int=None, bounds_frac=None, bounds_freq=None)

Helper wrapper for basic hazard uncertainty input variable

The following types of uncertainties can be added:

5.1. climada.engine package
HE: sub-sampling events from the total event set For each sub-sample, n_ev events are sampled with replacement. HE is the value of the seed for the uniform random number generator.

HI: scale the intensity of all events (homogeneously) The intensity of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_int

HA: scale the fraction of all events (homogeneously) The fraction of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_frac

HF: scale the frequency of all events (homogeneously) The frequency of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_freq

HL: sample uniformly from hazard list From the provided list of hazard is elements are uniformly sampled. For example, Hazards outputs from dynamical models for different input factors.

If a bounds is None, this parameter is assumed to have no uncertainty.

Parameters

- **haz** ([List of climada.hazard.Hazard]) – The list of base hazard. Can be one or many to uniformly sample from.
- **n_ev** ([int, optional]) – Number of events to be subsampled per sample. Can be equal or larger than haz.size. The default is None.
- **bounds_int** ([float, float], optional) – Bounds of the uniform distribution for the homogeneous intensity scaling. The default is None.
- **bounds_frac** ([float, float], optional) – Bounds of the uniform distribution for the homogeneous fraction scaling. The default is None.
- **bounds_freq** ([float, float], optional) – Bounds of the uniform distribution for the homogeneous frequency scaling. The default is None.

Returns Uncertainty input variable for a hazard object.

Return type climada.engine.unsequa.input_var.InputVar

static exp (exp_list, bounds_totval=None, bounds_noise=None)

Helper wrapper for basic exposure uncertainty input variable

The following types of uncertainties can be added:

ET: scale the total value (homogeneously) The value at each exposure point is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_totvalue

EN: multiplicative noise (inhomogeneous) The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with (min, max) = bounds_noise. EN is the value of the seed for the uniform random number generator.

EL: sample uniformly from exposure list From the provided list of exposure is elements are uniformly sampled. For example, LitPop instances with different exponents.

If a bounds is None, this parameter is assumed to have no uncertainty.

Parameters

- **exp_list** ([list of climada.entity.exposures.Exposures]) – The list of base exposure. Can be one or many to uniformly sample from.
- **bounds_totval** ([float, float], optional) – Bounds of the uniform distribution for the homogeneous total value scaling. The default is None.
- **bounds_noise** ([float, float], optional) – Bounds of the uniform distribution to scale each exposure point independently. The default is None.
Returns Uncertainty input variable for an exposure object.

Return type `climada.engine.unsequa.input_var.InputVar`

`static impfset` `(impf_set_list, haz_id_dict=None, bounds_mdd=None, bounds_paa=None, bounds_impfi=None)`

Helper wrapper for basic impact function set uncertainty input variable.

One impact function (chosen with haz_type and fun_id) is characterized.

The following types of uncertainties can be added:

MDD: scale the mdd (homogeneously) The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_mdd

PAA: scale the paa (homogeneously) The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_paa

IFi: shift the intensity (homogeneously) The value intensity are all summed with a random number sampled uniformly from a distribution with (min, max) = bounds_int

IL: sample uniformly from impact function set list From the provided list of impact function sets elements are uniformly sampled. For example, impact functions obtained from different calibration methods.

If a bounds is None, this parameter is assumed to have no uncertainty.

Parameters

- `impf_set_list` (list of ImpactFuncSet) – The list of base impact function set. Can be one or many to uniformly sample from. The impact function ids must identical for all impact function sets.

- `bounds_mdd` ((float, float), optional) – Bounds of the uniform distribution for the homogeneous mdd scaling. The default is None.

- `bounds_paa` ((float, float), optional) – Bounds of the uniform distribution for the homogeneous paa scaling. The default is None.

- `bounds_impfi` ((float, float), optional) – Bounds of the uniform distribution for the homogeneous shift of intensity. The default is None.

- `haz_id_dict` (dict(), optional) – Dictionary of the impact functions affected by uncertainty. Keys are hazard types (str), values are a list of impact function id (int). Default is impsf_set.get_ids() i.e. all impact functions in the set

Returns Uncertainty input variable for an impact function set object.

Return type `climada.engine.unsequa.input_var.InputVar`

`static ent` `(impf_set_list, disc_rate, exp_list, meas_set, haz_id_dict, bounds_disc=None, bounds_cost=None, bounds_totval=None, bounds_noise=None, bounds_mdd=None, bounds_paa=None, bounds_impfi=None)`

Helper wrapper for basic entity set uncertainty input variable.

Important: only the impact function defined by haz_type and fun_id will be affected by bounds_impfi, bounds_mdd, bounds_paa.

The following types of uncertainties can be added:

DR: value of constant discount rate (homogeneously) The value of the discounts in each year is sampled uniformly from a distribution with (min, max) = bounds_disc
CO: scale the cost (homogeneously) The cost of all measures is multiplied by the same number sampled uniformly from a distribution with (min, max) = bounds_cost

ET: scale the total value (homogeneously) The value at each exposure point is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_totval

EN: multiplicative noise (inhomogeneous) The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with (min, max) = bounds_noise. EN is the value of the seed for the uniform random number generator.

EL: sample uniformly from exposure list From the provided list of exposure is elements are uniformly sampled. For example, LitPop instances with different exponents.

MDD: scale the mdd (homogeneously) The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_mdd

PAA: scale the paa (homogeneously) The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_paa

IFi: shift the intensity (homogeneously) The value intensity are all summed with a random number sampled uniformly from a distribution with (min, max) = bounds_int

IL: sample uniformly from impact function set list From the provided list of impact function sets elements are uniformly sampled. For example, impact functions obtained from different calibration methods.

If a bounds is None, this parameter is assumed to have no uncertainty.

Parameters

- bounds_disk ((float, float), optional) – Bounds of the uniform distribution for the homogeneous discount rate scaling. The default is None.
- bounds_cost ((float, float), optional) – Bounds of the uniform distribution for the homogeneous cost of all measures scaling. The default is None.
- bounds_totval ((float, float), optional) – Bounds of the uniform distribution for the homogeneous total exposure value scaling. The default is None.
- bounds_noise ((float, float), optional) – Bounds of the uniform distribution to scale each exposure point independently. The default is None.
- bounds_mdd ((float, float), optional) – Bounds of the uniform distribution for the homogeneous mdd scaling. The default is None.
- bounds_paa ((float, float), optional) – Bounds of the uniform distribution for the homogeneous paa scaling. The default is None.
- bounds_impfi ((float, float), optional) – Bounds of the uniform distribution for the homogeneous shift of intensity. The default is None.
- impf_set_list (list of ImpactFuncSet) – The list of base impact function set. Can be one or many to uniformly sample from. The impact function ids must identical for all impact function sets.
- disc_rate (climada.entity.disc_rates.base.DiscRates) – The base discount rates.
- exp_list (climada.entity.exposures.base.Exposure) – The list of base exposure. Can be one or many to uniformly sample from.
- meas_set (climada.entity.measures.measure_set.MeasureSet) – The base measures.
- haz_id_dict (dict) – Dictionary of the impact functions affected by uncertainty. Keys are hazard types (str), values are a list of impact function id (int).
Helper wrapper for basic future entity set uncertainty input variable.

Important: only the impact function defined by haz_type and fun_id will be affected by bounds_impfi, bounds_mdd, bounds_paa.

The following types of uncertainties can be added:

CO: scale the cost (homogeneously) The cost of all measures is multiplied by the same number sampled uniformly from a distribution with (min, max) = bounds_cost

EG: scale the exposures growth (homogeneously) The value at each exposure point is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_eg

EN: mutliplicative noise (inhomogeneous) The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with (min, max) = bounds_noise. EN is the value of the seed for the uniform random number generator.

EL: sample uniformly from exposure list From the provided list of exposure elements are uniformly sampled. For example, LitPop instances with different exponents.

MDD: scale the mdd (homogeneously) The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_mdd

PAA: scale the paa (homogeneously) The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_paa

IFI: shift the impact function intensity (homogeneously) The value intensity are all summed with a random number sampled uniformly from a distribution with (min, max) = bounds_impfi

IL: sample uniformly from impact function set list From the provided list of impact function sets elements are uniformly sampled. For example, impact functions obtained from different calibration methods.

If a bounds is None, this parameter is assumed to have no uncertainty.

Parameters

- **bounds_cost** ((float, float), optional) – Bounds of the uniform distribution for the homogeneous cost of all measures scaling. The default is None.

- **bounds_eg** ((float, float), optional) – Bounds of the uniform distribution for the homogeneous total exposure growth scaling. The default is None.

- **bounds_noise** ((float, float), optional) – Bounds of the uniform distribution to scale each exposure point independently. The default is None.

- **bounds_mdd** ((float, float), optional) – Bounds of the uniform distribution for the homogeneous mdd scaling. The default is None.

- **bounds_paa** ((float, float), optional) – Bounds of the uniform distribution for the homogeneous paa scaling. The default is None.

- **bounds_impfi** ((float, float), optional) – Bounds of the uniform distribution for the homogeneous shift of intensity. The default is None.

- **impf_set_list** (list of ImpactFuncSet) – The list of base impact function set. Can be one or many to uniformly sample from. The impact function ids must identical for all impact function sets.
• **exp_list** ([climada.entity.exposures.base.Exposure]) – The list of base exposure. Can be one or many to uniformly sample from.

• **meas_set** ([climada.entity.measures.measure_set.MeasureSet]) – The base measures.

• **haz_id_dict** ([dict]) – Dictionary of the impact functions affected by uncertainty. Keys are hazard types (str), values are a list of impact function id (int).

Returns Entity uncertainty input variable

Return type `climada.engine.unsequa.input_var.InputVar`

climada.engine.unsequa.unc_output module

class `climada.engine.unsequa.unc_output.UncOutput(samples_df, unit=None)`

Bases: object

Class to store and plot uncertainty and sensitivity analysis output data

This is the base class to store uncertainty and sensitivity outputs of an analysis done on climada.engine.impact.Impact() or climada.engine.costbenefit.CostBenefit() object.

samples_df

Values of the sampled uncertainty parameters. It has n_samples rows and one column per uncertainty parameter.

Type pandas.DataFrame

sampling_method

Name of the sampling method from SAlib. https://salib.readthedocs.io/en/latest/api.html#

Type str

n_samples

Effective number of samples (number of rows of samples_df)

Type int

param_labels

Name of all the uncertainty parameters

Type list

distr_dict

Common flattened dictionary of all the distr_dict of all input variables. It represents the distribution of all the uncertainty parameters.

Type dict

problem_sa

Type dict

__init__(samples_df, unit=None)

Initialize Uncertainty Data object.

Parameters

• **samples_df** (pandas.DataFrame) – input parameters samples
• unit (str, optional) – value unit

order_samples (by_parameters)

Function to sort the samples dataframe.

Note: the unc_output.samples_df is ordered inplace.

Parameters:
- **by_parameters** (list[string]) – List of the uncertainty parameters to sort by (ordering in list is kept)

Return type: None.

get_samples_df()

get_unc_df(metric_name)

set_unc_df(metric_name, unc_df)

get_sens_df(metric_name)

set_sens_df(metric_name, sens_df)

check_salib(sensitivity_method)

Checks whether the chosen sensitivity method and the sampling method used to generated self.samples_df respect the pairing recommendation by the SALib package.

Parameters:
- **sensitivity_method** (str) – Name of the sensitivity analysis method.

Returns: True if sampling and sensitivity methods respect the recommended pairing.

Return type: bool

property sampling_method

Returns the sampling method used to generate self.samples_df

Returns: Sampling method name

Return type: str

property sampling_kwargs

Returns the kwargs of the sampling method that generate self.samples_df

Returns: Dictionary of arguments for SALib sampling method

Return type: dict

property n_samples

The effective number of samples

Returns: effective number of samples

Return type: int

property param_labels

Labels of all uncertainty input parameters.

Returns: Labels of all uncertainty input parameters.

Return type: list of str
property problem_sa

- **Returns**: Salib problem dictionary.
- **Return type**: dict

property uncertainty_metrics

Retrieve all uncertainty output metrics names

- **Returns**: unc_metric_list – List of names of attributes containing metrics uncertainty values, without the trailing '_unc_df'
- **Return type**: [str]

property sensitivity_metrics

Retrieve all sensitivity output metrics names

- **Returns**: sens_metric_list – List of names of attributes containing metrics sensitivity values, without the trailing '_sens_df'
- **Return type**: [str]

get_uncertainty (*metric_list=None*)

Returns uncertainty dataframe with values for each sample

- **Parameters**
 - `metric_list` ([str], optional) – List of uncertainty metrics to consider. The default returns all uncertainty metrics at once.
- **Returns**: Joint dataframe of all uncertainty values for all metrics in the metric_list.
- **Return type**: pandas.DataFrame

See also:

- **uncertainty_metrics** list of all available uncertainty metrics

get_sensitivity (*salib_si, metric_list=None*)

Returns sensitivity index

E.g. For the sensitivity analysis method ‘sobol’, the choices are ['S1', 'ST'], for ‘delta’ the choices are ['delta', 'S1'].

For more information see the SALib documentation: https://salib.readthedocs.io/en/latest/basics.html

- **Parameters**
 - `salib_si` (str) – Sensitivity index
 - `metric_list` ([str], optional) – List of sensitivity metrics to consider. The default returns all sensitivity indices at once.
- **Returns**: Joint dataframe of the sensitivity indices for all metrics in the metric_list
- **Return type**: pandas.DataFrame

See also:

- **sensitivity_metrics** list of all available sensitivity metrics
get_largest_si(salib_si, metric_list=None, threshold=0.01)
Get largest si per metric

Parameters

- salib_si (str) – The name of the sensitivity index to plot.
- metric_list (list of strings, optional) – List of metrics to plot the sensitivity. Default is None.
- threshold (float) – The minimum value a sensitivity index must have to be considered as the largest. The default is 0.01.

Returns max_si_df – Dataframe with the largest si and its value per metric

Return type pandas.dataframe

plot_sample(figsize=None)
Plot the sample distributions of the uncertainty input parameters

For each uncertainty input variable, the sample distributions is shown in a separate axes.

Parameters

- figsize (tuple(int or float, int or float), optional) – The figsize argument of matplotlib.pyplot.subplots() The default is derived from the total number of plots (nplots) as:

```python
>>> nrows, ncols = int(np.ceil(nplots / 3)), min(nplots, 3)
>>> figsize = (ncols * FIG_W, nrows * FIG_H)
```

Raises ValueError – If no sample was computed the plot cannot be made.

Returns axes – The axis handle of the plot.

Return type matplotlib.pyplot.axes

plot_uncertainty(metric_list=None, orig_list=None, figsize=None, log=False, axes=None)
Plot the uncertainty distribution

For each risk metric, a separate axes is used to plot the uncertainty distribution of the output values obtained over the sampled input parameters.

Parameters

- metric_list (list[str], optional) – List of metrics to plot the distribution. The default is None.
- orig_list (list[float], optional) – List of the original (without uncertainty) values for each sub-metric of the metrics in metric_list. The ordering is identical. The default is None.
- figsize (tuple(int or float, int or float), optional) – The figsize argument of matplotlib.pyplot.subplots() The default is derived from the total number of plots (nplots) as:

```python
>>> nrows, ncols = int(np.ceil(nplots / 3)), min(nplots, 3)
>>> figsize = (ncols * FIG_W, nrows * FIG_H)
```
- log (boolean, optional) – Use log10 scale for x axis. Default is False.
- axes (matplotlib.pyplot.axes, optional) – Axes handles to use for the plot. The default is None.

Raises ValueError – If no metric distribution was computed the plot cannot be made.

Returns axes – The axes handle of the plot.

Return type matplotlib.pyplot.axes

See also:

uncertainty_metrics list of all available uncertainty metrics

5.1. climada.engine package
plot_rp_uncertainty (orig_list=None, figsize=(16, 6), axes=None)

Plot the distribution of return period uncertainty

Parameters

- **orig_list** (list[float], optional) – List of the original (without uncertainty) values for each sub-metric of the metrics in metric_list. The ordering is identical. The default is None.
- **figsize** (tuple(int or float, int or float), optional) – The figsize argument of matplotlib.pyplot.subplots() The default is (8, 6)
- **axes** (matplotlib.pyplot.axes, optional) – Axes handles to use for the plot. The default is None.

Raises ValueError – If no metric distribution was computed the plot cannot be made.

Returns ax – The axis handle of the plot.

Return type matplotlib.pyplot.axes

plot_sensitivity (salib_si='S1', salib_si_conf='S1_conf', metric_list=None, figsize=None, axes=None, **kwargs)

Bar plot of a first order sensitivity index

For each metric, the sensitivity indices are plotted in a separate axes.

This requires that a sensitivity analysis was already performed.

E.g. For the sensitivity analysis method ‘sobol’, the choices are ['S1', 'ST'], for ‘delta’ the choices are ['delta', 'S1'].

Note that not all sensitivity indices have a confidence interval.

For more information see the SALib documentation: https://salib.readthedocs.io/en/latest/basics.html

Parameters

- **salib_si** (string, optional) – The first order (one value per metric output) sensitivity index to plot. The default is S1.
- **salib_si_conf** (string, optional) – The confidence value for the first order sensitivity index to plot. The default is S1_conf.
- **metric_list** (list of strings, optional) – List of metrics to plot the sensitivity. If a metric is not found it is ignored.
- **figsize** (tuple(int or float, int or float), optional) – The figsize argument of matplotlib.pyplot.subplots() The default is derived from the total number of plots (nplots) as:

```python
>>> nrows, ncols = int(np.ceil(nplots_ / 3)), min(nplots, 3)
>>> figsize = (ncols * FIG_W, nrows * FIG_H)
```

- **axes** (matplotlib.pyplot.axes, optional) – Axes handles to use for the plot. The default is None.
- **kwargs** – Keyword arguments passed on to pandas.DataFrame.plot(kind='bar')

Raised ValueError : – If no sensitivity is available the plot cannot be made.

Returns axes – The axes handle of the plot.

Return type matplotlib.pyplot.axes

See also:

sensitivity_metrics list of all available sensitivity metrics
plot_sensitivity_second_order (salib_si='S2', salib_si_conf='S2_conf', metric_list=None, figsize=None, axes=None, **kwargs)

Plot second order sensitivity indices as matrix.
For each metric, the sensitivity indices are plotted in a separate axes.
E.g. For the sensitivity analysis method ‘sobol’, the choices are ['S2', 'S2_conf'].
Note that not all sensitivity indices have a confidence interval.
For more information see the SAlib documentation: https://salib.readthedocs.io/en/latest/basics.html

Parameters

- **salib_si** (string, optional) – The second order sensitivity index to plot. The default is S2.
- **salib_si_conf** (string, optional) – The confidence value for the sensitivity index salib_si to plot. The default is S2_conf.
- **metric_list** (list of strings, optional) – List of metrics to plot the sensitivity. If a metric is not found it is ignored. Default is all 1D metrics.
- **figsize** (tuple(int or float, int or float), optional) – The figsize argument of matplotlib.pyplot.subplots() The default is derived from the total number of plots (nplots) as:

```python
>>> nrows, ncols = int(np.ceil(nplots / 3)), min(nplots, 3)
>>> figsize = (ncols * 5, nrows * 5)
```

- **axes** (matplotlib.pyplot.axes, optional) – Axes handles to use for the plot. The default is None.
- **kwargs** – Keyword arguments passed on to matplotlib.pyplot.imshow()

Raises **ValueError** : – If no sensitivity is available the plot cannot be made.

Returns **axes** – The axes handle of the plot.

Return type matplotlib.pyplot.axes

See also:

sensitivity_metrics list of all available sensitivity metrics

plot_sensitivity_map (salib_si='S1', **kwargs)

Plot a map of the largest sensitivity index in each exposure point
Requires the uncertainty distribution for eai_exp.

Parameters

- **salib_si** (str, optional) – The name of the sensitivity index to plot. The default is ‘S1’.
- **kwargs** – Keyword arguments passed on to climada.util.plot.geo_scatter_categorical

Raises **ValueError** : – If no sensitivity data is found, raise error.

Returns **ax** – The axis handle of the plot.

Return type matplotlib.pyplot.axes

See also:

climada.util.plot.geo_scatter_categorical geographical plot for categorical variable
to_hdf5 (filename=None)
Save output to .hdf5

Parameters filename (str or pathlib.Path, optional) – The filename with absolute or relative path. The default name is “unc_output + datetime.now() + .hdf5” and the default path is taken from climada.config

Returns save_path – Path to the saved file
Return type pathlib.Path

static from_hdf5 (filename)
Load a uncertainty and uncertainty output data from .hdf5 file

Parameters filename (str or pathlib.Path) – The filename with absolute or relative path.

Returns unc_output – Uncertainty and sensitivity data loaded from .hdf5 file.

Return type climada.engine.uncertainty.unc_output.UncOutput

class climada.engine.unsequa.unc_output.UncCostBenefitOutput (samples_df, unit, imp_meas_present_unc_df, imp_meas_future_unc_df, tot_climate_risk_unc_df, benefit_unc_df, cost_ben_ratio_unc_df, cost_benefit_kwargs)

Bases: climada.engine.unsequa.unc_output.UncOutput

Extension of UncOutput specific for CalcCostBenefit, returned by the uncertainty() method.

__init__ (samples_df, unit, imp_meas_present_unc_df, imp_meas_future_unc_df, tot_climate_risk_unc_df, benefit_unc_df, cost_ben_ratio_unc_df, cost_benefit_kwargs)

Constructor
Uncertainty output values from cost_benefit.calc for each sample

Parameters

• samples_df (pandas.DataFrame) – input parameters samples

• unit (str) – value unit

• imp_meas_present_unc_df (pandas.DataFrame) – Each row contains the values of imp_meas_present for one sample (row of samples_df)

• imp_meas_future_unc_df (pandas.DataFrame) – Each row contains the values of imp_meas_future for one sample (row of samples_df)

• tot_climate_risk_unc_df (pandas.DataFrame) – Each row contains the values of tot_climate_risk for one sample (row of samples_df)

• benefit_unc_df (pandas.DataFrame) – Each row contains the values of benefit for one sample (row of samples_df)

• cost_ben_ratio_unc_df (pandas.DataFrame) – Each row contains the values of cost_ben_ratio for one sample (row of samples_df)

• cost_benefit_kwargs (pandas.DataFrame) – Each row contains the value of cost_benefit for one sample (row of samples_df)
class climada.engine.unsequa.unc_output.UncImpactOutput(samples_df, unit, aai_agg_unc_df, freq_curve_unc_df, eai_exp_unc_df, at_event_unc_df, coord_df)

Bases: climada.engine.unsequa.unc_output.UncOutput

Extension of UncOutput specific for CalcImpact, returned by the uncertainty() method.

__init__(samples_df, unit, aai_agg_unc_df, freq_curve_unc_df, eai_exp_unc_df, at_event_unc_df, coord_df)

Constructor

Uncertainty output values from impact.calc for each sample

Parameters

- **samples_df** *(pandas.DataFrame)* – input parameters samples
- **unit** *(str)* – value unit
- **aai_agg_unc_df** *(pandas.DataFrame)* – Each row contains the value of aai_aag for one sample (row of samples_df)
- **freq_curve_unc_df** *(pandas.DataFrame)* – Each row contains the values of the impact exceedence frequency curve for one sample (row of samples_df)
- **eai_exp_unc_df** *(pandas.DataFrame)* – Each row contains the values of eai_exp for one sample (row of samples_df)
- **at_event_unc_df** *(pandas.DataFrame)* – Each row contains the values of at_event for one sample (row of samples_df)
- **coord_df** *(pandas.DataFrame)* – Coordinates of the exposure

5.1.2 climada.engine.calibration_opt module

climada.engine.calibration_opt.calib_instance(hazard, exposure, impact_func, df_out=Empty DataFrame Columns: [] Index: [], yearly_impact=False, return_cost='False')

calculate one impact instance for the calibration algorithm and write to given DataFrame

Parameters

- **hazard** *(Hazard)*
- **exposure** *(Exposure)*
- **impact_func** *(ImpactFunc)*
- **df_out** *(Dataframe, optional)* – Output DataFrame with headers of columns defined and optionally with first row (index=0) defined with values. If columns “impact”, “event_id”, or “year” are not included, they are created here. Data like reported impacts or impact function parameters can be given here; values are preserved.
- **yearly_impact** *(boolean, optional)* – if set True, impact is returned per year, not per event
- **return_cost** *(str, optional)* – if not ‘False’ but any of ‘R2’, ‘logR2’, cost is returned instead of df_out

Returns df_out – DataFrame with modelled impact written to rows for each year or event.
Return type DataFrame

climada.engine.calibration_opt.init_impf(impf_name_or_instance, param_dict, df_out=Empty
 DataFrame Columns: [] Index: [0])

create an ImpactFunc based on the parameters in param_dict using the method specified in
impf_parameterisation_name and document it in df_out.

Parameters

• **impf_name_or_instance** *(str or ImpactFunc)* – method of impact function parameterisation
e.g. ‘emanuel’ or an instance of ImpactFunc

• **param_dict** *(dict, optional)* – dict of parameter_names and values e.g. {'v_thresh': 25.7,
 'v_half': 70, 'scale': 1} or {'mdd_shift': 1.05, 'mdd_scale': 0.8, 'paa_shift': 1, paa_scale': 1}

Returns

• **imp_fun** *(ImpactFunc)* – The Impact function based on the parameterisation

• **df_out** *(DataFrame)* – Output DataFrame with headers of columns defined and with first row
 (index=0) defined with values. The impact function parameters from param_dict are repre-
sented here.

climada.engine.calibration_opt.change_impf(impf_instance, param_dict)

apply a shifting or a scaling defined in param_dict to the impact function in impf_istance and return it as a new
ImpactFunc object.

Parameters

• **impf_instance** *(ImpactFunc)* – an instance of ImpactFunc

• **param_dict** *(dict)* – dict of parameter_names and values (interpreted as factors, 1 = neutral)
e.g. {'mdd_shift': 1.05, 'mdd_scale': 0.8, 'paa_shift': 1, paa_scale': 1}

Returns ImpactFunc

Return type The Impact function based on the parameterisation

climada.engine.calibration_opt.init_impact_data(hazard_type, region_ids, year_range,
 source_file, reference_year,
 impact_data_source='emdat',
 yearly_impact=True)

creates a dataframe containing the recorded impact data for one hazard type and one area (countries, country or
local split)

Parameters

• **hazard_type** *(str)* – default = ‘TC’, type of hazard ‘WS’, ‘FL’ etc.

• **region_ids** *(str)* – name the region_ids or country names

• **year_range** *(list)* – list containing start and end year. e.g. [1980, 2017]

• **source_file** *(str)*

• **reference_year** *(int)* – impacts will be scaled to this year

• **impact_data_source** *(str, optional)* – default ‘emdat’, others maybe possible

• **yearly_impact** *(bool, optional)* – if set True, impact is returned per year, not per event

Returns df_out – Dataframe with recorded impact written to rows for each year or event.

Return type pd.DataFrame
calculate the cost function of the modelled impact impact_CLIMADA and the reported impact impact_scaled in df_out

Parameters
- df_out (pd.DataFrame) – DataFrame as created in calib_instance
- cost_function (str) – chooses the cost function e.g. ‘R2’ or ‘logR2’

Returns
- cost – The results of the cost function when comparing modelled and reported impact
- Return type – float

calib_all

portrait the difference between modelled and reported impacts for all impact functions described in param_full_dict and impf_name_or_instance

Parameters
- hazard (list or Hazard)
- exposure (list or Exposures) – list or instance of exposure of full countries
- impf_name_or_instance (string or ImpactFunc) – the name of a parameterisation or an instance of class ImpactFunc e.g. ‘emanuel’
- param_full_dict (dict) – a dict containing keys used for f_name_or_instance and values which are iterable (lists) e.g. {'v_thres': [25.7, 20], 'v_half': [70], 'scale': [1, 0.8]}
- impact_data_source (dict or pd.DataFrame) – with name of impact data source and file location or dataframe
- year_range (list)
- yearly_impact (bool, optional)

Returns
- df_result – df with modelled impact written to rows for each year or event.
- Return type – pd.DataFrame

optimize

portrait the difference between modelled and reported impacts for all impact functions described in param_full_dict and impf_name_or_instance

Parameters
- hazard (list or Hazard)
- exposure (list or Exposures) – list or instance of exposure of full countries
- impf_name_or_instance (string or ImpactFunc) – the name of a parameterisation or an instance of class ImpactFunc e.g. ‘emanuel’
- param_dict (dict) – a dict containing keys used for impf_name_or_instance and one set of values e.g. {'v_thres': 25.7, 'v_half': 70, 'scale': 1}
- **impact_data_source** (*dict or pd. dataframe*) – with name of impact data source and file location or dataframe
- **year_range** (*list*)
- **yearly_impact** (*bool, optional*)
- **cost_function** (*str, optional*) – the argument for function calib_cost_calc, default ‘R2’
- **show_details** (*bool, optional*) – if True, return a tuple with the parameters AND the details of the optimization like success, status, number of iterations etc

Returns param_dict_result – the parameters with the best calibration results (or a tuple with (1) the parameters and (2) the optimization output)

Return type dict or tuple

5.1.3 climada.engine.cost_benefit module

class climada.engine.cost_benefit.CostBenefit (**present_year**: int = 2016, **future_year**: int = 2030, **tot_climate_risk**: float = 0.0, **unit**: str = ‘USD’, **color_rgb**: Optional[Dict[str, numpy.ndarray]] = None, **benefit**: Optional[Dict[str, float]] = None, **cost_ben_ratio**: Optional[Dict[str, float]] = None, **imp_meas_present**: Optional[Dict[str, Union[float, Tuple[float, float], climada.engine.impact.Impact, climada.engine.impact.ImpactFreqCurve]]] = None, **imp_meas_future**: Optional[Dict[str, Union[float, Tuple[float, float], climada.engine.impact.Impact, climada.engine.impact.ImpactFreqCurve]]] = None)

Bases: object

Impact definition. Compute from an entity (exposures and impact functions) and hazard.

- **present_year**
 - present reference year
 - **Type** int
- **future_year**
 - future year
 - **Type** int
- **tot_climate_risk**
 - total climate risk without measures
 - **Type** float
- **unit**
 - unit used for impact
 - **Type** str
color_rgb
 color code RGB for each measure.

 Type dict

Key
 measure name ('no measure' used for case without measure),

 Type str

Value
 Type np.array

benefit
 benefit of each measure. Key: measure name, Value: float benefit

 Type dict

cost_ben_ratio
 cost benefit ratio of each measure. Key: measure name, Value: float cost benefit ratio

 Type dict

imp_meas_future
 impact of each measure at future or default. Key: measure name ('no measure' used for case without measure), Value: dict with: 'cost' (tuple): (cost measure, cost factor insurance), 'risk' (float): risk measurement, 'risk_transf' (float): annual expected risk transfer, 'efc' (ImpactFreqCurve): impact exceedance freq (optional) 'impact' (Impact): impact instance

 Type dict

imp_meas_present

 Type dict

Initilization

calc (hazard, entity, haz_future=None, ent_future=None, future_year=None, risk_func=<function risk_aai_agg>, imp_time_depen=None, save_imp=False, assign_centroids=True)

Compute cost-benefit ratio for every measure provided current and, optionally, future conditions. Present and future measures need to have the same name. The measures costs need to be discounted by the user. If future entity provided, only the costs of the measures of the future and the discount rates of the present will be used.

Parameters
 • hazard (climada.Hazard)
 • entity (climada.entity)
• **haz_future** (*climada.Hazard, optional*) – hazard in the future (future year provided at ent_future)

• **ent_future** (*Entity, optional*) – entity in the future. Default is None

• **future_year** (*int, optional*) – future year to consider if no ent_future. Default is None provided. The benefits are added from the entity.exposures.ref_year until ent_future.exposures.ref_year, or until future_year if no ent_future given. Default: entity.exposures.ref_year+1

• **risk_func** (*func optional*) – function describing risk measure to use to compute the annual benefit from the Impact. Default: average annual impact (aggregated).

• **imp_time_depen** (*float, optional*) – parameter which represents time evolution of impact (super- or sublinear). If None: all years count the same when there is no future hazard nor entity and 1 (linear annual change) when there is future hazard or entity. Default is None.

• **save_imp** (*bool, optional*) – Default: False

• **assign_centroids** (*bool, optional*) – indicates whether centroids are assigned to the self.exposures object. Centroids assignement is an expensive operation; set this to False to save computation time if the exposures from ent and ent_fut have already centroids assigned for the respective hazards. Default: True

• True if Impact of each measure is saved. Default is False.

combine_measures (*in_meas_names, new_name, new_color, disc_rates, imp_time_depen=None, risk_func=<function risk_aai_agg>*)

Compute cost-benefit of the combination of measures previously computed by calc with save_imp=True. The benefits of the measures per event are added. To combine with risk transfer options use apply_risk_transfer.

Parameters

• **in_meas_names** (*list(str]*)

• list with names of measures to combine

• **new_name** (*str*) – name to give to the new resulting measure new_color (np.array): color code RGB for new measure, e.g. np.array([0.1, 0.1, 0.1])

• **disc_rates** (*DiscRates*) – discount rates instance

• **imp_time_depen** (*float, optional*) – parameter which represents time evolution of impact (super- or sublinear). If None: all years count the same when there is no future hazard nor entity and 1 (linear annual change) when there is future hazard or entity. Default is None.

• **risk_func** (*func, optional*) – function describing risk measure given an Impact. Default: average annual impact (aggregated).

Return type climada.CostBenefit

apply_risk_transfer (*meas_name, attachment, cover, disc_rates, cost_fix=0, cost_factor=1, imp_time_depen=None, risk_func=<function risk_aai_agg>*)

Applies risk transfer to given measure computed before with saved impact and compares it to when no measure is applied. Appended to dictionaries of measures.

Parameters

• **meas_name** (*str*) – name of measure where to apply risk transfer

• **attachment** (*float*) – risk transfer values attachment (deductible)

• **cover** (*float*) – risk transfer cover
• **cost_fix** (*float*) – fixed cost of implemented insurance, e.g. transaction costs

• **cost_factor** (*float, optional*) – factor to which to multiply the insurance layer to compute its cost. Default is 1

• **imp_time_depen** (*float, optional*) – parameter which represents time evolution of impact (super- or sublinear). If None: all years count the same when there is no future hazard nor entity and 1 (linear annual change) when there is future hazard or entity. Default is None.

• **risk_func** (*func, optional*) – function describing risk measure given an Impact. Default: average annual impact (aggregated).

remove_measure (*meas_name*)

Remove computed values of given measure

Parameters **meas_name** (*str*) – name of measure to remove

plot_cost_benefit (*cb_list=None, axis=None, **kwargs*)

Plot cost-benefit graph. Call after calc().

Parameters

- **cb_list** (*list(CostBenefit), optional*) – if other CostBenefit provided, overlay them all. Used for uncertainty visualization.
- **axis** (*matplotlib.axes._subplots.AxesSubplot, optional*) – axis to use
- **kwargs** (*optional*) – arguments for Rectangle matplotlib, e.g. alpha=0.5 (color is set by measures color attribute)

Return type *matplotlib.axes._subplots.AxesSubplot*

plot_event_view (*return_per=(10, 25, 100), axis=None, **kwargs*)

Plot averted damages for return periods. Call after calc().

Parameters

- **return_per** (*list, optional*) – years to visualize. Default 10, 25, 100
- **axis** (*matplotlib.axes._subplots.AxesSubplot, optional*) – axis to use
- **kwargs** (*optional*) – arguments for bar matplotlib function, e.g. alpha=0.5 (color is set by measures color attribute)

Return type *matplotlib.axes._subplots.AxesSubplot*

static plot_waterfall (*hazard, entity, haz_future, ent_future, risk_func=<function risk_aai_agg>, axis=None, **kwargs*)

Plot waterfall graph at future with given risk metric. Can be called before and after calc().

Parameters

- **hazard** (*climada.Hazard*)
- **entity** (*climada.Entity*)
- **haz_future** (*Hazard*) – hazard in the future (future year provided at ent_future). haz_future is expected to have the same centroids as hazard.
- **ent_future** (*climada.Entity*) – entity in the future
- **axis** (*matplotlib.axes._subplots.AxesSubplot, optional*) – axis to use
**kwargs (optional) – arguments for `matplotlib` function, e.g. `alpha=0.5`

Return type `matplotlib.axes._subplots.AxesSubplot`

`plot_arrow_averted`(`axis`, `in_meas_names=None`, `accumulate=False`, `combine=False`, `risk_func=<function risk_aai_agg>`, `disc_rates=None`, `imp_time_depen=1`, **kwargs)

Plot waterfall graph with accumulated values from present to future year. Call after `calc()` with `save_imp=True`.

Parameters

- `axis` (`matplotlib.axes._subplots.AxesSubplot`) – axis from `plot_waterfall` or `plot_waterfall_accumulated` where arrow will be added to last bar
- `in_meas_names` (`list(str)`, optional) – list with names of measures to represent total averted damage. Default: all measures
- `accumulate` (bool, optional) – accumulated averted damage (True) or averted damage in future (False). Default: False
- `combine` (bool, optional) – use `combine_measures` to compute total averted damage (True) or just add benefits (False). Default: False
- `risk_func` (func, optional) – function describing risk measure given an Impact used in `combine_measures`. Default: average annual impact (aggregated).
- `disc_rates` (`DiscRates`, optional) – discount rates used in `combine_measures`
- `imp_time_depen` (float, optional) – parameter which represent time evolution of impact used in `combine_measures`. Default: 1 (linear).
- `kwargs` (optional) – arguments for `matplotlib` function, e.g. `alpha=0.5`

`plot_waterfall_accumulated`(`hazard`, `entity`, `ent_future`, `risk_func=<function risk_aai_agg>`, `imp_time_depen=1`, `axis=None`, **kwargs)

Plot waterfall graph with accumulated values from present to future year. Call after `calc()` with `save_imp=True`. Provide same inputs as in `calc`.

Parameters

- `hazard` (`climada.Hazard`)
- `entity` (`climada.Entity`)
- `ent_future` (`climada.Entity`) – entity in the future
- `imp_time_depen` (float, optional) – parameter which represent time evolution of impact used in `combine_measures`. Default: 1 (linear).
- `axis` (`matplotlib.axes._subplots.AxesSubplot`, optional) – axis to use
- `kwargs` (optional) – arguments for `matplotlib` function, e.g. `alpha=0.5`

Return type `matplotlib.axes._subplots.AxesSubplot`

climada.engine.cost_benefit.risk_aai_agg(`impact`)

Risk measurement as average annual impact aggregated.

Parameters `impact` (`climada.engine.Impact`) – an Impact instance

Return type `float`
climada.engine.cost_benefit.risk_rp_100(impact)
Risk measurement as exceedance impact at 100 years return period.

Parameters
impact (climada.engine.Impact) – an Impact instance

Return type float

climada.engine.cost_benefit.risk_rp_250(impact)
Risk measurement as exceedance impact at 250 years return period.

Parameters
impact (climada.engine.Impact) – an Impact instance

Return type float

5.1.4 climada.engine.forecast module

class climada.engine.forecast.Forecast(hazard_dict: Dict[str, climada.hazard.base.Hazard],
exposure: climada.entity.exposures.base.Exposures,
impact_funcs: climada.entity.impact_funcs.impact_func_set.ImpactFuncSet,
 haz_model: str = 'NWP', exposure_name: Optional[str] = None)

Bases: object

Forecast definition. Compute an impact forecast with predefined hazard originating from a forecast (like numerical weather prediction models), exposure and impact. Use the calc() method to calculate a forecasted impact. Then use the plotting methods to illustrate the forecasted impacts. By default plots are saved under a '/forecast/plots' folder in the configurable save_dir in local_data (see climada.util.config) under a name summarizing the Hazard type, haz model name, initialization time of the forecast run, event date, exposure name and the plot title. As the class is relatively new, there might be future changes to the attributes, the methods, and the parameters used to call the methods. It was discovered at some point, that there might be a memory leak in matplotlib even when figures are closed (https://github.com/matplotlib/matplotlib/issues/8519). Due to this reason the plotting functions in this module have the flag close_fig, to close figures within the function scope, which might mitigate that problem if a script runs this plotting functions many times.

run_datetime
initialization time of the forecast model run used to create the Hazard

Type list of datetime.datetime

event_date
Date on which the Hazard event takes place

Type datetime.datetime

hazard
List of the hazard forecast with different lead times.

Type list of CLIMADA Hazard

haz_model
Short string specifying the model used to create the hazard, if possible three big letters.

Type str

exposure
an CLIMADA Exposures containing values at risk

Type Exposure
exposure_name

string specifying the exposure (e.g. ‘EU’), which is used to name output files.

Type str

vulnerability

Set of impact functions used in the impact calculation.

Type ImpactFuncSet

Initialization with hazard, exposure and vulnerability.

Parameters

• hazard_dict (dict) – Dictionary of the format {run_datetime: Hazard} with run_datetime being the initialization time of a weather forecast run and Hazard being a CLIMADA Hazard derived from that forecast for one event. A probabilistic representation of that one event is possible, as long as the attribute Hazard.date is the same for all events. Several run_datetime:Hazard combinations for the same event can be provided.

• exposure (Exposures)

• impact_funcs (ImpactFuncSet)

• haz_model (str, optional) – Short string specifying the model used to create the hazard, if possible three big letters. Default is ‘NWP’ for numerical weather prediction.

• exposure_name (str, optional) – string specifying the exposure (e.g. ‘EU’), which is used to name output files. If None, the name will be inferred from the Exposures GeoDataframe region_id column, using the corresponding name of the region with the lowest ISO 3166-1 numeric code. If that fails, it defaults to "custom".

ei_exp (run_datetime=None)

Expected impact per exposure

Parameters run_datetime (datetime.datetime, optional) – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

Return type float

ai_agg (run_datetime=None)

average impact aggregated over all exposures

Parameters run_datetime (datetime.datetime, optional) – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

Return type float

haz_summary_str (run_datetime=None)

provide a summary string for the hazard part of the forecast

Parameters run_datetime (datetime.datetime, optional) – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

Returns summarizing the most important information about the hazard

Return type str
summary_str *(run_datetime=None)*

provide a summary string for the impact forecast

Parameters

run_datetime *(datetime.datetime, optional)* – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

Returns

summarizing the most important information about the impact forecast

Return type

str

lead_time *(run_datetime=None)*

provide the lead time for the impact forecast

Parameters

run_datetime *(datetime.datetime, optional)* – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

Returns

the difference between the initialization time of the forecast model run and the date of the event, commonly named lead time

Return type

datetime.timedelta

calc *(force_reassign=False)*

calculate the impacts for all lead times using exposure, all hazards of all run_datetime, and ImpactFunctionSet.

Parameters

force_reassign *(bool, optional)* – Reassign hazard centroids to the exposure for all hazards, default is false.

plot_imp_map *(run_datetime=None, explain_str=None, save_fig=True, close_fig=False, polygon_file=None, polygon_file_crs='epsg:4326', proj=<Derived Projected CRS: +proj=eqc +ellps=WGS84 +a=6378137.0 +lon_0=0.0 +to ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (unknown) - N[north]: Northing (unknown) - h[up]: Ellipsoidal height (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Equidistant Cylindrical Datum: unknown - Ellipsoid: WGS 84 - Prime Meridian: Greenwich, figsize=(9, 13), adapt_fontsize=True)*

plot a map of the impacts

Parameters

- *run_datetime* *(datetime.datetime, optional)* – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.
- *explain_str* *(str, optional)* – Short str which explains type of impact, explain_str is included in the title of the figure. default is ‘mean building damage caused by wind’
- *save_fig* *(bool, optional)* – Figure is saved if True, folder is within your configurable save_dir and filename is derived from the method summary_str() (for more details see class docstring). Default is True.
- *close_fig* *(bool, optional)* – Figure not drawn if True. Default is False.
- *polygon_file* *(str, optional)* – Points to a .shp-file with polygons do be drawn as outlines on the plot, default is None to not draw the lines. please also specify the crs in the parameter polygon_file_crs.
- *polygon_file_crs* *(str, optional)* – String of pattern <provider>:<code> specifying the crs. has to be readable by pyproj.Proj. Default is ‘epsg:4326’.
- *proj* *(ccrs)* – coordinate reference system used in coordinates The default is ccrs.PlateCarree()
- *figsize* *(tuple)* – figure size for plt.subplots, width, height in inches The default is (9, 13)
• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

Returns axes

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_hist *(run_datetime=None, explain_str=None, save_fig=True, close_fig=False, figsize=(9, 8))*

plot histogram of the forecasted impacts all ensemble members

Parameters

• **run_datetime** *(datetime.datetime, optional)* – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

• **explain_str** *(str, optional)* – Short str which explains type of impact, explain_str is included in the title of the figure. default is 'total building damage'

• **save_fig** *(bool, optional)* – Figure is saved if True, folder is within your configurable save_dir and filename is derived from the method summary_str() (for more details see class docstring). Default is True.

• **close_fig** *(bool, optional)* – Figure is not drawn if True. Default is False.

• **figsize** *(tuple)* – figure size for plt.subplots, width, height in inches The default is (9, 8)

Returns axes

Return type matplotlib.axes.Axes

plot_exceedence_prob *(threshold, explain_str=None, run_datetime=None, save_fig=True, close_fig=False, polygon_file=None, polygon_file_crs='epsg:4326', proj=<DerivedProjectedCRS: +proj=eqc +ellps=WGS84 +a=6378137.0 +lon_0=0.0 +to ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (unknown) - N[north]: Northing (unknown) - h[up]: Ellipsoidal height (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Equidistant Cylindrical Datum: unknown - Ellipsoid: WGS 84 - Prime Meridian: Greenwich, figsize=(9, 13), adapt_fontsize=True)*

plot exceedence map

Parameters

• **threshold** *(float)* – Threshold of impact unit for which exceedence probability should be plotted.

• **explain_str** *(str, optional)* – Short str which explains threshold, explain_str is included in the title of the figure.

• **run_datetime** *(datetime.datetime, optional)* – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

• **save_fig** *(bool, optional)* – Figure is saved if True, folder is within your configurable save_dir and filename is derived from the method summary_str() (for more details see class docstring). Default is True.

• **close_fig** *(bool, optional)* – Figure not drawn if True. Default is False.

• **polygon_file** *(str, optional)* – Points to a .shp-file with polygons do be drawn as outlines on the plot, default is None to not draw the lines. please also specify the crs in the parameter polygon_file_crs.

• **polygon_file_crs** *(str, optional)* – String of pattern <provider>:<code> specifying the crs. has to be readable by pyproj.Proj. Default is ‘epsg:4326’.
• **proj** (ccrs) – coordinate reference system used in coordinates. The default is ccrs.PlateCarree().

• **figsize** (tuple) – figure size for plt.subplots, width, height in inches. The default is (9, 13).

• **adapt_fontsize** (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise, the default matplotlib font size is used. Default is True.

Returns
axes

Return type
cartopy.mpl.geoaxes.GeoAxesSubplot

```python
plot_warn_map(polygon_file=None, polygon_file_crs='epsg:4326', thresholds='default',
decision_level='exposure_point', probability_aggregation=0.5, area_aggregation=0.5,
title='WARNINGS', explain_text='warn level based on thresholds', run_datetime=None,
proj=<Derived Projected CRS: +proj=eqc +ellps=WGS84 +a=6378137.0 +lon_0=0.0 +to
...>
name: unknown Axis Info [cartesian]: - E[east]: Easting (unknown) - N[north]:
Northing (unknown) - h[up]: Ellipsoidal height (metre) Area of Use: - undefined
Coordinate Operation: - name: unknown - method: Equidistant Cylindrical Datum:
unknown - Ellipsoid: WGS 84 - Prime Meridian: Greenwich, figsize=(9, 13), save_fig=True, close_fig=False,
adapt_fontsize=True)
```

Parameters

• **polygon_file** (str, optional) – path to shp-file containing warning region polygons.

• **polygon_file_crs** (str, optional) – String of pattern <provider>:<code> specifying the crs. has to be readable by pyproj.Proj. Default is ‘epsg:4326’.

• **thresholds** (list of 4 floats, optional) – Thresholds for coloring region in second, third, forth and fifth warning color.

• **decision_level** (str, optional) – Either ‘exposure_point’ or ‘polygon’. Default value is ‘exposure_point’.

• **probability_aggregation** (float or str, optional) – Either a float between [0..1] specifying a quantile or ‘mean’ or ‘sum’. Default value is 0.5.

• **area_aggregation** (float or str) – Either a float between [0..1] specifying a quantile or ‘mean’ or ‘sum’. Default value is 0.5.

• **run_datetime** (datetime.datetime, optional) – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.

• **title** (str, optional) – Default is ‘WARNINGS’.

• **explain_text** (str, optional) – Default is ‘warn level based on thresholds’.

• **proj** (ccrs) – coordinate reference system used in coordinates.

• **figsize** (tuple) – figure size for plt.subplots, width, height in inches. The default is (9, 13).

• **save_fig** (bool, optional) – Figure is saved if True, folder is within your configurable save_dir and filename is derived from the method summary_str() (for more details see class docstring). Default is True.

• **close_fig** (bool, optional) – Figure is not drawn if True. The default is False.

• **adapt_fontsize** (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise, the default matplotlib font size is used. Default is True.

Returns
axes

Return type
cartopy.mpl.geoaxes.GeoAxesSubplot
plot_hexbin_ei_exposure (run_datetime=None, figsize=(9, 13))

plot the expected impact

Parameters

- run_datetime (datetime.datetime, optional) – Select the used hazard by the run_datetime, default is first element of attribute run_datetime.
- figsize (tuple) – figure size for plt.subplots, width, height in inches The default is (9, 13)

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

5.1.5 climada.engine.impact module

class climada.engine.impact.ImpactFreqCurve (return_per: numpy.ndarray = <factory>, impact: numpy.ndarray = <factory>, unit: str = '', frequency_unit: str = '1/year', label: str = '')

Bases: object

Impact exceedence frequency curve.

return_per: numpy.ndarray
return period

impact: numpy.ndarray
impact exceeding frequency

__init__ (return_per: numpy.ndarray = <factory>, impact: numpy.ndarray = <factory>, unit: str = '', frequency_unit: str = '1/year', label: str = '') → None

unit: str = ''
value unit used (given by exposures unit)

frequency_unit: str = '1/year'
value unit used (given by exposures unit)

label: str = ''
string describing source data

plot (axis=None, log_frequency=False, **kwargs)
Plot impact frequency curve.

Parameters

- axis (matplotlib.axes.Axes, optional) – axis to use
- log_frequency (boolean, optional) – plot logarithmioe exceedance frequency on x-axis
- kwags (dict, optional) – arguments for plot matplotlib function, e.g. color='b'

Return type matplotlib.axes.Axes

class climada.engine.impact.Impact (event_id=None, event_name=None, date=None, frequency=None, frequency_unit='1/year', coord_exp=None, crs='EPSG:4326', eai_exp=None, at_event=None, tot_value=0, aai_agg=0, unit='', imp_mat=None, haz_type='')

Bases: object

Impact definition. Compute from an entity (exposures and impact functions) and hazard.
event_id
id (>0) of each hazard event
Type np.array

event_name
list name of each hazard event
Type list

date
date if events as integer date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1 (ordinal format of datetime library)
Type np.array

coord_exp
exposures coordinates [lat, lon] (in degrees)
Type np.array

crs
WKT string of the impact's crs
Type str

eai_exp
expected impact for each exposure within a period of 1/frequency_unit
Type np.array

at_event
impact for each hazard event
Type np.array

frequency
frequency of event
Type np.array

frequency_unit
frequency unit used (given by hazard), default is ‘1/year’
Type str

aai_agg
average impact within a period of 1/frequency_unit (aggregated)
Type float

unit
value unit used (given by exposures unit)
Type str

imp_mat
matrix num_events x num_exp with impacts. only filled if save_mat is True in calc()
Type sparse.csr_matrix
```
	haz_type
    the hazard type of the hazard

    Type str

    __init__ (event_id=None, event_name=None, date=None, frequency=None, frequency_unit='1/year',
        coord_exp=None, crs='EPSG:4326', eai_exp=None, at_event=None, tot_value=0, aai_agg=0,
        unit='', imp_mat=None, haz_type='')

Init Impact object

Parameters

- **event_id** (np.array, optional) – id (>0) of each hazard event
- **event_name** (list, optional) – list name of each hazard event
- **date** (np.array, optional) – date if events as integer date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1 (ordinal format of datetime library)
- **frequency** (np.array, optional) – frequency of event impact for each hazard event
- **frequency_unit** (np.array, optional) – frequency unit, default: ‘1/year’
- **coord_exp** (np.array, optional) – exposures coordinates [lat, lon] (in degrees)
- **crs** (Any, optional) – Coordinate reference system. CRS instances from pyproj and rasterio will be transformed into WKT. Other types are not handled explicitly.
- **eai_exp** (np.array, optional) – expected impact for each exposure within a period of 1/frequency_unit
- **at_event** (np.array, optional) – impact for each hazard event
- **tot_value** (float, optional) – total exposure value affected
- **aai_agg** (float, optional) – average impact within a period of 1/frequency_unit (aggregated)
- **unit** (str, optional) – value unit used (given by exposures unit)
- **imp_mat** (sparse.csr_matrix, optional) – matrix num_events x num_exp with impacts.
- **haz_type** (str, optional) – the hazard type

calc (exposures, impact_funcs, hazard, save_mat=False, assign_centroids=True)

This function is deprecated, use ImpactCalc.impact instead.

classmethod from_eih (exposures, hazard, at_event, eai_exp, aai_agg, imp_mat=None)

Set Impact attributes from precalculated impact metrics.

Changed in version 3.3: The impfset argument was removed.

Parameters

- **exposures** (climada.entity.Exposures) – exposure used to compute imp_mat
- **impfset** (climada.entity.ImpactFuncSet) – impact functions set used to compute imp_mat
- **hazard** (climada.Hazard) – hazard used to compute imp_mat
- **at_event** (np.array) – impact for each hazard event
- **eai_exp** (np.array) – expected impact for each exposure within a period of 1/frequency_unit
- **aai_agg** (float) – average impact within a period of 1/frequency_unit (aggregated)
- **imp_mat** (sparse.csr_matrix, optional) – matrix num_events x num_exp with impacts. Default is None (empty sparse csr matrix).
```
Returns impact with all risk metrics set based on the given impact matrix

Return type `climada.engine.impact.Impact`

property `tot_value`
Return the total exposure value close to a hazard

Deprecated since version 3.3: Use `climada.entity.exposures.base.Exposures.affected_total_value()` instead.

`transfer_risk` (attachment, cover)
Compute the risk transfer for the full portfolio. This is the risk of the full portfolio summed over all events. For each event, the transferred risk amounts to the impact minus the attachment (but maximally equal to the cover) multiplied with the probability of the event.

Parameters
- attachment (float) – attachment per event for entire portfolio.
- cover (float) – cover per event for entire portfolio.

Returns
- transfer_at_event (np.array) – risk transferred per event
- transfer_aai_agg (float) – average risk within a period of 1/frequency_unit, transferred

`residual_risk` (attachment, cover)
Compute the residual risk after application of insurance attachment and cover to entire portfolio. This is the residual risk of the full portfolio summed over all events. For each event, the residual risk is obtained by subtracting the transferred risk from the from the total risk per event.

Parameters
- attachment (float) – attachment per event for entire portfolio.
- cover (float) – cover per event for entire portfolio.

Returns
- residual_at_event (np.array) – residual risk per event
- residual_aai_agg (float) – average residual risk within a period of 1/frequency_unit

See also:
- `transfer_risk` compute the transfer risk per portfolio.

`calc_risk_transfer` (attachment, cover)
Compute traditional risk transfer over impact. Returns new impact with risk transfer applied and the insurance layer resulting Impact metrics.

Parameters
- attachment (float) – (deductible)
- cover (float)

Return type `climada.engine.impact.Impact`

`impact_per_year` (all_years=True, year_range=None)
Calculate yearly impact from impact data.

Note: the impact in a given year is summed over all events. Thus, the impact in a given year can be larger than the total affected exposure value.
Parameters

- **all_years** *(boolean, optional)* – return values for all years between first and last year with event, including years without any events. Default: True
- **year_range** *(tuple or list with integers, optional)* – start and end year

Returns *year_set* – Key=year, value=Summed impact per year.

Return type *dict*

impact_at_reg *(agg_regions=None)*

Aggregate impact on given aggregation regions. This method works only if Impact.imp_mat was stored during the impact calculation.

Parameters *agg_regions* *(np.array, list (optional)) – The length of the array must equal the number of centroids in exposures. It reports what macro-regions these centroids belong to. For example, assuming there are three centroids and agg_regions = ['A', 'A', 'B'] then impact of the first and second centroids will be assigned to region A, whereas impact from the third centroid will be assigned to area B. If no aggregation regions are passed, the method aggregates impact at the country (admin_0) level. Default is None.

Returns Contains the aggregated data per event. Rows: Hazard events. Columns: Aggregation regions.

Return type *pd.DataFrame*

calc_impact_year_set *(all_years=True, year_range=None)*

This function is deprecated, use Impact.impact_per_year instead.

local_exceedance_imp *(return_periods=(25, 50, 100, 250))*

Compute exceedance impact map for given return periods. Requires attribute imp_mat.

Parameters *return_periods* *(Any, optional) – return periods to consider Default is (25, 50, 100, 250)*

Return type *np.array*

calc_freq_curve *(return_per=None)*

Compute impact exceedance frequency curve.

Parameters *return_per* *(np.array, optional) – return periods where to compute the exceedance impact. Use impact’s frequencies if not provided*

Return type *ImpactFreqCurve*

plot_scatter_eai_exposure *(mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', axis=None, adapt_fontsize=True, **kwargs)*

Plot scatter expected impact within a period of 1/frequency_unit of each exposure.

Parameters

- **mask** *(np.array, optional) – mask to apply to eai_exp plotted.*
- **ignore_zero** *(bool, optional) – flag to indicate if zero and negative values are ignored in plot. Default: False*
- **pop_name** *(bool, optional) – add names of the populated places*
- **buffer** *(float, optional) – border to add to coordinates. Default: 1.0.*
- **extend** *(str) – optional extend border colorbar with arrows. [‘neither’ | ‘both’ | ‘min’ | ‘max’]*
- **axis** *(matplotlib.axes.Axes, optional) – axis to use*
• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

• **kwargs** *(dict, optional)* – arguments for hexbin matplotlib function

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_hexbin_eai_exposure *(mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', axis=None, adapt_fontsize=True, **kwargs)*

Plot hexbin expected impact within a period of 1/frequency_unit of each exposure.

Parameters

• **mask** *(np.array, optional)* – mask to apply to eai_exp plotted.

• **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False

• **pop_name** *(bool, optional)* – add names of the populated places

• **buffer** *(float, optional)* – border to add to coordinates. Default: 1.0.

• **extend** *(str, optional)* – extend border colorbar with arrows. ['neither' | 'both' | 'min' | 'max']

• **axis** *(matplotlib.axes.Axes, optional)* – axis to use

• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default: True

• **kwargs** *(dict, optional)* – arguments for hexbin matplotlib function

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_raster_eai_exposure *(res=None, raster_res=None, save_tiff=None, raster_f=<function Impact.<lambda>>, label='value (log10)', axis=None, adapt_fontsize=True, **kwargs)*

Plot raster expected impact within a period of 1/frequency_unit of each exposure.

Parameters

• **res** *(float, optional)* – resolution of current data in units of latitude and longitude, approximated if not provided.

• **raster_res** *(float, optional)* – desired resolution of the raster

• **save_tiff** *(str, optional)* – file name to save the raster in tiff format, if provided

• **raster_f** *(lambda function)* – transformation to use to data. Default: log10 adding 1.

• **label** *(str)* – colorbar label

• **axis** *(matplotlib.axes.Axes, optional)* – axis to use

• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

• **kwargs** *(dict, optional)* – arguments for imshow matplotlib function

Return type cartopy.mpl.geoaxes.GeoAxesSubplot
Plot basemap expected impact of each exposure within a period of 1/frequency_unit.

Parameters

- **mask** *(np.array, optional)* – mask to apply to eai_exp plotted.
- **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False
- **pop_name** *(bool, optional)* – add names of the populated places
- **buffer** *(float, optional)* – border to add to coordinates. Default: 0.0.
- **extend** *(str, optional)* – extend border colorbar with arrows. ['neither' | 'both' | 'min' | 'max']
- **zoom** *(int, optional)* – zoom coefficient used in the satellite image
- **url** *(str, optional)* – image source, e.g. ctx.providers.OpenStreetMap.Mapnik
- **axis** *(matplotlib.axes.Axes, optional)* – axis to use
- **kwargs** *(dict, optional)* – arguments for scatter matplotlib function, e.g. cmap='Greys'. Default: 'Wistia'

Return type: cartopy.mpl.geoaxes.GeoAxesSubplot

Plot hexbin impact of an event at each exposure. Requires attribute imp_mat.

Parameters

- **event_id** *(int, optional)* – id of the event for which to plot the impact. Default: 1.
- **mask** *(np.array, optional)* – mask to apply to impact plotted.
- **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False
- **pop_name** *(bool, optional)* – add names of the populated places
- **buffer** *(float, optional)* – border to add to coordinates. Default: 1.0.
- **extend** *(str, optional)* – extend border colorbar with arrows. ['neither' | 'both' | 'min' | 'max']
- **axis** *(matplotlib.axes.Axes)* – optional axis to use
- **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.
- **kwargs** *(dict, optional)* – arguments for hexbin matplotlib function
Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_basemap_impact_exposure (event_id=1, mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', zoom=10, url={‘attribution’: ‘Map tiles by Stamen Design, CC BY 3.0 -- Map data (C) OpenStreetMap contributors’, ‘ext’: ‘png’, ‘html_attribution’: ‘Map tiles by Stamen Design, CC BY 3.0 &mdash; Map data &copy; OpenStreetMap contributors’, ‘max_zoom’: 18, ‘min_zoom’: 0, ‘name’: ‘Stamen.Terrain’, ‘subdomains’: ‘abcd’, ‘url’: ‘https://stamen-tiles-{s}.a.ssl.fastly.net/{variant}/{z}/{x}/{y}{r}.{ext}', ‘variant’: ‘terrain’}, axis=None, **kwargs)

Plot basemap impact of an event at each exposure. Requires attribute imp_mat.

Parameters

• event_id (int, optional) – id of the event for which to plot the impact. Default: 1.

• mask (np.array, optional) – mask to apply to impact plotted. Default: None

• ignore_zero (bool, optional) – flag to indicate if zero and negative values are ignored in plot. Default: False

• pop_name (bool, optional) – add names of the populated places

• buffer (float, optional) – border to add to coordinates. Default: 0.0.

• extend (str, optional) – extend border colorbar with arrows. [‘neither’ | ‘both’ | ‘min’ | ‘max’]

• zoom (int, optional) – zoom coefficient used in the satellite image

• url (str, optional) – image source, e.g. ctx.providers.OpenStreetMap.Mapnik

• axis (matplotlib.axes.Axes, optional) – axis to use

• kwargs (dict, optional) – arguments for scatter matplotlib function, e.g. cmap='Greys'. Default: ‘Wistia’

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_rp_imp (return_periods=(25, 50, 100, 250), log10_scale=True, smooth=True, axis=None, **kwargs)

Compute and plot exceedance impact maps for different return periods. Calls local_exceedance_imp.

Parameters

• return_periods (tuple of int, optional) – return periods to consider. Default: (25, 50, 100, 250)

• log10_scale (boolean, optional) – plot impact as log10(impact). Default: True

• smooth (bool, optional) – smooth plot to plot.RESOLUTIONxplot.RESOLUTION. Default: True

• kwargs (dict, optional) – arguments for pcolormesh matplotlib function used in event plots

Returns

• axis (matplotlib.axes.Axes)

• imp_stats (np.array) – return_periods.size x num_centroids
write_csv(file_name)
Write data into csv file. imp_mat is not saved.

Parameters
file_name (str) – absolute path of the file

write_excel(file_name)
Write data into Excel file. imp_mat is not saved.

Parameters
file_name (str) – absolute path of the file

write_hdf5(file_path: Union[str, pathlib.Path], dense_imp_mat: bool = False)
Write the data stored in this object into an H5 file.
Try to write all attributes of this class into H5 datasets or attributes. By default, any iterable will be stored in a dataset and any string or scalar will be stored in an attribute. Dictionaries will be stored as groups, with the previous rules being applied recursively to their values.
The impact matrix can be stored in a sparse or dense format.

Notes
This writer does not support attributes with variable types. Please make sure that event_name is a list of equally-typed values, e.g., all str.

Parameters

• file_path (str or Path) – File path to write data into. The enclosing directory must exist.

• dense_imp_mat (bool) – If True, write the impact matrix as dense matrix that can be more easily interpreted by common H5 file readers but takes up (vastly) more space. Defaults to False.

write_sparse_csr(file_name)
Write imp_mat matrix in numpy’s npz format.

static read_sparse_csr(file_name)
Read imp_mat matrix from numpy’s npz format.

Parameters
file_name (str)

Return type
sparse.csr_matrix

classmethod from_csv(file_name)
Read csv file containing impact data generated by write_csv.

Parameters
file_name (str) – absolute path of the file

Returns
imp – Impact from csv file

Return type
climada.engine.impact.Impact

read_csv(*args, **kwargs)
This function is deprecated, use Impact.from_csv instead.

classmethod from_excel(file_name)
Read excel file containing impact data generated by write_excel.

Parameters
file_name (str) – absolute path of the file

Returns
imp – Impact from excel file

Return type
climada.engine.impact.Impact
read_excel (*args, **kwargs)

This function is deprecated, use Impact.from_excel instead.

classmethod from_hdf5 (file_path: Union[str, pathlib.Path])

Create an impact object from an H5 file.

This assumes a specific layout of the file. If values are not found in the expected places, they will be set to the default values for an Impact object.

The following H5 file structure is assumed (H5 groups are terminated with /, attributes are denoted by . attrs):

```
file.h5
├─ at_event
├─ coord_exp
├─ eai_exp
├─ event_id
├─ event_name
├─ frequency
├─ imp_mat
├─ .attrs/
│ └─ aai_agg
│ └─ crs
│ └─ frequency_unit
│ └─ haz_type
│ └─ tot_value
│ └─ unit
```

As per the climada.engine.impact.Impact.__init__(), any of these entries is optional. If it is not found, the default value will be used when constructing the Impact.

The impact matrix imp_mat can either be an H5 dataset, in which case it is interpreted as dense representation of the matrix, or an H5 group, in which case the group is expected to contain the following data for instantiating a scipy.sparse.csr_matrix:

```
imp_mat/
├─ data
├─ indices
├─ indptr
├─ .attrs/
│ └─ shape
```

Parameters

- **file_path** (*str or Path*) – The file path of the file to read.

Returns

- **imp** – Impact with data from the given file

Return type

- **Impact**

static video_direct_impact (exp, impf_set, haz_list, file_name='', writer=<matplotlib.animation.PillowWriter object>, imp_thresh=0, args_exp=None, args_imp=None, ignore_zero=False, pop_name=False)

Computes and generates video of accumulated impact per input events over exposure.

Parameters

- **exp** (*climada.entity.Exposures*) – exposures instance, constant during all video
- **impf_set** (*climada.entity.ImpactFuncSet*) – impact functions
- **haz_list** ([list(Hazard)]) – every Hazard contains an event; all hazards use the same centroids
- **file_name** (str, optional) – file name to save video, if provided
- **writer** ([matplotlib.animation], optional*) – video writer. Default: pillow with bitrate=500
- **imp_thresh** (float, optional) – represent damages greater than threshold. Default: 0
- **args_exp** (dict, optional) – arguments for scatter (points) or hexbin (raster) matplotlib function used in exposures
- **args_imp** (dict, optional) – arguments for scatter (points) or hexbin (raster) matplotlib function used in impact
- **ignore_zero** (bool, optional) – flag to indicate if zero and negative values are ignored in plot. Default: False
- **pop_name** (bool, optional) – add names of the populated places. The default is False.

Return type list of Impact

select (event_ids=None, event_names=None, dates=None, coord_exp=None)

Select a subset of events and/or exposure points from the impact. If multiple input variables are not None, it returns all the impacts matching at least one of the conditions.

Notes

the frequencies are NOT adjusted. Method to adjust frequencies

and obtain correct eai_exp:

1- Select subset of impact according to your choice: `imp = impact.select(…)`
2- Adjust manually the frequency of the subset of impact: `imp.frequency = […]`
3- Use select without arguments to select all events and recompute the eai_exp with the updated frequencies: `imp = imp.select()`

Parameters

- **event_ids** (list of int, optional) – Selection of events by their id. The default is None.
- **event_names** (list of str, optional) – Selection of events by their name. The default is None.
- **dates** (tuple, optional) – (start-date, end-date), events are selected if they are >= than start-date and <= than end-date. Dates in same format as impact.date (ordinal format of datetime library) The default is None.
- **coord_exp** (np.array, optional) – Selection of exposures coordinates [lat, lon] (in degrees) The default is None.

Raises **ValueError** – If the impact matrix is missing, the eai_exp and aai_agg cannot be updated for a selection of events and/or exposures.

Returns **imp** – A new impact object with a selection of events and/or exposures

Return type **climada.engine.impact.Impact**

classmethod concat (imp_list: Iterable, reset_event_ids: bool = False)

Concatenate impact objects with the same exposure

This function is useful if, e.g., different impact functions have to be applied for different seasons (e.g. for agricultural impacts).

It checks if the exposures of the passed impact objects are identical and then

- concatenates the attributes `event_id, event_name, date, frequency, imp_mat, at_event,`
• sums up the values of attributes eai_exp, aai_exp
• and takes the following attributes from the first impact object in the passed impact list: coord_exp, crs, unit, tot_value, frequency_unit, haz_type

If event ids are not unique among the passed impact objects an error is raised. In this case, the user can set reset_event_ids=True to create unique event ids for the concatenated impact.

If all impact matrices of the impacts in imp_list are empty, the impact matrix of the concatenated impact is also empty.

Parameters
• imp_list (Iterable of climada.engine.impact.Impact) – Iterable of Impact objects to concatenate
• reset_event_ids (boolean, optional) – Reset event ids of the concatenated impact object

Returns impact – New impact object which is a concatenation of all impacts

Return type climada.engine.impact.Impact

Notes
• Concatenation of impacts with different exposure (e.g. different countries) could also be implemented here in the future.

match_centroids (hazard, distance='euclidean', threshold=100)

Finds the closest hazard centroid for each impact coordinate. Creates a temporary GeoDataFrame and uses u_coord.match_centroids(). See there for details and parameters

Parameters
• hazard (Hazard) – Hazard to match (with raster or vector centroids).
• distance (str, optional) – Distance to use in case of vector centroids. Possible values are “euclidean”, “haversine” and “approx”. Default: “euclidean”
• threshold (float) – If the distance (in km) to the nearest neighbor exceeds threshold, the index -1 is assigned. Set threshold to 0, to disable nearest neighbor matching. Default: 100 (km)

Returns array of closest Hazard centroids, aligned with the Impact’s coord_exp array

Return type np.array

5.1.6 climada.engine.impact_calc module

class climada.engine.impact_calc.ImpactCalc (exposures, impfset, hazard)

Bases: object

Class to compute impacts from exposures, impact function set and hazard

__init__ (exposures, impfset, hazard)

ImpactCalc constructor

The dimension of the imp_mat variable must be compatible with the exposures and hazard objects.

Parameters
• exposures (climada.entity.Exposures) – exposures used to compute impacts

5.1. climada.engine package
• **impf_set** (*climada.entity.ImpactFuncSet*) – impact functions set used to compute impacts

• **hazard** (*climada.Hazard*) – hazard used to compute impacts

property n_exp_pnt
Number of exposure points (rows in gdf)

property n_events
Number of hazard events (size of event_id array)

impact (*save_mat=True, assign_centroids=True, ignore_cover=False, ignore_deductible=False*)
Compute the impact of a hazard on exposures.

Parameters

• **save_mat** (*bool, optional*) – if true, save the total impact matrix (events x exposures) Default: True

• **assign_centroids** (*bool, optional*) – indicates whether centroids are assigned to the self.exposures object. Centroids assignment is an expensive operation; set this to False to save computation time if the hazards’ centroids are already assigned to the exposures object. Default: True

• **ignore_cover** (*bool, optional*) – if set to True, the column ‘cover’ of the exposures GeoDataFrame, if present, is ignored and the impact it not capped by the values in this column. Default: False

• **ignore_deductible** (*bool, optional*) – if set to True, the column ‘deductible’ of the exposures GeoDataFrame, if present, is ignored and the impact it not reduced through values in this column. Default: False

Examples

```python
>>> haz = Hazard.from_mat(HAZ_DEMO_MAT)  # Set hazard
>>> impfset = ImpactFuncSet.from_excel(ENT_TEMPLATE_XLS)
>>> exp = Exposures(pd.read_excel(ENT_TEMPLATE_XLS))
>>> impcalc = ImpactCal(exp, impfset, haz)
>>> imp = impcalc.impact(insured=True)
>>> imp.aai_agg
```

See also:

- **apply_deductible_to_mat** apply deductible to impact matrix
- **apply_cover_to_mat** apply cover to impact matrix
- **minimal_exp_gdf** (*impf_col, assign_centroids, ignore_cover, ignore_deductible*)

Get minimal exposures geodataframe for impact computation

Parameters

• **exposures** (*climada.entity.Exposures*)

• **hazard** (*climada.Hazard*)

• **impf_col** (*str*) – Name of the impact function column in exposures.gdf
• **assign_centroids** *(bool)* – Indicates whether centroids are re-assigned to the `self.exposures` object or kept from previous impact calculation with a hazard of the same hazard type. Centroids assignment is an expensive operation; set this to `False` to save computation time if the centroids have not changed since the last impact calculation.

• **include_cover** *(bool)* – if set to True, the column ‘cover’ of the exposures GeoDataFrame is excluded from the returned GeoDataFrame, otherwise it is included if present.

• **include_deductible** *(bool)* – if set to True, the column ‘deductible’ of the exposures GeoDataFrame is excluded from the returned GeoDataFrame, otherwise it is included if present.

imp_mat_gen *(exp_gdf, impf_col)*

Generator of impact sub-matrices and corresponding exposures indices

The exposures `gdf` is decomposed into chunks that fit into the max defined memory size. For each chunk, the impact matrix is computed and returned, together with the corresponding exposures points index.

Parameters

• **exp_gdf** *(GeoDataFrame)* – Geodataframe of the exposures with columns required for impact computation.

• **impf_col** *(str)* – Name of the desired impact column in the exposures.

Raises *ValueError* – if the hazard is larger than the memory limit

Yields *scipy.sparse.crs_matrix, np.ndarray* – impact matrix and corresponding exposures indices for each chunk.

insured_mat_gen *(imp_mat_gen, exp_gdf, impf_col)*

Generator of insured impact sub-matrices (with applied cover and deductible) and corresponding exposures indices

This generator takes a ‘regular’ impact matrix generator and applies cover and deductible onto the impacts. It yields the same sub-matrices as the original generator.

Deductible and cover are taken from the dataframe stored in `exposures.gdf`.

Parameters

• **imp_mat_gen** *(generator of tuples (sparse.csr_matrix, np.array))* – The generator for creating the impact matrix. It returns a part of the full matrix and the associated exposure indices.

• **exp_gdf** *(GeoDataFrame)* – Geodataframe of the exposures with columns required for impact computation.

• **impf_col** *(str)* – Name of the column in ‘exp_gdf’ indicating the impact function (id)

Yields

• **mat** *(scipy.sparse.csr_matrix)* – Impact sub-matrix (with applied cover and deductible) with size (n_events, len(exp_idx))

• **exp_idx** *(np.array)* – Exposure indices for impacts in mat

impact_matrix *(exp_values, cent_idx, impf)*

Compute the impact matrix for given exposure values, assigned centroids, a hazard, and one impact function.

Parameters

• **exp_values** *(np.array)* – Exposure values

• **cent_idx** *(np.array)* – Hazard centroids assigned to each exposure location

• **hazard** *(climada.Hazard)* – Hazard object
• **impf** (climada.entity.ImpactFunc) – one impact function common to all exposure elements in exp_gdf

Returns Impact per event (rows) per exposure point (columns)

Return type scipy.sparse.csr_matrix

stitch_impact_matrix (*imp_mat_gen*)

Make an impact matrix from an impact sub-matrix generator

stitch_risk_metrics (*imp_mat_gen*)

Compute the impact metrics from an impact sub-matrix generator

This method is used to compute the risk metrics if the user decided not to store the full impact matrix.

Parameters

- **imp_mat_gen** (generator of tuples (sparse.csr_matrix, np.array)) – The generator for creating the impact matrix. It returns a part of the full matrix and the associated exposure indices.

Returns

- **at_event** (np.array) – Accumulated damage for each event
- **eai_exp** (np.array) – Expected impact within a period of 1/frequency_unit for each exposure point
- **aai_agg** (float) – Average impact within a period of 1/frequency_unit aggregated

static apply_deductible_to_mat (*mat*, *deductible*, *hazard*, *cent_idx*, *impf*)

Apply a deductible per exposure point to an impact matrix at given centroid points for given impact function.

All exposure points must have the same impact function. For different impact functions apply use this method repeatedly on the same impact matrix.

Parameters

- **imp_mat** (scipy.sparse.csr_matrix) – impact matrix (events x exposure points)
- **deductible** (np.array) – deductible for each exposure point
- **hazard** (climada.Hazard) – hazard used to compute the imp_mat
- **cent_idx** (np.array) – index of centroids associated with each exposure point
- **impf** (climada.entity.ImpactFunc) – impact function associated with the exposure points

Returns

imp_mat – impact matrix with applied deductible

Return type scipy.sparse.csr_matrix

static apply_cover_to_mat (*mat*, *cover*)

Apply cover to impact matrix.

The impact data is clipped to the range [0, cover]. The cover is defined per exposure point.

Parameters

- **imp_mat** (scipy.sparse.csr_matrix) – impact matrix
- **cover** (np.array) – cover per exposure point (columns of imp_mat)

Returns

imp_mat – impact matrix with applied cover

Return type scipy.sparse.csr_matrix
static eai_exp_from_mat (mat, freq)
Compute impact for each exposures from the total impact matrix
Parameters
• imp_mat (sparse.csr_matrix) – matrix num_events x num_exp with impacts.
• frequency (np.array) – frequency of events within a period of 1/frequency_unit
Returns eai_exp – expected impact within a period of 1/frequency_unit for each exposure
Return type np.array
static at_event_from_mat (mat)
Compute impact for each hazard event from the total impact matrix :Parameters:
imp_mat (sparse.csr_matrix) – matrix num_events x num_exp with impacts.
Returns at_event – impact for each hazard event
Return type np.array
static aai_agg_from_eai_exp (eai_exp)
Aggregate impact.eai_exp
Parameters eai_exp (np.array) – expected impact within a period of 1/frequency_unit for each
exposure point
Returns average aggregated impact within a period of 1/frequency_unit
Return type float
classmethod risk_metrics (mat, freq)
Compute risk metrics eai_exp, at_event, aai_agg for an impact matrix and a frequency vector.
Parameters
• mat (sparse.csr_matrix) – matrix num_events x num_exp with impacts.
• freq (np.array) – array with the frequency per event
Returns
• eai_exp (np.array) – expected impact within a period of 1/frequency_unit at each exposure
point
• at_event (np.array[]) – total impact for each event
• aai_agg (float) – average impact within a period of 1/frequency_unit aggregated over all
exposure points

5.1.7 climada.engine.impact_data module

climada.engine.impact_data.assign_hazard_to_emdat (certainty_level, intensity_path_haz,
names_path_haz, reg_id_path_haz,
date_path_haz, emdat_data, start_time,
end_time, keep_checks=False)

assign_hazard_to_emdat: link EMdat event to hazard
Parameters
• certainty_level (str) – ‘high’ or ‘low’
• **intensity_path_haz** (*sparse matrix*) – with hazards as rows and grid points as cols, values only at location with impacts
• **names_path_haz** (*str*) – identifier for each hazard (i.e. IBtracID) (rows of the matrix)
• **reg_id_path_haz** (*str*) – ISO country ID of each grid point (cols of the matrix)
• **date_path_haz** (*str*) – start date of each hazard (rows of the matrix)
• **emdat_data** (*pd.DataFrame*) – dataframe with EMdat data
• **start_time** (*str*) – start date of events to be assigned 'yyyy-mm-dd'
• **end_time** (*str*) – end date of events to be assigned 'yyyy-mm-dd'
• **keep_checks** (*bool, optional*)

Return type
pd.DataFrame with EMdat entries linked to a hazard

```python
climada.engine.impact_data.hit_country_per_hazard(intensity_path, names_path, reg_id_path, date_path)
```

hit_country_per_hazard: create list of hit countries from hazard set

Parameters

• **intensity_path** (*str*) – Path to file containing sparse matrix with hazards as rows and grid points as cols, values only at location with impacts

• **names_path** (*str*) – Path to file with identifier for each hazard (i.e. IBtracID) (rows of the matrix)

• **reg_id_path** (*str*) – Path to file with ISO country ID of each grid point (cols of the matrix)

• **date_path** (*str*) – Path to file with start date of each hazard (rows of the matrix)

Return type
pd.DataFrame with all hit countries per hazard

```python
climada.engine.impact_data.create_lookup(emdat_data, start, end, disaster_subtype='Tropical cyclone')
```

create_lookup: prepare a lookup table of EMdat events to which hazards can be assigned

Parameters

• **emdat_data** (*pd.DataFrame*) – with EMdat data

• **start** (*str*) – start date of events to be assigned 'yyyy-mm-dd'

• **end** (*str*) – end date of events to be assigned 'yyyy-mm-dd'

• **disaster_subtype** (*str*) – EMdat disaster subtype

Return type
pd.DataFrame

```python
climada.engine.impact_data.emdat_possible_hit(lookup, hit_countries, delta_t)
```

relate EM disaster to hazard using hit countries and time

Parameters

• **lookup** (*pd.DataFrame*) – to relate EMdatID to hazard

• **delta_t** – max time difference of start of EMdat event and hazard

• **hit_countries**

Return type
list with possible hits
climada.engine.impact_data.match_em_id(lookup, poss_hit)

function to check if EM_ID has been assigned already and combine possible hits

Parameters

• **lookup** (*pd.DataFrame*) – to relate EMdatID to hazard
• **poss_hit** (*list*) – with possible hits

Returns with all possible hits per EMdat ID

Return type **list**

climada.engine.impact_data.assign_track_to_em(lookup, possible_tracks_1, possible_tracks_2, level)

function to assign a hazard to an EMdat event to get some confidence into the procedure, hazards get only assigned if there is no other hazard occurring at a bigger time interval in that country. Thus a track of possible_tracks_1 gets only assigned if there are no other tracks in possible_tracks_2. The confidence can be expressed with a certainty level

Parameters

• **lookup** (*pd.DataFrame*) – to relate EMdatID to hazard
• **possible_tracks_1** (*list*) – list of possible hits with smaller time horizon
• **possible_tracks_2** (*list*) – list of possible hits with larger time horizon
• **level** (*int*) – level of confidence

Returns lookup with assigned tracks and possible hits

Return type **pd.DataFrame**

climada.engine.impact_data.check_assigned_track(lookup, checkset)

compare lookup with assigned tracks to a set with checked sets

Parameters

• **lookup** (*pd.DataFrame*) – dataframe to relate EMdatID to hazard
• **checkset** (*pd.DataFrame*) – dataframe with already checked hazards

Return type **error scores**

climada.engine.impact_data.clean_emdat_df(emdat_file, countries=None, hazard=None, year_range=None, target_version=None)

Get a clean and standardized DataFrame from EM-DAT-CSV-file (1) load EM-DAT data from CSV to DataFrame and remove header/footer, (2) handle version, clean up, and add columns, and (3) filter by country, hazard type and year range (if any given)

Parameters

• **emdat_file** (*str, Path, or DataFrame*) – Either string with full path to CSV-file or pandas.DataFrame loaded from EM-DAT CSV
• **countries** (*list of str*) – country ISO3-codes or names, e.g. ['JAM', 'CUB']. countries=None for all countries (default)
• **hazard** (*list or str*) – List of Disaster (sub-)type according EMDAT terminology, i.e.: Animal accident, Drought, Earthquake, Epidemic, Extreme temperature, Flood, Fog, Impact, Insect infestation, Landslide, Mass movement (dry), Storm, Volcanic activity, Wildfire; Coastal Flooding, Convective Storm, Riverine Flood, Tropical cyclone, Tsunami, etc.; OR CLIMADA hazard type abbreviations, e.g. TC, BF, etc.
• **year_range** *(list or tuple)* – Year range to be extracted, e.g. (2000, 2015); (only min and max are considered)

• **target_version** *(int)* – required EM-DAT data format version (i.e. year of download), changes naming of columns/variables, default: newest available version in VARNAMES_EMDAT that matches the given emdat_file

Returns

- **df_data** – DataFrame containing cleaned and filtered EM-DAT impact data

Return type

pd.DataFrame

climada.engine.impact_data.emdat_countries_by_hazard *(emdat_file_csv, hazard=None, year_range=None)*

return list of all countries exposed to a chosen hazard type from EMDAT data as CSV.

Parameters

- **emdat_file** *(str, Path, or DataFrame)* – Either string with full path to CSV-file or pandas.DataFrame loaded from EM-DAT CSV

- **hazard** *(list or str)* – List of Disaster (sub-)type according EMDAT terminology, i.e.: Animal accident, Drought, Earthquake, Epidemic, Extreme temperature, Flood, Fog, Impact, Insect infestation, Landslide, Mass movement (dry), Storm, Volcanic activity, Wildfire; Coastal Flooding, Convective Storm, Riverine Flood, Tropical cyclone, Tsunami, etc.; OR CLIMADA hazard type abbreviations, e.g. TC, BF, etc.

- **year_range** *(list or tuple)* – Year range to be extracted, e.g. (2000, 2015); (only min and max are considered)

Returns

- **countries_iso3a** *(list)* – List of ISO3-codes of countries impacted by the disaster (sub-)types

- **countries_names** *(list)* – List of names of countries impacted by the disaster (sub-)types

climada.engine.impact_data.scale_impact2refyear *(impact_values, year_values, iso3a_values, reference_year=None)*

Scale give impact values proportional to GDP to the according value in a reference year (for normalization of monetary values)

Parameters

- **impact_values** *(list or array)* – Impact values to be scaled.

- **year_values** *(list or array)* – Year of each impact (same length as impact_values)

- **iso3a_values** *(list or array)* – ISO3alpha code of country for each impact (same length as impact_values)

- **reference_year** *(int, optional)* – Impact is scaled proportional to GDP to the value of the reference year. No scaling for reference_year=None (default)

climada.engine.impact_data.emdat_impact_yearlysum *(emdat_file_csv, countries=None, hazard=None, year_range=None, reference_year=None, imp_str="Total Damages ('000 US$)", version=None)*

function to load EM-DAT data and sum impact per year

Parameters

- **emdat_file_csv** *(str or DataFrame)* – Either string with full path to CSV-file or pandas.DataFrame loaded from EM-DAT CSV

- **countries** *[list of str]* country ISO3-codes or names, e.g. ['JAM', 'CUB']. countries=None for all countries (default)
hazard [list or str] List of Disaster (sub-)type according EMDAT terminology, i.e.: Animal accident, Drought, Earthquake, Epidemic, Extreme temperature, Flood, Fog, Impact, Insect infestation, Landslide, Mass movement (dry), Storm, Volcanic activity, Wildfire; Coastal Flooding, Convective Storm, Riverine Flood, Tropical cyclone, Tsunami, etc.; OR CLIMADA hazard type abbreviations, e.g. TC, BF, etc.

year_range [list or tuple] Year range to be extracted, e.g. (2000, 2015); (only min and max are considered)

version [int, optional] required EM-DAT data format version (i.e. year of download), changes naming of columns/variables, default: newest available version in VARNames_EMDAT

Returns out – DataFrame with summed impact and scaled impact per year and country.

Return type pd.DataFrame

climada.engine.impact_data.emdat_impact_event (emdat_file_csv, countries=None, hazard=None, year_range=None, reference_year=None, imp_str="Total Damages ('000 US$)", version=None)

function to load EM-DAT data return impact per event

Parameters
emdat_file_csv (str or DataFrame) – Either string with full path to CSV-file or pandas.DataFrame loaded from EM-DAT CSV

countries [list of str] country ISO3-codes or names, e.g. [‘JAM’, ‘CUB’]. default: countries=None for all countries

hazard [list or str] List of Disaster (sub-)type according EMDAT terminology, i.e.: Animal accident, Drought, Earthquake, Epidemic, Extreme temperature, Flood, Fog, Impact, Insect infestation, Landslide, Mass movement (dry), Storm, Volcanic activity, Wildfire; Coastal Flooding, Convective Storm, Riverine Flood, Tropical cyclone, Tsunami, etc.; OR CLIMADA hazard type abbreviations, e.g. TC, BF, etc.

year_range [list or tuple] Year range to be extracted, e.g. (2000, 2015); (only min and max are considered)

reference_year [int reference year of exposures. Impact is scaled] proportional to GDP to the value of the reference year. Default: No scaling for 0

imp_str [str] Column name of impact metric in EMDAT CSV, default = “Total Damages (‘000 US$)”

version [int, optional] EM-DAT version to take variable/column names from, default: newest available version in VARNames_EMDAT

Returns out – EMDAT DataFrame with new columns “year”, “region_id”, and “impact” and +impact_scaled” total impact per event with same unit as chosen impact, but multiplied by 1000 if impact is given as 1000 US$ (e.g. imp_str=’Total Damages (‘000 US$) scaled”).

Return type pd.DataFrame

climada.engine.impact_data.emdat_to_impact (emdat_file_csv, hazard_type_climada, year_range=None, countries=None, hazard_type_emdat=None, reference_year=None, imp_str='Total Damages')

function to load EM-DAT data return impact per event

Parameters
emdat_file_csv (str or DataFrame) – Either string with full path to CSV-file or pandas.DataFrame loaded from EM-DAT CSV

countries [list of str] country ISO3-codes or names, e.g. [‘JAM’, ‘CUB’]. default: countries=None for all countries
• **hazard_type_climada** *(str)* – CLIMADA hazard type abbreviations, e.g. TC, BF, etc.

• **hazard_type_emdat** *(list or str)* – List of Disaster (sub-)type according EMDAT terminology, i.e.: Animal accident, Drought, Earthquake, Epidemic, Extreme temperature, Flood, Fog, Impact, Insect infestation, Landslide, Mass movement (dry), Storm, Volcanic activity, Wildfire; Coastal Flooding, Convective Storm, Riverine Flood, Tropical cyclone, Tsunami, etc.

• **year_range** *(list or tuple)* – Year range to be extracted, e.g. (2000, 2015); (only min and max are considered)

• **reference_year** *(int reference year of exposures. Impact is scaled)* – proportional to GDP to the value of the reference year. Default: No scaling for 0

• **imp_str** *(str)* – Column name of impact metric in EMDAT CSV, default = “Total Damages (’000 US$)”

Returns

• **impact_instance** *(climada.engine.Impact)* – impact object of same format as output from CLIMADA impact computation. Values scaled with GDP to reference_year if reference_year is given. i.e. current US$ for imp_str=“Total Damages (’000 US$) scaled” (factor 1000 is applied) impact_instance.eai_exp holds expected impact for each country (within 1/frequency_unit). impact_instance.coord_exp holds rough central coordinates for each country.

• **countries** *(list of str)* – ISO3-codes of countries in same order as in impact_instance.eai_exp

5.2 climada.entity package

5.2.1 climada.entity.disc_rates package

climada.entity.disc_rates.base module

class climada.entity.disc_rates.base.DiscRates *(years: Optional[numpy.ndarray] = None, rates: Optional[numpy.ndarray] = None)*

Bases: object

Defines discount rates and basic methods. Loads from files with format defined in FILE_EXT.

years

list of years

Type np.array

rates

list of discount rates for each year (between 0 and 1)

Type np.array

def __init__ *(years: Optional[numpy.ndarray] = None, rates: Optional[numpy.ndarray] = None)*

Fill discount rates with values and check consistency data

Parameters

• **years** *(numpy.ndarray(int))* – Array of years. Default is numpy.array([]).

• **rates** *(numpy.ndarray(float))* – Discount rates for each year in years. Default is numpy.array([]). Note: rates given in float, e.g., to set 1% rate use 0.01
clear()
 Reinitialize attributes.

check()
 Check attributes consistency.
 Raises ValueError –

select(year_range)
 Select discount rates in given years.
 Parameters
 • year_range (np.array(int)) – continuous sequence of selected years.
 • Returns (climada.entity.DiscRates) – The selected discrates in the year_range

append(disc_rates)
 Check and append discount rates to current DiscRates. Overwrite discount rate if same year.
 Parameters disc_rates (climada.entity.DiscRates) – DiscRates instance to append
 Raises ValueError –

net_present_value(ini_year, end_year, val_years)
 Compute net present value between present year and future year.
 Parameters
 • ini_year (float) – initial year
 • end_year (float) – end year
 • val_years (np.array) – cash flow at each year btw ini_year and end_year (both included)
 Returns net_present_value – net present value between present year and future year.
 Return type float

plot(axis=None, figsize=(6, 8), **kwargs)
 Plot discount rates per year.
 Parameters
 • axis (matplotlib.axes._subplots.AxesSubplot, optional) – axis to use
 • figsize (tuple(int, int), optional) – size of the figure. The default is (6,8)
 • kwargs (optional) – keyword arguments passed to plotting function axis.plot
 Returns axis – axis handles of the plot
 Return type matplotlib.axes._subplots.AxesSubplot

classmethod from_mat(file_name, var_names=None)
 Read MATLAB file generated with previous MATLAB CLIMADA version.
 Parameters
 • file_name (str) – filename including path and extension
 • description (str, optional) – description of the data. The default is “
 • var_names (dict, optional) – name of the variables in the file. Default:
>>> DEF_VAR_MAT = {
... 'sup_field_name': 'entity',
... 'field_name': 'discount',
... 'var_name': {
... 'year': 'year',
... 'disc': 'discount_rate',
... }
...}

Returns: The disc rates from matlab

Return type: climada.entity.DiscRates

read_mat(*args, **kwargs)

This function is deprecated, use DiscRates.from_mats instead.

classmethod from_excel(file_name, var_names=None)

Read excel file following template and store variables.

Parameters

- file_name (str) – filename including path and extension
- description (str, optional) – description of the data. The default is “
- var_names (dict, optional) – name of the variables in the file. The Default is

>>> DEF_VAR_EXCEL = {
... 'sheet_name': 'discount',
... 'col_name': {
... 'year': 'year',
... 'disc': 'discount_rate',
... }
...}

Returns: The disc rates from excel

Return type: climada.entity.DiscRates

read_excel(*args, **kwargs)

This function is deprecated, use DiscRates.from_excel instead.

write_excel(file_name, var_names=None)

Write excel file following template.

Parameters

- file_name (str) – filename including path and extension
- var_names (dict, optional) – name of the variables in the file. The Default is

>>> DEF_VAR_EXCEL = {
... 'sheet_name': 'discount',
... 'col_name': {
... 'year': 'year',
... 'disc': 'discount_rate',
... }
...}
5.2.2 climada.entity.exposures package

climada.entity.exposures.litpop package

climada.entity.exposures.litpop.gpw_population module

climada.entity.exposures.litpop.gpw_population.load_gpw_pop_shape

Read gridded population data from TIFF and crop to given shape(s).

Note: A (free) NASA Earthdata login is necessary to download the data. Data can be downloaded e.g. for gpw_version=11 and year 2015 from https://sedac.ciesin.columbia.edu/downloads/data/gpw-v4/gpw-v4-population-count-rev11/gpw-v4-population-count-rev11_2015_30_sec_tif.zip

Parameters

- geometry (shape(s) to crop data to in degree lon/lat.) – for example shapely.geometry.(Multi)Polygon or shapefile.Shape from polygon(s) defined in a (country) shapefile.
- reference_year (int) – target year for data extraction
- gpw_version (int) – Version number of GPW population data, i.e. 11 for v4.11. The default is CONFIG.exposures.litpop.gpw_population.gpw_version.int()
- data_dir (Path, optional) – Path to data directory holding GPW data folders. The default is SYSTEM_DIR.
- layer (int, optional) – relevant data layer in input TIFF file to return. The default is 0 and should not be changed without understanding the different data layers in the given TIFF file.
- verbose (bool, optional) – Enable verbose logging about the used GPW version and reference year. Default: True.

Returns

- pop_data (2D numpy array) – contains extracted population count data per grid point in shape first dimension is lat, second dimension is lon.
- meta (dict) – contains meta data per array, including “transform” with meta data on coordinates.
- global_transform (Affine instance) – contains six numbers, providing transform info for global GWP grid. global_transform is required for resampling on a globally consistent grid

climada.entity.exposures.litpop.gpw_population.get_gpw_file_path

Check available GPW population data versions and year closest to reference_year and return full path to TIFF file.

Parameters

- gpw_version (int (optional)) – Version number of GPW population data, i.e. 11 for v4.11.
- reference_year (int (optional)) – Data year is selected as close to reference_year as possible. The default is 2020.
- **data_dir** (*pathlib.Path (optional)*): Absolute path where files are stored. Default: `sys-tem_dir`

- **verbose** (*bool, optional*): Enable verbose logging about the used GPW version and reference year. Default: True.

Raises `FileExistsError`

Returns `pathlib.Path`

Return type path to input file with population data

climada.entity.exposures.litpop.litpop module

climada.entity.exposures.litpop.litpop.GPW_VERSION = 11

class `climada.entity.exposures.litpop.litpop.LitPop(*args, meta=None, description=None, ref_year=2018, value_unit='USD', crs=None, **kwargs)`

Bases: `climada.entity.exposures.base.Exposures`

Holds geopandas GeoDataFrame with metadata and columns (pd.Series) defined in Attributes of Exposures class. LitPop exposure values are disaggregated proportional to a combination of nighttime intensity (NASA) and Gridded Population data (SEDAC). Total asset values can be produced capital, population count, GDP, or non-financial wealth.

Calling sequence example: `country_names = ['CHE', 'Austria'] exp = LitPop.from_countries(country_names) exp.plot()`

exponents

Defining powers (m, n) with which lit (nightlights) and pop (gpw) go into \(\text{Lit}^m \times \text{Pop}^n \). The default is (1, 1).

Type tuple of two integers, optional

fin_mode

Socio-economic value to be used as an asset base that is disaggregated. The default is ‘pc’.

Type str, optional

gpw_version

Version number of GPW population data, e.g. 11 for v4.11. The default is defined in GPW_VERSION.

Type int, optional

set_countries (*args, **kwargs*)

This function is deprecated, use LitPop.from_countries instead.

classmethod `from_countries(countries, res_arcsec=30, exponents=(1, 1), fin_mode='pc', total_values=None, admin1_cal=False, reference_year=2018, gpw_version=11, data_dir=PosixPath('/home/docs/climada/data'))`

Init new LitPop exposure object for a list of countries (admin 0).

Sets attributes `ref_year`, `crs`, `value`, `geometry`, `meta`, `value_unit`, `exponents`, `fin_mode`, `gpw_version`, and `admin1_cal`.

Parameters
• **countries** (*list with str or int*) – list containing country identifiers: iso3alpha (e.g. ‘JPN’), iso3num (e.g. 92) or name (e.g. ‘Togo’)

• **res_arcsec** (*float, optional*) – Horizontal resolution in arc-sec. The default is 30 arcsec, this corresponds to roughly 1 km.

• **exponents** (*tuple of two integers, optional*) – Defining power with which lit (nightlights) and pop (gpw) go into LitPop. To get nightlights^3 without population count: (3, 0). To use population count alone: (0, 1). Default: (1, 1)

• **fin_mode** (*str, optional*) – Socio-economic value to be used as an asset base that is disaggregated to the grid points within the country:
 - ‘pc’: produced capital (Source: World Bank), incl. manufactured or built assets such as machinery, equipment, and physical structures pc is in constant 2014 USD.
 - ‘pop’: population count (source: GPW, same as gridded population). The unit is ‘people’.
 - ‘gdp’: gross-domestic product (Source: World Bank) [USD]
 - ‘income_group’: gdp multiplied by country’s income group+1 [USD]. Income groups are 1 (low) to 4 (high income).
 - ‘nfw’: non-financial wealth (Source: Credit Suisse, of households only) [USD]
 - ‘tw’: total wealth (Source: Credit Suisse, of households only) [USD]
 - ‘norm’: normalized by country (no unit)
 - ‘none’: LitPop per pixel is returned unchanged (no unit)
 Default: ‘pc’

• **total_values** (*list containing numerics, same length as countries, optional*) – Total values to be disaggregated to grid in each country. The default is None. If None, the total number is extracted from other sources depending on the value of fin_mode.

• **admin1_calc** (*boolean, optional*) – If True, distribute admin1-level GDP (if available). Default: False

• **gpw_version** (*int, optional*) – Version number of GPW population data. The default is GPW_VERSION

• **data_dir** (*Path, optional*) – redefines path to input data directory. The default is SYSTEM_DIR.

Raises `ValueError` –

Returns `exp` – LitPop instance with exposure for given countries

Return type `LitPop`

set_nightlight_intensity (*args, **kwargs*)

This function is deprecated, use LitPop.from_nightlight_intensity instead.

classmethod from_nightlight_intensity (*countries=None, shape=None, res_arcsec=15, reference_year=2018, data_dir=PosixPath('/home/docs/climada/data'))

Wrapper around `from_countries` / `from_shape`.

Initiate exposures instance with value equal to the original BlackMarble nightlight intensity resampled to the target resolution `res_arcsec`.
Provide either countries or shape.

Parameters

- **countries** (list or str, optional) – list containing country identifiers (name or iso3)
- **shape** (Shape, Polygon or MultiPolygon, optional) – geographical shape of target region, alternative to countries.
- **res_arcsec** (int, optional) – Resolution in arc seconds. The default is 15.
- **reference_year** (int, optional) – Reference year. The default is CONFIG.exposures.def_ref_year.
- **data_dir** (Path, optional) – data directory. The default is None.

Raises **ValueError** –

Returns **exp** – Exposure instance with values representing pure nightlight intensity from input nightlight data (BlackMarble)

Return type **LitPop**

set_population (*args, **kwargs)

This function is deprecated, use LitPop.from_population instead.

classmethod from_population (countries=None, shape=None, res_arcsec=30, reference_year=2018, gpw_version=11, data_dir=PosixPath('/home/docs/climada/data'))

Wrapper around from_countries / from_shape.

Initiate exposures instance with value equal to GPW population count. Provide either countries or shape.

Parameters

- **countries** (list or str, optional) – list containing country identifiers (name or iso3)
- **shape** (Shape, Polygon or MultiPolygon, optional) – geographical shape of target region, alternative to countries.
- **res_arcsec** (int, optional) – Resolution in arc seconds. The default is 30.
- **reference_year** (int, optional) – Reference year (closest available GPW data year is used) The default is CONFIG.exposures.def_ref_year.
- **gpw_version** (int, optional) – specify GPW data version. The default is 11.
- **data_dir** (Path, optional) – data directory. The default is None. Either countries or shape is required.

Raises **ValueError** –

Returns **exp** – Exposure instance with values representing population count according to Gridded Population of the World (GPW) input data set.

Return type **LitPop**

set_custom_shape_from_countries (*args, **kwargs)

This function is deprecated, use LitPop.from_shape_and_countries instead.

classmethod from_shape_and_countries (shape, countries, res_arcsec=30, exponents=(1, 1), fin_mode='pc', admin1_calc=False, reference_year=2018, gpw_version=11, data_dir=PosixPath('/home/docs/climada/data'))

create LitPop exposure for country and then crop to given shape.
Parameters

- **shape** (shapely.geometry.Polygon, MultiPolygon, shapereader.Shape, GeoSeries or list containing either Polygons or Multipolygons). Geographical shape for which LitPop Exposure is to be initiated.

- **countries** (list with str or int) – list containing country identifiers: iso3alpha (e.g. ‘JPN’), iso3num (e.g. 92) or name (e.g. ‘Togo’)

- **res_arcsec** (float, optional) – Horizontal resolution in arc-sec. The default is 30 arcsec, this corresponds to roughly 1 km.

- **exponents** (tuple of two integers, optional) – Defining power with which lit (nightlights) and pop (gpw) go into LitPop. Default: (1, 1)

- **fin_mode** (str, optional) – Socio-economic value to be used as an asset base that is disaggregated to the grid points within the country:
 - ‘pc’: produced capital (Source: World Bank), incl. manufactured or built assets such as machinery, equipment, and physical structures (pc is in constant 2014 USD)
 - ‘pop’: population count (source: GPW, same as gridded population). The unit is ‘people’.
 - ‘gdp’: gross-domestic product (Source: World Bank) [USD]
 - ‘income_group’: gdp multiplied by country's income group+1 [USD] Income groups are 1 (low) to 4 (high income).
 - ‘nfw’: non-financial wealth (Source: Credit Suisse, of households only) [USD]
 - ‘tw’: total wealth (Source: Credit Suisse, of households only) [USD]
 - ‘norm’: normalized by country
 - ‘none’: LitPop per pixel is returned unchanged
 Default: ‘pc’

- **admin1_calc** (boolean, optional) – If True, distribute admin1-level GDP (if available). Default: False

- **reference_year** (int, optional) – Reference year for data sources. Default: 2020

- **gpw_version** (int, optional) – Version number of GPW population data. The default is GPW_VERSION

- **data_dir** (Path, optional) – redefines path to input data directory. The default is SYSTEM_DIR.

Raises **NotImplementedError**

Returns **exp** – The exposure LitPop within shape

Return type **LitPop**

set_custom_shape (*args, **kwargs)

This function is deprecated, use LitPop.from_shape instead.

classmethod from_shape (shape, total_value, res_arcsec=30, exponents=(1, 1), value_unit='USD', region_id=None, reference_year=2018, gpw_version=11, data_dir=PosixPath('/home/docs/climada/data'))

init LitPop exposure object for a custom shape. Requires user input regarding the total value to be disaggregated.
Sets attributes `ref_year`, `crs`, `value`, `geometry`, `meta`, `value_unit`, `exponents`; `fin_mode`; `gpw_version`, and `admin1_calc`.

This method can be used to initiated LitPop Exposure for sub-national regions such as states, districts, cantons, cities, … but shapes and total value need to be provided manually. If these required input parameters are not known / available, better initiate Exposure for entire country and extract shape afterwards.

Parameters

- **shape** *(shapely.geometry.Polygon or MultiPolygon or shapereader.Shape.)* – Geographical shape for which LitPop Exposure is to be initiated.

- **total_value** *(int, float or None type)* – Total value to be disaggregated to grid in shape. If None, no value is disaggregated.

- **res_arcsec** *(float, optional)* – Horizontal resolution in arc-sec. The default 30 arcsec corresponds to roughly 1 km.

- **exponents** *(tuple of two integers, optional)* – Defining power with which lit (nightlights) and pop (gpw) go into LitPop.

- **value_unit** *(str)* – Unit of exposure values. The default is USD.

- **region_id** *(int, optional)* – The numeric ISO 3166 region associated with the shape. If set to a value, this single value will be set for every coordinate in the GeoDataFrame of the resulting LitPop instance. If None (default), the region ID for every coordinate will be determined automatically (at a slight computational cost).

- **reference_year** *(int, optional)* – Reference year for data sources. Default: CONFIG.exposures.def_ref_year

- **gpw_version** *(int, optional)* – Version number of GPW population data. The default is set in CONFIG.

- **data_dir** *(Path, optional)* – redefines path to input data directory. The default is SYSTEM_DIR.

Raises

- **NotImplementedError** –

- **ValueError** –

- **TypeError** –

Returns `exp` – The exposure LitPop within shape

Return type *LitPop*

set_country *(args, **kwargs)*

This function is deprecated, use LitPop.from_countries instead.

climada.entity.exposures.litpop.litpop.get_value_unit *(fin_mode)*

get value_unit depending on fin_mode

Parameters `fin_mode` *(Socio-economic value to be used as an asset base)*

Returns `value_unit`

Return type *str*
Reprojects all arrays in data_arrays to a given resolution – all based on the population data grid.

Parameters

- **data_array_list** *(list or array of numpy arrays containing numbers)* – Data to be reprojected, i.e. list containing \(\min(1) \) 2D-arrays. The data with the reference grid used to align the global destination grid to should be first data_array_list[i_align], e.g., pop (GPW population data) for LitPop.

- **meta_list** *(list of dicts)* – meta data dictionaries of data arrays in same order as data_array_list. Required fields in each dict are `dtype`, `width`, `height`, `crs`, `transform`. Example:

  ```
  >>> {
  ...    'driver': 'GTiff',
  ...    'dtype': 'float32',
  ...    'nodata': 0,
  ...    'width': 2702,
  ...    'height': 1939,
  ...    'count': 1,
  ...    'crs': CRS.from_epsg(4326),
  ...    'transform': Affine(0.00833333333333333, 0.0, -18.
  ...         \rightarrow 15000000000068,
  ...         0.0, -0.00833333333333333, 43.
  ...         \rightarrow 79999999999993),
  ...  }
  ```

 The meta data with the reference grid used to define the global destination grid should be first in the list, e.g., GPW population data for LitPop.

- **i_align** *(int, optional)* – Index/Position of meta in meta_list to which the global grid of the destination is to be aligned to (c.f. u_coord.align_raster_data) The default is 0.

- **target_res_arcsec** *(int, optional)* – target resolution in arcsec. The default is None, i.e. same resolution as reference data.

- **global_origins** *(tuple with two numbers (lat, lon), optional)* – global lon and lat origins as basis for destination grid. The default is the same as for GPW population data: \((-180.0, 89.99999999999991)\)

- **resampling** *(resampling function, optional)* – The default is rasterio.warp.Resampling.bilinear

- **conserve** *(str, optional, either ‘mean’ or ‘sum’)* – Conserve mean or sum of data? The default is None (no conservation).

Returns

- **data_array_list** *(list)* – contains reprojected data sets

- **meta_out** *(dict)* – contains meta data of new grid (same for all arrays)
climada.entity.exposures.litpop.litpop.gridpoints_core_calc(data_arrays, offsets=None,
exponents=None, total_val_rescale=None)

Combines N dense numerical arrays by point-wise multiplication and optionally rescales to new total value:

1. An offset (1 number per array) is added to all elements in the corresponding data array in data_arrays (optional).
2. Numbers in each array are taken to the power of the corresponding exponent (optional).
3. Arrays are multiplied element-wise.
4. if total_val_rescale is provided, results are normalized and re-scaled with total_val_rescale.
5. One array with results is returned.

Parameters

- **data_arrays** *(list or array of numpy arrays containing numbers)* – Data to be combined, i.e. list containing N (min. 1) arrays of same shape.
- **offsets** *(list or array containing N numbers >= 0, optional)* – One numerical offset per array that is added (sum) to the corresponding array in data_arrays. The default (None) corresponds to np.zeros(N).
- **exponents** *(list or array containing N numbers >= 0, optional)* – One exponent per array used as power for the corresponding array. The default (None) corresponds to np.ones(N).

Raises **ValueError** – If input lists don’t have the same number of elements. Or: If arrays in data_arrays do not have the same shape.

Returns **Results** from calculation described above.

Return type np.array of same shape as arrays in data_arrays

climada.entity.exposures.litpop.nightlight module

climada.entity.exposures.litpop.nightlight.NOAA_RESOLUTION_DEG = 0.008333333333333333

NOAA nightlights coordinates resolution in degrees.

climada.entity.exposures.litpop.nightlight.NASA_RESOLUTION_DEG = 0.004166666666666667

NASA nightlights coordinates resolution in degrees.

climada.entity.exposures.litpop.nightlight.NASA_TILE_SIZE = (21600, 21600)

NASA nightlights tile resolution.

climada.entity.exposures.litpop.nightlight.NOAA_BORDER = (-180, -65, 180, 75)

NOAA nightlights border (min_lon, min_lat, max_lon, max_lat)

climada.entity.exposures.litpop.nightlight.BM_FILENAMES =
['BlackMarble_%i_A1_geo_gray.tif', 'BlackMarble_%i_A2_geo_gray.tif',
'BlackMarble_%i_B1_geo_gray.tif', 'BlackMarble_%i_B2_geo_gray.tif',
'BlackMarble_%i_C1_geo_gray.tif', 'BlackMarble_%i_C2_geo_gray.tif',
'BlackMarble_%i_D1_geo_gray.tif', 'BlackMarble_%i_D2_geo_gray.tif']
Nightlight NASA files which generate the whole earth when put together.

```python
climada.entity.exposures.litpop.nightlight.load_nasa_nl_shape(geoemtry, year, 
data_dir=PosixPath('/home/docs/climada/data'), 
dtype='float32')
```

Read nightlight data from NASA BlackMarble tiles cropped to given shape(s) and combine arrays from each tile.

1) check and download required blackmarble files
2) read and crop data from each file required in a bounding box around the given `geometry`.
3) combine data from all input files into one array. this array then contains all data in the geographic bounding box around `geometry`.
4) return array with nightlight data

Parameters
- **geometry** (shape(s) to crop data to in degree lon/lat.) – for example `shapely.geometry.(Multi)Polygon` or `shapefile.Shape` from polygon defined in a shapefile. The object should have attribute `bounds` or `points`
- **year** (int) – target year for nightlight data, e.g. 2016. Closest available year is selected.
- **data_dir** (Path (optional)) – Path to directory with BlackMarble data. The default is `SYSTEM_DIR`.
- **dtype** (dtype) – data type for output default `float32`, required for LitPop, choose `int8` for integer.

Returns
- **results_array** (numpy array) – extracted and combined nightlight data for bounding box around shape
- **meta** (dict) – rasterio meta data for results_array

```python
climada.entity.exposures.litpop.nightlight.get_required_nl_files(bounds)
```

Determines which of the satellite pictures are necessary for a certain bounding box (e.g. country)

Parameters
- **bounds** (1x4 tuple) – bounding box from shape (min_lon, min_lat, max_lon, max_lat).

Raises
- ValueError – invalid `bounds`

Returns
- **req_files** – Array indicating the required files for the current operation with a boolean value (1: file is required, 0: file is not required).

Return type
- numpy array

```python
climada.entity.exposures.litpop.nightlight.check_nl_local_file_exists(required_files=None, 
check_path=PosixPath('/home/docs/climada/data'), 
year=2016)
```

Checks if BM Satellite files are available and returns a vector denoting the missing files.

Parameters
- **required_files** (numpy array, optional) – boolean array of dimension (8,) with which some files can be skipped. Only files with value 1 are checked, with value zero are skipped. The default is np.ones(len(BM_FILENAMES),)
- **check_path** (str or Path) – absolute path where files are stored. Default: `SYSTEM_DIR`
• year (int) – year of the image, e.g. 2016

Returns files_exist – Boolean array that denotes if the required files exist.

Return type numpy array

climada.entity.exposures.litpop.nightlight.download_nl_files

Attempts to download nightlight files from NASA webpage.

Parameters

• req_files (numpy array, optional) –
 Boolean array which indicates the files required (0-> skip, 1-> download). The default is np.ones(len(BM_FILENAMES),).

• files_exist (numpy array, optional) –
 Boolean array which indicates if the files already exist locally and should not be downloaded (0-> download, 1-> skip). The default is np.zeros(len(BM_FILENAMES),).

• dwnl_path (str or path, optional) – Download directory path. The default is SYSTEM_DIR.

• year (int, optional) – Data year to be downloaded. The default is 2016.

Raises

• ValueError –
• RuntimeError –

Returns dwnl_path – Download directory path.

Return type str or path

climada.entity.exposures.litpop.nightlight.load_nasa_nl_shape_single_tile

Read nightlight data from single NASA BlackMarble tile and crop to given shape.

Parameters

• geometry (shape or geometry object) – shape(s) to crop data to in degree lon/lat. for example shapely.geometry.Polygon object or from polygon defined in a shapefile.

• path (Path or str) – full path to BlackMarble tif (including filename)

• layer (int, optional) – TIFF-layer to be returned. The default is 0. BlackMarble usually comes with 3 layers.

Returns

• out_image[layer, (,): 2D numpy ndarray] – 2d array with data cropped to bounding box of shape

• meta (dict) – rasterio meta
climada.entity.exposures.litpop.nightlight.load_nightlight_nasa(bounds, req_files, year)

Get nightlight from NASA repository that contain input boundary.

Note: Legacy for BlackMarble, not required for litpop module

Parameters
- **bounds** (*tuple*) – min_lon, min_lat, max_lon, max_lat
- **req_files** (*np.array*) – array with flags for NASA files needed
- **year** (*int*) – nightlight year

Returns
- **nightlight** (*sparse.csr_matrix*)
- **coord_nl** (*np.array*)

climada.entity.exposures.litpop.nightlight.read_bm_file(bm_path, filename)

Reads a single NASA BlackMarble GeoTiff and returns the data. Run all required checks first.

Note: Legacy for BlackMarble, not required for litpop module

Parameters
- **bm_path** (*str*) – absolute path where files are stored.
- **filename** (*str*) – filename of the file to be read.

Returns
- **arr1** (*array*) – Raw BM data
- **curr_file** (*gdal GeoTiff File*) – Additional info from which coordinates can be calculated.

climada.entity.exposures.litpop.nightlight.unzip_tif_to_py(file_gz)

Unzip image file, read it, flip the x axis, save values as pickle and remove tif.

Parameters
- **file_gz** (*str*) – file with .gz format to unzip

Returns
- **fname** (*str*) – file name of unzipped file
- **nightlight** (*sparse.csr_matrix*)

climada.entity.exposures.litpop.nightlight.untar_noaa_stable_nightlight(f_tar_ini)

Move input tar file to SYSTEM_DIR and extract stable light file. Returns absolute path of stable light file in format tif.gz.

Parameters
- **f_tar_ini** (*str*) – absolute path of file

Returns
- **f_tif_gz** – path of stable light file

Return type
str

climada.entity.exposures.litpop.nightlight.load_nightlight_noaa(ref_year=2013, sat_name=None)

Get nightlight luminosites. Nightlight matrix, lat and lon ordered such that nightlight[1][0] corresponds to lat[1], lon[0] point (the image has been flipped).

Parameters
- **ref_year** (*int, optional*) – reference year. The default is 2013.
• **sat_name** *(str, optional)* – satellite provider (e.g. 'F10', 'F18', …)

Returns

• **nightlight** *(sparse.csr_matrix)*
• **coord_nl** *(np.array)*
• **fn_light** *(str)*

climada.entity.exposures.base module

class **climada.entity.exposures.base.Exposures** (*args, meta=None, description=None, ref_year=2018, value_unit='USD', crs=None, **kwargs*)

Bases: object

gpd GeoDataFrame with metada and columns (pd.Series) defined in Attributes.

description
metadata - description of content and origin of the data

Type str

ref_year
metada - reference year

Type int

value_unit
metada - unit of the exposures values

Type str

latitude
latitude

Type pd.Series

longitude
longitude

Type pd.Series

value
a value for each exposure

Type pd.Series

imf_SUFFIX

\[e.g. \text{imf_TC}. impact functions id for hazard TC. There might be different hazards defined: \text{imf_TC, imf_FL, ...} \text{If not provided, set to default imf_ with ids 1 in check().} \]

Type pd.Series, optional

gometry
geometry of type Point of each instance. Computed in method set_geometry_points().

Type pd.Series, optional
meta
dictionary containing corresponding raster properties (if any): width, height, crs and transform must be present at least (transform needs to contain upper left corner!). Exposures might not contain all the points of the corresponding raster. Not used in internal computations.

 Type dict
deductible
deductible value for each exposure

 Type pd.Series, optional
cover
cover value for each exposure

 Type pd.Series, optional
category_id
category id for each exposure

 Type pd.Series, optional
region_id
region id for each exposure

 Type pd.Series, optional
centr_SUFFIX
e.g. centr_TC. centroids index for hazard TC. There might be different hazards defined: centr_TC, centr_FL, … Computed in method assign_centroids().

 Type pd.Series, optional
vars_oblig = ['value', 'latitude', 'longitude']
Name of the variables needed to compute the impact.

vars_def = ['impf_', 'if_']
Name of variables that can be computed.

vars_opt = ['centr_', 'deductible', 'cover', 'category_id', 'region_id', 'geometry']
Name of the variables that aren't need to compute the impact.

property crs
Coordinate Reference System, refers to the crs attribute of the inherent GeoDataFrame

__init__(*args, meta=None, description=None, ref_year=2018, value_unit='USD', crs=None, **kwargs)
Creates an Exposures object from a GeoDataFrame

Parameters

 • args – Arguments of the GeoDataFrame constructor
 • kwargs – Named arguments of the GeoDataFrame constructor, additionally
 • meta (dict, optional) – Metadata dictionary. Default: {} (empty dictionary)
 • description (str, optional) – Default: None
 • ref_year (int, optional) – Reference Year. Defaults to the entry of the same name in meta or 2018.
• **value_unit** *(str, optional)* – Unit of the exposed value. Defaults to the entry of the same name in `meta` or ‘USD’.

• **crs** *(object, anything accepted by pyproj.CRS.from_user_input)* – Coordinate reference system. Defaults to the entry of the same name in `meta`, or to the CRS of the GeoDataFrame (if provided) or to ‘epsg:4326’.

check()

Check Exposures consistency.

Reports missing columns in log messages. If no `impf_*` column is present in the dataframe, a default column `impf_` is added with default impact function id 1.

set_crs(crs=None)

Set the Coordinate Reference System. If the exposures GeoDataFrame has a ‘geometry’ column it will be updated too.

Parameters

- **crs** *(object, optional)* – anything anything accepted by pyproj.CRS.from_user_input, if the original value is None it will be set to the default CRS.

set_gdf(gdf: geopandas.geodataframe.GeoDataFrame, crs=None)

Set the `gdf` GeoDataFrame and update the CRS

Parameters

- **gdf** *(GeoDataFrame)*
- **crs** *(object, optional)* – anything anything accepted by pyproj.CRS.from_user_input, by default None, then `gdf.crs` applies or - if not set - the exposure’s current crs

get_impf_column(haz_type='')

Find the best matching column name in the exposures dataframe for a given hazard type,

Parameters

- **haz_type** *(str or None)* – hazard type, as in the hazard’s `haz_type` which is the HAZ_TYPE constant of the hazard’s module

Returns

- a column name, the first of the following that is present in the exposures’ dataframe:
 - `impf_[haz_type]`
 - `if_[haz_type]`
 - `impf_`
 - `if_

Return type **str**

Raises **ValueError** – if none of the above is found in the dataframe.

assign_centroids(hazard, distance='euclidean', threshold=100, overwrite=True)

Assign for each exposure coordinate closest hazard coordinate. The Exposures `gdf` will be altered by this method. It will have an additional (or modified) column named `centr_[hazard.HAZ_TYPE]` after the call.

Uses the utility function `u_coord.match_centroids`. See there for details and parameters.

The value -1 is used for distances larger than `threshold` in point distances. In case of raster hazards the value -1 is used for centroids outside of the raster.

Parameters

- **hazard** *(Hazard)* – Hazard to match (with raster or vector centroids).
distance (str, optional) – Distance to use in case of vector centroids. Possible values are “euclidean”, “haversine” and “approx”. Default: “euclidean”

threshold (float) – If the distance (in km) to the nearest neighbor exceeds threshold, the index -1 is assigned. Set threshold to 0, to disable nearest neighbor matching. Default: 100 (km)

overwrite (bool) – If True, overwrite centroids already present. If False, do not assign new centroids. Default is True.

See also:

climada.util.coordinates.match_grid_points method to associate centroids to exposure points when centroids is a raster

climada.util.coordinates.match_coordinates method to associate centroids to exposure points

Notes

The default order of use is:

1. if centroid raster is defined, assign exposures points to the closest raster point.
2. if no raster, assign centroids to the nearest neighbor using euclidian metric

Both cases can introduce inaccuracies for coordinates in lat/lon coordinates as distances in degrees differ from distances in meters on the Earth surface, in particular for higher latitude and distances larger than 100km. If more accuracy is needed, please use ‘haversine’ distance metric. This however is slower for (quasi-)gridded data, and works only for non-gridded data.

set_geometry_points (scheduler=None)

Set geometry attribute of GeoDataFrame with Points from latitude and longitude attributes.

Parameters

- scheduler (str, optional) – used for dask map_partitions. “threads”, “synchronous” or “processes”

set_lat_lon ()

Set latitude and longitude attributes from geometry attribute.

set_from_raster (*args, **kwargs)

This function is deprecated, use Exposures.from_raster instead.

classmethod from_raster (file_name, band=1, src_crs=None, window=None, geometry=None, dst_crs=None, transform=None, width=None, height=None, resampling=Resampling.nearest)

Read raster data and set latitude, longitude, value and meta

Parameters

- file_name (str) – file name containing values
- band (int, optional) – bands to read (starting at 1)
- src_crs (crs, optional) – source CRS. Provide it if error without it.
- window (rasterio.windows.Windows, optional) – window where data is extracted
- geometry (list of shapely.geometry, optional) – consider pixels only within these shape
- dst_crs (crs, optional) – reproject to given crs
• **transform** *(rasterio.Affine)* – affine transformation to apply
• **width** *(float)* – number of lons for transform
• **height** *(float)* – number of lats for transform
• **resampling** *(rasterio.warp.Resampling optional)* – resampling function used for reprojection to dst_crs

Return type *Exposures*

`plot_scatter(mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', axis=None, figsize=(9, 13), adapt_fontsize=True, title=None, **kwargs)`

Plot exposures geometry’s value sum scattered over Earth’s map. The plot will we projected according to the current crs.

Parameters

• **mask** *(np.array, optional)* – mask to apply to eai_exp plotted.
• **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False
• **pop_name** *(bool, optional)* – add names of the populated places, by default True.
• **buffer** *(float, optional)* – border to add to coordinates. Default: 0.0.
• **extend** *(str, optional)* – extend border colorbar with arrows. [‘neither’ | ‘both’ | ‘min’ | ‘max’]
• **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
• **figsize** *(tuple, optional)* – figure size for plt.subplots Default is (9, 13).
• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.
• **title** *(str, optional)* – a title for the plot. If not set self.description is used.
• **kwargs** *(optional)* – arguments for scatter matplotlib function, e.g. cmap='Greys'

Return type *cartopy.mpl.geoaxes.GeoAxesSubplot*

`plot_hexbin(mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', axis=None, figsize=(9, 13), adapt_fontsize=True, title=None, **kwargs)`

Plot exposures geometry's value sum binned over Earth’s map. An other function for the bins can be set through the key reduce_C_function. The plot will be projected according to the current crs.

Parameters

• **mask** *(np.array, optional)* – mask to apply to eai_exp plotted.
• **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False
• **pop_name** *(bool, optional)* – add names of the populated places, by default True.
• **buffer** *(float, optional)* – border to add to coordinates. Default: 0.0.
• **extend** *(str, optional)* – extend border colorbar with arrows. [‘neither’ | ‘both’ | ‘min’ | ‘max’] Default is ‘neither’.
• **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
• **figsize** *(tuple)* – figure size for plt.subplots Default is (9, 13).
• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.
• **title** *(str, optional)* – a title for the plot. If not set self.description is used.

• **kwargs** *(optional)* – arguments for hexbin matplotlib function, e.g. reduce_C_function=np.average. Default is reduce_C_function=np.sum

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

plot_raster *(res=None, raster_res=None, save_tiff=None, raster_f=<function Exposures.<lambda>>, label='value (log10)', scheduler=None, axis=None, figsize=(9, 13), fill=True, adapt_fontsize=True, **kwargs)*

Generate raster from points geometry and plot it using log10 scale np.log10((np.fmax(raster+1, 1))).

Parameters

• **res** *(float, optional)* – resolution of current data in units of latitude and longitude, approximated if not provided.

• **raster_res** *(float, optional)* – desired resolution of the raster

• **save_tiff** *(str, optional)* – file name to save the raster in tiff format, if provided

• **raster_f** *(lambda function)* – transformation to use to data. Default: log10 adding 1.

• **label** *(str)* – colorbar label

• **scheduler** *(str)* – used for dask map_partitions. “threads”, “synchronous” or “processes”

• **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use

• **figsize** *(tuple, optional)* – figure size for plt.subplots

• **fill** *(bool, optional)* – If false, the areas with no data will be plotted in white. If True, the areas with missing values are filled as 0s. The default is True.

• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

• **kwargs** *(optional)* – arguments for imshow matplotlib function

Return type matplotlib.figure.Figure, cartopy.mpl.geoaxes.GeoAxesSubplot

plot_baseemap *(mask=None, ignore_zero=False, pop_name=True, buffer=0.0, extend='neither', zoom=10, url=None, axis=None, **kwargs)*

Scatter points over satellite image using contextily

Parameters

• **mask** *(np.array, optional)* – mask to apply to eai_exp plotted. Same size of the exposures, only the selected indexes will be plot.

• **ignore_zero** *(bool, optional)* – flag to indicate if zero and negative values are ignored in plot. Default: False

• **pop_name** *(bool, optional)* – add names of the populated places, by default True.

• **buffer** *(float, optional)* – border to add to coordinates. Default: 0.0.

• **extend** *(str, optional)* – extend border colorbar with arrows. [‘neither’ | ‘both’ | ‘min’ | ‘max’]

• **zoom** *(int, optional)* – zoom coefficient used in the satellite image

• **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
**kwargs (optional) – arguments for scatter matplotlib function, e.g. cmap='Greys'. Default: 'Wistia'

Return type matplotlib.figure.Figure, cartopy.mpl.geoaxes.GeoAxesSubplot

write_hdf5(file_name)

Write data frame and metadata in hdf5 format

Parameters

- **file_name** (str) – (path and) file name to write to.

read_hdf5(*args, **kwargs)

This function is deprecated, use Exposures.from_hdf5 instead.

class method from_hdf5(file_name)

Read data frame and metadata in hdf5 format

Parameters

- **file_name** (str) – (path and) file name to read from.
- **additional_vars** (list) – list of additional variable names to read that are not in exposures.base._metadata

Return type Exposures

read_mat(*args, **kwargs)

This function is deprecated, use Exposures.from_mat instead.

class method from_mat(file_name, var_names=None)

Read MATLAB file and store variables in exposures.

Parameters

- **file_name** (str) – absolute path file
- **var_names** (dict, optional) – dictionary containing the name of the MATLAB variables. Default: DEF_VAR_MAT.

Return type Exposures

to_crs(crs=None, epsg=None, inplace=False)

Wrapper of the GeoDataFrame.to_crs() method.

Transform geometries to a new coordinate reference system. Transform all geometries in a GeoSeries to a different coordinate reference system. The crs attribute on the current GeoSeries must be set. Either crs in string or dictionary form or an EPSG code may be specified for output. This method will transform all points in all objects. It has no notion or projecting entire geometries. All segments joining points are assumed to be lines in the current projection, not geodesics. Objects crossing the dateline (or other projection boundary) will have undesirable behavior.

Parameters

- **crs** (dict or str) – Output projection parameters as string or in dictionary form.
- **epsg** (int) – EPSG code specifying output projection.
- **inplace** (bool, optional, default: False) – Whether to return a new GeoDataFrame or do the transformation in place.

Return type None if inplace is True else a transformed copy of the exposures object

plot(*args, **kwargs)

Wrapper of the GeoDataFrame.plot() method
copy *(deep=True)*

Make a copy of this Exposures object.

Parameters
- **deep** *(bool)* *(Make a deep copy, i.e. also copy data. Default True.)*

Return type *Exposures*

write_raster *(file_name, value_name='value', scheduler=None)*

Write value data into raster file with GeoTiff format

Parameters
- **file_name** *(str)* – name output file in tif format

static concat *(exposures_list)*

Concatenates Exposures or DataFrame objects to one Exposures object.

Parameters
- **exposures_list** *(list of Exposures or DataFrames)* – The list must not be empty with the first item supposed to be an Exposures object.

Returns with the metadata of the first item in the list and the dataframes concatenated.

Return type *Exposures*

centroids_total_value *(hazard)*

Compute value of exposures close enough to be affected by hazard

Deprecated since version 3.3: This method will be removed in a future version. Use **affected_total_value()** instead.

This method computes the sum of the value of all exposures points for which a Hazard centroid is assigned.

Parameters
- **hazard** *(Hazard)* – Hazard affecting Exposures

Returns Sum of value of all exposures points for which a centroids is assigned

Return type *float*

affected_total_value *(hazard: climada.hazard.base.Hazard, threshold_affected: float = 0, overwrite_assigned_centroids: bool = True)*

Total value of the exposures that are affected by at least one hazard event (sum of value of all exposures points for which at least one event has intensity larger than the threshold).

Parameters
- **hazard** *(Hazard)* – Hazard affecting Exposures
- **threshold_affected** *(int or float)* – Hazard intensity threshold above which an exposures is considere affected. The default is 0.
- **overwrite_assigned_centroids** *(boolean)* – Assign centroids from the hazard to the exposures and overwrite existing ones. The default is True.

Returns Sum of value of all exposures points for which a centroids is assigned and that have at least one event intensity above threshold.

Return type *float*

See also:

Exposures.assign_centroids method to assign centroids.

Note: The fraction attribute of the hazard is ignored. Thus, for hazards with fraction defined the affected values will be overestimated.
climada.entity.exposures.base.add_sea(exposures, sea_res, scheduler=None)

Add sea to geometry’s surroundings with given resolution. region_id set to -1 and other variables to 0.

Parameters

- **exposures** (*Exposures*) – the Exposures object without sea surroundings.
- **sea_res** (tuple (float, float)) – (sea_coast_km, sea_res_km), where first parameter is distance from coast to fill with water and second parameter is resolution between sea points
- **scheduler** (str, optional) – used for dask map_partitions. “threads”, “synchronous” or “processes”

Return type **Exposures**

climada.entity.exposures.base.INDICATOR_IMPF = 'impf_'

Name of the column containing the impact functions id of specified hazard

climada.entity.exposures.base.INDICATOR_CENTR = 'centr_'

Name of the column containing the centroids id of specified hazard

5.2.3 climada.entity.impact_funcs package

climada.entity.impact_funcs.base module

```python

Bases: object

Contains the definition of one impact function.

haz_type
    hazard type acronym (e.g. 'TC')
    
        Type str

id
    id of the impact function. Exposures of the same type will refer to the same impact function id
    
        Type int or str

name
    name of the ImpactFunc
    
        Type str

intensity_unit
    unit of the intensity
    
        Type str

intensity
    intensity values
    
        Type np.array
```
mdd
mean damage (impact) degree for each intensity (numbers in [0,1])
Type np.array

paa
percentage of affected assets (exposures) for each intensity (numbers in [0,1])
Type np.array

Initialization.

Parameters
• haz_type (str, optional) – Hazard type acronym (e.g. ‘TC’).
• id (int or str, optional) – id of the impact function. Exposures of the same type will refer to the same impact function id.
• intensity (np.array, optional) – Intensity values. Defaults to empty array.
• mdd (np.array, optional) – Mean damage (impact) degree for each intensity (numbers in [0,1]). Defaults to empty array.
• paa (np.array, optional) – Percentage of affected assets (exposures) for each intensity (numbers in [0,1]). Defaults to empty array.
• intensity_unit (str, optional) – Unit of the intensity.
• name (str, optional) – Name of the ImpactFunc.

calc_mdr (inten: Union[float, numpy.ndarray]) → numpy.ndarray
Interpolate impact function to a given intensity.

Parameters
inten (float or np.array) – intensity, the x-coordinate of the interpolated values.

Return type np.array

plot (axis=None, **kwargs)
Plot the impact functions MDD, MDR and PAA in one graph, where MDR = PAA * MDD.

Parameters
• axis (matplotlib.axes._subplots.AxesSubplot, optional) – axis to use
• kwargs (optional) – arguments for plot matplotlib function, e.g. marker='x'

Return type matplotlib.axes._subplots.AxesSubplot

classmethod from_step_impf (intensity: tuple[float, float, float], haz_type: str, mdd: tuple[float, float] = (0, 1), paa: tuple[float, float] = (1, 1), impf_id: int = 1, **kwargs)
Step function type impact function.
By default, everything is destroyed above the step. Useful for high resolution modelling.
This method modifies self (climada.entity.impact_funcs instance) by assigning an id, intensity, mdd and paa to the impact function.
Parameters

- **intensity** *(tuple(float, float, float)) – tuple of 3-intensity numbers: (minimum, threshold, maximum)*
- **haz_type** *(str) – the reference string for the hazard (e.g., ‘TC’, ‘RF’, ‘WS’, …)*
- **mdd** *(tuple(float, float)) – (min, max) mdd values. The default is (0, 1)*
- **paa** *(tuple(float, float)) – (min, max) paa values. The default is (1, 1)*
- **impf_id** *(int, optional, default=1) – impact function id*
- **kwargs** – keyword arguments passed to ImpactFunc()

Returns **impf** – Step impact function

Return type **climada.entity.impact_funcs.ImpactFunc**

set_step_impf (*args, **kwargs)

This function is deprecated, use ImpactFunc.from_step_impf instead.

classmethod from_sigmoid_impf *(intensity: tuple[float, float, float], L: float, k: float, x0: float, haz_type: str, impf_id: int = 1, **kwargs)*

Sigmoid type impact function hinging on three parameter.

This type of impact function is very flexible for any sort of study, hazard and resolution. The sigmoid is defined as:

\[f(x) = \frac{L}{1 + e^{xp(-k(x-x_0))}} \]

For more information: https://en.wikipedia.org/wiki/Logistic_function

This method modifies self (climada.entity.impact_funcs instance) by assigning an id, intensity, mdd and paa to the impact function.

Parameters

- **intensity** *(tuple(float, float, float)) – tuple of 3 intensity numbers along np.arange(min, max, step)*
- **L** *(float) – “top” of sigmoid*
- **k** *(float) – “slope” of sigmoid*
- **x0** *(float) – intensity value where f(x)==L/2*
- **haz_type** *(str) – the reference string for the hazard (e.g., ‘TC’, ‘RF’, ‘WS’, …)*
- **impf_id** *(int, optional, default=1) – impact function id*
- **kwargs** – keyword arguments passed to ImpactFunc()

Returns **impf** – Sigmoid impact function

Return type **climada.entity.impact_funcs.ImpactFunc**

set_sigmoid_impf (*args, **kwargs)

This function is deprecated, use LitPop.from_countries instead.
climada.entity.impact_funcs.impact_func_set module

class climada.entity.impact_funcs.impact_func_set.ImpactFuncSet
 (impact_funcs: Optional[Iterable[climada.entity.impact_funcs.base.ImpactFunc]] = None)

 Bases: object

 Contains impact functions of type ImpactFunc. Loads from files with format defined in FILE_EXT.

 _data
 contains ImpactFunc classes. It’s not supposed to be directly accessed. Use the class methods instead.

 Type dict

 __init__(impact_funcs: Optional[Iterable[climada.entity.impact_funcs.base.ImpactFunc]] = None)

 Initialization.
 Build an impact function set from an iterable of ImpactFunc.

 Parameters impact_funcs (iterable of ImpactFunc, optional) – An iterable (list, set, array, …) of ImpactFunc.

 Examples

 Fill impact functions with values and check consistency data:

 >>> intensity = np.array([0, 20])
 >>> paa = np.array([0, 1])
 >>> mdd = np.array([0, 0.5])
 >>> fun_1 = ImpactFunc("TC", 3, intensity, mdd, paa)
 >>> imp_fun = ImpactFuncSet([fun_1])
 >>> imp_fun.check()

 Read impact functions from file and check data consistency.

 >>> imp_fun = ImpactFuncSet.from_excel(ENT_TEMPLATE_XLS)

 clear()

 Reinitialize attributes.

 append(func)

 Append a ImpactFunc. Overwrite existing if same id and haz_type.

 Parameters func (ImpactFunc) – ImpactFunc instance

 Raises ValueError –

 remove_func(haz_type=None, fun_id=None)

 Remove impact function(s) with provided hazard type and/or id. If no input provided, all impact functions are removed.

 Parameters

 • haz_type (str, optional) – all impact functions with this hazard

 • fun_id (int, optional) – all impact functions with this id
get_func (haz_type=None, fun_id=None)
Get ImpactFunc(s) of input hazard type and/or id. If no input provided, all impact functions are returned.

Parameters
• haz_type (str, optional) – hazard type
• fun_id (int, optional) – ImpactFunc id

Returns
• ImpactFunc (if haz_type and fun_id),
• list(ImpactFunc) (if haz_type or fun_id),
• {ImpactFunc.haz_type : ImpactFunc} (if None)

get_hazard_types (fun_id=None)
Get impact functions hazard types contained for the id provided. Return all hazard types if no input id.

Parameters fun_id (int, optional) – id of an impact function

Return type list(str)

get_ids (haz_type=None)
Get impact functions ids contained for the hazard type provided. Return all ids for each hazard type if no
input hazard type.

Parameters haz_type (str, optional) – hazard type from which to obtain the ids

Returns
• list(ImpactFunc.id) (if haz_type provided),
• {ImpactFunc.haz_type : list(ImpactFunc.id)} (if no haz_type)

size (haz_type=None, fun_id=None)
Get number of impact functions contained with input hazard type and /or id. If no input provided, get total
number of impact functions.

Parameters
• haz_type (str, optional) – hazard type
• fun_id (int, optional) – ImpactFunc id

Return type int

check ()
Check instance attributes.

Raises ValueError –

extend (impact_funcs)
Append impact functions of input ImpactFuncSet to current ImpactFuncSet. Overwrite ImpactFunc if same
id and haz_type.

Parameters impact_funcs (ImpactFuncSet) – ImpactFuncSet instance to extend

Raises ValueError –

plot (haz_type=None, fun_id=None, axis=None, **kwargs)
Plot impact functions of selected hazard (all if not provided) and selected function id (all if not provided).

Parameters
haz_type *(str, optional)* – hazard type

fun_id *(int, optional)* – id of the function

Return type matplotlib.axes._subplots.AxesSubplot

classmethod from_excel *(file_name, var_names=None)*

Read excel file following template and store variables.

Parameters

- **file_name** *(str)* – absolute file name

- **description** *(str, optional)* – description of the data

- **var_names** *(dict, optional)* – name of the variables in the file

Return type ImpactFuncSet

read_excel *(args, **kwargs)*

This function is deprecated, use ImpactFuncSet.from_excel instead.

classmethod from_mat *(file_name, var_names=None)*

Read MATLAB file generated with previous MATLAB CLIMADA version.

Parameters

- **file_name** *(str)* – absolute file name

- **description** *(str, optional)* – description of the data

- **var_names** *(dict, optional)* – name of the variables in the file

Return type climada.entity.impact_func_set.ImpactFuncSet

read_mat *(args, **kwargs)*

This function is deprecated, use ImpactFuncSet.from_mat instead.

write_excel *(file_name, var_names=None)*

Write excel file following template.

Parameters

- **file_name** *(str)* – absolute file name to write

- **var_names** *(dict, optional)* – name of the variables in the file

climada.entity.impact_funcs.storm_europe module

class climada.entity.impact_funcs.storm_europe.ImpfStormEurope

Bases: climada.entity.impact_funcs.base.ImpactFunc

Impact functions for tropical cyclones.

__init__()

Initialization.

Parameters

- **haz_type** *(str, optional)* – Hazard type acronym (e.g. ‘TC’).

- **id** *(int or str, optional)* – id of the impact function. Exposures of the same type will refer to the same impact function id.
CLIMADA documentation, Release 4.0.1

- **intensity** *(np.array, optional)* – Intensity values. Defaults to empty array.
- **mdd** *(np.array, optional)* – Mean damage (impact) degree for each intensity (numbers in [0,1]). Defaults to empty array.
- **paa** *(np.array, optional)* – Percentage of affected assets (exposures) for each intensity (numbers in [0,1]). Defaults to empty array.
- **intensity_unit** *(str, optional)* – Unit of the intensity.
- **name** *(str, optional)* – Name of the ImpactFunc.

```python
classmethod from_schwierz(impf_id=1)
    Generate the impact function of Schwierz et al. 2010, doi:10.1007/s10584-009-9712-1
    Returns impf – impact function for asset damages due to storm defined in Schwierz et al. 2010
    Return type climada.entity.impact_funcs.storm_europe.ImpfStormEurope:

classmethod from_welker(impf_id=1)
    Return the impact function of Welker et al. 2021, doi:10.5194/nhess-21-279-2021 It is the Schwierz function, calibrated with a simple multiplicative factor to minimize RMSE between modelled damages and reported damages.
    Returns impf – impact function for asset damages due to storm defined in Welker et al. 2021
    Return type climada.entity.impact_funcs.storm_europe.ImpfStormEurope:

set_schwierz(impf_id=1)
    This function is deprecated, use ImpfStormEurope.from_schwierz instead.

set_welker(impf_id=1)
    This function is deprecated, use ImpfStormEurope.from_welker instead.
```

climada.entity.impact_funcs.trop_cyclone module

```python
class climada.entity.impact_funcs.trop_cyclone.ImpfTropCyclone
    Bases: climada.entity.impact_funcs.base.ImpactFunc

Impact functions for tropical cyclones.

__init__()
    Initialization.

Parameters

- **haz_type** *(str, optional)* – Hazard type acronym (e.g. ‘TC’).
- **id** *(int or str, optional)* – id of the impact function. Exposures of the same type will refer to the same impact function id.
- **intensity** *(np.array, optional)* – Intensity values. Defaults to empty array.
- **mdd** *(np.array, optional)* – Mean damage (impact) degree for each intensity (numbers in [0,1]). Defaults to empty array.
- **paa** *(np.array, optional)* – Percentage of affected assets (exposures) for each intensity (numbers in [0,1]). Defaults to empty array.
- **intensity_unit** *(str, optional)* – Unit of the intensity.
- **name** *(str, optional)* – Name of the ImpactFunc.
```
set_emanuel_usa(*args, **kwargs)
This function is deprecated, use from_emanuel_usa() instead.

classmethod from_emanuel_usa(impf_id=1, intensity=array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120]),
v_thresh=25.7, v_half=74.7, scale=1.0)

Init TC impact function using the formula of Kerry Emanuel, 2011: ‘Global Warming Effects on U.S. Hurricane Damage’. https://doi.org/10.1175/WCAS-D-11-00007.1

Parameters

• impf_id (int, optional) – impact function id. Default: 1
• intensity (np.array, optional) – intensity array in m/s. Default: 5 m/s step array from 0 to 120 m/s
• v_thresh (float, optional) – first shape parameter, wind speed in m/s below which there is no damage. Default: 25.7 (Emanuel 2011)
• v_half (float, optional) – second shape parameter, wind speed in m/s at which 50% of max. damage is expected. Default: v_threshold + 49 m/s (mean value of Sealy & Strobl 2017)
• scale (float, optional) – scale parameter, linear scaling of MDD. 0<=scale<=1. Default: 1.0

Raises ValueError –

Returns impf – TC impact function instance based on formula by Emanuel (2011)

Return type ImpfTropCyclone

class climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone
Bases: climada.entity.impact_funcs.impact_func_set.ImpactFuncSet

Impact function set (ImpfS) for tropical cyclones.

__init__()
Initialization.

Build an impact function set from an iterable of ImpactFunc.

Parameters impact_funcs (iterable of ImpactFunc, optional) – An iterable (list, set, array, …) of ImpactFunc.

Examples

Fill impact functions with values and check consistency data:

```python
>>> intensity = np.array([0, 20])
>>> paa = np.array([0, 1])
>>> mdd = np.array([0, 0.5])
>>> fun_1 = ImpactFunc("TC", 3, intensity, mdd, paa)
>>> imp_fun = ImpactFuncSet([fun_1])
>>> imp_fun.check()
```

Read impact functions from file and check data consistency.

```python
>>> imp_fun = ImpactFuncSet.from_excel(ENT_TEMPLATE_XLS)
```

set_calibrated_regional_ImpfSet(*args, **kwargs)
This function is deprecated, use calibrated_regional_ImpfSet() instead.
classmethod from_calibrated_regional_ImpfSet(calibration_approach='TDR', q=0.5, input_file_path=None, version=1)

Calibrated regional TC wind impact functions

Based on Eberenz et al. 2021: https://doi.org/10.5194/nhess-21-393-2021

Parameters

• calibration_approach (str, optional) – The following values are supported:
 - 'TDR' (default) Total damage ratio (TDR) optimization with TDR=1.0 (simulated damage = reported damage from EM-DAT)
 - 'TDR1.5' Total damage ratio (TDR) optimization with TDR=1.5 (simulated damage = 1.5*reported damage from EM-DAT)
 - 'RMSF' Root-mean-squared fraction (RMSF) optimization
 - 'EDR' quantile from individually fitted v_half per event, i.e. v_half fitted to get EDR=1.0 for each event
 - q (float, optional) – Quantile between 0 and 1.0 to select (EDR only). Default: 0.5, i.e. median v_half
 - input_file_path (str or DataFrame, optional) – full path to calibration result file to be used instead of default file in repository (expert users only)

Return type ImpfSetTropCyclone

static calibrated_regional_vhalf(calibration_approach='TDR', q=0.5, input_file_path=None, version=1)

Calibrated TC wind impact function slope parameter v_half per region

Based on Eberenz et al., 2021: https://doi.org/10.5194/nhess-21-393-2021

Parameters

• calibration_approach (str, optional) – The following values are supported:
 - 'TDR' (default) Total damage ratio (TDR) optimization with TDR=1.0 (simulated damage = reported damage from EM-DAT)
 - 'TDR1.5' Total damage ratio (TDR) optimization with TDR=1.5 (simulated damage = 1.5*reported damage from EM-DAT)
 - 'RMSF' Root-mean-squared fraction (RMSF) optimization
 - 'EDR' quantile from individually fitted v_half per event, i.e. v_half fitted to get EDR=1.0 for each event
 - q (float, optional) – Quantile between 0 and 1.0 to select (EDR only). Default: 0.5, i.e. median v_half
 - input_file_path (str or DataFrame, optional) – full path to calibration result file to be used instead of default file in repository (expert users only)

Raises ValueError –

Returns v_half – TC impact function slope parameter v_half per region
Return type dict
static get_countries_per_region(region=None)
Returns dictionaries with numerical and alphabetical ISO3 codes of all countries associated to a calibration region. Only contains countries that were affected by tropical cyclones between 1980 and 2017 according to EM-DAT.

Returns
• region_name (dict or str) – long name per region
• impf_id (dict or int) – impact function ID per region
• iso3n (dict or list) – numerical ISO3codes (=region_id) per region
• iso3a (dict or list) – numerical ISO3codes (=region_id) per region

5.2.4 climada.entity.measures package
climada.entity.measures.base module
class climada.entity.measures.base.Measure(name: str = '', haz_type: str = '', cost: float = 0, hazard_set: str = 'nil', hazard_freq_cutoff: float = 0, exposures_set: str = 'nil', imp_fun_map: str = 'nil', hazard_inten_imp: Tuple[float, float] = (1, 0), mdd_impact: Tuple[float, float] = (1, 0), paa_impact: Tuple[float, float] = (1, 0), exp_region_id: Optional[list] = None, risk_transf_attach: float = 0, risk_transf_cover: float = 0, risk_transf_cost_factor: float = 1, color_rgb: Optional[numpy.ndarray] = None)

Bases: object
Contains the definition of one measure.

name
name of the measure
Type str

haz_type
related hazard type (peril), e.g. TC
Type str

color_rgb
integer array of size 3. Color code of this measure in RGB
Type np.array

cost
discounted cost (in same units as assets)
Type float

hazard_set
file name of hazard to use (in h5 format)
Type str
hazard_freq_cutoff
 hazard frequency cutoff
 Type float

exposures_set
 file name of exposure to use (in h5 format) or Exposure instance
 Type str or climada.entity.Exposure

imp_fun_map
 change of impact function id of exposures, e.g. ‘1to3’
 Type str

hazard_inten_imp
 parameter a and b of hazard intensity change
 Type tuple(float, float)

mdd_impact
 parameter a and b of the impact over the mean damage degree
 Type tuple(float, float)

mdd_impact
 parameter a and b of the impact over the percentage of affected assets
 Type tuple(float, float)

exp_region_id
 region id of the selected exposures to consider ALL the previous parameters
 Type int

risk_transf_attach
 risk transfer attachment
 Type float

risk_transf_cover
 risk transfer cover
 Type float

risk_transf_cost_factor
 factor to multiply to resulting insurance layer to get the total cost of risk transfer
 Type float

__init__(name: str = '', haz_type: str = '', cost: float = 0, hazard_set: str = 'nil', hazard_freq_cutoff: float = 0, exposures_set: str = 'nil', imp_fun_map: str = 'nil', hazard_inten_imp: Tuple[float, float] = (1, 0), mdd_impact: Tuple[float, float] = (1, 0), paa_impact: Tuple[float, float] = (1, 0), exp_region_id: Optional[list] = None, risk_transf_attach: float = 0, risk_transf_cover: float = 0, risk_transf_cost_factor: float = 1, color_rgb: Optional[numpy.ndarray] = None)

Initialize a Measure object with given values.

Parameters

• **name** (str, optional) – name of the measure

• **haz_type** (str, optional) – related hazard type (peril), e.g. TC
• **cost** *(float, optional)* – discounted cost (in same units as assets)

• **hazard_set** *(str, optional)* – file name of hazard to use (in h5 format)

• **hazard_freq_cutoff** *(float, optional)* – hazard frequency cutoff

• **exposures_set** *(str or climada.entity.Exposure, optional)* – file name of exposure to use (in h5 format) or Exposure instance

• **imp_fun_map** *(str, optional)* – change of impact function id of exposures, e.g. ‘1to3’

• **hazard_inten_imp** *(tuple(float, float), optional)* – parameter a and b of hazard intensity change

• **mdd_impact** *(tuple(float, float), optional)* – parameter a and b of the impact over the mean damage degree

• **paa_impact** *(tuple(float, float), optional)* – parameter a and b of the impact over the percentage of affected assets

• **exp_region_id** *(int, optional)* – region id of the selected exposures to consider ALL the previous parameters

• **risk_transf_attach** *(float, optional)* – risk transfer attachment

• **risk_transf_cover** *(float, optional)* – risk transfer cover

• **risk_transf_cost_factor** *(float, optional)* – factor to multiply to resulting insurance layer to get the total cost of risk transfer

• **color_rgb** *(np.array, optional)* – integer array of size 3. Color code of this measure in RGB. Default is None (corresponds to black).

 check()
 Check consistent instance data.

 Raises **ValueError** –

 calc_impact *(exposures, imp_fun_set, hazard, assign_centroids=True)*

 Apply measure and compute impact and risk transfer of measure implemented over inputs.

 Parameters

 • **exposures** *(climada.entity.Exposures)* – exposures instance

 • **imp_fun_set** *(climada.entity.ImpactFuncSet)* – impact function set instance

 • **hazard** *(climada.hazard.Hazard)* – hazard instance

 • **assign_centroids** *(bool, optional)* – indicates whether centroids are assigned to the self.exposures object. Centroids assignment is an expensive operation; set this to False to save computation time if the hazards’ centroids are already assigned to the exposures object. Default: True

 Returns resulting impact and risk transfer of measure

 Return type climada.engine.Impact

 apply *(exposures, imp_fun_set, hazard)*

 Implement measure with all its defined parameters.

 Parameters

 • **exposures** *(climada.entity.Exposures)* – exposures instance

 • **imp_fun_set** *(climada.entity.ImpactFuncSet)* – impact function set instance
• **hazard** ([climada.hazard.Hazard]) – hazard instance

Returns

• **new_exp** ([climada.entity.Exposure]) – Exposure with implemented measure with all defined parameters

• **new_ifs** ([climada.entity.ImpactFuncSet]) – Impact function set with implemented measure with all defined parameters

• **new_haz** ([climada.hazard.Hazard]) – Hazard with implemented measure with all defined parameters

`climada.entity.measures.measure_set` module

class `climada.entity.measures.measure_set.MeasureSet` *(measure_list: Optional[List[climada.entity.measures.base.Measure]] = None)*

Bases: `object`

Contains measures of type Measure. Loads from files with format defined in FILE_EXT.

_data

Contains Measure objects. This attribute is not supposed to be accessed directly. Use the available methods instead.

Type `dict`

__init__(measure_list: Optional[List[climada.entity.measures.base.Measure]] = None)

Initialize a new MeasureSet object with specified data.

Parameters

- **measure_list** *(list of Measure objects, optional)* – The measures to include in the MeasureSet

Examples

Fill MeasureSet with values and check consistency data:

```python
>>> act_1 = Measure(
...   name='Seawall',
...   color_rgb=np.array([0.1529, 0.2510, 0.5451]),
...   hazard_intensity=(1, 0),
...   mdd_impact=(1, 0),
...   paa_impact=(1, 0),
... )
>>> meas = MeasureSet([act_1])
>>> meas.check()
```

Read measures from file and checks consistency data:

```python
>>> meas = MeasureSet.from_excel(ENT_TEMPLATE_XLS)
```

clear(_data: Optional[dict] = None)

Reinitialize attributes.

Parameters

- **_data** *(dict, optional)* – A dict containing the Measure objects. For internal use only: It’s not supposed to be set directly. Use the class methods instead.
append (meas)

Append an Measure. Override if same name and haz_type.

Parameters meas (Measure) – Measure instance

Raises ValueError –

remove_measure (haz_type=None, name=None)

Remove impact function(s) with provided hazard type and/or id. If no input provided, all impact functions are removed.

Parameters

• haz_type (str, optional) – all impact functions with this hazard
• name (str, optional) – measure name

get_measure (haz_type=None, name=None)

Get ImpactFunc(s) of input hazard type and/or id. If no input provided, all impact functions are returned.

Parameters

• haz_type (str, optional) – hazard type
• name (str, optional) – measure name

Returns

• Measure (if haz_type and name),
• list(Measure) (if haz_type or name),
• {Measure.haz_type : Measure} (if None)

get_hazard_types (meas=None)

Get measures hazard types contained for the name provided. Return all hazard types if no input name.

Parameters name (str, optional) – measure name

Return type list(str)

generate_names (haz_type=None)

Get measures names contained for the hazard type provided. Return all names for each hazard type if no input hazard type.

Parameters haz_type (str, optional) – hazard type from which to obtain the names

Returns

• list(Measure.name) (if haz_type provided),
• {Measure.haz_type : list(Measure.name)} (if no haz_type)

size (haz_type=None, name=None)

Get number of measures contained with input hazard type and /or id. If no input provided, get total number of impact functions.

Parameters

• haz_type (str, optional) – hazard type
• name (str, optional) – measure name

Return type int
check()

Check instance attributes.

Raises ValueError –

def extend(meas_set)

Extend measures of input MeasureSet to current MeasureSet. Overwrite Measure if same name and haz_type.

Parameters impact_funcs (MeasureSet) – ImpactFuncSet instance to extend

Raises ValueError –

classmethod from_mat(file_name, var_names=None)

Read MATLAB file generated with previous MATLAB CLIMADA version.

Parameters

• file_name (str) – absolute file name

• description (str, optional) – description of the data

• var_names (dict, optional) – name of the variables in the file

Returns meas_set – Measure Set from matlab file

Return type climada.entity.MeasureSet()

read_mat(*args, **kwargs)

This function is deprecated, use MeasureSet.from_mat instead.

classmethod from_excel(file_name, var_names=None)

Read excel file following template and store variables.

Parameters

• file_name (str) – absolute file name

• description (str, optional) – description of the data

• var_names (dict, optional) – name of the variables in the file

Returns meas_set – Measures set from Excel

Return type climada.entity.MeasureSet

read_excel(*args, **kwargs)

This function is deprecated, use MeasureSet.from_excel instead.

write_excel(file_name, var_names=None)

Write excel file following template.

Parameters

• file_name (str) – absolute file name to write

• var_names (dict, optional) – name of the variables in the file
5.2.5 climada.entity.entity_def module

class climada.entity.entity_def.Entity(exposures: Optional[climada.entity.exposures.base.Exposures] = None,
disc_rates: Optional[climada.entity.disc_rates.base.DiscRates] = None,
impact_func_set: Optional[climada.entity.impact_funcs.impact_func_set.ImpactFuncSet] = None,
measure_set: Optional[climada.entity.measures.measure_set.MeasureSet] = None):
 Bases: object
 Collects exposures, impact functions, measures and discount rates. Default values set when empty constructor.

 exposures
 exposures
 Type Exposures

 impact_funcs
 impact functions set
 Type ImpactFuncSet

 measures
 measures
 Type MeasureSet

 disc_rates
 discount rates
 Type DiscRates

 def_file
 Default file from configuration file
 Type str

 __init__ (exposures: Optional[climada.entity.exposures.base.Exposures] = None, disc_rates:
 Optional[climada.entity.disc_rates.base.DiscRates] = None, impact_func_set:
 Optional[climada.entity.impact_funcs.impact_func_set.ImpactFuncSet] = None, measure_set:
 Optional[climada.entity.measures.measure_set.MeasureSet] = None):
 Initialize entity

 Parameters

 • exposures (climada.entity.Exposures, optional) – Exposures of the entity. The default is None (empty Exposures()).

 • disc_rates (climada.entity.DiscRates, optional) – Disc rates of the entity. The default is None (empty DiscRates()).

 • impact_func_set (climada.entity.ImpactFuncSet, optional) – The impact function set. The default is None (empty ImpactFuncSet()).

 • measure_set (climada.entity.Measures, optional) – The measures. The default is None (empty MeasuresSet()).
classmethod `from_mat` *(file_name)*

Read MATLAB file of climada.

Parameters

- file_name *(str, optional)* – file name(s) or folder name containing the files to read

Returns

- ent – The entity from matlab file

Return type

`climada.entity.Entity`

`read_mat` *(*args, **kwargs)*

This function is deprecated, use `Entity.from_mat` instead.

classmethod `from_excel` *(file_name)*

Read csv or xls or xlsx file following climada’s template.

Parameters

- file_name *(str, optional)* – file name(s) or folder name containing the files to read
- description *(str or list(str), optional)* – one description of the data or a description of each data file

Returns

- ent – The entity from excel file

Return type

`climada.entity.Entity`

`read_excel` *(*args, **kwargs)*

This function is deprecated, use `Entity.from_excel` instead.

`write_excel` *(file_name)*

Write excel file following template.

`check` *

Check instance attributes.

Raises `ValueError` –

5.2.6 climada.entity.tag module

class `climada.entity.tag.Tag` *(*args, **kwargs)*

Bases: `climada.entity.tag.tag.Tag`

kept for backwards compatibility with climada <= 3.3

__init__ *(*args, **kwargs)*

Deprecated since version This: class is not supported anymore and will be removed in the next version of climada.

5.3 climada.hazard package

5.3.1 climada.hazard.centroids package

climada.hazard.centroids.centr module

Bases: object

Contains raster or vector centroids.

meta

rasterio meta dictionary containing raster properties: width, height, crs and transform must be present at least. The affine transformation needs to be shearless (only stretching) and have positive x- and negative y-orientation.

Type dict, optional

lat

latitude of size size

Type np.array, optional

lon

longitude of size size

Type np.array, optional

geometry

contains lat and lon crs. Might contain geometry points for lat and lon

Type gpd.GeoSeries, optional

area_pixel

area of size size

Type np.array, optional

dist_coast

distance to coast of size size

Type np.array, optional

on_land

on land (True) and on sea (False) of size size

Type np.array, optional

region_id

country region code of size size

Type np.array, optional

elevation

elevation of size size

Type np.array, optional
vars_check = {'area_pixel', 'dist_coast', 'elevation', 'geometry', 'lat', 'lon', 'on_land', 'region_id'}

Variables whose size will be checked

Initialization

Parameters

• lat (np.array, optional) – latitude of size size. Defaults to empty array
• lon (np.array, optional) – longitude of size size. Defaults to empty array
• geometry (gpd.GeoSeries, optional) – contains lat and lon crs. Might contain geometry points for lat and lon. Defaults to empty gpd.Geoseries with crs=DEF_CRS
• meta (dict, optional) – rasterio meta dictionary containing raster properties: width, height, crs and transform must be present at least. The affine ransformation needs to be shearless (only stretching) and have positive x- and negative y-orientation. Defaults to empty dict()
• area_pixel (np.array, optional) – area of size size. Defaults to empty array
• on_land (np.array, optional) – on land (True) and on sea (False) of size size. Defaults to empty array
• region_id (np.array, optional) – country region code of size size, Defaults to empty array
• elevation (np.array, optional) – elevation of size size. Defaults to empty array
• dist_coast (np.array, optional) – distance to coast of size size. Defaults to empty array

check ()

Check integrity of stored information.

Checks that either meta attribute is set, or lat, lon and geometry.crs. Checks sizes of (optional) data attributes.

equal (centr)

Return True if two centroids equal, False otherwise

Parameters centr (Centroids) – centroids to compare

Returns eq

Return type bool

static from_base_grid (land=False, res_as=360, base_file=None)

Initialize from base grid data provided with CLIMADA

Parameters

• land (bool, optional) – If True, restrict to grid points on land. Default: False.
• res_as (int, optional) – Base grid resolution in arc-seconds (one of 150, 360). Default: 360.
• base_file (str, optional) – If set, read this file instead of one provided with climada.
classmethod from_geodataframe `(gdf, geometry_alias='geom')`

Create Centroids instance from GeoDataFrame.

Deprecated since version 3.3: This method will be removed in a future version. Pass the data you want to construct the Centroids with to the constructor instead.

The geometry, lat, and lon attributes are set from the GeoDataFrame.geometry attribute, while the columns are copied as attributes to the Centroids object in the form of numpy.ndarrays using pandas.Series.to_numpy. The Series dtype will thus be respected.

Columns named lat or lon are ignored, as they would overwrite the coordinates extracted from the point features. If the geometry attribute bears an alias, it can be dropped by setting the geometry_alias parameter.

If the GDF includes a region_id column, but no on_land column, then on_land=True is inferred for those centroids that have a set region_id.

Example

```python
>>> gdf = geopandas.read_file('centroids.shp')
>>> gdf.region_id = gdf.region_id.astype(int)  # type coercion
>>> centroids = Centroids.from_geodataframe(gdf)
```

Parameters

- `gdf` (GeoDataFrame) – Where the geometry column needs to consist of point features. See above for details on processing.
- `geometry_alias` (str, opt) – Alternate name for the geometry column; dropped to avoid duplicate assignment.

Returns `centr` – Centroids with data from given GeoDataFrame

Return type `Centroids`

classmethod from_pix_bounds `(xf_lat, xo_lon, d_lat, d_lon, n_lat, n_lon, crs='EPSG:4326')`

Create Centroids object with meta attribute according to pixel border data.

Deprecated since version 3.3: This method will be removed in a future version. CLIMADA will only support regular grids with a constant lat/lon resolution then. Use `from_pnt_bounds()` instead.

Parameters

- `xf_lat` (float) – upper latitude (top)
- `xo_lon` (float) – left longitude
- `d_lat` (float) – latitude step (negative)
- `d_lon` (float) – longitude step (positive)
- `n_lat` (int) – number of latitude points
- `n_lon` (int) – number of longitude points
- `crs` (dict() or rasterio.crs.CRS, optional) – CRS. Default: DEF_CRS

Returns `centr` – Centroids with meta according to given pixel border data.

Return type `Centroids`
set_raster_from_pnt_bounds (*args, **kwargs)

This function is deprecated, use Centroids.from_pnt_bounds instead.

classmethod from_pnt_bounds (points_bounds, res, crs='EPSG:4326')

Create Centroids object with meta attribute according to points border data.

raster border = point border + res/2

Parameters

• points_bounds (tuple) – points’ lon_min, lat_min, lon_max, lat_max
• res (float) – desired resolution in same units as points_bounds
• crs (dict() or rasterio.crs.CRS, optional) – CRS. Default: DEF_CRS

Returns centr – Centroids with meta according to given points border data.

Return type Centroids

set_lat_lon (*args, **kwargs)

This function is deprecated, use Centroids.from_lat_lon instead.

classmethod from_lat_lon (lat, lon, crs='EPSG:4326')

Create Centroids object from given latitude, longitude and CRS.

Parameters

• lat (np.array) – latitude
• lon (np.array) – longitude
• crs (dict() or rasterio.crs.CRS, optional) – CRS. Default: DEF_CRS

Returns centr – Centroids with points according to given coordinates

Return type Centroids

set_raster_file (file_name, band=None, **kwargs)

This function is deprecated, use Centroids.from_raster_file and Centroids.values_from_raster_files instead.

classmethod from_raster_file (file_name, src_crs=None, window=None, geometry=None,

dst_crs=None, transform=None, width=None, height=None,

resampling=Resampling.nearest)

Create a new Centroids object from a raster file

Select region using window or geometry. Reproject input by providing dst_crs and/or (transform, width, height).

Parameters

• file_name (str) – path of the file
• src_crs (crs, optional) – source CRS. Provide it if error without it.
• window (rasterio.windows.Window, optional) – window to read
• geometry (list of shapely.geometry, optional) – consider pixels only within these shapes
• dst_crs (crs, optional) – reproject to given crs
• transform (rasterio.Affine) – affine transformation to apply
• width (float) – number of lons for transform
• height (float) – number of lats for transform
• **resampling** (*rasterio.warp.*, **Resampling optional**) – resampling function used for reprojection to dst_crs

Returns **centr** – Centroids with meta attribute according to the given raster file

Return type **Centroids**

values_from_raster_files (**file_names**, **band**=None, **src_crs**=None, **window**=None, **geometry**=None, **dst_crs**=None, **transform**=None, **width**=None, **height**=None, **resampling**=*rasterio.warp.*, **Resampling optional*)

Read raster of bands and set 0 values to the masked ones.

Each band is an event. Select region using window or geometry. Reproject input by proving dst_crs and/or (transform, width, height).

Parameters

- **file_names** (*str*) – path of the file
- **band** (*list(int)*, **optional**) – band number to read. Default: [1]
- **src_crs** (*crs*, **optional**) – source CRS. Provide it if error without it.
- **window** (*rasterio.windows.Window*, **optional**) – window to read
- **geometry** (*list of shapely.geometry*, **optional**) – consider pixels only within these shapes
- **dst_crs** (*crs*, **optional**) – reproject to given crs
- **transform** (*rasterio.Affine*) – affine transformation to apply
- **width** (*float*) – number of lons for transform
- **height** (*float*) – number of lats for transform
- **resampling** (*rasterio.warp.*, **Resampling optional**) – resampling function used for reprojection to dst_crs

Raises **ValueError** –

Returns **inten** – Each row is an event.

Return type **scipy.sparse.csr_matrix**

set_vector_file (**file_name**, **inten_name**=None, ****kwargs)

This function is deprecated, use Centroids.from_vector_file and Centroids.values_from_vector_files instead.

classmethod from_vector_file (**file_name**, **dst_crs**=None)

Create Centroids object from vector file (any format supported by fiona).

Parameters

- **file_name** (*str*) – vector file with format supported by fiona and 'geometry' field.
- **dst_crs** (*crs*, **optional**) – reproject to given crs

Returns **centr** – Centroids with points according to the given vector file

Return type **Centroids**

values_from_vector_files (**file_names**, **val_names**=None, **dst_crs**=None)

Read intensity or other data from vector files, making sure that geometry is compatible.

If the geometry of the shapes in any of the given files does not agree with the geometry of this Centroids instance, a ValueError is raised.

Parameters
file_names *(list(str)) –* vector files with format supported by fiona and ‘geometry’ field.

val_names *(list(str), optional) –* list of names of the columns of the values. Default: ['intensity']

dst_crs *(crs, optional) –* reproject to given crs

Raises **ValueError** –

Returns **values** – Sparse array of shape (len(val_name), len(geometry)).

Return type **scipy.sparse.csr_matrix**

read_mat *(args, **kwargs)*

This function is deprecated, use Centroids.from_mat instead.

classmethod from_mat *(file_name, var_names=None)*

Read centroids from CLIMADA’s MATLAB version.

Parameters

- **file_name** *(str)* – absolute or relative file name
- **var_names** *(dict, optional) –* name of the variables

Raises **KeyError** –

Returns **centr** – Centroids with data from the given file

Return type **Centroids**

read_excel *(args, **kwargs)*

This function is deprecated, use Centroids.from_excel instead.

classmethod from_excel *(file_name, var_names=None)*

Generate a new centroids object from an excel file with column names in var_names.

Parameters

- **file_name** *(str)* – absolute or relative file name
- **var_names** *(dict, default)* – name of the variables

Raises **KeyError** –

Returns **centr** – Centroids with data from the given file

Return type **Centroids**

clear *

Clear vector and raster data.

append(centr)

Append centroids points.

If centr or self are rasters they are converted to points first using Centroids.set_meta_to_lat_lon. Note that self is modified in-place, and meta is set to {}. Thus, raster information in self is lost.

Note: this is a wrapper for centroids.union.

Parameters **centr** *(Centroids)* – Centroids to append. The centroids need to have the same CRS.

See also:

union Union of Centroid objects.
union (*others)

Create the union of centroids from the inputs.

The centroids are combined together point by point. Rasters are converted to points and raster information is lost in the output. All centroids must have the same CRS.

In any case, the attribute .geometry is computed for all centroids. This requires a CRS to be defined. If Centroids.crs is None, the default DEF_CRS is set for all centroids (self and others).

When at least one centroids has one of the following property defined, it is also computed for all others. .area_pixel, .dist_coast, .on_land, .region_id, .elevation'

!Caution!: the input objects (self and others) are modified in place. Missing properties are added, existing ones are not overwritten.

Parameters

other (any number of climada.hazard.Centroids()) — Centroids to form the union with

Returns

centroids — Centroids containing the union of the centroids in others.

Return type

Centroids

Raises

ValueError

get_closest_point (x_lon, y_lat, scheduler=None)

Returns closest centroid and its index to a given point.

Parameters

- x_lon (float) — x coord (lon)
- y_lat (float) — y coord (lat)
- scheduler (str) — used for dask map_partitions. “threads”, “synchronous” or “processes”

Returns

- x_close (float) — x-coordinate (longitude) of closest centroid.
- y_close (float) — y-coordinate (latitude) of closest centroids.
- idx_close (int) — Index of centroid in internal ordering of centroids.

set_region_id (scheduler=None)

Set region_id as country ISO numeric code attribute for every pixel or point.

Parameters

scheduler (str) — used for dask map_partitions. “threads”, “synchronous” or “processes”

set_area_pixel (min_resol=1e-08, scheduler=None)

Set area_pixel attribute for every pixel or point (area in m*m).

Parameters

- min_resol (float, optional) — if centroids are points, use this minimum resolution in lat and lon. Default: 1.0e-8
- scheduler (str) — used for dask map_partitions. “threads”, “synchronous” or “processes”

set_area_approx (min_resol=1e-08)

Set area_pixel attribute for every pixel or point (approximate area in m*m).

Values are differentiated per latitude. Faster than set_area_pixel.

Parameters

- min_resol (float, optional) — if centroids are points, use this minimum resolution in lat and lon. Default: 1.0e-8
set_elevation *(topo_path)*

Set elevation attribute for every pixel or point in meters.

Parameters
- **topo_path** *(str)* — Path to a raster file containing gridded elevation data.

set_dist_coast *(signed=False, precomputed=False, scheduler=None)*

Set dist_coast attribute for every pixel or point in meters.

Parameters
- **signed** *(bool)* — If True, use signed distances (positive off shore and negative on land). Default: False.
- **precomputed** *(bool)* — If True, use precomputed distances (from NASA). Default: False.
- **scheduler** *(str)* — Used for dask map_partitions. “threads”, “synchronous” or “processes”

set_on_land *(scheduler=None)*

Set on_land attribute for every pixel or point.

Parameters
- **scheduler** *(str)* — used for dask map_partitions. “threads”, “synchronous” or “processes”

remove_duplicate_points *

Return Centroids with removed duplicated points

Returns
- **cen** — Sub-selection of this object.

Return type Centroids

select *(reg_id=None, extent=None, sel_cen=None)*

Return Centroids with points in the given reg_id or within mask

Parameters
- **reg_id** *(int)* — region to filter according to region_id values
- **extent** *(tuple)* — Format *(min_lon, max_lon, min_lat, max_lat)* tuple. If min_lon > lon_max, the extend crosses the antimeridian and is *[lon_max, 180] + [-180, lon_min]* Borders are inclusive.
- **sel_cen** *(np.array)* — 1-dim mask, overrides reg_id and extent

Returns
- **cen** — Sub-selection of this object

Return type Centroids

select_mask *(reg_id=None, extent=None)*

Make mask of selected centroids

Parameters
- **reg_id** *(int)* — region to filter according to region_id values
- **extent** *(tuple)* — Format *(min_lon, max_lon, min_lat, max_lat)* tuple. If min_lon > lon_max, the extend crosses the antimeridian and is *[lon_max, 180] + [-180, lon_min]* Borders are inclusive.

Returns
- **sel_cen** — 1d mask of selected centroids

Return type 1d array of booleans
set_lat_lon_to_meta \((min_resol=1e-08)\)
Compute meta from lat and lon values.

Parameters

- **min_resol** \((float, optional)\) – Minimum centroids resolution to use in the raster. Default: 1.0e-8.

set_meta_to_lat_lon()
Compute lat and lon of every pixel center from meta raster.

plot \((axis=None, figsize=(9, 13), **kwargs)\)
Plot centroids scatter points over earth.

Parameters

- **axis** \((matplotlib.axes._subplots.AxesSubplot, optional)\) – axis to use
- **figsize** \((float, float), optional\) – figure size for plt.subplots The default is (9, 13)
- **kwargs** \((optional)\) – arguments for scatter matplotlib function

Returns

- **axis** matplotlib.axes._subplots.AxesSubplot

calc_pixels_polygons \((scheduler=None)\)
Return a gpd.GeoSeries with a polygon for every pixel

Parameters

- **scheduler** \((str)\) – used for dask map_partitions. “threads”, “synchronous” or “processes”

Returns

- **geo** gpd.GeoSeries

empty_geometry_points()
Removes all points in geometry.
Useful when centroids is used in multiprocessing function.

write_hdf5 \((file_data)\)
Write centroids attributes into hdf5 format.

Parameters

- **file_data** \((str or h5)\) – If string, path to write data. If h5 object, the datasets will be generated there.

read_hdf5 \((*args, **kwargs)\)
This function is deprecated, use Centroids.from_hdf5 instead.

classmethod from_hdf5 \((file_data)\)
Create a centroids object from a HDF5 file.

Parameters

- **file_data** \((str or h5)\) – If string, path to read data. If h5 object, the datasets will be read from there.

Returns

- **centr** – Centroids with data from the given file

Return type

Centroids

property crs
Get CRS of raster or vector.

property size
Get number of pixels or points.
property `shape`
Get shape of rastered data.

property `total_bounds`
Get total bounds (left, bottom, right, top).

property `coord`
Get [lat, lon] array.

set_geometry_points *(scheduler=None)*
Set geometry attribute with Points from `lat/lon` attributes.

Parameters

- **scheduler** *(str)* – used for dask `map_partitions`. “threads”, “synchronous” or “processes”

5.3.2 climada.hazard.base module

Bases: `object`

Contains events of some hazard type defined at centroids. Loads from files with format defined in `FILE_EXT`.

haz_type
two-letters hazard-type string, e.g., “TC” (tropical cyclone), “RF” (river flood) or “WF” (wild fire). Note: The acronym is used as reference to the hazard when centroids of multiple hazards are assigned to an Exposures object.

Type `str`

units
units of the intensity

Type `str`

centroids
centroids of the events

Type `Centroids`

event_id
id (>0) of each event

Type `np.array`

event_name
name of each event (default: `event_id`)

Type `list(str)`
date
integer date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1 (ordinal format of datetime library)

Type np.array

orig
flags indicating historical events (True) or probabilistic (False)

Type np.array

frequency
frequency of each event

Type np.array

frequency_unit
unit of the frequency (default: “1/year”)

Type str

intensity
intensity of the events at centroids

Type sparse.csr_matrix

fraction
fraction of affected exposures for each event at each centroid. If empty (all 0), it is ignored in the impact computations (i.e., is equivalent to fraction is 1 everywhere).

Type sparse.csr_matrix

intensity_thres = 10
Intensity threshold per hazard used to filter lower intensities. To be set for every hazard type

**vars_oblig = \{'centroids', 'event_id', 'fraction', 'frequency',
'intensity', 'units'\}**
scalar, str, list, 1dim np.array of size num_events, scipy.sparse matrix of shape num_events x num_centroids, Centroids.

Type Name of the variables needed to compute the impact. Types

vars_def = \{'date', 'event_name', 'frequency_unit', 'orig'\}
Name of the variables used in impact calculation whose value is descriptive and can therefore be set with default values. Types: scalar, string, list, 1dim np.array of size num_events.

vars_opt = {}
Name of the variables that aren't need to compute the impact. Types: scalar, string, list, 1dim np.array of size num_events.

__init__

Parameters

•** haz_type (str, optional) – acronym of the hazard type (e.g. ‘TC’).**
• **pool** (*pathos.pool, optional*) – Pool that will be used for parallel computation when applicable. Default: None

• **units** (*str, optional*) – units of the intensity. Defaults to empty string.

• **centroids** (*Centroids, optional*) – centroids of the events. Defaults to empty Centroids object.

• **event_id** (*np.array, optional*) – id (>0) of each event. Defaults to empty array.

• **event_name** (*list(str), optional*) – name of each event (default: event_id). Defaults to empty list.

• **date** (*np.array, optional*) – integer date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1 (ordinal format of datetime library). Defaults to empty array.

• **orig** (*np.array, optional*) – flags indicating historical events (True) or probabilistic (False). Defaults to empty array.

• **frequency** (*np.array, optional*) – frequency of each event. Defaults to empty array.

• **frequency_unit** (*str, optional*) – unit of the frequency (default: “1/year”).

• **intensity** (*sparse.csr_matrix, optional*) – intensity of the events at centroids. Defaults to empty matrix.

• **fraction** (*sparse.csr_matrix, optional*) – fraction of affected exposures for each event at each centroid. Defaults to empty matrix.

Examples

Initialize using keyword arguments:

```python
>>> haz = Hazard('TC', intensity=sparse.csr_matrix(np.zeros((2, 2))))
```

Take hazard values from file:

```python
>>> haz = Hazard.from_mat(HAZ_DEMO_MAT, 'demo')
```

classmethod get_default (*attribute*)

Get the Hazard type default for a given attribute.

Parameters

 attribute (*str*) – attribute name

Return type

 Any

clear ()

Reinitialize attributes (except the process Pool).

check ()

Check dimension of attributes.

Raises

 ValueError –

classmethod from_raster (*files_intensity, files_fraction=None, attrs=None, band=None, haz_type=None, pool=None, src_crs=None, window=None, geometry=None, dst_crs=None, transform=None, width=None, height=None, resampling=Resampling.nearest*)

Create Hazard with intensity and fraction values from raster files

If raster files are masked, the masked values are set to 0.
Files can be partially read using either window or geometry. Additionally, the data is reprojected when custom dst_crs and/or transform, width and height are specified.

Parameters

- **files_intensity** *(list(str)) – file names containing intensity*
- **files_fraction** *(list(str)) – file names containing fraction*
- **attrs** *(dict, optional) – name of Hazard attributes and their values*
- **band** *(list(int), optional) – bands to read (starting at 1), default [1]*
- **haz_type** *(str, optional) – acronym of the hazard type (e.g. ‘TC’). Default: None, which will use the class default (’’ for vanilla Hazard objects, and hard coded in some subclasses)*
- **pool** *(pathos.pool, optional) – Pool that will be used for parallel computation when applicable. Default: None*
- **src_crs** *(crs, optional) – source CRS. Provide it if error without it.*
- **window** *(rasterio.windows.Windows, optional) – window where data is extracted*
- **geometry** *(list of shapely.geometry, optional) – consider pixels only within these shapes*
- **dst_crs** *(crs, optional) – reproject to given crs*
- **transform** *(rasterio.Affine) – affine transformation to apply*
- **width** *(float, optional) – number of lons for transform*
- **height** *(float, optional) – number of lats for transform*
- **resampling** *(rasterio.warp.Resampling, optional) – resampling function used for reprojection to dst_crs*

Return type Hazard

set_raster (*args, **kwargs)

This function is deprecated, use Hazard.from_raster.

set_vector (*args, **kwargs)

This function is deprecated, use Hazard.from_vector.

classmethod from_xarray_raster_file *(filepath: Union[pathlib.Path, str], *args, **kwargs)*

Read raster-like data from a file that can be loaded with xarray.

This wraps from_xarray_raster() by first opening the target file as xarray dataset and then passing it to that classmethod. Use this wrapper as a simple alternative to opening the file yourself. The signature is exactly the same, except for the first argument, which is replaced by a file path here.

Additional (keyword) arguments are passed to from_xarray_raster().

Parameters

- **filepath** *(Path or str) – Path of the file to read with xarray. May be any file type supported by xarray. See https://docs.xarray.dev/en/stable/user-guide/io.html*

Returns hazard – A hazard object created from the input data

Return type climada.Hazard
Examples

```python
>>> hazard = Hazard.from_xarray_raster_file("path/to/file.nc", ",", ",")
```

Notes

If you have specific requirements for opening a data file, prefer opening it yourself and using `from_xarray_raster()`, following this pattern:

```python
>>> open_kwargs = dict(engine="h5netcdf", chunks=dict(x=-1, y="auto"))
>>> with xarray.open_dataset("path/to/file.nc", **open_kwargs) as dset:
...    hazard = Hazard.from_xarray_raster(dset, ",", ",")
```


Read raster-like data from an xarray Dataset

This method reads data that can be interpreted using three coordinates for event, latitude, and longitude. The data and the coordinates themselves may be organized in arbitrary dimensions in the Dataset (e.g. three dimensions ‘year’, ‘month’, ‘day’ for the coordinate ‘event’). The three coordinates to be read can be specified via the `coordinate_vars` parameter. See Notes and Examples if you want to load single-event data that does not contain an event dimension.

The only required data is the intensity. For all other data, this method can supply sensible default values. By default, this method will try to find these “optional” data in the Dataset and read it, or use the default values otherwise. Users may specify the variables in the Dataset to be read for certain Hazard object entries, or may indicate that the default values should be used although the Dataset contains appropriate data. This behavior is controlled via the `data_vars` parameter.

If this method succeeds, it will always return a “consistent” Hazard object, meaning that the object can be used in all CLIMADA operations without throwing an error due to missing data or faulty data types.

Use `from_xarray_raster_file()` to open a file on disk and load the resulting dataset with this method in one step.

Parameters

- **data** (`xarray.Dataset`) – The dataset to read from.
- **hazard_type** (`str`) – The type identifier of the hazard. Will be stored directly in the hazard object.
- **intensity_unit** (`str`) – The physical units of the intensity.
- **intensity** (`str, optional`) – Identifier of the `xarray.DataArray` containing the hazard intensity data.
- **coordinate_vars** (`dict(str, str, optional)`) – Mapping from default coordinate names to coordinate names used in the data to read. The default is `dict(event="time", longitude="longitude", latitude="latitude")`, as most of the commonly used hazard data happens to have a “time” attribute but no “event” attribute.
- **data_vars** (`dict(str, str, optional)`) – Mapping from default variable names to variable names used in the data to read. The default names are `fraction`, `hazard_type`, `frequency`, `event_name`, `event_id`, and `date`. If these values are not set, the method tries to load data from the default names. If this fails, the method uses default values for each entry. If
the values are set to empty strings (""), no data is loaded and the default values are used exclusively. See examples for details.

Default values are:
- date: The event coordinate interpreted as date
- fraction: None, which results in a value of 1.0 everywhere, see Hazard.__init__() for details.
- hazard_type: Empty string
- frequency: 1.0 for every event
- event_name: String representation of the event time
- event_id: Consecutive integers starting at 1 and increasing with time

- crs (str, optional) – Identifier for the coordinate reference system of the coordinates. Defaults to EPSG:4326 (WGS 84), defined by climada.util.constants.DEF_CRS. See https://pyproj4.github.io/pyproj/dev/api/crs/crs.html#pyproj.crs.CRS.from_user_input for further information on how to specify the coordinate system.

- rechunk (bool, optional) – Rechunk the dataset before flattening. This might have serious performance implications. Rechunking in general is expensive, but it might be less expensive than stacking a poorly-chunked array. One event being stored in one chunk would be the optimal configuration. If rechunk=True, this will be forced by rechunking the data. Ideally, you would select the chunks in that manner when opening the dataset before passing it to this function. Defaults to False.

Returns hazard – A hazard object created from the input data

Return type climada.Hazard

See also:

from_xarray_raster_file() Use this method if you want CLIMADA to open and read a file on disk for you.

Notes

- Single-valued coordinates given by coordinate_vars, that are not proper dimensions of the data, are promoted to dimensions automatically. If one of the three coordinates does not exist, use Dataset.expand_dims (see https://docs.xarray.dev/en/stable/generated/xarray.Dataset.expand_dims.html and Examples) before loading the Dataset as Hazard.

- Single-valued data for variables frequency, event_name, and event_date will be broadcast to every event.

- To avoid confusion in the call signature, several parameters are keyword-only arguments.

- The attributes Hazard.haz_type and Hazard.unit currently cannot be read from the Dataset. Use the method parameters to set these attributes.

- This method does not read coordinate system metadata. Use the crs parameter to set a custom coordinate system identifier.

- This method does not read lazily. Single data arrays must fit into memory.
Examples

The use of this method is straightforward if the Dataset contains the data with expected names.

```python
>>> dset = xr.Dataset(
...     dict(
...         intensity={
...             "time", "latitude", "longitude"},
...             [[0, 1, 2], [3, 4, 5]]),
...     ),
...     dict(
...         time=[datetime.datetime(2000, 1, 1)],
...         latitude=[0, 1],
...         longitude=[0, 1, 2],
...     ),
... )
>>> hazard = Hazard.from_xarray_raster(dset, "", "")
```

For non-default coordinate names, use the `coordinate_vars` argument.

```python
>>> dset = xr.Dataset(
...     dict(
...         intensity={
...             "day", "lat", "longitude"},
...             [[0, 1, 2], [3, 4, 5]]),
...     ),
...     dict(
...         day=[datetime.datetime(2000, 1, 1)],
...         lat=[0, 1],
...         longitude=[0, 1, 2],
...     ),
... )
>>> hazard = Hazard.from_xarray_raster(
...     dset, "", "", coordinate_vars=dict(event="day", latitude="lat")
... )
```

Coordinates can be different from the actual dataset dimensions. The following loads the data with coordinates longitude and latitude (default names):

```python
>>> dset = xr.Dataset(
...     dict(intensity=(["time", "y", "x"], [[0, 1, 2], [3, 4, 5]])),
...     dict(
...         time=[datetime.datetime(2000, 1, 1)],
...         y=[0, 1],
...         x=[0, 1, 2],
...         longitude=[["y", "x"], [[0.0, 0.1, 0.2], [0.0, 0.1, 0.2]]],
...         latitude=[["y", "x"], [[0.0, 0.0, 0.0], [0.1, 0.1, 0.1]]],
...     ),
... )
>>> hazard = Hazard.from_xarray_raster(dset, "", "")
```

Optional data is read from the dataset if the default keys are found. Users can specify custom variables in the data, or that the default keys should be ignored, with the `data_vars` argument.

```python
>>> dset = xr.Dataset(
...     dict(
...         intensity=(["time", "y", "x"], [[0, 1, 2], [3, 4, 5]])),
...     dict(
...         time=[datetime.datetime(2000, 1, 1)],
...         y=[0, 1],
...         x=[0, 1, 2],
...         longitude=[["y", "x"], [[0.0, 0.1, 0.2], [0.0, 0.1, 0.2]]],
...         latitude=[["y", "x"], [[0.0, 0.0, 0.0], [0.1, 0.1, 0.1]]],
...     ),
... )
>>> hazard = Hazard.from_xarray_raster(dset, "", "")
```
... intensity={
... "time", "latitude", "longitude"},
... [[0, 1, 2], [3, 4, 5]],
... },
... fraction={
... "time", "latitude", "longitude"},
... [[0.0, 0.1, 0.2], [0.3, 0.4, 0.5]],
... },
... freq=["time", [0.4]],
... event_id=["time", [4]],
... },
... dict{
... time=[datetime.datetime(2000, 1, 1)],
... latitude=[0, 1],
... longitude=[0, 1, 2],
... },
... }
>>> hazard = Hazard.from_xarray_raster(dset, "", "")
... data_vars=dict{
... frequency="freq",
... event_id="",
... fraction='fraction' array is loaded because it has the default name
... },
... }
>>> np.array_equal(hazard.frequency, [0.4]) and np.array_equal(hazard.event_id, [1])
... True

If your read single-event data your dataset probably will not have a time dimension. As long as a time coordinate exists, however, this method will automatically promote it to a dataset dimension and load the data:

```python
>>> dset = xr.Dataset(
...     dict{
...         intensity={
...             "latitude", "longitude"},
...             [[0, 1, 2], [3, 4, 5]],
...         },
...         dict{
...             time=[datetime.datetime(2000, 1, 1)],
...             latitude=[0, 1],
...             longitude=[0, 1, 2],
...         },
...     }
... )
>>> hazard = Hazard.from_xarray_raster(dset, "", "") # Same as first example
```

If one coordinate is missing altogether, you must add it or expand the dimensions before loading the dataset:

```python
>>> dset = xr.Dataset(
...     dict{
...         intensity={
...             "latitude", "longitude"},
...             [[0, 1, 2], [3, 4, 5]],
...         },
...         dict{
...             time=[datetime.datetime(2000, 1, 1)],
...             latitude=[0, 1],
...             longitude=[0, 1, 2],
...         },
...     }
... )
>>> hazard = Hazard.from_xarray_raster(dset, "", "") # Same as first example
```
... intensity={
... "latitude", "longitude"},
... [[0, 1, 2], [3, 4, 5]],
... }
... dict{
... latitude=[0, 1],
... longitude=[0, 1, 2],
... }
>>> dset = dset.expand_dims(time=[numpy.datetime64("2000-01-01")])
>>> hazard = Hazard.from_xarray_raster(dset, "", "")

classmethod from_vector *(files_intensity=None, files_fraction=None, attrs=None, inten_name=None, frac_name=None, dst_crs=None, haz_type=None)*

Read vector files format supported by fiona. Each intensity name is considered an event.

Parameters

- **files_intensity** *(list(str)) – file names containing intensity, default: ['intensity']*
- **files_fraction** *(list(str)) – file names containing fraction, default: ['fraction']*
- **attrs** *(dict, optional) – name of Hazard attributes and their values*
- **inten_name** *(list(str), optional) – name of variables containing the intensities of each event*
- **frac_name** *(list(str), optional) – name of variables containing the fractions of each event*
- **dst_crs** *(crs, optional) – reproject to given crs*
- **haz_type** *(str, optional) – acronym of the hazard type (e.g. ‘TC’). default: None, which will use the class default ("" for vanilla Hazard objects, hard coded in some subclasses)"

Returns

- haz – Hazard from vector file

Return type

climada.hazard.Hazard

reproject_raster *(dst_crs=False, transform=None, width=None, height=None, resampl_inten=Resampling.nearest, resampl_fract=Resampling.nearest)*

Change current raster data to other CRS and/or transformation

Parameters

- **dst_crs** *(crs, optional) – reproject to given crs*
- **transform** *(rasterio.Affine) – affine transformation to apply*
- **width** *(float) – number of lons for transform*
- **height** *(float) – number of lats for transform*
- **resampl_inten** *(rasterio.warp.Resampling optional) – resampling function used for reprojection to dst_crs for intensity*
- **resampl_fract** *(rasterio.warp.Resampling optional) – resampling function used for reprojection to dst_crs for fraction*

reproject_vector *(dst_crs, scheduler=None)*

Change current point data to a a given projection

Parameters

- **dst_crs (crs)** – reproject to given crs
- **scheduler (str, optional)** – used for dask map_partitions. “threads”, “synchronous” or “processes”

`raster_to_vector()`
Change current raster to points (center of the pixels)

`vector_to_raster (scheduler=None)`
Change current point data to a raster with same resolution

Parameters
- **scheduler (str, optional)** – used for dask map_partitions. “threads”, “synchronous” or “processes”

`read_mat (*args, **kwargs)`
This function is deprecated, use `Hazard.from_mat`.

`classmethod from_mat (file_name, var_names=None)`
Read climada hazard generate with the MATLAB code in .mat format.

Parameters
- **file_name (str)** – absolute file name
- **var_names (dict, optional)** – name of the variables in the file, default: DEF_VAR_MAT constant

Returns
- **haz** – Hazard object from the provided MATLAB file

Return type
climada.hazard.Hazard

Raises
- **KeyError** –

`read_excel (*args, **kwargs)`
This function is deprecated, use `Hazard.from_excel`.

`classmethod from_excel (file_name, var_names=None, haz_type=None)`
Read climada hazard generated with the MATLAB code in Excel format.

Parameters
- **file_name (str)** – absolute file name
- **var_names (dict, default)** – name of the variables in the file, default: DEF_VAR_EXCEL constant
- **haz_type (str, optional)** – acronym of the hazard type (e.g. ‘TC’). Default: None, which will use the class default (‘’ for vanilla Hazard objects, and hard coded in some subclasses)

Returns
- **haz** – Hazard object from the provided Excel file

Return type
climada.hazard.Hazard

Raises
- **KeyError** –

`select (event_names=None, event_id=None, date=None, orig=None, reg_id=None, extent=None, reset_frequency=False)`
Select events matching provided criteria

The frequency of events may need to be recomputed (see reset_frequency)!

Parameters
- **event_names (list of str, optional)** – Names of events.
• **event_id** *(list of int, optional)* – Id of events. Default is None.

• **date** *(array-like of length 2 containing str or int, optional)* – (initial date, final date) in string ISO format (‘2011-01-02’) or datetime ordinal integer.

• **orig** *(bool, optional)* – Select only historical (True) or only synthetic (False) events.

• **reg_id** *(int, optional)* – Region identifier of the centroids’ region_id attribute.

• **extent** *(tuple(float, float, float, float), optional)* – Extent of centroids as (min_lon, max_lon, min_lat, max_lat). The default is None.

• **reset_frequency** *(bool, optional)* – Change frequency of events proportional to difference between first and last year (old and new). Default: False.

Returns haz – If no event matching the specified criteria is found, None is returned.

Return type Hazard or None

select_tight *(buffer=0.8999280057595392, val='intensity')*

Reduce hazard to those centroids spanning a minimal box which contains all non-zero intensity or fraction points.

Parameters

• **buffer** *(float, optional)* – Buffer of box in the units of the centroids. The default is approximately equal to the default threshold from the assign_centroids method (works if centroids in lat/lon)

• **val** *(string, optional)* – Select tight by non-zero ‘intensity’ or ‘fraction’. The default is ‘intensity’.

Returns Copy of the Hazard with centroids reduced to minimal box. All other hazard properties are carried over without changes.

Return type Hazard

See also:

self.select Method to select centroids by lat/lon extent

util.coordinates.match_coordinates algorithm to match centroids.

local_exceedance_inten *(return_periods=(25, 50, 100, 250))*

Compute exceedance intensity map for given return periods.

Parameters return_periods *(np.array)* – return periods to consider

Returns inten_stats

Return type np.array

plot_rp_intensity *(return_periods=(25, 50, 100, 250), smooth=True, axis=None, figsize=(9, 13), adapt_fontsize=True, **kwargs)*

Compute and plot hazard exceedance intensity maps for different return periods. Calls local_exceedance_inten.

Parameters

• **return_periods** *(tuple(int), optional)* – return periods to consider

• **smooth** *(bool, optional)* – smooth plot to plot.RESOLUTIONxplot.RESOLUTION

• **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
• **figsize** *(tuple, optional)* – figure size for plt.subplots
• **kwargs** *(optional)* – arguments for pcolormesh matplotlib function used in event plots

Returns
- `axis, inten_stats` – intenstats is return_periods.size x num_centroids

Return type
- `matplotlib.axes._subplots.AxesSubplot, np.ndarray`

plot_intensity *(event=None, centr=None, smooth=True, axis=None, adap fontsize=True, **kwargs)*

Plot intensity values for a selected event or centroid.

Parameters
- **event** *(int or str, optional)* – If event > 0, plot intensities of event with id = event. If event = 0, plot maximum intensity in each centroid. If event < 0, plot abs(event)-largest event. If event is string, plot events with that name.
- **centr** *(int or tuple, optional)* – If centr > 0, plot intensity of all events at centroid with id = centr. If centr = 0, plot maximum intensity of each event. If centr < 0, plot abs(centr)-largest centroid where higher intensities are reached. If tuple with (lat, lon) plot intensity of nearest centroid.
- **smooth** *(bool, optional)* – Rescale data to RESOLUTIONxRESOLUTION pixels (see constant in module climada.util.plot)
- **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
- **kwargs** *(optional)* – arguments for pcolormesh matplotlib function used in event plots or for plot function used in centroids plots

Return type
- `matplotlib.axes._subplots.AxesSubplot`

Raises
- `ValueError`

plot_fraction *(event=None, centr=None, smooth=True, axis=None, **kwargs)*

Plot fraction values for a selected event or centroid.

Parameters
- **event** *(int or str, optional)* – If event > 0, plot fraction of event with id = event. If event = 0, plot maximum fraction in each centroid. If event < 0, plot abs(event)-largest event. If event is string, plot events with that name.
- **centr** *(int or tuple, optional)* – If centr > 0, plot fraction of all events at centroid with id = centr. If centr = 0, plot maximum fraction of each event. If centr < 0, plot abs(centr)-largest centroid where highest fractions are reached. If tuple with (lat, lon) plot fraction of nearest centroid.
- **smooth** *(bool, optional)* – Rescale data to RESOLUTIONxRESOLUTION pixels (see constant in module climada.util.plot)
- **axis** *(matplotlib.axes._subplots.AxesSubplot, optional)* – axis to use
- **kwargs** *(optional)* – arguments for pcolormesh matplotlib function used in event plots or for plot function used in centroids plots

Return type
- `matplotlib.axes._subplots.AxesSubplot`

Raises
- `ValueError`

sanitize_event_ids *(*)

Make sure that event ids are unique
get_event_id (event_name)
Get an event id from its name. Several events might have the same name.

Parameters

- event_name (str) – Event name

Returns

- list_id

Return type

np.array(int)

get_event_name (event_id)
Get the name of an event id.

Parameters

- event_id (int) – id of the event

Return type

str

Raises

ValueError –

get_event_date (event=None)
Return list of date strings for given event or for all events, if no event provided.

Parameters

- event (str or int, optional) – event name or id.

Returns

- l_dates

Return type

list(str)

calc_year_set ()
From the dates of the original events, get number yearly events.

Returns

- orig_yearset – key are years, values array with event_ids of that year

Return type

dict

remove_duplicates ()
Remove duplicate events (events with same name and date).

set_frequency (yearrange=None)
Set hazard frequency from yearrange or intensity matrix.

Parameters

- yearrange (tuple or list, optional) – year range to be used to compute frequency per event. If yearrange is not given (None), the year range is derived from self.date

property size
Return number of events.

write_raster (file_name, intensity=True)
Write intensity or fraction as GeoTIFF file. Each band is an event.

Parameters

- file_name (str) – file name to write in tif format
- intensity (bool) – if True, write intensity, otherwise write fraction

write_hdf5 (file_name, todense=False)
Write hazard in hdf5 format.

Parameters

- file_name (str) – file name to write, with h5 format
- todense (bool) – if True write the sparse matrices as hdf5.dataset by converting them to dense format first. This increases readability of the file for other programs. default: False
read_hdf5 (*args, **kwargs)

This function is deprecated, use Hazard.from_hdf5.

classmethod from_hdf5 (file_name)

Read hazard in hdf5 format.

Parameters file_name (str) – file name to read, with h5 format

Returns haz – Hazard object from the provided MATLAB file

Return type climada.hazard.Hazard

append (*others)

Append the events and centroids to this hazard object.

All of the given hazards must be of the same type and use the same units as self. The centroids of all hazards must have the same CRS.

The following kinds of object attributes are processed:

• All centroids are combined together using Centroids.union.

• Lists, 1-dimensional arrays (NumPy) and sparse CSR matrices (SciPy) are concatenated. Sparse matrices are concatenated along the first (vertical) axis.

For any other type of attribute: A ValueError is raised if an attribute of that name is not defined in all of the non-empty hazards at least. However, there is no check that the attribute value is identical among the given hazard objects. The initial attribute value of self will not be modified.

Note: Each of the hazard's centroids attributes might be modified in place in the sense that missing properties are added, but existing ones are not overwritten. In case of raster centroids, conversion to point centroids is applied so that raster information (meta) is lost. For more information, see Centroids.union.

Parameters others (one or more climada.hazard.Hazard objects) – Hazard instances to append to self

Raises TypeError, ValueError –

See also:

Hazard.concat concatenate 2 or more hazards

Centroids.union combine centroids

classmethod concat (haz_list)

Concatenate events of several hazards of same type.

This function creates a new hazard of the same class as the first hazard in the given list and then applies the append method. Please refer to the docs of Hazard.append for caveats and limitations of the concatenation procedure.

For centroids, lists, arrays and sparse matrices, the remarks in Hazard.append apply. All other attributes are copied from the first object in haz_list.

Note that Hazard.concat can be used to concatenate hazards of a subclass. The result's type will be the subclass. However, calling concat([]) (with an empty list) is equivalent to instantiation without init parameters. So, Hazard.concat([]) is equivalent to Hazard(). If HazardB is a subclass of Hazard, then HazardB.concat([]) is equivalent to HazardB() (unless HazardB overrides the concat method).

Parameters haz_list (list of climada.hazard.Hazard objects) – Hazard instances of the same hazard type (subclass).

Returns haz_concat – This will be of the same type (subclass) as all the hazards in haz_list.
Return type instance of climada.hazard.Hazard

See also:

Hazard.append append hazards to a hazard in place

Centroids.union combine centroids

```python
def change_centroids(centroids, threshold=100)
    Assign (new) centroids to hazard.
    Centroids of the hazard not in centroids are mapped onto the nearest point. Fails if a point is further than threshold from the closest centroid.
    The centroids must have the same CRS as self.centroids.
```

Parameters

- **haz** (*Hazard*) – Hazard instance
- **centroids** (*Centroids*) – Centroids instance on which to map the hazard.
- **threshold** (*int or float*) – Threshold (in km) for mapping haz.centroids not in centroids. Argument is passed to climada.util.coordinates.match_coordinates. Default: 100 (km)

Returns *haz_new_cent* – Hazard projected onto centroids

Return type *Hazard*

Raises *ValueError* –

See also:

util.coordinates.match_coordinates algorithm to match centroids.

property centr_exp_col

Name of the centroids columns for this hazard in an exposures

Returns centroids string indicator with hazard type defining column in an exposures gdf. E.g. “centr_TC”

Return type *String*

get_mdr (*cent_idx, impf*)

Return Mean Damage Ratio (mdr) for chosen centroids (*cent_idx*) for given impact function.

Parameters

- **cent_idx** (*array-like*) – array of indices of chosen centroids from hazard
- **impf** (*ImpactFunc*) – impact function to compute mdr

Returns sparse matrix (*n_events x len(cent_idx)*) with mdr values

Return type *sparse.csr_matrix*

See also:

get_paa get the paa fflor the given centroids
get_paa(cent_idx, impf)

Return Percentage of Affected Assets (paa) for chosen centroids (cent_idx) for given impact function.

Note that values as intensity = 0 are ignored. This is different from get_mdr.

Parameters
- cent_idx (array-like) – array of indices of chosen centroids from hazard
- impf (ImpactFunc) – impact function to compute mdr

Returns sparse matrix (n_events x len(cent_idx)) with paa values

Return type sparse.csr_matrix

See also:
- get_mdr get the mean-damage ratio for the given centroids

5.3.3 climada.hazard.isimip_data module

5.3.4 climada.hazard.storm_europe module

class climada.hazard.storm_europe.StormEurope

Bases: climada.hazard.base.Hazard

ssi_wisc

Storm Severity Index (SSI) as recorded in the footprint files; apparently not reproducible from the footprint values only.

Type np.array, float

ssi

SSI as set by set_ssi; uses the Dawkins definition by default.

Type np.array, float

intensity_thres = 14.7

Intensity threshold for storage in m/s; same as used by WISC SSI calculations.

vars_opt = {'ssi', 'ssi_full_area', 'ssi_wisc'}

Name of the variables that aren’t need to compute the impact.

__init__(units: str = ‘m/s’, ssi: Optional[numpy.ndarray] = None, ssi_wisc: Optional[numpy.ndarray] = None, ssi_full_area: Optional[numpy.ndarray] = None, **kwargs)

Initialize a StormEurope object

Parameters
- units (str) – The units of the Hazard intensity. Defaults to ‘m/s’
- **ssi** (*numpy.ndarray*) – The Storm Severity Index (SSI). 1d vector, same length as number of storms. Defaults to an empty array.

- **ssi_wisc** (*numpy.ndarray*) – The Storm Severity Index (SSI) as recorded in the footprint files. 1d vector, same length as number of storms. Defaults to an empty array.

- **ssi_full_area** (*numpy.ndarray*) – 1d vector, same length as number of storms. Used to conserve the index that is derived from the area and windspeed of the full geographic extent of a storm system. Needed for cropping the `StormEurope` object into a smaller region. Defaults to an empty array.

read_footprints (*args, **kwargs*)

This function is deprecated, use `StormEurope.from_footprints` instead.

classmethod from_footprints (*path*, *ref_raster=None, centroids=None, files_omit='fp_era20c_1990012515_701_0.nc', combine_threshold=None, intensity_thres=None*)

Create new `StormEurope` object from WISC footprints.

Assumes that all footprints have the same coordinates as the first file listed/first file in dir.

Parameters

- **path** (*str, list(str]*) – A location in the filesystem. Either a path to a single netCDF WISC footprint, or a folder containing only footprints, or a globbing pattern to one or more footprints.

- **ref_raster** (*str, optional*) – Reference netCDF file from which to construct a new barebones Centroids instance. Defaults to the first file in path.

- **centroids** (*Centroids, optional*) – A Centroids struct, overriding ref_raster

- **files_omit** (*str, list(str), optional*) – List of files to omit; defaults to one duplicate storm present in the WISC set as of 2018-09-10.

- **combine_threshold** (*int, optional*) – threshold for combining events in number of days. if the difference of the dates (self.date) of two events is smaller or equal to this threshold, the two events are combined into one. Default is None, Advised for WISC is 2

- **intensity_thres** (*float, optional*) – Intensity threshold for storage in m/s. Default: class attribute StormEurope.intensity_thres (same as used by WISC SSI calculations)

Returns *haz* – StormEurope object with data from WISC footprints.

Return type *StormEurope*

read_cosmoe_file (*args, **kwargs*)

This function is deprecated, use `StormEurope.from_cosmoe_file` instead.

classmethod from_cosmoe_file (*fp_file, run_datetime, event_date=None, model_name='COSMO-2E', description=None, intensity_thres=None*)

Create a new `StormEurope` object with gust footprint from weather forecast.

The function is designed for the COSMO ensemble model used by the COSMO Consortium http://www.cosmo-model.org/ and postprocessed to an netcdf file using fieldextra. One event is one full day in UTC. Works for MeteoSwiss model output of COSMO-1E (11 members, resolution 1.1 km, forecast period 33-45 hours) COSMO-2E (21 members, resolution 2.2 km, forecast period 5 days)

The frequency of each event is informed by their probability in the ensemble forecast and is equal to 1/11 or 1/21 for COSMO-1E or COSMO-2E, respectively.

Parameters
• **fp_file** (*str*) – string directing to one netcdf file
• **run_datetime** (*datetime*) – The starting timepoint of the forecast run of the cosmo model
• **event_date** (*datetime, optional*) – one day within the forecast period, only this day (00H-24H) will be included in the hazard
• **model_name** (*str, optional*) – provide the name of the COSMO model, for the description (e.g., ‘COSMO-1E’, ‘COSMO-2E’)
• **description** (*str, optional*) – description of the events, defaults to a combination of model_name and run_datetime
• **intensity_thres** (*float, optional*) – Intensity threshold for storage in m/s. Default: class attribute StormEurope.intensity_thres (same as used by WISC SSI calculations)

Returns **haz** – StormEurope object with data from COSMO ensemble file.

Return type *StormEurope*

read_icon_grib (*args, **kwargs*)

This function is deprecated, use StormEurope.from_icon_grib instead.

classmethod from_icon_grib (*run_datetime, event_date=None, model_name=’icon-eu-eps’, description=None, grib_dir=None, delete_raw_data=True, intensity_thres=None*)

Create new StormEurope object from DWD icon weather forecast footprints.

New files are available for 24 hours on https://opendata.dwd.de, old files can be processed if they are already stored in grib_dir. One event is one full day in UTC. Current setup works for runs starting at 00H and 12H. Otherwise the aggregation is inaccurate, because of the given file structure with 1-hour, 3-hour and 6-hour maxima provided.

The frequency for one event is 1/(number of ensemble members)

Parameters

• **run_datetime** (*datetime*) – The starting timepoint of the forecast run of the icon model
• **event_date** (*datetime, optional*) – one day within the forecast period, only this day (00H-24H) will be included in the hazard
• **model_name** (*str, optional*) – select the name of the icon model to be downloaded. Must match the url on https://opendata.dwd.de (see download_icon_grib for further info)
• **description** (*str, optional*) – description of the events, defaults to a combination of model_name and run_datetime
• **grib_dir** (*str, optional*) – path to folder, where grib files are or should be stored
• **delete_raw_data** (*bool, optional*) – select if downloaded raw data in .grib.bz2 file format should be stored on the computer or removed
• **intensity_thres** (*float, optional*) – Intensity threshold for storage in m/s. Default: class attribute StormEurope.intensity_thres (same as used by WISC SSI calculations)

Returns **haz** – StormEurope object with data from DWD icon weather forecast footprints.

Return type *StormEurope*

calc_ssi (*method=’dawkins’, intensity=None, on_land=True, threshold=None, sel_cen=None*)

Calculate the SSI, method must either be ‘dawkins’ or ‘wisc_gust’.

‘dawkins’, after Dawkins et al. (2016), doi:10.5194/nhess-16-1999-2016, matches the MATLAB version. ssi = sum_i(area_cell_i * intensity_cell_i^3)
'wisc_gust', according to the WISC Tier 1 definition found at https://wisc.climate.copernicus.eu/wisc/#/help/products/tier1_section

\[\text{ssi} = \text{sum}(\text{area_on_land}) \times (\text{mean}(\text{intensity}))^3 \]

In both definitions, only raster cells that are above the threshold are used in the computation. Note that this method does not reproduce self.ssi_wisc, presumably because the footprint only contains the maximum wind gusts instead of the sustained wind speeds over the 72 hour window. The deviation may also be due to differing definitions of what lies on land (i.e. Syria, Russia, Northern Africa and Greenland are exempt).

Parameters

- **method** *(str)* – Either 'dawkins' or 'wisc_gust'
- **intensity** *(scipy.sparse.csr)* – Intensity matrix; defaults to self.intensity
- **on_land** *(bool)* – Only calculate the SSI for areas on land, ignoring the intensities at sea. Defaults to true, whereas the MATLAB version did not.
- **threshold** *(float, optional)* – Intensity threshold used in index definition. Cannot be lower than the read-in value.
- **sel_cen** *(np.array, bool)* – A boolean vector selecting centroids. Takes precedence over on_land.

set_ssi(**kwargs** **)**

Wrapper around calc_ssi for setting the self.ssi attribute.

Parameters

- **kwargs** – passed on to calc_ssi

plot_ssi(full_area=False)

Plot the distribution of SSIs versus their cumulative exceedance frequencies, highlighting historical storms in red.

Returns

- **fig** *(matplotlib.figure.Figure)*
- **ax** *(matplotlib.axes._subplots.AxesSubplot)*

generate_prob_storms(reg_id=528, spatial_shift=4, ssi_args=None, **kwargs**)

Generates a new hazard set with one original and 29 probabilistic storms per historic storm. This represents a partial implementation of the Monte-Carlo method described in section 2.2 of Schwierz et al. (2010), doi:10.1007/s10584-009-9712-1. It omits the rotation of the storm footprints, as well as the pseudo-random alterations to the intensity.

In a first step, the original intensity and five additional intensities are saved to an array. In a second step, those 6 possible intensity levels are shifted by n raster pixels into each direction (N/S/E/W).

Caveats:

- Memory safety is an issue; trial with the entire dataset resulted in 60GB of swap memory being used…
- Can only use numeric region_id for country selection
- Drops event names as provided by WISC

Parameters

- **region_id** *(int, list of ints, or None)* – iso_n3 code of the countries we want the generated hazard set to be returned for.
- **spatial_shift** *(int)* – amount of raster pixels to shift by
• **ssi_args** *(dict)* – A dictionary of arguments passed to calc_ssi

• **kwargs** – keyword arguments passed on to self._hist2prob()

Returns

new_haz – A new hazard set for the given country. Centroid attributes are preserved.
self.orig attribute is set to True for original storms (event_id ending in 00). Also contains a
ssi_prob attribute.

Return type *StormEurope*

5.3.5 climada.hazard.tag module

5.3.6 climada.hazard.tc_clim_change module

```python
climada.hazard.tc_clim_change.TOT_RADIATIVE_FORCE = PosixPath('/home/docs/climada/data/rcp_db.xls')
```

Type © RCP Database (Version 2.0.5) http

```python
climada.hazard.tc_clim_change.get_knutson_criterion()
```

Fill changes in TCs according to Knutson et al. 2015 Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios.

Returns

criterion – list of the criterion dictionary for frequency and intensity change per basin, per
category taken from the Table 3 in Knutson et al. 2015. with items 'basin' (str), 'category' (list(int)),
‘year’ (int), ‘change’ (float), ‘variable’ ('intensity' or 'frequency')

Return type *list(dict)*

```python
climada.hazard.tc_clim_change.calc_scale_knutson(ref_year=2050, rcp_scenario=45)
```

Comparison 2081-2100 (i.e., late twenty-first century) and 2001-20 (i.e., present day). Late twenty-first century
effects on intensity and frequency per Saffir-Simpson-category and ocean basin is scaled to target year and target
RCP proportional to total radiative forcing of the respective RCP and year.

Parameters

• **ref_year** *(int, optional)* – year between 2000 ad 2100. Default: 2050

• **rcp_scenario** *(int, optional)* – 26 for RCP 2.6, 45 for RCP 4.5. The default is 45 60 for RCP
6.0 and 85 for RCP 8.5.

Returns

factor – factor to scale Knutson parameters to the give RCP and year

Return type *float*

5.3.7 climada.hazard.tc_tracks module

```python
climada.hazard.tc_tracks.CAT_NAMES = {-1: 'Tropical Depression', 0: 'Tropical Storm', 1: 'Hurricane Cat. 1', 2: 'Hurricane Cat. 2', 3: 'Hurricane Cat. 3', 4: 'Hurricane Cat. 4', 5: 'Hurricane Cat. 5'}
```

Saffir-Simpson category names.

```python
climada.hazard.tc_tracks.SAFFIR_SIM_CAT = [34, 64, 83, 96, 113, 137, 1000]
```

Saffir-Simpson Hurricane Wind Scale in kn based on NOAA

Bases: object

Contains tropical cyclone tracks.

data

List of tropical cyclone tracks. Each track contains following attributes:

- time (coords)
- lat (coords)
- lon (coords)
- time_step (in hours)
- radius_max_wind (in nautical miles)
- radius_oci (in nautical miles)
- max_sustained_wind (in knots)
- central_pressure (in hPa/mbar)
- environmental_pressure (in hPa/mbar)
- basin (for each track position)
- max_sustained_wind_unit (attrs)
- central_pressure_unit (attrs)
- name (attrs)
- sid (attrs)
- orig_event_flag (attrs)
- data_provider (attrs)
- id_no (attrs)
- category (attrs)

Computed during processing:

- on_land (bool for each track position)
- dist_since_lf (in km)

Additional data variables such as “nature” (specifying, for each track position, whether a system is a disturbance, tropical storm, post-transition extratropical storm etc.) might be included, depending on the data source and on use cases.

Type list(xarray.Dataset)

Create new (empty) TCTracks instance.

Parameters

- data (list of xarray.Dataset, optional) – List of tropical cyclone tracks, each stored as single xarray Dataset. See the Attributes for a full description of the required Dataset variables and attributes. Defaults to an empty list.
• **pool** *(pathos.pools, optional)* – Pool that will be used for parallel computation when applicable. Default: None

append *(tracks)*

Append tracks to current.

Parameters
- **tracks** *(xarray.Dataset or list(xarray.Dataset))* – tracks to append.

get_track *(track_name=None)*

Get track with provided name.

Returns the first matching track based on the assumption that no other track with the same name or sid exists in the set.

Parameters
- **track_name** *(str, optional)* – Name or sid (ibtracsID for IBTrACS) of track. If None (default), return all tracks.

Returns
- **result** *(xarray.Dataset or list of xarray.Dataset)* – Usually, a single track is returned. If no track with the specified name is found, an empty list [] is returned. If called with track_name=None, the list of all tracks is returned.

Return type
- xarray.Dataset or list of xarray.Dataset

subset *(filterdict)*

Subset tracks based on track attributes.

Select all tracks matching exactly the given attribute values.

Parameters
- **filterdict** *(dict or OrderedDict)* – Keys are attribute names, values are the corresponding attribute values to match. In case of an ordered dict, the filters are applied in the given order.

Returns
- **tc_tracks** *(TCTracks)* – A new instance of TCTracks containing only the matching tracks.

Return type
- TCTracks

tracks_in_exp *(exposure, buffer=1.0)*

Select only the tracks that are in the vicinity (buffer) of an exposure.

Each exposure point/geometry is extended to a disc of radius buffer. Each track is converted to a line and extended by a radius buffer.

Parameters
- **exposure** *(Exposure)* – Exposure used to select tracks.
- **buffer** *(float, optional)* – Size of buffer around exposure geometries (in the units of exposure.crs), see geopandas.distance. Default: 1.0

Returns
- **filtered_tracks** *(TCTracks)* – TCTracks object with tracks from tc_tracks intersecting the exposure within a buffer distance.

Return type
- TCTracks

read_ibtracs_netcdf *(*args, **kwargs)*

This function is deprecated, use TCTracks.from_ibtracs_netcdf instead.

classmethod from_ibtracs_netcdf *(provider=None, rescale_windspeeds=True, storm_id=None, year_range=None, basin=None, genesis_basin=None, interpolate_missing=True, estimate_missing=False, correct_pres=False, discard_single_points=True, additional_variables=None, file_name='IBTrACS.ALL.v04r00.nc')*
Create new TCTracks object from IBTrACS database.

When using data from IBTrACS, make sure to be familiar with the scope and limitations of IBTrACS, e.g. by reading the official documentation (https://www.ncdc.noaa.gov/ibtracs/pdf/IBTrACS_version4_Technical_Details.pdf). Reading the CLIMADA documentation can’t replace a thorough understanding of the underlying data. This function only provides a (hopefully useful) interface for the data input, but cannot provide any guidance or make recommendations about if and how to use IBTrACS data for your particular project.

Resulting tracks are required to have both pressure and wind speed information at all time steps. Therefore, all track positions where one of wind speed or pressure are missing are discarded unless one of `interpolate_missing` or `estimate_missing` are active.

Some corrections are automatically applied, such as: `environmental_pressure` is enforced to be larger than `central_pressure`.

Note that the tracks returned by this function might contain irregular time steps since that is often the case for the original IBTrACS records: many agencies add an additional time step at landfall. Apply the `equal_timestep` function afterwards to enforce regular time steps.

Parameters

- `provider (str or list of str, optional)` – Either specify an agency, such as “usa”, “newdelhi”, “bom”, “cma”, “tokyo”, or the special values “official” and “official_3h”:
 - “official” means using the (usually 6-hourly) officially reported values of the officially responsible agencies.
 - “official_3h” means to include (inofficial) 3-hourly data of the officially responsible agencies (whenever available).

 If you want to restrict to the officially reported values by the officially responsible agencies (`provider=‘official’`) without any modifications to the original official data, make sure to also set `estimate_missing=False` and `interpolate_missing=False`. Otherwise, gaps in the official reporting will be filled using interpolation and/or statistical estimation procedures (see below). If a list is given, the following logic is applied: For each storm, the variables that are not reported by the first agency for this storm are taken from the next agency in the list that did report this variable for this storm. For different storms, the same variable might be taken from different agencies. Default: ['official_3h', 'usa', 'tokyo', 'newdelhi', 'reunion', 'bom', 'nadi', 'wellington', 'cma', 'hko', 'ds824', 'td9636', 'td9635', 'neumann', 'mlc']

- `rescale_windspeeds (bool, optional)` – If True, all wind speeds are linearly rescaled to 1-minute sustained winds. Note however that the IBTrACS documentation (Section 5.2, https://www.ncdc.noaa.gov/ibtracs/pdf/IBTrACS_version4_Technical_Details.pdf) includes a warning about this kind of conversion: “While a multiplicative factor can describe the numerical differences, there are procedural and observational differences between agencies that can change through time, which confounds the simple multiplicative factor.” Default: True

- `storm_id (str or list of str, optional)` – IBTrACS ID of the storm, e.g. 1988234N13299, [1988234N13299, 1989260N11316].

- `year_range (tuple (min_year, max_year), optional)` – Year range to filter track selection. Default: None.

- `basin (str, optional)` – If given, select storms that have at least one position in the specified basin. This allows analysis of a given basin, but also means that basin-specific track sets should not be combined across basins since some storms will be in more than one set. If you would like to select storms by their (unique) genesis basin instead, use the parameter
genesis_basin. For possible values (basin abbreviations), see the parameter `genesis_basin`. If None, this filter is not applied. Default: None.

- **genesis_basin (str, optional)** – The basin where a TC is formed is not defined in IBTrACS. However, this filter option allows to restrict to storms whose first valid eye position is in the specified basin, which simulates the genesis location. Note that the resulting genesis basin of a particular track may depend on the selected `provider` and on `estimate_missing` because only the first valid eye position is considered. Possible values are ‘NA’ (North Atlantic), ‘SA’ (South Atlantic), ‘EP’ (Eastern North Pacific, which includes the Central Pacific region), ‘WP’ (Western North Pacific), ‘SP’ (South Pacific), ‘SI’ (South Indian), ‘NI’ (North Indian). If None, this filter is not applied. Default: None.

- **interpolate_missing (bool, optional)** – If True, interpolate temporal reporting gaps within a variable (such as pressure, wind speed, or radius) linearly if possible. Temporal interpolation is with respect to the time steps defined in IBTrACS for a particular storm. No new time steps are added that are not originally defined in IBTrACS. For each time step with a missing value, this procedure is only able to fill in that value if there are other time steps before and after this time step for which values have been reported. This procedure will be applied before the statistical estimations referred to by `estimate_missing`. It is applied to all variables (eye position, wind speed, environmental and central pressure, storm radius and radius of maximum winds). Default: True

- **estimate_missing (bool, optional)** – For each fixed time step, estimate missing pressure, wind speed and radius using other variables that are available at that time step. The relationships between the variables are purely statistical. In comparison to `interpolate_missing`, this procedure is able to estimate values for variables that haven’t been reported by any agency at any time step, as long as other variables are available. A typical example are storms before 1950, for which there are often no reported values for pressure, but for wind speed. In this case, a rough statistical pressure-wind relationship is applied to estimate the missing pressure values from the available wind-speed values. Make sure to set `rescale_windspeeds=True` when using this option because the statistical relationships are calibrated using rescaled wind speeds. Default: False

- **correct_pres (bool, optional)** – For backwards compatibility, alias for `estimate_missing`. This is deprecated, use `estimate_missing` instead!

- **discard_single_points (bool, optional)** – Whether to discard tracks that consists of a single point. Recommended for full compatibility with other functions such as `equal_timesteps`. Default: True.

- **file_name (str, optional)** – Name of NetCDF file to be downloaded or located at climada/data/system. Default: ‘IBTrACS.ALL.v04r00.nc’

- **additional_variables (list of str, optional)** – If specified, additional IBTrACS data variables are extracted, such as “nature” or “storm_speed”. Only variables that are not agency-specific are supported. Default: None.

Returns `tracks` – TCTracks with data from IBTrACS

Return type `TCTracks`

read_processed_ibtracs_csv (*args, **kwargs)

This function is deprecated, use TCTracks.from_processed_ibtracs_csv instead.

classmethod from_processed_ibtracs_csv (file_names)

Create TCTracks object from processed ibtracs CSV file(s).

Parameters `file_names` (str or list of str) – Absolute file name(s) or folder name containing the files to read.
Returns tracks – TCTracks with data from the processed ibtracs CSV file.

Return type TCTracks

read_simulations_emanuel (*args, **kwargs)

This function is deprecated, use TCTracks.from_simulations_emanuel instead.

classmethod from_simulations_emanuel (file_names, hemisphere=None, subset=None)

Create new TCTracks object from Kerry Emanuel's tracks.

Parameters

- file_names (str or list of str) – Absolute file name(s) or folder name containing the files to read.
- hemisphere (str or None, optional) – For global data sets, restrict to northern ('N') or southern ('S') hemisphere. Default: None (no restriction)
- subset (list of int, optional) – If given, only include the tracks with the given indices. Since the simulation files can be huge, this feature is useful for running tests on smaller subsets or on random subsamples. Default: None

Returns tracks – TCTracks with data from Kerry Emanuel's simulations.

Return type TCTracks

read_one_gettelman (nc_data, i_track)

This function is deprecated, use TCTracks.from_gettelman instead.

classmethod from_gettelman (path)

Create new TCTracks object from Andrew Gettelman's tracks.

Parameters path (str or Path) – Path to one of Andrew Gettelman's NetCDF files.

Returns tracks – TCTracks with data from Andrew Gettelman's simulations.

Return type TCTracks

read_simulations_chaz (*args, **kwargs)

This function is deprecated, use TCTracks.from_simulations_chaz instead.

classmethod from_simulations_chaz (file_names, year_range=None, ensemble_nums=None)

Create new TCTracks object from CHAZ simulations

Parameters

- file_names (str or list of str) – Absolute file name(s) or folder name containing the files to read.
- year_range (tuple (min_year, max_year), optional) – Filter by year, if given.
- ensemble_nums (list, optional) – Filter by ensembleNum, if given.

Returns tracks – TCTracks with data from the CHAZ simulations.

Return type TCTracks

read_simulations_storm (*args, **kwargs)

This function is deprecated, use TCTracks.from_simulations_storm instead.
classmethod from_simulations_storm(path, years=None)

Create new TCTracks object from STORM simulations

Bloemendaal et al. (2020): Generation of a global synthetic tropical cyclone hazard dataset using
STORM. Scientific Data 7(1): 40.

Track data available for download from

https://doi.org/10.4121/uuid:82c1dc0d-5485-43d8-901a-ce7f26cda35d

Wind speeds are converted to 1-minute sustained winds through division by 0.88 (this value is taken from
Bloemendaal et al. (2020), cited above).

Parameters

• path (str) – Full path to a txt-file as contained in the data.zip archive from the official source
 linked above.

• years (list of int, optional) – If given, only read the specified “years” from the txt-File. Note
 that a “year” refers to one ensemble of tracks in the data set that represents one sample year.

Returns tracks – TCTracks with data from the STORM simulations.

Return type TCTracks

Notes

All tracks are set in the year 1980. The id of the year (starting from 0) is saved in the attribute ‘id_no’. To
obtain the year of each track use

```python
>>> years = [int(tr.attrs['id_no']) / 1000 for tr in tc_tracks.data]
```  

If a windfield is generated from these tracks using the method TropCylcone.from_tracks(), the
following should be considered:

1. The frequencies will be set to 1 for each storm. Thus, in order to compute annual values, the frequencies
 of the TropCyclone should be changed to 1/number of years.

2. The storm year and the storm id are stored in the TropCyclone.event_name attribute.

equal_timestep(time_step_h=1, land_params=False, pool=None)

Resample all tracks at the specified temporal resolution

The resulting track data will be given at evenly distributed time steps, relative to midnight (00:00). For
example, if time_step_h is 1 and the original track data starts at 06:30, the interpolated track will not have
a time step at 06:30 because only multiples of 01:00 (relative to midnight) are included. In this case, the
interpolated track will start at 07:00.

Depending on the original resolution of the track data, this method may up- or downsample track time steps.
Note that tracks that already have the specified resolution remain unchanged.

Parameters

• time_step_h (float or int, optional) – Temporal resolution in hours (positive, may be non-

• land_params (bool, optional) – If True, recompute on_land and dist_since_lf at each node.
 Default: False.
pool (pathos.pool, optional) – Pool that will be used for parallel computation when applicable. If not given, the pool attribute of self will be used. Default: None

calc_random_walk (**kwargs)
Deprecated. Use TCTracks.calc_perturbed_trajectories instead.

calc_perturbed_trajectories (**kwargs)
See function in climada.hazard.tc_tracks_synth.

property size
Get longitude from coord array.

get_bounds (deg_buffer=0.1)
Get bounds as (lon_min, lat_min, lon_max, lat_max) tuple.

Parameters deg_buffer (float) – A buffer to add around the bounding box

Returns bounds

Return type tuple (lon_min, lat_min, lon_max, lat_max)

property bounds
Exact bounds of trackset as tuple, no buffer.

get_extent (deg_buffer=0.1)
Get extent as (lon_min, lon_max, lat_min, lat_max) tuple.

Parameters deg_buffer (float) – A buffer to add around the bounding box

Returns extent

Return type tuple (lon_min, lon_max, lat_min, lat_max)

property extent
Exact extent of trackset as tuple, no buffer.

generate_centroids (res_deg, buffer_deg)
Generate gridded centroids within padded bounds of tracks

Parameters

• res_deg (float) – Resolution in degrees.
• buffer_deg (float) – Buffer around tracks in degrees.

Returns centroids – Centroids instance.

Return type Centroids

plot (axis=None, figsize=(9, 13), legend=True, adapt_fontsize=True, **kwargs)
Track over earth. Historical events are blue, probabilistic black.

Parameters

• axis (matplotlib.axes._subplots.AxesSubplot, optional) – axis to use
• figsize ((float, float), optional) – figure size for plt.subplots The default is (9, 13)
• legend (bool, optional) – whether to display a legend of Tropical Cyclone categories. Default: True.
• kwags (optional) – arguments for LineCollection matplotlib, e.g. alpha=0.5
• adapt_fontsize (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.
Returns `axis`

Return type `matplotlib.axes._subplots.AxesSubplot`

`write_netcdf(folder_name)`

Write a netcdf file per track with track.sid name in given folder.

Parameters `folder_name (str)` – Folder name where to write files.

`read_netcdf(*args, **kwargs)`

This function is deprecated, use `TCTracks.from_netcdf` instead.

`classmethod from_netcdf(folder_name)`

Create new TCTracks object from NetCDF files contained in a given folder

Warning: Do not use this classmethod for reading IBTrACS NetCDF files! If you need to manually download IBTrACS NetCDF files, place them in the ~/climada/data/system folder and use the `TCTracks.from_ibtracks_netcdf` classmethod.

Parameters `folder_name (str)` – Folder name from where to read files.

Returns `tracks` – TCTracks with data from the given directory of NetCDF files.

Return type `TCTracks`

`write_hdf5(file_name, complevel=5)`

Write TC tracks in NetCDF4-compliant HDF5 format.

Parameters

- `file_name (str or Path)` – Path to a new HDF5 file. If it exists already, the file is overwritten.
- `complevel (int)` – Specifies a compression level (0-9) for the zlib compression of the data. A value of 0 or None disables compression. Default: 5

`classmethod from_hdf5(file_name)`

Create new TCTracks object from a NetCDF4-compliant HDF5 file

Parameters `file_name (str or Path)` – Path to a file that has been generated with `TCTracks.write_hdf5`.

Returns `tracks` – TCTracks with data from the given HDF5 file.

Return type `TCTracks`

`to_geodataframe(as_points=False, split_lines_antimeridian=True)`

Transform this TCTracks instance into a GeoDataFrame.

Parameters

- `as_points (bool, optional)` – If False (default), one feature (row) per track with a LineString or MultiLineString as geometry (or Point geometry for tracks of length one) and all track attributes (sid, name, orig_event_flag, etc) as dataframe columns. If True, one feature (row) per track time step, with variable values per time step (radius_max_wind, max_sustained_wind, etc) as columns in addition to attributes.
- `split_lines_antimeridian (bool, optional)` – If True, tracks that cross the antimeridian are split into multiple Lines as a MultiLineString, with each Line on either side of the meridian. This ensures all Lines are within (-180, +180) degrees longitude. Note that lines might
climada documentation, Release 4.0.1

be split at more locations than strictly necessary, due to the underlying splitting algorithm (https://github.com/Toblerity/Shapely/issues/572).

Returns gdf

Return type GeoDataFrame

climada.hazard.tc_tracks.set_category(max_sus_wind, wind_unit='kn', saffir_scale=None)

Add storm category according to Saffir-Simpson hurricane scale.

Parameters

- max_sus_wind (np.array) – Maximum sustained wind speed records for a single track.
- wind_unit (str, optional) – Units of wind speed. Default: 'kn'.
- saffir_scale (list, optional) – Saffir-Simpson scale in same units as wind (default scale valid for knots).

Returns

category –

Intensity of given track according to the Saffir-Simpson hurricane scale:

- -1 : tropical depression
- 0 : tropical storm
- 1 : Hurricane category 1
- 2 : Hurricane category 2
- 3 : Hurricane category 3
- 4 : Hurricane category 4
- 5 : Hurricane category 5

Return type int

5.3.8 climada.hazard.tc_tracks_synth module

climada.hazard.tc_tracks_synth.LANDFALL_DECAY_V = {-1: 0.00012859077693295416, 0: 0.0017226346292718126, 1: 0.002309772914350468, 2: 0.0025968221565522698, 3: 0.002626252944053856, 4: 0.002550639312763181, 5: 0.003788695795963695}

Global landfall decay parameters for wind speed by TC category.

Keys are TC categories with -1='TD', 0='TS', 1='Cat 1', …, 5='Cat 5'.

It is v_rel as derived from:

```python
>>> tracks = TCTracks.from_ibtracs_netcdf(year_range=(1980, 2019), estimate_missing=True)
>>> extent = tracks.get_extent()
>>> land_geom = climada.util.coordinates.get_land_geometry(  ...
...   extent=extent, resolution=10
... )
>>> v_rel, p_rel = _calc_land_decay(tracks.data, land_geom, pool=tracks.pool)
```
Global landfall decay parameters for pressure by TC category.

Keys are TC categories with -1='TD', 0='TS', 1='Cat 1', ..., 5='Cat 5'.

It is p_{rel} as derived from:

```python
>>> tracks = TCTracks.from_ibtracs_netcdf(year_range=(1980, 2019), estimate_=missing=True)
>>> extent = tracks.get_extent()
>>> land_geom = climada.util.coordinates.get_land_geometry(
...     extent=extent, resolution=10
... )
>>> v_rel, p_rel = _calc_land_decay(tracks.data, land_geom, pool=tracks.pool)
```

Generate synthetic tracks based on directed random walk. An ensemble of `nb_synth_tracks` synthetic tracks is computed for every track contained in `self`.

The methodology perturbs the tracks locations, and if `decay` is True it additionally includes decay of wind speed and central pressure drop after landfall. No other track parameter is perturbed. The track starting point location is perturbed by random uniform values of magnitude up to `max_shift_init` in both longitude and latitude. Then, each segment between two consecutive points is perturbed in direction and distance (i.e., translational speed). These perturbations can be correlated in time, i.e., the perturbation in direction applied to segment i is correlated with the perturbation in direction applied to segment $i-1$ (and similarly for the perturbation in translational speed). Perturbations in track direction and temporal auto-correlations in perturbations are on an hourly basis, and the perturbations in translational speed is relative. Hence, the parameter values are relatively insensitive to the temporal resolution of the tracks. Note however that all tracks should be at the same temporal resolution, which can be achieved using `equal_timestep()`. `max_dspeed_rel` and `autocorr_dspeed` control the spread along the track (‘what distance does the track run for’), while `max_ddirection` and `autocorr_ddirection` control the spread perpendicular to the track movement (‘how does the track diverge in direction’). `max_dspeed_rel` and `max_ddirection` control the amplitude of perturbations at each track timestep but perturbations may tend to compensate each other over time, leading to a similar location at the end of the track, while `autocorr_dspeed` and `autocorr_ddirection` control how these perturbations persist in time and hence the amplitude of the perturbations towards the end of the track.

Note that the default parameter values have been only roughly calibrated so that the frequency of tracks in each 5x5 degree box remains approximately constant. This is not an in-depth calibration and should be treated as such. The object is mutated in-place.

Parameters

- `tracks (climada.hazard.TCTracks)` – Tracks data.
- `nb_synth_tracks (int, optional)` – Number of ensemble members per track. Default: 9.
• max_shift_ini (float, optional) – Amplitude of max random starting point shift in decimal degree (up to +/-max_shift_ini for longitude and latitude). Default: 0.75.

• max_dspeed_rel (float, optional) – Amplitude of translation speed perturbation in relative terms (e.g., 0.2 for +/-20%). Default: 0.3.

• max_ddirection (float, optional) – Amplitude of track direction (bearing angle) perturbation per hour, in radians. Default: pi/360.

• autocorr_dspeed (float, optional) – Temporal autocorrelation in translation speed perturbation at a lag of 1 hour. Default: 0.85.

• autocorr_ddirection (float, optional) – Temporal autocorrelation of translational direction perturbation at a lag of 1 hour. Default: 0.5.

• seed (int, optional) – Random number generator seed for replicability of random walk. Put negative value if you don’t want to use it. Default: configuration file.

• decay (bool, optional) – Whether to apply landfall decay in probabilistic tracks. Default: True.

• use_global_decay_params (bool, optional) – Whether to use precomputed global parameter values for landfall decay obtained from IBTrACS (1980-2019). If False, parameters are fitted using historical tracks in input parameter ‘tracks’, in which case the landfall decay applied depends on the tracks passed as an input and may not be robust if few historical tracks make landfall in this object. Default: True.

• pool (pathos.pool, optional) – Pool that will be used for parallel computation when applicable. If not given, the pool attribute of tracks will be used. Default: None

5.3.9 climada.hazard.trop_cyclone module

Bases: climada.hazard.base.Hazard

Contains tropical cyclone events.

category

for every event, the TC category using the Saffir-Simpson scale:

• -1 tropical depression
• 0 tropical storm
• 1 Hurrican category 1
• 2 Hurrican category 2
• 3 Hurrican category 3
• 4 Hurrican category 4
• 5 Hurrican category 5

Type np.ndarray of ints
Basin

Basin where every event starts:

- ‘NA’ North Atlantic
- ‘EP’ Eastern North Pacific
- ‘WP’ Western North Pacific
- ‘NI’ North Indian
- ‘SI’ South Indian
- ‘SP’ Southern Pacific
- ‘SA’ South Atlantic

Type list of str

windfields

For each event, the full velocity vectors at each centroid and track position in a sparse matrix of shape (npositions, ncentroids * 2) that can be reshaped to a full ndarray of shape (npositions, ncentroids, 2).

Type list of csr_matrix

intensity_thres = 17.5

Intensity threshold for storage in m/s

vars_opt = {'category'}

Name of the variables that aren’t need to compute the impact.

__init__ (category: Optional[numpy.ndarray] = None, basin: Optional[List] = None, windfields: Optional[List[scipy.sparse._csr.csr_matrix]] = None, **kwargs)

Initialize values.

Parameters

- category (np.ndarray of int, optional) –
 For every event, the TC category using the Saffir-Simpson scale:
 -1 tropical depression
 0 tropical storm 1 Hurricane category 1 2 Hurricane category 2 3 Hurricane category 3 4
 Hurricane category 4 5 Hurricane category 5

- basin (list of str, optional) –
 Western North Pacific ‘NI’ North Indian ‘SI’ South Indian ‘SP’ Southern Pacific ‘SA’ South
 Atlantic

- windfields (list of csr_matrix, optional) – For each event, the full velocity vectors at each
 centroid and track position in a sparse matrix of shape (npositions, ncentroids * 2) that can
 be reshaped to a full ndarray of shape (npositions, ncentroids, 2).

- **kwargs (Hazard properties, optional) – All other keyword arguments are passed to the
 Hazard constructor.

set_from_tracks (*args, **kwargs)

This function is deprecated, use TropCyclone.from_tracks instead.
classmethod from_tracks

Create new TropCyclone instance that contains windfields from the specified tracks.

This function sets the `intensity` attribute to contain, for each centroid, the maximum wind speed (1-minute sustained winds at 10 meters above ground) experienced over the whole period of each TC event in m/s. The wind speed is set to 0 if it doesn’t exceed the threshold `intensity_thres`.

The `category` attribute is set to the value of the `category`-attribute of each of the given track data sets.

The `basin` attribute is set to the genesis basin for each event, which is the first value of the `basin`-variable in each of the given track data sets.

Optionally, the time dependent, vectorial winds can be stored using the `store_windfields` function parameter (see below).

Parameters

- `tracks` *(climada.hazard.TCTracks)* – Tracks of storm events.
- `centroids` *(Centroids, optional)* – Centroids where to model TC. Default: global centroids at 36 arc-seconds resolution.
- `pool` *(pathos.pool, optional)* – Pool that will be used for parallel computation of wind fields. Default: None
- `description` *(str, optional)* – Description of the event set. Default: “”.
- `ignore_distance_to_coast` *(boolean, optional)* – If True, centroids far from coast are not ignored. Default: False.
- `store_windfields` *(boolean, optional)* – If True, the Hazard object gets a list `windfields` of sparse matrices. For each track, the full velocity vectors at each centroid and track position are stored in a sparse matrix of shape (npositions, ncentroids * 2) that can be reshaped to a full ndarray of shape (npositions, ncentroids, 2). Default: False.
- `metric` *(str, optional)* – Specify an approximation method to use for earth distances:
 - “equirect”: Distance according to sinusoidal projection. Fast, but inaccurate for large distances and high latitudes.
 - “geosphere”: Exact spherical distance. Much more accurate at all distances, but slow.
 Default: “equirect”.
- `intensity_thres` *(float, optional)* – Wind speeds (in m/s) below this threshold are stored as 0. Default: 17.5
- `max_latency` *(float, optional)* – No wind speed calculation is done for centroids with latitude larger than this parameter. Default: 61
- `max_dist_inland_km` *(float, optional)* – No wind speed calculation is done for centroids with a distance (in km) to the coast larger than this parameter. Default: 1000
• **max_dist_eye_km** (*float, optional*) – No wind speed calculation is done for centroids with a distance (in km) to the TC center (“eye”) larger than this parameter. Default: 300

• **max_memory_gb** (*float, optional*) – To avoid memory issues, the computation is done for chunks of the track sequentially. The chunk size is determined depending on the available memory (in GB). Note that this limit applies to each thread separately if a *pool* is used. Default: 8

Raises **ValueError** –

Return type **TropCyclone**

apply_climate_scenario_knu (*ref_year: int = 2050, rcp_scenario: int = 45*)

From current TC hazard instance, return new hazard set with future events for a given RCP scenario and year based on the parametrized values derived from Table 3 in Knutson et al 2015. https://doi.org/10.1175/JCLI-D-15-0129.1. The scaling for different years and RCP scenarios is obtained by linear interpolation.

Note: The parametrized values are derived from the overall changes in statistical ensemble of tracks. Hence, this method should only be applied to sufficiently large tropical cyclone event sets that approximate the reference years 1981 - 2008 used in Knutson et. al.

The frequency and intensity changes are applied independently from one another. The mean intensity factors can thus slightly deviate from the Knutson value (deviation was found to be less than 1% for default IBTrACS event sets 1980-2020 for each basin).

Parameters

• **ref_year** (*int*) – year between 2000 ad 2100. Default: 2050

• **rcp_scenario** (*int*) – 26 for RCP 2.6, 45 for RCP 4.5, 60 for RCP 6.0 and 85 for RCP 8.5. The default is 45.

Returns **haz_cc** – Tropical cyclone with frequencies and intensity scaled according to the Knutson criterion for the given year and RCP. Returns a new instance of climada.hazard.TropCyclone, self is not modified.

Return type **climada.hazard.TropCyclone**

set_climate_scenario_knu (*args, **kwargs*)

This function is deprecated, use TropCyclone.apply_climate_scenario_knu instead.

Generate video of TC wind fields node by node and returns its corresponding TropCyclone instances and track pieces.

Parameters

• **track_name** (*str*) – name of the track contained in tracks to record

• **tracks** (*climada.hazard.TCTracks*) – tropical cyclone tracks

• **centroids** (*climada.hazard.Centroids*) – centroids where wind fields are mapped

• **file_name** (*str, optional*) – file name to save video (including full path and file extension)

• **writer** (*matplotlib.animation.PillowWriter, optional*) – video writer. Default is pillow with bitrate=500
• **figsize** *(tuple, optional)* – figure size for plt.subplots

• **adapt_fontsize** *(bool, optional)* – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

• **kwargs** *(optional)* – arguments for pcolormesh matplotlib function used in event plots

Returns `tc_list`, `tc_coord`

Return type `list(TropCyclone)`, `list(np.ndarray)`

Raises `ValueError`

frequency_from_tracks(tracks: List)

Set hazard frequency from tracks data.

Parameters

tracks *(list of xarray.Dataset)*

Generate windfield hazard from a single track dataset

Parameters

• **track** *(xr.Dataset)* – Single tropical cyclone track.

• **centroids** *(Centroids)* – Centroids instance.

• **coastal_idx** *(np.ndarray)* – Indices of centroids close to coast.

• **model** *(str, optional)* – Parametric wind field model, one of “H1980” (the prominent Holland 1980 model), “H08” (Holland 1980 with b-value from Holland 2008), “H10” (Holland et al. 2010), or “ER11” (Emanuel and Rotunno 2011). Default: “H08”.

• **store_windfields** *(boolean, optional)* – If True, store windfields. Default: False.

• **metric** *(str, optional)* – Specify an approximation method to use for earth distances: “equirect” (faster) or “geosphere” (more accurate). See dist_approx function in climada.util.coordinates. Default: “equirect”.

• **intensity_thres** *(float, optional)* – Wind speeds (in m/s) below this threshold are stored as 0. Default: 17.5

• **max_dist_eye_km** *(float, optional)* – No wind speed calculation is done for centroids with a distance (in km) to the TC center (“eye”) larger than this parameter. Default: 300

• **max_memory_gb** *(float, optional)* – To avoid memory issues, the computation is done for chunks of the track sequentially. The chunk size is determined depending on the available memory (in GB). Default: 8

Raises `ValueError`, `KeyError`

Returns `haz`

Return type `TropCyclone`
5.4 climada.util package

5.4.1 climada.util.api_client module

class climada.util.api_client.Download(*args, **kwargs)
 Bases: peewee.Model
 Database entry keeping track of downloaded files from the CLIMADA data API
 url = <CharField: Download.url>
 path = <CharField: Download.path>
 startdownload = <DateTimeField: Download.startdownload>
 enddownload = <DateTimeField: Download.enddownload>

 exception Failed
 Bases: Exception
 The download failed for some reason.

 DoesNotExist
 alias of climada.util.api_client.DownloadDoesNotExist

 id = <AutoField: Download.id>

 Bases: object
 file data from CLIMADA data API.
 uuid: str
 url: str
 file_name: str
 file_format: str
 file_size: int
 check_sum: str

 __init__(uuid: str, url: str, file_name: str, file_format: str, file_size: int, check_sum: str) → None

 Bases: object
 data type meta data from CLIMADA data API.
 data_type: str
 data_type_group: str
status: str

description: str

properties: list

key_reference: list = None

version_notes: list = None

class climada.util.api_client.DataTypeShortInfo(data_type: str, data_type_group: str)

Bases: object

data type name and group from CLIMADA data API.

data_type: str

data_type_group: str

__init__(data_type: str, data_type_group: str) → None

Bases: object

dataset data from CLIMADA data API.

uuid: str

data_type: climada.util.api_client.DataTypeShortInfo

name: str

version: str

status: str

properties: dict

files: list

doi: str

description: str

license: str

activation_date: str

expiration_date: str
static from_json(jsono)

creates a DatasetInfo object from the json object returned by the CLIMADA data api server.

Parameters
jsono (dict)

Return type
DatasetInfo

climada.util.api_client.checksize(local_path, fileinfo)

Checks sanity of downloaded file simply by comparing actual and registered size.

Parameters

• local_path (Path) – the downloaded file

• filinfo (FileInfo) – file information from CLIMADA data API

Raises Download.Failed – if the file is not what it’s supposed to be

climada.util.api_client.checkhash(local_path, fileinfo)

Checks sanity of downloaded file by comparing actual and registered check sum.

Parameters

• local_path (Path) – the downloaded file

• filinfo (FileInfo) – file information from CLIMADA data API

Raises Download.Failed – if the file is not what it’s supposed to be

class climada.util.api_client.Cacher(cache_enabled)

Bases: object

Utility class handling cached results from http requests, to enable the API Client working in offline mode.

__init__(cache_enabled)

Constructor of Cacher.

Parameters

cache_enabled (bool, None) – Default: None, in this case the value is taken from CONFIG.data_api.cache_enabled.

store(result, *args, **kwargs)

stores the result from a API call to a local file.

The name of the file is the md5 hash of a string created from the call’s arguments, the content of the file is the call’s result in json format.

Parameters

• result (dict) – will be written in json format to the cached result file

• *args (list of str)

• **kwargs (list of dict of (str,str))

fetch(*args, **kwargs)

reloads the result from a API call from a local file, created by the corresponding call of self.store.

If no call with exactly the same arguments has been made in the past, the result is None.

Parameters
- `*args (list of str)
- **kwargs (list of dict of (str,str))

```python
class climada.util.api_client.Client(cache_enabled=None)
```

Python wrapper around REST calls to the CLIMADA data API server.

Attributes

- `MAX_WAITING_PERIOD = 6`
- `UNLIMITED = 100000`
- `DOWNLOAD_TIMEOUT = 3600`
- `QUERY_TIMEOUT = 300`

Exceptions

- `AmbiguousResult` (base: `Exception`)
 - Custom Exception for Non-Unique Query Result
- `NoResult` (base: `Exception`)
 - Custom Exception for No Query Result
- `NoConnection` (base: `Exception`)
 - To be raised if there is no internet connection and no cached result.

```python
__init__(cache_enabled=None)
```

Constructor of Client.

Data API host and chunk_size (for download) are configurable values. Default values are 'climada.ethz.ch' and 8096 respectively.

Parameters

- `cache_enabled (bool, optional)` – This flag controls whether the api calls of this client are going to be cached to the local file system (location defined by `CONFIG.data_api.cache_dir`). If set to true, the client can reload the results from the cache in case there is no internet connection and thus work in offline mode. Default: None, in this case the value is taken from `CONFIG.data_api.cache_enabled`.

```python
list_dataset_infos(data_type=None, name=None, version=None, properties=None, status=None)
```

Find all datasets matching the given parameters.

Parameters

- `data_type (str, optional)` – data_type of the dataset, e.g., 'litpop' or 'draught'
- `name (str, optional)` – the name of the dataset
- `version (str, optional)` – the version of the dataset, 'any' for all versions, 'newest' or None for the newest version meeting the requirements Default: None
- `properties (dict, optional)` – search parameters for dataset properties, by default None any property has a string for key and can be a string or a list of strings for value
- `status (str, optional)` – valid values are 'preliminary', 'active', 'expired', 'test_dataset' and None by default 'active'
get_dataset_info(data_type=None, name=None, version=None, properties=None, status='active')
Find the one dataset that matches the given parameters.

Parameters
• data_type (str, optional) – data_type of the dataset, e.g., ‘litpop’ or ‘draught’
• name (str, optional) – the name of the dataset
• version (str, optional) – the version of the dataset Default: newest version meeting the requirements
• properties (dict, optional) – search parameters for dataset properties, by default None any property has a string for key and can be a string or a list of strings for value
• status (str, optional) – valid values are ‘preliminary’, ‘active’, ‘expired’, ‘test_dataset’, None by default ‘active’

Return type DatasetInfo

Raises
• AmbiguousResult – when there is more than one dataset matching the search parameters
• NoResult – when there is no dataset matching the search parameters

get_dataset_info_by_uuid(uuid)
Returns the data from ‘https://climada.ethz.ch/data-api/v1/dataset/{uuid}’ as DatasetInfo object.

Parameters uuid (str) – the universal unique identifier of the dataset

Return type DatasetInfo

Raises NoResult – if the uuid is not valid

list_data_type_infos(data_type_group=None)
Returns all data types from the climada data API belonging to a given data type group.

Parameters data_type_group (str, optional) – name of the data type group, by default None

Return type list of DataTypeInfo

get_data_type_info(data_type)
Returns the metadata of the data type with the given name from the climada data API.

Parameters data_type (str) – data type name

Return type DataTypeInfo

Raises NoResult – if there is no such data type registered

download_dataset(dataset, target_dir=PosixPath('/home/docs/climada/data'), organize_path=True)
Download all files from a given dataset to a given directory.

Parameters
• dataset (DatasetInfo) – the dataset
• target_dir (Path, optional) – target directory for download, by default climada.util.constants.SYSTEM_DIR
• organize_path (bool, optional) – if set to True the files will end up in subdirectories of target_dir: [target_dir]/[data_type_group]/[data_type]/[name]/[version] by default True

Returns
• **download_dir** *(Path)* – the path to the directory containing the downloaded files, will be created if `organize_path` is True

• **downloaded_files** *(list of Path)* – the downloaded files themselves

Raises *Exception* – when one of the files cannot be downloaded

static purge_cache_db *(local_path)*

Removes entry from the sqlite database that keeps track of files downloaded by `cached_download`. This may be necessary in case a previous attempt has failed in an uncontrolled way (power outage or the like).

Parameters

• **local_path** *(Path)* – target destination

• **fileinfo** *(FileInfo)* – file object as retrieved from the data api

get_hazard *(hazard_type, name=None, version=None, properties=None, status='active', dump_dir=PosixPath('/home/docs/climada/data'))*

Queries the data api for hazard datasets of the given type, downloads associated hdf5 files and turns them into a `climada.hazard.Hazard` object.

Parameters

• **hazard_type** *(str)* – Type of climada hazard.

• **name** *(str, optional)* – the name of the dataset

• **version** *(str, optional)* – the version of the dataset Default: newest version meeting the requirements

• **properties** *(dict, optional)* – search parameters for dataset properties, by default None any property has a string for key and can be a string or a list of strings for value

• **status** *(str, optional)* – valid values are ‘preliminary’, ‘active’, ‘expired’, ‘test_dataset’, None by default ‘active’

• **dump_dir** *(str, optional)* – Directory where the files should be downloaded. Default: `SYSTEM_DIR` If the directory is the `SYSTEM_DIR` (as configured in climada.conf, i.g. ~/climada/data), the eventual target directory is organized into `dump_dir > hazard_type > dataset_name > version`

Returns The combined hazard object

Return type `climada.hazard.Hazard`

to_hazard *(dataset, dump_dir=PosixPath('/home/docs/climada/data'))*

Downloads hdf5 files belonging to the given datasets reads them into Hazards and concatenates them into a single `climada.Hazard` object.

Parameters

• **dataset** *(DatasetInfo)* – Dataset to download and read into `climada.Hazard` object.

• **dump_dir** *(str, optional)* – Directory where the files should be downloaded. Default: `SYSTEM_DIR` If the directory is the `SYSTEM_DIR` (as configured in climada.conf, i.g. ~/climada/data), the eventual target directory is organized into `dump_dir > hazard_type > dataset_name > version`

Returns The combined hazard object

Return type `climada.hazard.Hazard`
get_exposures (exposures_type, name=None, version=None, properties=None, status='active',
dump_dir=PosixPath('/home/docs/climada/data'))

Queries the data api for exposures datasets of the given type, downloads associated hdf5 files and turns them into a climada.entity.exposures.Exposures object.

Parameters

- exposures_type (str) – Type of climada exposures.
- name (str, optional) – the name of the dataset
- version (str, optional) – the version of the dataset Default: newest version meeting the requirements
- properties (dict, optional) – search parameters for dataset properties, by default None any property has a string for key and can be a string or a list of strings for value
- status (str, optional) – valid values are ‘preliminary’, ‘active’, ‘expired’, ‘test_dataset’, None by default ‘active’
- dump_dir (str, optional) – Directory where the files should be downloaded. Default: SYSTEM_DIR If the directory is the SYSTEM_DIR, the eventual target directory is organized into dump_dir > hazard_type > dataset name > version

Returns The combined exposures object

Return type climada.entity.exposures.Exposures
to_exposures (dataset, dump_dir=PosixPath('/home/docs/climada/data'))

Downloads hdf5 files belonging to the given datasets reads them into Exposures and concatenates them into a single climada.Exposures object.

Parameters

- dataset (DatasetInfo) – Dataset to download and read into climada.Exposures objects.
- dump_dir (str, optional) – Directory where the files should be downloaded. Default: SYSTEM_DIR (as configured in climada.conf, i.e. ~/climada/data). If the directory is the SYSTEM_DIR, the eventual target directory is organized into dump_dir > exposures_type > dataset name > version

Returns The combined exposures object

Return type climada.entity.exposures.Exposures
get_litpop (country=None, exponents=(1, 1), version=None,
dump_dir=PosixPath('/home/docs/climada/data'))

Get a LitPop Exposures instance on a 150arcsec grid with the default parameters: exponents = (1,1) and fin_mode = ‘pc’.

Parameters

- country (str, optional) – Country name or iso3 codes for which to create the LitPop object. For creating a LitPop object over multiple countries, use get_litpop individually and concatenate using LitPop.concat, see Examples. If country is None a global LitPop instance is created. Default is None.
- exponents (tuple of two integers, optional) – Defining power with which lit (nightlights) and pop (gpw) go into LitPop. To get nightlights^3 without population count: (3, 0). To use population count alone: (0, 1). Default: (1, 1)
- version (str, optional) – the version of the dataset Default: newest version meeting the requirements

5.4. climada.util package
dump_dir (str) – directory where the files should be downloaded. Default: SYSTEM_DIR

Returns default litpop Exposures object

Return type climada.entity.exposures.Exposures

Examples

Combined default LitPop object for Austria and Switzerland:

```python
client = Client()
litpop_aut = client.get_litpop("AUT")
litpop_che = client.get_litpop("CHE")
litpop_comb = LitPop.concat([litpop_aut, litpop_che])
```

get_centroids (res_land_arcsec=150, res_ocean_arcsec=1800, extent=(-180, 180, -60, 60),
country=None, version=None, dump_dir=PosixPath('/home/docs/climada/data'))

Get centroids from the API

Parameters

- res_land_arcsec (int) – resolution for land centroids in arcsec. Default is 150
- res_ocean_arcsec (int) – resolution for ocean centroids in arcsec. Default is 1800
- country (str) – country name, numeric code or iso code based on pycountry. Default is None (global).
- extent (tuple) – Format (min_lon, max_lon, min_lat, max_lat) tuple. If min_lon > lon_max,
the extend crosses the antimeridian and is [lon_max, 180] + [-180, lon_min] Borders are
inclusive. Default is (-180, 180, -60, 60).
- version (str, optional) – the version of the dataset Default: newest version meeting the re-
quirements
- dump_dir (str, optional) – directory where the files should be downloaded. Default: SYSTEM_DIR

Returns Centroids from the API

Return type climada.hazard.centroids.Centroids

static get_property_values (dataset_infos, known_property_values=None,
exclude_properties=None)

Returns a dictionary of possible values for properties of a data type, optionally given known property values.

Parameters

- dataset_infos (list of DataSetInfo) – as returned by list_dataset_infos
- known_property_values (dict, optional) – dict {‘property’:’value1’, ‘property2’:’value2’}, to
provide only a subset of property values that can be combined with the given properties.
- exclude_properties (list of str, optional) – properties in this list will be excluded from the
resulting dictionary, e.g., because they are strictly metadata and don’t provide any information
essential to the dataset. Default: ‘creation_date’, ‘climada_version’

Returns of possible property values

Return type dict
static into_datasets_df (dataset_infos)
Convenience function providing a DataFrame of datasets with properties.

Parameters dataset_infos (list of DatasetInfo) – as returned by list_dataset_infos

Returns of datasets with properties as found in query by arguments

Return type pandas.DataFrame

static into_files_df (dataset_infos)
Convenience function providing a DataFrame of files aligned with the input datasets.

Parameters datasets (list of DatasetInfo) – as returned by list_dataset_infos

Returns of the files’ informations including dataset informations

Return type pandas.DataFrame

purge_cache (target_dir=PosixPath('/home/docs/climada/data'), keep_testfiles=True)
Removes downloaded dataset files from the given directory if they have been downloaded with the API client, if they are beneath the given directory and if one of the following is the case: - there status is neither ‘active’ nor ‘test_dataset’ - their status is ‘test_dataset’ and keep_testfiles is set to False - their status is ‘active’ and they are outdated, i.e., there is a dataset with the same data_type and name but a newer version.

Parameters

• target_dir (Path or str, optional) – files downloaded beneath this directory and empty sub-directories will be removed. default: SYSTEM_DIR

• keep_testfiles (bool, optional) – if set to True, files from datasets with status ‘test_dataset’ will not be removed. default: True

5.4.2 climada.utilchecker module

climada.utilchecker.size (exp_len, var, var_name)
Check if the length of a variable is the expected one.

Raises ValueError –

climada.utilchecker.shape (exp_row, exp_col, var, var_name)
Check if the length of a variable is the expected one.

Raises ValueError –

climada.utilchecker.array_optional (exp_len, var, var_name)
Check if array has right size. Warn if array empty. Call check_size.

Parameters

• exp_len (str) – expected array size

• var (np.array) – numpy array to check

• var_name (str) – name of the variable. Used in error/warning msg

Raises ValueError –
climada.util.checker.array_default\(\text{exp_len, var, var_name, def_val}\)

Check array has right size. Set default value if empty. Call check_size.

Parameters

- \text{exp_len (str)} – expected array size
- \text{var (np.array)} – numpy array to check
- \text{var_name (str)} – name of the variable. Used in error/warning msg
- \text{def_val (np.array)} – nump array used as default value

Raises \text{ValueError} –

Return type Filled array

5.4.3 climada.util.config module

5.4.4 climada.util.constants module

climada.util.constants.SYSTEM_DIR = PosixPath('/home/docs/climada/data')

Folder containing the data used internally

climada.util.constants.DEMO_DIR = PosixPath('/home/docs/climada/demo/data')

Folder containing the data used for tutorials

climada.util.constants.ENT_DEMO_TODAY =
PosixPath('/home/docs/climada/demo/data/demo_today.xlsx')

Entity demo present in xlsx format.

climada.util.constants.ENT_DEMO_FUTURE =
PosixPath('/home/docs/climada/demo/data/demo_future_TEST.xlsx')

Entity demo future in xlsx format.

climada.util.constants.HAZ_DEMO_MAT =
PosixPath('/home/docs/climada/demo/data/atl_prob_nonames.mat')

hurricanes from 1851 to 2011 over Florida with 100 centroids.

Type Hazard demo from climada in MATLAB

climada.util.constants.HAZ_DEMO_FL =
PosixPath('/home/docs/climada/demo/data/SC22000_VE_M1.grd.gz')

Raster file of flood over Venezuela. Model from GAR2015

climada.util.constants.ENT_TEMPLATE_XLS =
PosixPath('/home/docs/climada/data/entity_template.xlsx')

Entity template in xls format.

climada.util.constants.HAZ_TEMPLATE_XLS =
PosixPath('/home/docs/climada/data/hazard_template.xlsx')

Hazard template in xls format.

climada.util.constants.ONE_LAT_KM = 111.12

Mean one latitude (in degrees) to km

climada.util.constants.EARTH_RADIUS_KM = 6371

Earth radius in km
climada.util.constants.GLBCENTROIDS_MAT = PosixPath('/home/docs/climada/data/GLB_NatID_grid_0360as_adv_2.mat')

Global centroids

climada.util.constants.GLBCENTROIDS_NC = PosixPath('/home/docs/climada/data/NatID_grid_0150as.nc')

For backwards compatibility, it remains available under its old name.

climada.util.constants.ISIMIPGPWV3NATID150AS = PosixPath('/home/docs/climada/data/NatID_grid_0150as.nc')

Compressed version of National Identifier Grid in 150 arc-seconds from ISIMIP project, based on GPWv3. Location in ISIMIP repository:

ISIMIP2a/InputData/landuse_humaninfluences/population/ID_GRID/Nat_id_grid_ISIMIP.nc

More references:

• https://www.isimip.org/gettingstarted/input-data-bias-correction/details/13/

climada.util.constants.NATEARTHCENTROIDS = {150: PosixPath('/home/docs/climada/data/NatEarth_Centroids_150as.hdf5'), 360: PosixPath('/home/docs/climada/data/NatEarth_Centroids_360as.hdf5')}

Global centroids at XXX arc-seconds resolution, including region ids from Natural Earth. The 360 AS file includes distance to coast from NASA.

climada.util.constants.RIVERFLOODREGIONS_CSV = PosixPath('/home/docs/climada/data/NatRegIDs.csv')

Look-up table for river flood module

climada.util.constants.TCANDREWFL = PosixPath('/home/docs/climada/demo/data/ibtracs_global_intp-None_1992230N11325.csv')

Tropical cyclone Andrew in Florida

climada.util.constants.HAZDEMOH5 = PosixPath('/home/docs/climada/demo/data/tc_fl_1990_2004.h5')

IBTrACS from 1990 to 2004 over Florida with 2500 centroids.

Type Hazard demo in hdf5 format

climada.util.constants.EXPDEMOH5 = PosixPath('/home/docs/climada/demo/data/exp_demo_today.h5')

Exposures over Florida

climada.util.constants.WSDEMONC = [PosixPath('/home/docs/climada/demo/data/fp_lothar_crop-test.nc'), PosixPath('/home/docs/climada/demo/data/fp_xynthia_crop-test.nc')]

Winter storm in Europe files. These test files have been generated using the netCDF kitchen sink:

```bash
>>> ncks -d latitude,50.5,54.0 -d longitude,3.0,7.5 ./file_in.nc ./file_out.nc
```

climada.util.constants.TESTUNCOUTPUTIMPACT = 'test_unc_output_impact'

Demo uncertainty impact output

climada.util.constants.TESTUNCOUTPUTCOSTBEN = 'test_unc_output_costben'

Demo uncertainty costben output

5.4. climada.util package 171
5.4.5 climada.util.coordinates module

climada.util.coordinates.NE_EPSG = 4326
Natural Earth CRS EPSG

climada.util.coordinates.NE_CRS = 'epsg:4326'
Natural Earth CRS

climada.util.coordinates.TMP_ELEVATION_FILE = PosixPath('/home/docs/climada/data/tmp_elevation.tif')
Path of elevation file written in set_elevation

climada.util.coordinates.DEM_NODATA = -9999
Value to use for no data values in DEM, i.e. see points

climada.util.coordinates.MAX_DEM_TILES_DOWN = 300
Maximum DEM tiles to download

climada.util.coordinates.NEAREST_NEIGHBOR_THRESHOLD = 100
Distance threshold in km for coordinate assignment. Nearest neighbors with greater distances are not considered.

climada.util.coordinates.latlon_to_geosph_vector(lat, lon, rad=False, basis=False)
Convert lat/lon coordinates to radial vectors (on geosphere)

Parameters

• lat, lon (ndarrays of floats, same shape) – Latitudes and longitudes of points.
• rad (bool, optional) – If True, latitude and longitude are not given in degrees but in radians.
• basis (bool, optional) – If True, also return an orthonormal basis of the tangent space at the
 given points in lat-lon coordinate system. Default: False.

Returns

• vn (ndarray of floats, shape (... , 3)) – Same shape as lat/lon input with additional axis for components.
• vbasis (ndarray of floats, shape (... , 2 , 3)) – Only present, if basis is True. Same shape as
 lat/lon input with additional axes for components of the two basis vectors.

climada.util.coordinates.lon_normalize(lon, center=0.0)
Normalizes degrees such that always -180 < lon - center <= 180

The input data is modified in place!

Parameters

• lon (np.array) – Longitudinal coordinates
• center (float, optional) – Central longitude value to use instead of 0. If None, the central longitude
 is determined automatically.

Returns lon – Normalized longitudinal coordinates. Since the input lon is modified in place (!), the
 returned array is the same Python object (instead of a copy).

Return type np.array
climada.util.coordinates.\texttt{lon_bounds}(\texttt{lon}, buffer=0.0)

Bounds of a set of degree values, respecting the periodicity in longitude

The longitudinal upper bound may be 180 or larger to make sure that the upper bound is always larger than the lower bound. The lower longitudinal bound will never lie below -180 and it will only assume the value -180 if the specified buffering enforces it.

Note that, as a consequence of this, the returned bounds do not satisfy the inequality $\texttt{lon_min} \leq \texttt{lon} \leq \texttt{lon_max}$ in general!

Usually, an application of this function is followed by a renormalization of longitudinal values around the longitudinal middle value:

\begin{verbatim}
>>> bounds = lon_bounds(lon)
>>> lon_mid = 0.5 * (bounds[0] + bounds[2])
>>> lon = lon_normalize(lon, center=lon_mid)
>>> np.all((bounds[0] <= lon) & (lon <= bounds[2]))
\end{verbatim}

\textbf{Example}

\begin{verbatim}
>>> lon_bounds(np.array([-179, 175, 178]))
(175, 181)
>>> lon_bounds(np.array([-179, 175, 178]), buffer=1)
(174, 182)
\end{verbatim}

\textbf{Parameters}

- \texttt{lon} \texttt{(np.array)} – Longitudinal coordinates
- \texttt{buffer} \texttt{(float, optional)} – Buffer to add to both sides of the bounding box. Default: 0.0.

\textbf{Returns} \texttt{bounds} – Bounding box of the given points.

\textbf{Return type} \texttt{tuple (lon_min, lon_max)}

climada.util.coordinates.\texttt{latlon_bounds}(\texttt{lat}, \texttt{lon}, buffer=0.0)

Bounds of a set of degree values, respecting the periodicity in longitude

See \texttt{lon_bounds} for more information about the handling of longitudinal values crossing the antimeridian.

\textbf{Example}

\begin{verbatim}
>>> latlon_bounds(np.array([0, -2, 5]), np.array([-179, 175, 178]))
(175, -2, 181, 5)
>>> latlon_bounds(np.array([0, -2, 5]), np.array([-179, 175, 178]), buffer=1)
(174, -3, 182, 6)
\end{verbatim}

\textbf{Parameters}

- \texttt{lat} \texttt{(np.array)} – Latitudinal coordinates
- \texttt{lon} \texttt{(np.array)} – Longitudinal coordinates
- \texttt{buffer} \texttt{(float, optional)} – Buffer to add to all sides of the bounding box. Default: 0.0.

\textbf{Returns} \texttt{bounds} – Bounding box of the given points.

\textbf{Return type} \texttt{tuple (lon_min, lat_min, lon_max, lat_max)}
climada.util.coordinates.toggle_extent_bounds(bounds_or_extent)

Convert between the “bounds” and the “extent” description of a bounding box.

The difference between the two conventions is in the order in which the bounds for each coordinate direction are given. To convert from one description to the other, the two central entries of the 4-tuple are swapped. Hence, the conversion is symmetric.

Parameters bounds_or_extent (tuple (a, b, c, d)) – Bounding box of the given points in “bounds” (or “extent”) convention.

Returns extent_or_bounds – Bounding box of the given points in “extent” (or “bounds”) convention.

Return type tuple (a, c, b, d)

climada.util.coordinates.dist_approx(lat1, lon1, lat2, lon2, log=False, normalize=True, method='equirect', units='km')

Compute approximation of geodistance in specified units.

Several batches of points can be processed at once for improved performance. The distances of all (lat1, lon1)-points within a batch to all (lat2, lon2)-points within the same batch are computed, according to the formula:

result[k, i, j] = dist((lat1[k, i], lon1[k, i]), (lat2[k, j], lon2[k, j]))

Hence, each of lat1, lon1, lat2, lon2 is expected to be a 2-dimensional array and the resulting array will always be 3-dimensional.

Parameters

- **lat1, lon1** (ndarrays of floats, shape (nbatch, nx)) – Latitudes and longitudes of first points.
- **lat2, lon2** (ndarrays of floats, shape (nbatch, ny)) – Latitudes and longitudes of second points.
- **log** (bool, optional) – If True, return the tangential vectors at the first points pointing to the second points (Riemannian logarithm). Default: False.
- **normalize** (bool, optional) – If False, assume that all longitudinal values lie within a single interval of size 360 (e.g., between -180 and 180, or between 0 and 360) and such that the shortest path between any two points does not cross the antimeridian according to that parametrization. If True, a suitable interval is determined using lon_bounds() and the longitudinal values are reparametrized accordingly using lon_normalize(). Note that this option has no effect when using the “geosphere” method because it is independent from the parametrization. Default: True.
- **method** (str, optional) – Specify an approximation method to use:
 - “equirect”: Distance according to sinusoidal projection. Fast, but inaccurate for large distances and high latitudes.
 - “geosphere”: Exact spherical distance. Much more accurate at all distances, but slow.

 Note that ellipsoidal distances would be even more accurate, but are currently not implemented. Default: “equirect”.
- **units** (str, optional) – Specify a unit for the distance. One of:
 - “km”: distance in km.
 - “m”: distance in m.
 - “degree”: angular distance in decimal degrees.
 - “radian”: angular distance in radians.

 Default: “km”.

174 Chapter 5. Software documentation per package
Returns

- **dists** (ndarray of floats, shape (nbatch, nx, ny)) – Approximate distances in specified units.
- **vtan** (ndarray of floats, shape (nbatch, nx, ny, 2)) – If log is True, tangential vectors at first points in local lat-lon coordinate system.

climada.util.coordinates.compute_geodesic_lengths *(gdf)*

Calculate the great circle (geodesic / spherical) lengths along any (complicated) line geometry object, based on the pyproj.Geo implementation.

Parameters

- **gdf** (gpd.GeoDataframe with geometrical shapes of which to compute the length)

Returns

- **series** – objects in metres.

Return type

a pandas series (column) with the great circle lengths of the

See also:

dist_approx() distance between individual lat/lon-points

Note: This implementation relies on non-projected (i.e. geographic coordinate systems that span the entire globe) CRS only, which results in sea-level distances and hence a certain (minor) level of distortion; cf. https://gis.stackexchange.com/questions/176442/what-is-the-real-distance-between-positions

climada.util.coordinates.get_gridcellarea *(lat, resolution=0.5, unit='ha')*

The area covered by a grid cell is calculated depending on the latitude

- 1 degree = ONE_LAT_KM (111.12km at the equator)
- longitudinal distance in km = ONE_LAT_KM*resolution*cos(lat)
- latitudal distance in km = ONE_LAT_KM*resolution
- area = longitudinal distance * latitudal distance

Parameters

- **lat** (np.array) – Latitude of the respective grid cell
- **resolution** (int, optional) – raster resolution in degree (default: 0.5 degree)
- **unit** (string, optional) – unit of the output area (default: ha, alternatives: m2, km2)

climada.util.coordinates.grid_is_regular *(coord)*

Return True if grid is regular. If True, returns height and width.

Parameters

- **coord** (np.array) – Each row is a lat-lon-pair.

Returns

- **regular** (bool) – Whether the grid is regular. Only in this case, the following width and height are reliable.
- **height** (int) – Height of the supposed grid.
- **width** (int) – Width of the supposed grid.
climada.util.coordinates.get_coastlines \(\text{bounds=\text{None}, resolution=110} \)

Get Polygons of coast intersecting given bounds

Parameters

- **bounds** (tuple) – min_lon, min_lat, max_lon, max_lat in EPSG:4326
- **resolution** (float, optional) – 10, 50 or 110. Resolution in m. Default: 110m, i.e. 1:110,000,000

Returns

- **coastlines** – Polygons of coast intersecting given bounds.

Return type GeoDataFrame

climada.util.coordinates.convert_wgs_to_utm \(\text{lon, lat} \)

Get EPSG code of UTM projection for input point in EPSG 4326

Parameters

- **lon** (float) – longitude point in EPSG 4326
- **lat** (float) – latitude of point (lat, lon) in EPSG 4326

Returns

- **epsg_code** – EPSG code of UTM projection.

Return type int

climada.util.coordinates.utm_zones \(\text{wgs_bounds} \)

Get EPSG code and bounds of UTM zones covering specified region

Parameters

- **wgs_bounds** (tuple) – lon_min, lat_min, lon_max, lat_max

Returns

- **zones** – EPSG code and bounding box in WGS coordinates.

Return type list of pairs (zone_epsg, zone_wgs_bounds)

climada.util.coordinates.dist_to_coast \(\text{coord_lat, lon=\text{None}, signed=\text{False}} \)

Compute (signed) distance to coast from input points in meters.

Parameters

- **coord_lat** (GeoDataFrame or np.array or float) –
 - GeoDataFrame with geometry column in epsg:4326
 - np.array with two columns, first for latitude of each point and second with longitude in epsg:4326
 - np.array with one dimension containing latitudes in epsg:4326
 - float with a latitude value in epsg:4326
- **lon** (np.array or float, optional) –
 - np.array with one dimension containing longitudes in epsg:4326
 - float with a longitude value in epsg:4326
- **signed** (bool) – If True, distance is signed with positive values off shore and negative values on land. Default: False

Returns

- **dist** – (Signed) distance to coast in meters.

Return type np.array
climada.util.coordinates.dist_to_coast_nasa(lat, lon, highres=False, signed=False)

Read interpolated (signed) distance to coast (in m) from NASA data

Note: The NASA raster file is 300 MB and will be downloaded on first run!

Parameters

- **lat (np.array)** – latitudes in epsg:4326
- **lon (np.array)** – longitudes in epsg:4326
- **signed (bool)** – If True, distance is signed with positive values off shore and negative values on land. Default: False

Returns dist – (Signed) distance to coast in meters.

Return type np.array

climada.util.coordinates.get_land_geometry(country_names=None, extent=None, resolution=10)

Get union of the specified (or all) countries or the points inside the extent.

Parameters

- **country_names (list, optional)** – list with ISO3 names of countries, e.g [‘ZWE’, ‘GBR’, ‘VNM’, ‘UZB’]
- **extent (tuple, optional)** – (min_lon, max_lon, min_lat, max_lat)
- **resolution (float, optional)** – 10, 50 or 110. Resolution in m. Default: 10m, i.e. 1:10.000.000

Returns geom – Polygonal shape of union.

Return type shapely.geometry.multipolygon.MultiPolygon

climada.util.coordinates.coord_on_land(lat, lon, land_geom=None)

Check if points are on land.

Parameters

- **lat (np.array)** – latitude of points in epsg:4326
- **lon (np.array)** – longitude of points in epsg:4326
- **land_geom (shapely.geometry.multipolygon.MultiPolygon, optional)** – If given, use these as profiles of land. Otherwise, the global landmass is used.

Returns on_land – Entries are True if corresponding coordinate is on land and False otherwise.

Return type np.array(bool)

climada.util.coordinates.nat_earth_resolution(resolution)

Check if resolution is available in Natural Earth. Build string.

Parameters resolution (int) – resolution in millions, 110 == 1:110.000.000.

Returns res_name – Natural Earth name of resolution (e.g. ‘110m’)

Return type str

Raises ValueError –
climada.util.coordinates.get_country_geometries (country_names=None, extent=None, resolution=10)

Natural Earth country boundaries within given extent

If no arguments are given, simply returns the whole natural earth dataset.

Take heed: we assume WGS84 as the CRS unless the Natural Earth download utility from cartopy starts including the projection information. (They are saving a whopping 147 bytes by omitting it.) Same goes for UTF.

If extent is provided, longitude values in ‘geom’ will all lie within ‘extent’ longitude range. Therefore setting extent to e.g. [160, 200, -20, 20] will provide longitude values between 160 and 200 degrees.

Parameters

- **country_names** (list, optional) – list with ISO 3166 alpha-3 codes of countries, e.g ['ZWE', 'GBR', 'VNM', 'UZB']

- **extent** (tuple, optional) – (min_lon, max_lon, min_lat, max_lat) Extent, assumed to be in the same CRS as the natural earth data.

- **resolution** (float, optional) – 10, 50 or 110. Resolution in m. Default: 10m

Returns geom – Natural Earth multipolygons of the specified countries, resp. the countries that lie within the specified extent.

Return type GeoDataFrame

climada.util.coordinates.get_region_gridpoints (countries=None, regions=None, resolution=150, iso=True, rect=False, basemap='natearth')

Get coordinates of gridpoints in specified countries or regions

Parameters

- **countries** (list, optional) – ISO 3166-1 alpha-3 codes of countries, or internal numeric NatID if iso is set to False.

- **regions** (list, optional) – Region IDs.

- **resolution** (float, optional) – Resolution in arc-seconds, either 150 (default) or 360.

- **iso** (bool, optional) – If True, assume that countries are given by their ISO 3166-1 alpha-3 codes (instead of the internal NatID). Default: True.

- **rect** (bool, optional) – If True, a rectangular box around the specified countries/regions is selected. Default: False.

- **basemap** (str, optional) – Choose between different data sources. Currently available: “isimip” and “natearth”. Default: “natearth”.

Returns

- **lat** (np.array) – Latitude of points in epsg:4326.

- **lon** (np.array) – Longitude of points in epsg:4326.

climada.util.coordinates.assign_grid_points (*args, **kwargs)

This function has been renamed, use match_grid_points instead.

climada.util.coordinates.match_grid_points (x, y, grid_width, grid_height, grid_transform)

To each coordinate in x and y, assign the closest centroid in the given raster grid

Make sure that your grid specification is relative to the same coordinate reference system as the x and y coordinates. In case of lon/lat coordinates, make sure that the longitudinal values are within the same longitudinal range (such as [-180, 180]).
If your grid is given by bounds instead of a transform, the functions `rasterio.transform.from_bounds` and `pts_to_raster_meta` might be helpful.

Parameters

- **x, y** (`np.array`) – x- and y-coordinates of points to assign coordinates to.
- **grid_width** (`int`) – Width (number of columns) of the grid.
- **grid_height** (`int`) – Height (number of rows) of the grid.
- **grid_transform** (`affine.Affine`) – Affine transformation defining the grid raster.

Returns

- **assigned_idx** – Index into the flattened grid. Note that the value -1 is used to indicate that no matching coordinate has been found, even though -1 is a valid index in NumPy!

Return type

`np.array` of size equal to the size of `x` and `y`

```python
climada.util.coordinates.assign_coordinates(*args, **kwargs)
```

This function has been renamed, use `match_coordinates` instead.

```python
climada.util.coordinates.match_coordinates(coords, coords_to_assign, distance='euclidean',
threshold=100, **kwargs)
```

To each coordinate in `coords`, assign a matching coordinate in `coords_to_assign`

If there is no exact match for some entry, an attempt is made to assign the geographically nearest neighbor. If the distance to the nearest neighbor exceeds `threshold`, the index -1 is assigned.

Currently, the nearest neighbor matching works with lat/lon coordinates only. However, you can disable nearest neighbor matching by setting `threshold` to 0, in which case only exactly matching coordinates are assigned to each other.

Make sure that all coordinates are according to the same coordinate reference system. In case of lat/lon coordinates, the “haversine” distance is able to correctly compute the distance across the antimeridian. However, when exact matches are enforced with `threshold`=0, lat/lon coordinates need to be given in the same longitudinal range (such as (-180, 180)).

Parameters

- **coords** (`np.array with two columns`) – Each row is a geographical coordinate pair. The result’s size will match this array’s number of rows.
- **coords_to_assign** (`np.array with two columns`) – Each row is a geographical coordinate pair. The result will be an index into the rows of this array. Make sure that these coordinates use the same coordinate reference system as `coords`.
- **distance** (`str`, optional) – Distance to use for non-exact matching. Possible values are “euclidean”, “haversine” and “approx”. Default: “euclidean”
- **threshold** (`float`, optional) – If the distance to the nearest neighbor exceeds `threshold`, the index -1 is assigned. Set `threshold` to 0 to disable nearest neighbor matching. Default: 100 (km)
- **kwargs** (`dict`, optional) – Keyword arguments to be passed on to nearest-neighbor finding functions in case of non-exact matching with the specified `distance`.

Returns

- **assigned_idx** – Index into `coords_to_assign`. Note that the value -1 is used to indicate that no matching coordinate has been found, even though -1 is a valid index in NumPy!

Return type

`np.array` of size equal to the number of rows in `coords`
Notes

By default, the 'euclidean' distance metric is used to find the nearest neighbors in case of non-exact matching. This method is fast for (quasi-)gridded data, but introduces innacuracy since distances in lat/lon coordinates are not equal to distances in meters on the Earth surface, in particular for higher latitude and distances larger than 100km. If more accuracy is needed, please use the 'haversine' distance metric. This however is slower for (quasi-)gridded data.

climada.util.coordinates.match_centroids(coord_gdf, centroids, distance='euclidean', threshold=100)

Assign to each gdf coordinate point its closest centroids’s coordinate. If disatances > threshold in points’ distances, -1 is returned. If centroids are in a raster and coordinate point is outside of it -1 is assigned

Parameters

- **coord_gdf** (gpd.GeoDataFrame) – GeoDataframe with defined latitude/longitude column and crs
- **centroids** (Centroids) – (Hazard) centroids to match (as raster or vector centroids).
- **distance** (str, optional) – Distance to use in case of vector centroids. Possible values are “euclidean”, “haversine” and “approx”. Default: “euclidean”
- **threshold** (float, optional) – If the distance (in km) to the nearest neighbor exceeds threshold, the index -1 is assigned. Set threshold to 0, to disable nearest neighbor matching. Default: NEAREST_NEIGHBOR_THRESHOLD (100km)

See also:

climada.util.coordinates.match_grid_points method to associate centroids to coordinate points when centroids is a raster

climada.util.coordinates.match_coordinates method to associate centroids to coordinate points

Notes

The default order of use is:

1. if centroid raster is defined, assign the closest raster point to each gdf coordinate point. 2. if no raster, assign centroids to the nearest neighbor using euclidian metric

Both cases can introduce innacuracies for coordinates in lat/lon coordinates as distances in degrees differ from distances in meters on the Earth surface, in particular for higher latitude and distances larger than 100km. If more accuracy is needed, please use ‘haversine’ distance metric. This however is slower for (quasi-)gridded data, and works only for non-gridded data.

climada.util.coordinates.region2isos(regions)

Convert region names to ISO 3166 alpha-3 codes of countries

Parameters **regions** (str or list of str) – Region name(s).

Returns **isos** – Sorted list of iso codes of all countries in specified region(s).

Return type list of str

climada.util.coordinates.country_to_iso(countries, representation='alpha3', fillvalue=None)

Determine ISO 3166 representation of countries
Example

```python
>>> country_to_iso(840)
'USA'
>>> country_to_iso("United States", representation="alpha2")
'US'
>>> country_to_iso(\["United States of America", "SU\], "numeric")
\[840, 810\]
```

Some geopolitical areas that are not covered by ISO 3166 are added in the “user-assigned” range of ISO 3166-compliant values:

```python
>>> country_to_iso(["XK", "Dhekelia"], "numeric")  # XK for Kosovo
\[983, 907\]
```

Parameters

- **countries** *(one of str, int, list of str, list of int)* – Country identifiers: name, official name, alpha-2, alpha-3 or numeric ISO codes. Numeric representations may be specified as str or int.
- **representation** *(str (one of “alpha3”, “alpha2”, “numeric”, “name”), optional)* – All countries are converted to this representation according to ISO 3166. Default: “alpha3”.
- **fillvalue** *(str or int or None, optional)* – The value to assign if a country is not recognized by the given identifier. By default, a LookupError is raised. Default: None

Returns **iso_list** – ISO 3166 representation of countries. Will only return a list if the input is a list. Numeric representations are returned as integers.

Return type **one of str, int, list of str, list of int**

climada.util.coordinates.country_iso_alpha2numeric(iso_alpha)

Deprecated: Use `country_to_iso` with `representation="numeric"` instead

climada.util.coordinates.country_natid2iso(natids, representation='alpha3')

Convert internal NatIDs to ISO 3166-1 alpha-3 codes

Parameters

- **natids** *(int or list of int)* – NatIDs of countries (or single ID) as used in ISIMIP’s version of the GPWv3 national identifier grid.
- **representation** *(str, one of “alpha3”, “alpha2” or “numeric”)* – All countries are converted to this representation according to ISO 3166. Default: “alpha3”.

Returns **iso_list** – ISO 3166 representation of countries. Will only return a list if the input is a list. Numeric representations are returned as integers.

Return type **one of str, int, list of str, list of int**

climada.util.coordinates.country_iso2natid(isos)

Convert ISO 3166-1 alpha-3 codes to internal NatIDs

Parameters **isos** *(str or list of str)* – ISO codes of countries (or single code).

Returns **natids** – Will only return a list if the input is a list.

Return type **int or list of int**
climada.util.coordinates.natearth_country_to_int(country)

Integer representation (ISO 3166, if possible) of Natural Earth GeoPandas country row

Parameters
 country (GeoSeries) – Row from Natural Earth GeoDataFrame.

Returns
 iso_numeric – Integer representation of given country.

Return type
 int

climada.util.coordinates.get_country_code(lat, lon, gridded=False)

Provide numeric (ISO 3166) code for every point.

Oceans get the value zero. Areas that are not in ISO 3166 are given values in the range above 900 according to NATEARTH_AREA_NONISO_NUMERIC.

Parameters
 • lat (np.array) – latitude of points in epsg:4326
 • lon (np.array) – longitude of points in epsg:4326
 • gridded (bool) – If True, interpolate precomputed gridded data which is usually much faster. Default: False.

Returns
 country_codes – Numeric code for each point.

Return type
 np.array(int)

climada.util.coordinates.get_admin1_info(country_names)

Provide Natural Earth registry info and shape files for admin 1 regions

Parameters
 country_names (list or str) – string or list with strings, either ISO code or names of countries, e.g.: ['ZWE', 'GBR', 'VNM', 'UZB', 'Kenya', '051'] For example, for Armenia, all of the following inputs work: 'Armenia', 'ARM', 'AM', '051', 51

Returns
 • admin1_info (dict) – Data according to records in Natural Earth database.
 • admin1_shapes (dict) – Shape according to Natural Earth.

climada.util.coordinates.get_admin1_geometries(countries)

return geometries, names and codes of admin 1 regions in given countries in a GeoDataFrame. If no admin 1 regions are defined, all regions in countries are returned.

Parameters
 countries (list or str or int) – string or list with strings, either ISO code or names of countries, e.g.: ['ZWE', 'GBR', 'VNM', 'UZB', 'Kenya', '051'] For example, for Armenia, all of the following inputs work: 'Armenia', 'ARM', 'AM', '051', 51

Returns
 gdf – geopandas.GeoDataFrame instance with columns:
 "admin1_name" [str] name of admin 1 region
 "iso_3166_2" [str] iso code of admin 1 region
 "geometry" [Polygon or MultiPolygon] shape of admin 1 region as shapely geometry object
 "iso_3n" [str] numerical iso 3 code of country (admin 0)
 "iso_3a" [str] alphabetical iso 3 code of country (admin 0)

Return type
 GeoDataFrame
climada.util.coordinates.get_resolution_1d(coords, min_resol=1e-08)

Compute resolution of scalar grid

Parameters
- **coords (np.array)** – scalar coordinates
- **min_resol (float, optional)** – minimum resolution to consider. Default: 1.0e-8.

Returns **res** – Resolution of given grid.
Return type **float**

climada.util.coordinates.get_resolution(*coords, min_resol=1e-08)

Compute resolution of n-d grid points

Parameters
- **X, Y, ... (np.array)** – Scalar coordinates in each axis
- **min_resol (float, optional)** – minimum resolution to consider. Default: 1.0e-8.

Returns **resolution** – Resolution in each coordinate direction.
Return type **pair of floats**

climada.util.coordinates pts_to_raster_meta(points_bounds, res)

Transform vector data coordinates to raster.

If a raster of the given resolution doesn’t exactly fit the given bounds, the raster might have slightly larger (but never smaller) bounds.

Parameters
- **points_bounds (tuple)** – points total bounds (xmin, ymin, xmax, ymax)
- **res (tuple)** – resolution of output raster (xres, yres)

Returns
- **nrows (int)** – Number of rows.
- **ncols (int)** – Number of columns.
- **ras_trans (affine.Affine)** – Affine transformation defining the raster.

climada.util.coordinates raster_to_meshgrid(transform, width, height)

Get coordinates of grid points in raster

Parameters
- **transform (affine.Affine)** – Affine transform defining the raster.
- **width (int)** – Number of points in first coordinate axis.
- **height (int)** – Number of points in second coordinate axis.

Returns
- **x (np.array of shape (height, width))** – x-coordinates of grid points.
- **y (np.array of shape (height, width))** – y-coordinates of grid points.

climada.util.coordinates.to_crs_user_input(crs_obj)

Returns a crs string or dictionary from a hdf5 file object.

bytes are decoded to str if the string starts with a ‘{‘ it is assumed to be a dumped string from a dictionary and ast is used to parse it.

5.4. climada.util package
Parameters **crs_obj** *(int, dict or str or bytes)* – the crs object to be converted user input

Returns to eventually be used as argument of rasterio.crs.CRS.from_user_input and pyproj.crs.CRS.from_user_input

Return type str or dict

Raises ValueError – if type(crs_obj) has the wrong type

climada.util.coordinates.equal_crs *(crs_one, crs_two)*

Compare two crs

Parameters

- **crs_one** *(dict, str or int)* – user crs
- **crs_two** *(dict, str or int)* – user crs

Returns **equal** – Whether the two specified CRS are equal according tho rasterio.crs.CRS.from_user_input

Return type bool

climada.util.coordinates.read_raster *(file_name, band=None, src_crs=None, window=None, geometry=None, dst_crs=None, transform=None, width=None, height=None, resampling='nearest')*

Read raster of bands and set 0-values to the masked ones.

Parameters

- **file_name** *(str)* – name of the file
- **band** *(list(int), optional)* – band number to read. Default: 1
- **window** *(rasterio.windows.Window, optional)* – window to read
- **geometry** *(list of shapely.geometry, optional)* – consider pixels only within these shapes
- **dst_crs** *(crs, optional)* – reproject to given crs
- **transform** *(rasterio.Affine)* – affine transformation to apply
- **width** *(float)* – number of lons for transform
- **height** *(float)* – number of lats for transform
- **resampling** *(int or str, optional)* – Resampling method to use, encoded as an integer value (see rasterio.enums.Resampling). String values like “nearest” or “bilinear” are resolved to attributes of rasterio.enums.Resampling. Default: “nearest”

Returns

- **meta** *(dict)* – Raster meta (height, width, transform, crs).
- **data** *(np.array)* – Each row corresponds to one band (raster points are flattened, can be reshaped to height x width).

climada.util.coordinates.read_raster_bounds *(path, bounds, res=None, bands=None, resampling='nearest', global_origin=None, pad_cells=1.0)*

Read raster file within given bounds at given resolution

By default, not only the grid cells of the destination raster whose cell centers fall within the specified bounds are selected, but one additional row/column of grid cells is added as a padding in each direction (pad_cells=1). This makes sure that the extent of the selected cell centers encloses the specified bounds.
The axis orientations (e.g. north to south, west to east) of the input data set are preserved.

Parameters

- **path** *(str)* – Path to raster file to open with rasterio.
- **bounds** *(tuple)* – (xmin, ymin, xmax, ymax)
- **res** *(float or pair of floats, optional)* – Resolution of output. Note that the orientation (sign) of these is overwritten by the input data set’s axis orientations (e.g. north to south, west to east). Default: Resolution of input raster file.
- **bands** *(list of int, optional)* – Bands to read from the input raster file. Default: [1]
- **resampling** *(int or str, optional)* – Resampling method to use, encoded as an integer value (see `rasterio.enums.Resampling`). String values like “nearest” or “bilinear” are resolved to attributes of `rasterio.enums.Resampling`. Default: “nearest”
- **global_origin** *(pair of floats, optional)* – If given, align the output raster to a global reference raster with this origin. By default, the data set’s origin (according to it’s transform) is used.
- **pad_cells** *(float, optional)* – The number of cells to add as a padding (in terms of the destination grid that is inferred from res and/or global_origin if those parameters are given). This defaults to 1 to make sure that applying methods like bilinear interpolation to the output of this function is well-defined everywhere within the specified bounds. Default: 1.0

Returns

- **data** *(3d np.array)* – First dimension is for the selected raster bands. Second dimension is y (lat) and third dimension is x (lon).
- **transform** *(rasterio.Affine)* – Affine transformation defining the output raster data.

climada.util.coordinates.read_raster_sample *(path, lat, lon, intermediate_res=None, method='linear', fill_value=None)*

Read point samples from raster file.

Parameters

- **path** *(str)* – path of the raster file
- **lat** *(np.array of shape (npoints,)) – latitudes in file’s CRS
- **lon** *(np.array of shape (npoints,)) – longitudes in file’s CRS
- **intermediate_res** *(float or pair of floats, optional)* – If given, the raster is not read in its original resolution but in the given one. This can increase performance for files of very high resolution.
- **method** *(str or pair of str, optional)* – The interpolation method, passed to `scipy.interpolate.interpn`. Default: ‘linear’
- **fill_value** *(numeric, optional)* – The value used outside of the raster bounds. Default: The raster’s nodata value or 0.

Returns

values – Interpolated raster values for each given coordinate point.

Return type np.array of shape (npoints,)

climada.util.coordinates.read_raster_sample_with_gradients *(path, lat, lon, intermediate_res=None, method=('linear', 'nearest'), fill_value=None)*
Read point samples with computed gradients from raster file.

For convenience, and because this is the most common use case, the step sizes in the gradient computation are converted to meters if the raster’s CRS is EPSG:4326 (lat/lon).

For example, in case of an elevation data set, not only the heights, but also the slopes of the terrain in x- and y-direction are returned. In addition, if the CRS of the elevation data set is EPSG:4326 (lat/lon) and elevations are given in m, then distances are converted from degrees to meters, so that the unit of the returned slopes is “meters (height) per meter (distance)”.

Parameters

- *path* (*str*) – path of the raster file
- *lat* (*np.array of shape (npoints,)*) – latitudes in file’s CRS
- *lon* (*np.array of shape (npoints,)*) – longitudes in file’s CRS
- *intermediate_res* (*float or pair of floats, optional*) – If given, the raster is not read in its original resolution but in the given one. This can increase performance for files of very high resolution.
- *method* (*str or pair of str, optional*) – The interpolation methods for the data and its gradient, passed to scipy.interpolate.interpn. If a single string is given, the same interpolation method is used for both the data and its gradient. Default: ('linear', 'nearest')
- *fill_value* (*numeric, optional*) – The value used outside of the raster bounds. Default: The raster’s nodata value or 0.

Returns

- *values* (*np.array of shape (npoints,)*) – Interpolated raster values for each given coordinate point.
- *gradient* (*np.array of shape (npoints, 2)*) – The raster gradient at each of the given coordinate points. The first/second value in each row is the derivative in lat/lon direction (lat is first!).

climada.util.coordinates.interp_raster_data (data, interp_y, interp_x, transform, method='linear', fill_value=0)

Interpolate raster data, given as array and affine transform

Parameters

- *data* (*np.array*) – Array containing the values. The first two dimensions are always interpreted as corresponding to the y- and x-coordinates of the grid. Additional dimensions can be present in case of multi-band data.
- *interp_y* (*np.array*) – y-coordinates of points (corresp. to first axis of data)
- *interp_x* (*np.array*) – x-coordinates of points (corresp. to second axis of data)
- *transform* (*affine.Affine*) – affine transform defining the raster
- *fill_value* (*numeric, optional*) – The value used outside of the raster bounds. Default: 0.

Returns *values* – Interpolated raster values for each given coordinate point. If multi-band data is provided, the additional dimensions from *data* will also be present in this array.

Return type *np.array*
climada.util.coordinates.refine_raster_data (data, transform, res, method='linear', fill_value=0)

Refine raster data, given as array and affine transform

Parameters

- **data** (np.array) – 2d array containing the values
- **transform** (affine.Affine) – affine transform defining the raster
- **res** (float or pair of floats) – new resolution
- **method** (str, optional) –
 The interpolation method, passed to scipy.interp.interpn. Default: ‘linear’.

Returns

- **new_data** (np.array) – 2d array containing the interpolated values.
- **new_transform** (affine.Affine) – Affine transform defining the refined raster.

climada.util.coordinates.read_vector (file_name, field_name, dst_crs=None)

Read vector file format supported by fiona.

Parameters

- **file_name** (str) – vector file with format supported by fiona and ‘geometry’ field.
- **field_name** (list(str)) – list of names of the columns with values.
- **dst_crs** (crs, optional) – reproject to given crs

Returns

- **lat** (np.array) – Latitudinal coordinates.
- **lon** (np.array) – Longitudinal coordinates.
- **geometry** (GeoSeries) – Shape geometries.
- **value** (np.array) – Values associated to each shape.

climada.util.coordinates.write_raster (file_name, data_matrix, meta, dtype=<class 'numpy.float32'>)

Write raster in GeoTiff format.

Parameters

- **file_name** (str) – File name to write.
- **data_matrix** (np.array) – 2d raster data. Either containing one band, or every row is a band and the column represents the grid in 1d.
- **meta** (dict) – rasterio meta dictionary containing raster properties: width, height, crs and transform must be present at least. Include compress= "deflate" for compressed output.
- **dtype** (numpy dtype, optional) – A numpy dtype. Default: np.float32

climada.util.coordinates.points_to_raster (points_df, val_names=None, res=0.0, raster_res=0.0, crs='EPSG:4326', scheduler=None)

Compute raster (as data and transform) from GeoDataFrame.

Parameters

- **points_df** (GeoDataFrame) – contains columns latitude, longitude and those listed in the parameter val_names.
• **val_names** (list of str, optional) – The names of columns in `points_df` containing values. The raster will contain one band per column. Default: ['value']

• **res** (float, optional) – resolution of current data in units of latitude and longitude, approximated if not provided.

• **raster_res** (float, optional) – desired resolution of the raster

• **crs** (object (anything accepted by pyproj.CRS.from_user_input), optional) – If given, overwrites the CRS information given in `points_df`. If no CRS is explicitly given and there is no CRS information in `points_df`, the CRS is assumed to be EPSG:4326 (lat/lon). Default: None

• **scheduler** (str) – used for dask map_partitions. “threads”, “synchronous” or “processes”

Returns

• **data** (np.array) – 3d array containing the raster values. The first dimension has the same size as `val_names` and represents the raster bands.

`climada.util.coordinates.subraster_from_bounds(transform, bounds)`

Compute a subraster definition from a given reference transform and bounds.

The axis orientations (sign of resolution step sizes) in `transform` are not required to be north to south and west to east. The given orientation is preserved in the result.

Parameters

• **transform** (rasterio.Affine) – Affine transformation defining the reference grid.

• **bounds** (tuple of floats (xmin, ymin, xmax, ymax)) – Bounds of the subraster in units and CRS of the reference grid.

Returns

• **dst_transform** (rasterio.Affine) – Subraster affine transformation. The axis orientations of the input transform (e.g. north to south, west to east) are preserved.

• **dst_shape** (tuple of ints (height, width)) – Number of pixels of subraster in vertical and horizontal direction.

`climada.util.coordinates.align_raster_data(source, src_crs, src_transform, dst_crs=None, dst_resolution=None, dst_bounds=None, global_origin=(-180, 90), resampling='nearest', conserve=None, **kwargs)`

Reproject 2D np.ndarray to be aligned to a reference grid.

This function ensures that reprojected data with the same dst_resolution and global_origins are aligned to the same global grid, i.e., no offset between destination grid points for different source grids that are projected to the same target resolution.

Note that the origin is required to be in the upper left corner. The result is always oriented left to right (west to east) and top to bottom (north to south).

Parameters

• **source** (np.ndarray) – The source is a 2D ndarray containing the values to be reprojected.

• **src_crs** (CRS or dict) – Source coordinate reference system, in rasterio dict format.

• **src_transform** (rasterio.Affine) – Source affine transformation.

• **dst_crs** (CRS, optional) – Target coordinate reference system, in rasterio dict format. Default: `src_crs`
• **dst_resolution** (tuple \((x_resolution, y_resolution)\) or float, optional) – Target resolution (positive pixel sizes) in units of the target CRS. Default: \((abs(src_transform[0]), abs(src_transform[4]))\)

• **dst_bounds** (tuple of floats \((xmin, ymin, xmax, ymax)\), optional) – Bounds of the target raster in units of the target CRS. By default, the source's bounds are reprojected to the target CRS.

• **global_origin** (tuple \((west, north)\) of floats, optional) – Coordinates of the reference grid's upper left corner. Default: \((-180, 90)\). Make sure to change global_origin for non-geographical CRS!

• **resampling** (int or str, optional) – Resampling method to use, encoded as an integer value (see rasterio.enums.Resampling). String values like “nearest” or “bilinear” are resolved to attributes of rasterio.enums.Resampling. Default: “nearest”

• **conserve** (str, optional) – If provided, conserve the source array’s ‘mean’ or ‘sum’ in the transformed data or normalize the values of the transformed data ndarray (‘norm’). WARNING: Please note that this procedure will not apply any weighting of values according to the geographical cell sizes, which will introduce serious biases for lat/lon grids in case of areas spanning large latitudinal ranges. Default: None (no conservation)

• **kwargs** (dict, optional) – Additional arguments passed to rasterio.warp.reproject.

Throws ValueError –

Returns

• **destination** (np.ndarray with same dtype as source) – The transformed 2D ndarray.

• **dst_transform** (rasterio.Affine) – Destination affine transformation.

climada.util.coordinates.mask_raster_with_geometry(raster, transform, shapes, nodata=None, **kwargs)

Change values in raster that are outside of given shapes to nodata.

This function is a wrapper for rasterio.mask.mask to allow for in-memory processing. This is done by first writing data to memfile and then reading from it before the function call to rasterio.mask.mask(). The MemoryFile will be discarded after exiting the with statement.

Parameters

• **raster** (numpy.ndarray) – raster to be masked with dim: [H, W].

• **transform** (affine.Affine) – the transform of the raster.

• **shapes** (GeoJSON-like dict or an object that implements the Python geo) – interface protocol (such as a Shapely Polygon) Passed to rasterio.mask.mask

• **nodata** (int or float, optional) – Passed to rasterio.mask.mask: Data points outside shapes are set to nodata.

• **kwargs** (optional) – Passed to rasterio.mask.mask.

Returns masked – raster with dim: [H, W] and points outside shapes set to nodata

Return type numpy.ndarray or numpy.ma.MaskedArray

climada.util.coordinates.set_df_geometry_points(df_val, scheduler=None, crs=None)

Set given geometry to given dataframe using dask if scheduler.

Parameters

• **df_val** (GeoDataFrame) – contains latitude and longitude columns
- **scheduler** *(str, optional)* – used for dask map_partitions. “threads”, “synchronous” or “processes”

- **crs** *(object (anything readable by pyproj4.CRS.from_user_input), optional)* – Coordinate Reference System, if omitted or None: df_val.geometry.crs

`climada.util.coordinates.fao_code_def()`

Generates list of FAO country codes and corresponding ISO numeric-3 codes.

Returns

- **iso_list** *(list)* – list of ISO numeric-3 codes

- **faocode_list** *(list)* – list of FAO country codes

`climada.util.coordinates.country_faocode2iso(input_fao)`

Convert FAO country code to ISO numeric-3 codes.

Parameters

- **input_fao** *(int or array)* – FAO country codes of countries (or single code)

Returns

- **output_iso** – ISO numeric-3 codes of countries (or single code)

Return type

int or array

`climada.util.coordinates.country_iso2faocode(input_iso)`

Convert ISO numeric-3 codes to FAO country code.

Parameters

- **input_iso** *(iterable of int)* – ISO numeric-3 code(s) of country/countries

Returns

- **output_faocode** – FAO country code(s) of country/countries

Return type

numpy.array

5.4.6 climada.util.dates_times module

`climada.util.dates_times.date_to_str(date)`

Compute date string in ISO format from input datetime ordinal int. :Parameters: **date** *(int or list or np.array)* – input datetime ordinal

Return type

str or list(str)

`climada.util.dates_times.str_to_date(date)`

Compute datetime ordinal int from input date string in ISO format. :Parameters: **date** *(str or list)* – idate string in ISO format, e.g. ‘2018-04-06’

Return type

int

`climada.util.dates_times.datetime64_to_ordinal(datetime)`

Converts from a numpy datetime64 object to an ordinal date. See https://stackoverflow.com/a/21916253 for the horrible details. :Parameters: **datetime** *(np.datetime64, or list or np.array)* – date and time

Return type

int

`climada.util.dates_times.last_year(ordinal_vector)`

Extract first year from ordinal date

Parameters

- **ordinal_vector** *(list or np.array)* – input datetime ordinal

Return type

int
climada.util.dates_times.

first_year(ordinal_vector)

Extract first year from ordinal date

Parameters

- **ordinal_vector** (list or np.array) – input datetime ordinal

Return type

int

5.4.7 climada.util.dwd_icon_loader module

climada.util.dwd_icon_loader.

download_icon_grib

(download_icon_grib, run_datetime, model_name='icon-eu-eps', parameter_name='vmax_10m', max_lead_time=None, download_dir=None)

Download the gribfiles of a weather forecast run for a certain weather parameter from open-data.dwd.de/weather/nwp/.

Parameters

- **run_datetime** (datetime) – The starting timepoint of the forecast run
- **model_name** (str) – the name of the forecast model written as it appears in the folder structure in opendata.dwd.de/weather/nwp/ or ‘test’
- **parameter_name** (str) – the name of the meteorological parameter written as it appears in the folder structure in opendata.dwd.de/weather/nwp/
- **max_lead_time** (int) – number of hours for which files should be downloaded, will default to maximum available data
- **download_dir** (: str or Path) – directory where the downloaded files should be saved in

Returns

- **file_names** – a list of filenames that link to all just downloaded or available files from the forecast run, defined by the input parameters

Return type

list

climada.util.dwd_icon_loader.

delete_icon_grib

delete_icon_grib, run_datetime, model_name='icon-eu-eps', parameter_name='vmax_10m', max_lead_time=None, download_dir=None)

Delete the downloaded gribfiles of a weather forecast run for a certain weather parameter from open-data.dwd.de/weather/nwp/.

Parameters

- **run_datetime** (datetime) – The starting timepoint of the forecast run
- **model_name** (str) – the name of the forecast model written as it appears in the folder structure in opendata.dwd.de/weather/nwp/
- **parameter_name** (str) – the name of the meteorological parameter written as it appears in the folder structure in opendata.dwd.de/weather/nwp/
- **max_lead_time** (int) – number of hours for which files should be deleted, will default to maximum available data
- **download_dir** (: str or Path) – directory where the downloaded files are stored at the moment

climada.util.dwd_icon_loader module

climada.util.dwd_icon_loader.

download_icon_centroids_file

download_icon_centroids_file, model_name='icon-eu-eps', download_dir=None)

Create centroids based on netcdf files provided by dwd, links found here:

Parameters

- **model_name** *(str)* – the name of the forecast model written as it appears in the folder structure in opendata.dwd.de/weather/nwp/
- **download_dir** *(str or Path)* – directory where the downloaded files should be saved in

Returns **file_name** – absolute path and filename of the downloaded and decompressed netcdf file

Return type **str**

5.4.8 climada.util.earth_engine module

5.4.9 climada.util.files_handler module

climada.util.files_handler.to_list *(num_exp, values, val_name)*

Check size and transform to list if necessary. If size is one, build a list with num_exp repeated values.

Parameters

- **num_exp** *(int)* – expected number of list elements
- **values** *(object or list(object))* – values to check and transform
- **val_name** *(str)* – name of the variable values

Return type **list**

climada.util.files_handler.get_file_names *(file_name)*

Return list of files contained. Supports globbing.

Parameters **file_name** *(str or list(str))* – Either a single string or a list of strings that are either - a file path - or the path of the folder containing the files - or a globbing pattern.

Return type **list(str)**

5.4.10 climada.util.finance module

climada.util.finance.net_present_value *(years, disc_rates, val_years)*

Compute net present value.

Parameters

- **years** *(np.array)* – array with the sequence of years to consider.
- **disc_rates** *(np.array)* – discount rate for every year in years.
- **val_years** *(np.array)* – cash flow at each year.

Return type **float**

climada.util.finance.income_group *(cntry_iso, ref_year, shp_file=None)*

Get country’s income group from World Bank’s data at a given year, or closest year value. If no data, get the natural earth’s approximation.

Parameters

- **cntry_iso** *(str)* – key = ISO alpha_3 country
- **ref_year** *(int)* – reference year
• **shp_file** ([cartopy.io.shapereader.Reader, optional]) – shape file with INCOME_GRP attribute for every country. Load Natural Earth admin0 if not provided.

climada.util.finance.gdp

Get country's (current value) GDP from World Bank's data at a given year, or closest year value. If no data, get the natural earth's approximation.

Parameters

- **cntry_iso** (**str**) – key = ISO alpha_3 country
- **ref_year** (**int**) – reference year
- **shp_file** ([cartopy.io.shapereader.Reader, optional]) – shape file with INCOME_GRP attribute for every country. Load Natural Earth admin0 if not provided.
- **per_capita** (**boolean, optional**) – If True, GDP is returned per capita

Return type float

5.4.11 climada.util.hdf5_handler module

climada.util.hdf5_handler.read (**file_name, with_refs=False**)

Load a hdf5 data structure from a file.

Parameters

- **file_name** – file to load
- **with_refs** – enable loading of the references. Default is unset, since it increments the execution time considerably.

Returns dictionary structure containing all the variables.

Return type contents

Examples

```python
>>> # Contents contains the Matlab data in a dictionary.
>>> contents = read("/pathto/dummy.mat")
>>> # Contents contains the Matlab data and its reference in a dictionary.
>>> contents = read("/pathto/dummy.mat", True)
```

Raises Exception while reading –

climada.util.hdf5_handler.get_string (**array**)

Form string from input array of unsigned integers.

Parameters **array** – array of integers

Return type string

climada.util.hdf5_handler.get_str_from_ref (**file_name, var**)

Form string from a reference HDF5 variable of the given file.

Parameters

- **file_name** – matlab file name
- **var** – HDF5 reference variable
Return type string
climada.util.hdf5_handler.get_list_str_from_ref(file_name, var)
Form list of strings from a reference HDF5 variable of the given file.

Parameters

• file_name – matlab file name
• var – array of HDF5 reference variable

Return type string
climada.util.hdf5_handler.get_sparse_csr_mat(mat_dict, shape)
Form sparse matrix from input hdf5 sparse matrix data type.

Parameters

• mat_dict – dictionary containing the sparse matrix information.
• shape – tuple describing output matrix shape.

Return type sparse csr matrix

5.4.12 climada.util.lines_polys_handler module

class climada.util.lines_polys_handler.DisaggMethod(value)
Bases: enum.Enum
Disaggregation Method for the … function
DIV: the geometry’s distributed to equal parts over all its interpolated points FIX: the geometry’s value is replicated over all its interpolated points
DIV = 'div'
FIX = 'fix'

class climada.util.lines_polys_handler.AggMethod(value)
Bases: enum.Enum
Aggregation Method for the aggregate_impact_mat function
SUM: the impact is summed over all points in the polygon/line
SUM = 'sum'

climada.util.lines_polys_handler.calc_geom_impact(exp, impf_set, haz, res, to_meters=False, disagg_met=DisaggMethod.DIV, disagg_val=None, agg_met=AggMethod.SUM)
Compute impact for exposure with (multi-)polygons and/or (multi-)lines. Lat/Lon values in exp.gdf are ignored, only exp.gdf.geometry is considered.
The geometries are first disaggregated to points. Polygons: grid with resolution res*res. Lines: points along the line separated by distance res. The impact per point is then re-aggregated for each geometry.

Parameters

• exp (Exposures) – The exposure instance with exp.gdf.geometry containing (multi-)polygons and/or (multi-)lines
• **impf_set** (*ImpactFuncSet*) – The set of impact functions.

• **haz** (*Hazard*) – The hazard instance.

• **res** (*float*) – Resolution of the disaggregation grid (polygon) or line (lines).

• **to_meters** (*bool, optional*) – If True, res is interpreted as meters, and geometries are projected to an equal area projection for disaggregation. The exposures are then projected back to the original projections before impact calculation. The default is False.

• **disagg_met** (*DisaggMethod*) – Disaggregation method of the shapes’s original value onto its interpolated points. ‘DIV’: Divide the value evenly over all the new points; ‘FIX’: Replicate the value onto all the new points. Default is ‘DIV’. Works in combination with the kwarg ‘disagg_val’.

• **disagg_val** (*float, optional*) – Specifies what number should be taken as the value, which is to be disaggregated according to the method provided in disagg_met. None: The shape’s value is taken from the exp.gdf.value column. float: This given number will be disaggregated according to the method. In case exp.gdf.value column exists, original values in there will be ignored. The default is None.

• **agg_met** (*AggMethod*) – Aggregation method of the point impacts into impact for respective parent-geometry. If ‘SUM’, the impact is summed over all points in each geometry. The default is ‘SUM’.

Returns Impact object with the impact per geometry (rows of exp.gdf). Contains two additional attributes ‘geom_exp’ and ‘coord_exp’, the first one being the original line or polygon geometries for which impact was computed.

Return type *Impact*

See also:

exp_geom_to_pnt exposures disaggregation method

climada.util.lines_polys_handler.**impact_pnt_agg**(impact_pnt, exp_pnt_gdf, agg_met)

Aggregate the impact per geometry.

The output Impact object contains an extra attribute ‘geom_exp’ containing the geometries.

Parameters

• **impact_pnt** (*Impact*) – Impact object with impact per exposure point (lines of exp_pnt)

• **exp_pnt_gdf** (*gpd.GeoDataFrame*) – Geodataframe of an exposures featuring a multi-index. First level indicating membership of original geometries, second level the disaggregated points. The exposure is obtained for instance with the disaggregation method exp_geom_to_pnt().

• **agg_met** (*AggMethod*) – Aggregation method of the point impacts into impact for respective parent-geometry. If ‘SUM’, the impact is summed over all points in each geometry. The default is ‘SUM’.

Returns impact_agg – Impact object with the impact per original geometry. Original geometry additionally stored in attribute ‘geom_exp’; coord_exp contains only representative points (lat/lon) of those geometries.

Return type *Impact*

See also:

exp_geom_to_pnt exposures disaggregation method
climada.util.lines_polys_handler.calc_grid_impact(exp, impf_set, haz, grid,
 disagg_met=DisaggMethod.DIV,
 disagg_val=None,
 agg_met=AggMethod.SUM)

Compute impact for exposure with (multi-)polygons and/or (multi-)lines. Lat/Lon values in exp.gdf are ignored, only exp.gdf.geometry is considered.

The geometries are first disaggregated to points. Polygons: grid with resolution res*res. Lines: points along the line separated by distance res. The impact per point is then re-aggregated for each geometry.

Parameters

- **exp** (*Exposures*) – The exposure instance with exp.gdf.geometry containing (multi-)polygons and/or (multi-)lines
- **impf_set** (*ImpactFuncSet*) – The set of impact functions.
- **haz** (*Hazard*) – The hazard instance.
- **grid** (*np.array()*) – Grid on which to disaggregate the exposures. Provided as two vectors [x_grid, y_grid].
- **disagg_met** (*DisaggMethod*) – Disaggregation method of the shapes’s original value onto its interpolated points. ‘DIV’: Divide the value evenly over all the new points; ‘FIX’: Replicate the value onto all the new points. Default is ‘DIV’. Works in combination with the kwarg ‘disagg_val’.
- **disagg_val** (*float, optional*) – Specifies what number should be taken as the value, which is to be disaggregated according to the method provided in disagg_met. None: The shape’s value is taken from the exp.gdf.value column. float: This given number will be disaggregated according to the method. In case exp.gdf.value column exists, original values in there will be ignored. The default is None.
- **agg_met** (*AggMethod*) – Aggregation method of the point impacts into impact for respective parent-geometry. If ‘SUM’, the impact is summed over all points in each geometry. The default is ‘SUM’.

Returns Impact object with the impact per geometry (rows of exp.gdf). Contains two additional attributes ‘geom_exp’ and ‘coord_exp’, the first one being the original line or polygon geometries for which impact was computed.

Return type *Impact*

See also:

- **exp_geom_to_pnt** *disaggregate exposures*

climada.util.lines_polys_handler.plot_eai_exp_geom(imp_geom, centered=False, figsize=(9, 13), **kwargs)

Plot the average impact per exposure polygon.

Parameters

- **imp_geom** (*Impact*) –
 Impact instance with imp_geom set (i.e. computed from exposures with polygons)
- **centered** (*bool, optional*) – Center the plot. The default is False.
- **figsize** (*float, float, optional*) – Figure size. The default is (9, 13).
- ****kwargs (*dict*) – Keyword arguments for GeoDataFrame.plot()
Returns matplotlib axes instance

Return type ax

climada.util.lines_polys_handler.exp_geom_to_pnt (exp, res, to_meters, disagg_met, disagg_val)

Disaggregate exposures with (multi-)polygons and/or (multi-)lines geometries to points based on a given resolution.

Parameters

• exp (Exposures) – The exposure instance with exp.gdf.geometry containing lines or polygons
• res (float) – Resolution of the disaggregation grid / distance. Can also be a tuple of [x_grid, y_grid] numpy arrays. In this case, to_meters is ignored. This is only possible for Polygon-only exposures.
• to_meters (bool) – If True, res is interpreted as meters, and geometries are projected to an equal area projection for disaggregation. The exposures are then projected back to the original projections before impact calculation. The default is False.
• disagg_met (DisaggMethod) – Disaggregation method of the shapes's original value onto its interpolated points. 'DIV': Divide the value evenly over all the new points; 'FIX': Replicate the value onto all the new points. Default is 'DIV'. Works in combination with the kwarg 'disagg_val'.
• disagg_val (float, optional) – Specifies what number should be taken as the value, which is to be disaggregated according to the method provided in disagg_met. None: The shape's value is taken from the exp.gdf.value column. float: This given number will be disaggregated according to the method. In case exp.gdf.value column exists, original values in there will be ignored The default is None.

Returns exp_pnt – Exposures with a double index geodataframe, first level indicating membership of the original geometries of exp, second for the point disaggregation within each geometries.

Return type Exposures

climada.util.lines_polys_handler.exp_geom_to_grid (exp, grid, disagg_met, disagg_val)

Disaggregate exposures with (multi-)polygon geometries to points based on a pre-defined grid.

Parameters

• exp (Exposures) – The exposure instance with exp.gdf.geometry containing polygons
• grid (np.array()) – Grid on which to disaggregate the exposures. Provided as two vectors [x_grid, y_grid].
• disagg_met (DisaggMethod) – Disaggregation method of the shapes's original value onto its interpolated points. 'DIV': Divide the value evenly over all the new points; 'FIX': Replicate the value onto all the new points. Default is 'DIV'. Works in combination with the kwarg 'disagg_val'.
• disagg_val (float, optional) – Specifies what number should be taken as the value, which is to be disaggregated according to the method provided in disagg_met. None: The shape's value is taken from the exp.gdf.value column. float: This given number will be disaggregated according to the method. In case exp.gdf.value column exists, original values in there will be ignored The default is None.

Returns exp_pnt – Exposures with a double index geodataframe, first level indicating membership of the original geometries of exp, second for the point disaggregation within each geometries.

Return type Exposures
Note: Works with polygon geometries only. No points or lines are allowed.

climada.util.lines_polys_handler.gdf_to_pnts(gdf, res, to_meters)

Disaggregate geodataframe with (multi-)polygons geometries to points.

Parameters

- **gdf** (*gpd.GeoDataFrame*) – Geodataframe instance with gdf.geometry containing (multi-)lines or (multi-)polygons. Points are ignored.
- **res** (*float*) – Resolution of the disaggregation grid. Can also be a tuple of [x_grid, y_grid] numpy arrays. In this case, to_meters is ignored.
- **to_meters** (*bool*) – If True, the geometries are projected to an equal area projection before the disaggregation. res is then in meters. The exposures are then reprojected into the original projections before the impact calculation.

Returns

- **gdf_pnt** – with a double index, first for the geometries of exp, second for the point disaggregation of the geometries.

Return type *gpd.GeoDataFrame*

climada.util.lines_polys_handler.gdf_to_grid(gdf, grid)

Disaggregate geodataframe with (multi-)polygons geometries to points based on a pre-defined grid.

Parameters

- **gdf** (*gpd.GeoDataFrame*) – Geodataframe instance with gdf.geometry containing (multi-)polygons.
- **grid** (*np.array*) – Grid on which to disaggregate the exposures. Provided as two vectors [x_grid, y_grid].

Returns

- **gdf_pnt** – with a double index, first for the geometries of exp, second for the point disaggregation of the geometries.

Return type *gpd.GeoDataFrame*

Note: Works only with polygon geometries. No mixed inputs (with lines or points) are allowed.

:raises AttributeError: if other geometry types than polygons are contained in the: :raises dataframes:

climada.util.lines_polys_handler.reproject_grid(x_grid, y_grid, orig_crs, dest_crs)

Reproject a grid from one crs to another

Parameters

- **x_grid** – x-coordinates
- **y_grid** – y-coordinates
- **orig_crs** (*pyproj.CRS*) – original CRS of the grid
- **dest_crs** (*pyproj.CRS*) – CRS of the grid to be reprojected to

Returns Grid coordinates in reprojected crs

Return type *x_trafo, y_trafo*
climada.util.lines_polys_handler.reproject_poly(poly, orig_crs, dest_crs)

Reproject a polygon from one crs to another

Parameters
- **poly** (shapely Polygon) – Polygon
- **orig_crs** (pyproj.CRS) – original CRS of the polygon
- **dest_crs** (pyproj.CRS) – CRS of the polygon to be reprojected to

Returns **poly** – Polygon in desired projection

Return type shapely Polygon

climada.util.lines_polys_handler.set_imp_mat(impact, imp_mat)

Set Impact attributes from the impact matrix. Returns a copy. Overwrites eai_exp, at_event, aai_agg, imp_mat.

Parameters
- **impact** (Impact) – Impact instance.
- **imp_mat** (sparse.csr_matrix) – matrix num_events x num_exp with impacts.

Returns **imp** – Copy of impact with eai_exp, at_event, aai_agg, imp_mat set.

Return type Impact

climada.util.lines_polys_handler.eai_exp_from_mat(imp_mat, freq)

Compute impact for each exposures from the total impact matrix

Parameters
- **imp_mat** (sparse.csr_matrix) – matrix num_events x num_exp with impacts.
- **frequency** (np.array) – frequency of events

Returns **eai_exp** – expected impact for each exposure within a period of 1/frequency_unit

Return type np.array

climada.util.lines_polys_handler.at_event_from_mat(imp_mat)

Compute impact for each hazard event from the total impact matrix

Parameters **imp_mat** (sparse.csr_matrix) – matrix num_events x num_exp with impacts.

Returns **at_event** – impact for each hazard event

Return type np.array

climada.util.lines_polys_handler.aai_agg_from_at_event(at_event, freq)

Aggregate impact at_event

Parameters
- **at_event** (np.array) – impact for each hazard event
- **frequency** (np.array) – frequency of event

Returns average impact within a period of 1/frequency_unit, aggregated

Return type float
5.4.13 climada.util.plot module

climada.util.plot.geo_bin_from_array(array_sub, geo_coord, var_name, title, pop_name=True, buffer=1.0, extend='neither', proj=<Derived Projected CRS: +proj=eqc +ellps=WGS84 +a=6378137.0 +lon_0=0.0 +to ...
...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (unknown) - N[north]: Northing (unknown) - h[up]: Ellipsoidal height (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Equidistant Cylindrical Datum: unknown - Ellipsoid: WGS 84 - Prime Meridian: Greenwich, shapes=True, axes=None, figsize=(9, 13), adapt_fontsize=True, **kwargs)

Plot array values binned over input coordinates.

Parameters

- array_sub (np.array(1d or 2d) or list(np.array)) – Each array (in a row or in the list) are values at each point in corresponding geo_coord that are binned in one subplot.
- geo_coord (2d np.array or list(2d np.array)) – (lat, lon) for each point in a row. If one provided, the same grid is used for all subplots. Otherwise provide as many as subplots in array_sub.
- var_name (str or list(str)) – label to be shown in the colorbar. If one provided, the same is used for all subplots. Otherwise provide as many as subplots in array_sub.
- title (str or list(str)) – subplot title. If one provided, the same is used for all subplots. Otherwise provide as many as subplots in array_sub.
- pop_name (bool, optional) – add names of the populated places, by default True.
- buffer (float, optional) – border to add to coordinates, by default BUFFER
- extend (str, optional) – extend border colorbar with arrows. ['neither' l 'both' l 'min' l 'max'], by default 'neither'
- proj (ccrs, optional) – coordinate reference system of the given data, by default ccrs.PlateCarree()
- shapes (bool, optional) – Overlay Earth’s countries coastlines to matplotlib.pyplot axis. The default is True
- axes (Axes or ndarray(Axes), optional) – by default None
- figsize (tuple, optional) – figure size for plt.subplots, by default (9, 13)
- adapt_fontsize (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is False.
- **kwargs – arbitrary keyword arguments for hexbin matplotlib function

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

Raises ValueError: – Input array size mismatch

climada.util.plot.geo_im_from_array(array_sub, coord, var_name, title, proj=None, smooth=True, axes=None, figsize=(9, 13), adapt_fontsize=True, **kwargs)

Image(s) plot defined in array(s) over input coordinates.

Parameters

- array_sub (np.array(1d or 2d) or list(np.array)) – Each array (in a row or in the list) are values at each point in corresponding geo_coord that are plotted in one subplot.
• **coord** (2d np.array) – (lat, lon) for each point in a row. The same grid is used for all subplots.

• **var_name** (str or list(str)) – label to be shown in the colorbar. If one provided, the same is used for all subplots. Otherwise provide as many as subplots in array_sub.

• **title** (str or list(str)) – subplot title. If one provided, the same is used for all subplots. Otherwise provide as many as subplots in array_sub.

• **proj** (ccrs, optional) – coordinate reference system used in coordinates, by default None

• **smooth** (bool, optional) – smooth plot to RESOLUTIONxRESOLUTION, by default True

• **axes** (Axes or ndarray(Axes), optional) – by default None

• **figsize** (tuple, optional) – figure size for plt.subplots, by default (9, 13)

• **adapt_fontsize** (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

• ****kwargs** – arbitrary keyword arguments for pcolormesh matplotlib function

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

Raises ValueError –

climada.util.plot.make_map(num_sub=1, figsize=(9, 13), proj=<Derived Projected CRS: +proj=eqc +ellps=WGS84 +a=6378137.0 +lon_0=0.0 +to ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (unknown) - N[north]: Northing (unknown) - h[up]: Ellipsoidal height (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Equidistant Cylindrical Datum: unknown - Ellipsoid: WGS 84 - Prime Meridian: Greenwich, adapt_fontsize=True)

Create map figure with cartopy.

Parameters

• **num_sub** (int or tuple) – number of total subplots in figure OR number of subfigures in row and column: (num_row, num_col).

• **figsize** (tuple) – figure size for plt.subplots

• **proj** (cartopy.crs projection, optional) – geographical projection, The default is PlateCarree default.

• **adapt_fontsize** (bool, optional) – If set to true, the size of the fonts will be adapted to the size of the figure. Otherwise the default matplotlib font size is used. Default is True.

Returns fig, axis_sub

Return type matplotlib.figure.Figure, cartopy.mpl.geoaxes.GeoAxesSubplot

climada.util.plot.add_shapes(axis)

Overlay Earth’s countries coastlines to matplotlib.pyplot axis.

Parameters

• **axis** (cartopy.mpl.geoaxes.GeoAxesSubplot) – Cartopy axis

• **projection** (cartopy.crs projection, optional) – Geographical projection. The default is PlateCarree.
climada.util.plot.add_populated_places

Add city names.

Parameters

- **extent** (list) – geographical limits [min_lon, max_lon, min_lat, max_lat]
- **proj** (cartopy.crs projection, optional) – geographical projection. The default is PlateCarree.
- **fontsize** (int, optional) – Size of the fonts. If set to None, the default matplotlib settings are used.

climada.util.plot.add_cntry_names

Add country names.

Parameters

- **axis** (cartopy.mpl.geoaxes.GeoAxesSubplot) – Cartopy axis.
- **extent** (list) – geographical limits [min_lon, max_lon, min_lat, max_lat]
- **proj** (cartopy.crs projection, optional) – Geographical projection. The default is PlateCarree.
- **fontsize** [int, optional] Size of the fonts. If set to None, the default matplotlib settings are used.

5.14 climada.util.save module

climada.util.save.save

Save variable with provided file name. Uses configuration save_dir folder if no absolute path provided.

Parameters

- **out_file_name** (str) – file name (absolute path or relative to configured save_dir)
- **var** (object) – variable to save in pickle format

climada.util.save.load

Load variable contained in file. Uses configuration save_dir folder if no absolute path provided.

Parameters **in_file_name** (str) – file name

Return type object
5.4.15 climada.util.scalebar_plot module

```
climada.util.scalebar_plot.scale_bar(ax, location, length, metres_per_unit=1000, unit_name='km',
tol=0.01, angle=0, color='black', linewidth=3,
text_offset=0.005, ha='center', va='bottom',
plot_kwars=None, text_kwars=None, **kwargs)
```

Add a scale bar to CartoPy axes.

For angles between 0 and 90 the text and line may be plotted at slightly different angles for unknown reasons. To work around this, override the ‘rotation’ keyword argument with text_kwars.

Parameters

- **ax** – CartoPy axes.
- **location** – Position of left-side of bar in axes coordinates.
- **length** – Geodesic length of the scale bar.
- **metres_per_unit** – Number of metres in the given unit. Default: 1000
- **unit_name** – Name of the given unit. Default: ‘km’
- **tol** – Allowed relative error in length of bar. Default: 0.01
- **angle** – Anti-clockwise rotation of the bar.
- **color** – Color of the bar and text. Default: ‘black’
- **linewidth** – Same argument as for plot.
- **text_offset** – Perpendicular offset for text in axes coordinates. Default: 0.005
- **ha** – Horizontal alignment. Default: ‘center’
- **va** – Vertical alignment. Default: ‘bottom’
- **plot_kwars** – Keyword arguments for plot, overridden by **kwargs.
- **text_kwars** – Keyword arguments for text, overridden by **kwargs.
- **kwargs** – Keyword arguments for both plot and text.

5.4.16 climada.util.select module

```
climada.util.select.get_attributes_with_matching_dimension(obj, dims)
```

Get the attributes of an object that have len(dims) number of dimensions or more, and all dims are individual parts of the attribute’s shape.

Parameters

- **obj (object of any class)** – The object from which matching attributes are returned
- **dims (list[int])** – List of dimensions size to match

Returns

- **list_of_attrs** – List of names of the attributes with matching dimensions

Return type

list[str]
5.4.17 climada.util.value_representation module

climada.util.value_representation.sig_dig(x, n_sig_dig=16)
Rounds x to n_sig_dig number of significant digits. 0, inf, Nan are returned unchanged.

Examples

with n_sig_dig = 5:
1.234567 -> 1.2346, 123456.89 -> 123460.0

Parameters
• x (float) – number to be rounded
• n_sig_dig (int, optional) – Number of significant digits. The default is 16.

Returns Rounded number
Return type float

climada.util.value_representation.sig_dig_list(iterable, n_sig_dig=16)
Vectorized form of sig_dig. Rounds a list of float to a number of significant digits

Parameters
• iterable (iter(float)) – iterable of numbers to be rounded
• n_sig_dig (int, optional) – Number of significant digits. The default is 16.

Returns list of rounded floats
Return type list

climada.util.value_representation.convert_monetary_value(values, abbrev, n_sig_dig=None)

climada.util.value_representation.value_to_monetary_unit(values, n_sig_dig=None, abbreviations=None)

Converts list of values to closest common monetary unit.
0, Nan and inf have not unit.

Parameters
• values (int or float, list(int or float) or np.ndarray(int or float)) – Values to be converted
• n_sig_dig (int, optional) – Number of significant digits to return.
 Examples: n_sig_di=5: 1.234567 -> 1.2346, 123456.89 -> 123460.0
 Default: all digits are returned.
• abbreviations (dict, optional) – Name of the abbreviations for the money 1000s counts

Returns
• mon_val (np.ndarray) – Array of values in monetary unit
• name (string) – Monetary unit
Examples

values = [1e6, 2*1e6, 4.5*1e7, 0, Nan, inf] -> [1, 2, 4.5, 0, Nan, inf] ['M']

5.4.18 climada.util.yearsets module

climada.util.yearsets.impact_yearset (imp, sampled_years, lam=None, correction_fac=True, seed=None)

Create a yearset of impacts (yimp) containing a probabilistic impact for each year in the sampled_years list by sampling events from the impact received as input with a Poisson distribution centered around lam per year (lam = sum(imp.frequency)). In contrast to the expected annual impact (eai) yimp contains impact values that differ among years. When correction factor is true, the yimp are scaled such that the average over all years is equal to the eai.

Parameters

• imp (climada.engine.Impact()) – impact object containing impacts per event

• sampled_years (list) – A list of years that shall be covered by the resulting yimp.

• seed (Any, optional) – seed for the default bit generator default: None

Optional parameters

lam: int The applied Poisson distribution is centered around lam events per year. If no lambda value is given, the default lam = sum(imp.frequency) is used.

correction_fac [boolean] If True a correction factor is applied to the resulting yimp. It is scaled in such a way that the expected annual impact (eai) of the yimp equals the eai of the input impact

Returns

• yimp (climada.engine.Impact()) – yearset of impacts containing annual impacts for all sampled_years

• sampling_vect (2D array) – The sampling vector specifies how to sample the yimp, it consists of one sub-array per sampled_year, which contains the event_ids of the events used to calculate the annual impacts. Can be used to re-create the exact same yimp.

climada.util.yearsets.impact_yearset_from_sampling_vect (imp, sampled_years, sampling_vect, correction_fac=True)

Create a yearset of impacts (yimp) containing a probabilistic impact for each year in the sampled_years list by sampling events from the impact received as input following the sampling vector provided. In contrast to the expected annual impact (eai) yimp contains impact values that differ among years. When correction factor is true, the yimp are scaled such that the average over all years is equal to the eai.

Parameters

• imp (climada.engine.Impact()) – impact object containing impacts per event

• sampled_years (list) – A list of years that shall be covered by the resulting yimp.

• sampling_vect (2D array) – The sampling vector specifies how to sample the yimp, it consists of one sub-array per sampled_year, which contains the event_ids of the events used to calculate the annual impacts. It needs to be obtained in a first call, i.e. [yimp, sampling_vect] = climada_yearsets.impact_yearset(…) and can then be provided in this function to obtain the exact same sampling (also for a different imp object)
Optional parameter

correction_fac [boolean] If True a correction factor is applied to the resulting yimp. It is scaled in such a way that the expected annual impact (eai) of the yimp equals the eai of the input impact.

Returns

- **yimp** – yearset of impacts containing annual impacts for all sampled_years
- **Return type** climada.engine.Impact()

climada.util.yearsets.sample_from_poisson *(n_sampled_years, lam, seed=None)*

Sample the number of events for n_sampled_years

Parameters

- **n_sampled_years** (int) – The target number of years the impact yearset shall contain.
- **lam** (int) – the applied Poisson distribution is centered around lambda events per year
- **seed** (int, optional) – seed for numpy.random, will be set if not None default: None

Returns

- **events_per_year** – Number of events per sampled year
- **Return type** np.ndarray

climada.util.yearsets.sample_events *(events_per_year, freqs_orig, seed=None)*

Sample events uniformely from an array (indices_orig) without replacement (if sum(events_per_year) > n_input_events the input events are repeated (tot_n_events/n_input_events) times, by ensuring that the same events doesn't occur more than once per sampled year).

Parameters

- **events_per_year** (np.ndarray) – Number of events per sampled year
- **freqs_orig** (np.ndarray) – Frequency of each input event
- **seed** (Any, optional) – seed for the default bit generator. Default: None

Returns

- **sampling_vect** – The sampling vector specifies how to sample the yimp, it consists of one sub-array per sampled_year, which contains the event_ids of the events used to calculate the annual impacts.
- **Return type** 2D array

climada.util.yearsets.compute_imp_per_year *(imp, sampling_vect)*

Sample annual impacts from the given event_impacts according to the sampling dictionary

Parameters

- **imp** (climada.engine.Impact()) – impact object containing impacts per event
- **sampling_vect** (2D array) – The sampling vector specifies how to sample the yimp, it consists of one sub-array per sampled_year, which contains the event_ids of the events used to calculate the annual impacts.

Returns

- **imp_per_year** – Sampled impact per year (length = sampled_years)
- **Return type** np.ndarray

climada.util.yearsets.calculate_correction_fac *(imp_per_year, imp)*

Calculate a correction factor that can be used to scale the yimp in such a way that the expected annual impact (eai) of the yimp amounts to the eai of the input imp

Parameters

- **imp_per_year** (np.ndarray) – sampled yimp
• **imp (`climada.engine.Impact()`)** – impact object containing impacts per event

 Returns `correction_factor` – The correction factor is calculated as `imp_eai/yimp_eai`

 Return type int
6.1 Contents

• Introduction
 – What is CLIMADA?
 – This tutorial
 – Resources beyond this tutorial

• CLIMADA features
 – CLIMADA classes

• Tutorial: an example risk assessment
 – Hazard
 * Storm tracks
 * Centroids
 * Hazard footprint
 – Entity
 * Exposures
 * Impact functions
 * Adaptation measures
 * Discount rates
 – Engine
 * Impact
 * Adaptation options appraisal
6.2 Introduction

6.2.1 What is CLIMADA?

CLIMADA is a fully probabilistic climate risk assessment tool. It provides a framework for users to combine exposure, hazard and vulnerability or impact data to calculate risk. Users can create probabilistic impact data from event sets, look at how climate change affects these impacts, and see how effectively adaptation measures can change them. CLIMADA also allows for studies of individual events, historical event sets and forecasts.

The model is highly customisable, meaning that users can work with out-of-the-box data provided for different hazards, population and economic exposure, or can provide their own data for part or all of the analysis. The pre-packaged data make CLIMADA particularly useful for users who focus on just one element of risk, since CLIMADA can ‘fill in the gaps’ for hazard, exposure or vulnerability in the rest of the analysis.

The model core is designed to give as much flexibility as possible when describing the elements of risk, meaning that CLIMADA isn’t limited to particular hazards, exposure types or impacts. We love to see the model applied to new problems and contexts.

CLIMADA provides classes, methods and data for exposure, hazard and impact functions (also called vulnerability functions), plus a financial model and a framework to analyse adaptation measures. Additional classes and data for common uses, such as economic exposures or tropical storms and tutorials for every class are available: see the CLIMADA features section below.

6.2.2 This tutorial

This tutorial is for people new to CLIMADA who want to get a high level understanding of the model and work through an example risk analysis. It will list the current features of the model, and go through a complete CLIMADA analysis to give an idea of how the model works. Other tutorials go into more detail about different model components and individual hazards.

6.2.3 Resources beyond this tutorial

- Installation guide - go here if you’ve not installed the model yet
- CLIMADA Read the Docs home page - for all other documentation
- List of CLIMADA’s features and associated tutorials
- CLIMADA GitHub develop branch documentation for the very latest versions of code and documentation
- CLIMADA paper GitHub repository - for publications using CLIMADA

6.3 CLIMADA features

A risk analysis with CLIMADA can include

1. the statistical risk to your exposure from a set of events,
2. how it changes under climate change, and
3. a cost-benefit analysis of adaptation measures.

CLIMADA is flexible: the “statistical risk” above could be describing the annual expected insured flood losses to a property portfolio, the number of people displaced by an ensemble of typhoon forecasts, the annual disruption to a railway network from landslides, or changes to crop yields.
Users from risk-analysis backgrounds will be familiar with describing the impact of events by combining exposure, hazard and an impact function (or vulnerability curve) that combines the two to describe a hazard’s effects. A CLIMADA analysis uses the same approach but wraps the exposures and their impact functions into a single \texttt{Entity} class, along with discount rates and adaptation options (see the below tutorials for more on CLIMADA’s financial model).

CLIMADA’s \texttt{Impact} object is used to analyse events and event sets, whether this is the impact of a single wildfire, or the global economic risk from tropical cyclones in 2100.

CLIMADA is divided into two parts (two repositories):

1. the core \texttt{climada_python} contains all the modules necessary for the probabilistic impact, the averted damage, uncertainty and forecast calculations. Data for hazard, exposures and impact functions can be obtained from the data API. \texttt{Litpop} is included as demo Exposures module, and \texttt{Tropical cyclones} is included as a demo Hazard module.

2. the petals \texttt{climada_petals} contains all the modules for generating data (e.g., TC_Surge, WildFire, OpenStreeMap, …). Most development is done here. The petals builds-upon the core and does not work as a stand-alone.

6.3.1 CLIMADA classes

This is a full directory of tutorials for CLIMADA’s classes to use as a reference. You don’t need to read all this to do this tutorial, but it may be useful to refer back to.

Core (\texttt{climada_python}):

- **Hazard**: a class that stores sets of geographic hazard footprints, (e.g. for wind speed, water depth and fraction, drought index), and metadata including event frequency. Several predefined extensions to create particular hazards from particular datasets and models are included with CLIMADA:

 - **Tropical cyclone wind**: global hazard sets for tropical cyclone events, constructing statistical wind fields from storm tracks. Subclasses include methods and data to calculate historical wind footprints, create forecast ensembles from ECMWF tracks, and create climatological event sets for different climate scenarios.

 - **European windstorms**: includes methods to read and plot footprints from the Copernicus WISC dataset and for DWD and ICON forecasts.

- **Entity**: this is a container that groups CLIMADA’s socio-economic models. It’s is where the Exposures and Impact Functions are stored, which can then be combined with a hazard for a risk analysis (using the Engine’s Impact class). It is also where Discount Rates and Measure Sets are stored, which are used in adaptation cost-benefit analyses (using the Engine’s CostBenefit class):

 - **Exposures**: geolocated exposures. Each exposure is associated with a value (which can be a dollar value, population, crop yield, etc), information to associate it with impact functions for the relevant hazard(s) (in the Entity’s ImpactFuncSet), a geometry, and other optional properties such as deductables and cover. Exposures can be loaded from a file, specified by the user, or created from regional economic models accessible within CLIMADA, for example:

 - \texttt{LitPop}: regional economic model using nightlight and population maps together with several economic indicators

 - \texttt{Polygons_lines}: use CLIMADA Impf you have your exposure in the form of shapes/polygons or in the form of lines.

 - **ImpactFuncSet**: functions to describe the impacts that hazards have on exposures, expressed in terms of e.g. the % dollar value of a building lost as a function of water depth, or the mortality rate for over-70s as a function of temperature. CLIMADA provides some common impact functions, or they can be user-specified. The following is an incomplete list:

 - ImpactFunc: a basic adjustable impact function, specified by the user

 - IFTropCyclone: impact functions for tropical cyclone winds
• IFRiverFlood: impact functions for river floods
• IFStormEurope: impact functions for European windstorms
– DiscRates: discount rates per year
– MeasureSet: a collection of Measure objects that together describe any adaptation measures being modelled. Adaptation measures are described by their cost, and how they modify exposure, hazard, and impact functions (and have a method to do these things). Measures also include risk transfer options.

• Engine: the CLIMADA Engine contains the Impact and CostBenefit classes, which are where the main model calculations are done, combining Hazard and Entity objects.
 – Impact: a class that stores CLIMADA’s modelled impacts and the methods to calculate them from Exposure, Impact Function and Hazard classes. The calculations include average annual impact, expected annual impact by exposure item, total impact by event, and (optionally) the impact of each event on each exposure point. Includes statistical and plotting routines for common analysis products.
 – Impact_data: The core functionality of the module is to read disaster impact data as downloaded from the International Disaster Database EM-DAT (www.emdat.be) and produce a CLIMADA Impact()-instance from it. The purpose is to make impact data easily available for comparison with simulated impact inside CLIMADA, e.g. for calibration purposes.
 – CostBenefit: a class to appraise adaptation options. It uses an Entity’s MeasureSet to calculate new Impacts based on their adjustments to hazard, exposure, and impact functions, and returns statistics and plotting routines to express cost-benefit comparisons.
 – Unsequa: a module for uncertainty and sensitivity analysis.
 – Unsequa_helper: The InputVar class provides a few helper methods to generate generic uncertainty input variables for exposures, impact function sets, hazards, and entities (including measures cost and disc rates). This tutorial complements the general tutorial on the uncertainty and sensitivity analysis module unsequa.
 – Forecast: This class deals with weather forecasts and uses CLIMADA ImpactCalc.impact() to forecast impacts of weather events on society. It mainly does one thing: It contains all plotting and other functionality that are specific for weather forecasts, impact forecasts and warnings.

climada_petals:
• Hazard:
 – Storm surge: Tropical cyclone surge from linear wind-surge relationship and a bathtub model.
 – River flooding: global water depth hazard for flood, including methods to work with ISIMIP simulations.
 – Crop modelling: combines ISIMIP crop simulations and UN Food and Agrigulture Organization data. The module uses crop production as exposure, with hydrometeorological ‘hazard’ increasing or decreasing production.
 – Wildfire (global): This class is used to model the wildfire hazard using the historical data available and creating synthetic fires which are summarized into event years to establish a comprehensiv probabilistic risk assessment.
 – Landslide: This class is able to handle two different types of landslide source files (in one case, already the finished product of some model output, in the other case just a historic data collection).
 – TCForecast: This class extends the TCTracks class with methods to download operational ECMWF ensemble tropical storm track forecasts, read the BUFR files they’re contained in and produce a TCTracks object that can be used to generate TropCyclone hazard footprints.
 – Emulator: Given a database of hazard events, this module climada.hazard.emulator provides tools to subsample events (or time series of events) from that event database.
 – Drought (global): tutorial under development
• Entity:
 – Exposures:
 • **BlackMarble**: regional economic model from nightlight intensities and economic indicators (GDP, income group). Largely succeeded by LitPop.
 • **OpenStreetMap**: CLIMADA provides some ways to make use of the entire OpenStreetMap data world and to use those data within the risk modelling chain of CLIMADA as exposures.

• Engine:
 – **SupplyChain**: This class allows assessing indirect impacts via Input-Output modeling.

This list will be updated periodically along with new CLIMADA releases. To see the latest, development version of all tutorials, see the tutorials page on the CLIMADA GitHub.

6.4 Tutorial: an example risk assessment

This example will work through a risk assessment for tropical storm wind in Puerto Rico, constructing hazard, exposure and vulnerability and combining them to create an Impact object. Everything you need for this is included in the main CLIMADA installation and additional data will be downloaded by the scripts as required.

6.5 Hazard

Hazards are characterized by their frequency of occurrence and the geographical distribution of their intensity. The **Hazard** class collects events of the same hazard type (e.g. tropical cyclone, flood, drought, …) with intensity values over the same geographic centroids. They might be historical events or synthetic.

See the **Hazard tutorial** to learn about the Hazard class in more detail, and the CLIMADA features section of this document to explore tutorials for different hazards, including **tropical cyclones**, as used here.

Tropical cyclones in CLIMADA and the **TropCyclone** class work like any hazard, storing each event’s wind speeds at the geographic centroids specified for the class. Pre-calculated hazards can be loaded from files (see the **full Hazard tutorial**, but they can also be modelled from a storm track using the **TCTracks** class, based on a storm’s parameters at each time step. This is how we’ll construct the hazards for our example.

So before we create the hazard, we will create our storm tracks and define the geographic centroids for the locations we want to calculate hazard at.

6.5.1 Storm tracks

Storm tracks are created and stored in a separate class, **TCTracks**. We use its method **from_ibtracs_netcdf** to create the tracks from the **IBTRaCS** storm tracks archive. In the next block we will download the full dataset, which might take a little time. However, to plot the whole dataset takes too long (see the second block), so we choose a shorter time range here to show the function. See the **full TropCyclone tutorial** for more detail and troubleshooting.

```python
import numpy as np
from climada.hazard import TCTracks
import warnings  # To hide the warnings
warnings.filterwarnings('ignore')

tracks = TCTracks.from_ibtracs_netcdf(provider='usa', basin='NA')  # Here we download... → the full dataset for the analysis
```

(continues on next page)
afterwards (e.g. return period), but you can also use "year_range" to adjust the
→range of the dataset to be downloaded.
While doing that, you need to make sure that the year 2017 is included if you want...
→to run the blocks with the codes
subsetting a specific tropic cyclone, which happened in 2017. (Of course, you can...
→also change the subsetting codes.)

2022-03-21 14:31:20,322 - climada.hazard.tc_tracks - WARNING - 1122 storm events are...→discarded because no valid wind/pressure values have been found: 1851175N26270, ...
→1851181N22262, 1851192N12300, 1851214N14321, ...
2022-03-21 14:31:20,345 - climada.hazard.tc_tracks - WARNING - 139 storm events are...→discarded because only one valid timestep has been found: 1852232N21293, ...
→1853242N21293, 1855236N12304, 1856221N25277, 1856235N13302, ...
2022-03-21 14:31:22,766 - climada.hazard.tc_tracks - INFO - Progress: 10%
2022-03-21 14:31:25,059 - climada.hazard.tc_tracks - INFO - Progress: 20%
2022-03-21 14:31:27,491 - climada.hazard.tc_tracks - INFO - Progress: 30%
2022-03-21 14:31:30,067 - climada.hazard.tc_tracks - INFO - Progress: 40%
2022-03-21 14:31:32,415 - climada.hazard.tc_tracks - INFO - Progress: 50%
2022-03-21 14:31:34,829 - climada.hazard.tc_tracks - INFO - Progress: 60%
2022-03-21 14:31:37,482 - climada.hazard.tc_tracks - INFO - Progress: 70%
2022-03-21 14:31:39,976 - climada.hazard.tc_tracks - INFO - Progress: 80%
2022-03-21 14:31:42,307 - climada.hazard.tc_tracks - INFO - Progress: 90%
2022-03-21 14:31:44,580 - climada.hazard.tc_tracks - INFO - Progress: 100%
2022-03-21 14:31:45,780 - climada.hazard.tc_tracks - INFO - Progress: 10%
2022-03-21 14:31:45,833 - climada.hazard.tc_tracks - INFO - Progress: 21%
2022-03-21 14:31:45,886 - climada.hazard.tc_tracks - INFO - Progress: 31%
2022-03-21 14:31:45,939 - climada.hazard.tc_tracks - INFO - Progress: 42%
2022-03-21 14:31:45,992 - climada.hazard.tc_tracks - INFO - Progress: 52%
2022-03-21 14:31:46,048 - climada.hazard.tc_tracks - INFO - Progress: 63%
2022-03-21 14:31:46,100 - climada.hazard.tc_tracks - INFO - Progress: 73%
2022-03-21 14:31:46,150 - climada.hazard.tc_tracks - INFO - Progress: 84%
2022-03-21 14:31:46,203 - climada.hazard.tc_tracks - INFO - Progress: 94%
2022-03-21 14:31:46,232 - climada.hazard.tc_tracks - INFO - Progress: 100%

This will load all historical tracks in the North Atlantic into the tracks object (since we set basin='NA'). The
TCTracks.plot method will plot the downloaded tracks, though there are too many for the plot to be very useful:

plotting tracks can be very time consuming, depending on the number of tracks. So...
→we choose only a few here, by limiting the time range to one year
tracks_2017 = TCTracks.from_ibtracs_netcdf(provider='usa', basin='NA', year_range =
→(2017, 2017))
tracks_2017.plot(); # This may take a very long time
It's also worth adding additional time steps to the tracks (though this can be memory intensive!). Most tracks are reported at 3-hourly intervals (plus a frame at landfall). Event footprints are calculated as the maximum wind from any time step. For a fast-moving storm these combined three-hourly footprints give quite a rough event footprint, and it's worth adding extra frames to smooth the footprint artificially (try running this notebook with and without this interpolation to see the effect):

```python
tracks.equal_timestep(time_step_h=0.5)
```

2022-03-21 14:32:39,466 - climada.hazard.tc_tracks - INFO - Interpolating 1049 tracks... → to 0.5h time steps.

Now, irresponsibly for a risk analysis, we're only going to use these historical events: they're enough to demonstrate CLIMADA in action. A proper risk analysis would expand it to include enough events for a statistically robust climatology. See the full TropCyclone tutorial for CLIMADA's stochastic event generation.

6.5.2 Centroids

A hazard's centroids can be any set of locations where we want the hazard to be evaluated. This could be the same as the locations of your exposure, though commonly it is on a regular lat-lon grid (with hazard being imputed to exposure between grid points).

Here we'll set the centroids as a 0.1 degree grid covering Puerto Rico. Centroids are defined by a Centroids class, which has the `from_pnt_bounds` method for generating regular grids and a `plot` method to inspect the centroids.

```python
from climada.hazard import Centroids

min_lat, max_lat, min_lon, max_lon = 17.5, 19.0, -68.0, -65.0
cent = Centroids.from_pnt_bounds((min_lon, min_lat, max_lon, max_lat), res=0.05)
cent.check()
cent.plot();
```
Almost every class in CLIMADA has a `check()` method, as used above. This verifies that the necessary data for an object is correctly provided and logs the optional variables that are not present. It is always worth running it after filling an instance of an object.

6.5.3 Hazard footprint

Now we’re ready to create our hazard object. This will be a `TropCyclone` class, which inherits from the `Hazard` class, and has the `from_tracks` constructor method to create a hazard from a `TCTracks` object at given centroids.

```python
import TropCyclone
haz = TropCyclone.from_tracks(tracks, centroids=cent)
haz.check()
```

In 2017 Hurricane Maria devastated Puerto Rico. In the IBTRaCs event set, it has ID `2017260N12310` (we use this...
rather than the name, as IBTRaCS contains three North Atlantic storms called Maria). We can plot the track:

```r
tracks.subset({"sid": "2017260N12310"}).plot(); # This is how we subset a TCTracks object
```

And plot the hazard on our centroids for Puerto Rico:

```r
haz.plot_intensity(event='2017260N12310');
```

A Hazard object also lets us plot the hazard at different return periods. The IBTRaCS archive produces footprints from

6.5. Hazard
1980 onwards (CLIMADA discarded earlier events) and so the historical period is short. Therefore these plots don’t make sense as ‘real’ return periods, but we’re being irresponsible and demonstrating the functionality anyway.

```python
haz.plot_rp_intensity(return_periods=(5,10,20,40));
```

See the TropCyclone tutorial for full details of the TropCyclone hazard class.

We can also recalculate event sets to reflect the effects of climate change. The `apply_climate_scenario_knu` method applies changes in intensity and frequency projected due to climate change, as described in ‘Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios’ (Knutson et al. 2015). See the tutorial for details.

Exercise: Extend this notebook’s analysis to examine the effects of climate change in Puerto Rico. You’ll need to extend the historical event set with stochastic tracks to create a robust statistical storm climatology - the TCTrack class has the functionality to do this. Then you can apply the `apply_climate_scenario_knu` method to the generated hazard object to create a second hazard climatology representing storm activity under climate change. See how the results change using the different hazard sets.

Next we’ll work on exposure and vulnerability, part of the Entity class.
6.6 Entity

The entity class is a container class that stores exposures and impact functions (vulnerability curves) needed for a risk calculation, and the discount rates and adaptation measures for an adaptation cost-benefit analysis.

As with Hazard objects, Entities can be read from files or created through code. The Excel template can be found in climada_python/climada/data/system/entity_template.xlsx.

In this tutorial we will create an Exposure object using the LitPop economic exposure module, and load a pre-defined wind damage function.

6.6.1 Exposures

The Entity's exposures attribute contains geolocalized values of anything exposed to the hazard, whether monetary values of assets or number of human lives, for example. It is of type Exposures.

See the Exposures tutorial for more detail on the structure of the class, and how to create and import exposures. The LitPop tutorial explains how CLIMADA models economic exposures using night-time light and economic data, and is what we'll use here. To combine your exposure with OpenStreetMap's data see the OSM tutorial.

LitPop is a module that allows CLIMADA to estimate exposed populations and economic assets at any point on the planet without additional information, and in a globally consistent way. Before we try it out with the next code block, we'll need to download a data set and put it into the right folder:

1. Go to the download page on Socioeconomic Data and Applications Center (sedac).
2. You'll be asked to log in or register. Please register if you don't have an account.
3. Wait until several drop-down menus show up.
4. Choose in the drop-down menus: Temporal: single year, FileFormat: GeoTiff, Resolution: 30 seconds. Click “2020” and then “create download”.
5. Copy the file “gpw_v4_population_count_rev11_2020_30_sec.tif” into the folder “~/climada/data”. (Or you can run the block once to find the right path in the error message)

Now we can create an economic Exposure dataset for Puerto Rico.

```
from climada.entity.exposures import LitPop

exp_litpop = LitPop.from_countries('Puerto Rico', res_arcsec = 120)  # We'll go lower_resolution than default to keep it simple
exp_litpop.set_geometries()
# Set geodataframe geometries from lat lon data
exp_litpop.plot_hexbin(pop_name=True, linewidth=4, buffer=0.1);
```
Impact functions describe a relationship between a hazard's intensity and your exposure in terms of a percentage loss. The impact is described through two terms. The Mean Degree of Damage (MDD) gives the percentage of an exposed asset's numerical value that's affected as a function of intensity, such as the damage to a building from wind in terms of its total worth. Then the Proportion of Assets Affected (PAA) gives the fraction of exposures that are affected, such as the mortality rate in a population from a heatwave. These multiply to give the Mean Damage Ratio (MDR), the average impact to an asset.

Impact functions are stored as the Entity's `impact_funcs` attribute, in an instance of the `ImpactFuncSet` class.
which groups one or more ImpactFunc objects. They can be specified manually, read from a file, or you can use CLIMADA’s pre-defined impact functions. We’ll use a pre-defined function for tropical storm wind damage stored in the IFTropCyclone class.

See the Impact Functions tutorial for a full guide to the class, including how data are stored and reading and writing to files.

We initialise an Impact Function with the IFTropCyclone class, and use its from_emanuel_usa method to load the Emanuel (2011) impact function. (The class also contains regional impact functions for the full globe, but we’ll won’t use these for now.) The class’s plot method visualises the function, which we can see is expressed just through the Mean Degree of Damage, with all assets affected.

```python
from climada.entity.impact_funcs import ImpactFuncSet, ImpfTropCyclone

imp_fun = ImpfTropCyclone.from_emanuel_usa()
imp_fun.plot();
```

The plot title also includes information about the function’s ID, which were also set by the from_emanuel_usa class method. The hazard is “TC” and the function ID is 1. Since a study might use several impact functions - for different hazards, or for different types of exposure.

We then create an ImpactFuncSet object to store the impact function. This is a container class, and groups a study’s impact functions together. Studies will often have several impact functions, due to multiple hazards, multiple types of exposure that are impacted differently, or different adaptation scenarios. We add it to our Entity object.

```python
imp_fun_set = ImpactFuncSet([imp_fun])
```

Finally, we can update our LitPop exposure to point to the TC 1 impact function. This is done by adding a column to the exposure:

```python
exp_litpop.gdf['impf_TC'] = 1
```
Here the impf_TC column tells the CLIMADA engine that for a tropical cyclone (TC) hazard, it should use the first impact function defined for TCs. We use the same impact function for all of our exposure.

This is now everything we need for a risk analysis, but while we’re working on the Entity class, we can define the adaptation measures and discount rates needed for an adaptation analysis. If you’re not interested in the cost-benefit analysis, you can skip ahead to the Impact section.

6.6.3 Adaptation measures

CLIMADA’s adaptation measures describe possible interventions that would change event hazards and impacts, and the cost of these interventions.

They are stored as Measure objects within a MeasureSet container class (similarly to ImpactFuncSet containing several ImpactFuncs), and are assigned to the measures attribute of the Entity.

See the [Adaptation Measures tutorial](#) on how to create, read and write measures. CLIMADA doesn’t yet have pre-defined adaptation measures, mostly because they are hard to standardise.

The best way to understand an adaptation measure is by an example. Here’s a possible measure for the creation of coastal mangroves (ignore the exact numbers, they are just for illustration):

```python
from climada.entity import Measure, MeasureSet

meas_mangrove = Measure(
    name='Mangrove',
    haz_type='TC',
    color_rgb=np.array([0.2, 0.2, 0.7]),
    cost=500000000,
    mdd_impact=(1, 0),
    paa_impact=(1, -0.15),
    hazard_inten_imp=(1, -10),
)

meas_set = MeasureSet(measure_list=[meas_mangrove])
meas_set.check()
```

What values have we set here?

- The `haz_type` gives the hazard that this measure affects.
- The `cost` is a flat price that will be used in cost-benefit analyses.
- The `mdd_impact`, `paa_impact`, and `hazard_inten_imp` attributes are all tuples that describes a linear transformation to event hazard, the impact function’s mean damage degree and the impact function’s proportion of assets affected. The tuple `(a, b)` describes a scalar multiplication of the function and a constant to add. So `(1, 0)` is unchanged, `(1.1, 0)` increases values by 10%, and `(1, -10)` decreases all values by 10.

So the Mangrove example above costs 50,000,000 USD, protects 15% of assets from any impact at all (`paa_impact = (1, -0.15)`) and decreases the (effective) hazard intensity by 10 m/s (`hazard_inten_imp = (1, -10)`.
We can apply these measures to our existing Exposure, Hazard and Impact functions, and plot the old and new impact functions:

```python
mangrove_exp, mangrove_imp_fun_set, mangrove_haz = meas_mangrove.apply(exp_litpop, imp_fun_set, haz)
axes1 = imp_fun_set.plot()
axes1.set_title('TC: Emanuel (2011) impact function')
axes2 = mangrove_imp_fun_set.plot()
axes2.set_title('TC: Modified impact function')
```

Text(0.5, 1.0, 'TC: Modified impact function')
Let's define a second measure. Again, the numbers here are made up, for illustration only.

```python
meas_buildings = Measure(
    name='Building code',
    haz_type='TC',
    color_rgb=np.array([0.2, 0.7, 0.5]),
    cost=100000000,
    hazard_freq_cutoff=0.1,
)
meas_set.append(meas_buildings)
meas_set.check()
buildings_exp, buildings_imp_fun_set, buildings_haz = meas_buildings.apply(exp_litpop, → imp_fun_set, haz)
```

This measure describes an upgrade to building codes to withstand 10-year events. The measure costs 100,000,000 USD and, through `hazard_freq_cutoff = 0.1`, removes events with calculated impacts below the 10-year return period.

The Adaptation Measures tutorial describes other parameters for describing adaptation measures, including risk transfer, assigning measures to subsets of exposure, and reassigning impact functions.

We can compare the 5- and 20-year return period hazard (remember: not a real return period due to the small event set!) compared to the adjusted hazard once low-impact events are removed.
It shows there are now very few events at the 5-year return period - the new building codes removed most of these from the event set.

6.6.4 Discount rates

The `disc_rates` attribute is of type `DiscRates`. This class contains the discount rates for the following years and computes the net present value for given values.

See the [Discount Rates tutorial](#) for more details about creating, reading and writing the `DiscRates` class, and how it is used in calculations.

Here we will implement a simple, flat 2% discount rate.

```python
from climada.entity import DiscRates

years = np.arange(1950, 2101)
rates = np.ones(years.size) * 0.02
disc = DiscRates(years=years, rates=rates)
disc.check()
disc.plot()
```
We are now ready to move to the last part of the CLIMADA model for Impact and Cost Benefit analyses.
6.6.5 Define Entity

We are now ready to define our Entity object that contains the exposures, impact functions, discount rates and measures.

```python
from climada.entity import Entity
ent = Entity(
    exposures=exp_litpop,
    disc_rates=disc,
    impact_func_set=imp_fun_set,
    measure_set=meas_set
)
```

6.7 Engine

The CLIMADA Engine is where the main risk calculations are done. It contains two classes, Impact, for risk assessments, and CostBenefit, to evaluate adaptation measures.

6.7.1 Impact

Let us compute the impact of historical tropical cyclones in Puerto Rico.

Our work above has given us everything we need for a risk analysis using the Impact class. By computing the impact for each historical event, the Impact class provides different risk measures, as the expected annual impact per exposure, the probable maximum impact for different return periods and the total average annual impact.

Note: the configurable parameter `CONFIG.maz_matrix_size` controls the maximum matrix size contained in a chunk. You can decrease its value if you are having memory issues when using the Impact’s calc method. A high value will make the computation fast, but increase the memory use. (See the config guide on how to set configuration values.)

CLIMADA calculates impacts by providing exposures, impact functions and hazard to an Impact object’s calc method:

```python
from climada.engine import ImpactCalc
imp = ImpactCalc(ent.exposures, ent.impact_funcs, haz).impact()
```

A useful parameter for the calc method is `save_mat`. When set to `True` (default is `False`), the Impact object saves the calculated impact for each event at each point of exposure, stored as a (large) sparse matrix in the `imp_mat` attribute. This allows for more detailed analysis at the event level.

The Impact class includes a number of analysis tools. We can plot an exceedance frequency curve, showing us how often different damage thresholds are reached in our source data (remember this is only 40 years of storms, so not a full climatology!)

```python
freq_curve = imp.calc_freq_curve()  # impact exceedance frequency curve
freq_curve.plot();
print('Expected average annual impact: {:.3e} USD'.format(imp.aai_agg))
```
Expected average annual impact: 9.068×10^8 USD

We can map the expected annual impact by exposure:

```python
imp.plot_basemap_eai_exposure(buffer=0.1); # average annual impact at each exposure
```

For additional functionality, including plotting the impacts of individual events, see the Impact tutorial.

Exercise: Plot the impacts of Hurricane Maria. To do this you'll need to set `save_mat=True` in the earlier `ImpactCalc.impact()`.

We can save our variables in pickle format using the `save` function and load them with `load`. This will save your results in the folder specified in the configuration file. The default folder is a `results` folder which is created in the current path (see default configuration file `climada/conf/defaults.conf`). However, we recommend to use
CLIMADA documentation, Release 4.0.1

CLIMADA's writers in hdf5 or csv whenever possible.

```python
import os
from climada.util import save, load

### Uncomment this to save - saves by default to ./results/
# save('impact_puerto_rico_tc.p', imp)

### Uncomment this to read the saved data:
# abs_path = os.path.join(os.getcwd(), 'results/impact_puerto_rico_tc.p')
# data = load(abs_path)
```

Impact also has write_csv() and write_excel() methods to save the impact variables, and write_sparse_csr() to save the impact matrix (impact per event and exposure). Use the Impact tutorial to get more information about these functions and the class in general.

6.7.2 Adaptation options appraisal

Finally, let's look at a cost-benefit analysis. The adaptation measures defined with our Entity can be valued by estimating their cost-benefit ratio. This is done in the class CostBenefit.

Let us suppose that the socioeconomic and climatological conditions remain the same in 2040. We then compute the cost and benefit of every adaptation measure from our Hazard and Entity (and plot them) as follows:

```python
from climada.engine import CostBenefit
cost_ben = CostBenefit()
cost_ben.calc(haz, ent, future_year=2040)  # prints costs and benefits
cost_ben.plot_cost_benefit();  # plot cost benefit ratio and averted damage of every_
# exposure
cost_ben.plot_event_view(return_per=(10, 20, 40));  # plot averted damage of each_
# measure for every return period
```

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cost (USD bn)</th>
<th>Benefit (USD bn)</th>
<th>Benefit/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangrove</td>
<td>0.5</td>
<td>11.2129</td>
<td>22.4258</td>
</tr>
<tr>
<td>Building code</td>
<td>0.1</td>
<td>0.00761204</td>
<td>0.0761204</td>
</tr>
</tbody>
</table>

(continues on next page)
Total climate risk: 17.749 (USD bn)
Average annual risk: 0.951281 (USD bn)
Residual risk: 6.52855 (USD bn)

Net Present Values
This is just the start. Analyses improve as we add more adaptation measures into the mix.

Cost-benefit calculations can also include

- climate change, by specifying the `haz_future` parameter in `CostBenefit.calc()`
- changes to economic exposure over time (or to whatever exposure you're modelling) by specifying the `ent_future` parameter in `CostBenefit.calc()`
- different functions to calculate risk benefits. These are specified in `CostBenefit.calc()` and by default use changes to average annual impact
- linear, sublinear and superlinear evolution of impacts between the present and future, specified in the `imp_time_depen` parameter in `CostBenefit.calc()`

And once future hazards and exposures are defined, we can express changes to impacts over time as waterfall diagrams. See the CostBenefit class for more details.

Exercise: repeat the above analysis, creating future climate hazards (see the first exercise), and future exposures based on projected economic growth. Visualise it with the `CostBenefit.plot_waterfall()` method.

6.8 What next?

Thanks for following this tutorial! Take time to work on the exercises it suggested, or design your own risk analysis for your own topic. More detailed tutorials for individual classes were listed in the Features section.

Also, explore the full CLIMADA documentation and additional resources described at the start of this document to learn more about CLIMADA, its structure, its existing applications and how you can contribute.
FAST AND BASIC PYTHON INTRODUCTION

Prepared by G. Aznar Siguan

Most of the examples come from the official Python tutorial: https://docs.python.org/3/tutorial/

7.1 Contents

• Numbers and Strings
• Lists
• Tuples
• Sets
• Dictionaries
• Functions
• Objects

7.2 Numbers and Strings

The operators +, -, * and / work just like in most other languages:

```python
print('Addition: 2 + 2 =', 2 + 2)
print('Subtraction: 50 - 5*6 =', 50 - 5*6)
print('Use of parenthesis: (50 - 5*6) / 4 =', (50 - 5*6) / 4)
print('Classic division returns a float: 17 / 3 =', 17 / 3)
print('Floor division discards the fractional part: 17 // 3 =', 17 // 3)
print('The % operator returns the remainder of the division: 17 % 3 =', 17 % 3)
print('Result * divisor + remainder: 5 * 3 + 2 =', 5 * 3 + 2)
print('5 squared: 5 ** 2 =', 5 ** 2)
print('2 to the power of 7: 2 ** 7 =', 2 ** 7)
```

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type float. Operators with mixed type operands convert the integer operand to floating point:

```python
tax = 12.5 / 100
price = 100.50
price * tax
```
Strings can be enclosed in single quotes (‘…’) or double quotes ("…") with the same result. \ can be used to escape quotes.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding an r before the first quote.

```
print('spam eggs')  # single quotes
print('doesn\'t')    # use \ to escape the single quote...
print("doesn\"t")   # ...or use double quotes instead
print("Yes," he said."
print(""Yes,\"" he said."
print("Isn\'t," she said."
```

Strings can be indexed (subscripted), with the first character having index 0.

Indices may also be negative numbers, to start counting from the right. Note that since -0 is the same as 0, negative indices start from -1.

```
word = 'Python'
print('word = ', word)
print('Character in position 0: word[0] =', word[0])
print('Character in position 5: word[5] =', word[5])
print('Last character: word[-1] =', word[-1])
print('Second-last character: word[-2] =', word[-2])
print('word[-6] =', word[-6])
```

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows you to obtain substring:

```
print('Characters from position 0 (included) to 2 (excluded): word[0:2] =', word[0:2])
print('Characters from position 2 (included) to 5 (excluded): word[2:5] =', word[2:5])
```

7.3 Lists

Lists can be written as a list of comma-separated values (items) between square brackets. Lists might contain items of different types, but usually the items all have the same type.

Like strings (and all other built-in sequence type), lists can be indexed and sliced:

```
squares = [1, 4, 9, 16, 25]
print('squares: ', squares)
print('Indexing returns the item: squares[0] =', squares[0])
print('squares[-1]:', squares[-1])
print('Slicing returns a new list: squares[3:]:', squares[3:])
print('squares[:]:', squares[:])
```

Lists also support operations like concatenation:

```
squares + [36, 49, 64, 81, 100]
```

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

```
cubes = [1, 8, 27, 65, 125]  # something’s wrong here
cubes[3] = 64  # replace the wrong value
cubes.append(216)  # add the cube of 6
print(cubes)
cubes.append(7 ** 3)  # and the cube of 7
```

CLIMADA documentation, Release 4.0.1

Strings can be enclosed in single quotes (‘…’) or double quotes ("…") with the same result. \ can be used to escape quotes.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding an r before the first quote.

```
print('spam eggs')  # single quotes
print('doesn\'t')    # use \ to escape the single quote...
print("doesn\"t")   # ...or use double quotes instead
print("Yes," he said."
print(""Yes,\"" he said."
print("Isn\'t," she said."
```

Strings can be indexed (subscripted), with the first character having index 0.

Indices may also be negative numbers, to start counting from the right. Note that since -0 is the same as 0, negative indices start from -1.

```
word = 'Python'
print('word = ', word)
print('Character in position 0: word[0] =', word[0])
print('Character in position 5: word[5] =', word[5])
print('Last character: word[-1] =', word[-1])
print('Second-last character: word[-2] =', word[-2])
print('word[-6] =', word[-6])
```

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows you to obtain substring:

```
print('Characters from position 0 (included) to 2 (excluded): word[0:2] =', word[0:2])
print('Characters from position 2 (included) to 5 (excluded): word[2:5] =', word[2:5])
```

7.3 Lists

Lists can be written as a list of comma-separated values (items) between square brackets. Lists might contain items of different types, but usually the items all have the same type.

Like strings (and all other built-in sequence type), lists can be indexed and sliced:

```
squares = [1, 4, 9, 16, 25]
print('squares: ', squares)
print('Indexing returns the item: squares[0] =', squares[0])
print('squares[-1]:', squares[-1])
print('Slicing returns a new list: squares[3:]:', squares[3:])
print('squares[:]:', squares[:])
```

Lists also support operations like concatenation:

```
squares + [36, 49, 64, 81, 100]
```

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

```
cubes = [1, 8, 27, 65, 125]  # something’s wrong here
cubes[3] = 64  # replace the wrong value
cubes.append(216)  # add the cube of 6
cubes.append(7 ** 3)  # and the cube of 7
```
List comprehensions provide a concise way to create lists. Common applications are to make new lists where each element is the result of some operations applied to each member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.

```python
squares = []
for x in range(10):
    squares.append(x**2)
squares
```

lambda functions: functions that are not bound to a name, e.g lambda x: x**2
Map applies a function to all the items in an input_list: map(function_to_apply, _list_of_inputs)
squares = list(map(lambda x: x**2, range(10)))
squares

```python
squares = [x**2 for x in range(10)]
squares
```

7.4 Tuples

A tuple consists of a number of values separated by commas, for instance:

```python
t = 12345, 54321, 'hello!'
t[0]
t
```

Tuples may be nested:
```python
u = t, (1, 2, 3, 4, 5)
u
```

Note: execution of this cell will fail
Tuples are immutable:
```python
t[0] = 88888
```

but they can contain mutable objects:
```python
v = ([1, 2, 3], [3, 2, 1])
v
```

Tuples are immutable, and usually contain a heterogeneous sequence of elements that are accessed via unpacking or indexing. Lists are mutable, and their elements are usually homogeneous and are accessed by iterating over the list.

```python
t = 12345, 54321, 'hello!' # tuple packing
x, y, z = t # tuple unpacking
x, y, z
```
7.5 Sets

A set is an unordered collection with no duplicate elements. Basic uses include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like union, intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets.

```python
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
basket # show that duplicates have been removed

'orange' in basket # fast membership testing

'crabgrass' in basket

# Demonstrate set operations on unique letters from two words
a = set('abracadabra')
b = set('alacazam')
a # unique letters in a

a - b # letters in a but not in b

a | b # letters in a or b or both

a & b # letters in both a and b

a ^ b # letters in a or b but not both

# check set documentation
help(set)

# check which methods can be applied on set
dir(set)

# Define a new set and try some set methods (freestyle)
```

7.6 Dictionaries

Unlike sequences, which are indexed by a range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be keys.

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.

```python
tel = {'jack': 4098, 'sape': 4139}
tel['guido'] = 4127
tel

tel['jack']
```
del tel['sape']

tel['irv'] = 4127

tel

list(tel.keys())

sorted(tel.keys())

'guido' in tel

'jack' not in tel

7.7 Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

```python
def fib(n):
    # write Fibonacci series up to n
    '''Print a Fibonacci series up to n.'''
    a, b = 0, 1  # two assignments in one line
    while a < n:
        print(a, end=' ')
        a, b = b, a+b  # two assignments in one line
    print()

# Now call the function we just defined:
fib(2000)
```

The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:

```python
print(fib)
print(type(fib))  # function type
f = fib
f(100)
```

Be careful when using mutable types as inputs in functions, as they might be modified:

```python
def dummy(x):
    x += x

xx = 5
print('xx before function call: ', xx)
dummy(xx)
print('xx after function call: ', xx)

yy = [5]
print('yy before function call: ', yy)
dummy(yy)
print('yy after function call: ', yy)
```
7.7.1 Default argument values:

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:

```python
def ask_ok(prompt, retries=4, reminder='Please try again! '):
    while True:
        ok = input(prompt)
        if ok in ('y', 'ye', 'yes '):
            return True
        if ok in ('n', 'no', 'nop', 'nope '):
            return False
        retries = retries - 1
        if retries < 0:
            raise ValueError('invalid user response')
        print(reminder)
#This function can be called in several ways:
#giving only the mandatory argument:
ask_ok('Do you really want to quit? ')

# giving one of the optional arguments:
ask_ok('OK to overwrite the file? ', 2)

# or even giving all arguments:
ask_ok('OK to overwrite the file? ', 2, 'Come on, only yes or no! ')
```

Functions can also be called using keyword arguments of the form `kwarg=value`:

```python
ask_ok('OK to overwrite the file? ', reminder='Come on, only yes or no! ')
```

Default `None` values: `None` default values can be used to handle optional parameters.

```python
def test(x=None):
    if x is None:
        print('no x here ')
    else:
        print(x)
test()
```

7.8 Objects

Example class definition:

```python
class Dog:
    # same as "class Dog(object)"
    kind = 'canine '  # class variable shared by all instances

def __init__(self, name):
    self. name = name  # instance variable unique to each instance
    self. tricks = []  # creates a new empty list for each dog
```

(continues on next page)
When a class defines an `__init__()` method, class instantiation automatically invokes `__init__()` for the newly-created class instance:

```python
d = Dog('Fido') # creates a new instance of the class and assigns this object to the
# local variable d
d.name

e = Dog('Buddy') # creates a new instance of the class and assigns this object to the
# local variable e
d.add_trick('roll over')
e.add_trick('play dead')
```

```python
d.tricks # unique to d
e.tricks # unique to e
d.kind # shared by all dogs
e.kind # shared by all dogs
```

7.8.1 Inheritance:

The syntax for a derived class definition looks like this:

```python
class DerivedClassName(BaseClassName)
```

A derived class can override any methods of its base class or classes, and a method can call the method of a base class with the same name. Example:

```python
class Animal: # base class
    def __init__(self, kind):
        self.kind = kind
        self.tricks = []
    def add_trick(self, trick): # class method
        self.tricks.append(trick)
class Dog(Animal): # derived class
    def __init__(self):
        super(Dog, self).__init__('canine') # call Animal __init__ method with input...
        #string

fido = Dog() # fido is automatically an animal of kind 'canine'
print(fido.kind)
fido.add_trick('play dead') # Dog class can use Animal class
print(fido.tricks)
```

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:
class DerivedClassName(Base1, Base2, Base3):

7.8.2 Private Variables and Methods:

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. `_spam`) should be treated as a non-public part of the API (whether it is a function, a method or a data member).

Example of internal class use of private method `_update`. The user is not meant to use `_update`, but `update`. However, `_update` can be used internally to be called from the `__init` method:

```python
class Mapping:
    def __init__(self, iterable):
        self.items_list = []
        self._update(iterable)

    def update(self, iterable):
        for item in iterable:
            self.items_list.append(item)

    __update = update  # private copy of original update() method

class MappingSubclass(Mapping):

    def update(self, keys, values):
        # provides new signature for update()
        # but does not break __init__()
        for item in zip(keys, values):
            self.items_list.append(item)
```

240 Chapter 7. Fast and basic Python introduction
8.1 Hazard class

8.1.1 What is a hazard?

A hazard describes weather events such as storms, floods, droughts, or heat waves both in terms of probability of occurrence as well as physical intensity.

8.1.2 How are hazards embedded in the CLIMADA architecture?

Hazards are defined by the base class \texttt{Hazard} which gathers the required attributes that enable the impact computation (such as centroids, frequency per event, and intensity per event and centroid) and common methods such as readers and visualization functions. Each hazard class collects historical data or model simulations and transforms them, if necessary, in order to construct a coherent event database. Stochastic events can be generated taking into account the frequency and main intensity characteristics (such as local water depth for floods or gust speed for storms) of historical events, producing an ensemble of probabilistic events for each historical event. CLIMADA provides therefore an event-based probabilistic approach which does not depend on a hypothesis of a priori general probability distribution choices. Note that one can also reduce the probabilistic approach to a deterministic approach (e.g., story-line or forecasting) by defining the frequency to be 1. The source of the historical data (e.g. inventories or satellite images) or model simulations (e.g. synthetic tropical cyclone tracks) and the methodologies used to compute the hazard attributes and its stochastic events depend on each hazard type and are defined in its corresponding Hazard-derived class (e.g. \texttt{TropCyclone} for tropical cyclones, explained in the tutorial \texttt{TropCyclone}). This procedure provides a solid and homogeneous methodology to compute impacts worldwide. In the case where the risk analysis comprises a specific region where good quality data or models describing the hazard intensity and frequency are available, these can be directly ingested by the platform through the reader functions, skipping the hazard modelling part (in total or partially), and allowing us to easily and seamlessly combine CLIMADA with external sources. Hence the impact model can be used for a wide variety of applications, e.g. deterministically to assess the impact of a single (past or future) event or to quantify risk based on a (large) set of probabilistic events. Note that since the \texttt{Hazard} class is not an abstract class, any hazard that is not defined in CLIMADA can still be used by providing the \texttt{Hazard} attributes.
8.1.3 What do hazards look like in CLIMADA?

A hazard contains events of some hazard type defined at centroids. There are certain variables in a hazard instance that are needed to compute the impact, while others are descriptive and can therefore be set with default values. The full list of looks like this:

<table>
<thead>
<tr>
<th>Mandatory variables</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>units</td>
<td>(str)</td>
<td>units of the intensity</td>
</tr>
<tr>
<td>centroids</td>
<td>Centroids()</td>
<td>centroids of the events</td>
</tr>
<tr>
<td>event_id</td>
<td>(np.array)</td>
<td>id (>0) of each event</td>
</tr>
<tr>
<td>frequency</td>
<td>(np.array)</td>
<td>frequency of each event in years</td>
</tr>
<tr>
<td>intensity</td>
<td>(sparse.csr_matrix)</td>
<td>intensity of the events at centroids</td>
</tr>
<tr>
<td>fraction</td>
<td>(sparse.csr_matrix)</td>
<td>fraction of affected exposures for each event at each centroid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptive variables</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>(np.array)</td>
<td>integer date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1 (ordinal format of datetime library)</td>
</tr>
<tr>
<td>orig</td>
<td>(np.array)</td>
<td>flags indicating historical events (True) or probabilistic (False)</td>
</tr>
<tr>
<td>event_name</td>
<td>(list(str))</td>
<td>name of each event (default: event_id)</td>
</tr>
</tbody>
</table>

Note that intensity and fraction are scipy.sparse matrices of size num_events x num_centroids. The fraction attribute is optional. The Centroids class contains the geographical coordinates where the hazard is defined. A Centroids instance provides the coordinates either as points or raster data together with their Coordinate Reference System (CRS). The default CRS used in climada is the usual EPSG:4326. Centroids provides moreover methods to compute centroids areas, on land mask, country iso mask or distance to coast.

8.1.4 How is this tutorial structured?

Part 1: Read hazards from raster data

Part 2: Read hazards from other data

Part 3: Define hazards manually

Part 4: Analyse hazards

Part 5: Visualize hazards

Part 6: Write (=save) hazards

Part 1: Read hazards from raster data

Raster data can be read in any format accepted by rasterio using Hazard's from_raster() method. The raster information might refer to the intensity or fraction of the hazard. Different configuration options such as transforming the coordinates, changing the CRS and reading only a selected area or band are available through the from_raster() arguments as follows:
```python
#matplotlib inline
import numpy as np
from climada.hazard import Hazard
from climada.util.constants import HAZ_DEMO_FL
# to hide the warnings
import warnings
warnings.filterwarnings('ignore')

# read intensity from raster file HAZ_DEMO_FL and set frequency for the contained event
haz_ven = Hazard.from_raster([HAZ_DEMO_FL], attrs={'frequency':np.ones(1)/2}, haz_ven.type='FL')
haz_ven.check()

# The masked values of the raster are set to 0
# Sometimes the raster file does not contain all the information, as in this case the mask value -9999
# We mask it manually and plot it using plot_intensity()
ha
```
8.1.5 EXERCISE:

1. Read raster data in EPSG 2201 Coordinate Reference System (CRS)

2. Read raster data in its given CRS and transform it to the affine transformation `Affine(0.009000000000000341, 0.0, -69.33714959699981, 0.0, -0.009000000000000341, 10.42822096697894), height=500, width=501`

3. Read raster data in window `Window(10, 10, 20, 30)`

```python
# Put your code here
```

```python
# Solution:
# 1. The CRS can be reprojected using dst_crs option
haz = Hazard.from_raster([HAZ_DEMO_FL], dst_crs='epsg:2201', haz_type='FL')
```

(continues on next page)
Solution 1:
```
centroids CRS: epsg:2201
raster info: {'driver': 'GSBG', 'dtype': 'float32', 'nodata': 1.701410009187828e+38, 'width': 978, 'height': 1091, 'count': 1, 'crs': 'epsg:2201', 'transform': Affine(1011.5372910988809, 0.0, 1120744.5486664253, 0.0, -1011.5372910988809, 1189133.7652687666)}
```

Solution 2:
```
raster info: {'driver': 'GSBG', 'dtype': 'float32', 'nodata': 1.701410009187828e+38, 'width': 501, 'height': 500, 'count': 1, 'crs': CRS.from_epsg(4326), 'transform': Affine(0.009000000000000341, 0.0, -69.33714959699981, 0.0, -0.009000000000000341, 10.42822096697894)}
intensity size: (1, 250500)
```

Solution 3:
```
raster info: {'driver': 'GSBG', 'dtype': 'float32', 'nodata': 1.701410009187828e+38, 'width': 20, 'height': 30, 'count': 1, 'crs': CRS.from_epsg(4326), 'transform': Affine(0.009000000000000341, 0.0, -69.24714959699982, 0.0, -0.009000000000000341, 10.42822096697894)}
intensity size: (1, 1500)
```

2. Transformations of the coordinates can be set using the transform option and...
Part 2: Read hazards from other data

- excel: Hazards can be read from Excel files following the template in `climada_python/climada/data/system/hazard_template.xlsx` using the `from_excel()` method.
- MATLAB: Hazards generated with CLIMADA’s MATLAB version (.mat format) can be read using `from_mat()`.
- vector data: Use `Hazard's from_vector-constructor` to read shape data (all formats supported by `fiona`).
- hdf5: Hazards generated with the CLIMADA in Python (.h5 format) can be read using `from_hdf5()`.

```python
from climada.hazard import Hazard, Centroids
from climada.util import HAZ_DEMO_H5

# CLIMADA’s Python file
# Hazard needs to know the acronym of the hazard type to be constructed!!! Use 'NA' → if not known.
haz_tc_fl = Hazard.from_hdf5(HAZ_DEMO_H5)  # Historic tropical cyclones in Florida → from 1990 to 2004
haz_tc_fl.check()  # Use always the check() method to see if the hazard has been → loaded correctly
```

Part 3: Define hazards manually

A `Hazard` can be defined by filling its values one by one, as follows:

```python
# setting points
import numpy as np
from scipy import sparse


```

(continues on next page)
n_cen = lon.size # number of centroids
n_ev = 10 # number of events

intensity = sparse.csr_matrix(np.random.random((n_ev, n_cen)))
fraction = intensity.copy()
fraction.data.fill(1)

haz = Hazard(haz_type='TC',
 intensity=intensity,
 fraction=fraction,
 centroids=Centroids.from_lat_lon(lat, lon), # default crs used
 units='m',
 event_id=np.arange(n_ev, dtype=int),
 event_name=['ev_12', 'ev_21', 'Maria', 'ev_35',
 'Irma', 'ev_16', 'ev_15', 'Edgar', 'ev_1', 'ev_9'],
 date=np.array([721166, 734447, 734447, 734447, 721167,
 721166, 721167, 721200, 721166, 721166]),
 orig=np.zeros(n_ev, bool),
 frequency=np.ones(n_ev)/n_ev,
)

haz.check()

haz.centroids.plot();
setting raster

```python
import numpy as np
from scipy import sparse

# raster info:
# border upper left corner (of the pixel, not of the center of the pixel)
xf_lat = 22
xo_lon = -72
# resolution in lat and lon
d_lat = -0.5  # negative because starting in upper corner
d_lon = 0.5   # same step as d_lat
# number of points
n_lat = 50
n_lon = 40

n_ev = 10  # number of events
centroids = Centroids.from_pix_bounds(xf_lat, xo_lon, d_lat, d_lon, n_lat, n_lon)  # _default crs used
intensity = sparse.csr_matrix(np.random.random((n_ev, centroids.size)))
fraction = intensity.copy()
fraction.data.fill(1)
```
haz = Hazard('TC',
 centroids=centroids,
 intensity=intensity,
 fraction=fraction,
 units='m',
 event_id=np.arange(n_ev, dtype=int),
 event_name=['ev_12', 'ev_21', 'Maria', 'ev_35',
 'Irma', 'ev_16', 'ev_15', 'Edgar', 'ev_1', 'ev_9'],
 date=np.array([721166, 734447, 734447, 734447, 721167,
 721166, 721167, 721200, 721166, 721166]),
 orig=np.zeros(n_ev, bool),
 frequency=np.ones(n_ev)/n_ev,)

haz.check()
print('Check centroids borders:', haz.centroids.total_bounds)

haz.centroids.plot()

using from_pnt_bounds, the bounds refer to the bounds of the center of the pixel
left, bottom, right, top = xo_lon, -3.0, -52.0, xf_lat
haz.centroids = Centroids.from_pnt_bounds((left, bottom, right, top), 0.5) # default_
→crs used
print('Check centroids borders:', haz.centroids.total_bounds)

Check centroids borders: (-72.0, -3.0, -52.0, 22.0)
Check centroids borders: (-72.25, -3.25, -51.75, 22.25)
8.1.6 Part 4: Analyse Hazards

The following methods can be used to analyse the data in Hazard:

- `calc_year_set()` method returns a dictionary with all the historical (not synthetic) event ids that happened at each year.
- `get_event_date()` returns strings of dates in ISO format.
- To obtain the relation between event ids and event names, two methods can be used `get_event_name()` and `get_event_id()`.

Other methods to handle one or several Hazards are:

- the property `size` returns the number of events contained.
- `append()` is used to expand events with data from another Hazard (and same centroids).
- `select()` returns a new hazard with the selected region, date and/or synthetic or historical filter.
- `remove_duplicates()` removes events with same name and date.
- `local_exceedance_inten()` returns a matrix with the exceedence frequency at every frequency and provided return periods. This is the one used in `plot_rp_intensity()`.
- `reproject_raster()`, `reproject_vector()`, `raster_to_vector()`, `vector_to_raster()` are methods to change centroids’ CRS and between raster and vector data.

Centroids methods:

- centroids properties such as area per pixel, distance to coast, country ISO code, on land mask or elevation are available through different `set_XX()` methods.
- `set_lat_lon_to_meta()` computes the raster meta dictionary from present lat and lon.
- `set_meta_to_lat_lon()` computes lat and lon of the center of the pixels described in attribute `meta`. The raster meta information contains at least: `width`, `height`, `crs` and `transform` data (use `help(Centroids)` for more info). Using raster centroids can increase computing performance for several computations.
- when using lats and lons (vector data) the `geopandas.GeoSeries geometry` attribute contains the CRS information and can be filled with point shapes to perform different computation. The geometry points can be then released using `empty_geometry_points()`.

EXERCISE:

Using the previous hazard `haz_tc_fl` answer these questions:

1. How many synthetic events are contained?
3. How many historical hurricanes occurred in 1999? Which was the year with most hurricanes between 1995 and 2001?
4. What is the number of centroids with distance to coast smaller than 1km?

```python
# Put your code here:
#help(hist_tc.centroids) # If you want to run it, do it after you execute the next block
```
SOLUTION:

1. How many synthetic events are contained?

```python
print('Number of total events:', haz_tc_fl.size)
print('Number of synthetic events:', np.logical_not(haz_tc_fl.orig).astype(int).sum())
```


```python
hist_tc = haz_tc_fl.select(date=('1995-01-01', '2001-12-31'), orig=True)
print('Number of historical events between 1995 and 2001:', hist_tc.size)
```

3. How many historical hurricanes occurred in 1999? Which was the year with most hurricanes between 1995 and 2001?

```python
ev_per_year = hist_tc.calc_year_set() # events ids per year
print('Number of events in 1999:', ev_per_year[1999].size)
max_year = 1995
max_ev = ev_per_year[1995].size
for year, ev in ev_per_year.items():
    if ev.size > max_ev:
        max_year = year
print('Year with most hurricanes between 1995 and 2001:', max_year)
```

4. What is the number of centroids with distance to coast smaller than 1km?

```python
hist_tc.centroids.set_dist_coast()
num_cen_coast = np.argwhere(hist_tc.centroids.dist_coast < 1000).size
print('Number of centroids close to coast:', num_cen_coast)
```

Number of total events: 216
Number of synthetic events: 0
Number of historical events between 1995 and 2001: 109
Number of events in 1999: 16
Year with most hurricanes between 1995 and 2001: 1995
2022-03-16 22:12:57,355 - climada.util.coordinates - INFO - dist_to_coast: UTM 32617 (1/2)
2022-03-16 22:12:59,926 - climada.util.coordinates - INFO - dist_to_coast: UTM 32618 (2/2)
Number of centroids close to coast: 41

8.1.7 Part 5: Visualize Hazards

There are three different plot functions: `plot_intensity()`, `plot_fraction()` and `plot_rp_intensity()`. Depending on the inputs, different properties can be visualized. Check the documentation of the functions:

```python
help(haz_tc_fl.plot_intensity)
help(haz_tc_fl.plot_fraction)
help(haz_tc_fl.plot_rp_intensity)
```

Help on method plot_intensity in module climada.hazard.base:

```
plot_intensity(event=None, centr=None, smooth=True, axis=None, adapt_fontsize=True, **kwargs) method of climada.hazard.base.Hazard instance
```

Plot intensity values for a selected event or centroid.
Parameters

event: int or str, optional

- If event > 0, plot intensities of event with id = event. If event = 0, plot maximum intensity in each centroid. If event < 0, plot abs(event)-largest event. If event is string, plot events with that name.

centr: int or tuple, optional

- If centr > 0, plot intensity of all events at centroid with id = centr. If centr = 0, plot maximum intensity of each event. If centr < 0, plot abs(centr)-largest centroid where higher intensities are reached. If tuple with (lat, lon) plot intensity of nearest centroid.

smooth: bool, optional

- Rescale data to RESOLUTIONxRESOLUTION pixels (see constant in module `climada.util.plot`)

axis: matplotlib.axes._subplots.AxesSubplot, optional

- Axis to use

kwargs: optional

- Arguments for pcolormesh matplotlib function used in event plots or for plot function used in centroids plots

Returns

- matplotlib.axes._subplots.AxesSubplot

Raises

- ValueError

Help on method plot_rp_intensity in module climada.hazard.base:

```
plot_rp_intensity(return_periods=(25, 50, 100, 250), smooth=True, axis=None, ...)
```

```
Hazard instance

Compute and plot hazard exceedance intensity maps for different return periods. Calls local_exceedance_inten.

Parameters
-----------

**return_periods**: tuple(int), optional

- Return periods to consider

**smooth**: bool, optional

- Smooth plot to plot.RESOLUTIONxplot.RESOLUTION

**axis**: matplotlib.axes._subplots.AxesSubplot, optional

- Axis to use

**figsize**: tuple, optional

- Figure size for plt.subplots

**kwargs**: optional

- Arguments for pcolormesh matplotlib function used in event plots

Returns
-------

- axis, inten_stats: matplotlib.axes._subplots.AxesSubplot, np.ndarray

intenstats is return_periods.size x num_centroids

8.1. Hazard class
# 1. Intensities of the largest event (defined as greater sum of intensities):
# All events:
haz_tc_fl.plot_intensity(event=-1) # Largest historical event: 1992230N11325...
   -> hurricane ANDREW

# 2. Maximum intensities at each centroid:
haz_tc_fl.plot_intensity(event=0)

# 3. Intensities of hurricane 1998295N12284:
haz_tc_fl.plot_intensity(event='1998295N12284', cmap='BuGn') # Setting color map

# 4. Tropical cyclone intensities maps for the return periods [10, 50, 75, 100]
_, res = haz_tc_fl.plot_rp_intensity([10, 50, 75, 100])

# 5. Intensities of all the events in centroid with id 50
haz_tc_fl.plot_intensity(centr=50)

# 6. Intensities of all the events in centroid closest to lat, lon = (26.5, -81)
haz_tc_fl.plot_intensity(centr=(26.5, -81));

2022-03-16 22:13:50,822 - climada.hazard.base - INFO - Computing exceedance intensity map for return periods: [10 50 75 100]
2022-03-16 22:13:51,449 - climada.hazard.base - WARNING - Exceedance intensity values below 0 are set to 0. Reason: no negative intensity values were found in hazard.
8.1. Hazard class
TC max intensity at each point

Intensity (m/s)

28.5°N
27°N
25.5°N
24°N
22.5°N
82.5°W 81°W 79.5°W 78°W 76.5°W

Chapter 8. Hazard Tutorials
# 7. one figure with two plots: maximum intensities and selected centroid with all intensities:

```python
from climada.util.plot import make_map
import matplotlib.pyplot as plt
plt.ioff()
fig, ax1, fontsize = make_map(1) # map
```

(continues on next page)
ax2 = fig.add_subplot(2, 1, 2) # add regular axes
haz_tc_fl.plot_intensity(axis=ax1, event=0) # plot original resolution
ax1.plot(-80, 26, 'or', mfc='none', markersize=12)
haz_tc_fl.plot_intensity(axis=ax2, centr=(26, -80))
fig.subplots_adjust(hspace=6.5)
8.1. Hazard class
8.1.8 Part 6: Write (=save) hazards

Hazards can be written and read in hdf5 format as follows:

```python
haz_tc_fl.write_hdf5('results/haz_tc_fl.h5')
haz = Hazard.from_hdf5('results/haz_tc_fl.h5')
haz.check()
```

GeoTiff data is generated using `write_raster()`:

```python
haz_ven.write_raster('results/haz_ven.tif') # each event is a band of the tif file
```

Pickle will work as well:

```python
from climada.util.save import save
this generates a results folder in the current path and stores the output there
save('tutorial_haz_tc_fl.p', haz_tc_fl)
```

8.2 Hazard: Tropical cyclones

Tropical cyclones tracks are gathered in the class `TCTracks` and then provided to the hazard `TropCyclone` which computes the wind gusts at each centroid. `TropCyclone` inherits from `Hazard` and has an associated hazard type TC.

8.2.1 What do tropical cyclones look like in CLIMADA?

`TCTracks` reads and handles historical tropical cyclone tracks of the IBTrACS repository or synthetic tropical cyclone tracks simulated using fully statistical or coupled statistical-dynamical modeling approaches. It also generates synthetic tracks from the historical ones using Wiener processes.

The tracks are stored in the attribute `data`, which is a list of `xarray.Dataset` (see `xarray.Dataset`). Each `Dataset` contains the following variables:

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
</tr>
<tr>
<td>latitude</td>
</tr>
<tr>
<td>longitude</td>
</tr>
</tbody>
</table>
Descriptive variables

- time_step
- radius_max_wind
- max_sustained_wind
- central_pressure
- environmental_pressure

Attributes

- max_sustained_wind_unit
- central_pressure_unit
- sid
- name
- orig_event_flag
- data_provider
- basin
- id_no
- category

8.2.2 How is this tutorial structured?

Part 1: Load TC tracks
a) Load TC tracks from historical records
b) Generate probabilistic events
c) ECMWF Forecast Tracks
d) Load TC tracks from other sources

Part 2: TropCyclone() class
a) Default hazard generation for tropical cyclones
b) Implementing climate change
c) Multiprocessing - improving performance for big computations
d) Making videos

8.2.3 Part 1: Load TC tracks

Records of historical TCs are very limited and therefore the database to study this natural hazard remains sparse. Only a small fraction of the TCs make landfall every year and reliable documentation of past TC landfalling events has just started in the 1950s (1980s - satellite era). The generation of synthetic storm tracks is an important tool to overcome this spatial and temporal limitation. Synthetic dataset are much larger and thus allow to estimate the risk of much rarer events. Here we show the most prominent tools in CLIMADA to load TC tracks from historical records a), generate a probabilistic dataset thereof b), and work with model simulations c).
8.2.4 a) Load TC tracks from historical records

The best-track historical data from the International Best Track Archive for Climate Stewardship (IBTrACS) can easily be loaded into CLIMADA to study the historical records of TC events. The constructor `from_ibtracs_netcdf()` generates the Datasets for tracks selected by IBTrACS id, or by basin and year range. To achieve this, it downloads the first time the IBTrACS data v4 in netcdf format and stores it in `~/climada/data/`. The tracks can be accessed later either using the attribute data or using `get_track()`, which allows to select tracks by its name or id. Use the method `append()` to extend the data list.

If you get an error downloading the IBTrACS data, try to manually access https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/, click on the file `IBTrACS.ALL.v04r00.nc` and copy it to `~/climada/data/`.

To visualize the tracks use `plot()`.

```python
%matplotlib inline
from climada.hazard import TCTracks

tr_irma = TCTracks.from_ibtracs_netcdf(provider='usa', storm_id='2017242N16333') # IRMA 2017
ax = tr_irma.plot();
ax.set_title('IRMA') # set title

other ibtracs selection options
from climada.hazard import TCTracks
years 1993 and 1994 in basin EP.
correct_pres ignores tracks with not enough data. For statistics (frequency of events), these should be considered as well
sel_ibtracs = TCTracks.from_ibtracs_netcdf(provider='usa', year_range=(1993, 1994), basin='EP', correct_pres=False)
print('Number of tracks:', sel_ibtracs.size)
ax = sel_ibtracs.plot();
ax.get_legend()._loc = 2 # correct legend location

track1 = TCTracks.from_ibtracs_netcdf(provider='usa', storm_id='2007314N10093') # SIDR 2007
track2 = TCTracks.from_ibtracs_netcdf(provider='usa', storm_id='2016138N10081') # ROANU 2016
track1.append(track2.data) # put both tracks together
ax = track1.plot();
ax.get_legend()._loc = 2 # correct legend location
ax.set_title('SIDR and ROANU'); # set title
```

(continues on next page)
Number of tracks: 33
2021-06-04 17:07:38,825 - climada.hazard.tc_tracks - INFO - Progress: 100%
2021-06-04 17:07:39,974 - climada.hazard.tc_tracks - INFO - Progress: 100%

8.2. Hazard: Tropical cyclones
```
tr_irma.get_track('2017242N163333')
```

```
<xarray.Dataset>
Dimensions: (time: 123)
Coordinates:
* time (time) datetime64[ns] 2017-08-30 ... 2017-09-13T12:00:00
 lat (time) float32 16.1 16.15 16.2 ... 36.2 36.5 36.8
 lon (time) float32 -26.9 -27.59 -28.3 ... -89.79 -90.1
Data variables:
 time_step (time) float64 3.0 3.0 3.0 ... 3.0 3.0 3.0
```
8.2.5 b) Generate probabilistic events

Once tracks are present in TCTracks, one can generate synthetic tracks for each present track based on directed random walk. Note that the tracks should be interpolated to use the same timestep before generation of probabilistic events.

calc_perturbed_trajectories() generates an ensemble of “nb_synth_tracks” numbers of synthetic tracks is computed for every track. The methodology perturbs the tracks locations, and if decay is True it additionally includes decay of wind speed and central pressure drop after landfall. No other track parameter is perturbed.

```python
here we use tr_irma retrieved from IBTrACS with the function above
select number of synthetic tracks (nb_synth_tracks) to generate per present tracks.
tr_irma.equal_timestep()
tr_irma.calc_perturbed_trajectories(nb_synth_tracks=5)
tr_irma.plot();
```

### GeoAxesSubplot:

![Map of synthetic tracks](image)

8.2. Hazard: Tropical cyclones
EXERCISE

Using the first synthetic track generated,

1. Which is the time frequency of the data?

2. Compute the maximum sustained wind for each day.

# Put your code here

# SOLUTION:
import numpy as np
# select the track
tc_syn = tr_irma.get_track('2017242N16333_gen1')

# 1. Which is the time frequency of the data?
# The values of a DataArray are numpy.arrays.
# The numpy.ediff1d computes the different between elements in an array
diff_time_ns = np.ediff1d(tc_syn['time'])
diff_time_h = diff_time_ns.astype(int)/1000/1000/1000/60/60
print('Mean time frequency in hours:', diff_time_h.mean())
print('Std time frequency in hours:', diff_time_h.std())
print()

# 2. Compute the maximum sustained wind for each day.
print('Daily max sustained wind:', tc_syn['max_sustained_wind'].groupby('time.day').max())
Mean time frequency in hours: 1.0
Std time frequency in hours: 0.0

Daily max sustained wind: <xarray.DataArray 'max_sustained_wind' (day: 15)>
array([100. , 100. , 100. , 123.33333333,
       155. , 155. , 150. , 138. ,
       51.85384486, 58.03963987, 29.03963987, 3.57342356,
       3.35512013, 54. , 99. ])
Coordinates:
  * day (day) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 30 31

8.2.6  c) ECMWF Forecast Tracks

ECMWF publishes tropical cyclone forecast tracks free of charge as part of the WMO essentials. These tracks are detected automatically in the ENS and HRES models. The non-supervised nature of the model may lead to artefacts.

The tc_fcast trackset below inherits from TCTracks, but contains some additional metadata that follows ECMWF's definitions. Try plotting these tracks and compare them to the official cones of uncertainty! The example track at tc_fcast.data[0] shows the data structure.

```python
This functionality is part of climada_petals, uncomment to execute
from climada_petals.hazard import TCForecast
#
tc_fcast = TCForecast()
tc_fcast.fetch_ecmwf()
#
print(tc_fcast.data[0])
```

8.2.7  d) Load TC tracks from other sources

In addition to the historical records of TCs (IBTrACS), the probabilistic extension of these tracks, and the ECMWF Forecast tracks, CLIMADA also features functions to read in synthetic TC tracks from other sources. These include synthetic storm tracks from Kerry Emanuel's coupled statistical-dynamical model (Emanuel et al., 2006 as used in Geiger et al., 2016), synthetic storm tracks from a second coupled statistical-dynamical model (CHAZ) (as described in Lee et al., 2018), and synthetic storm tracks from a fully statistical model (STORM) Bloemendaal et al., 2020). However, these functions are partly under development and/or targeted at advanced users of CLIMADA in the context of very specific use cases. They are thus not covered in this tutorial.
8.2.8 Part 2: TropCyclone() class

The TropCyclone class is a derived class of Hazard. As such, it contains all the attributes and methods of a Hazard. Additionally, it comes with the constructor method from_tracks to model tropical cyclones from tracks contained in a TCTracks instance.

When setting tropical cyclones from tracks, the centroids where to map the wind gusts (the hazard intensity) can be provided. If no centroids are provided, the global centroids GLB_NatID_grid_0360as_adv_2.mat are used.

From the track properties the 1 min sustained peak gusts are computed in each centroid as the sum of a circular wind field (following Holland, 2008) and the translational wind speed that arises from the storm movement. We incorporate the decline of the translational component from the cyclone centre by multiplying it by an attenuation factor. See CLIMADA v1 and references therein for more information.

8.2.9 a) Default hazard generation for tropical cyclones

```python
from climada.hazard import Centroids, TropCyclone

construct centroids
min_lat, max_lat, min_lon, max_lon = 16.99375, 21.95625, -72.48125, -61.66875
cent = Centroids.from_pnt_bounds((min_lon, min_lat, max_lon, max_lat), res=0.12)
cent.check()
cent.plot()

construct tropical cyclones
tc_irma = TropCyclone.from_tracks(tr_irma, centroids=cent)
tc_irma = TropCyclone.from_tracks(tr_irma) # try without given centroids. It might...
take too much space of your memory
and then the kernel will be killed: So, don't use this function without given...
centroids!
.tc_irma.check()
tc_irma.plot_intensity('2017242N16333'); # IRMA
tc_irma.plot_intensity('2017242N16333_gen2'); # IRMA's synthetic track 2
```
8.2. Hazard: Tropical cyclones
8.2.10 b) Implementing climate change

apply_climate_scenario_knu implements the changes on intensity and frequency due to climate change described in Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios of Knutson et al 2015. Other RCP scenarios are approximated from the RCP 4.5 values by interpolating them according to their relative radiative forcing.

```python
an Irma event-like in 2055 under RCP 4.5:
tc_irma = TropCyclone.from_tracks(tr_irma, centroids=cent)
tc_irma_cc = tc_irma.apply_climate_scenario_knu(ref_year=2055, rcp_scenario=45)
tc_irma_cc.plot_intensity('2017242N16333');
```

Note: this method to implement climate change is simplified and does only take into account changes in TC frequency and intensity. However, how hurricane damage changes with climate remains challenging to assess. Records of hurricane damage exhibit widely fluctuating values because they depend on rare, landfalling events which are substantially more volatile than the underlying basin-wide TC characteristics. For more accurate future projections of how a warming climate might shape TC characteristics, there is a two-step process needed. First, the understanding of how climate change affects critical environmental factors (like SST, humidity, etc.) that shape TCs is required. Second, the means of simulating how these changes impact TC characteristics (such as intensity, frequency, etc.) are necessary. Statistical-dynamical models (Emanuel et al., 2006 and Lee et al., 2018) are physics-based and allow for such climate change studies. However, this goes beyond the scope of this tutorial.
8.2.11 c) Multiprocessing - improving performance for big computations

Multiprocessing is part of the tropical cyclone module. Simply provide a process pool as method argument. Below is an example of how large amounts of data could be processed.

**WARNING:** Running multiprocessing code from Jupyter Notebooks can be cumbersome. It’s suggested to copy the code and paste it into an interactive python console.

```python
from climada.hazard import TCTracks, Centroids, TropCyclone
from pathos.pools import ProcessPool as Pool

pool = Pool() # start a pathos pool

lon_min, lat_min, lon_max, lat_max = -160, 10, -100, 36
centr = Centroids.from_pnt_bounds((lon_min, lat_min, lon_max, lat_max), 0.1)

tc_track = TCTracks.from_ibtracs_netcdf(provider='usa', year_range=(1992, 1994), basin='EP')
tc_track.equal_timestep(pool=pool)
tc_track.calc_perturbed_trajectories(pool=pool) # OPTIONAL: if you want to generate a probabilistic set of TC tracks.

tc_haz = TropCyclone.from_tracks(tc_track, centroids=centr, pool=pool)
tc_haz.check()

pool.close()
pool.join()
```

8.2.12 d) Making videos

Videos of a tropical cyclone hitting specific centroids can be created with the method `video_intensity()`.

**WARNING:** Creating an animated gif file may consume a lot of memory, up to the point where the os starts swapping or even an ‘out-of-memory’ exception is thrown.

```python
Note: execution of this cell will fail unless there is enough memory available (>10G)

from climada.hazard import Centroids, TropCyclone, TCTracks

track_name = '2017242N16333' #'2016273N13300' #'1992230N11325'

tr_irma = TCTracks.from_ibtracs_netcdf(provider='usa', storm_id='2017242N16333')

lon_min, lat_min, lon_max, lat_max = -83.5, 24.4, -79.8, 29.6
centr_video = Centroids.from_pnt_bounds((lon_min, lat_min, lon_max, lat_max), 0.04)
centr_video.check()

tc_video = TropCyclone()

tc_list, tr_coord = tc_video.video_intensity(track_name, tr_irma, centr_video, file_name='results/irma_tc_fl.gif')
```
2022-04-08 10:01:31,696 - climada.util.coordinates - INFO: dist_to_coast: UTM 32617
    → (1/1)
2022-04-08 10:01:38,135 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,144 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12032 coastal centroids.
2022-04-08 10:01:38,158 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,170 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,184 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,207 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,232 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,256 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,285 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,296 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,313 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,323 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,338 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,348 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,364 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,374 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,391 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,400 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,416 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,427 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,441 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,452 - climada.hazard.trop_cyclone - INFO: Mapping 1 tracks to 12314 coastal centroids.
2022-04-08 10:01:38,470 - climada.hazard.trop_cyclone - INFO: Progress: 100%
2022-04-08 10:01:38,479 - climada.hazard.trop_cyclone - INFO: Generating video irma_tc_list contains a list with TropCyclone instances plotted at each time step
    tr_coord contains a list with the track path coordinates plotted at each time step

15it [00:53, 3.60s/it]
Saving disk space with mp4

Animated gif images occupy a lot of space. Using mp4 as output format makes the video sequences much smaller! However this requires the package `ffmpeg` to be installed, which is not part of the ordinary climada environment. It can be installed by executing the following command in a console:

```
conda install ffmpeg
```

Creating the same video as above in mp4 format can be done in this way then:

```python
Note: execution of this cell will fail unless there is enough memory available (>12G) and ffmpeg is installed

import shutil
from matplotlib import animation
from matplotlib.pyplot import rcParams

rcParams['animation.ffmpeg_path'] = shutil.which('ffmpeg')
writer = animation.FFMpegWriter(bitrate=500)
tc_list, tr_coord = tc_video.video_intensity(track_name, tr_irma, centr_video, file_name='results/irma_tc_fl.mp4', writer=writer)
```

(continues on next page)
REFERENCES:


8.3 Hazard: winter windstorms / extratropical cyclones in Europe

8.3.1 Or: The StormEurope hazard subclass of CLIMADA

Auth: Jan Hartman & Thomas Röösli
Date: 2018-04-26 & 2020-03-03

This notebook will give a quick tour of the capabilities of the StormEurope hazard class. This includes functionalities to apply probabilistic alterations to historical storms.

```python
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [15, 10]
```
8.3.2 Reading Data

StormEurope was written under the presumption that you’d start out with WISC storm footprint data in netCDF format. This notebook works with a demo dataset. If you would like to work with the real data: (1) Please follow the link and download the file C3S_WISC_FOOTPRINT_NETCDF_0100.tgz from the Copernicus Windstorm Information Service, (2) unzip it (3) uncomment the last two lines in the following codeblock and (4) adjust the variable “WISC_files”.

We first construct an instance and then point the reader at a directory containing compatible .nc files. Since there are other files in there, we must be explicit and use a globbing pattern; supplying incompatible files will make the reader fail.

The reader actually calls `climada.util.files_handler.get_file_names`, so it’s also possible to hand it an explicit list of filenames, or a dirname, or even a list of glob patterns or directories.

```python
from climada.hazard import StormEurope
from climada.util.constants import WS_DEMO_NC

storm_instance = StormEurope.from_footprints(WS_DEMO_NC)

WISC_files = '/path/to/folder/C3S_WISC_FOOTPRINT_NETCDF_0100/fp_era[!er5]*_0.nc'
storm_instance = StormEurope.from_footprints(WISC_files)
```

$CLIMADA_SRC/climada/hazard/centroids/centr.py:822: UserWarning: Geometry is in a 
→ geographic CRS. Results from 'buffer' are likely incorrect. Use 'GeoSeries.to_crs()
→' to re-project geometries to a projected CRS before this operation.

```
xy_pixels = self.geometry.buffer(res / 2).envelope
```

8.3.3 Introspection

Let’s quickly see what attributes this class brings with it:

```python
storm_instance?
```

```
Type: StormEurope
String form: <climada.hazard.storm_europe.StormEurope object at 0x7f2a986b4c70>
File: ~/code/climada_python/climada/hazard/storm_europe.py
Docstring:
A hazard set containing european winter storm events. Historic storm
events can be downloaded at http://wisc.climate.copernicus.eu/ and read
with `from_footprints`. Weather forecasts can be automatically downloaded from
https://opendata.dwd.de/ and read with from_icon_grib(). Weather forecast
from the COSMO-Consortium http://www.cosmo-model.org/ can be read with
from_cosmoe_file().

Attributes

ssi_wisc : np.array, float
 Storm Severity Index (SSI) as recorded in
 the footprint files; apparently not reproducible from the footprint
 values only.
ssi : np.array, float
 SSI as set by set_ssi; uses the Dawkins
 definition by default.
Init docstring: Calls the Hazard init dunder. Sets unit to 'm/s'.
```
You could also try listing all permissible methods with `dir(storm_instance)`, but since that would include the methods from the `Hazard` base class, you wouldn’t know what’s special. The best way is to read the source: uncomment the following statement to read more.

```python
StormEurope??
```

### 8.3.4 Into the Storm Severity Index (SSI)

The SSI, according to Dawkins et al. 2016 or Lamb and Frydendahl, 1991, can be set using `set_ssi`. For demonstration purposes, I show the default arguments. (Check also the defaults using `storm_instance.calc_ssi?`, the method for which `set_ssi` is a wrapper.)

We won’t be using the `plot_ssi` functionality just yet, because we only have two events; the graph really isn’t informative. After this, we’ll generate some more storms to make that plot more aesthetically pleasing.

```python
storm_instance.set_ssi(
 method = 'wind_gust',
 intensity = storm_instance.intensity,
 # the above is just a more explicit way of passing the default
 on_land = True,
 threshold = 25,
 sel_cen = None
 # None is default. sel_cen could be used to subset centroids
)
```

### 8.3.5 Probabilistic Storms

This class allows generating probabilistic storms from historical ones according to a method outlined in Schwierz et al. 2010. This means that per historical event, we generate 29 new ones with altered intensities. Since it’s just a bunch of vector operations, this is pretty fast.

However, we should not return the entire probabilistic dataset in-memory: in trials, this used up 60 GB of RAM, thus requiring a great amount of swap space. Instead, we must select a country by setting the `reg_id` parameter to an ISO_N3 country code used in the Natural Earth dataset. It is also possible to supply a list of ISO codes. If your machine is up for the job of handling the whole dataset, set the `reg_id` parameter to `None`.

Since assigning each centroid a country ID is a rather inefficient affair, you may need to wait a minute or two for the entire WISC dataset to be processed. For the small demo dataset, it runs pretty quickly.

```python
%%time
storm_prob = storm_instance.generate_prob_storms(reg_id=528)
storm_prob.plot_intensity(0);
```
We can get much more fancy in our calls to `generate_prob_storms`; the keyword arguments after `ssi_args` are passed on to `_hist2prob`, allowing us to tweak the probabilistic permutations.

```python
ssi_args = {
 'on_land': True,
 'threshold': 25,
}

storm_prob_xtreme = storm_instance.generate_prob_storms(
 reg_id=[56, 528], # BEL and NLD
 spatial_shift=2,
 ssi_args=ssi_args,
 power=1.5,
 scale=0.3
)
```
We can now check out the SSI plots of both these calculations. The comparison between the historic and probabilistic ssi values, only makes sense for the full dataset.

```python
storm_prob_xtreme.plot_ssi(full_area=True);
storm_prob.plot_ssi(full_area=True);
```
8.3. Hazard: winter windstorms / extratropical cyclones in Europe
9.1 Exposures class

9.1.1 Content

- Defining exposures from your own data
- Loading CLIMADA generated exposure files or generating new ones
- Visualize Exposures
- Write (Save) Exposures
- Dask: improving performance for big exposure

What is an exposure?

Exposure describes the set of assets, people, livelihoods, infrastructures, etc. within an area of interest in terms of their geographic location, their value etc.; in brief - everything potentially exposed to hazards.

What options does CLIMADA offer for me to create an exposure?

CLIMADA has an Exposures class for this purpose. An Exposures instance can be filled with your own data, or loaded from available default sources implemented through some Exposures-type classes from CLIMADA. If you have your own data, they can be provided in the formats of a pandas.DataFrame, a geopandas.GeoDataFrame or simply an Excel file. If you didn’t collect your own data, exposures can be generated on the fly using CLIMADA’s LitPop, BlackMarble or OpenStreetMap modules. See the respective tutorials to learn what exactly they contain and how to use them.

What does an exposure look like in CLIMADA?

An exposure is represented in the class Exposures, which contains a geopandas GeoDataFrame that is accessible through the Exposures gdf attribute. Certain columns of gdf have to be specified, while others are optional (this means that the package climada.engine also works without these variables set.) The full list looks like this:

<table>
<thead>
<tr>
<th>Mandatory columns</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>latitude</td>
<td>float</td>
<td>latitude</td>
</tr>
<tr>
<td>longitude</td>
<td>float</td>
<td>longitude</td>
</tr>
<tr>
<td>value</td>
<td>float</td>
<td>a value for each exposure</td>
</tr>
</tbody>
</table>
### Optional columns

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>impf_</strong>* int</td>
<td>impact functions ids for hazard types. Important attribute, since it relates the exposures to the hazard by specifying the impf_act functions. Ideally it should be set to the specific hazard (e.g. impf_TC) so that different hazards can be set in the same Exposures (e.g. impf_TC and impf_FL). If not provided, set to default impf_ with ids 1 in check().</td>
</tr>
</tbody>
</table>

### Geometry

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>geometry of type PointMain feature of geopandas DataFrame extensionComputed in method set_geometry_points()</td>
</tr>
</tbody>
</table>

### Deductible

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>deductible value for each exposure. Used for insurance</td>
</tr>
</tbody>
</table>

### Cover

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>cover value for each exposure. Used for insurance</td>
</tr>
</tbody>
</table>

### Category ID

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>category id (e.g. building code) for each exposure</td>
</tr>
</tbody>
</table>

### Region ID

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>region id (e.g. country ISO code) for each exposure</td>
</tr>
</tbody>
</table>

### Impf_*

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>centroids index for hazard type. There might be different hazards defined: centr_TC, centr_FL, ...Computed in method assign_centroids()</td>
</tr>
</tbody>
</table>

### Metadata variables

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>str or int</td>
<td>coordinate reference system, see GeoDataFrame.crs</td>
</tr>
</tbody>
</table>

- str describing origin and content of the exposures data

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>reference year</td>
</tr>
</tbody>
</table>

- str: unit of the exposures' values

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dict</td>
<td>dictionary containing corresponding raster properties (if any): width, height, crs and transform must be present at least (transform needs to contain upper left corner!). Exposures might not contain all the points of the corresponding raster.</td>
</tr>
</tbody>
</table>
9.1.2 Defining exposures from your own data

The essential structure of an exposure is similar, irrespective of the data type you choose to provide: As mentioned in the introduction, the key variables to be provided are latitudes, longitudes and values of your exposed assets. While not mandatory, but very useful to provide for the impact calculation at later stages: the impact function id (see impf_* in the table above). The following examples will walk you through how to specify those four variables, and demonstrate the use of a few more optional parameters on the go.

Exposures from a pandas DataFrame

In case you are unfamiliar with the data structure, check out the pandas DataFrame documentation.

```python
import numpy as np
from pandas import DataFrame
from climada.entity import Exposures

Fill a pandas DataFrame with the 3 mandatory variables (latitude, longitude, value) for a number of assets (10'000).
We will do this with random dummy data for purely illustrative reasons:
exp_df = DataFrame()
n_exp = 100*100
provide value
exp_df['value'] = np.arange(n_exp)
provide latitude and longitude
lat, lon = np.mgrid[15 : 35 : complex(0, np.sqrt(n_exp)), 20 : 40 : complex(0, np.sqrt(n_exp))]
exp_df['latitude'] = lat.flatten()
exp_df['longitude'] = lon.flatten()
```

# For each exposure entry, specify which impact function should be taken for which hazard type.
# In this case, we only specify the IDs for tropical cyclone (TC); here, each exposure entry will be treated with the same impact function: the one that has ID '1':
# Of course, this will only be relevant at later steps during impact calculations.
exp_df['impf_TC'] = np.ones(n_exp, int)

```
Let's have a look at the pandas DataFrame
print('\x1b[1;03;30;30m' + 'exp_df is a DataFrame: ', str(type(exp_df)) + '\x1b[0m')
print('\x1b[1;03;30;30m' + 'exp_df looks like: ' + '\x1b[0m')
print(exp_df.head())
```

```
exp_df is a DataFrame: <class 'pandas.core.frame.DataFrame'>
exp_df looks like:
 value latitude longitude impf_TC
0 0.0 15.000000 20.000000 1
1 1.0 15.020020 20.202020 1
2 2.0 15.040040 20.404040 1
3 3.0 15.060061 20.606061 1
4 4.0 15.080081 20.808081 1
```

# Generate Exposures from the pandas DataFrame. This step converts the DataFrame into a CLIMADA Exposures instance!
exp = Exposures(exp_df)
print('\x1b[1;03;30;30m' + 'exp has the type: ', str(type(exp)))

(continues on next page)
```

print('and contains a GeoDataFrame exp.gdf:', str(type(exp.gdf)) + '

set geometry attribute (shapely Points) from GeoDataFrame from latitude and longitude
exp.set_geometry_points()
print('n' + '\n|0;30;30m' + 'check method logs:' + '\n1b[0m')

always apply the check() method in the end. It puts metadata that has not been assigned, and points out missing mandatory data
exp.check()

exp has the type: <class 'climada.entity.exposures.base.Exposures'>
and contains a GeoDataFrame exp.gdf: <class 'geopandas.geodataframe.GeoDataFrame'>

check method logs:

let's have a look at the Exposures instance we created!
print('n' + '\n|0;30;30m' + 'exp looks like:' + '\n1b[0m')
print(exp)

exp looks like:
ref_year: 2018
value_unit: USD
meta: {'crs': 'EPSG:4326'}
crs: EPSG:4326
data:
 value latitude longitude impf_TC geometry
 0 0.0 15.0 20.000000 1 POINT (20.000000 15.000000)
 1 1.0 15.0 20.202020 1 POINT (20.202020 15.000000)
 2 2.0 15.0 20.404040 1 POINT (20.404040 15.000000)
 3 3.0 15.0 20.606061 1 POINT (20.606061 15.000000)
 4 4.0 15.0 20.808081 1 POINT (20.808081 15.000000)
...
9995 9995.0 35.0 39.191919 1 POINT (39.191919 35.000000)
9996 9996.0 35.0 39.393939 1 POINT (39.393939 35.000000)
9997 9997.0 35.0 39.595959 1 POINT (39.595959 35.000000)
9998 9998.0 35.0 39.797980 1 POINT (39.797980 35.000000)
9999 9999.0 35.0 40.000000 1 POINT (40.000000 35.000000)

[10000 rows x 5 columns]
```

Exposures from a geopandas GeoDataFrame

In case you are unfamiliar with data structure, check out the geopandas GeoDataFrame documentation. The main difference to the example above (pandas DataFrame) is that, while previously, we provided latitudes and longitudes which were then converted to a geometry GeoSeries using the set
geometry_points method, GeoDataFrames already come with a defined geometry GeoSeries. In this case, we take the geometry info and use the set_lat_lon method to explicitly provide latitudes and longitudes. This example focuses on data with POINT geometry, but in principle, other geometry types (such as POLYGON and MULTIPOLYGON) would work as well.
import numpy as np
import geopandas as gpd
from climada.entity import Exposures

# Read spatial info from an external file into GeoDataFrame
world = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))
print('World is a GeoDataFrame:', str(type(world)) + '
    World looks like:' + '
        name    geometry
    0 Vatican City POINT (12.45339 41.90328)
    1 San Marino POINT (12.44177 43.93610)
    2 Vaduz POINT (9.51667 47.13372)
    3 Luxembourg POINT (6.13000 49.61166)
    4 Palikir POINT (158.14997 6.91664)

# Generate Exposures: value, latitude and longitude for each exposure entry.
# Convert GeoDataFrame into Exposure instance
exp_gpd = Exposures(world)
print('exp_gpd is an Exposures: ' + str(type(exp_gpd)) + '
    check method logs:
    exp_gpd looks like:
        ref_year: 2018
        value_unit: USD
        meta: {'crs': <Geographic 2D CRS: EPSG:4326> Name: WGS 84
(continues on next page)
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
}
crs: epsg:4326
data:

<table>
<thead>
<tr>
<th>name</th>
<th>geometry</th>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vatican City</td>
<td>POINT (12.45339 41.90328)</td>
<td>0</td>
<td>41.903282</td>
<td>12.453387</td>
</tr>
<tr>
<td>San Marino</td>
<td>POINT (12.44177 43.93610)</td>
<td>1</td>
<td>43.936096</td>
<td>12.441770</td>
</tr>
<tr>
<td>Vaduz</td>
<td>POINT (9.51667 47.13372)</td>
<td>2</td>
<td>47.133724</td>
<td>9.516669</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>POINT (6.13000 49.61166)</td>
<td>3</td>
<td>49.611660</td>
<td>6.130003</td>
</tr>
<tr>
<td>Palikir</td>
<td>POINT (158.14997 6.91664)</td>
<td>4</td>
<td>6.916644</td>
<td>158.149974</td>
</tr>
<tr>
<td>Cairo</td>
<td>POINT (31.24802 30.05191)</td>
<td>197</td>
<td>30.051906</td>
<td>31.248022</td>
</tr>
<tr>
<td>Tokyo</td>
<td>POINT (139.74946 35.68696)</td>
<td>198</td>
<td>35.686963</td>
<td>139.749462</td>
</tr>
<tr>
<td>Paris</td>
<td>POINT (2.33139 48.86864)</td>
<td>199</td>
<td>48.868639</td>
<td>2.331389</td>
</tr>
<tr>
<td>Santiago</td>
<td>POINT (-70.66899 -33.44807)</td>
<td>200</td>
<td>-33.448068</td>
<td>-70.668987</td>
</tr>
<tr>
<td>Singapore</td>
<td>POINT (103.85387 1.29498)</td>
<td>201</td>
<td>1.294979</td>
<td>103.853875</td>
</tr>
</tbody>
</table>

[202 rows x 6 columns]

The fact that Exposures is built around a geopandas.GeoDataFrame offers all the useful functionalities that come with the package. The following examples showcase only a few of those.

```python
Example 1: extract data in a region: latitudes between -5 and 5
sel_exp = exp_gpd.copy() # to keep the original exp_gpd Exposures data
sel_exp.gdf = sel_exp.gdf.cx[:, -5:5]

print('\n' + '\xlb[1;03;30;30m' + 'sel_exp contains a subset of the original data' + '\xlb[0m'
) sel_exp.gdf.head()
```

**sel_exp contains a subset of the original data**

```
name geometry value latitude longitude impf_TC
9 Tarawa POINT (173.01757 1.33819) 9 1.338188 173.017571 1
13 Kigali POINT (30.05859 -1.95164) 13 -1.951644 30.058586 1
```

(continues on next page)
# Example 2: extract data in a polygon
from shapely.geometry import Polygon
sel_polygon = exp_gpd.copy()  # to keep the original exp_gpd Exposures data
poly = Polygon(((0, -10), (0, 10), (10, 5)))
sel_polygon.gdf = sel_polygon.gdf[sel_polygon.gdf.intersects(poly)]

# Let's have a look. Again, the sub-selection is a GeoDataFrame!
print('sel_exp contains a subset of the original data

<table>
<thead>
<tr>
<th>name</th>
<th>geometry</th>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
<th>impf_TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Lome POINT (1.22081 6.13388)</td>
<td>36</td>
<td>6.133883</td>
<td>1.220811</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Malabo POINT (8.78328 3.75002)</td>
<td>84</td>
<td>3.750015</td>
<td>8.783278</td>
<td>1</td>
</tr>
<tr>
<td>113</td>
<td>Cotonou POINT (2.51804 6.40195)</td>
<td>113</td>
<td>6.401954</td>
<td>2.518045</td>
<td>1</td>
</tr>
<tr>
<td>125</td>
<td>Sao Tome POINT (6.73333 0.33340)</td>
<td>125</td>
<td>0.333402</td>
<td>6.733325</td>
<td>1</td>
</tr>
</tbody>
</table>

# Example 3: change coordinate reference system
# use help to see more options: help(sel_exp.to_crs)
sel_polygon.to_crs(epsg=3395, inplace=True)
print('the crs has changed to epsg:3395
the values for latitude and longitude are now according to the new coordinate system:

<table>
<thead>
<tr>
<th>name</th>
<th>geometry</th>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Lome POINT (135900.088 679566.334)</td>
<td>36</td>
<td>679566.333952</td>
<td>135900.087901</td>
</tr>
<tr>
<td>84</td>
<td>Malabo POINT (977749.984 414955.551)</td>
<td>84</td>
<td>414955.550857</td>
<td>977749.983897</td>
</tr>
<tr>
<td>113</td>
<td>Cotonou POINT (280307.458 709388.810)</td>
<td>113</td>
<td>709388.810160</td>
<td>280307.458315</td>
</tr>
<tr>
<td>125</td>
<td>Sao Tome POINT (749550.327 36865.909)</td>
<td>125</td>
<td>36865.908682</td>
<td>749550.327404</td>
</tr>
</tbody>
</table>

# Example 4: concatenate exposures
exp_all = Exposures.concat([sel_polygon, sel_exp.to_crs(epsg=3395)])

# the output is of type Exposures
print('exp_all type and number of rows:', type(exp_all), exp_all.gdf.shape[0])
print('number of unique rows:', exp_all.gdf.drop_duplicates().shape[0])

9.1. Exposures class
# NaNs will appear in the missing values

```python
def_all.gdf.head()
```

```
exp_all type and number of rows: <class 'climada.entity.exposures.base.Exposures'> 25
number of unique rows: 23

<table>
<thead>
<tr>
<th>name</th>
<th>geometry</th>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
<th>impf_TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lome</td>
<td>POINT (135900.088 679566.334)</td>
<td>36 679566.333952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malabo</td>
<td>POINT (977749.984 414955.551)</td>
<td>84 414955.550857</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotonou</td>
<td>POINT (280307.458 709388.810)</td>
<td>113 709388.810160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sao Tome</td>
<td>POINT (749550.327 36865.909)</td>
<td>125 36865.908682</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarawa</td>
<td>POINT (1926027.883 147982.749)</td>
<td>9 147982.748978</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Exposures of any file type supported by Geopandas and Pandas

Geopandas can read almost any vector-based spatial data format including ESRI shapefile, GeoJSON files and more, see readers geopandas. Pandas supports formats such as csv, html or sql; see readers pandas. Using the corresponding readers, DataFrame and GeoDataFrame can be filled and provided to Exposures following the previous examples.

Exposures from an excel file

If you manually collect exposure data, Excel may be your preferred option. In this case, it is easiest if you format your data according to the structure provided in the template `climada_python/climada/data/system/entity_template.xlsx`, in the sheet `assets`.

```python
import pandas as pd
from climada.util.constants import ENT_TEMPLATE_XLS
from climada.entity import Exposures

Read your Excel file into a pandas DataFrame (we will use the template example for this demonstration):
file_name = ENT_TEMPLATE_XLS
exp_templ = pd.read_excel(file_name)

Let's have a look at the data:
print('\xlb[1;03;30;30m' + 'exp_templ is a DataFrame:', str(type(exp_templ)) + '\\n \x1b[0m')
print('\xlb[1;03;30;30m' + 'exp_templ looks like:' + '\x1b[0m')
exp_templ.head()
```

```
exp_templ is a DataFrame: <class 'pandas.core.frame.DataFrame'>
exp_templ looks like:

<table>
<thead>
<tr>
<th>latitude</th>
<th>longitude</th>
<th>value</th>
<th>deductible</th>
<th>cover</th>
<th>region_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.933899</td>
<td>-80.128799</td>
<td>1.392750e+10</td>
<td>0</td>
<td>1.392750e+10</td>
<td>1</td>
</tr>
</tbody>
</table>
```
As we can see, the general structure is the same as always: the exposure has latitude, longitude and value columns. Further, this example specified several impact function ids: some for Tropical Cyclones (impf_TC), and some for Floods (impf_FL). It also provides some meta-info (region_id, category_id) and insurance info relevant to the impact calculation in later steps (cover, deductible).

# Generate an Exposures instance from the dataframe.
exptempl = Exposures(exptempl)
print(f''exptempl is now an Exposures:', str(type(exptempl)) + f''
+ 'exptempl.gdf looks like:' + '
+ exptempl.gdf.head()
exptempl.gdf looks like:

<table>
<thead>
<tr>
<th>latitude</th>
<th>longitude</th>
<th>value</th>
<th>deductible</th>
<th>cover</th>
<th>region_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.933899</td>
<td>-80.128799</td>
<td>1.392750e+10</td>
<td>0</td>
<td>1.392750e+10</td>
<td>1</td>
</tr>
<tr>
<td>26.957203</td>
<td>-80.098284</td>
<td>1.259606e+10</td>
<td>0</td>
<td>1.259606e+10</td>
<td>1</td>
</tr>
<tr>
<td>26.783846</td>
<td>-80.748947</td>
<td>1.259606e+10</td>
<td>0</td>
<td>1.259606e+10</td>
<td>1</td>
</tr>
<tr>
<td>26.645524</td>
<td>-80.550704</td>
<td>1.259606e+10</td>
<td>0</td>
<td>1.259606e+10</td>
<td>1</td>
</tr>
<tr>
<td>26.897796</td>
<td>-80.596929</td>
<td>1.259606e+10</td>
<td>0</td>
<td>1.259606e+10</td>
<td>1</td>
</tr>
</tbody>
</table>

9.1. Exposures class
Exposures from a raster file

Last but not least, you may have your exposure data stored in a raster file. Raster data may be read in from any file-type supported by rasterio.

```python
from rasterio.windows import Window
from climada.util.constants import HAZ_DEMO_FL
from climada.entity import Exposures

We take an example with a dummy raster file (HAZ_DEMO_FL), running the method set_from_raster directly loads the necessary info from the file into an Exposures instance.
exp_raster = Exposures.from_raster(HAZ_DEMO_FL, window=Window(10, 20, 50, 60))

There are several keyword argument options that come with the set_from_raster method (such as specifying a window, if not the entire file should be read, or a bounding box). Check them out.

As always, run the check method, such that metadata can be assigned and checked for missing mandatory parameters.
exp_raster.check()
print('Meta:', exp_raster.meta)

Meta: {'driver': 'GSGB', 'dtype': 'float32', 'nodata': 1.701410009187828e+38, 'width': 50, 'height': 60, 'count': 1, 'crs': CRS.from_epsg(4326), 'transform': Affine(0.009000000000000341, 0.0, -69.2471495969998, 0.0, -0.009000000000000341, 10.248220966978932)}

Let's have a look at the Exposures instance!
print('
' + '\xlb[1;03;30;30m' + 'exp_raster looks like:' + '\xlb[0m')
exp_raster.gdf.head()
```

exp_raster looks like:

```
+---------------------------------+
| longitude | latitude | value | impf_ |
+---------------------------------+
| 0 -69.24265 10.243721 0.0 1 |
| 1 -69.23365 10.243721 0.0 1 |
| 2 -69.22465 10.243721 0.0 1 |
| 3 -69.21565 10.243721 0.0 1 |
| 4 -69.20665 10.243721 0.0 1 |
+---------------------------------+```
9.1.3 Loading CLIMADA-generated exposure files or generating new ones

In case you already have a CLIMADA-generated file containing Exposures info, you can of course load it back into memory. Most likely, the data format will either be of `.hdf5` or of `.mat`.

In case you neither have your own data, nor a CLIMADA-generated file, you can also create an exposure on the fly using one of the three CLIMADA-internal exposure generators: LitPop, BlackMarble or OpenStreetMap modules. The latter three are extensively described in their own, linked, tutorials.

```python
# read generated with the Python version with from_hdf5()
# note: for .mat data, use the method from_mat() analogously.
from climada.util.constants import EXP_DEMO_H5

exp_hdf5 = Exposures.from_hdf5(EXP_DEMO_H5)
exp_hdf5.check()
print(type(exp_hdf5))
<class 'climada.entity.exposures.base.Exposures'>
```

Before you leave …

After defining an Exposures instance use always the check() method to see which attributes are missing. This method will raise an ERROR if value, longitude or latitude ar missing and an INFO messages for the the optional variables not set.

9.1.4 Visualize Exposures

The method plot_hexbin() uses cartopy and matplotlib's hexbin function to represent the exposures values as 2d bins over a map. Configure your plot by fixing the different inputs of the method or by modifying the returned matplotlib figure and axes.

The method plot_scatter() uses cartopy and matplotlib's scatter function to represent the points values over a 2d map. As usal, it returns the figure and axes, which can be modify afterwards.

The method plot_raster() rasterizes the points into the given resolution. Use the save_tiff option to save the resulting tiff file and the res_raster option to re-set the raster's resolution.

Finally, the method plot_baseemap() plots the scatter points over a satellite image using contextily library.

```python
# Example 1: plot_hexbin method
print('\x1b[1;03;30;30m' + 'Plotting exp_df.' + '\x1b[0m')
axs = exp.plot_hexbin();

# further methods to check out:
# axs.set_xlim(15, 45) to modify x-axis borders, axs.set_ylim(10, 40) to modify y-axis borders
# further keyword arguments to play around with: pop_name, buffer, gridsize, ...
```

Plotting exp_df.
Example 2: plot_scatter method

```python
exp_gpd.to_crs('epsg:3035', inplace=True)
exp_gpd.plot_scatter(pop_name=False);
```

<GeoAxesSubplot>
Example 3: plot_raster method

```python
from climada.util.plot import add_cntry_names  # use climada's plotting utilities

ax = exp.plot_raster();  # plot with same resolution as data
add_cntry_names(ax, [exp.gdf.longitude.min(), exp.gdf.longitude.max(), exp.gdf.latitude.min(), exp.gdf.latitude.max()])

# use keyword argument save_tiff='filepath.tiff' to save the corresponding raster in tiff format
# use keyword argument raster_res='desired number' to change resolution of the raster.
```

2021-06-04 17:07:42,654 - climada.util.coordinates - INFO - Raster from resolution 0.
202020202019355 to 0.202020202019355.

9.1. Exposures class
Example 4: plot_basemap method

```python
import contextily as ctx

# select the background image from the available ctx.providers
ax = exp_temp1.plot_basemap(buffer=30000, cmap='brg');  # using open street map
ax = exp_temp1.plot_basemap(buffer=30000, url=ctx.providers.Stamen.Watercolor, cmap='brg', zoom=9);  # set image zoom
```

2021-06-04 17:07:51,154 - climada.entity.exposures.base - INFO - Setting latitude and longitude attributes.
2021-06-04 17:07:55,046 - climada.entity.exposures.base - INFO - Setting latitude and longitude attributes.
2021-06-04 17:07:58,604 - climada.entity.exposures.base - INFO - Setting latitude and longitude attributes.
Since `Exposures` is a GeoDataFrame, any function for visualization from geopandas can be used. Check making maps and examples gallery.

```python
# other visualization types
exp_templ.gdf.hist(column='value');
```
9.1.5 Write (Save) Exposures

Exposures can be saved in any format available for GeoDataFrame (see fiona.supported_drivers) and DataFrame (pandas IO tools). Take into account that in many of these formats the metadata (e.g. variables ref_year and value_unit) will not be saved. Use instead the format hdf5 provided by Exposures methods write_hdf5() and from_hdf5() to handle all the data.

```python
import fiona; fiona.supported_drivers
from climada import CONFIG
results = CONFIG.local_data.save_dir.dir()

# DataFrame save to csv format. geometry writen as string, metadata not saved!
exptempl.gdf.to_csv(results.joinpath('exptempl.csv'), sep='\t')

# write as hdf5 file
exptempl.write_hdf5(results.joinpath('exp_temp.h5'))
```

Finally, as with any Python object, use climada's save option to save it in pickle format.

```python
# save in pickle format
from climada.util.save import save
# this generates a results folder in the current path and stores the output there
save('exptempl.pkl.p', exptempl) # creates results folder and stores there
```
9.1.6 Dask - improving performance for big exposure

Dask is used in some methods of CLIMADA and can be activated easily by proving the scheduler.

```python
# set_geometry_points is expensive for big exposures
# for small amount of data, the execution time might be even greater when using dask
exp.gdf.drop(columns=['geometry'], inplace=True)
print(exp.gdf.head())
%time exp.set_geometry_points(scheduler='processes')
print(exp.gdf.head())
```

<table>
<thead>
<tr>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
<th>impf_TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>15.0</td>
<td>20.00000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15.0</td>
<td>20.20202</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15.0</td>
<td>20.40404</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15.0</td>
<td>20.60606</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15.0</td>
<td>20.80808</td>
</tr>
</tbody>
</table>

CPU times: user 243 ms, sys: 116 ms, total: 359 ms
Wall time: 2.52 s

<table>
<thead>
<tr>
<th>value</th>
<th>latitude</th>
<th>longitude</th>
<th>impf_TC</th>
<th>geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>15.0</td>
<td>20.00000</td>
<td>POINT (20.00000 15.00000)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15.0</td>
<td>20.20202</td>
<td>POINT (20.20202 15.00000)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15.0</td>
<td>20.40404</td>
<td>POINT (20.40404 15.00000)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15.0</td>
<td>20.60606</td>
<td>POINT (20.60606 15.00000)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15.0</td>
<td>20.80808</td>
<td>POINT (20.80808 15.00000)</td>
</tr>
</tbody>
</table>

9.2 LitPop class

9.2.1 Introduction

LitPop is an Exposures-type class. It is used to initiate gridded exposure data with estimates of either asset value, economic activity or population based on nighttime intensity and population count data.

Background

The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nighttime intensity (“Lit”) and population data (“Pop”).

Asset exposure value is disaggregated to the grid points proportionally to $Lit^m Pop^n$, computed at each grid cell: $Lit^m Pop^n = Lit^m * Pop^n$, with $exponents = [m, n] \in \mathbb{R}^+$ (Default values are $m = n = 1$).

For more information please refer to the related publication (https://doi.org/10.5194/essd-12-817-2020) and data archive (https://doi.org/10.3929/ethz-b-000331316).

Input data

Note: All required data except for the population data from Gridded Population of the World (GPW) is downloaded automatically when an LitPop.set_* method is called.

Warning: Processing the data for the first time can take up huge amounts of RAM (>10 GB), depending on country or region size. Consider using the wrapper function of the data API to download readily computed LitPop exposure data for default values \((n = m = 1)\) on demand.

Nightlight intensity

Black Marble annual composite of the VIIRS day-night band (Grayscale) at 15 arcsec resolution is downloaded from the NASA Earth Observatory: https://earthobservatory.nasa.gov/Features/NightLights (available for 2012 and 2016 at 15 arcsec resolution (~500m)). The first time a nightlight image is used, it is downloaded and stored locally. This might take some time.

Population count

Direct download links are available, also for older versions, i.e.:

- Overview over all versions of GPW v.4: https://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse

The population data from GWP needs to be downloaded manually as TIFF from this site and placed in the SYSTEM_DIR folder of your climada installation.

Downloading existing LitPop asset exposure data

The easiest way to download existing data is using the wrapper function of the data API.

Readily computed LitPop asset exposure data based on \(\text{Lit}^1 \text{Pop}^1\) for 224 countries, distributing produced capital / non-financial wealth of 2014 at a resolution of 30 arcsec can also be downloaded from the ETH Research Repository: https://doi.org/10.3929/ethz-b-000331316. The dataset contains gridded data for more than 200 countries as CSV files.
9.2.2 Attributes

The LitPop class inherits from Exposures. It adds the following attributes:

```python
type LitPop

  exponents : Defining powers (m, n) with which nightlights and population go into Lit**m * Pop**n.
  fin_mode : Socio-economic indicator to be used as total asset value for disaggregation.
  gpw_version : Version number of GPW population data, e.g. 11 for v4.11

fin_mode

The choice of fin_mode is crucial. Implemented choices are:

- 'pc': produced capital (Source: World Bank), incl. manufactured or built assets such as machinery, equipment, and physical structures. The pc-data is stored in the subfolder data/system/Wealth-Accounts_CSV/. Source: https://datacatalog.worldbank.org/dataset/wealth-accounting
- 'pop': population count (source: GPW, same as gridded population)
- 'gdp': gross-domestic product (Source: World Bank)
- 'income_group': gdp multiplied by country's income group + 1
- 'nfw': non-financial household wealth (Source: Credit Suisse)
- 'tw': total household wealth (Source: Credit Suisse)
- 'norm': normalized, total value of country or region is 1.
- 'none': None – LitPop per pixel is returned unchanged

Regarding the GDP (nominal GDP at current USD) and income group values, they are obtained from the World Bank using the pandas-datareader API. If a value is missing, the value of the closest year is considered. When no values are provided from the World Bank, we use the Natural Earth repository values.

9.2.3 Key Methods

- `from_countries`: set exposure for one or more countries, see section `from_countries` below.
- `from_nightlight_intensity`: wrapper around `from_countries` and `from_shape` to load nightlight data to exposure.
- `from_population`: wrapper around `from_countries` and `from_shape_population` to load pure population data to exposure. This can be used to initiate a population exposure set.
- `from_shape_and_countries`: given a shape and a list of countries, exposure is initiated for the countries and then cropped to the shape. See section `Set custom shapes` below.
- `from_shape`: given any shape or geometry and an estimate of total values, exposure is initiated for the shape directly. See section `Set custom shapes` below.
```
Import class LitPop:
from climada.entity import LitPop
```
9.2.4 from_countries

In the following, we will create exposure data sets and plots for a variety of countries, comparing different settings.

Default Settings

Per default, the exposure entity was initiated using the default parameters, i.e. a resolution of 30 arcsec, produced capital ‘pc’ as total asset value and using the exponents $1, 1$.

```python
Initiate a default LitPop exposure entity for Switzerland and Liechtenstein (ISO3-Codes 'CHE' and 'LIE'):
try:
 exp = LitPop.from_countries(['CHE', 'Liechtenstein']) # you can provide either
single countries or a list of countries
except FileExistsError as err:
 print("Reason for error: The GPW population data has not been downloaded, c.f.
section 'Input data' above.")
 raise err
exp.plot_scatter();
```

Region IDs (`region_id`) in this exposure:
```
[756 438]
```

LitPop Exposure for ['CHE', 'Liechtenstein'] at 30 as, year: 2018, financial mode: pc, exp: [1, 1], admin1_calc: False
**fin_mode, resolution and exponents**

Instead on produced capital, we can also downscale other available macroeconomic indicators as estimates of asset value. The indicator can be set via the parameter `fin_mode`, either to 'pc', 'pop', 'gdp', 'income_group', 'nfw', 'tw', 'norm', or 'none'. See descriptions of each alternative above in the introduction.

We can also change the resolution via `res_arcsec` and the `exponents`.

The default resolution is 30 arcsec $\approx 1$ km. A resolution of 3600 arcsec = 1 degree corresponds to roughly 110 km close to the equator.

### 9.2.5 from_population

Let's initiate an exposure instance with the financial mode “income_group” and at a resolution of 120 arcsec (roughly 4 km).

```python
Initiate a LitPop exposure entity for Costa Rica with varied resolution, fin_mode, and exponents:
ex = LitPop.from_countries('Costa Rica', fin_mode='income_group', res_arcsec=120,
exponents=(1,1)) # change the parameters and see what happens...
ex = LitPop.from_countries('Costa Rica', fin_mode='gdp', res_arcsec=90,
exponents=(3,0)) # example of variation
ex.plot_raster(); # note the log scale of the colorbar
ex.plot_scatter();
```

Additionally, we can change the year our exposure is supposed to represent. For this, nightlight and population data are used that are closest to the requested years. Macroeconomic indicators like produced capital are interpolated from available data or scaled proportional to GDP.

Let's load a population exposure map for Switzerland in 2000 and 2021 with a resolution of 300 arcsec:

```
You may want to check if you have downloaded dataset Gridded Population of the World (GPW), v4: Population Count, v4.11
```
# (2000 and 2020) first

```python
pop_2000 = LitPop.from_countries('CHE', fin_mode='pop', res_arcsec=300, exponents=(0, -1), reference_year=2000)
```

Alternatively, we can use `from_population`:

```python
pop_2021 = LitPop.from_population(countries='Switzerland', res_arcsec=300, reference_year=2021)
```

Since no population data for 2021 is available, the closest data point, 2020, is used (see LOGGER.warning)

```python
pop_2000.plot_scatter();
pop_2021.plot_scatter();
```

"""Note the difference in total values on the color bar."""

'Note the difference in total values on the color bar.'
9.2.7 `from_nightlight_intensity` and `from_population`

These wrapper methods can be used to produce exposures that are showing purely nightlight intensity or purely population count.

```python
res = 30 # If you don't get an output after a very long time with country = "MEX", try with res = 100
country = 'JAM' # Try different countries, i.e. 'JAM', 'CHE', 'RWA', 'MEX'
markersize = 4 # for plotting
buffer_deg = 0.04

exp_nightlights = LitPop.from_nightlight_intensity(countries=country, res_arcsec=res)
exp_nightlights.plot_hexbin(linewidth=markersize, buffer=buffer_deg);
Compare to the population map:
exp_population = LitPop().from_population(countries=country, res_arcsec=res)
exp_population.plot_hexbin(linewidth=markersize, buffer=buffer_deg);
Compare to default LitPop exposures:
exp = LitPop().from_countries(countries=country, res_arcsec=res)
exp.plot_hexbin(linewidth=markersize, buffer=buffer_deg);
```
For **Switzerland**, population is resolved on the 3rd administrative level, with 2538 distinct geographical units. Therefore, the purely population-based map is highly resolved.

For **Jamaica**, population is only resolved on the 1st administrative level, with only 14 distinct geographical units. Therefore, the purely population-based map shows large monotonous patches. The combination of Lit and Pop results in a concentration of asset value estimates around the capital city Kingston.

### 9.2.8 Init LitPop-Exposure from custom shapes

The methods `LitPop.from_shape_and_countries` and `LitPop.from_shape` initiate a LitPop-exposure instance for a given custom shape instead of a country. This can be used to initiate exposure for admin1-regions, i.e. cantons, states, districts, - but also for bounding boxes etc.

The difference between the two methods is that for `from_shape_and_countries`, the exposure for one or more whole countries is initiated first and then it is cropped to the shape. Please make sure that the shape is contained in the given countries. With `from_shape`, the shape is initiated directly which is much more resource efficient but requires a `total_value` to be provided by the user.

A population exposure for a custom shape can be initiated directly via `from_population` without providing `total_value`. 

---

For **Switzerland**, population is resolved on the 3rd administrative level, with 2538 distinct geographical units. Therefore, the purely population-based map is highly resolved.

For **Jamaica**, population is only resolved on the 1st administrative level, with only 14 distinct geographical units. Therefore, the purely population-based map shows large monotonous patches. The combination of Lit and Pop results in a concentration of asset value estimates around the capital city Kingston.

### 9.2.8 Init LitPop-Exposure from custom shapes

The methods `LitPop.from_shape_and_countries` and `LitPop.from_shape` initiate a LitPop-exposure instance for a given custom shape instead of a country. This can be used to initiate exposure for admin1-regions, i.e. cantons, states, districts, - but also for bounding boxes etc.

The difference between the two methods is that for `from_shape_and_countries`, the exposure for one or more whole countries is initiated first and then it is cropped to the shape. Please make sure that the shape is contained in the given countries. With `from_shape`, the shape is initiated directly which is much more resource efficient but requires a `total_value` to be provided by the user.

A population exposure for a custom shape can be initiated directly via `from_population` without providing `total_value`. 

---
Example: State of Florida

Using `LitPop.from_shape_and_countries` and `LitPop.from_shape` we initiate LitPop exposures for Florida:

```python
import time
import climada.util.coordinates as u_coord
import climada.entity.exposures.litpop as lp

country_iso3a = 'USA'
state_name = 'Florida'
resolution_arcsec = 600

"""First, we need to get the shape of Florida:"""
admin1_info, admin1_shapes = u_coord.get_admin1_info(country_iso3a)
admin1_info = admin1_info[country_iso3a]
admin1_shapes = admin1_shapes[country_iso3a]
admin1_names = [record['name'] for record in admin1_info]
print(admin1_names)
for idx, name in enumerate(admin1_names):
 if admin1_names[idx] == state_name:
 break
print('Florida index: ' + str(idx))

"""Secondly, we estimate the `total_value"""
`total_value` required user input for `from_shape`, here we assume 5% of total_
---value of the whole USA:
total_value = 0.05 * lp._get_total_value_per_country(country_iso3a, 'pc', 2020)

"""Then, we can initiate the exposures for Florida:"""
start = time.process_time()
exp = LitPop.from_shape(admin1_shapes[idx], total_value, res_arcsec=600, reference_
---year=2020)
print(f'\nRuntime `from_shape` : {time.process_time() - start:1.2f} sec.\n')
exp.plot_scatter(vmin=100, buffer=.5);

['Minnesota', 'Washington', 'Idaho', 'Montana', 'North Dakota', 'Michigan', 'Maine',
 'California', 'New Mexico', 'Texas', 'Alaska', 'Louisiana', 'Mississippi', 'Alabama',
 'Florida', 'Georgia', 'South Carolina', 'North Carolina', 'Virginia', 'District...
---of Columbia', 'Maryland', 'Delaware', 'New Jersey', 'Connecticut', 'Rhode Island',
 'Massachusetts', 'Oregon', 'Hawaii', 'Utah', 'Wyoming', 'Nevada', 'Colorado',
 'South Dakota', 'Nebraska', 'Kansas', 'Oklahoma', 'Iowa', 'Missouri', 'Wisconsin',
 'Illinois', 'Kentucky', 'Arkansas', 'Tennessee', 'West Virginia', 'Indiana']
Florida index: 20

Runtime `from_shape` : 9.01 sec.

<GeoAxesSubplot:title={'center':"LitPop Exposure for custom shape at 600 as, year:...
---2020, exp: [1, 1]'}>
`from_shape_and_countries` does not require `total_value`, but is slower to compute than `from_shape`,
because first, the exposure for the whole USA is initiated:
start = time.process_time()
exp = LitPop.from_shape_and_countries(admin1_shapes[idx], country_iso3a, res_
arcsec=600, reference_year=2020)
print(f'\n Runtime `from_shape_and_countries` : (time.process_time() - start:1.2f)\nsec.\n')
exp.plot_scatter(vmin=100, buffer=.5);
"""Note the differences in computational speed and total value between the two_""""
 approaches"

Runtime `from_shape_and_countries` : 24.49 sec.

'Note the differences in computational speed and total value between the two_"""" approaches'
9.2.9 Example: Zurich city area

You can also define your own shape as a Polygon:

```python
import time
from shapely.geometry import Polygon

"""initiate LitPop exposures for a geographical box around the city of Zurich:"""
bounds = (8.41, 47.25, 8.70, 47.47)  # (min_lon, max_lon, min_lat, max_lat)
total_value=1000  # required user input for `from_shape`, here we just assume USD 1000...
of total value
shape = Polygon([
    (bounds[0], bounds[3]),
    (bounds[2], bounds[3]),
    (bounds[2], bounds[1]),
    (bounds[0], bounds[1])
])

import time
start = time.process_time()
exp = LitPop.from_shape(shape, total_value)
print(f'\nRuntime `from_shape` : {time.process_time() - start:.2f} sec.')
exp.plot_scatter();
# `from_shape_and_countries` does not require `total_value`, but is slower to compute:
start = time.process_time()
exp = LitPop.from_shape_and_countries(shape, 'Switzerland')
```

(continues on next page)
Runtime `from_shape_and_countries` : 3.18 sec.

"""Note the difference in total value between the two exposure sets!""

"""For comparison, initiate population exposure for a geographical box around the city of Zurich:"
start = time.process_time()
exp_pop = LitPop.from_population(shape=shape)
print(f'\nRuntime `from_population` : {time.process_time() - start:1.2f} sec.\n')
exp_pop.plot_scatter();

"""Population exposure for a custom shape can be initiated directly via `set_population` without providing `total_value`""

Runtime `from_shape` : 0.51 sec.

Runtime `from_shape_and_countries` : 3.18 sec.

'Population exposure for a custom shape can be initiated directly via `set_population` without providing `total_value`'

LitPop Exposure for custom shape at 30 as, year: 2018, exp: [1, 1]
9.2. LitPop class
9.2.10 Sub-national (admin-1) GDP as intermediate downscaling layer

In order to improve downscaling for countries with large regional differences within, a subnational breakdown of GDP can be used as an intermediate downscaling layer wherever available.

The sub-national (admin-1) GDP-breakdown needs to be added manually as a “.xls”-file to the folder `data/system/GSDP` in the CLIMADA-directory. Currently, such data is provided for more than 10 countries, including USA, India, and China.

The xls-file requires at least the following columns (with names specified in row 1):

- **State_Province**: Names of admin-1 regions, i.e. states, cantons, provinces. Names need to match the naming of admin-1 shapes in the data used by the python package `cartopy.io` (c.f. `shapereader.natural_earth(name='admin_1_states_provinces')`)
- **GSDP_ref**: value of sub-national GDP to be used (absolute or relative values)
- **Postal**, optional: Alternative identifier of region, if names do not match with cartopy. Needs to correspond to the Postal-identifiers used in the shapereader of `cartopy.io`.

Please note that while admin1-GDP will per definition improve the downscaling of GDP, it might not necessarily improve the downscaling quality for other asset bases like produced capital (pc).

How To:

The intermediate downscaling layer can be activated with the parameter `admin1_calc=True`.

```python
# Initiate GDP-Entity for Switzerland, with and without admin1_calc:

ent_adm0 = LitPop.from_countries('CHE', res_arcsec=120, fin_mode='gdp', admin1_→calc=False)
ent_adm0.set_geometry_points()

ent_adm1 = LitPop.from_countries('CHE', res_arcsec=120, fin_mode='gdp', admin1_→calc=True)

ent_adm0.check()
ent_adm1.check()
print('Done.')
```

2021-10-19 17:04:31,363 - climada.entity.exposures.litpop.gpw_population - WARNING --

Done.

```python
# Plotting:
from matplotlib import colors
norm=colors.LogNorm(vmin=1e5, vmax=1e9) # setting range for the log-normal scale
markersize = 5
ent_adm0.plot_hexbin(buffer=.3, norm=norm, linewidth=markersize);
ent_adm1.plot_hexbin(buffer=.3, norm=norm, linewidth=markersize);

print('admin-0: First figure')
print('admin-1: Second figure')
'''Do you spot the small differences in Graubünden (eastern Switzerland)?'''
```
'Do you spot the small differences in Graubünden (eastern Switzerland)腠?
9.3 How to use polygons or lines as exposure

9.3.1 Contents

• Introduction
• Quick example
• Polygons
• Lines

9.3.2 Introduction

Exposure in CLIMADA are usually represented as individual points or a raster of points. See Exposures tutorial to learn how to fill and use exposures. In this tutorial we show you how to run the impact calculation chain if you have polygons or lines to start with. The approach provides an all-in-one method for impact calculation: calc_geom_impact. It features three sub-steps, for which the current util module lines_polys_handler also provides separate functions:

1. Disaggregation of line and polygon data into point exposure:
 • Interpolate geometries to points to fit in an Exposure instance;
 • Disaggregate the respective geometry values to the point values
2. Perform the impact calculation in CLIMADA with the point exposure
3. Aggregate the calculated point Impact back to an impact instance for the initial polygons or lines

9.3.3 Quick example

Get example polygons (provinces), lines (rails), points exposure for the Netherlands, and create one single Exposures.

```python
from climada.util.api_client import Client
import climada.util.lines_polys_handler as u_lp
from climada.entity.impact_funcs import ImpactFuncSet
from climada.entity.impact_funcs.storm_europe import ImpfStormEurope

HAZ = Client().get_hazard('storm_europe', name='test_haz_WS_nl', status='test_dataset →');

EXP_POLY = Client().get_exposures('base', name='test_polygon_exp', status='test_dataset →');
EXP_LINE = Client().get_exposures('base', name='test_line_exp', status='test_dataset →');
EXP_POINT = Client().get_exposures('base', name='test_point_exp', status='test_dataset →');

EXP_MIX = Exposures.concat([EXP_POLY, EXP_LINE, EXP_POINT])

IMPF = ImpfStormEurope.from_welker()
IMPF_SET = ImpactFuncSet([IMPF])
```

Compute the impact in one line.
#disaggregate in the same CRS as the exposures are defined (here degrees), resolution...
→1degree
#divide values on points
#aggregate by summing

impact = u_lp.calc_geom_impact(
 exp=EXP_MIX, impf_set=IMPF_SET, haz=HAZ,
 res=0.2, to_meters=False, disagg_met=u_lp.DisaggMethod.DIV, disagg_
 →val=None,
 agg_met=u_lp.AggMethod.SUM)

2022-06-24 13:16:15,277 - climada.entity.exposures.base - INFO - Setting latitude and...
→longitude attributes.
2022-06-24 13:16:15,284 - climada.entity.exposures.base - INFO - Matching 183...
→exposures with 9944 centroids.
2022-06-24 13:16:15,285 - climada.util.coordinates - INFO - No exact centroid match...
→found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-06-24 13:16:15,295 - climada.engine.impact - INFO - Exposures matching centroids...
→found in centr_WS
2022-06-24 13:16:15,296 - climada.engine.impact - INFO - Calculating damage for 182...
→assets (>0) and 2 events.

/Users/ckropf/Documents/Climada/climada_python/climada/util/lines_polys_handler.
→py:931: UserWarning: Geometry is in a geographic CRS. Results from 'length' are...
→likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected...
→CRS before this operation.

 line_lengths = gdf_lines.length

u_lp.plot_eai_exp_geom(impact);
#disaggregate in meters
#same value for each point, fixed to 1 (allows to get percentages of affected surface/→distance)
#aggregate by summing

```python
impact = u_lp.calc_geom_impact(
    exp=EXP_MIX, impf_set=IMPF_SET, haz=HAZ,
    res=1000, to_meters=True, disagg_met=u_lp.DisaggMethod.FIX, disagg_val=1.,
    agg_met=u_lp.AggMethod.SUM
);
```

```
import matplotlib.pyplot as plt
ax = u_lp.plot_eai_exp_geom(impact, legend_kwds={'label': 'percentage', 'orientation →': 'horizontal'})
```

9.3. How to use polygons or lines as exposure
9.3.4 Polygons

Polygons or shapes are a common geographical representation of countries, states etc. as for example in NaturalEarth. Map data, as for example buildings, etc. obtained from openstreetmap (see tutorial here), also frequently come as (multi-)polygons. Here we want to show you how to deal with exposure information as polygons.

Load data

Lets assume we have the following data given. The polygons of the admin-1 regions of the Netherlands and an exposure value each, which we gather in a geodataframe. We want to know the Impact of Lothar on each admin-1 region.

In this tutorial, we shall see how to compute impacts for exposures defined on shapely geometries (polygons and/or lines). The basic principle is to disaggregate the geometries to a raster of points, compute the impact per points, and then re-aggregate. To do so, several methods are available. Here is a brief overview.

```python
# Imports
import geopandas as gpd
import pandas as pd
from pathlib import Path
from climada.entity import Exposures
from climada.entity.impact_func import ImpfStormEurope
from climada.entity.impact_func import ImpactFuncSet
from climada.engine import ImpactCalc
from climada.hazard import StormEurope
import climada.util.lines_polys_handler as u_lp
from climada.util import constants as DEMO_DIR, WS_DEMO_NC

def gdf_poly():
    from cartopy.io import shapereader
    from climada_petals.entity.exposures.black_marble import country_iso_geom
    # open the file containing the Netherlands admin-1 polygons
    shp_file = shapereader.natural_earth(resolution='10m',
                                          category='cultural',
                                          name='admin_0_countries')
    shp_file = shapereader.Reader(shp_file)
    # extract the NL polygons
    prov_names = {'Netherlands': ['Groningen', 'Drenthe',
                                  'Overijssel', 'Gelderland',
                                  'Limburg', 'Zeeland',
                                  'Noord-Brabant', 'Zuid-Holland',
                                  'Noord-Holland', 'Friesland',
                                  'Flevoland', 'Utrecht']}
    polygon_Netherlands, polygons_prov_NL = country_iso_geom(prov_names,
                                                              shp_file)
    prov_geom_NL = {prov: geom for prov, geom in zip(list(prov_names.values())[0],
                                                      list(polygons_prov_NL.values())[0])}
    # assign a value to each admin-1 area (assumption 100'000 USD per inhabitant)
    population_prov_NL = {'Drenthe': 493449, 'Flevoland': 422202,
                           'Friesland': 649988, 'Gelderland': 2084478,
                           'Groningen': 585881, 'Limburg': 1118223,
                           'Noord-Brabant': 2562566, 'Noord-Holland': 2877909,
                           # (continues on next page)
'Overijssel':1162215, 'Zuid-Holland':3705625,
'Utrecht':1353596, 'Zeeland':383689
value_prov_NL = {n: 100000 * population_prov_NL[n] for n in population_prov_NL.keys()}

# combine into GeoDataFrame and add a coordinate reference system to it:
df1 = pd.DataFrame.from_dict(population_prov_NL, orient='index', columns=['population']).join(
    pd.DataFrame.from_dict(value_prov_NL, orient='index', columns=['value']))
df1['geometry'] = [prov_geom_NL[prov] for prov in df1.index]
df_polys = gpd.GeoDataFrame(df1)
df_polys = df_polys.set_crs(epsg=4326)
return df_polys

exp_nl_poly = Exposures(gdf_poly())
exp_nl_poly.gdf['impf_WS'] = 1
exp_nl_poly.gdf.head()

<table>
<thead>
<tr>
<th>population</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenthe</td>
<td>493449</td>
</tr>
<tr>
<td>Flevoland</td>
<td>422202</td>
</tr>
<tr>
<td>Friesland</td>
<td>649988</td>
</tr>
<tr>
<td>Gelderland</td>
<td>2084478</td>
</tr>
<tr>
<td>Groningen</td>
<td>585881</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>geometry</th>
<th>impf_WS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenthe</td>
<td>1</td>
</tr>
<tr>
<td>Flevoland</td>
<td>1</td>
</tr>
<tr>
<td>Friesland</td>
<td>1</td>
</tr>
<tr>
<td>Gelderland</td>
<td>1</td>
</tr>
<tr>
<td>Groningen</td>
<td>1</td>
</tr>
</tbody>
</table>

# take a look
exp_nl_poly.gdf.plot('value', legend=True, cmap='OrRd')

<AxesSubplot:>
# define hazard
storms = StormEurope.from_footprints(WS_DEMO_NC)

# define impact function
impf = ImpfStormEurope.from_welker()
impf_set = ImpactFuncSet([impf])


/Users/ckropf/Documents/Climada/climada_python/climada/hazard/centroids/centr.py:822: UserWarning: Geometry is in a geographic CRS. Results from 'buffer' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

xy_pixels = self.geometry.buffer(res / 2).envelope


**Compute polygon impacts - all in one**

**All in one:** The main method `calc_geom_impact` provides several disaggregation keywords, specifying

- the target resolution \( \text{res} \),
- the method on how to distribute the values of the original geometries onto the newly generated interpolated points \( \text{disagg_met} \),
- the source (and number) of the value to be distributed \( \text{disagg_val} \),
- the aggregation method \( \text{agg_met} \).
disagg_met can be either fixed (FIX), replicating the original shape’s value onto all points, or divided evenly (DIV), in which case the value is divided equally onto all new points. disagg_val can either be taken directly from the exposure gdf’s value column (None) or be indicated here explicitly (float). Resolution can be given in the gdf’s original (mostly degrees lat/lon) format, or in metres. agg_met can currently be only (SUM) were the value is summed over all points in the geometry.

**Polygons can also be disaggregated on a given fixed grid, see example below**

**Example 1**: Target resolution in degrees lat/lon, equal (average) distribution of values from exposure gdf among points.

```python
imp_deg = u_lp.calc_geom_impact(
 exp=exp_nl_poly, impf_set=impf_set, haz=storms,
 res=0.005, disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None,
 agg_met=u_lp.AggregateMethod.SUM
)
```

2022-06-24 13:16:33,950 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-06-24 13:16:34,140 - climada.engine.impact - INFO - Exposures matching centroids found in centr_WS
2022-06-24 13:16:34,144 - climada.engine.impact - INFO - Calculating damage for 195323 assets (>0) and 2 events.

```python
u_lp.plot_eai_exp_geom(imp_deg);
```
Example 2: Target resolution in metres, equal (divide) distribution of values from exposure gdf among points.
imp_m = u_lp.calc_geom_impact(
    exp=exp_nl_poly, impf_set=impf_set, haz=storms,
    res=500, to_meters=True, disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None,
    agg_met=u_lp.AggMethod.SUM
)

2022-06-24 13:16:44,168 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-06-24 13:16:44,390 - climada.engine.impact - INFO - Calculating damage for 148369 assets (>0) and 2 events.

u_lp.plot_eai_exp_geom(imp_m);
For this specific case, both disaggregation methods provide a relatively similar result, given the chosen numbers:

9.3. How to use polygons or lines as exposure
Example 3: Target predefined grid, equal (divide) distribution of values from exposure gdf among points.

```python
array([0.00614586, -0.01079377, 0.00021355, 0.00140608, 0.0038771 ,
 -0.0066888 , -0.00171755, 0.00741871, -0.00107029, 0.00424221,
 -0.01838225, 0.01811858])
```

```python
regular grid from exposures bounds
import climada.util.coordinates as u_coord
res = 0.1
(_, _, xmax, ymax) = exp.nl_poly.gdf.geometry.bounds.max()
(xmin, ymin, _, _) = exp.nl_poly.gdf.geometry.bounds.min()
bounds = (xmin, ymin, xmax, ymax)
height, width, trafo = u_coord.pts_to_raster_meta(bounds, (res, res))
x_grid, y_grid = u_coord.raster_to_meshgrid(trafo, width, height)
```

```python
imp_g = u_lp.calc_grid_impact(exp=exp.nl_poly, impf_set=impf_set, haz=storms,
 grid=(x_grid, y_grid), disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None,
 agg_met=u_lp.AggMethod.SUM)
```

2022-06-24 13:16:45,110 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-06-24 13:16:45,114 - climada.engine.impact - INFO - Calculating damage for 486 assets (>0) and 2 events.
```

```python
u_lp.plot_eai_exp_geom(imp_g);
```
9.3. How to use polygons or lines as exposure
Compute polygon impacts - step by step

Step 1: Disaggregate polygon exposures to points. It is useful to do this separately, when the discretized exposure is used several times, for example, to compute with different hazards.

Several disaggregation methods can be used as shown below:

```python
# Disaggregate exposure to 10'000 metre grid, each point gets average value within
# polygon.
exp_pnt = u_lp.exp_geom_to_pnt(
    exp_nl_poly, res=10000, to_meters=True,
    disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None
)
exp_pnt.gdf.head()
```

2022-06-24 13:16:45,445 - climada.entity.exposures.base - INFO - Setting latitude and
longitude attributes.

<table>
<thead>
<tr>
<th>population</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenthe</td>
<td>493449</td>
</tr>
<tr>
<td></td>
<td>2.056038e+09</td>
</tr>
<tr>
<td>1</td>
<td>493449</td>
</tr>
<tr>
<td>2</td>
<td>493449</td>
</tr>
<tr>
<td>3</td>
<td>493449</td>
</tr>
<tr>
<td>4</td>
<td>493449</td>
</tr>
</tbody>
</table>

geometry_orig impf_WS

<table>
<thead>
<tr>
<th>Drenthe</th>
<th>POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(6.21931 52.75939)</td>
</tr>
<tr>
<td>1</td>
<td>(6.30914 52.75939)</td>
</tr>
<tr>
<td>2</td>
<td>(6.39897 52.75939)</td>
</tr>
<tr>
<td>3</td>
<td>(6.48880 52.75939)</td>
</tr>
<tr>
<td>4</td>
<td>(6.57863 52.75939)</td>
</tr>
</tbody>
</table>

geometry latitude longitude

```python
# Disaggregate exposure to 0.1° grid, no value disaggregation specified --> replicate...
# initial value
exp_pnt2 = u_lp.exp_geom_to_pnt(
    exp_nl_poly, res=0.1, to_meters=False,
    disagg_met=u_lp.DisaggMethod.FIX, disagg_val=None
)
exp_pnt2.gdf.head()
```

2022-06-24 13:16:45,516 - climada.entity.exposures.base - INFO - Setting latitude and
longitude attributes.

<table>
<thead>
<tr>
<th>population</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenthe</td>
<td>493449</td>
</tr>
<tr>
<td></td>
<td>49344900000</td>
</tr>
<tr>
<td>1</td>
<td>493449</td>
</tr>
<tr>
<td>2</td>
<td>493449</td>
</tr>
<tr>
<td>3</td>
<td>493449</td>
</tr>
<tr>
<td>4</td>
<td>493449</td>
</tr>
</tbody>
</table>
```

(continues on next page)
CLIMADA documentation, Release 4.0.1

(geometry_orig impf_WS
| Drenthe 0 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 1 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 2 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 3 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 4 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1

(geometry latitude longitude
| Drenthe 0 POINT (6.22948 52.71147) 52.711466 6.229476
| 1 POINT (6.32948 52.71147) 52.711466 6.329476
| 2 POINT (6.42948 52.71147) 52.711466 6.429476
| 3 POINT (6.52948 52.71147) 52.711466 6.529476
| 4 POINT (6.62948 52.71147) 52.711466 6.629476

# Disaggregate exposure to 1'000 metre grid, each point gets value corresponding to its representative area (1'000^2).
exp_pnt3 = u_lp.exp_geom_to_pnt(
    exp_nl_poly, res=1000, to_meters=True,
    disagg_met=u_lp.DisaggMethod.FIX, disagg_val=10e6)
exp_pnt3.gdf.head()


(population value
| Drenthe 0 493449 10000000.0
| 1 493449 10000000.0
| 2 493449 10000000.0
| 3 493449 10000000.0
| 4 493449 10000000.0

(geometry_orig impf_WS
| Drenthe 0 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 1 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 2 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 3 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1
| 4 POLYGON ((7.07215 52.84132, 7.06198 52.82401, ... | 1

(geometry latitude longitude
| Drenthe 0 POINT (6.38100 52.62624) 52.626236 6.381005
| 1 POINT (6.38999 52.62624) 52.626236 6.389988
| 2 POINT (6.39897 52.62624) 52.626236 6.398971
| 3 POINT (6.40795 52.62624) 52.626236 6.407954
| 4 POINT (6.41694 52.62624) 52.626236 6.416937

# Disaggregate exposure to 1'000 metre grid, each point gets value corresponding to 1/1'000 of the polygon
exp_pnt4 = u_lp.exp_geom_to_pnt(
    exp_nl_poly, res=1000, to_meters=True,
    disagg_met=u_lp.DisaggMethod.DIV, disagg_val=1)
exp_pnt4.gdf.tail()


9.3. How to use polygons or lines as exposure
<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897</td>
<td>383689</td>
<td>0.000526</td>
</tr>
<tr>
<td>1898</td>
<td>383689</td>
<td>0.000526</td>
</tr>
<tr>
<td>1899</td>
<td>383689</td>
<td>0.000526</td>
</tr>
<tr>
<td>1900</td>
<td>383689</td>
<td>0.000526</td>
</tr>
<tr>
<td>1901</td>
<td>383689</td>
<td>0.000526</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>383689</td>
<td>0.045455</td>
</tr>
<tr>
<td>18</td>
<td>383689</td>
<td>0.045455</td>
</tr>
<tr>
<td>19</td>
<td>383689</td>
<td>0.045455</td>
</tr>
<tr>
<td>20</td>
<td>383689</td>
<td>0.045455</td>
</tr>
<tr>
<td>21</td>
<td>383689</td>
<td>0.045455</td>
</tr>
</tbody>
</table>

# disaggregate on pre-defined grid

```python
regular grid from exposures bounds
import climada.util.coordinates as u_coord
res = 0.1
(_, _, xmax, ymax) = exp_nl_poly.gdf.geometry.bounds.max()
(xmin, ymin, _, _) = exp_nl_poly.gdf.geometry.bounds.min()
bounds = (xmin, ymin, xmax, ymax)
height, width, trafo = u_coord.pts_to_raster_meta(
 bounds, (res, res)
)
x_grid, y_grid = u_coord.raster_to_meshgrid(trafo, width, height)
exp_pnt5 = u_lp.exp_geom_to_grid(
 exp_nl_poly, grid=(x_grid, y_grid),
 disagg_met=u_lp.DisaggMethod.DIV, disagg_val=1)
exp_pnt5.gdf.tail()
```

Step 2: Calculate point impacts & re-aggregate them afterwards

```plaintext
Point-impact
imp_pnt = ImpactCalc(exp_pnt3, impf_set, hazard=storms).impact(save_mat=True)

Aggregated impact (Note that you need to pass the gdf and not the exposures)
imp_geom = u_lp.impact_pnt_agg(imp_pnt, exp_pnt3.gdf, agg_met=u_lp.AggregationMethod.SUM)
```

2022-06-24 13:16:50,796 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-06-24 13:16:50,929 - climada.engine.impact - INFO - Calculating damage for 37082 assets (>0) and 2 events.

```plaintext
Plot point-impacts and aggregated impacts
imp_pnt.plot_hexbin_eai_exposure();
```

Aggregated impact, in detail
# aggregate impact matrix
mat_agg = u_lp._aggregate_impact_mat(imp_pnt, exp_pnt3.gdf, agg_met=u_lp.AggregateMethod._SUM)

eai_exp = u_lp.eai_exp_from_mat(imp_mat=mat_agg, freq=imp_pnt.frequency)
at_event = u_lp.at_event_from_mat(imp_mat=mat_agg)
aai_agg = u_lp.aai_agg_from_at_event(at_event=at_event, freq=imp_pnt.frequency)

eai_exp

array([ 6753.45186608, 28953.21638482, 84171.28903387, 18014.15630989,
       8561.18507994, 8986.13653385, 27446.46387061, 130145.29903078,
       8362.17243334, 20822.87844894, 25495.46296087, 45121.14833362])

at_event

array([4321211.03400214, 219950.4291506])

aai_agg

412832.8602866131

9.3.5 Lines

Lines are common geographical representation of transport infrastructure like streets, train tracks or powerlines etc. Here we will play it through for the case of winter storm Lothar’s impact on the Dutch Railway System:

## Loading Data

Note: Hazard and impact functions data have been loaded above.

```python
def gdf_lines():
 gdf_lines = gpd.read_file(Path(DEMO_DIR, 'nl_rails.gpkg'))
 gdf_lines = gdf_lines.to_crs(epsg=4326)
 return gdf_lines

exp_nl_lines = Exposures(gdf_lines())
exp_nl_lines.gdf['impf_WS'] = 1
exp_nl_lines.gdf['value'] = 1
exp_nl_lines.gdf.head()
```

<table>
<thead>
<tr>
<th>distance</th>
<th>geometry</th>
<th>impf_WS</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 9414.978692</td>
<td>LINESTRING (6.08850 50.87940, 6.08960 50.87850...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 10397.965112</td>
<td>LINESTRING (6.17673 51.35530, 6.17577 51.35410...</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 26350.217924</td>
<td>LINESTRING (5.68096 51.25040, 5.68422 51.25020...</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 40665.249638</td>
<td>LINESTRING (5.68096 51.25040, 5.67711 51.25030...</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4 8297.689753</td>
<td>LINESTRING (5.70374 50.85490, 5.70531 50.84990...</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)

9.3. How to use polygons or lines as exposure
Calculating line impacts - all in one

Example 1: Disaggregate values evenly among road segments; split in points with 0.005 degree distances.

```python
imp_deg = u_lp.calc_geom_impact(
 exp=exp_nl_lines, impf_set=impf_set, haz=storms,
 res=0.005, disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None,
 agg_met=u_lp.AggMethod.SUM
)
```

```
line_lengths = gdf_lines.length
```

```
2022-06-24 13:16:59,805 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
```

(continues on next page)
u_lp.plot_eai_exp_geom(imp_deg);
Example 2: Disaggregate values evenly among road segments; split in points with 500 m distances.
imp_m = u_lp.calc_geom_impact(
    exp=exp_nl_lines, impf_set=impf_set, haz=storms,
    res=500, to_meters=True, disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None,
    agg_met=u_lp.AggMethod.SUM
)

u_lp.plot_eai_exp_geom(imp_m);
import numpy as np

(continues on next page)
...previous page)

diff = np.max((imp_deg.eai_exp - imp_m.eai_exp) / imp_deg.eai_exp)
print(f"The largest relative different between degrees and meters impact in this example is {diff}")

The largest relative different between degrees and meters impact in this example is 0.09803913811822067

Calculating line impacts - step by step

Step 1: As in the polygon example above, there are several methods to disaggregate line exposures into point exposures, of which several are shown here:

```python
0.1° distance between points, average value disaggregation
exp_pnt = u_lp.exp_geom_to_pnt(
 exp_nl_lines, res=0.1, to_meters=False, disagg_met=u_lp.DisaggMethod.DIV, disagg_val=None
)
exp_pnt.gdf.head()
```

```

/Users/ckropf/Documents/Climada/climada_python/climada/util/lines_polys_handler.py:931: UserWarning: Geometry is in a geographic CRS. Results from 'length' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

line_lengths = gdf_lines.length
```

```
distance geometry_orig impf_WS \
0 9414.978692 LINESTRING (6.08850 50.87940, 6.08960 50.87850... 1
1 9414.978692 LINESTRING (6.08850 50.87940, 6.08960 50.87850... 1
1 10397.965112 LINESTRING (6.17673 51.35530, 6.17577 51.35410... 1
1 10397.965112 LINESTRING (6.17673 51.35530, 6.17577 51.35410... 1
2 10397.965112 LINESTRING (6.17673 51.35530, 6.17577 51.35410... 1

value geometry latitude longitude
0 0.500000 POINT (6.08850 50.87940) 50.879400 6.088500
1 0.500000 POINT (6.06079 50.80030) 50.800300 6.060790
1 0.333333 POINT (6.17673 51.35530) 51.355300 6.176730
1 0.333333 POINT (6.12632 51.32440) 51.324399 6.126323
2 0.333333 POINT (6.08167 51.28460) 51.284600 6.081670
```

```python
1000m distance between points, no value disaggregation
exp_pnt2 = u_lp.exp_geom_to_pnt(
 exp_nl_lines, res=1000, to_meters=True, disagg_met=u_lp.DisaggMethod.FIX, disagg_val=None
)
exp_pnt2.gdf.head()
```

```
```

9.3. How to use polygons or lines as exposure 341
### Chapter 9. Exposures Tutorials

The image contains code examples from CLIMADA documentation, Release 4.0.1, which are related to distance geometry and point disaggregation. The code examples demonstrate how to compute distances and aggregate values between points using the `exp_geom_to_pnt` function. Here are the key points:

1. **Equal Value Disaggregation**: The code calculates the distance between points and disaggregates a value according to the representative distance. The example shows how to compute distances and aggregate values using the `exp_geom_to_pnt` function with the `DisaggMethod` set to `DIV`.

2. **Representative Distance Disaggregation**: This example also calculates distances but uses the `DisaggMethod` set to `FIX` to disaggregate the value according to a representative distance.

The code snippets include the calculation of distances and the aggregation of values for points in CLIMADA documentation. The output includes the calculation of distances and the resulting aggregated values for the points, demonstrating the use of CLIMADA for spatial analysis and exposure calculations.
Step 2 & 3: The procedure is analogous to the example provided above for polygons.

<table>
<thead>
<tr>
<th>value</th>
<th>geometry</th>
<th>latitude</th>
<th>longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>POINT (6.08850 50.87940)</td>
<td>50.879400</td>
<td>6.088500</td>
</tr>
<tr>
<td>1 1000</td>
<td>POINT (6.09416 50.87275)</td>
<td>50.872755</td>
<td>6.094165</td>
</tr>
<tr>
<td>2 1000</td>
<td>POINT (6.09161 50.86410)</td>
<td>50.864105</td>
<td>6.091608</td>
</tr>
<tr>
<td>3 1000</td>
<td>POINT (6.08744 50.85590)</td>
<td>50.855902</td>
<td>6.087435</td>
</tr>
<tr>
<td>4 1000</td>
<td>POINT (6.08326 50.84770)</td>
<td>50.847699</td>
<td>6.083263</td>
</tr>
</tbody>
</table>
10.1 END-TO-END IMPACT CALCULATION

10.1.1 Goal of this tutorial

The goal of this tutorial is to show a full end-to-end impact computation. Note that this tutorial exemplifies the work flow, but does not explore all possible features.

10.1.2 What is an Impact?

The impact is the combined effect of hazard events on a set of exposures mediated by a set of impact functions. By computing the impact for each event (historical and synthetic) and for each exposure value at each geographical location, the Impact class provides different risk measures, such as the expected annual impact per exposure, the probable maximum impact for different return periods, and the total average annual impact.

10.1.3 Impact class data structure

The impact class does not require any attributes to be defined by the user. All attributes are set by the method ImpactCalc.impact(). This method requires three attributes: an Exposure, a Hazard, and an ImpactFuncSet. After calling ImpactCalc(Exposure, ImpactFuncSet, Hazard).impact(save_mat=False), the Impact object has the following attributes:

<table>
<thead>
<tr>
<th>Attributes from input</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event_id</td>
<td>list(int)</td>
<td>id (&gt;0) of each hazard event (Hazard.event_id)</td>
</tr>
<tr>
<td>event_name</td>
<td>list(str)</td>
<td>name of each event (Hazard.event_name)</td>
</tr>
<tr>
<td>date</td>
<td>np.array</td>
<td>date of events (Hazard.date)</td>
</tr>
<tr>
<td>coord_exp</td>
<td>np.array</td>
<td>exposures coordinates [lat, lon] (in degrees) (Exposure.gdf.latitudes, Exposure.gdf.longitudes)</td>
</tr>
<tr>
<td>frequency</td>
<td>np.array</td>
<td>frequency of events (Hazard.frequency)</td>
</tr>
<tr>
<td>frequency_unit</td>
<td>str</td>
<td>unit of event frequency, by default ‘1/year’, i.e., annual (Hazard.frequency_unit)</td>
</tr>
<tr>
<td>unit</td>
<td>str</td>
<td>value unit used (Exposure.value_unit)</td>
</tr>
<tr>
<td>csr</td>
<td>str</td>
<td>unit system for Exposure and Hazard geographical data (Exposure.csr)</td>
</tr>
<tr>
<td>Computed attributes</td>
<td>Data Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>at_event</td>
<td>np.array</td>
<td>impact for each hazard event summed over all locations</td>
</tr>
<tr>
<td>eai_exp</td>
<td>np.array</td>
<td>expected annual impact for each locations, summed over all events weighted by frequency</td>
</tr>
<tr>
<td>aai_agg</td>
<td>float</td>
<td>total annual average aggregated impact value (summed over events and locations)</td>
</tr>
<tr>
<td>impt_mat</td>
<td>sparse.csr</td>
<td>This is the impact matrix. This matrix has the events as rows and the exposure points as columns (num_events X num_exp). It will only be filled with impact values if save_mat is True.</td>
</tr>
<tr>
<td>tot_value</td>
<td>float</td>
<td>total exposure value affected (sum of value all exposures locations affected by at least one hazard event)</td>
</tr>
</tbody>
</table>

All other methods compute values from the attributes set by `ImpactCalc.impact()`. For example, one can compute the frequency exceedance curve, plot impact data, or compute traditional risk transfer over impact.

### 10.1.4 How do I compute an impact in CLIMADA?

In CLIMADA, impacts are computed using the `Impact` class. The computation of the impact requires an `Exposure`, an `ImpactFuncSet`, and a `Hazard` object. For details about how to define `Exposures`, `Hazard`, `Impact Functions` see the respective tutorials.

The steps of an impact calculation are typically:

- Set exposure
- Set hazard and hazard centroids
- Set impact functions in impact function set
- Compute impact
- Visualize, save, use impact output

Hints: Before computing the impact of a given `Exposure` and `Hazard`, it is important to correctly match the `Exposures coordinates` with the `Hazard Centroids`. Try to have similar resolutions in `Exposures` and `Hazard`. By the impact calculation the nearest neighbor for each `Exposure` to the `Hazard's Centroids` is searched.

Hint: Set first the `Exposures` and use its coordinates information to set a matching `Hazard`.

Hint: The configuration value `max_matrix_size` controls the maximum matrix size contained in a chunk. By default it is set to 1e9 in the `default config file`. A high value makes the computation fast at the cost of increased memory consumption. You can decrease its value if you are having memory issues with the `ImpactCalc.impact()` method. (See the `config guide` on how to set configuration values).

### 10.1.5 Structure of the tutorial

We begin with one very detailed example, and later present in quick and dirty examples.

**Part 1:** Detailed impact calculation with Litpop and TropCyclone

**Part 2:** Quick examples: raster and point exposures/hazards

**Part 3:** Visualization methods
We present a detailed example for the hazard *Tropical Cyclones* and the exposures from *LitPop*.

### Define the exposure

Reminder: The exposures must be defined according to your problem either using CLIMADA exposures such as Black-Marble, LitPop, OSM, extracted from external sources (imported via csv, excel, api, ...) or directly user defined.

As a reminder, exposures are geopandas dataframes with at least columns ‘latitude’, ‘longitude’ and ‘value’ of exposures.

For impact calculations, for each exposure values of the corresponding impact function to use (defined by the column `impf_`) and the associated hazard centroids must be defined. This is done after defining the impact function(s) and the hazard(s).

See tutorials on *Exposures*, *Hazard*, *ImpactFuncSet* for more details.

Exposures are either defined as a series of (latitude/longitude) points or as a raster of (latitude/longitude) points. Fundamentally, this changes nothing for the impact computations. Note that for larger number of points, consider using a raster which might be more efficient (computationally). For a low number of points, avoid using a raster if this adds a lot of exposures values equal to 0.

We shall here use a raster example.

```python
Exposure from the module Litpop
Note that the file gpw_v4_population_count_rev11_2015_30_sec.tif must be downloaded...
(do not forget to unzip) if
you want to execute this cell on your computer. If you haven't downloaded it before,
please have a look at the section
"population count" of the LitPop tutorial.

%matplotlib inline
import numpy as np
from climada.entity import LitPop

Cuba with resolution 10km and financial_mode = income group.
exp_lp = LitPop.from_countries(countries=['CUB'], res_arcsec=300, fin_mode='income_group')
exp_lp.check()
```

(continues on next page)
2023-01-26 11:57:15,307 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,371 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,373 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,410 - climada.entity.exposures.litpop.litpop - INFO - No data
   → point on destination grid within polygon.
2023-01-26 11:57:15,412 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,413 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,444 - climada.entity.exposures.litpop.litpop - INFO - No data
   → point on destination grid within polygon.
2023-01-26 11:57:15,445 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,448 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,488 - climada.entity.exposures.litpop.litpop - INFO - No data
   → point on destination grid within polygon.
2023-01-26 11:57:15,489 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,491 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,521 - climada.entity.exposures.litpop.litpop - INFO - No data
   → point on destination grid within polygon.
2023-01-26 11:57:15,523 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,525 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,603 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,605 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,661 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,663 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,724 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,725 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,791 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,792 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,826 - climada.entity.exposures.litpop.litpop - INFO - No data
   → point on destination grid within polygon.
2023-01-26 11:57:15,828 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,831 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,892 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,894 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:15,958 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:57:15,959 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:16,033 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:16,771 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:16,831 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:16,866 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.
2023-01-26 11:57:16,868 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:16,939 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:16,941 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11
2023-01-26 11:57:17,005 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,066 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,127 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,163 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.
2023-01-26 11:57:17,166 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,197 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.
2023-01-26 11:57:17,199 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,269 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,334 - climada.entity.exposures.litpop.gpw_population - WARNING - GPW
   → Version v4.11
2023-01-26 11:57:17,336 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
   → Version v4.11

10.1. END-TO-END IMPACT CALCULATION
CLIMADA documentation, Release 4.0.1

2023-01-26 11:57:17,413 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,479 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,582 - climada.entity.exposures.litpop.gpw_population - INFO - No data → point on destination grid within polygon.
2023-01-26 11:57:17,585 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,646 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,704 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,840 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:17,925 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:18,000 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:18,068 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11
2023-01-26 11:57:18,100 - climada.entity.exposures.litpop.gpw_population - INFO - No data → point on destination grid within polygon.

(continues on next page)
exp_lp.gdf.head()

<table>
<thead>
<tr>
<th>value</th>
<th>geometry</th>
<th>latitude</th>
<th>longitude</th>
<th>region_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.077368e+05 POINT (-81.37500 21.70833)</td>
<td>21.708333</td>
<td>-81.375000</td>
<td>192</td>
</tr>
<tr>
<td>1</td>
<td>1.671873e+06 POINT (-81.54167 21.62500)</td>
<td>21.625000</td>
<td>-81.541667</td>
<td>192</td>
</tr>
<tr>
<td>2</td>
<td>3.421208e+06 POINT (-82.95833 21.87500)</td>
<td>21.875000</td>
<td>-82.958333</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>1.546590e+07 POINT (-82.87500 21.87500)</td>
<td>21.875000</td>
<td>-82.875000</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>7.168305e+07 POINT (-82.79167 21.87500)</td>
<td>21.875000</td>
<td>-82.791667</td>
<td>192</td>
</tr>
</tbody>
</table>

impf_

0 1
1 1
2 1
3 1
4 1

# not needed for impact calculations
# visualize the define exposure
exp_lp.plot_raster()
print('`n Raster properties exposures:', exp_lp.meta)

Raster properties exposures: {'width': 129, 'height': 41, 'crs': <Geographic 2D CRS:...EPSG:4326>}
Name: WGS 84
Axis Info [ellipsoidal]:
  - Lat[north]: Geodetic latitude (degree)
  - Lon[east]: Geodetic longitude (degree)
Area of Use:
  - undefined
Datum: World Geodetic System 1984
  - Ellipsoid: WGS 84
  - Prime Meridian: Greenwich
  , 'transform': Affine(0.08333333000000209, 0.0, -84.91666666500001, 0.0, -0.0833332999999854, 23.24999994999996)
Define the hazard

Let us define a tropical cyclone hazard using the TropCyclone and TCTracks modules.

```python
from climada.hazard import TCTracks, TropCyclone, Centroids

Load historical tropical cyclone tracks from IBTrACS over the North Atlantic basin between 2010-2012
ibtracks_na = TCTracks.from_ibtracs_netcdf(provider='usa', basin='NA', year_range=(2010, 2012), correct_pres=True)
print('num tracks hist:', ibtracks_na.size)

ibtracks_na.equal_timestep(0.5) # Interpolation to make the track smooth and to allow applying calc_perturbed_trajectories
Add randomly generated tracks using the calc_perturbed_trajectories method (1 per historical track)
ibtracks_na.calc_perturbed_trajectories(nb_synth_tracks=1)
print('num tracks hist+syn:', ibtracks_na.size)
```

# not needed for calculations
# visualize tracks
ax = ibtracks_na.plot()
ax.get_legend()._loc = 2
From the tracks, we generate the hazards (the tracks are only the coordinates of the center of the cyclones, the full cyclones however affects a region around the tracks).

First thing we define the set of centroids which are geographical points where the hazard has a defined value. In our case, we want to define windspeeds from the tracks.

Remember: In the impact computations, for each exposure geographical point, one must assign a centroid from the hazard. By default, each exposure is assigned to the closest centroid from the hazard. But one can also define manually which centroid is assigned to which exposure point.

Examples:

- Define the exposures from a given source (e.g., raster of asset values from LitPop). Define the hazard centroids from the exposures' geolocations (e.g. compute Tropical Cyclone windspeed at each raster point and assign centroid to each raster point).
- Define the exposures from a given source (e.g. houses position and value). Define the hazard from a given source (e.g. where landslides occur). Use a metric to assign to each exposures point a hazard centroid (all houses in a radius of 5km around the landslide are assigned to this centroid, if a house is within 5km of two landslides, choose the closest one).
- Define a geographical raster. Define the exposures value on this raster. Define the hazard centroids on the geographical raster.

We shall pursue with the first case (Litpop + TropicalCyclone)

Hint: computing the wind speeds in many locations for many tc tracks is a computationally costly operation. Thus, we should define centroids only where we also have an exposure.

```python
Define the centroids from the exposures position
lat = exp_lp.gdf['latitude'].values
lon = exp_lp.gdf['longitude'].values
centrs = Centroids.from_lat_lon(lat, lon)
centrs.check()
```
# Using the tracks, compute the windspeed at the location of the centroids
tc = TropCyclone.from_tracks(ibtracks_na, centroids=centrs)
tc.check()

Hint: The operation of computing the windspeed in different location is in general computationally expensive. Hence, if you have a lot of tropical cyclone tracks, you should first make sure that all your tropical cyclones actually affect your exposure (remove those that don’t). Then, be careful when defining the centroids. For a large country like China, there is no need for centroids 500km inland (no tropical cyclones gets so far).

Impact function

For Tropical Cyclones, some calibrated default impact functions exist. Here we will use the one from Emanuel (2011).

```python
from climada.entity import ImpactFuncSet, ImpfTropCyclone

impact function TC
impf_tc = ImpfTropCyclone.from_emanuel_usa()

add the impact function to an Impact function set
impf_set = ImpactFuncSet([impf_tc])
impf_set.check()
```

Recall that the exposures, hazards and impact functions must be matched in the impact calculations. Here it is simple, since there is a single impact function for all the hazards. We must simply make sure that the exposure is assigned this impact function through renaming the `impf_` column from the hazard type of the impact function in the impact function set and set the values of the column to the id of the impact function.

```python
Get the hazard type and hazard id
[haz_type] = impf_set.get_hazard_types()
[haz_id] = impf_set.get_ids()[haz_type]
print(f"hazard type: {haz_type}, hazard id: {haz_id}")
```

hazard type: TC, hazard id: 1
# Exposures: rename column and assign id
exp_lp.gdf.rename(columns={"impf_": "impf_" + haz_type}, inplace=True)
exp_lp.gdf['impf_ ' + haz_type] = haz_id
exp_lp.check()
exp_lp.head()

Impact computation

We are finally ready for the impact computation. This is the simplest step. Just give the exposure, impact function and hazard to the ImpactCalc.impact() method.

Note: we did not specifically assign centroids to the exposures. Hence, the default is used - each exposure is associated with the closest centroids. Since we defined the centroids from the exposures, this is a one-to-one mapping.

Note: we did not define an Entity in this impact calculations. Recall that Entity is a container class for Exposures, Impact Functions, Discount Rates and Measures. Since we had only one Exposure and one Impact Function, the container would not have added any value, but for more complex projects, the Entity class is very useful.

# Compute impact
from climada.engine import ImpactCalc
imp = ImpactCalc(exp_lp, impf_set, tc).impact(save_mat=False)  # Do not save the results geographically resolved (only aggregate values)

(exp continues on next page)
For example we can now obtain the aggregated average annual impact or plot the average annual impact in each exposure location.

```
print(f"Aggregated average annual impact: {round(imp.aai_agg, 0)} \$")
```

```
Aggregated average annual impact: 563366225.0 \$
```

```
imp.plot_hexbin_eai_exposure(buffer=1);
```

```
Compute exceedance frequency curve
freq_curve = imp.calc_freq_curve()
freq_curve.plot();
```
There can be cases in which an impact function for a given hazard type is not constant throughout the year. This is for example the case in the context of agriculture. For example, if a crop is already harvested the impact of a certain weather event can be much lower or even zero. For such situations of two or more different impact functions for the same hazard and exposure type, it can be useful to split the events into subsets and compute impacts separately. In order to then analyze the total impact, the different impact subsets can be concatenated using the `Impact.concat` method. This is done here for the hypothetical example using LitPop as exposure and TCs as hazard. For illustration purposes, we misuse the LitPop exposure in this case as exposure of a certain crop. We assume a constant harvest day (17 October) after which the impact function is reduced by a factor of 10.

First, we prepare the hazard subsets.

```python
from datetime import datetime, date
import pandas as pd

set a harvest date
harvest_DOY = 290 # 17 October

loop over all events and check if they happened before or after harvest
event_ids_post_harvest = []
event_ids_pre_harvest = []
for event_id in tc.event_id:
 event_date = tc.date[np.where(tc.event_id==event_id)[0][0]]
 day_of_year = event_date - date(datetime.fromordinal(event_date.year, 1, 1).toordinal()) + 1
```

(continues on next page)
if day_of_year > harvest_DOY:
    event_ids_post_harvest.append(event_id)
else:
    event_ids_pre_harvest.append(event_id)

tc_post_harvest = tc.select(event_id=event_ids_post_harvest)
tc_pre_harvest = tc.select(event_id=event_ids_pre_harvest)

# print('pre-harvest:', tc_pre_harvest.event_name)
# print('post-harvest:', tc_post_harvest.event_name)

Now we get two different impact functions, one valid for the exposed crop before harvest and one after harvest. Then, we compute the impacts for both phases separately.

```python
from climada.engine import Impact

Impact function TC
impf_tc = ImpfTropCyclone.from_emanuel_usa()

Impact function TC after harvest is by factor 0.5 smaller
impf_tc_posth = ImpfTropCyclone.from_emanuel_usa()
impf_tc_posth.mdd = impf_tc.mdd * 0.1

add the impact function to an Impact function set
impf_set = ImpactFuncSet([impf_tc])
impf_set_posth = ImpactFuncSet([impf_tc_posth])
impf_set.check()
impf_set_posth.check()

plot
impf_set.plot()
impf_set_posth.plot()

Compute impacts
imp_preh = ImpactCalc(exp_lp, impf_set, tc_pre_harvest).impact(save_mat=True)
imp_posth = ImpactCalc(exp_lp, impf_set_posth, tc_post_harvest).impact(save_mat=True)
```

2023-01-26 11:58:52,364 - climada.entity.exposures.base - INFO - Exposures matching␣→centroids already found for TC
2023-01-26 11:58:52,364 - climada.entity.exposures.base - INFO - Existing centroids␣→will be overwritten for TC
2023-01-26 11:58:52,370 - climada.entity.exposures.base - INFO - Calculating impact for␣→4164 assets (>0) and 106 events.
2023-01-26 11:58:52,379 - climada.entity.exposures.base - INFO - Exposures matching␣→centroids already found for TC
2023-01-26 11:58:52,379 - climada.entity.exposures.base - INFO - Existing centroids␣→will be overwritten for TC
2023-01-26 11:58:52,382 - climada.entity.exposures.base - INFO - Calculating impact for␣→4164 assets (>0) and 14 events.
TC 1: Emanuel 2011

Impact (%)

Intensity (m/s)

MDD
PAA
MDR
Now, we can concatenate the impacts again and plot the results:

```python
Concatenate impacts again
imp_tot = Impact.concat([imp_preh, imp_posth])

#plot result
import matplotlib.pyplot as plt
ax = imp_preh.plot_hexbin_eai_exposure(gridsize=100, adapt_fontsize=False)
ax.set_title('Expected annual impact: Pre-Harvest')
ax = imp_posth.plot_hexbin_eai_exposure(gridsize=100, adapt_fontsize=False)
ax.set_title('Expected annual impact: Post-Harvest')
ax = imp_tot.plot_hexbin_eai_exposure(gridsize=100, adapt_fontsize=False)
ax.set_title('Expected annual impact: Total')
```

Text(0.5, 1.0, 'Expected annual impact: Total')
10.1.7 Quick examples - points, raster, custom
User defined point exposure and Tropical Cyclone hazard

```python
import numpy as np
from climada.entity import Exposures, ImpactFuncSet, IFTropCyclone
from climada.hazard import Centroids, TCTracks, TropCyclone
from climada.engine import ImpactCalc

Set Exposures in points
exp_pnt = Exposures(crs='epsg:4326') #set coordinate system
exp_pnt.gdf['longitude'] = np.array([88.307422, 88.565362, 88.378337, 87.806356, 88.348835, 88.348835, 89.246521])
exp_pnt.gdf['value'] = np.array([1.0e5, 1.2e5, 1.1e5, 1.1e5, 2.0e5, 2.5e5, 0.5e5])
exp_pnt.check()
exp_pnt.plot_scatter(buffer=0.05)

Set Hazard in Exposures points
set centroids from exposures coordinates
centr_pnt = Centroids.from_lat_lon(exp_pnt.gdf.latitude.values, exp_pnt.gdf.longitude.values, exp_pnt.crs)
compute Hazard in that centroids
tr_pnt = TCTracks.from_ibtracs_netcdf(storm_id='2007314N10093')
tc_pnt = TropCyclone.from_tracks(tr_pnt, centroids=centr_pnt)
tc_pnt.check()
ax_pnt = tc_pnt.centroids.plot(c=np.array(tc_pnt.intensity[:,0]).todense()).squeeze() # plot intensity per point
ax_pnt.get_figure().colorbar(ax_pnt.collections[0], fraction=0.0175, pad=0.02).set_label('Intensity (m/s)') # add colorbar

Set impact function
impf_tc = ImpfTropCyclone.from_emanuel_usa()
impf_pnt = ImpactFuncSet([impf_tc])
impf_pnt.check()

Get the hazard type and hazard id
[haz_type] = impf_set.get_hazard_types()
[haz_id] = impf_set.get_ids()[haz_type]
Exposures: rename column and assign id
exp_lp.gdf.rename(columns={"impf_": "impf_" + haz_type}, inplace=True)
exp_lp.gdf['impf_' + haz_type] = haz_id
exp_lp.gdf.head()

Compute Impact
imp_pnt = ImpactCalc(exp_pnt, impf_pnt, tc_pnt).impact()
nearest neighbor of exposures to centroids gives identity
print('Nearest neighbor hazard.centroids indexes for each exposure:', exp_pnt.gdf.~centr_TC.values)
imp_pnt.plot_scatter_eai_exposure(ignore_zero=False, buffer=0.05);
```

(continues on next page)
2023-01-26 11:59:01,463 - climada.entity.exposures.base - INFO - geometry not set.
2023-01-26 11:59:01,466 - climada.entity.exposures.base - INFO - centr_ not set.
2023-01-26 11:59:03,801 - climada.hazard.tc_tracks - INFO - Progress: 100%
2023-01-26 11:59:04,466 - climada.util.coordinates - INFO - dist_to_coast: UTM 32645...
2023-01-26 11:59:04,595 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 11:59:05,457 - climada.entity.exposures.base - INFO - No specific impact function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 11:59:05,463 - climada.engine.impact_calc - INFO - Calculating impact for 21 assets (>0) and 1 events. Nearest neighbor hazard.centroids indexes for each exposure: [0 1 2 3 4 5 6]
Raster from file

```python
EXAMPLE: RASTER EXPOSURES WITH RASTER HAZARD
from rasterio.warp import Resampling
from climada.entity import LitPop, ImpactFuncSet, ImpactFunc
from climada.hazard import Hazard
from climada.engine import Impact
from climada.util.constants import HAZ_DEMO_FL

Exposures belonging to a raster (the raser information is contained in the meta_attribute)
exp_ras = LitPop.from_countries(countries=['VEN'], res_arcsec=300, fin_mode='income_group')
exp_ras.gdf.reset_index()
exp_ras.check()
exp_ras.plot_raster()
print('
Raster properties exposures:', exp_ras.meta)

Initialize hazard object with haz_type = 'FL' (for Flood)
hazard_type='FL'
Load a previously generated (either with CLIMADA or other means) hazard from file (HAZ_DEMO_FL) and resample the hazard raster to the exposures' ones
Hint: check how other resampling methods affect to final impact
haz_ras = Hazard.from_raster([HAZ_DEMO_FL], haz_type=hazard_type, dst_crs=exp_ras.meta['crs'], transform=exp_ras.meta['transform'],
 width=exp_ras.meta['width'], height=exp_ras.meta['height'], resampling=Resampling.nearest)
haz_ras.intensity[haz_ras.intensity==-9999] = 0 # correct no data values
haz_ras.check()
haz_ras.plot_intensity(1)
print('Raster properties centroids:', haz_ras.centroids.meta)

Set dummy impact function
intensity = np.linspace(0, 10, 100)
mdd = np.linspace(0, 10, 100)
paa = np.ones(intensity.size)
impf_dum = ImpactFunc(hazard_type, haz_id, intensity, mdd, paa, "m", "dummy")
Add the impact function to the impact function set
impf_ras = ImpactFuncSet([impf_dum])
```

(continues on next page)
impf_ras.check()

# Exposures: rename column and assign id
exp_lp.gdf.rename(columns={"impf_": "impf_" + hazard_type}, inplace=True)
exp_lp.gdf['impf_' + haz_type] = haz_id
exp_lp.gdf.head()

# Compute impact
imp_ras = ImpactCalc(exp_ras, impf_ras, haz_ras).impact(save_mat=False)
# nearest neighbor of exposures to centroids is not identity because litpop does not contain data outside the country polygon
print('
Nearest neighbor hazard.centroids indexes for each exposure:', exp_ras.gdf['centr_FL'].values)
imp_ras.plot_raster_eai_exposure();

   -> Version v4.11
   -> point on destination grid within polygon.
2023-01-26 11:59:13,783 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.
   -> Version v4.11
   -> point on destination grid within polygon.
   -> Version v4.11

10.1. END-TO-END IMPACT CALCULATION
2023-01-26 11:59:14,855 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:14,922 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:14,924 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:14,988 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:14,990 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,026 - climada.entity.exposures.litpop.litpop - INFO - No data
→ point on destination grid within polygon.
2023-01-26 11:59:15,028 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:15,029 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,065 - climada.entity.exposures.litpop.litpop - INFO - No data
→ point on destination grid within polygon.
2023-01-26 11:59:15,066 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:15,069 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,130 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:15,131 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,200 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:15,202 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,263 - climada.entity.exposures.litpop.gpw_population - WARNING -
2023-01-26 11:59:15,265 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
→ Version v4.11
2023-01-26 11:59:15,289 - climada.entity.exposures.litpop.litpop - INFO - No data
→ point on destination grid within polygon.
2023-01-26 11:59:15,933 - climada.entity.exposures.base - INFO - Hazard type not set
→ in impf_
2023-01-26 11:59:15,934 - climada.entity.exposures.base - INFO - category_id not set.
2023-01-26 11:59:15,936 - climada.entity.exposures.base - INFO - cover not set.
2023-01-26 11:59:15,949 - climada.entity.exposures.base - INFO - Hazard type not set
→ in impf_
2023-01-26 11:59:15,952 - climada.entity.exposures.base - INFO - cover not set.
2023-01-26 11:59:15,955 - climada.entity.exposures.base - INFO - centr_ not set.
2023-01-26 11:59:15,962 - climada.util.coordinates - INFO - Raster from resolution 0.
→ 08333332999999987 to 0.08333332999999987.
Raster properties exposures: {'width': 163, 'height': 138, 'crs': <Geographic 2D
→ CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- undefined
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
, 'transform': Affine(0.08333333000000209, 0.0, -73.41666766500001,
  0.0, -0.0833332999999987, 12.16666665)}

2023-01-26 11:59:23,374 - climada.util.coordinates - INFO - Reading C:\Users\...
→ F80840370\climada\demo\data\SC22000_VE__M1.grd.gz

2023-01-26 11:59:25,519 - climada.util.coordinates - INFO - Reading C:\Users\...
→ F80840370\climada\demo\data\SC22000_VE__M1.grd.gz

Raster properties centroids: {'driver': 'GSBG', 'dtype': 'float32', 'nodata': 1.7071067811865e+38, 'width': 163, 'height': 138, 'count': 1, 'crs': <Geographic 2D CRST: EPSG:4326>}

Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- undefined
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
, 'transform': Affine(0.08333333000000209, 0.0, -73.41666766500001,
  0.0, -0.0833332999999987, 12.16666665)}

2023-01-26 11:59:23,374 - climada.entity.exposures.base - INFO - No specific impact...function column found for hazard FL. Using the anonymous 'impf_' column.


2023-01-26 11:59:28,704 - climada.engine.impact_calc - INFO - Calculating impact for...32310 assets (>0) and 1 events.

Nearest neighbor hazard.centroids indexes for each exposure: [ 39 40 41 ... 3387 3551 2721]

2023-01-26 11:59:28,714 - climada.util.coordinates - INFO - Raster from resolution 0.
  0.0833332999999987 to 0.0833332999999987.
10.1.8 VISUALIZATION

Making plots

The expected annual impact per exposure can be visualized through different methods: `plot_hexbin_eai_exposure()`, `plot_scatter_eai_exposure()`, `plot_raster_eai_exposure()` and `plot_basemap_eai_exposure()` (similarly as with Exposures).

```python
imp_pnt.plot_basemap_eai_exposure(buffer=5000);
```

```
2023-01-26 11:59:40,355 - climada.util.coordinates - INFO - Setting geometry points.
```
Making videos

Given a fixed exposure and impact functions, a sequence of hazards can be visualized hitting the exposures.

```python
exposure
from climada.entity import add_sea
from climada_petals.entity import BlackMarble

exp_video = BlackMarble()
exp_video.set_countries(['Cuba'], 2016, res_km=2.5)
exp_video.check()

impact function
impf_def = ImpfTropCyclone.from_emanuel_usa()
impfs_video = ImpactFuncSet([impf_def])
impfs_video.check()

compute sequence of hazards using TropCyclone video_intensity method
exp_sea = add_sea(exp_video, (100, 5))
centr_video = Centroids.from_lat_lon(exp_sea.gdf.latitude.values, exp_sea.gdf.longitude.values)
centr_video.check()

track_name = '2017242N16333'
tr_irma = TCTracks.from_ibtracs_netcdf(provider='usa', storm_id=track_name) # IRMA

tc_video = TropCyclone()
tc_list, _ = tc_video.video_intensity(track_name, tr_irma, centr_video) # empty file

generate video of impacts
file_name='~/results/irma_imp_fl.gif'
imp_video = Impact()
imp_list = imp_video.video_direct_impact(exp_video, impfs_video, tc_list, file_name)
```

(continues on next page)
2023-01-26 11:59:48,987 - climada_petals.entity.exposures.black_marble - INFO - → Generating resolution of approx 2.5 km.
2023-01-26 11:59:49,159 - climada.entity.exposures.base - INFO - Hazard type not set
2023-01-26 11:59:49,167 - climada.entity.exposures.base - INFO - Adding sea at 5 km
2023-01-26 12:00:02,901 - climada.util.coordinates - INFO - dist_to_coast: UTM 32616
2023-01-26 12:00:09,800 - climada.util.coordinates - INFO - dist_to_coast: UTM 32617
2023-01-26 12:00:32,928 - climada.util.coordinates - INFO - dist_to_coast: UTM 32618
2023-01-26 12:00:42,661 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 23083 coastal centroids.
2023-01-26 12:00:42,684 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:42,702 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 26071 coastal centroids.
2023-01-26 12:00:42,733 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:42,750 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 29579 coastal centroids.
2023-01-26 12:00:42,781 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:42,818 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 32525 coastal centroids.
2023-01-26 12:00:42,849 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:42,865 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 35241 coastal centroids.
2023-01-26 12:00:42,902 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:42,934 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 37535 coastal centroids.
2023-01-26 12:00:42,981 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,002 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 39661 coastal centroids.
2023-01-26 12:00:43,034 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,065 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 42459 coastal centroids.
2023-01-26 12:00:43,103 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,118 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 43981 coastal centroids.
2023-01-26 12:00:43,181 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,203 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 45805 coastal centroids.
2023-01-26 12:00:43,250 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,266 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 47236 coastal centroids.
2023-01-26 12:00:43,319 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,404 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 48530 coastal centroids.
2023-01-26 12:00:43,435 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,466 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 47331 coastal centroids.
2023-01-26 12:00:43,504 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,535 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 45981 coastal centroids.
2023-01-26 12:00:43,582 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,604 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 44618 coastal centroids.
2023-01-26 12:00:43,635 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,667 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 43393 coastal centroids.
2023-01-26 12:00:43,704 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,720 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 42463 coastal centroids.
2023-01-26 12:00:43,767 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,782 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 41702 coastal centroids.
2023-01-26 12:00:43,820 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,836 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 41057 coastal centroids.
2023-01-26 12:00:43,869 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,900 - climada.hazard.trop_cyclone - INFO - Mapping 1 tracks to 40802 coastal centroids.
2023-01-26 12:00:43,936 - climada.hazard.trop_cyclone - INFO - Progress: 100%
2023-01-26 12:00:43,951 - climada.entity.exposures.base - INFO - Matching 21923 exposures with 49817 centroids.
2023-01-26 12:00:43,951 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100.
2023-01-26 12:00:44,005 - climada.engine.impact - WARNING - The use of Impact().calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,005 - climada.entity.exposures.base - INFO - No specific impact function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,021 - climada.engine.impact_calc - INFO - Calculating impact for 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,021 - climada.engine.impact - WARNING - The use of Impact().calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,021 - climada.entity.exposures.base - INFO - No specific impact function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,036 - climada.engine.impact_calc - INFO - Calculating impact for 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,052 - climada.engine.impact - WARNING - The use of Impact().calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,052 - climada.entity.exposures.base - INFO - No specific impact function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,052 - climada.engine.impact_calc - INFO - Calculating impact for 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,052 - climada.engine.impact - WARNING - The use of Impact().calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,067 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,067 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,084 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,084 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,084 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,105 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,105 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,105 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,121 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,121 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,121 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,136 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,136 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,136 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,167 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,167 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,167 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,183 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,183 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,199 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,205 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,205 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,205 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,221 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
2023-01-26 12:00:44,221 - climada.entity.exposures.base - INFO - No specific impact
→ function column found for hazard TC. Using the anonymous 'impf_' column.
2023-01-26 12:00:44,221 - climada.engine.impact_calc - INFO - Calculating impact for
→ 43962 assets (>0) and 1 events.
2023-01-26 12:00:44,237 - climada.engine.impact - WARNING - The use of Impact().
→ calc() is deprecated. Use ImpactCalc().impact() instead.
10.2 Impact Functions

10.2.1 What is an impact function?

An impact function relates the percentage of damage in the exposure to the hazard intensity, also commonly referred to as a “vulnerability curve” in the modelling community. Every hazard and exposure types are characterized by an impact function.

10.2.2 What is the difference between ImpactFunc and ImpactFuncSet?

An ImpactFunc is a class for a single impact function. E.g. a function that relates the percentage of damage of a reinforced concrete building (exposure) to the wind speed of a tropical cyclone (hazard intensity).

An ImpactFuncSet class is a container that contains multiple ImpactFunc. For instance, there are 100 ImpactFunc represent 100 types of buildings exposed to tropical cyclone’s wind damage. These 100 ImpactFunc are all gathered in an ImpactFuncSet.

10.2.3 What does an ImpactFunc look like in CLIMADA?

The ImpactFunc class requires users to define the following attributes.

<table>
<thead>
<tr>
<th>Mandatory attributes</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>haz_type</td>
<td>(str)</td>
<td>Hazard type acronym (e.g. ‘TC’)</td>
</tr>
<tr>
<td>id</td>
<td>(int or str)</td>
<td>Unique id of the impact function. Exposures of the same type will refer to the same impact function id</td>
</tr>
<tr>
<td>name</td>
<td>(str)</td>
<td>Name of the impact function</td>
</tr>
<tr>
<td>intensity</td>
<td>(np.array)</td>
<td>Intensity values</td>
</tr>
<tr>
<td>intensity_unit</td>
<td>(str)</td>
<td>Unit of the intensity</td>
</tr>
<tr>
<td>mdd</td>
<td>(np.array)</td>
<td>Mean damage (impact) degree for each intensity (numbers in [0,1])</td>
</tr>
<tr>
<td>paa</td>
<td>(np.array)</td>
<td>Percentage of affected assets (exposures) for each intensity (numbers in [0,1])</td>
</tr>
</tbody>
</table>
Users may use `ImpactFunc.check()` to check that the attributes have been set correctly. The mean damage ratio \( mdr = mdd \times paa \) is calculated by the method `ImpactFunc.calc_mdr()`.

### 10.2.4 What does an ImpactFuncSet look like in CLIMADA?

The `ImpactFuncSet` class contains all the `ImpactFunc` classes. Users are not required to define any attributes in `ImpactFuncSet`. To add an `ImpactFunc` into an `ImpactFuncSet`, simply use the method `ImpactFuncSet.append(ImpactFunc)`. If the users only has one impact function, they should generate an `ImpactFuncSet` that contains one impact function. `ImpactFuncSet` is to be used in the impact calculation.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_data</td>
<td>(dict)</td>
<td>Contains <code>ImpactFunc</code> classes. Not supposed to be directly accessed. Use the class methods instead.</td>
</tr>
</tbody>
</table>

### 10.2.5 Structure of the tutorial

**Part 1:** Defining `ImpactFunc` from your own data

**Part 2:** Loading `ImpactFunc` from CLIMADA in-built impact functions

**Part 3:** Add `ImpactFunc` into the container `ImpactFuncSet`

**Part 4:** Read and write `ImpactFuncSet` into Excel sheets

**Part 5:** Loading `ImpactFuncSet` from CLIMADA in-built impact functions

### 10.2.6 Part 1: Defining `ImpactFunc` from your own data

The essential attributes are listed in the table above. The following example shows you how to define an `ImpactFunc` from scratch, and using the method `ImpactFunc.calc_mdr()` to calculate the mean damage ratio.

**Generate a dummy impact function from scratch.**

Here we generate an impact function with random dummy data for illustrative reasons. Assuming this impact function is a function that relates building damage to tropical cyclone (TC) wind, with an arbitrary id 3.

```python
import numpy as np
from climada.entity import ImpactFunc

We initialise a dummy ImpactFunc for tropical cyclone wind damage to building.
Giving the ImpactFunc an arbitrary id 3.
ha_t_type = "TC"
id = 3
name = "TC building damage"
provide unit of the hazard intensity
intensity_unit = "m/s"
provide values for the hazard intensity, mdd, and paa
intensity = np.linspace(0, 100, num=15)
```

(continues on next page)
mdd = np.concatenate((np.array([0]), np.sort(np.random.rand(14))), axis=0)
paa = np.concatenate((np.array([0]), np.sort(np.random.rand(14))), axis=0)
imp_fun = ImpactFunc(
    id=id,
    name=name,
    intensity_unit=intensity_unit,
    haz_type=haz_type,
    intensity=intensity,
    mdd=mdd,
    paa=paa,
)

# check if the all the attributes are set correctly
imp_fun.check()

# Calculate the mdr at hazard intensity 18.7 m/s
print('Mean damage ratio at intensity 18.7 m/s: ', imp_fun.calc_mdr(18.7))

Mean damage ratio at intensity 18.7 m/s:  0.01878041941423081

Visualise the Impact function

The method plot() uses the matplotlib's axes plot function to visualise the impact function. It returns a figure and axes, which can be modified by users.

# plot impact function
imp_fun.plot()
10.2.7 Part 2: Loading impact functions from CLIMADA in-built impact functions

In CLIMADA there are several defined impact functions that users can directly load and use them. However, users should be aware of the applications of the impact functions to types of assets, reading the background references of the impact functions are strongly recommended. Currently available perils include tropical cyclones, river floods, European wind-storm, crop yield, and drought. Continuous updates of perils are available. Here we use the impact function of tropical cyclones as an example.

Loading CLIMADA in-built impact function for tropical cyclones

ImpfTropCyclone is a derivated class of ImpactFunc. This in-built impact function estimates the insured property damages by tropical cyclone wind in USA, following the reference paper Emanuel (2011).

To generate this impact function, method set_emanual_usa() is used.

```python
from climada.entity import ImpfTropCyclone

Here we generate the impact function for TC damage using the formula of Emanuel 2011
impFunc_emanuel_usa = ImpfTropCyclone.from_emanuel_usa()

plot the impact function
impFunc_emanuel_usa.plot();
```

![TC 1: Emanuel 2011](image)
10.2.8 Part 3: Add ImpactFunc into the container ImpactFuncSet

ImpactFuncSet is a container of multiple ImpactFunc, it is part of the arguments in ImpactCalc.impact() (see the impact tutorial).

Here we generate 2 arbitrary impact functions and add them into an ImpactFuncSet class. To add them into the container, simply use the method ImpactFuncSet.append(ImpactFunc).

```python
import numpy as np
import matplotlib.pyplot as plt
from climada.entity import ImpactFunc, ImpactFuncSet

generate the 1st arbitrary impact function
haz_type = "TC"
id = 1
name = "TC Default Damage Function"
intensity_unit = "m/s"
intensity = np.linspace(0, 100, num=10)
mdd = np.concatenate((np.array([0]), np.sort(np.random.rand(9))), axis=0)
paa = np.concatenate((np.array([0]), np.sort(np.random.rand(9))), axis=0)
imp_fun_1 = ImpactFunc(
 id=id,
 name=name,
 intensity_unit=intensity_unit,
 haz_type=haz_type,
 intensity=intensity,
 mdd=mdd,
 paa=paa,
)
imp_fun_1.check()

generate the 2nd arbitrary impact function
haz_type = "TC"
id = 3
name = "TC Building Damage"
intensity_unit = "m/s"
intensity = np.linspace(0, 100, num=15)
mdd = np.concatenate((np.array([0]), np.sort(np.random.rand(14))), axis=0)
paa = np.concatenate((np.array([0]), np.sort(np.random.rand(14))), axis=0)
imp_fun_3 = ImpactFunc(
 id=id,
 name=name,
 intensity_unit=intensity_unit,
 haz_type=haz_type,
 intensity=intensity,
 mdd=mdd,
 paa=paa,
)
imp_fun_3.check()

add the 2 impact functions into ImpactFuncSet
imp_fun_set = ImpactFuncSet([imp_fun_1, imp_fun_3])
```
Plotting all the impact functions in an ImpactFuncSet

The method `plot()` in `ImpactFuncSet` also uses the `matplotlib`'s axes plot function to visualise the impact functions, returning a figure with all the subplots of impact functions. Users may modify these plots.

```python
plotting all the impact functions in impf_set
axes = impf_set.plot()
```

Retrieving an impact function from the ImpactFuncSet

User may want to retrieve a particular impact function from `ImpactFuncSet`. Using the method `get_func(haz_type, id)`, it returns an `ImpactFunc` class of the desired impact function. Below is an example of extracting the TC impact function with id 1, and using `plot()` to visualise the function.

```python
extract the TC impact function with id 1
impf_tc_1 = impf_set.get_func('TC', 1)
plot the impact function
impf_tc_1.plot();
```
Removing an impact function from the ImpactFuncSet

If there is an unwanted impact function from the ImpactFuncSet, we may remove it using the method remove_func(haz_type, id) to remove it from the set.

For example, in the previous generated impact function set imp_fun_set contains an unwanted TC impact function with id 3, we might thus would like to remove that from the set.

```python
first plotting all the impact functions in the impact function set to see what is in there:
imp_fun_set.plot();
```
# removing the TC impact function with id 3
imp_fun_set.remove_func('TC', 3)

# plot all the remaining impact functions in imp_fun_set
imp_fun_set.plot();
10.2.9 Part 4: Read and write ImpactFuncSet into Excel sheets

Users may load impact functions to an ImpactFuncSet class from an excel sheet, or to write the ImpactFuncSet into an excel sheet. This section will give an example of how to do it.

Reading impact functions from an Excel file

Impact functions defined in an excel file following the template provided in sheet impact_functions of climada_python/climada/data/system/entity_template.xlsx can be ingested directly using the method from_excel().

```python
from climada.entity import ImpactFuncSet
from climada.util import ENT_TEMPLATE_XLS
import matplotlib.pyplot as plt

provide absolute path of the input excel file
file_name = ENT_TEMPLATE_XLS
fill ImpactFuncSet from Excel file
imp_set_xlsx = ImpactFuncSet.from_excel(file_name)

plot all the impact functions from the ImpactFuncSet
imp_set_xlsx.plot()
adjust the plots
plt.subplots_adjust(right=1., top=4., hspace=0.4, wspace=0.4)
```
Write impact functions

Users may write the impact functions in Excel format using write_excel() method.

```python
write imp_set_xlsx into an excel file
imp_set_xlsx.write_excel('tutorial_impf_set.xlsx')
```

Alternative saving format

Alternatively, users may also save the impact functions into pickle format, using CLIMADA in-built function save().

```python
from climada.util.save import save

this generates a results folder in the current path and stores the output there
save('tutorial_impf_set.p', imp_set_xlsx)
```


### 10.2.10 Part 5: Loading ImpactFuncSet from CLIMADA in-built impact functions

Similar to Part 3, some of the impact functions are available as ImpactFuncSet classes. Users may load them from the CLIMADA modules.

Here we use the example of the calibrated impact functions of TC wind damages per region to property damages, following the reference Eberenz et al. (2021). Method from_calibrated_regional_ImpfSet() returns a set of default calibrated impact functions for TC for different regions.

```python
from climada.entity.impact_funcs.trop_cyclone import ImpfSetTropCyclone
import matplotlib.pyplot as plt

generate the default calibrated TC impact functions for different regions
imp_fun_set_TC = ImpfSetTropCyclone.from_calibrated_regional_ImpfSet()

plot all the impact functions
imp_fun_set_TC.plot()
adjust the plots
plt.subplots_adjust(right=1., top=4., hspace=0.4, wspace=0.4)
```

/tmp/ipykernel_1009/2983082256.py:10: UserWarning: Tight layout not applied. tight_layout cannot make axes height small enough to accommodate all axes decorations. plt.tight_layout()
10.3 Adaptation Measures

Adaptation measures are defined by parameters that alter the exposures, hazard or impact functions. Risk transfer options are also considered. Single measures are defined in the Measure class, which can be aggregated to a MeasureSet.

10.3.1 Measure class

A measure is characterized by the following attributes:

Related to measure’s description:
- name (str): name of the action
- haz_type (str): related hazard type (peril), e.g. TC
- color_rgb (np.array): integer array of size 3. Gives color code of this measure in RGB
- cost (float): discounted cost (in same units as assets). Needs to be provided by the user. See the example provided in climada_python/climada/data/system/entity_template.xlsx sheets _measures_details and _discounting_sheet to see how the discounting is done.

Related to a measure’s impact:
- hazard_set (str): file name of hazard to use
- hazard_freq_cutoff (float): hazard frequency cutoff
- exposure_set (str): file name of exposure to use
- hazard_inten_imp (tuple): parameter a and b of hazard intensity change
- mdd_impact (tuple): parameter a and b of the impact over the mean damage degree
- paa_impact (tuple): parameter a and b of the impact over the percentage of affected assets
- imp_fun_map (str): change of impact function id, e.g. ‘1to3’
- exp_region_id (int): region id of the selected exposures to consider ALL the previous parameters
- risk_transf_attach (float): risk transfer attachment. Applies to the whole exposure.
- risk_transf_cover (float): risk transfer cover. Applies to the whole exposure.

Parameters description:
- hazard_set and exposures_set provide the file names in h5 format (generated by CLIMADA) of the hazard and exposures to use as a result of the implementation of the measure. These might be further modified when applying the other parameters.
- hazard_inten_imp, mdd_impact and paa_impact transform the impact functions linearly as follows:

\[
\text{intensity} = \text{intensity} \times \text{hazard_inten_imp}[0] + \text{hazard_inten_imp}[1]
\]
\[
\text{mdd} = \text{mdd} \times \text{mdd_impact}[0] + \text{mdd_impact}[1]
\]
\[
\text{paa} = \text{paa} \times \text{paa_impact}[0] + \text{paa_impact}[1]
\]

- hazard_freq_cutoff modifies the hazard by putting 0 intensities to the events whose impact exceedance frequency are greater than hazard_freq_cutoff.
- imp_fun_map indicates the ids of the impact function to replace and its replacement. The impf_XX variable of Exposures with the affected impact function id will be correspondingly modified (XX refers to the haz_type of the measure).
exp_region_id will apply all the previous changes only to the region_id indicated. This means that only the exposures with that region_id and the hazard's centroids close to them will be modified with the previous changes, the other regions will remain unaffected to the measure.

risk_transf_attach and risk_transf_cover are the deductible and coverage of any event to happen.

Methods description:

The method check() validates the attributes. apply() applies the measure to a given exposure, impact function and hazard, returning their modified values. The parameters related to insurability (risk_transf_attach and risk_transf_cover) affect the resulting impact and are therefore not applied in the apply() method yet.

calc_impact() calls to apply(), applies the insurance parameters and returns the final impact and risk transfer of the measure. This method is called from the CostBenefit class.

The method apply() allows to visualize the effect of a measure. Here are some examples:

```python
effect of mdd_impact, paa_impact, hazard_inten_imp
%matplotlib inline
import numpy as np
from climada.entity import ImpactFuncSet, ImpfTropCyclone, Exposures
from climada.entity.measures import Measure
from climada.hazard import Hazard

define measure
meas = Measure(
 name='Mangrove',
 haz_type='TC',
 color_rgb=np.array([1, 1, 1]),
 cost=500000000,
 mdd_impact=(1, 0),
 paa_impact=(1, -0.15),
 hazard_inten_imp=(1, -10), # reduces intensity by 10
)

impact functions
impf_tc = ImpfTropCyclone.from_emanuel_usa()
impf_all = ImpactFuncSet([impf_tc])
impf_all.plot();

dummy Hazard and Exposures
haz = Hazard('TC') # this measure does not change hazard
exp = Exposures() # this measure does not change exposures

new impact functions
new_exp, new_impfs, new_haz = meas.apply(exp, impf_all, haz)
axes = new_impfs.plot();
axes.set_title('TC: Modified impact function')
```

Text(0.5, 1.0, 'TC: Modified impact function')
import numpy as np
from climada.entity import ImpactFuncSet, ImpfTropCyclone, Exposures
from climada.entity.measures import Measure
from climada.hazard import Hazard
from climada.engine import ImpactCalc

# effect of hazard_freq_cutoff

(continues on next page)
```python
from climada.util import HAZ_DEMO_H5, EXP_DEMO_H5

define measure
meas = Measure(
 name='Mangrove',
 haz_type='TC',
 color_rgb=np.array([1, 1, 1]),
 cost=500000000,
 hazard_freq_cutoff=0.0255,
)

impact functions
impf_tc = ImpfTropCyclone.from_emanuel_usa()
impf_all = ImpactFuncSet([impf_tc])

Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)
haz.check()

Exposures
exp = Exposures.from_hdf5(EXP_DEMO_H5)
exp.check()

new hazard
new_exp, new_impfs, new_haz = meas.apply(exp, impf_all, haz)

if you look at the maximum intensity per centroid: new_haz does not contain the...
event with smaller impact (the most frequent)
haz.plot_intensity(0);
new_haz.plot_intensity(0);
you might also compute the exceedance frequency curve of both hazard
imp = ImpactCalc(exp, impf_all, haz).impact()
ax = imp.calc_freq_curve().plot(label='original');

new_imp = ImpactCalc(new_exp, new_impfs, new_haz).impact()
new_imp.calc_freq_curve().plot(ax=ax, label='measure'); # the damages for events...
with return periods > 1/0.0255 ~ 40 are 0
```

```
$CONDA_PREFIX/lib/python3.8/site-packages/pyproj/crs/crs.py:68: FutureWarning: '*init=...
 Shea: <authority>:<code>' syntax is deprecated. '<authority>:<code>' is the preferred...
 initialization method. When making the change, be mindful of axis order changes:...
 _return_prepare_from_string(" ",join(pjargs))

<matplotlib.legend.Legend at 0x7f433756d970>
```
TC max intensity at each point
TC max intensity at each point
# effect of exp_region_id

```python
import numpy as np
from climada.entity import ImpactFuncSet, ImpfTropCyclone, Exposures
from climada.entity.measures import Measure
from climada.hazard import Hazard
from climada.engine import ImpactCalc

from climada.util import HAZ_DEMO_H5, EXP_DEMO_H5

define measure
meas = Measure(
 name='Building code',
 haz_type='TC',
 color_rgb=np.array([1, 1, 1]),
 cost=500000000,
 hazard_freq_cutoff=0.00455,
 exp_region_id=[1], # apply measure to points close to exposures with region_id=1
)

impact functions
impf_tc = ImpfTropCyclone.from_emmanuel_usa()
impf_all = ImpactFuncSet([impf_tc])

Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)
haz.check()

Exposures
exp = Exposures.from_hdf5(EXP_DEMO_H5)
exp['region_id'] = np.ones(exp.shape[0])
exp.check()
all exposures have region_id=1
```

(continues on next page)
exp.plot_hexbin(buffer=1.0)

# new hazard
new_exp, new_impfs, new_haz = meas.apply(exp, impf_all, haz)
# the cutoff has been applied only in the region of the exposures
haz.plot_intensity(0)
new_haz.plot_intensity(0)

# the exceedance frequency has only been computed for the selected exposures before doing the cutoff.
# since we have removed the hazard of the places with exposure, the new exceedance frequency curve is zero.
imp = ImpactCalc(exp, impf_all, haz).impact()
imp.calc_freq_curve().plot()

new_imp = ImpactCalc(new_exp, new_impfs, new_haz).impact()
new_imp.calc_freq_curve().plot();

  return _prepare_from_string(" ".join(pjargs))

<AxesSubplot:title={"center":"Exceedance frequency curve"}, xlabel='Return period (year)', ylabel='Impact (USD)'>
TC max intensity at each point

26.5°N
27°N
25.5°N
24°N
22.5°N
82.5°W 81°W 79.5°W 79°W 76.5°W

Intensity (m/s)
# effect of risk_transf_attach and risk_transf_cover

```python
import numpy as np
from climada.entity import ImpactFuncSet, ImpfTropCyclone, Exposures
from climada.entity.measures import Measure
from climada.hazard import Hazard
from climada.engine import ImpactCalc
```

(continues on next page)
from climada.util import HAZ_DEMO_H5, EXP_DEMO_H5

# define measure
meas = Measure(
    name='Insurance',
    haz_type='TC',
    color_rgb=np.array([1, 1, 1]),
    cost=5000000000,
    risk_transf_attach=5.0e8,
    risk_transf_cover=1.0e9,
)

# impact functions
impf_tc = ImpfTropCyclone.from_emanuel_usa()
impf_all = ImpactFuncSet([impf_tc])

# Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)
haz.check()

# Exposures
exp = Exposures.from_hdf5(EXP_DEMO_H5)
exp.check()

# impact before
imp = ImpactCalc(exp, impf_all, haz).impact()
ax = imp.calc_freq_curve().plot(label='original');

# impact after. risk_transf will be added to the cost of the measure
imp_new, risk_transf = meas.calc_impact(exp, impf_all, haz)
imp_new.calc_freq_curve().plot(axis=ax, label='measure');
print('risk_transfer {:.3}'.format(risk_transf.aai_agg))

2022-03-30 20:10:30,001 - climada.entity.exposures.base - INFO - Reading /home/yuyue/climada/demo/data/exp_demo_today.h5
2022-03-30 20:10:30,035 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
2022-03-30 20:10:30,047 - climada.engine.impact - INFO - Calculating damage for 50 assets (>0) and 216 events.
2022-03-30 20:10:30,084 - climada.engine.impact - INFO - Exposures matching centroids found in centr_TC
2022-03-30 20:10:30,087 - climada.engine.impact - INFO - Calculating damage for 50 assets (>0) and 216 events.
risk_transfer 2.7e+07
10.3.2 MeasureSet class

Similarly to the ImpactFuncSet, MeasureSet is a container which handles Measure instances through the methods append(), extend(), remove_measure() and get_measure(). Use the check() method to make sure all the measures have been properly set.

For a complete class documentation, refer to the Python modules docs: climada.entity.measures.measure_set.MeasureSet

```python
build measures
import numpy as np
import matplotlib.pyplot as plt
from climada.entity.measures import Measure, MeasureSet

meas_1 = Measure(
 haz_type='TC',
 name='Mangrove',
 color_rgb=np.array([1, 1, 1]),
 cost=500000000,
 mdd_impact=(1, 2),
 paa_impact=(1, 2),
 hazard_inten_imp=(1, 2),
 risk_transf_cover=500,
)

meas_2 = Measure(
 haz_type='TC',
 name='Sandbags',
 color_rgb=np.array([1, 1, 1]),
 cost=22000000,
)
```

(continues on next page)
mdd_impact=(1, 2),
  paa_impact=(1, 3),
  hazard_inten_imp=(1, 2),
  exp_region_id=2,
)

# gather all measures
meas_set = MeasureSet()
meas_set.append(meas_1)
meas_set.append(meas_2)
meas_set.check()

# select one measure
meas_sel = meas_set.get_measure(name='Sandbags')
print(meas_sel[0].name, meas_sel[0].cost)

Sandbags 22000000

### 10.3.3 Read measures of an Excel file

Measures defined in an excel file following the template provided in sheet measures of climada-python/data/system/entity_template.xlsx can be ingested directly using the method from_excel().

```python
from climada.entity.measures import MeasureSet
from climada.util import ENT_TEMPLATE_XLS

Fill DataFrame from Excel file
file_name = ENT_TEMPLATE_XLS # provide absolute path of the excel file
meas_set = MeasureSet.from_excel(file_name)
meas_set

<climada.entity.measures.measure_set.MeasureSet at 0x1f30d913b80>
```

### 10.3.4 Write measures

Measures can be written in Excel format using write_excel() method.

```python
from climada.entity.measures import MeasureSet
from climada.util import ENT_TEMPLATE_XLS

Fill DataFrame from Excel file
file_name = ENT_TEMPLATE_XLS # provide absolute path of the excel file
meas_set = MeasureSet.from_excel(file_name)

write file
meas_set.write_excel('results/tutorial_meas_set.xlsx')
```

Pickle can always be used as well:

```python
from climada.util.save import save
this generates a results folder in the current path and stores the output there
save('tutorial_meas_set.p', meas_set)
```
10.4 DiscRates class

Discount rates are used to calculate the net present value of any future or past value. They are thus used to compare amounts paid (costs) and received (benefits) in different years. A project is economically viable (attractive), if the net present value of benefits exceeds the net present value of costs - a cost-benefit ratio < 1.

There are several important implications that come along with discount rates. Namely, that higher discount rates lead to smaller net present values of future impacts (costs). As a consequence of that, climate action and mitigation measures can be postponed. In the literature higher discount rates are typically justified by the expectation of continued exponential growth of the economy. The most widely used interest rate in climate change economics is 1.4% as proposed by the Stern Review (2006). Neoliberal economists around Nordhaus (2007) claim that rates should be higher, around 4.3%. Environmental economists argue that future costs shouldn’t be discounted at all. This is especially true for non-monetary variables such as ecosystems or human lives, where no price tag should be applied out of ethical reasons. This discussion has a long history, reaching back to the 18th century: “Some things have a price, or relative worth, while other things have a dignity, or inner worth” (Kant, 1785).

This class contains the discount rates for every year and discounts given values. Its attributes are:

- years (np.array): years
- rates (np.array): discount rates for each year (between 0 and 1)

For a complete class documentation, refer to the Python modules docs: climada.entity.disc_rates.base.DiscRates

An example of use - we define discount rates and apply them on a coastal protection scheme which initially costs 100 mn. USD plus 75'000 USD maintenance each year, starting after 10 years. Net present value of the project can be calculated as displayed:

```python
define discount rates
years = np.arange(1950, 2100)
rates = np.ones(years.size) * 0.014
rates[51:55] = 0.025
rates[95:120] = 0.035
disc = DiscRates(years=years, rates=rates)
disc.plot()

Compute net present value between present year and future year.
in_i_year = 2019
end_year = 2050
val_years = np.zeros(end_year-ini_year+1)
val_years[0] = 100000000 # initial investment
val_years[10:] = 75000 # maintenance from 10th year
npv = disc.net_present_value(ini_year, end_year, val_years)
print('net present value: {:.5e}'.format(npv))

net present value: 1.01231e+08
```
## Read discount rates of an Excel file

Discount rates defined in an excel file following the template provided in sheet `discount` of `climada_python/climada/data/system/entity_template.xlsx` can be ingested directly using the method `from_excel()`.

```python
from climada.entity import DiscRates
from climada.util import ENT_TEMPLATE_XLS

Fill DataFrame from Excel file
file_name = ENT_TEMPLATE_XLS # provide absolute path of the excel file
print('Read file:', ENT_TEMPLATE_XLS)
```

(continues on next page)
disc = DiscRates.from_excel(file_name)
disc.plot();

Read file: /Users/ckropf/climada/data/entity_template.xlsx

<AxesSubplot:title={'center':'Discount rates'}, xlabel='Year', ylabel='discount rate (→%)'>

![Discount rates graph]

Discount rates

Year

discount rate (%)

2.100
2.075
2.050
2.025
2.000
1.975
1.950
1.925
1.900

2000 2020 2040 2060 2080 2100
10.4.1 Write discount rates

Users may write the discounts in Excel format using write_excel() method `write_excel()`.

```python
from climada.entity import DiscRates
from climada.util import ENT_TEMPLATE_XLS

Fill DataFrame from Excel file
file_name = ENT_TEMPLATE_XLS # provide absolute path of the excel file
disc = DiscRates.from_excel(file_name)

write file
disc.write_excel('results/tutorial_disc.xlsx')
```

Pickle can always be used as well:

```python
from climada.util.save import save
this generates a results folder in the current path and stores the output there
save('tutorial_disc.p', disc)
```

10.5 Impact Data functionalities

Import data from EM-DAT CSV file and populate Impact()-object with the data.

The core functionality of the module is to read disaster impact data as downloaded from the International Disaster Database EM-DAT (www.emdat.be) and produce a CLIMADA Impact()-instance from it. The purpose is to make impact data easily available for comparison with simulated impact inside CLIMADA, e.g. for calibration purposes.

10.5.1 Data Source

The International Disaster Database EM-DAT www.emdat.be

Download: https://public.emdat.be/ (register for free and download data to continue)

10.5.2 Most important functions

- clean_emdat_df: read CSV from EM-DAT into a DataFrame and clean up.
- emdat_countries_by_hazard: get list of countries affected by a certain hazard (disaster (sub-)type) in EM-DAT.
- emdat_impact_yearlysum: create DataFrame with impact from EM-DAT summed per country and year.
10.5.3 Demo data

The demo data used here (demo_emdat_impact_data_2020.csv) contains entries for the disaster subtype “Tropical cyclone” from 2000 to 2020.

```python
Load required packages and set path to CSV-file from EM-DAT
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from climada.util.constants import DEMO_DIR
from climada.engine.impact_data import emdat_countries_by_hazard,
 emdat_impact_yearlysum, emdat_to_impact, clean_emdat_df

demo_file_path = DEMO_DIR.joinpath('demo_emdat_impact_data_2020.csv')

clean_emdat_df()

read CSV from EM-DAT into a DataFrame and clean up.
Use the parameters countries, hazard, and year_range to filter. These parameters are the same for most functions shown here.

Create DataFrame df with EM-DAT entries of tropical cyclones in Thailand and Viet Nam in the years 2005 and 2006
df = clean_emdat_df(demo_file_path, countries=['THA', 'Viet Nam'], hazard=['TC'],
 year_range=[2005, 2006])
print(df)
```

<table>
<thead>
<tr>
<th>Dis No</th>
<th>Year</th>
<th>Seq</th>
<th>Disaster</th>
<th>Group</th>
<th>Subgroup</th>
<th>Disaster Subtype</th>
<th>Disaster Subsubtype</th>
<th>Event Name</th>
<th>Entry Criteria</th>
<th>Total Deaths</th>
<th>No Injured</th>
<th>No Affected</th>
<th>No Homeless</th>
<th>Total Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2005-0540-VNM</td>
<td>2005</td>
<td>540</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2005-0540-THA</td>
<td>2005</td>
<td>540</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2005-0536-VNM</td>
<td>2005</td>
<td>536</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2005-0611-VNM</td>
<td>2005</td>
<td>611</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2006-0362-VNM</td>
<td>2006</td>
<td>362</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2006-0648-VNM</td>
<td>2006</td>
<td>648</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2006-0251-VNM</td>
<td>2006</td>
<td>251</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2006-0517-VNM</td>
<td>2006</td>
<td>517</td>
<td>Natural Meteorological Storm</td>
<td></td>
</tr>
</tbody>
</table>

Disaster Subtype Disaster Subsubtype Event Name Entry Criteria
Tropical cyclone NaN Damrey Kill

... End Day Total Deaths No Injured No Affected No Homeless Total Affected
0 ... 30.0 75.0 28.0 337632.0 NaN 337660.0
1 ... 30.0 10.0 NaN 2000.0 NaN 2000.0
2 ... 19.0 8.0 NaN 8500.0 NaN 8500.0
(continues on next page)
emdat_countries_by_hazard()

Pick a hazard and a year range to get a list of countries affected from the EM-DAT data.

"""emdat_countries_by_hazard: get lists of countries impacted by tropical cyclones - from 2010 to 2019""

iso3_codes, country_names = emdat_countries_by_hazard(emdat_file_path, hazard='TC',
--year_range=(2010, 2019))

print(country_names)
print(iso3_codes)
emdat_to_impact()

function to load EM-DAT impact data and return impact set with impact per event

Parameters:

- emdat_file_csv (str): Full path to EMDAT-file (CSV)
- hazard_type_climada (str): Hazard type abbreviation used in CLIMADA, e.g. 'TC'

Optional parameters:

- hazard_type_emdat (list or str): List of Disaster (sub-)type according EMDAT terminology or CLIMADA hazard
type abbreviations. e.g. ['Wildfire', 'Forest fire'] or ['BF']
- year_range (list with 2 integers): start and end year e.g. [1980, 2017]
- countries (list of str): country ISO3-codes or names, e.g. ['JAM', 'CUB']. Set to None or ['all'] for all countries
- reference_year (int): reference year of exposures for normalization. Impact is scaled proportional to GDP to the
value of the reference year. No scaling for reference_year=0 (default)
- imp_str (str): Column name of impact metric in EMDAT CSV, e.g. 'Total Affected'; default = “Total Damages”
Returns:

- `impact_instance` (instance of `climada.engine.Impact`): `Impact()` instance (same format as output from CLIMADA impact computations). Values are scaled with GDP to `reference_year` if `reference_year` not equal 0. `impact_instance.eai_exp` holds expected annual impact for each country. `impact_instance.coord_exp` holds rough central coordinates for each country.

- `countries` (list): ISO3-codes of countries in same order as in `impact_instance.eai_exp`.

```python
"""Global TC damages 2000 to 2009""

print('Number of TC events in EM-DAT 2000 to 2009 globally: %i' % (impact_emdat.event_id.size))
print('Global annual average monetary damage (AAI) from TCs as reported in EM-DAT 2000 to 2009: USD billion %.2f' % (impact_emdat.aai_agg / 1e9))
```

```
Number of TC events in EM-DAT 2000 to 2009 globally: 533
Global annual average monetary damage (AAI) from TCs as reported in EM-DAT 2000 to 2009: USD billion 38.07
```

```python
"""Total people affected by TCs in the Philippines in 2013""

People affected
impact_emdat_PHL, countries = emdat_to_impact(emdat_file_path, 'TC', countries='PHL',
 year_range=(2013,2013), imp_str='Total Affected')

print('Number of TC events in EM-DAT in the Philippines, 2013: %i' % (impact_emdat_PHL.event_id.size))
print('People affected by TC events in the Philippines in 2013 (per event):

impact_emdat_PHL.at_event

People affected by TC events in the Philippines in 2013 (total):

int(impact_emdat_PHL.aai_agg)

Comparison to monetary damages:
impact_emdat_PHL_USD, _ = emdat_to_impact(emdat_file_path, 'TC', countries='PHL',
 year_range=(2013,2013))

ax = plt.scatter(impact_emdat_PHL_USD.at_event, impact_emdat_PHL.at_event)
plt.title('Typhoon impacts in the Philippines, 2013')
plt.xlabel('Total Damage [USD]')
plt.ylabel('People Affected');
plt.xscale('log')
plt.yscale('log')
```

```
Number of TC events in EM-DAT in the Philippines, 2013: 8
People affected by TC events in the Philippines in 2013 (per event): (continues on next page)
```
People affected by TC events in the Philippines in 2013 (total): 17944571

emdat_impact_yearlysum()

function to load EM-DAT impact data and return DataFrame with impact summed per year and country

Parameters:

- emdat_file_csv (str): Full path to EMDAT-file (CSV)

Optional parameters:

- hazard (list or str): List of Disaster (sub-)type according EMDAT terminology or CLIMADA hazard type abbreviations. e.g. ['Wildfire', 'Forest fire'] or ['BF']
- year_range (list with 2 integers): start and end year e.g. [1980, 2017]
- countries (list of str): country ISO3-codes or names, e.g. ['JAM', 'CUB']. Set to None or ['all'] for all countries
- reference_year (int): reference year of exposures for normalization. Impact is scaled proportional to GDP to the value of the reference year. No scaling for reference_year=0 (default)
• `imp_str` (str): Column name of impact metric in EMDAT CSV, e.g. 'Total Affected'; default = “Total Damages”
• `version` (int): given EM-DAT data format version (i.e. year of download), changes naming of columns/variables (default: 2020)

Returns:

• pandas.DataFrame with impact per year and country

```python
"""Yearly TC damages in the USA, normalized and current""
yearly_damage_normalized_to_2019 = emdat_impact_yearlysum(emdat_file_path, countries='USA',
 year_range=None,
 hazard='Tropical cyclone',
 reference_year=2019)
yearly_damage_current = emdat_impact_yearlysum(emdat_file_path, countries=['USA'],
 hazard='TC',)

import matplotlib.pyplot as plt
fig, axis = plt.subplots(1, 1)
axis.plot(yearly_damage_current.year, yearly_damage_current.impact, 'b', label='USD current
value')
axis.plot(yearly_damage_normalized_to_2019.year, yearly_damage_normalized_to_2019.impact_scaled,
 'r--', label='USD normalized to 2019')
plt.legend()
axis.set_title('TC damage reported in EM-DAT in the USA')
axis.set_ylabel('Total Damage [USD]');
axis.set_xlabel('year')
```


Text(0, 0.5, 'Total Damage [USD]')
10.6 END-TO-END COST BENEFIT CALCULATION

10.6.1 Contents

- Introduction
- What is a cost-benefit?
- CostBenefit class data structure
- Detailed CostBenefit calculation: LitPop + TropCyclone
- Conclusion

10.6.2 Introduction

The goal of this tutorial is to show a full end-to-end cost-benefit calculation. Note that this tutorial shows the work flow and some data exploration, but does not explore all possible features.

The tutorial will start with an explanation of the mathematics of an cost-benefit calculation, and then will move on to how this is implemented in CLIMADA. We will then go through a few end-to-end calculations.

If you just need to see the code in action, you can skip these first parts, which are mostly for reference.

The tutorial assumes that you’re already familiar with CLIMADA’s Hazard, Exposures, impact functions, Impact and adaptation measure functionality. The cost-benefit calculation is often the last part of an analyses, and it brings all the previous components together.
10.6.3 What is a cost-benefit?

A cost-benefit analysis in CLIMADA lets you compare the effectiveness of different hazard adaptation options. The cost-benefit ratio describes how much loss you can prevent per dollar of expenditure (or whatever currency you’re using) over a period of time. When a cost-benefit ratio is less than 1, the cost is less than the benefit and CLIMADA is predicting a worthwhile investment. Smaller ratios therefore represent better investments. When a cost-benefit is greater than 1, the cost is more than the benefit and the offset losses are less than the cost of the adaptation measure: based on the financials alone, the measure may not be worth it. Of course, users may have factors beyond just cost-benefits that influence decisions.

CLIMADA doesn’t limit cost-benefits to just financial exposures. The cost-benefit ratio could represent hospitalisations avoided per Euro spent, or additional tons of crop yield per Swiss Franc.

The cost-benefit calculation has a few complicated components, so in this section we’ll build up the calculation step by step.

Simple cost-benefits

The simplest form of a cost-benefit calculation goes like this:

\[
\text{CostBenefit} = \frac{\text{cost}}{\text{benefit}} = \frac{\text{cost}}{N \cdot (\text{AAI without measures} - \text{AAI with measures})}
\]

where cost is the cost of implementing a set of measures, the AAI is the average annual impact from your hazard event set on your exposure, and \( N \) is the number of years the cost-benefit is being evaluated over.

Note that:

- Whether an adaptation measure is seen to be effective might depend on the number of years you are evaluating the cost-benefit over. For example, a €50 mn investment that prevents an average of €1 mn losses per year will only ‘break even’ after \( N = 50 \) years.
- Since an adaptation measure could in theory make an impact worse (a negative benefit) it is possible to have negative cost-benefit ratios.
- CLIMADA allows you to use other statistics than annual average impact, but to keep thing simple we’ll use average annual impact throughout this tutorial.

Time-dependence

The above equation works well when the only thing changing is an adaptation measure. But usually CLIMADA cost-benefit calculation will want to describe a climate and exposure that also change over time. In this case it’s not enough to multiply the change in average annual impact by the number of years we’re evaluating over, and we need to calculate a benefit for every year separately and sum them up.

We can modify the benefit part of cost-benefit to reflect this. CLIMADA doesn’t assume that the user will have explicit hazard and impact objects for every year in the study period, and so interpolates between the impacts at the start and the end of the period of interest. If we’re evaluating between years \( T_0 \), usually close to the present, and \( T_1 \) in the future, then we can say:

\[
\text{benefit} = \sum_{t = T_0}^{T_1} \alpha(t) \left( \text{AAI with measures}_{T_1} - \text{AAI with measures}_{T_0} \right) - N \cdot \text{AAI without measure}_{T_0}
\]

Where \( \alpha(t) \) is a function of the year \( t \) describing the interpolation of hazard and exposure values between \( T_0 \) and \( T_1 \). The function returns values in the range \([0, 1]\), usually with \( \alpha(T_0) = 0 \) and \( \alpha(T_1) = 1 \).

Note that:
• This calculation now requires three separate impact calculations: present-day impacts without measures implemented, present-day impacts with measures implemented, and future impacts with measures implemented.

• Setting $\alpha(t) = 1$ for all values of $t$ simplifies this to the first cost-benefit equation above.

CLIMADA lets you set $\alpha(t)$ to 1 for all years $t$, or as $\alpha_k(t) = \frac{(t-T_0)^k}{(T_1-T_0)^k}$ for $t \in [T_0, T_1]$.

where $k$ is user-provided, called imp_time_depen. This expression is a polynomial curve between $T_0$ and $T_1$ normalised so that $\alpha_k(T_0) = 0$ and $\alpha_k(T_1) = 1$. The choice of $k$ determines how quickly the transition occurs between the present and future. When $k = 1$ the function is a straight line. When $k > 1$ change begins slowly and speeds up over time. When $k < 1$ change is begins quickly and slows over time.

If this math is tough, the key takeaways are

• Cost benefit calculations take a long view, summing the benefits of adaptation measures over many years in a changing world

• CLIMADA describes how the change from the present to the future scenarios happens with the imp_time_depen parameter. With values < 1 the change starts quickly and slows down. When it is equal to 1 change is steady. When it’s > 1 change starts slowly and speeds up.

Discount rates

The final addition to our cost-benefit calculation is the discount rate.

The discount rate tries to formalise an idea from economics that says that a gain in the future is worth less to us than the same gain right now. For example, paying €1 mn to offset €2 mn of economic losses next year is ‘worth more’ than paying €1 mn to offset €2 mn of economic losses in 2080.

In practice it provides a way to future monetary values to an estimated worth today, called their net present value. Note that this is not an adjustment for inflation.

The choice of discount rate is a contentious topic in adaptation finance, since it can strongly affect a cost-benefit calculation. The most widely used discount rate in climate change economics is 1.4% as proposed by the Stern Review (2006). Neoliberal economists around Nordhaus (2007) claim that rates should be higher, around 4.3%, reflecting continued economic growth and a society that will be better at adapting in the future compared to now. Environmental economists argue that future costs shouldn’t be discounted at all.

To illustrate, with a 1.4% annual discount rate, a gain of €100 next year is equivalent to €98.60 this year, and a gain of €100 in 15 years is equivalent to $€(100 \times 0.986^{15}) = € 80.94$ this year. With a rate of 4.3% this drops to €51.72.

We can add this into the cost-benefit calculation by defining $d(t)$, the discount rate for each year $t$. A constant rate of 1.4% would then set $d(t) = 0.014$ for all values of $t$.

Then the adjustment $D(t)$ from year $t$ to the net present value in year $T_0$ is given by

$$D(t) = \prod_{y=T_0}^{t} (1 - d(y))$$

With a constant 1.4% discount rate, we have $D(t) = 0.986^{t-T_0}$. With a discount rate of zero we have $D(t) = 1$.

Adding this to our equation for total benefits we get:

$$\text{benefit} = \sum_{t=T_0}^{T_1} \alpha(t)D(t)(\text{AAI with measures}_{T_1} - \text{AAI with measures}_{T_0}) - N \times \text{AAI without measure}_{T_0}$$

Note:

• Setting the rates to zero ($d(t) = 0$) means $D(t) = 1$ and the term drops out of the equation.
- Be careful with your choice of discount rate when your exposure is non-economic. It can be hard to justify applying rates to e.g. ecosystems or human lives.

### 10.6.4 CostBenefit class data structure

The CostBenefit class does not require any attributes to be defined by the user. All attributes are set from parameters when the method `CostBenefit.calc()` is called.

After calling the `calc` method the `CostBenefit` object has the following attributes:

<table>
<thead>
<tr>
<th>Attributes created in <code>CostBenefit.calc</code></th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>present_year</td>
<td>int</td>
<td>The current year</td>
</tr>
<tr>
<td>future_year</td>
<td>int</td>
<td>The future scenario year</td>
</tr>
<tr>
<td>tot_climate_risk</td>
<td>float</td>
<td>The total climate risk in the present scenario, evaluated according to the provided risk function (annual average impact by default)</td>
</tr>
<tr>
<td>unit</td>
<td>string</td>
<td>Units to measure impact</td>
</tr>
<tr>
<td>benefit</td>
<td>dict(float)</td>
<td>The benefit of each measure, keyed by measure name</td>
</tr>
<tr>
<td>cost_ben_ratio</td>
<td>dict(float)</td>
<td>The cost benefit of each measure, keyed by measure name</td>
</tr>
<tr>
<td>imp_meas_future</td>
<td>dict(dict)</td>
<td>Dictionaries describing the impacts of each measure in the future scenario. Keyed by measure name (with 'no measure' for no measures). The entries in each dictionary are described below.</td>
</tr>
<tr>
<td>imp_meas_present</td>
<td>dict(dict)</td>
<td>Dictionaries describing the impacts of each measure in the present-day scenario. Keyed by measure name (with 'no measure' for no measures). The entries in each dictionary are described below.</td>
</tr>
</tbody>
</table>

Each dictionary stored in the attributes `imp_meas_future` and `imp_meas_present` has entries:

<table>
<thead>
<tr>
<th>Key</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>tuple (cost measure, cost factor insurance)</td>
<td>The cost of implementing the measure, and the cost factor if risk transfers are being calculated</td>
</tr>
<tr>
<td>impact</td>
<td>Impact</td>
<td>Impact object calculated with the present (<code>imp_meas_present</code>) or future (<code>imp_meas_future</code>) hazard, exposure and impact functions</td>
</tr>
<tr>
<td>risk</td>
<td>float</td>
<td>A value of annual risk used in the cost-benefit calculation. A summary statistic calculated from the Impact object. Most commonly the average annual impact, but can be changed with the <code>CostBenefit.calc</code>'s <code>risk_func</code> parameter.</td>
</tr>
<tr>
<td>risk_transf</td>
<td>float</td>
<td>Annual expected risk transfer (if calculated)</td>
</tr>
<tr>
<td>efc</td>
<td>ImpactFreqCurve</td>
<td>The impact exceedance freq for this measure calculated from the Impact object (if calculated)</td>
</tr>
</tbody>
</table>

The dictionary will also include a 'no measure' entry with the same structure, giving the impact analysis when no measures are implemented.
The `calc` calculation

Let's look at the parameters needed for the calculation:

```python
CostBenefit.calc(hazard, entity, haz_future=None, ent_future=None,
future_year=None, risk_func=risk_aai_agg, imp_time_depen=None, save_imp=False)
```

These are:

- **hazard** (Hazard object): the present-day or baseline hazard event set
- **entity** (Entity object): the present-day or baseline Entity object. *Entity* is the container class containing
  - **exposure** (Exposures object): the present-day or baseline exposure
  - **disc_rates** (DiscRates object): the discount rates to be applied in the cost-benefit calculation. Only discount rates from *entity* and not *ent_future* are used.
  - **impact_funcs** (ImpactFuncSet object): the impact functions required to calculate impacts from the present-day hazards and exposures
  - **measures** (MeasureSet object): the set of measures to implement in the analysis. This will almost always be the same as the measures in the *ent_future* Entity (if set).
- **haz_future** (Hazard object, optional): the future hazard event set, if different from present.
- **ent_future** (Entity object, optional): the future Entity, if different from present. Note that the same adaptation measures must be present in both *entity* and *ent_future*.
- **future_year** (int): the year of the future scenario. This is only used if the Entity's `exposures.ref_year` isn't set, or no future entity is provided.
- **risk_func** (function): this is the risk function used to describe the annual impacts used to describe benefits. The default is *risk_aai_agg*, the average annual impact on the Exposures (defined in the CostBenefit module). This function can be replaces with any function that takes an Impact object as input and returns a number. The CostBenefit module provides two others functions *risk_rp_100* and *risk_rp_250*, the 100-year and 250-year return period impacts respectively.
- **imp_time_depen** (float): This describes how hazard and exposure evolve over time in the calculation. In the descriptions above this is the parameter $k$ defining $\alpha_k(t)$. When $> 1$ change is superlinear and occurs nearer the start of the analysis. When $< 1$ change is sublinear and occurs nearer the end.
- **save_imp** (boolean): whether to save the hazard- and location-specific impact data. This is used in a lot of follow-on calculations, but is very large if you don’t need it.

### 10.6.5 Detailed CostBenefit calculation: LitPop + TropCyclone

We present a detailed example for the hazard *Tropical Cyclones* and the exposures from *LitPop*.

To speed things up we’ll use the CLIMADA Data API to download the data as needed. The data download roughly follows the [Data API tutorial](https://www.climada.org/data-api) for Haiti. If this is a problem you can build tropical cyclone event sets, and LitPop exposures following the relevant tutorials.
Download hazard

We will get data for present day tropical cyclone hazard in Haiti, and for 2080 hazard under the RCP 6.0 warming scenario. Note that the Data API provides us with a full event set of wind footprints rather than a TCTracks track dataset, meaning we don’t have to generate the wind fields ourselves.

```
from climada.util.api_client import Client

client = Client()
future_year = 2080
haz_present = client.get_hazard('tropical_cyclone',
 properties={'country_name': 'Haiti',
 'climate_scenario': 'historical',
 'nb_synth_tracks': '10'})

haz_future = client.get_hazard('tropical_cyclone',
 properties={'country_name': 'Haiti',
 'climate_scenario': 'rcp60',
 'ref_year': str(future_year),
 'nb_synth_tracks': '10'})
```

We can plot the hazards and show how they are forecast to intensify. For example, showing the strength of a 50-year return period wind in present and future climates:

```
Plot the hazards, showing 50-year return period hazard
haz_present.plot_rp_intensity(return_periods=(50,), smooth=False, vmin=32, vmax=50)

haz_future.plot_rp_intensity(return_periods=(50,), smooth=False, vmin=32, vmax=50)
```

(continues on next page)
if len(p_mline) > 0:
Download LitPop economic exposure data

The Data API provides us with economic exposure data:

```python
exp_present = client.get_litpop(country='Haiti')
```

For 2080's economic exposure we will use a crude approximation, assuming the country will experience 2% economic growth annually:

```python
import copy

exp_future = copy.deepcopy(exp_present)
exp_future.ref_year = future_year
n_years = exp_future.ref_year - exp_present.ref_year + 1
growth_rate = 1.02

growth = growth_rate ** n_years
exp_future.gdf['value'] = exp_future.gdf['value'] * growth
```

We can plot the current and future exposures. The default scale is logarithmic and we see how the values of exposures grow, though not by a full order of magnitude.

```python
exp_present.plot_raster(fill=False, vmin=4, vmax=11)
exp_future.plot_raster(fill=False, vmin=4, vmax=11)
```
We then need to map the exposure points to the hazard centroids. (Note: we could have done this earlier before we copied the exposure, but not all analyses will have present and future exposures and hazards on the same sets of points.)

```python
This would be done automatically in Impact calculations
but it's better to do it explicitly before the calculation
exp_present.assign_centroids(haz_present, distance='approx')
exp_future.assign_centroids(haz_future, distance='approx')
```

Define impact function

In this analysis we’ll use the popular sigmoid curve impact function from Emanuel (2011).

```python
from climada.entity import ImpactFuncSet, ImpfTropCyclone

impf_tc = ImpfTropCyclone.from_emanuel_usa()

add the impact function to an Impact function set
impf_set = ImpactFuncSet([impf_tc])
impf_set.check()
impf_tc.plot()
```
Define adaptation measures

For adaptation measures we'll follow some of the examples from the *Adaptation MeasureSet tutorial*. See the tutorial to understand how measures work in more depth.

These numbers are completely made up. We implement one measure that reduces the (effective) wind speed by 5 m/s and one that completely protects 10% of exposed assets.

```python
import numpy as np
import matplotlib.pyplot as plt
from climada.entity.measures import Measure, MeasureSet

meas_1 = Measure(
(continues on next page)
```
haz_type='TC',
name='Measure A',
color_rgb=np.array([0.8, 0.1, 0.1]),
cost=5000000000,
hazard_inten_imp=(1, -5),  # Decrease wind speeds by 5 m/s
risk_transf_cover=0,
}
meas_2 = Measure(
  haz_type='TC',
  name='Measure B',
  color_rgb=np.array([0.1, 0.1, 0.8]),
  cost=220000000,
  paa_impact=(1, -0.10),  # 10% fewer assets affected
)
# gather all measures
meas_set = MeasureSet(measure_list=[meas_1, meas_2])
meas_set.check()

Define discount rates

We'll define two discount rate objects so that we can compare their effect on a cost-benefit. First, a zero discount rate, where preventing loss in 2080 is valued the same as preventing it this year. Second, the often-used 1.4% per year.

```python
from climada.entity import DiscRates

year_range = np.arange(exp_present.ref_year, exp_future.ref_year + 1)
annual_discount_zero = np.zeros(n_years)
annual_discount_stern = np.ones(n_years) * 0.014

discount_zero = DiscRates(year_range, annual_discount_zero)
discount_stern = DiscRates(year_range, annual_discount_stern)
```

Create Entity objects

Now we have everything we need to create Entities. Remember, Entity is a container class for grouping Exposures, Impact Functions, Discount Rates and Measures.

In this first example, we'll set discount rates to zero.

```python
from climada.entity import Entity

entity_present = Entity(exposures=exp_present, disc_rates=discount_zero,
 impact_func_set=impf_set, measure_set=meas_set)
entity_future = Entity(exposures=exp_future, disc_rates=discount_zero,
 impact_func_set=impf_set, measure_set=meas_set)
```
Cost-benefit #1: adaptation measures, no climate change or economic growth

We are now ready to perform our first cost-benefit analysis. We’ll start with the simplest and build up complexity.

The first analysis only looks at solely at the effects of introducing adaptation measures. It assumes no climate change and no economic growth. It evaluates the benefit over the period 2018 (present) to 2080 (future) and sets the discount rate to zero.

```python
from climada.engine import CostBenefit
from climada.engine.cost_benefit import risk_aai_agg

costben_measures_only = CostBenefit()
costben_measures_only.calc(haz_present, entity_present, haz_future=None, ent_
 →future=None,
 future_year=future_year, risk_func=risk_aai_agg, imp_time_
 →depen=None, save_imp=True)
```

Let’s take a moment to look through these results.

The first table gives us a breakdown of cost-benefits by measure. We can see that, the Benefit/Cost for measure A is very just under 1, meaning that the damage prevented is slightly less than the cost of preventing it (according to the model). In comparison, the benefit of Measure B is 5 times the cost. (Note that Benefit/Cost is the inverse of Cost/Benefit: larger numbers are better).

Let’s explain the three values in the second table:

- **Total climate risk:** The impact expected over the entire study period. With no changes in future hazard or exposure and no discount rates we can check that it is 63 times the next term.

- **Average annual risk:** The average annual risk without any measures implemented in the future scenario (which here is the same as the present day scenario)
• **Residual risk:** The remaining risk that hasn’t been offset by the adaptation measures. Here it is the total climate risk minus the total of the ‘Benefit’ column of the table above it.

### Combining measures

We can also combine the measures to give the cost-benefit of implementing everything:

```python
combined_costben = costben_measures_only.combine_measures(['Measure A', 'Measure B'],
 'Combined measures',
 new_color=np.array([0.1, 0.8]),
 disc_rates=discount_zero)
```

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cost (USD bn)</th>
<th>Benefit (USD bn)</th>
<th>Benefit/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined measures</td>
<td>5.22</td>
<td>5.84344</td>
<td>1.11943</td>
</tr>
</tbody>
</table>

Total climate risk: 11.0613 (USD bn)
Average annual risk: 0.175576 (USD bn)
Residual risk: 5.21787 (USD bn)

Note: the method of combining measures is naive. The offset impacts are summed over the event set while not letting the impact of any single event drop below zero (it therefore doesn’t work in analyses where impacts can go below zero).

### Plotting benefits by return period

Finally, we can see how effective the adaptation measures are at different return periods. The `plot_event_view` plot shows the difference in losses at different return periods in the future scenario (here the same as the present scenario) with the losses offset by the adaptation measures shaded.

```python
ax = costben_measures_only.plot_event_view((25, 50, 100, 250))
```
We see that the Measure A, which reduces wind speeds by 5 m/s, is able to completely stop impacts at the 25 year return period, and that at 250 years – the strongest events – the measures have greatly reduced effectiveness.

**Cost-benefit #2: adaptation measures with climate change and economic growth**

Our next analysis will introduce a change in future scenarios. We’ll add `hazard_future` and `entity_future` into the mixture. We’ll set `imp_time_depen` set to 1, meaning we interpolate linearly between the present and future hazard and exposures in our summation over years. We’ll still keep the discount rate at zero.

```python
costben = CostBenefit()
costben.calc(haz_present, entity_present, haz_future=haz_future, ent_future=entity_,
 future_year=future_year, risk_func=risk_aai_agg, imp_time_depen=1, save_
 imp=True)
```

```
2022-03-03 05:36:16,478 - climada.engine.impact - INFO - Exposures matching centroids... found in centr_TC
2022-03-03 05:36:16,480 - climada.engine.impact - INFO - Calculating damage for 1329...
 assets (>0) and 42779 events.
2022-03-03 05:36:16,498 - climada.engine.impact - INFO - Exposures matching centroids... found in centr_TC
2022-03-03 05:36:16,500 - climada.engine.impact - INFO - Calculating damage for 1329...
 assets (>0) and 42779 events.
2022-03-03 05:36:16,534 - climada.engine.impact - INFO - Exposures matching centroids... found in centr_TC
2022-03-03 05:36:16,535 - climada.engine.impact - INFO - Calculating damage for 1329...
 assets (>0) and 42779 events.
2022-03-03 05:36:16,572 - climada.engine.impact - INFO - Exposures matching centroids... found in centr_TC
2022-03-03 05:36:16,574 - climada.engine.impact - INFO - Calculating damage for 1329...
 assets (>0) and 16808 events.
```
What has changed by adding climate change and population growth?

- With growing exposure and more extreme events we see about a 3-fold increase in total climate risk. Remember this is the average annual impacts summed over every year between the present and the future. The average annual risk has grown even more, by over a factor of 5. This represents the unadapted annual impacts in the future scenario.

- Greater impacts means that our adaptation measures offset more in absolute terms. The same adaptation measures create larger benefits (and therefore cost-benefits), which have increased by about a factor of three. Measure A is now clearly worth implementing in this cost-benefit analysis, whereas it wasn’t before.

- We also see that the residual risk, i.e. the impacts over the analysis period that are not offset by the adaptation measures, is much larger.

**Exercise**: try changing the value of the `imp_time_depen` parameter in the calculation above. Values < 1 front-load the changes over time, and values > 1 back-load the changes. How does it affect the values in the printout above? What changes? What doesn’t?

**Waterfall plots**

Now that there are more additional components in the analysis, we can use more of the CostBenefit class’s visualisation methods. The waterfall plot is the clearest way to break down the components of risk:

```python
define this as a function because we’ll use it again later
def waterfall()
 return costben.plot_waterfall(haz_present, entity_present, haz_future, entity_future, risk_func=risk_aai_agg)
ax = waterfall()
```
The waterfall plot breaks down the average annual risk faced in 2080 (this is \$0.984 bn, as printed out during the cost-benefit calculation).

We see that the baseline 2018 risk in blue. The ‘Economic development’ bar in orange shows the change in annual impacts resulting from growth in exposure, and the ‘Climate change’ bar in green shows the additional change from changes in the hazard.

In this analysis, then, we see that changes in annual losses are likely to be driven by both economic development and climate change, in roughly equal amounts.

The `plot_arrow_averted` graph builds on this, adding an indication of the risk averted to the waterfall plot. It’s slightly awkward to use, which is why we wrote a function to create the waterfall plot earlier:
Exercise: In addition, the `plot_waterfall_accumulated` method is available to produce a waterfall plot from a different perspective. Instead of showing a breakdown of the impacts from the year of our future scenario, it accumulates the components of risk over the whole analysis period. That is, it sums the components over every year between 2018 (when the entire risk is the baseline risk) to 2080 (when the breakdown is the same as the plot above). The final plot has the same four components, but gives them different weightings. Look up the function in the `climada.engine.cost_benefit` module and try it out. Then try changing the value of the `imp_time_depen` parameter, and see how front-loading or back-loading the year-on-year changes gives different totals and different breakdowns of risk.
Cost-benefit #3: Adding discount rates

Next we will introduce discount rates to the calculations. Recall that discount rates are factors used to convert future impacts into present-day impacts, based on the idea that an impact in the future is less significant than the same impact today.

We will work with the annual 1.4% discount that we defined earlier in the discount_stern object. Let’s define two new Entity objects with these discount rates:

```python
entity_present_disc = Entity(exposures=exp_present, disc_rates=discount_stern,
 impact_func_set=impf_set, measure_set=meas_set)
entity_future_disc = Entity(exposures=exp_future, disc_rates=discount_stern,
 impact_func_set=impf_set, measure_set=meas_set)
```

And then re-calculate the cost-benefits:

```python
costben_disc = CostBenefit()
costben_disc.calc(haz_present, entity_present_disc, haz_future=haz_future, ent_
 →future=entity_future_disc,
 →save_imp=True)
print(costben_disc.imp_meas_future['no measure']['impact'].imp_mat.shape)
```

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cost (USD bn)</th>
<th>Benefit (USD bn)</th>
<th>Benefit/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure A</td>
<td>5</td>
<td>8.46661</td>
<td>1.69332</td>
</tr>
<tr>
<td>Measure B</td>
<td>0.22</td>
<td>2.20086</td>
<td>10.0039</td>
</tr>
</tbody>
</table>

Total climate risk: 22.0086 (USD bn)

(continues on next page)
How has this changed the numbers?

- The benefits have shrunk, since the values of the impacts prevented in the future have decreased. This means the benefit/cost ratios have decreased too. Nevertheless Measure A still has benefits that outweigh the costs.

- The total climate risk has decreased. The risk is the sum of impacts (with no adaptation measures) over the whole analysis period. Since future impacts are all smaller than they were without discount rates, the sum has decreased.

- The average annual risk, the unadapted annual risk in the future scenario, is the same (although it would be less if it was converted to a net present value).

- The residual risk has also shrunk. It has been discounted in the same way as the offset impacts.

Take together we see a slightly more optimistic outlook for climate change, as the future risks are smaller, but less attractive investments in offsetting these risks, since the benefit/cost ratio has shrunk.

**Additional data exploration**

With scenarios like this, the `CostBenefit.plot_cost_benefit` method shows a 2-dimensional representation of the cost-benefits.

```python
ax = costben_disc.plot_cost_benefit()
```

The x-axis here is damage averted over the 2018-2080 analysis period. The y-axis is the Benefit/Cost ratio (so higher is better). This means that the area of each shape represents the total benefit of the measure. Furthermore, any measure which goes above 1 on the y-axis gives a larger benefit than the cost of its implementation.
The average annual impact and the total climate risk are marked on the x-axis. The width between the last measure bar and the total climate risk is the residual risk.

**Exercise:** How sensitive are cost benefit analyses to different parameters? Let’s say an adaptation measure is a ‘good investment’ if the benefit is greater than the cost over the analysis period, and it’s a ‘bad investment’ if the benefit is less than the cost.

- Using the hazards and exposures from this tutorial, can you design an impact measure that is a good investment when no discount rates are applied, and a bad investment when a 1.4% (or higher) discount rate is applied?
- Create hazard and exposure objects for the same growth and climate change scenarios as this tutorial, but for the year 2040. Can you design an impact measure that is a good investment when evaluated out to 2080, but a bad investment when evaluated to 2040?
- Using the hazards and exposures from this tutorial, can you design an impact measure that is a good investment when \( \text{imp\_time\_depen} = 1/4 \) (change happens closer to 2018) and a bad investment when \( \text{imp\_time\_depen} = 4 \) (change happens closer to 2080).

Finally we can use some of the functionality of the objects stored within the CostBenefit object. Remember that many impact calculations have been performed to get here, and if `imp_mat` was set to True, the data has been stored (or … it will be. I found a bug that stops it being saved while writing the tutorial.)

So this means that you can, for example, plot maps of return period hazard with different adaptation measures applied (or with all applied, using `combine_measures`).

Another thing to explore is exceedance curves, which are stored. Here are the curves for the present, future unadapted and future adapted scenarios:

```python
combined_costben_disc = costben_disc.combine_measures(['Measure A', 'Measure B'],
 'Combined measures',
 new_color=np.array([0.1, 0.8, 0., 1.]),
 disc_rates=discount_stern)
efc_present = costben_disc.imp_meas_present['no measure']['efc']
efc_future = costben_disc.imp_meas_future['no measure']['efc']
efc_combined_measures = combined_costben_disc.imp_meas_future['Combined measures']
ax = plt.subplot(1, 1, 1)
efc_present.plot(axis=ax, color='blue', label='Present')
efc_future.plot(axis=ax, color='orange', label='Future, unadapted')
efc_combined_measures.plot(axis=ax, color='green', label='Future, adapted')
leg = ax.legend()
```

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cost (USD bn)</th>
<th>Benefit (USD bn)</th>
<th>Benefit/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined measures</td>
<td>5.22</td>
<td>10.6616</td>
<td>2.04245</td>
</tr>
<tr>
<td>Total climate risk:</td>
<td>22.0086 (USD bn)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average annual risk:</td>
<td>0.984382 (USD bn)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual risk:</td>
<td>11.347 (USD bn)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Net Present Values**
10.6.6 Conclusion

Cost-benefits calculations can be powerful policy tools, but they are as much an art as a science. Describing your adaptation measures well, choosing the period to evaluate them over, describing the changing climate and picking a discount rate will all affect your results and whether a particular measure is worth implementing.

Take the time to explain these choices to yourself and anyone else who wants to understand your calculations. It is also good practice to run sensitivity tests on your results: how much do your conclusions change when you use other plausible setups for the calculation?

10.7 Calculate probabilistic impact yearset

This module generates a yearly impact yimp object which contains probabilistic annual impacts for a specified amount of years (sampled_years). The impact values are extracted from a given impact imp object that contains impact values per event. The amount of sampled_years can be specified as an integer or as a list of years to be sampled for. The amount of events per sampled year (events_per_year) are determined with a Poisson distribution centered around n_events_per_year (lam = sum(event_impacts.frequency)). Then, the probabilistic events occurring in each sampled year are sampled uniformly from the input imp object and summed up per year. Thus, the yimp object contains the sum of sampled (event) impacts for each sampled year. In contrast to the expected annual impact (eai), an yimp object contains an impact for EACH sampled year and this value differs among years. The number of events_per_year and the selected_events are saved in a sampling vector (sampling_vect).

The function impact_yearsets performs all these computational steps, taking an imp and the number of sampled_years (sampled_years) as input. The output of the function is the yimp object and the sampling_vect. Moreover, a sampling_vect (generated in a previous run) can be provided as optional input and the user can define lam and decide whether a correction factor shall be applied (the default is applying the correction factor). Reapplying the same sampling_vect does not only allow to reproduce the generated yimp, but also for a physically consistent way of sampling.
impacts caused by different hazards. The correction factor that is applied when the optional input `correction_fac=True` is a scaling of the computed `yimp` that assures that the `eai(yimp) = eai(imp)`.

To make the process more transparent, this tutorial shows the single computations that are performed when generating an `yimp` object for a dummy `event_impacts` object.

```python
import numpy as np

import climada.util.yearsets as yearsets
from climada.engine import Impact

dummy event_impacts object containing 10 event_impacts with the values 10-110
and the frequency 0.2 (Return period of 5 years)
imp = Impact()
imp.at_event = np.arange(10, 110, 10)
imp.frequency = np.array(np.ones(10) * 0.2)

the number of years to sample impacts for (length(yimp.at_event) = sampled_years)
sampled_years = 10

sample number of events per sampled year
lam = np.sum(imp.frequency)
events_per_year = yearsets.sample_from_poisson(sampled_years, lam)

array([2, 2, 2, 0, 4, 5, 4, 2, 3, 1])

generate the sampling vector
sampling_vect = yearsets.sample_events(events_per_year, imp.frequency)

[array([8, 3]),
 array([7, 0]),
 array([4, 6]),
 array([], dtype=int32),
 array([5, 9, 1, 2]),
 array([5, 6, 0, 7, 2]),
 array([4, 9, 5, 8]),
 array([9, 8]),
 array([5, 3, 4]),
 array([1])]

calculate the impact per year
imp_per_year = yearsets.compute_imp_per_year(imp, sampling_vect)

imp_per_year

[130, 90, 120, 0, 210, 210, 300, 190, 150, 20]

calculate the correction factor
correction_factor = yearsets.calculate_correction_fac(imp_per_year, imp)
correction_factor

0.7746478873239436
```
# compare the resulting yimp with our step-by-step computation without applying the correction factor:

```python
yimp, sampling_vect = yearsets.impact_yearset(imp, sampled_years=list(range(1,11)), correction_fac=False)
```

print('The yimp.at_event values equal our step-by-step computed imp_per_year:')</print('yimp.at_event = ', yimp.at_event)
print('imp_per_year = ', imp_per_year)

The yimp.at_event values equal our step-by-step computed imp_per_year:

```plaintext
yimp.at_event = [90, 240, 150, 70, 40, 90, 60, 90, 170, 110]
imp_per_year = [130, 90, 120, 0, 210, 210, 300, 190, 150, 20]
```

# and here the same comparison with applying the correction factor (default settings):

```python
yimp, sampling_vect = yearsets.impact_yearset(imp, sampled_years=list(range(1,11)))
```

print('The same can be shown for the case of applying the correction factor.

   The yimp.at_event values equal our step-by-step computed imp_per_year:')</print('yimp.at_event = ', yimp.at_event)
print('imp_per_year = ', imp_per_year/correction_factor)

The same can be shown for the case of applying the correction factor. The yimp.at_event values equal our step-by-step computed imp_per_year:

```plaintext
yimp.at_event = [54.54545455 47.72727273 95.45454545 109.09090909 0. 40.90909091 27.27272727 0. 109.09090909 27.27272727]
imp_per_year = [167.81818182 116.18181818 154.90909091 0. 271.09090909 271.09090909 387.27272727 245.27272727 193.63636364 25.81818182]
```
11.1 Unsequa - a module for uncertainty and sensitivity analysis

This is a tutorial for the unsequa module in CLIMADA. A detailed description can be found in Kropf (2021).

11.1.1 Uncertainty and sensitivity analysis

Before doing an uncertainty quantification in CLIMADA, it is imperative that you get first comfortable with the different notions of uncertainty in the modelling world (see e.g. Pianosi (2016) or Douglas-Smith (2020) for a review). In particular, note that the uncertainty values will only be as good as the input from the user. In addition, not all uncertainties can be numerically quantified, and even worse, some unknowns are unknown. This means that sometimes, quantifying uncertainty can lead to false confidence in the output!. For a more philosophical discussion about the types of uncertainties in climate research see Knüsel (2020) and Otth (2022).

In this module, it is possible to perform global uncertainty analysis, as well as a sensitivity analysis. The word global is meant as opposition to the ‘one-factor-at-a-time’ (OAT) strategy. The OAT strategy, which consists in analyzing the effect of varying one model input factor at a time while keeping all other fixed, is popular among modellers, but has major shortcomings Saltelli (2010), Saltelli(2019) and should not be used.

A rough schemata of how to perform uncertainty and sensitivity analysis (taken from Kropf(2021))


### 11.1.2 Unsequa Module Structure

The unsequa module contains several key classes.

- **InputVar**: defines input uncertainty variables

The input parameter sampling, Monte-Carlo uncertainty distribution calculation and the sensitivity index computation are done in:

- **CalcImpact**: compute uncertainties for outputs of climada.engine.impact.calc (child class of Calc)

- **CalcCostBenefit**: compute uncertainties for outputs of climada.engine.cost_benefit.calc (child class of Calc)

The results are stored in...
• **UncOutput**: store the uncertainty and sensitivity analysis results. Contains also several plotting methods. This is a class which only stores data.

• **UncImpactOutput**: subclass with dataframes specifically for `climada.engine.impact.calc` uncertainty and sensitivity analysis results.

• **UncCostBenefitOutput**: subclass with dataframes specifically for `climada.engine.cost_benefit.calc` uncertainty and sensitivity analysis results.

### 11.1.3 InputVar

The InputVar class is used to define uncertainty variables.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>func</td>
<td>function</td>
<td>Model variable defined as a function of the uncertainty input parameters</td>
</tr>
<tr>
<td>distr_dict</td>
<td>dict</td>
<td>Dictionary of the probability density distributions of the uncertainty input parameters</td>
</tr>
</tbody>
</table>

An **input uncertainty parameter** is a numerical input value that has a certain probability density distribution in your model, such as the total exposure asset value, the slope of the vulnerability function, the exponents of the litpop exposure, the value of the discount rate, the cost of an adaptation measure, …

The probability density distributions (values of `distr_dict`) of the input uncertainty parameters (keyword arguments of the `func` and keys of the `distr_dict`) can be any of the ones defined in `scipy.stats`.

Several helper methods exist to make generic InputVar for Exposures, ImpactFuncSet, Hazard, Entity (including DiscRates and Measures). These are described in details in the tutorial *Helper methods for InputVar*. These are a good bases for your own computations.

**Example - custom continuous uncertainty parameter**

Suppose we assume that the GDP value used to scale the exposure has a relative error of +/-10%.

```python
Ignore warnings for making the tutorial's pdf.
warnings.filterwarnings('ignore')

Define the base exposure
from climada.util.constants import EXP_DEMO_H5
from climada.entity import Exposures
exp_base = Exposures.from_hdf5(EXP_DEMO_H5)

Define the function that returns an exposure with scaled total asset value
Here x_exp is the input uncertainty parameter and exp_func the inputvar.func.
def exp_func(x_exp, exp_base=exp_base):
 exp = exp_base.copy()
 exp.gdf.value *= x_exp
 return exp

Define the Uncertainty Variable with +-10% total asset value
The probability density distribution of the input uncertainty parameter x_exp is sp.
from climada.engine.unsequa import InputVar
```

(continues on next page)
import scipy as sp

exp_distr = {
    "x_exp": sp.stats.uniform(0.9, 0.2),
}

exp_iv = InputVar(exp_func, exp_distr)

# Uncertainty parameters
exp_iv.labels

['x_exp']

# Evaluate for a given value of the uncertainty parameters
exp095 = exp_iv.func(x_exp = 0.95)

print(f"Base value is {exp_base.gdf['value'].sum()}, and the value for x_exp=0.95 is
      {exp095.gdf['value'].sum()}")

Base value is 657053294559.9105, and the value for x_exp=0.95 is 624200629831.9148

# Defined distribution
exp_iv.plot(figsize=(5, 3));

Example - custom categorical uncertainty parameter

Suppose we want to test different exponents (m=1,2 ; n=1,2) for the LitPop exposure for the country Switzerland.

from climada.entity import LitPop

m_min, m_max = (1, 2)
n_min, n_max = (1, 2)

# Define the function
# Note that this here works, but might be slow because the method LitPop is called every time the function
# is evaluated, and LitPop is relatively slow.
def litpop_cat(m, n):
    exp = Litpop.from_countries('CHE', res_arcsec=150, exponent=[m, n])
    return exp

# A faster method would be to first create a dictionary with all the exposures. This however
# requires more memory and precomputation time (here ~3-4mins)
exp = LitPop()
litpop_dict = {}
for m in range(m_min, m_max + 1):
    for n in range(n_min, n_max + 1):
        exp_mn = LitPop.from_countries('CHE', res_arcsec=150, exponents=[m, n]);
        litpop_dict[(m, n)] = exp_mn

def litpop_cat(m, n, litpop_dict=litpop_dict):
    return litpop_dict[(m, n)]

# Define the distribution dictionary
import scipy as sp
from climada.engine.unsequa import InputVar

distr_dict = {
    'm': sp.stats.randint(low=m_min, high=m_max+1),
    'n': sp.stats.randint(low=n_min, high=n_max+1)
}

cat_iv = InputVar(litpop_cat, distr_dict)  # One can use either of the above definitions of litpop_cat

# Uncertainty parameters
cat_iv.labels
['m', 'n']
cat_iv.evaluate(m=1, n=2).plot_raster();

2023-08-03 13:57:57,563 - climada.util.coordinates - INFO - Raster from resolution 0.
...04166666000000063 to 0.04166666000000063.
11.1.4 UncOutput

The UncOutput class is used to store data from sampling, uncertainty and sensitivity analysis. An UncOutput object can be saved and loaded from .hdf5. The classes UncImpactOutput and UncCostBenefitOutput are extensions of UncOutput specific for CalcImpact and CalcCostBenefit, respectively.

Data attributes
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>samples_df</td>
<td>pandas.dataframe</td>
<td>Each row represents a sample obtained from the input parameters (one per column) distributions</td>
</tr>
<tr>
<td>UncImpactOutput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aai_agg_unc_df</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for aai_agg</td>
</tr>
<tr>
<td>freq_curve_unc_df</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for freq_curve. One return period per column.</td>
</tr>
<tr>
<td>eai_exp_unc_df</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for eai_exp. One exposure point per column.</td>
</tr>
<tr>
<td>at_event_unc_df</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for at_event. One event per column.</td>
</tr>
<tr>
<td>UncCostBenefitOutput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>imp_meas_present_unc</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for imp_meas_present. One measure per column.</td>
</tr>
<tr>
<td>imp_meas_future_unc</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for imp_meas_present. One measure per column.</td>
</tr>
<tr>
<td>tot_climate_risk_unc</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for tot_climate_risk. One measure per column.</td>
</tr>
<tr>
<td>benefit_unc_df</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for benefit. One measure per column.</td>
</tr>
<tr>
<td>cost_ben_ratio_unc</td>
<td>pandas.dataframe</td>
<td>Uncertainty data for cost_ben_ratio. One measure per column.</td>
</tr>
<tr>
<td>cost_benefit_kwargs</td>
<td>dictionary</td>
<td>Keyword arguments for climada.engine.cost_benefit.calc.</td>
</tr>
</tbody>
</table>

**Metadata and input data attributes**

These attributes are used for book-keeping and characterize the sample, uncertainty and sensitivity data. These attributes are set by the methods from classes CalcImpact and CalcCostBenefit used to generate sample, uncertainty and sensitivity data.
### CLIMADA documentation, Release 4.0.1

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampling_kwargs</td>
<td>dict</td>
<td>Keyword arguments for the sampling_method.</td>
</tr>
<tr>
<td>n_samples</td>
<td>int</td>
<td>Effective number of samples (number of rows of samples_df)</td>
</tr>
<tr>
<td>params_name</td>
<td>list(str)</td>
<td>Name of all the uncertainty input parameters</td>
</tr>
<tr>
<td>problem_sa</td>
<td>dict</td>
<td>The description of the uncertainty variables and their distribution as used in SALib.</td>
</tr>
<tr>
<td>sensitivity_kwargs</td>
<td>dict</td>
<td>Keyword arguments for sensitivity_method.</td>
</tr>
<tr>
<td>unit</td>
<td>str</td>
<td>Unit of the exposures value</td>
</tr>
</tbody>
</table>

### Example from file

Here we show an example loaded from file. In the sections below this class is extensively used and further examples can be found.

```python
Download the test file from the API
Requires internet connection
from climada.util.constants import TEST_UNC_OUTPUT_IMPACT
from climada.util.api_client import Client
apiclient = Client()
ds = apiclient.get_dataset_info(name=TEST_UNC_OUTPUT_IMPACT, status='test_dataset')
_target_dir, [filename] = apiclient.download_dataset(ds)

If you produced your own data, you do not need the API. Just replace 'filename'-->
with the path to your file.
from climada.engine.unsequa import UncOutput
unc_imp = UncOutput.from_hdf5(filename)

2023-08-03 13:58:02,377 - climada.engine.unsequa.unc_output - INFO - Reading /Users/
--ckropf/climada/data/unc_output/unc_output_impact/test_unc_output_impact/v1/test_unc_--
--output_impact.hdf5

unc_imp.plot_uncertainty(metric_list=['aai_agg'], figsize=(12, 5));
```
# Download the test file from the API
# Requires internet connection
from climada.util.constants import TEST_UNC_OUTPUT_COSTBEN
from climada.util.api_client import Client
apiclient = Client()
ds = apiclient.get_dataset_info(name=TEST_UNC_OUTPUT_COSTBEN, status='test_dataset')
_target_dir, [filename] = apiclient.download_dataset(ds)

# If you produced your own data, you do not need the API. Just replace 'filename'...
from climada.engine.unsequa import UncOutput
unc_cb = UncOutput.from_hdf5(filename)

unc_cb.get_uncertainty().tail()

Mangroves Benef  Beach nourishment Benef  Seawall Benef  
35  2.375510e+08  1.932608e+08  234557.682554  
36  9.272772e+07  7.643803e+07   9554.257314  
37  1.464219e+08  1.179927e+08  192531.748810  
38  9.376369e+07  7.722882e+07  10681.112247  
39  9.376369e+07  7.722882e+07  10681.112247

Building code Benef  Mangroves CostBen  Beach nourishment CostBen  
35  1.584398e+08  6.347120  10.277239  
36  5.501366e+07  16.260133  25.984286  
37  8.979471e+07  10.297402  16.833137  
38  5.555413e+07  12.965484  20.736269  
39  5.555413e+07  16.080478  25.718218

Seawall CostBen  Building code CostBen  no measure - risk - future  
35  4.350910e+04  66.742129  6.337592e+08  
36  1.068151e+06  192.217876  2.200547e+08  
37  5.300629e+04  117.764285  3.591788e+08  
38  7.703765e+04  153.475031  2.222165e+08

(continues on next page)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1</td>
<td>6.335246e+08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.337592e+08</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>2.200451e+08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.200547e+08</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>3.589863e+08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.591788e+08</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>2.222058e+08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.222165e+08</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>2.222058e+08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.222165e+08</td>
<td></td>
</tr>
</tbody>
</table>

[5 rows x 29 columns]
11.1.5 CalcImpact

Set the InputVars

In this example, we model the impact function for tropical cyclones on the parametric function suggested in Emanuel (2015) with 4 parameters. The exposures total value varies between 80% and 120%. For that hazard, we assume to have no good error estimate and thus do not define an InputVar for the hazard.

```python
#Define the input variable functions
import numpy as np

from climada.entity import ImpactFunc, ImpactFuncSet, Exposures
from climada.util.constants import EXP_DEMO_H5, HAZ_DEMO_H5
from climada.hazard import Hazard

def impf_func(G=1, v_half=84.7, vmin=25.7, k=3, _id=1):
 def xhi(v, v_half, vmin):
 return max([(v - vmin), 0]) / (v_half - vmin)

 def sigmoid_func(v, G, v_half, vmin, k):
 return G * xhi(v, v_half, vmin)**k / (1 + xhi(v, v_half, vmin)**k)

 #In-function imports needed only for parallel computing on Windows
 import numpy as np
 from climada.entity import ImpactFunc, ImpactFuncSet
 intensity_unit = 'm/s'
 intensity = np.linspace(0, 150, num=100)
 mdd = np.repeat(1, len(intensity))
 paa = np.array([sigmoid_func(v, G, v_half, vmin, k) for v in intensity])
 impf_func = ImpactFunc("TC", _id, intensity, mdd, paa, intensity_unit)
 impf_func.check()
 impf_set = ImpactFuncSet([impf_func])
 return impf_set

haz = Hazard.from_hdf5(HAZ_DEMO_H5)
exp_base = Exposures.from_hdf5(EXP_DEMO_H5)
#It is a good idea to assign the centroids to the base exposures in order to avoid...
potentially costly operation for each sample.
exp_base.assign_centroids(haz)
def exp_base_func(x_exp, exp_base):
 exp = exp_base.copy()
 exp.gdf.value *= x_exp
 return exp

from functools import partial
exp_func = partial(exp_base_func, exp_base=exp_base)
```

2023-08-03 13:58:03,258 - climada.hazard.base - INFO - Reading /Users/ckropf/climada/
/demo/data/tc_fl_1990_2004.h5
2023-08-03 13:58:03,286 - climada.entity.exposures.base - INFO - Reading /Users/
ckropf/climada/demo/data/exp_demo_today.h5
2023-08-03 13:58:03,306 - climada.entity.exposures.base - INFO - Matching 50...
exposures with 2500 centroids.
2023-08-03 13:58:03,307 - climada.util.coordinates - INFO - No exact centroid match...
->found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100
# Visualization of the parametrized impact function

```
impf_func(G=0.8, v_half=80, vmin=30, k=5).plot();
```

---

```python
Define the InputVars

import scipy as sp
from climada.engine.unsequa import InputVar

exp_distr = {
 "x_exp": sp.stats.beta(10, 1.1), # This is not really a reasonable scipy distribution but is used
 "vmin": sp.stats.uniform(0, 15),
 "v_half": sp.stats.uniform(35, 65),
 "G": sp.stats.truncnorm(0.5, 1.5),
 "k": sp.stats.uniform(1, 4)
}

exp_iv = InputVar(exp_func, exp_distr)

mpf_distr = {
 "G": sp.stats.truncnorm(0.5, 1.5),
 "v_half": sp.stats.uniform(35, 65),
 "vmin": sp.stats.uniform(0, 15),
 "k": sp.stats.uniform(1, 4)
}

impf_iv = InputVar(impf_func, mpf_distr)

import matplotlib.pyplot as plt

ax = exp_iv.plot(figsize=(6, 4));
plt.yticks(fontsize=16);
```

---

(continues on next page)
plt.xticks(fontsize=16);

Compute uncertainty and sensitivity using default methods

First, we define the UncImpact object with our uncertainty variables.

```python
from climada.engine.unsequa import CalcImpact
calc_imp = CalcImpact(exp_iv, impf_iv, haz)
```

Next, we generate samples for the uncertainty parameters using the default methods. Note that depending on the chosen Salib method, the effective number of samples differs from the input variable N. For the default 'saltelli', with `calc_second_order=True`, the effective number is N(2D+2), with D the number of uncertainty parameters. See SAlib for more information.

```python
output_imp = calc_imp.make_sample(N=2**7, sampling_kwars={'skip_values': 2**8})
output_imp.get_samples_df().tail()
```

<table>
<thead>
<tr>
<th></th>
<th>x_exp</th>
<th>G</th>
<th>v_half</th>
<th>vmin</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1531</td>
<td>0.876684</td>
<td>1.242977</td>
<td>53.662109</td>
<td>2.080078</td>
<td>4.539062</td>
</tr>
<tr>
<td>1532</td>
<td>0.876684</td>
<td>0.790617</td>
<td>44.013672</td>
<td>2.080078</td>
<td>4.539062</td>
</tr>
<tr>
<td>1533</td>
<td>0.876684</td>
<td>0.790617</td>
<td>53.662109</td>
<td>13.681641</td>
<td>4.539062</td>
</tr>
<tr>
<td>1534</td>
<td>0.876684</td>
<td>0.790617</td>
<td>53.662109</td>
<td>2.080078</td>
<td>3.960938</td>
</tr>
<tr>
<td>1535</td>
<td>0.876684</td>
<td>0.790617</td>
<td>53.662109</td>
<td>2.080078</td>
<td>4.539062</td>
</tr>
</tbody>
</table>

The resulting samples can be visualized in plots.

11.1. Unsequa - a module for uncertainty and sensitivity analysis
Now we can compute the value of the impact metrics for all the samples. In this example, we additionally chose to restrict the return periods 50, 100, and 250 years. By default, eai_exp and at_event are not stored.

```python
output_imp = calc_imp.uncertainty(output_imp, rp=[50, 100, 250])
```

The distributions of metrics outputs are stored as dictionaries of pandas dataframe. The metrics are directly taken from the output of climada.impact.calc. For each metric, a dataframe is made.

```python
#All the computed uncertainty metrics attribute
output_imp.uncertainty_metrics

['aai_agg', 'freq_curve', 'tot_value']

#One uncertainty dataframe
output_imp.get_unc_df('aai_agg').tail()
```
Accessing the uncertainty is in general done via the method `get_uncertainty()`. If none are specified, all metrics are returned.

```python
output_imp.get_uncertainty().tail()
```

<table>
<thead>
<tr>
<th>aai_agg</th>
<th>rp50</th>
<th>rp100</th>
<th>rp250</th>
<th>tot_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1531</td>
<td>2.905571e+09</td>
<td>1.162643e+11</td>
<td>1.510689e+11</td>
<td>5.760281e+11</td>
</tr>
<tr>
<td>1532</td>
<td>3.755172e+09</td>
<td>1.460838e+11</td>
<td>1.809413e+11</td>
<td>5.760281e+11</td>
</tr>
<tr>
<td>1533</td>
<td>1.063119e+09</td>
<td>4.720869e+10</td>
<td>6.807561e+10</td>
<td>5.760281e+11</td>
</tr>
<tr>
<td>1534</td>
<td>2.248718e+09</td>
<td>8.653474e+10</td>
<td>1.085266e+11</td>
<td>5.760281e+11</td>
</tr>
<tr>
<td>1535</td>
<td>1.848139e+09</td>
<td>7.395191e+10</td>
<td>9.609003e+10</td>
<td>5.760281e+11</td>
</tr>
</tbody>
</table>

The distributions of the one-dimensional metrics (eai_exp and at_event are never shown with this method) can be visualised with plots.

```python
output_imp.plot_uncertainty(figsize=(12,12));
```
# Specific plot for the return period distributions

```
output_imp.plot_rp_uncertainty(figsize=(14.3, 8));
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when `legend()` is called with no argument.
Now that a distribution of the impact metrics has been computed for each sample, we can also compute the sensitivity indices for each metrics to each uncertainty parameter. Note that the chosen method for the sensitivity analysis should correspond to its sampling partner as defined in the SAlib package.

The sensitivity indices dictionaries outputs from the SAlib methods are stored in the same structure of nested dictionaries as the metrics distributions. Note that depending on the chosen sensitivity analysis method the returned indices dictionary will return specific types of sensitivity indices with specific names. Please get familiar with SAlib for more information.

Note that in our case, several of the second order sensitivity indices are negative. For the default method sobol, this indicates that the algorithm has not converged and cannot give reliable values for these sensitivity indices. If this happens, please use a larger number of samples. Here we will focus on the first-order indices.

```python
output_imp = calc_imp.sensitivity(output_imp)
```

11.1. Unsequa - a module for uncertainty and sensitivity analysis
Similarly to the uncertainty case, the data is stored in dataframe attributes.

```
output_imp.sensitivity_metrics
[['aai_agg', 'freq_curve', 'tot_value']]
output_imp.get_sens_df('aai_agg').tail()
```

```
 si param param2 aai_agg
 65 S2_conf k x_exp NaN
 66 S2_conf k G NaN
 67 S2_conf k v_half NaN
 68 S2_conf k v_min NaN
 69 S2_conf k k NaN
```

To obtain the sensitivity in terms of a particular sensitivity index, use the method `get_sensitivity()`. If none is specified, the value of the index for all metrics is returned.

```
output_imp.get_sensitivity('S1')
```

```
 si param param2 aai_agg rp50 rp100 rp250 tot_value
 0 S1 x_exp None 0.001040 0.000993 0.000930 0.001150 1.005253
 1 S1 G None 0.073408 0.075781 0.084662 0.093718 0.000000
 2 S1 v_half None 0.514220 0.553640 0.596659 0.619366 0.000000
 3 S1 v_min None 0.012642 0.014407 0.012068 0.010065 0.000000
 4 S1 k None 0.213491 0.189862 0.134867 0.095861 0.000000
```

Sometimes, it is useful to simply know what is the largest sensitivity index for each metric.

```
output_imp.get_largest_si(salib_si='S1')
```

```
 metric param param2 si
 0 aai_agg v_half None 0.514220
 1 rp50 v_half None 0.553640
 2 rp100 v_half None 0.596659
 3 rp250 v_half None 0.619366
 4 tot_value x_exp None 1.005253
```

The value of the sensitivity indices can be plotted for each metric that is one-dimensional (`eai_exp` and `at_event` are not shown in this plot).

We see that both the errors in `freq_curve` and in `aai_agg` are mostly determined by `x_exp` and `v_half`. Finally, we see small differences in the sensitivity of the different return periods.
Note that since we have quite a few measures, the imp_meas_fut and imp_meas_pres plots are too crowded. We can select only the other metrics easily. In addition, instead of showing first order sensitivity ‘S1’, we can plot the total sensitivity ‘ST’.

```python
output_imp.plot_sensitivity(salib_si = 'ST', figsize=(12,8));
```
One can also visualise the second-order sensitivity indices in the form of a correlation matrix.

```
output_imp.plot_sensitivity_second_order(figsize=(12,8));
```
A few non-default parameters

We shall use the same uncertainty variables as in the previous section but show a few possibilities to use non-default method arguments.

```python
Sampling method "latin" hypercube instead of 'saltelli'.
from climada.engine.unsequa import CalcImpact
calc_imp2 = CalcImpact(exp_iv, impf_iv, haz)
output_imp2 = calc_imp2.make_sample(N=1000, sampling_method='latin')
```

```bash
2023-08-03 13:58:25,948 - climada.engine.unsequa.calc_base - INFO - Effective number of made samples: 1000
```

```python
output_imp2.plot_sample(figsize=(15,8));
```
# Compute also the distribution of the metric `eai_exp`
# To speed-up the computations, we can use more than one process
# Note that for large dataset a single process might be more efficient

```python
import time

calc_imp2 = CalcImpact(exp_iv, impf_iv, haz)
output_imp2 = calc_imp2.make_sample(N=1000, sampling_method='latin')

start = time.time()
output_imp2 = calc_imp2.uncertainty(output_imp2, rp=[50, 100, 250], calc_eai_exp=True, calc_at_event=True, processes=4)
end = time.time()
time_passed = end-start
print(f'Time passed with pool: {time_passed}')
```

2023-08-03 13:58:29,176 - climada.engine.unsequa.calc_base - INFO - Effective number of made samples: 1000
2023-08-03 13:58:29,183 - climada.entity.exposures.base - INFO - Exposures matching centroids already found for TC
2023-08-03 13:58:29,186 - climada.engine.impact_calc - INFO - Calculating impact for 250 assets (>0) and 216 events.
2023-08-03 13:58:29,187 - climada.engine.impact_calc - INFO - cover and/or deductible columns detected, going to calculate insured impact
2023-08-03 13:58:29,199 - climada.engine.impact - WARNING - The Impact.tot_value attribute is deprecated. Use Exposures.affected_total_value to calculate the affected total exposure value based on a specific hazard intensity threshold

Estimated computation time: 0:00:05.650000

Time passed with pool: 9.783061027526855
calc_imp2 = CalcImpact(exp_iv, impf_iv, haz)
output_imp2 = calc_imp2.make_sample(N=1000, sampling_method='latin')

start2 = time.time()
output_imp2 = calc_imp2.uncertainty(output_imp2, rp = [50, 100, 250], calc_eai_-
__exp=True, calc_at_event=True)
end2 = time.time()
time_passed_nopool = end2-start2
print(f'Time passed without pool: {time_passed_nopool}"

### Add the original value of the impacts (without uncertainty) to the uncertainty plot
from climada.engine import ImpactCalc
imp = ImpactCalc(exp_base, impf_func(), haz).impact(assign_centroids=False)
aai_agg_o = imp.aai_agg
freq_curve_o = imp.calc_freq_curve([50, 100, 250]).impact
orig_list = [aai_agg_o] + list(freq_curve_o) +[1]

### plot the aai_agg and freq_curve uncertainty only
# use logarithmic x-scale
output_imp2.plot_uncertainty(metric_list=['aai_agg', 'freq_curve'], orig_list=orig_-
__list, log=True, figsize=(12,8));
Use the method 'rbd_fast' which is recommended in pair with 'latin'. In addition, change one of the kwargs

```python
output_imp2 = calc_imp2.sensitivity(output_imp2, sensitivity_method='rbd_fast',
sensitivity_kwargs={'M': 15})
```

Since we computed the distribution and sensitivity indices for the total impact at each exposure point, we can plot a map of the largest sensitivity index in each exposure location. For every location, the most sensitive parameter is $v_{\text{half}}$, meaning that the average annual impact at each location is most sensitive to the uncertainty in the impact function slope scaling parameter.

```python
output_imp2.plot_sensitivity_map();
```
output_imp2.get_largest_si(salib_si='S1', metric_list=['eai_exp']).tail()

<table>
<thead>
<tr>
<th>metric</th>
<th>param</th>
<th>param2</th>
<th>si</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>45</td>
<td>v_half</td>
<td>None</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>v_half</td>
<td>None</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>v_half</td>
<td>None</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>v_half</td>
<td>None</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>v_half</td>
<td>None</td>
</tr>
</tbody>
</table>

11.1.6 CalcCostBenefit

The uncertainty and sensitivity analysis for CostBenefit is completely analogous to the Impact case. It is slightly more complex as there are more input variables.
Set the Input Vars

```python
import copy
from climada.util.constants import ENT_DEMO_TODAY, ENT_DEMO_FUTURE, HAZ_DEMO_H5
from climada.entity import Entity
from climada.hazard import Hazard

Entity today has an uncertainty in the total asset value
def ent_today_func(x_ent):
 # In-function imports needed only for parallel computing on Windows
 from climada.entity import Entity
 from climada.util.constants import ENT_DEMO_TODAY
 entity = Entity.from_excel(ENT_DEMO_TODAY)
 entity.exposures.ref_year = 2018
 entity.exposures.gdf.value *= x_ent
 return entity

Entity in the future has a +- 10% uncertainty in the cost of all the adaptation measures
def ent_fut_func(m_fut_cost):
 # In-function imports needed only for parallel computing on Windows
 from climada.entity import Entity
 from climada.util.constants import ENT_DEMO_FUTURE
 entity = Entity.from_excel(ENT_DEMO_FUTURE)
 entity.exposures.ref_year = 2040
 for meas in entity.measures.get_measure('TC'):
 meas.cost *= m_fut_cost
 return entity

haz_base = Hazard.from_hdf5(HAZ_DEMO_H5)
The hazard intensity in the future is also uncertainty by a multiplicative factor
def haz_fut(x_haz_fut, haz_base):
 # In-function imports needed only for parallel computing on Windows
 import copy
 from climada.hazard import Hazard
 from climada.util.constants import HAZ_DEMO_H5
 haz = copy.deepcopy(haz_base)
 haz.intensity = haz.intensity.multiply(x_haz_fut)
 return haz

haz_fut_func = partial(haz_fut, haz_base=haz_base)
```

Check that costs for measures are changed as desired.

```python
costs_1 = [meas.cost for meas in ent_fut_func(1).measures.get_measure('TC')]
costs_05 = [meas.cost for meas in ent_fut_func(0.5).measures.get_measure('TC')]
print(f"The cost for m_fut_cost=1 are {costs_1}"
 f"The cost for m_fut_cost=0.5 are {costs_05}"
)
```

The cost for m_fut_cost=1 are [1311768360.8515418, 1728000000.0, 887879433.630093, ... -9200000000.0]
The cost for m_fut_cost=0.5 are [655884180.4257709, 864000000.0, 4439389716.815046, ... -4600000000.0]
Define the InputVars

```python
import scipy as sp
from climada.engine.unsequa import InputVar

haz_today = haz_base

haz_fut_distr = {"x_haz_fut": sp.stats.uniform(1, 3),
 }
haz_fut_iv = InputVar(haz_fut_func, haz_fut_distr)

ent_today_distr = {"x_ent": sp.stats.uniform(0.7, 1)}
ent_today_iv = InputVar(ent_today_func, ent_today_distr)

ent_fut_distr = {"m_fut_cost": sp.stats.norm(1, 0.1)}
ent_fut_iv = InputVar(ent_fut_func, ent_fut_distr)

ent_avg = ent_today_iv.evaluate()
ent_avg.exposures.gdf.head()
```

```plaintext
<table>
<thead>
<tr>
<th>latitude</th>
<th>longitude</th>
<th>value</th>
<th>deductible</th>
<th>cover</th>
<th>impf_TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-80.128799</td>
<td>1.671301e+10</td>
<td>0.392750e+10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-80.398284</td>
<td>1.511528e+10</td>
<td>0.259606e+10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-80.748947</td>
<td>1.511528e+10</td>
<td>0.259606e+10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-80.550704</td>
<td>1.511528e+10</td>
<td>0.259606e+10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-80.596929</td>
<td>1.511528e+10</td>
<td>0.259606e+10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

Compute cost benefit uncertainty and sensitivity using default methods

For examples of how to use non-defaults please see the impact example

```python
from climada.engine.unsequa import CalcCostBenefit

unc_cb = CalcCostBenefit(haz_input_var=haz_today, ent_input_var=ent_today_iv,
 haz_fut_input_var=haz_fut_iv, ent_fut_input_var=ent_fut_iv)

output_cb = unc_cb.make_sample(N=10, sampling_kwargs={'calc_second_order': False})
output_cb.get_samples_df().tail()
```

```
Value_2010
0 5.139301e+09
1 4.647994e+09
2 4.647994e+09
3 4.647994e+09
4 4.647994e+09
```
For longer computations, it is possible to use a pool for parallel computation.

```python
without pool
output_cb = unc_cb.uncertainty(output_cb)

with pool
output_cb = unc_cb.uncertainty(output_cb, processes=4)
```

The output of `CostBenefit.calc` is rather complex in its structure. The metrics dictionary inherits this complexity.

```python
Top level metrics keys
macro_metrics = output_cb.uncertainty_metrics

macro_metrics = ['imp_meas_present', 'imp_meas_future', 'tot_climate_risk', 'benefit', 'cost_ben_ratio']
```

The benefits and `cost_ben_ratio` are available for each measure.

```python
output_cb.get_uncertainty(metric_list=['benefit', 'cost_ben_ratio']).tail()
```

```
<table>
<thead>
<tr>
<th></th>
<th>Mangroves Benef</th>
<th>Beach nourishment Benef</th>
<th>Seawall Benef</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>8.670468e+09</td>
<td>6.722992e+09</td>
<td>6.214684e+08</td>
</tr>
<tr>
<td>46</td>
<td>8.549601e+09</td>
<td>6.624301e+09</td>
<td>6.214684e+08</td>
</tr>
<tr>
<td>47</td>
<td>1.455086e+10</td>
<td>1.152385e+10</td>
<td>6.206260e+07</td>
</tr>
<tr>
<td>48</td>
<td>8.670468e+09</td>
<td>6.722992e+09</td>
<td>6.214684e+08</td>
</tr>
<tr>
<td>49</td>
<td>1.443000e+10</td>
<td>1.142516e+10</td>
<td>6.206260e+07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Building code Ben</th>
<th>Mangroves CostBen</th>
<th>Beach nourishment CostBen</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>3.926190e+10</td>
<td>0.123110</td>
<td>0.209151</td>
</tr>
<tr>
<td>46</td>
<td>3.920155e+10</td>
<td>0.124850</td>
<td>0.212267</td>
</tr>
<tr>
<td>47</td>
<td>1.901856e+10</td>
<td>0.073358</td>
<td>0.122018</td>
</tr>
<tr>
<td>48</td>
<td>3.926190e+10</td>
<td>0.136011</td>
<td>0.231069</td>
</tr>
<tr>
<td>49</td>
<td>1.895821e+10</td>
<td>0.081724</td>
<td>0.135970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Seawall CostBen</th>
<th>Building code CostBen</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>11.625533</td>
<td>0.190676</td>
</tr>
<tr>
<td>46</td>
<td>11.625533</td>
<td>0.190969</td>
</tr>
<tr>
<td>47</td>
<td>116.413127</td>
<td>0.393631</td>
</tr>
<tr>
<td>48</td>
<td>12.843826</td>
<td>0.210657</td>
</tr>
<tr>
<td>49</td>
<td>128.612593</td>
<td>0.436265</td>
</tr>
</tbody>
</table>
```

The impact_meas_present and `impact_meas_future` provide values of the `cost_meas`, `risk_transf`, `risk`, and `cost_ins` for each measure.

```python
output_cb.get_uncertainty(metric_list=['imp_meas_present']).tail()
```

```
<table>
<thead>
<tr>
<th>no measure - risk - present</th>
<th>no measure - risk_transf - present</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1.040893e+08</td>
</tr>
<tr>
<td>46</td>
<td>8.010560e+07</td>
</tr>
<tr>
<td>47</td>
<td>1.040893e+08</td>
</tr>
<tr>
<td>48</td>
<td>1.040893e+08</td>
</tr>
<tr>
<td>49</td>
<td>8.010560e+07</td>
</tr>
</tbody>
</table>
```

(continues on next page)
### 11.1. Unsequa - a module for uncertainty and sensitivity analysis

<table>
<thead>
<tr>
<th>No measure - cost_meas - present</th>
<th>No measure - cost_ins - present</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>0</td>
</tr>
</tbody>
</table>

Mangroves - risk - present Mangroves - risk_transf - present

45	1.311768e+09
46	1.311768e+09
47	1.311768e+09
48	1.311768e+09
49	1.311768e+09

Beach nourishment - risk - present

45	6.153578e+07
46	4.735703e+07
47	6.153578e+07
48	6.153578e+07
49	4.735703e+07

Seawall - risk - present

45	8.878779e+09
46	8.878779e+09
47	8.878779e+09
48	8.878779e+09
49	8.878779e+09

Building code - risk - present

45	8.010560e+07
46	8.010560e+07
47	8.010560e+07
48	8.010560e+07
49	8.010560e+07
We can plot the distributions for the top metrics or our choice.

```python
tot_climate_risk and benefit
output_cb.plot_uncertainty(metric_list=['benefit'], figsize=(12,8));
```

Analogously to the impact example, now that we have a metric distribution, we can compute the sensitivity indices. Since we used the default sampling method, we can use the default sensitivity analysis method. However, since we used `calc_second_order = False` for the sampling, we need to specify the same for the sensitivity analysis.
The sensitivity indices can be plotted. For the default method ‘sobol’, by default the ‘S1’ sensitivity index is plotted. Note that since we have quite a few measures, the plot must be adjusted a bit or dropped. Also see that for many metrics, the sensitivity to certain uncertainty parameters appears to be 0. However, this result is to be treated with care. Indeed, we used for demonstration purposes a rather too low number of samples, which is indicated by large confidence intervals (vertical black lines) for most sensitivity indices. For a more robust result the analysis should be repeated with more samples.
11.1.7 Advanced examples

**Coupled variables**

In this example, we show how you can define correlated input variables. Suppose your exposures and hazards are conditioned on the same Shared Socio-economic Pathway (SSP). Then, you want that only exposures and hazard belonging to the same SSP are present in each sample.

In order to achieve this, you must simply define an uncertainty parameter that shares the same name and the same distribution for both the exposures and the hazard uncertainty variables.

**Many scenarios of hazards and exposures**

In this example we look at the case where many scenarios are tested in the uncertainty analysis. For instance, suppose you have data for different Shared Socio-economic Pathways (SSP) and different Climate Change projections. From the SSPs, you have a number of Exposures, saved to files. From the climate projections, you have a number of Hazards, saved to file.

The task is to sample from the SSPs and the Climate change scenarios for the uncertainty and sensitivity analysis efficiently.

For demonstration purposes, we will use below as exposures files the litpop for three countries, and for the hazard files the winter storms for the same three countries. Instead of having SSPs, we now want to only combine exposures and hazards of the same countries.

```python
from climada.util.api_client import Client
client = Client()
```
```python
def get_litpop(iso):
 return client.get_litpop(country=iso)

def get_ws(iso):
 properties = {
 'country_iso3alpha': iso,
 }
 return client.get_hazard('storm_europe', properties=properties)

Define list of exposures and/or of hazard files
exp_list = [get_litpop(iso) for iso in ['CHE', 'DEU', 'ITA']]
 haz_list = [get_ws(iso) for iso in ['CHE', 'DEU', 'ITA']]
for exp, haz in zip(exp_list, haz_list):
 exp.gdf['impf_WS'] = 1
 exp.assign_centroids(haz)

Define the input variable
from climada.entity import ImpactFuncSet, Exposures
from climada.entity.impact_funcs.storm_europe import ImpfStormEurope
from climada.hazard import Hazard
from climada.engine.unsequa import InputVar
import scipy as sp
import copy

def exp_func(cnt, x_exp, exp_list=exp_list):
 exp = exp_list[int(cnt)].copy()
 exp.gdf.value *= x_exp
 return exp

exp_distr = {"x_exp": sp.stats.uniform(0.9, 0.2),
 "cnt": sp.stats.randint(low=0, high=len(exp_list))} # use the same parameter name across input variables
exp_iv = InputVar(exp_func, exp_distr)

def haz_func(cnt, i_haz, haz_list=haz_list):
 haz = copy.deepcopy(haz_list[int(cnt)]) # use the same parameter name across input variables
 haz.intensity *= i_haz
 return haz

haz_distr = {"i_haz": sp.stats.norm(1, 0.2),
 "cnt": sp.stats.randint(low=0, high=len(haz_list))}

haz_iv = InputVar(haz_func, haz_distr)

impf = ImpfStormEurope.from_schwierz()
impf_set = ImpactFuncSet()
impf_set.append(impf)
impf_iv = InputVar.impfset([impf_set], bounds_mdd = [0.9, 1.1])

from climada.engine.unsequa import CalcImpact

calc_imp = CalcImpact(exp_iv, impf_iv, haz_iv)
```

11.1. Unsequa - a module for uncertainty and sensitivity analysis
Input variable: Repeated loading of files made efficient

Loading Hazards or Exposures from file is a rather lengthy operation. Thus, we want to minimize the reading operations, ideally reading each file only once. Simultaneously, Hazard and Exposures can be large in memory, and thus we would like to have at most one of each loaded at a time. Thus, we do not want to use the list capacity from the helper method InputVar.exposures and InputVar.hazard.

For demonstration purposes, we will use below as exposures files the litpop for three countries, and for the hazard files the winter storms for the same three countries. Note that this does not make a lot of sense for an uncertainty analysis. For your use case, please replace the set of exposures and/or hazard files with meaningful sets, for instance sets of exposures for different resolutions or hazards for different model runs.
from climada.util.api_client import Client
client = Client()

def get_litpop_path(iso):
    properties = {
        'country_iso3alpha': iso,
        'res_arcsec': '150',
        'exponents': '(1,1)',
        'fin_mode': 'pc'
    }
litpop_datasets = client.list_dataset_infos(data_type='litpop',
                                            properties=properties)
ds = litpop_datasets[0]
download_dir, ds_files = client.download_dataset(ds)
return ds_files[0]

def get_ws_path(iso):
    properties = {
        'country_iso3alpha': iso,
    }
hazard_datasets = client.list_dataset_infos(data_type='storm_europe',
                                            properties=properties)
ds = hazard_datasets[0]
download_dir, ds_files = client.download_dataset(ds)
return ds_files[0]

# Define list of exposures and/or of hazard files
f_exp_list = [get_litpop_path(iso) for iso in ['CHE', 'DEU', 'ITA']]  
f_haz_list = [get_ws_path(iso) for iso in ['CHE', 'DEU', 'ITA']]

# Define the input variable for the loading files
# The trick is to not reload a file if it is already in memory. This is done using a...
from climada.entity import ImpactFunc, ImpactFuncSet, Exposures
from climada.hazard import Hazard
from climada.engine.unsequa import InputVar
import scipy as sp
import copy

def exp_func(f_exp, x_exp, filename_list=f_exp_list):
    filename = filename_list[int(f_exp)]
    global exp_base
    if 'exp_base' in globals():
        if isinstance(exp_base, Exposures):
            if exp_base.gdf.filename != str(filename):
                exp_base = Exposures.from_hdf5(filename)
                exp_base.gdf.filename = str(filename)
        else:
            exp_base = Exposures.from_hdf5(filename)
            exp_base.gdf.filename = str(filename)
    else:
        exp_base = Exposures.from_hdf5(filename)
        exp_base.gdf.filename = str(filename)

    exp = exp_base.copy()
    exp.gdf.value *= x_exp
    return exp

(continues on next page)
exp_distr = {
    "x_exp": sp.stats.uniform(0.9, 0.2),
    "f_exp": sp.stats.randint(low=0, high=len(f_exp_list))
}

exp_iv = InputVar(exp_func, exp_distr)

def haz_func(f_haz, i_haz, filename_list=f_haz_list):
    filename = filename_list[int(f_haz)]

global haz_base
if 'haz_base' in globals():
    if isinstance(haz_base, Hazard):
        if haz_base.filename != str(filename):
            haz_base = Hazard.from_hdf5(filename)
            haz_base.filename = str(filename)
    else:
        haz_base = Hazard.from_hdf5(filename)
        haz_base.filename = str(filename)

    haz = copy.deepcopy(haz_base)
    haz.intensity *= i_haz
    return haz

haz_distr = {
    "i_haz": sp.stats.norm(1, 0.2),
    "f_haz": sp.stats.randint(low=0, high=len(f_haz_list))
}

haz_iv = InputVar(haz_func, haz_distr)

def impf_func(G=1, v_half=84.7, vmin=25.7, k=3, _id=1):
    def xhi(v, v_half, vmin):
        return max([0, v - vmin]) / (v_half - vmin)

    def sigmoid_func(v, G, v_half, vmin, k):
        return G * xhi(v, v_half, vmin) ** k / (1 + xhi(v, v_half, vmin) ** k)

    # In-function imports needed only for parallel computing on Windows
    import numpy as np
    from climada.entity import ImpactFunc, ImpactFuncSet

    imp_fun = ImpactFunc()
    imp_fun.haz_type = 'WS'
    imp_fun.id = _id
    imp_fun.intensity_unit = 'm/s'
    imp_fun.intensity = np.linspace(0, 150, num=100)
    imp_fun.mdd = np.repeat(1, len(imp_fun.intensity))
    imp_fun.paa = np.array([sigmoid_func(v, G, v_half, vmin, k) for v in imp_fun.intensity])
    imp_fun.check()
    impf_set = ImpactFuncSet()
    impf_set.append(imp_fun)
    return impf_set

impf_distr = {
    "G": sp.stats.truncnorm(0.5, 1.5),
    "v_half": sp.stats.uniform(35, 65),
    "vmin": sp.stats.uniform(0, 15),
    "k": sp.stats.uniform(1, 4)
impf_iv = InputVar(impf_func, impf_distr)

from climada.engine.unsequa import CalcImpact

calc_imp = CalcImpact(exp_iv, impf_iv, haz_iv)

2023-08-04 16:30:48,177 - climada.entity.exposures.base - INFO - Reading /Users/ckropf/climada/data/exposures/litpop/LitPop_150arcsec_DEU/v2/LitPop_150arcsec_DEU.hdf5

/Users/ckropf/opt/anaconda3/envs/climada_333_shapely2/lib/python3.9/pickle.py:1717: UserWarning: Unpickling a shapely <2.0 geometry object. Please save the pickle again; shapely 2.1 will not have this compatibility.
    setstate(state)

Now that the samples have been generated, it is crucial to order the samples in order to minimize the number of times files have to be loaded. In this case, loading the hazards take more time than loading the exposures. We thus sort first by hazards (which then each have to be loaded one single time), and then by exposures (which have to be each loaded once for each hazard).

# Ordering of the samples by hazard first and exposures second
output_imp = calc_imp.make_sample(N=2**2, sampling_kwargs={'skip_values': 2**3})
output_imp.order_samples(by=['f_haz', 'f_exp'])

2023-08-04 16:29:49,588 - climada.engine.unsequa.calc_base - INFO - Effective number of made samples: 72

We can verify how the samples are ordered. In the graph below, it is confirmed that the hazard are ordered, and thus the hazards will be loaded once each. The exposures on the other changes at most once per hazard.

import matplotlib.pyplot as plt
e = output_imp.samples_df['f_exp'].values
h = output_imp.samples_df['f_haz'].values

Note that due to the very small number of samples chosen here for illustrative purposes, not all combinations of hazard and exposures are part of the samples. This is due to the nature of the Sobol sequence (default sampling method).

plt.plot(e, label='exposures');
plt.plot(h, label='hazards');
plt.xlabel('samples');
plt.ylabel('file number');
plt.title('Order of exposures and hazards files in samples');
plt.legend(loc='upper right');

<matplotlib.legend.Legend at 0x178baef10>
output_imp = calc_imp.uncertainty(output_imp)

11.2 Helper methods for InputVar

This tutorial complements the general tutorial on the uncertainty and sensitivity analysis module *unsequa*.

The InputVar class provides a few helper methods to generate generic uncertainty input variables for exposures, impact function sets, hazards, and entities (including measures cost and disc rates).

- Exposures
- Hazard
- ImpactFuncSet
- Entity
- Entity Future

```python
import warnings
warnings.filterwarnings('ignore') #Ignore warnings for making the tutorial's pdf.
```
11.2.1 Exposures

The following types of uncertainties can be added:

- **ET**: scale the total value (homogeneously)
  
  The value at each exposure point is multiplied by a number sampled uniformly from a distribution with \((\text{min, max}) = \text{bounds}_{\text{total value}}\)

- **EN**: multiplicative noise (inhomogeneous)
  
  The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with \((\text{min, max}) = \text{bounds}_{\text{noise}}\). EN is the value of the seed for the uniform random number generator.

- **EL**: sample uniformly from exposure list
  
  From the provided list of exposure is elements are uniformly sampled. For example, LitPop instances with different exponents.

If a bounds is None, this parameter is assumed to have no uncertainty.

**Example: single exposures**

```python
Define the base exposure
from climada.util.constants import EXP_DEMO_H5
from climada.entity import Exposures
exp_base = Exposures.from_hdf5(EXP_DEMO_H5)

The difference in total value between the base exposure and the average input uncertainty exposure
due to the random noise on each exposures point (the average change in the total value is 1.0).
avg_exp = exp_iv.evaluate()
(sum(avg_exp.gdf['value']) - sum(exp_base.gdf['value'])) / sum(exp_base.gdf['value'])

0.03700231587024304

The values for EN are seeds for the random number generator for the noise sampling -- and
thus are uniformly sampled numbers between (0, 2**32-1)
exp_iv.plot();
```
Example: list of litpop exposures with different exponents

```python
Define a generic method to make litpop instances with different exponent pairs.
from climada.entity import LitPop
def generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs, choice_mn, **litpop_kwargs):
 # In-function imports needed only for parallel computing on Windows
 from climada.entity import LitPop
 litpop_base = []
 for [m, n] in choice_mn:
 print('
 Computing litpop for m=%d, n=%d
 % (m, n))
 litpop_kwargs['exponents'] = (m, n)
 exp = LitPop.from_countries(**litpop_kwargs)
 exp.gdf['impf_'] + haz.haz_type] = impf_id
 exp.gdf.drop('impf_', axis=1, inplace=True)
 if value_unit is not None:
 exp.value_unit = value_unit
 exp.assign_centroids(haz, **assign_centr_kwargs)
 litpop_base.append(exp)
 return litpop_base

Define the parameters of the LitPop instances
tot_pop = 11.317e6
impf_id = 1
value_unit = 'people'
litpop_kwargs = {
 'countries': ['CUB'],
 'res_arcsec': 150,
 'reference_year': 2020,
 'fin_mode': 'norm',
 'total_values': [tot_pop]
}
assign_centr_kwargs={}

The hazard is needed to assign centroids
from climada.util.constants import HAZ_DEMO_H5
from climada.hazard import Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)
```
# Generate the LitPop list

```
choice_mn = [[0, 0.5], [0, 1], [0, 2]] # Choice of exponents m,n

litpop_list = generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs,
 choice_mn, **litpop_kwargs)
```

Computing litpop for m=0, n=0

```
2022-07-07 15:13:33,055 - climada.entity.exposures.litpop.litpop - INFO -
 LitPop: Init Exposure for country: CUB (192)...
```

(continues on next page)
Computing litpop for m=0, n=1
Computing litpop for m=0, n=2
11.2. Helper methods for InputVar
from climada.engine.unsequa import InputVar

bounds_totval = [0.9, 1.1]  # +/− 10% noise on the total exposures value

litpop_iv = InputVar.exp(exp_list=litpop_list,
                         bounds_totval=bounds_totval)

# To choose n=0.5, we have to set EL=1 (the index of 0.5 in choice_n = [0, 0.5, 1, 2])

pop_half = litpop_iv.evaluate(ET=1, EL=1)

pop_half.gdf.tail()
To choose \( n=1 \), we have to set \( EL=2 \) (the index of 1 in \( \text{choice}_n = [0, 0.5, 1, 2] \))

```python
pop_one = litpop_iv.evaluate(ET=1, EL=2)
```

```python
pop_one.gdf.tail()
```

<table>
<thead>
<tr>
<th>value</th>
<th>geometry</th>
<th>latitude</th>
<th>longitude</th>
<th>region_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>5519</td>
<td>POINT (-80.52083 23.18750)</td>
<td>23.187500</td>
<td>-80.520833</td>
<td>192</td>
</tr>
<tr>
<td>5520</td>
<td>POINT (-80.47917 23.18750)</td>
<td>23.187500</td>
<td>-80.479167</td>
<td>192</td>
</tr>
<tr>
<td>5521</td>
<td>POINT (-80.68750 23.18750)</td>
<td>23.187500</td>
<td>-80.687500</td>
<td>192</td>
</tr>
<tr>
<td>5522</td>
<td>POINT (-80.89583 23.14583)</td>
<td>23.145833</td>
<td>-80.895833</td>
<td>192</td>
</tr>
<tr>
<td>5523</td>
<td>POINT (-80.85417 23.14583)</td>
<td>23.145833</td>
<td>-80.854167</td>
<td>192</td>
</tr>
</tbody>
</table>

```
impf_TC centr_TC
```

<table>
<thead>
<tr>
<th>value</th>
<th>impf_TC</th>
<th>centr_TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5519</td>
<td>1</td>
<td>619</td>
</tr>
<tr>
<td>5520</td>
<td>1</td>
<td>619</td>
</tr>
<tr>
<td>5521</td>
<td>1</td>
<td>618</td>
</tr>
<tr>
<td>5522</td>
<td>1</td>
<td>617</td>
</tr>
<tr>
<td>5523</td>
<td>1</td>
<td>617</td>
</tr>
</tbody>
</table>

```python
pop_one.plot_hexbin();
```

---

**11.2. Helper methods for InputVar**
11.2.2 Hazard

The following types of uncertainties can be added:

- **HE**: sub-sampling events from the total event set
  
  For each sub-sample, n_ev events are sampled with replacement. HE is the value of the seed for the uniform random number generator.

- **HI**: scale the intensity of all events (homogeneously)
  
  The intensity of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_int

- **HA**: scale the fraction of all events (homogeneously)
  
  The fraction of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_frac

- **HF**: scale the frequency of all events (homogeneously)
  
  The frequency of all events is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_freq
• HL: sample uniformly from hazard list

From the provided list of hazard is elements are uniformly sampled. For example, Hazards outputs from
dynamical models for different input factors.

If a bounds is None, this parameter is assumed to have no uncertainty.

```python
Define the base exposure
from climada.util.constants import HAZ_DEMO_H5
from climada.hazard import Hazard
haz_base = Hazard.from_hdf5(HAZ_DEMO_H5)
```

```python
from climada.engine.unsequa import InputVar

bounds_freq = [0.9, 1.1] # +- 10% noise on the frequency of all events
bounds_int = None # No uncertainty on the intensity
n_ev = None
haz_iv = InputVar.haz([haz_base], n_ev=n_ev, bounds_freq=bounds_freq, bounds_int=bounds_int)
```

```python
The difference in frequency for HF=1.1 is indeed 10%.
haz_high_freq = haz_iv.evaluate(HF=1.1)
(sum(haz_high_freq.frequency) - sum(haz_base.frequency)) / sum(haz_base.frequency)
```

```
0.10000000000000736
```

```python
bounds_freq = [0.9, 1.1] # +- 10% noise on the frequency of all events
bounds_int = None # No uncertainty on the intensity
bounds_frac = [0.7, 1.1] # noise on the fraction of all events
n_ev = round(0.8 * haz_base.size) # sub-sample with re-draw events to obtain hazards...
with n=0.8*tot_number_events
haz_iv = InputVar.haz([haz_base], n_ev=n_ev, bounds_freq=bounds_freq, bounds_int=bounds_int, bounds_frac=bounds_frac)
```

Note that the HE is not a univariate distribution, but for each sample corresponds to the names of the sub-sampled events. However, to simplify the data stream, the HE is saved as the seed for the random number generator that made the sample. Hence, the value of HE is a label for the given sample. If really needed, the exact chosen events can be obtained as follows.

```python
import numpy as np
HE = 2618981871 # The random seed (number between 0 and 2**32)
rng = np.random.RandomState(int(HE)) # Initialize a random state with the seed
chosen_ev = list(rng.choice(haz_base.event_name, int(n_ev))) # Obtain the...
corresponding events
```

```
The first event is
chosen_ev[0]
```

```
'1998209N11335'
```
# The values for HE are seeds for the random number generator for the noise sampling...
and
# thus are uniformly sampled numbers between (0, 2**32-1)

## 11.2.3 ImpactFuncSet

The following types of uncertainties can be added:

- **MDD**: scale the mdd (homogeneously)
  
The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with
  (min, max) = bounds_mdd

- **PAA**: scale the paa (homogeneously)
  
The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with
  (min, max) = bounds_paa

- **IFi**: shift the intensity (homogeneously)
  
The value intensity are all summed with a random number sampled uniformly from a distribution with (min, max) = bounds_int

- **IL**: sample uniformly from impact function set list
  
  From the provided list of impact function sets elements are uniformly sampled. For example, impact functions obtained from different calibration methods.

If a bounds is None, this parameter is assumed to have no uncertainty.

```python
from climada.entity import ImpactFuncSet, ImpfTropCyclone
impf = ImpfTropCyclone.from_emanuel_usa()
impf_set_base = ImpactFuncSet([impf])
```

It is necessary to specify the hazard type and the impact function id. For simplicity, the default uncertainty input variable only looks at the uncertainty on one single impact function.
from climada.engine.unsequa import InputVar
bounds_impfi = [-10, 10] #-10 m/s ; +10m/s uncertainty on the intensity
bounds_mdd = [0.7, 1.1] #-30% - +10% uncertainty on the mdd
bounds_paa = None #No uncertainty in the paa
impf_iv = InputVar.impfset(impf_set_list=[impf_set_base],
                           bounds_impfi=bounds_impfi,
                           bounds_mdd=bounds_mdd,
                           bounds_paa=bounds_paa,
                           haz_id_dict={'TC': [1]})

#Plot the impact function for 50 random samples (note for the expert, these are not global)
ax = impf_iv.evaluate().plot()
n = 50
inten = impf_iv.distr_dict['IFi'].rvs(size=n)
mdd = impf_iv.distr_dict['MDD'].rvs(size=n)
for i, m in zip(inten, mdd):
    impf_iv.evaluate(IFi=i, MDD=m).plot(axis=ax)
ax.get_legend().remove()
11.2.4 Entity

The following types of uncertainties can be added:

- **DR**: value of constant discount rate (homogeneously)
  The value of the discounts in each year is sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_disc}\)

- **CO**: scale the cost (homogeneously)
  The cost of all measures is multiplied by the same number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_cost}\)

- **ET**: scale the total value (homogeneously)
  The value at each exposure point is multiplied by a number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_totval}\)

- **EN**: multiplicative noise (inhomogeneous)
  The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_noise}\). EN is the value of the seed for the uniform random number generator.

- **EL**: sample uniformly from exposure list
  From the provided list of exposure is elements are uniformly sampled. For example, LitPop instances with different exponents.

- **MDD**: scale the mdd (homogeneously)
  The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_mdd}\)

- **PAA**: scale the paa (homogeneously)
  The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_paa}\)

- **IFi**: shift the intensity (homogeneously)
  The value intensity are all summed with a random number sampled uniformly from a distribution with \((\text{min}, \text{max}) = \text{bounds\_int}\)

If a bounds is None, this parameter is assumed to have no uncertainty.

**Example: single exposures**

```python
def from_climada_util_constants import Entity
ent = Entity.from_excel(ENT_DEMO_TODAY)
ent.check()
```

```
2022-07-07 15:18:00,293 - climada.entity.exposures.base - INFO - geometry not set.
```
from climada.engine.unsequa import InputVar
ent_iv = InputVar.ent(
    impf_set_list = [ent.impact_funcs],
    disc_rate = ent.disc_rates,
    exp_list = [ent.exposures],
    meas_set = ent.measures,
    bounds_disc=[0, 0.08],
    bounds_cost=[0.5, 1.5],
    bounds_totval=[0.9, 1.1],
    bounds_noise=[0.3, 1.9],
    bounds_mdd=[0.9, 1.05],
    bounds_paa=None,
    bounds_impfi=[-2, 5],
    haz_id_dict=('TC': [1])
)

ent_iv.plot();

Example: list of Litpop exposures with different exponents

# Define a generic method to make litpop instances with different exponent pairs.
from climada.entity import LitPop
def generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs, choice_mn, **litpop_kwargs):
    # In-function imports needed only for parallel computing on Windows
    from climada.entity import LitPop
    litpop_base = []
    for [m, n] in choice_mn:
        print('
        Computing litpop for m=%d, n=%d %s
        ' % (m, n))
        litpop_kwargs['exponents'] = (m, n)
        exp = LitPop.from_countries(**litpop_kwargs)
        exp.gdf['impf_'] + haz.haz_type] = impf_id
        exp.gdf.drop('impf_', axis=1, inplace=True)
        if value_unit is not None:
            exp.value_unit = value_unit
            exp.assign_centroids(haz, **assign_centr_kwargs)

(continues on next page)
litpop_base.append(exp)
return litpop_base

# Define the parameters of the LitPop instances
impf_id = 1
value_unit = None
litpop_kwargs = {
    'countries': ['CUB'],
    'res_arcsec': 300,
    'reference_year': 2020,
}
assign_centr_kwargs = {}

# The hazard is needed to assign centroids
from climada.util.constants import HAZ_DEMO_H5
from climada.hazard import Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)

# Generate the LitPop list
choice_mn = [[1, 0.5], [0.5, 1], [1, 1]]  # Choice of exponents m, n
litpop_list = generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs,
    choice_mn, **litpop_kwargs)

Computing litpop for m=1, n=0

2022-07-07 15:18:00,956 - climada.hazard.base - INFO - Reading /Users/ckropf/climada/
    demo/data/tc_fl_1990_2004.h5

2022-07-07 15:18:01,968 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:01,997 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,022 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,044 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,069 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,093 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,125 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,187 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,210 - climada.entity.exposures.litpop.gpw_population - INFO - GPW

2022-07-07 15:18:02,220 - climada.entity.exposures.litpop.gpw_population - INFO - No data

2022-07-07 15:18:02,221 - climada.entity.exposures.litpop.gpw_population - INFO - GPW
11.2. Helper methods for InputVar
Computing litpop for m=0, n=1

LitPop: Init Exposure for country: CUB (192)...

(continues on next page)
### 11.2. Helper methods for InputVar

<table>
<thead>
<tr>
<th>Date</th>
<th>Timestamp</th>
<th>Module</th>
<th>Function</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-07-07</td>
<td>15:18:04,953</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO - GPW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:04,987</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO - GPW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:05,049</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO - GPW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:05,075</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO - GPW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:05,086</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO - No data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:05,087</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO - GPW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:05,098</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO - No data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version v4.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
Computing litpop for m=1, n=1

(continues on next page)
11.2. Helper methods for InputVar
2022-07-07 15:18:07,806 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
    → Version v4.11
2022-07-07 15:18:07,859 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
    → Version v4.11
    → Version v4.11
2022-07-07 15:18:07,943 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:07,968 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
    → Version v4.11
2022-07-07 15:18:08,021 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,032 - climada.entity.exposures.litpop.gpw_population - INFO - No data...
    → point on destination grid within polygon.
2022-07-07 15:18:08,032 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,071 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,102 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,136 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,167 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,189 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,200 - climada.entity.exposures.litpop.gpw_population - INFO - No data...
    → point on destination grid within polygon.
2022-07-07 15:18:08,201 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,240 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,252 - climada.entity.exposures.litpop.gpw_population - INFO - No data...
    → point on destination grid within polygon.
2022-07-07 15:18:08,253 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,276 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,298 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,323 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,345 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
    → Version v4.11
2022-07-07 15:18:08,357 - climada.entity.exposures.litpop.gpw_population - INFO - No data...
    → point on destination grid within polygon.
2022-07-07 15:18:08,383 - climada.entity.exposures.litpop.gpw_population - WARNING - No data available for...
    → country. Using non-financial wealth instead
2022-07-07 15:18:09,257 - climada.util.finance - WARNING - No data for country, using...
    → mean factor.
from climada.entity import Entity
from climada.util.constants import ENT_DEMO_TODAY
ent = Entity.from_excel(ENT_DEMO_TODAY)
ent.exposures.ref_year = 2020
ent.check()

from climada.engine.unsequa import InputVar
ent_iv = InputVar(ent,
    impf_set_list=ent.impact_funcs,
    disc_rate=ent.discount_rates,
    exp_list=litpop_list,
    meas_set=ent.measures,
    bounds_disc=[0, 0.08],
    bounds_cost=[0.5, 1.5],
    bounds_totval=[0.9, 1.1],
    bounds_noise=[0.3, 1.9],
    bounds_mdd=[0.9, 1.05],
    bounds_paa=ent.measures,
    haz_id_dict={'TC': [1]})

ent_iv.evaluate().exposures.plot_hexbin();
11.2.5 Entity Future

The following types of uncertainties can be added:

- **CO**: scale the cost (homogeneously)
  
The cost of all measures is multiplied by the same number sampled uniformly from a distribution with (min, max) = bounds_cost

- **EG**: scale the exposures growth (homogeneously)
  
The value at each exposure point is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_eg

- **EN**: multiplicative noise (inhomogeneous)
  
The value of each exposure point is independently multiplied by a random number sampled uniformly from a distribution with (min, max) = bounds_noise. EN is the value of the seed for the uniform random number generator.

- **EL**: sample uniformly from exposure list
  
  From the provided list of exposure is elements are uniformly sampled. For example, LitPop instances with different exponents.

- **MDD**: scale the mdd (homogeneously)
  
The value of mdd at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_mdd

- **PAA**: scale the paa (homogeneously)
  
The value of paa at each intensity is multiplied by a number sampled uniformly from a distribution with (min, max) = bounds_paa

- **IFi**: shift the impact function intensity (homogeneously)
  
The value intensity are all summed with a random number sampled uniformly from a distribution with (min, max) = bounds_impfi

- **IL**: sample uniformly from impact function set list
  
  From the provided list of impact function sets elements are uniformly sampled. For example, impact functions obtained from different calibration methods.

If a bounds is None, this parameter is assumed to have no uncertainty.
Example: single exposures

```python
from climada.entity import Entity
from climada.util.constants import ENT_DEMO_FUTURE

ent_fut = Entity.from_excel(ENT_DEMO_FUTURE)
ent_fut.exposures.ref_year = 2040
ent_fut.check()
```

Example: list of exposures

```python
Define a generic method to make litpop instances with different exponent pairs.
from climada.entity import LitPop
def generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs, choice_mn, **litpop_kwargs):
 # In-function imports needed only for parallel computing on Windows
 from climada.entity import LitPop
 litpop_base = []
 for [m, n] in choice_mn:
 print('\n Computing litpop for m=%d, n=%d \n' % (m, n))
 litpop_kwargs['exponents'] = (m, n)
 exp = LitPop.from_countries(**litpop_kwargs)
 exp.gdf['impf_'] = haz.haz_type + impf_id
 exp.gdf.drop('impf_', axis=1, inplace=True)
 if value_unit is not None:
 exp.value_unit = value_unit
 exp.assign_centroids(haz, **assign_centr_kwargs)
 litpop_base.append(exp)
 return litpop_base

Define the parameters of the LitPop instances
impf_id = 1
value_unit = None
litpop_kwargs = {
 'countries': ['CUB'],
 'res_arcsec': 300,
 'reference_year': 2040,
}
```
assign_centr_kwargs = {}

# The hazard is needed to assign centroids
from climada.util.constants import HAZ_DEMO_H5
from climada.hazard import Hazard
haz = Hazard.from_hdf5(HAZ_DEMO_H5)

# Generate the LitPop list
choice_mn = [[1, 0.5], [0.5, 1], [1, 1]]  # Choice of exponents m,n
litpop_list = generate_litpop_base(impf_id, value_unit, haz, assign_centr_kwargs,
                                 choice_mn, **litpop_kwargs)

Computing litpop for m=1, n=0

# Computing litpop for m=1, n=0
2022-07-07 15:18:12,244 - climada.entity.exposures.litpop.litpop - INFO - LitPop: Init Exposure for country: CUB (192)...
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Module</th>
<th>Level</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,025</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,034</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,035</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,047</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,048</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,062</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,063</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,064</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,066</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,066</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,077</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,078</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,090</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,090</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,117</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,144</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,155</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,155</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,165</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,165</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,178</td>
<td>climada.entity.exposures.litpop.litpop</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version v4.11</td>
</tr>
<tr>
<td>2022-07-07</td>
<td>15:18:13,178</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data</td>
</tr>
</tbody>
</table>

11.2. Helper methods for InputVar

(continues on next page)
<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Module</th>
<th>Severity</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-07-07 15:18:13,179</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW, → Version v4.11</td>
</tr>
<tr>
<td>2022-07-07 15:18:13,375</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW, → Version v4.11</td>
</tr>
<tr>
<td>2022-07-07 15:18:13,400</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>GPW, → Version v4.11</td>
</tr>
<tr>
<td>2022-07-07 15:18:13,412</td>
<td>climada.entity.exposures.litpop.gpw_population</td>
<td>INFO</td>
<td>No data, → point on destination grid within polygon.</td>
</tr>
</tbody>
</table>

(continues on next page)


2022-07-07 15:18:15,224 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11


2022-07-07 15:18:15,311 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11


2022-07-07 15:18:15,428 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.


2022-07-07 15:18:15,429 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11

2022-07-07 15:18:15,441 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.


2022-07-07 15:18:15,442 - climada.entity.exposures.litpop.gpw_population - INFO - GPW → Version v4.11

2022-07-07 15:18:15,457 - climada.entity.exposures.litpop.litpop - INFO - No data on destination grid within polygon.


(continues on next page)
11.2. Helper methods for InputVar
2022-07-07 15:18:15,730 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
   --Version v4.11
2022-07-07 15:18:15,757 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,758 - climada.entity.exposures.litpop.gpw_population - INFO - GPW...
   --Version v4.11
2022-07-07 15:18:15,787 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,812 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,824 - climada.entity.exposures.litpop.litpop - INFO - No data...
   --point on destination grid within polygon.
2022-07-07 15:18:15,825 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,862 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,894 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,928 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:15,999 - climada.entity.exposures.litpop.litpop - INFO - No data...
   --point on destination grid within polygon.
2022-07-07 15:18:16,000 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:16,040 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:16,051 - climada.entity.exposures.litpop.litpop - INFO - No data...
   --point on destination grid within polygon.
2022-07-07 15:18:16,052 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
2022-07-07 15:18:16,076 - climada.entity.exposures.litpop.gpw_population - WARNING --
   --Reference year: 2040. Using nearest available year for GPW data: 2020
Computing litpop for m=1, n=1

11.2. Helper methods for InputVar
11.2. Helper methods for InputVar
from climada.entity import Entity
from climada.util.constants import ENT_DEMO_FUTURE

et_fut = Entity.from_excel(ENT_DEMO_FUTURE)
et_fut.exposures.ref_year = 2040
et_fut.check()

from climada.engine.unsequa import InputVar
entfut_iv = InputVar.entfut(
    impf_set_list = [ent_fut.impact_funcs],
    exp_list = litpop_list,
    meas_set = ent_fut.measures,
    bounds_cost=[0.6, 1.2],
    bounds_eg=[0.8, 1.5],
    bounds_noise=None,
    bounds_mdd=[0.7, 0.9],
    bounds_paa=[1.3, 2],
    haz_id_dict={'TC': [1]}
)
FORECAST CLASS

This class deals with weather forecasts and uses CLIMADA ImpactCalc.impact() to forecast impacts of weather events on society. It mainly does one thing:

- it contains all plotting and other functionality that are specific for weather forecasts, impact forecasts and warnings

The class is different from the Impact class especially because features of the Impact class like Exceedence frequency curves, annual average impact etc, do not make sense if the hazard is e.g. a 5 day weather forecast. As the class is relatively new, there might be future changes to the datastructure, the methods, and the parameters used to call the methods.

12.1 Example: forecast of building damages due to wind in Switzerland

Before using the forecast class, hazard, exposure and vulnerability need to be created. The hazard looks at the weather forecast from today for an event with two days lead time (meaning the day after tomorrow). generate_WS_forecast_hazard is used to download a current weather forecast for wind gust from opendata.dwd.de. An Impact function for building damages due to storms is created. And with only a few lines of code, a LitPop exposure for Switzerland is generated, and the impact is calculated with a default impact function. With a further line of code, the mean damage per grid point for the day after tomorrow is plotted on a map.

```python
from datetime import datetime
from cartopy import crs as ccrs

from climada.util.config import CONFIG
from climada.engine.forecast import Forecast
from climada.hazard.storm_europe import StormEurope, generate_WS_forecast_hazard
from climada.entity.impact_funcs.storm_europe import ImpfStormEurope
from climada.entity.import ImpactFuncSet
from climada.entity.import LitPop

#generate hazard
hazard, haz_model, run_datetime, event_date = generate_WS_forecast_hazard()
generate hazard with forecasts from past dates (works only if the files have...already been downloaded)
hazard, haz_model, run_datetime, event_date = generate_WS_forecast_hazard(
run_datetime=datetime(2022,5,17),
event_date=datetime(2022,5,19))

#generate vulnerability
impact_function = ImpfStormEurope.from_welker()
impact_function_set = ImpactFuncSet([impact_function])
```
#generate exposure and save to file
filename_exp = CONFIG.local_data.save_dir.dir() / ('exp_litpop_Switzerland.hdf5')
if filename_exp.exists():
    exposure = LitPop.from_hdf5(filename_exp)
else:
    exposure = LitPop.from_countries('Switzerland', reference_year=2020)
    exposure.write_hdf5(filename_exp)

#create and calculate Forecast
CH_WS_forecast = Forecast({run_datetime: hazard}, exposure, impact_function_set)
CH_WS_forecast.calc()

CH_WS_forecast.plot_imp_map(save_fig=False, close_fig=False, proj=ccrs.epsg(2056));

Here you see a different plot highlighting the spread of the impact forecast calculated from the different ensemble members of the weather forecast.

CH_WS_forecast.plot_hist(save_fig=False, close_fig=False);
It is possible to color the pixels depending on the probability that a certain threshold of impact is reach at a certain grid point.

```python
CH_WS_forecast.plot_exceedence_prob(threshold=5000, save_fig=False, close_fig=False, proj=ccrs.epsg(2056));
```
It is possible to color the cantons of Switzerland with warning colors, based on aggregated forecasted impacts in their area.

```python
import fiona
from cartopy.io import shapereader
from climada.util.config import CONFIG

create a file containing the polygons of Swiss cantons using natural earth
cantons_file = CONFIG.local_data.save_dir.dir() / 'cantons.shp'
adm1_shape_file = shapereader.natural_earth(resolution='10m',
 category='cultural',
 name='admin_1_states_provinces')

if not cantons_file.exists():
 with fiona.open(adm1_shape_file, 'r') as source:
 with fiona.open(
 cantons_file, 'w',
 **source.meta) as sink:

 for f in source:
 if f['properties'][adm0_a3] == 'CHE':
 sink.write(f)

CH_WS_forecast.plot_warn_map(str(cantons_file),
(continues on next page)
```

Exceedance probability map
threshold: 5000 USD

Thu 19 May 2022 00-24UTC
17.05.2022 00UTC +2d

47.7°N
47.4°N
47.1°N
46.8°N
46.5°N
46.2°N
45.9°N
6°E
7°E
8°E
9°E
10°E

probability of reaching threshold
### 12.2 Example 2: forecast of wind warnings in Switzerland

Instead of a fully fledged socio-economic impact of storms, one can also simplify the hazard, exposure, vulnerability model, by looking at a “neutral” exposure (=1 at every gridpoint) and using a step function as impact function to arrive at warn levels. It also shows how the attributes hazard, exposure or vulnerability can be set before calling `calc()`, and are then considered in the forecast instead of the defined defaults.

```python
from pandas import DataFrame
import numpy as np
```
### generate exposure

# find out which hazard coord to consider
CHE_borders = u_plot._get_borders(np.stack([exposure.gdf.latitude.values, exposure.gdf.longitude.values], axis=1))

centroid_selection = np.logical_and(np.logical_and(hazard.centroids.lat > CHE_borders[2], hazard.centroids.lat <= CHE_borders[3]), np.logical_and(hazard.centroids.lon > CHE_borders[0], hazard.centroids.lon <= CHE_borders[1]))

# Fill DataFrame with values for a "neutral" exposure (value = 1)
exp_df = DataFrame()
exp_df['value'] = np.ones_like(hazard.centroids.lat[centroid_selection])  # provide_value
exp_df['latitude'] = hazard.centroids.lat[centroid_selection]
exp_df['longitude'] = hazard.centroids.lon[centroid_selection]
exp_df['impf_WS'] = np.ones_like(hazard.centroids.lat[centroid_selection], int)

# Generate Exposures
exp = Exposures(exp_df)
exp.check()
exp.value_unit = 'warn_level'

### generate impact functions

## impact functions for hazard based warnings
haz_type = 'WS'
idx = 1
name = 'warn_level_low_elevation'
intensity_unit = 'm/s'
intensity = np.array([0.0, 19.439, 19.44, 24.999, 25.0, 30.549, 30.55, 38.879, 38.88, 100.0])
mdd = np.array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0])
paa = np.ones_like(mdd)
imp_fun_low = ImpactFunc(haz_type, idx, intensity, mdd, paa, intensity_unit, name)
imp_fun_low.check()

# fill ImpactFuncSet
impf_set = ImpactFuncSet([imp_fun_low])

2022-05-17 09:07:44,196 - climada.entity.impact_funcs.base - WARNING - For intensity_-

...
The each grid point now has a warnlevel between 1-5 assigned for each event. Now the cantons can be colored based on a threshold on a grid point level. for each warning level it is assessed if 50% of grid points in the area of a canton has at least a 50% probability of reaching the specified threshold.

```python
warn_forecast.plot_warn_map(cantons_file,
 thresholds=[2,3,4,5],
 decision_level= 'exposure_point',
 probability_aggregation=0.5,
 area_aggregation=0.5,
 title="DWD ICON METEOROLOGICAL WARNING",
 explain_text="warn level based on wind gust thresholds",
 save_fig=False,
 close_fig=False,
 proj=ccrs.epsg(2056));
```

DWD ICON METEOROLOGICAL WARNING

warn level based on wind gust thresholds

Thu 19 May 2022 00-24UTC

17.05.2022 00UTC +2d
12.3 Example: Tropical Cyclone

It would be nice to add an example using the tropical cyclone forecasts from the class TCForecast. This has not yet been done.
This tutorial explains how to use the module climada.util.earth_engine. It queries data from the Google Earth Engine Python API (https://earthengine.google.com/). A few basic methods of image processing will also be presented using algorithms from Scikit-image (https://scikit-image.org/). A lot of complementary information can be found on this page https://developers.google.com/earth-engine/ (concerns mostly the GEE Java API, but concept and methods are well detailed). GEE is a multi-petabyte catalog of satellite imagery and geospatial datasets. The data are also available on the website of providers, GEE is just more user-friendly as all datasets are available through the same platform.

13.1 Connect to Google Earth Engine API

To access the data, you have to create an account on https://signup.earthengine.google.com/#/!, this step might take some time. Then, install and connect your Python to the API using the terminal. Be sure that climada_env is activated.

In Terminal or Anaconda prompt

$ source activate climada_env
$ conda install -c conda-forge earthengine-api

Then, when the installation is finished, type

$ earthengine authenticate

This will open a web page where you have to enter your account information and a code is provided. Paste it in the terminal.

Then, check in Python if it has worked with the lines below. Import also webbrowser for further steps.

```python
import webbrowser
import ee
ee.Initialize()
image = ee.Image('srtm90_v4')
print(image.getInfo())
```

```json
{"type": 'Image', 'bands': [{"id": 'elevation', 'data_type': {"type": 'PixelType',
 "precision": 'int', 'min': -32768, 'max': 32767}, 'dimensions': [432000, 144000],
 "crs": 'EPSG:4326', 'crs_transform': [0.0008333333333333333, 0, -180, 0, -0.0008333333333333333, 60]},
 "version": 1494271934303000.0, 'id': 'srtm90_v4',
 "properties": {'system:time_start': 950227200000, 'system:time_end': 951177600000,
 'system:asset_size': 18827626666}}
```
13.2 Obtain images

The module `climada.util.earth_engine` enables to select images from some collections of GEE and download them as Geotiff data.

In GEE, you can either access directly one image or a collection. All products available are detailed on this page https://developers.google.com/earth-engine/datasets/.

```python
Access a specific image
image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318'); #Landsat 8 image, with Top of Atmosphere processing, on 2014/03/18

Access a collection
collection = 'LANDSAT/LE07/C01/T1' #Landsat 7 raw images collection
```

If you have a collection, specification of the time range and area of interest. Then, use methods of the series `obtain_image_type(collection, time_range, area)` depending the type of product needed.

13.2.1 Time range

It depends on the image acquisition period of the targeted satellite and type of images desired (without clouds, from a specific period...)

13.2.2 Area

GEE needs a special format for defining an area of interest. It has to be a GeoJSON Polygon and the coordinates should be first defined in a list and then converted using `ee.Geometry`. It is possible to use data obtained via Exposure layer. Some examples are given below.

```python
#Landsat composite in Dresden area
area_dresden = list([[13.6, 50.96], (13.9, 50.96), (13.9, 51.12), (13.6, 51.12), (13.66, 50.96)])
area_dresden = ee.Geometry.Polygon(area_dresden)
time_range_dresden = ['2002-07-28', '2002-08-05']
collection_dresden = (LANDSAT/LE07/C01/T1')
print(type(area_dresden))

#Population density in Switzerland
list_swiss = list([[6.72, 47.88], (6.72, 46.55), (9.72, 46.55), (9.72, 47.88), (6.72, 47.88)])
area_swiss = ee.Geometry.Polygon(list_swiss)
time_range_swiss=['2002-01-01', '2005-12-30']
collection_swiss = ee.ImageCollection('CIESIN/GPWv4/population-density')
print(type(collection_swiss))

#Sentinel 2 cloud-free image in Zürich
collection_zurich = ('COPERNICUS/S2')
list_zurich = list([[8.53, 47.355], (8.55, 47.355), (8.55, 47.376), (8.53, 47.376), (8.53, 47.355)])
area_zurich = ee.Geometry.Polygon(list_swiss)
time_range_zurich = ['2018-05-01', '2018-07-30']
```

(continues on next page)
#Landcover in Europe with CORINE dataset

dataset_landcover = ee.Image('COPERNICUS/CORINE/V18_5_1/100m/2012')
landCover_layer = dataset_landcover.select('landcover')
print(type(landCover_layer))

<class 'ee.geometry.Geometry'>
<class 'ee.imagecollection.ImageCollection'>
<class 'ee.image.Image'>

#Methods from climada.util.earth_engine module

def obtain_image_landsat_composite(collection, time_range, area):
    """ Selection of Landsat cloud-free composites in the Earth Engine library
    See also: https://developers.google.com/earth-engine/landsat
    """
    collection = ee.ImageCollection(collection)
    collection_time = collection.filterDate(time_range[0], time_range[1])
    image_area = collection_time.filterBounds(area)
    image_composite = ee.Algorithms.Landsat.simpleComposite(image_area, 75, 3)
    return image_composite

def obtain_image_median(collection, time_range, area):
    """ Selection of median from a collection of images in the Earth Engine library
    See also: https://developers.google.com/earth-engine/reducers_image_collection
    """
    collection = ee.ImageCollection(collection)
    collection_time = collection.filterDate(time_range[0], time_range[1])
    image_area = collection_time.filterBounds(area)
    image_median = image_area.median()
    return image_median

def obtain_image_sentinel(collection, time_range, area):
    """ Selection of median, cloud-free image from a collection of images in the Sentinel 2 dataset
    See also: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
    """
Parameters:

- `collection`: name of the collection
- `time_range`: must be inside the available data
- `area`: area of interest

Returns:

- `sentinel_median`: ee.Image

---

First, method to remove cloud from the image:

```python
def maskclouds(image):
 band_qa = image.select('QA60')
 cloud_mask = ee.Number(2).pow(10).int()
 cirrus_mask = ee.Number(2).pow(11).int()
 mask = band_qa.bitwiseAnd(cloud_mask).eq(0) and
 band_qa.bitwiseAnd(cirrus_mask).eq(0)
 return image.updateMask(mask).divide(10000)

sentinel_filtered = (ee.ImageCollection(collection)
 .filterBounds(area)
 .filterDate(time_range[0], time_range[1])
 .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
 .map(maskclouds))

sentinel_median = sentinel_filtered.median()

Application to examples
composite_dresden = obtain_image_landsat_composite(collection_dresden, time_range_dresden, area_dresden)
median_swiss = obtain_image_median(collection_swiss, time_range_swiss, area_swiss)
zurich_median = obtain_image_sentinel(collection_zurich, time_range_zurich, area_zurich)

Selection of specific bands from an image
zurich_band = zurich_median.select(['B4', 'B3', 'B2'])
```

---

526 Chapter 13. Google Earth Engine (GEE) and Image Analysis
13.3 Download images

To visualize and work on images, it is easier to download them (in Geotiff), using the `get_url(name, image, scale, region)` method. The image will be downloaded regarding a region and a scale. ‘region’ is obtained from the area, but the format has to be adjusted using `get_region(geom)` method.

```python
def get_region(geom):
 """Get the region of a given geometry, needed for exporting tasks."

 Parameters:

 Returns:
 region (list)
 """
 if isinstance(geom, ee.Geometry):
 region = geom.getInfo()['coordinates']
 elif isinstance(geom, (ee.Feature, ee.Image)):
 region = geom.geometry().getInfo()['coordinates']
 return region

region_dresden = get_region(area_dresden)
region_swiss = get_region(area_swiss)
region_zurich = get_region(area_zurich)
```

If you want to apply this function to a list of regions:

```python
region_list = [get_region(geom) for geom in [area_dresden, area_zurich]]
```

```python
def get_url(name, image, scale, region):
 """It will open and download automatically a zip folder containing Geotiff data of 'image'.
 If additional parameters are needed, see also:
 https://github.com/google/earthengine-api/blob/master/python/ee/image.py"
```

(continues on next page)
Parameters:
- `name` (str): name of the created folder
- `image` (ee.image.Image): image to export
- `scale` (int): resolution of export in meters (e.g. 30 for Landsat)
- `region` (list): region of interest

Returns:
- `path` (str)

```python
path = image.getDownloadURL({
 'name': name,
 'scale': scale,
 'region': region
})
webbrowser.open_new_tab(path)
return path
```

url_swiss = get_url('swiss_pop', median_swiss, 900, region_swiss)
url_dresden = get_url('dresden', composite_dresden, 30, region_dresden)
url_landcover = get_url('landcover_swiss', landCover_layer, 100, region_swiss)

# For the example of Zürich, due to size, it doesn't work on Jupyter Notebook but it works on Python
# url_zurich = get_url('sentinel', zurich_band, 10, region_zurich)

print(url_swiss)
print(url_dresden)
print(url_landcover)

https://earthengine.googleapis.com/api/download?...docid=6b6d96f567d6a055188c8c17dd24bcb8&token=00a796601efe425c821777a284bfbf361
https://earthengine.googleapis.com/api/download?...docid=15182f82ba65ce24f62305e4665ac21c&t=token=5da59a20bb84d79bcf7ce95885fe848
https://earthengine.googleapis.com/api/download?...docid=07c14e22d96a33fc72a7ba16c2178a6a&t=token=0cfa0cd6537257e96600d10647375ff4

### 13.4 Image Visualization and Processing

In this section, basics methods of image processing will be presented as well as tools to visualize the image. The images downloaded before are used as examples but these methods works with all tif data. Scikit-image (https://scikit-image.org/) needs to be imported.

First, bands can be combined, for example to obtain an RGB image from the Red, Blue and Green bands. It is done with gdal_merge.py (see: https://gdal.org/programs/gdal_merge.html). It is better if bands are named just as B1, B2, B3 ... in the folder containing the image data.

If you don’t have any bands that you want to combine, you don’t have to execute the following codes for this tutorial.

In Terminal or Anaconda prompt (be sure that climada_env is activated):

```bash
$ cd '/your/path/to/image_downloaded_folder'
```
$ gdal_merge.py -separate -co PHOTOMETRIC=RGB -o merged.tif B_red.tif B_blue.tif B_green.tif

The RGB image will be merged.tif

```python
import numpy as np
from skimage import data
import matplotlib.pyplot as plt
from skimage.color import rgb2gray

from skimage.io import imread
from skimage import exposure
from skimage.filters import try_all_threshold
from skimage.filters import threshold_otsu, threshold_local
from skimage import measure
from skimage import feature
from climada.util import DEMO_DIR

swiss_pop = DEMO_DIR.joinpath('earth_engine', 'population-density_median.tif')
dresden = DEMO_DIR.joinpath('earth_engine', 'dresden.tif') #B4 of Dresden example

#Read a tif in python and Visualize the image
image_dresden = imread(dresden)
plt.figure(figsize=(10, 10))
plt.imshow(image_dresden, cmap='gray', interpolation='nearest')
plt.axis()
plt.show()

#Crop the image
image_dresden_crop = image_dresden[300:700, 600:1400]
plt.figure(figsize=(10, 10))
plt.imshow(image_dresden_crop, cmap='gray', interpolation='nearest')
plt.axis()
plt.show()
```
```python
image_pop = imread(swiss_pop)
plt.figure(figsize=(12, 12))
plt.imshow(image_pop, cmap='Reds', interpolation='nearest')
plt.colorbar()
plt.axis()
plt.show()
```
# Thresholding: Selection of pixels with regards with their value

global_thresh = threshold_otsu(image_dresden_crop)
binary_global = image_dresden_crop > global_thresh

block_size = 35
adaptive_thresh = threshold_local(image_dresden_crop, block_size, offset=10)
binary_adaptive = image_dresden_crop > adaptive_thresh

fig, axes = plt.subplots(nrows=3, figsize=(7, 8))
ax = axes.ravel()
plt.gray()

ax[0].imshow(image_dresden_crop)
ax[0].set_title('Original')
ax[1].imshow(binary_global)
ax[1].set_title('Global thresholding')
ax[2].imshow(binary_adaptive)
ax[2].set_title('Adaptive thresholding')

for a in ax:
    a.axis('off')
plt.show()

print(np.sum(binary_global))
This tutorial is separated into three main parts: the first two parts show how to find and get data to do impact calculations and should be enough for most users. The third part provides more detailed information on how the API is built.

14.1 Contents

- Finding Datasets
  - Data types and data type groups
  - Datasets and Properties
- Basic impact calculation
  - Wrapper functions to open datasets as CLIMADA objects
  - Calculate the impact
- Technical Information
  - Server
  - Client
  - Metadata
  - Download

14.2 Finding datasets

```python
from climada.util.api_client import Client
client = Client()
```
14.2.1 Data types and data type groups

The datasets are first separated into ‘data_type_groups’, which represent the main classes of CLIMADA (exposures, hazard, vulnerability, …). So far, data is available for exposures and hazard. Then, data is separated into data_types, representing the different hazards and exposures available in CLIMADA.

```python
import pandas as pd

data_types = client.list_data_type_infos()

dtf = pd.DataFrame(data_types)
dtf.sort_values(["data_type_group", "data_type"])
```

<table>
<thead>
<tr>
<th>data_type</th>
<th>data_type_group</th>
<th>status</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crop_production</td>
<td>exposures</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>litpop</td>
<td>exposures</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>centroids</td>
<td>hazard</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>river_flood</td>
<td>hazard</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>storm_europe</td>
<td>hazard</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>tropical_cyclone</td>
<td>hazard</td>
<td>active</td>
<td>None</td>
</tr>
</tbody>
</table>

properties

3	[{'property': 'crop', 'mandatory': True, 'desc...
0	[{'property': 'res_arcsec', 'mandatory': False...
5	[]
2	[{'property': 'res_arcsec', 'mandatory': False...
4	[{'property': 'country_iso3alpha', 'mandatory'...
1	[{'property': 'res_arcsec', 'mandatory': True,

14.2.2 Datasets and Properties

For each data type, the single datasets can be differentiated based on properties. The following function provides a table listing the properties and possible values. This table does not provide information on properties that can be combined but the search can be refined in order to find properties to query a unique dataset. Note that a maximum of 10 property values are shown here, but many more countries are available for example.

```python
litpop_dataset_infos = client.list_dataset_infos(data_type='litpop')

all_properties = client.get_property_values(litpop_dataset_infos)

all_properties.keys()

dict_keys(['res_arcsec', 'exponents', 'fin_mode', 'spatial_coverage', 'country_iso3alpha', 'country_name', 'country_iso3num'])
```
Refining the search:

```python
as datasets are usually available per country, choosing a country or global dataset...
reduces the options
here we want to see which datasets are available for litpop globally:
client.get_property_values(litpop_dataset_infos, known_property_values = {'spatial_coverage': 'global'})
```

```json
{'res_arcsec': ['150'],
'exponents': ['(0,1)', '(1,1)', '(3,0)'],
'fin_mode': ['pop', 'pc'],
'spatial_coverage': ['global']}
```

```python
and here for Switzerland:
client.get_property_values(litpop_dataset_infos, known_property_values = {'country_name': 'Switzerland'})
```

```json
{'res_arcsec': ['150'],
'exponents': ['(3,0)', '(0,1)', '(1,1)'],
'fin_mode': ['pc', 'pop'],
'spatial_coverage': ['country'],
'country_iso3alpha': ['CHE'],
'country_name': ['Switzerland'],
'country_iso3num': ['756']}
```

### 14.3 Basic impact calculation

We here show how to make a basic impact calculation with tropical cyclones for Haiti, for the year 2040, rcp4.5 and generated with 10 synthetic tracks. For more technical details on the API, see below.

#### 14.3.1 Wrapper functions to open datasets as CLIMADA objects

The wrapper functions client.get_hazard()

gets the dataset information, downloads the data and opens it as a hazard instance

```python
tc_dataset_infos = client.list_dataset_infos(data_type='tropical_cyclone')
client.get_property_values(tc_dataset_infos, known_property_values = {'country_name': 'Haiti'})
```

```json
{'res_arcsec': ['150'],
'climate_scenario': ['rcp26', 'rcp45', 'rcp85', 'historical', 'rcp60'],
'ref_year': ['2040', '2060', '2080'],
'nb_synth_tracks': ['50', '10'],
'spatial_coverage': ['country'],
'tracks_year_range': ['1980_2020'],
'country_iso3alpha': ['HTI'],
'country_name': ['Haiti'],
'country_iso3num': ['332'],
'resolution': ['150 arcsec']}
```
client = Client()
tc_haiti = client.get_hazard('tropical_cyclone', properties={'country_name': 'Haiti', 'climate_scenario': 'rcp45', 'ref_year': '2040', 'nb_synth_tracks': '10'})
tc_haiti.plot_intensity()
The wrapper functions `client.get_litpop()`

gets the default litpop, with exponents (1,1) and ‘produced capital’ as financial mode. If no country is given, the global dataset will be downloaded.

```python
litpop_default = client.get_property_values(litpop_dataset_infos, known_property_values = {'fin_mode': 'pc', 'exponents': '(1,1)'})

litpop = client.get_litpop(country='Haiti')
```

Get the default impact function for tropical cyclones

```python
from climada.entity.impact_funcs import ImpactFuncSet, ImpfTropCyclone

imp_fun = ImpfTropCyclone.from_emanuel_usa()
imp_fun.check()
imp_fun.plot()

imp_fun_set = ImpactFuncSet([imp_fun])

litpop.impact_funcs = imp_fun_set
```

2022-01-31 22:30:21,359 - climada.entity.impact_funcs.base - WARNING - For intensity = 0, mdd != 0 or paa != 0. Consider shifting the origin of the intensity scale. In impact.calc the impact is always null at intensity = 0.
14.3.2 Calculate the impact

```python
from climada.engine import ImpactCalc
impact = ImpactCalc(litpop, imp_fun_set, tc_haiti).impact()
```

Getting other Exposures

```python
crop_dataset_infos = client.list_dataset_infos(data_type='crop_production')
client.get_property_values(crop_dataset_infos)

dict = {
 'crop': ['whe', 'soy', 'ric', 'mai'],
 'irrigation_status': ['noirr', 'frr'],
 'unit': ['USD', 'Tonnes'],
 'spatial_coverage': ['global']
}

rice_exposure = client.get_exposures(exposures_type='crop_production', properties = {
 'crop': 'ric',
 'unit': 'USD',
 'irrigation_status': 'noirr'
})
```
14.3.3 Getting base centroids to generate new hazard files

```python
centroids = client.get_centroids()
centroids.plot()
```

```bash
https://climada.ethz.ch/data-api/v1/dataset data_
 → type=centroids extent=(-180, 180, -90, 90) limit=100000 name=None res_arcsec_land=150 res_
 → arcsec_ocean=1800 status=active version=None
 → regions/v1/earth_centroids_150asland_1800asoceans_distcoast_region.hdf5
 → system 'GEOGCRS["WGS 84",ENSEMBLE["World Geodetic System 1984 ensemble",MEMBER["World Geodetic System 1984 (Transit)"],MEMBER["World Geodetic System 1984 (G730)"],
 → MEMBER["World Geodetic System 1984 (G873)"],MEMBER["World Geodetic System 1984 (G1150)"],MEMBER["World Geodetic System 1984 (G1674)"],MEMBER["World Geodetic System 1984 (G1762)"],MEMBER["World Geodetic System 1984 (G2139)"],ELLIPSOID["WGS 84
 → ",6378137,298.257223563,LENGTHUNIT["metre",1]],ENSEMBLEACCURACY[2.0],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],CS[ellipsoidal,2],AXIS["geodetic latitude (Lat)",north,ORDER[1],ANGLEUNIT["degree",0.0174532925199433]],
 → AXIS["geodetic longitude (Lon)",east,ORDER[2],ANGLEUNIT["degree"],0.0174532925199433],USAGE[SCOPE["Horizontal component of 3D system."],AREA["World."],
 → BBOX[-90,-180,90,180],ID["EPSG",4326]' . Using projection PlateCarree in plot.
```

For many hazards, limiting the latitude extent to [-60,60] is sufficient and will reduce the computational resources required.

```python
centroids_nopoles = client.get_centroids(extent=[-180,180,-60,50])
centroids_nopoles.plot()
```

```bash
https://climada.ethz.ch/data-api/v1/dataset data_
 → type=centroids extent=(-180, 180, -90, 90) limit=100000 name=None res_arcsec_land=150 res_
 → arcsec_ocean=1800 status=active version=None
```
14.4 Technical Information

For programmatical access to the CLIMADA data API there is a specific REST call wrapper class: climada.util.client.Client.
14.4.1 Server

The CLIMADA data file server is hosted on https://data.iac.ethz.ch that can be accessed via a REST API at https://climada.ethz.ch. For REST API details, see the documentation.

14.4.2 Client

```python
client = Client()
client.chunk_size
```

8192

The url to the API server and the chunk size for the file download can be configured in ‘climada.conf’. Just replace the corresponding default values:

```json
"data_api": {
 "host": "https://climada.ethz.ch",
 "chunk_size": 8192,
 "cache_db": "{local_data.system}/.downloads.db"
}
```

The other configuration value affecting the data_api client, cache_db, is the path to an SQLite database file, which is keeping track of the files that are successfully downloaded from the api server. Before the Client attempts to download any file from the server, it checks whether the file has been downloaded before and if so, whether the previously downloaded file still looks good (i.e., size and time stamp are as expected). If all of this is the case, the file is simply read from disk without submitting another request.

14.4.3 Metadata

Unique Identifiers

Any dataset can be identified with data_type, name and version. The combination of the three is unique in the API servers’ underlying database. However, sometimes the name is already enough for identification. All datasets have a UUID, a universally unique identifier, which is part of their individual url. E.g., the uuid of the dataset https://climada.ethz.ch/rest/dataset/b1c76120-4e60-4d8f-99c0-7e1e7b7860ec is “b1c76120-4e60-4d8f-99c0-7e1e7b7860ec”. One can retrieve their meta data by:
from climada.util.api_client import DatasetInfo

Init signature:
DatasetInfo(
    uuid: str,
    data_type: climada.util.api_client.DataTypeShortInfo,
    name: str,
    version: str,
    status: str,
    properties: dict,
    files: list,
)

or by filtering:

Data Set Status

The datasets of climada.ethz.ch may have the following stati:

- **active**: the default for real life data
- **preliminary**: when the dataset is already uploaded but some information or file is still missing
- **expired**: when a dataset is inactivated again
- **test_dataset**: data sets that are used in unit or integration tests have this status in order to be taken seriously by accident When collecting a list of datasets with `get_datasets`, the default dataset status will be ‘active’. With the argument `status=None` this filter can be turned off.

DatasetInfo Objects and DataFrames

As stated above `get_dataset` (or `get_dataset_by_uuid`) return a DatasetInfo object and `get_datasets` a list thereof.
```python
doi: str,
description: str,
license: str,
activation_date: str,
expiration_date: str,
) -> None

Docstring: dataset data from CLIMADA data API.
File: c:\users\me\polybox\workshop\climada_python\climada\util\api_client.py
Type: type
Subclasses:
```

where `files` is a list of `FileInfo` objects:

```python
from climada.util.api_client import FileInfo

Init signature:
FileInfo(
 uuid: str,
 url: str,
 file_name: str,
 file_format: str,
 file_size: int,
 check_sum: str,
) -> None

Docstring: file data from CLIMADA data API.
File: c:\users\me\polybox\workshop\climada_python\climada\util\api_client.py
Type: type
Subclasses:
```

**Convert into DataFrame**

There are convenience functions to easily convert datasets into pandas DataFrames, `get_datasets` and `expand_files`:

```python
client.into_datasets_df?
```

Signature: client.into_datasets_df(dataset_infos)
Docstring:
Convenience function providing a DataFrame of datasets with properties.
Parameters
---------
dataset_infos : list of DatasetInfo
    as returned by list_datasetsInfos

Returns
-------
pandas.DataFrame
    of datasets with properties as found in query by arguments
File: c:\users\me\polybox\workshop\climada_python\climada\util\api_client.py
Type: function
```python
from climada.util.api_client import Client
client = Client()
litpop_datasets = client.list_dataset_infos(data_type='litpop', properties={'country_name': 'South Georgia and the South Sandwich Islands'})
litpop_df = client.into_datasets_df(litpop_datasets)
litpop_df
```

<table>
<thead>
<tr>
<th>data_type</th>
<th>data_type_group</th>
<th>uuid</th>
</tr>
</thead>
<tbody>
<tr>
<td>litpop</td>
<td>exposures</td>
<td>b1c76120-4e60-4d8f-99c0-7e1e7b7860ec</td>
</tr>
<tr>
<td>litpop</td>
<td>exposures</td>
<td>3d516897-5f87-46e6-b673-9e6c00d110ec</td>
</tr>
<tr>
<td>litpop</td>
<td>exposures</td>
<td>a6864a65-36a2-4701-91bc-81b1355103b5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>version</th>
<th>status</th>
<th>doi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LitPop_assets_pc_150arcsec_SGS</td>
<td>v1</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>LitPop_pop_150arcsec_SGS</td>
<td>v1</td>
<td>active</td>
<td>None</td>
</tr>
<tr>
<td>LitPop_150arcsec_SGS</td>
<td>v1</td>
<td>active</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LitPop asset value exposure per country: Gridd...</td>
<td></td>
</tr>
<tr>
<td>LitPop population exposure per country: Griddde...</td>
<td></td>
</tr>
<tr>
<td>LitPop asset value exposure per country: Gridd...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>license</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribution 4.0 International (CC BY 4.0)</td>
<td></td>
</tr>
<tr>
<td>Attribution 4.0 International (CC BY 4.0)</td>
<td></td>
</tr>
<tr>
<td>Attribution 4.0 International (CC BY 4.0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>activation_date</th>
<th>expiration_date</th>
<th>res_arcsec</th>
<th>exponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-09-13</td>
<td>09:08:28.358559+00:00</td>
<td>None</td>
<td>150</td>
</tr>
<tr>
<td>2021-09-13</td>
<td>09:09:10.634374+00:00</td>
<td>None</td>
<td>150</td>
</tr>
<tr>
<td>2021-09-13</td>
<td>09:09:30.907938+00:00</td>
<td>None</td>
<td>150</td>
</tr>
</tbody>
</table>

| fin_mode | spatial_coverage | date_creation | climada_version | country_iso3alpha | |
|----------|------------------|---------------|-----------------|-------------------|
| pc       | country          | 2021-09-23    | v2.2.0          | SGS               |
| pop      | country          | 2021-09-23    | v2.2.0          | SGS               |
| pc       | country          | 2021-09-23    | v2.2.0          | SGS               |

14.4.4 Download

The wrapper functions get_exposures or get_hazard fetch the information, download the file and opens the file as a climada object. But one can also just download dataset files using the method `download_dataset` which takes a `DatasetInfo` object as argument and downloads all files of the dataset to a directory in the local file system.

```python
client.download_dataset()
```
Docstring:
Download all files from a given dataset to a given directory.

Parameters
----------
dataset : DatasetInfo
    the dataset
target_dir : Path, optional
    target directory for download, by default `climada.util.constants.SYSTEM_DIR`
organize_path: bool, optional
    if set to True the files will end up in subdirectories of target_dir:
    [target_dir]/[data_type_group]/[data_type]/[name]/[version]
    by default True

Returns
-------
download_dir : Path
    the path to the directory containing the downloaded files,
    will be created if organize_path is True
downloaded_files : list of Path
    the downloaded files themselves

Raises
------
Exception
    when one of the files cannot be downloaded

Cache

The method avoids superfluous downloads by keeping track of all downloads in a sqlite db file. The client will make sure that the same file is never downloaded to the same target twice.

Examples

```python
Let's have a look at an example for downloading a litpop dataset first
ds = litpop_datasets[0] # litpop_datasets is a list and download_dataset expects a...
download_dir, ds_files = client.download_dataset(ds)
ds_files[0], ds_files[0].is_file()
```

```python
Another example for downloading a hazard (tropical cyclone) dataset
ds_tc = tc_dataset_infos[0]
download_dir, ds_files = client.download_dataset(ds_tc)
ds_files[0], ds_files[0].is_file()
```
Local File Cache

By default, the API Client downloads files into the ~\climada\data directory.

In the course of time obsolete files may be accumulated within this directory, because there is a newer version of these files available from the CLIMADA data API, or because the according dataset got expired altogether.

To prevent file rot and free disk space, it’s possible to remove all outdated files at once, by simply calling `Client().purge_cache()`. This will remove all files that were ever downloaded with the `api_client.Client` and for which a newer version exists, even when the newer version has not been downloaded yet.

### 14.4.5 Offline Mode

The API Client is silently used in many methods and functions of CLIMADA, including the installation test that is run to see whether the CLIMADA installation was successful. Most methods of the client send GET requests to the API server assuming the latter is accessible through a working internet connection. If this is not the case, the functionality of CLIMADA is severely limited if not altogether lost. Often this is an unnecessary restriction, e.g., when a user wants to access a file through the API Client that is already downloaded and available in the local filesystem.

In such cases the API Client runs in offline mode. In this mode the client falls back to previous results for the same call in case there is no internet connection or the server is not accessible.

To turn this feature off and make sure that all results are current and up to date - at the cost of failing when there is no internet connection - one has to disable the cache. This can be done programmatically, by initializing the API Client with the optional argument `cache_enabled`:

```python
client = Client(cache_enabled=False)
```

Or it can be done through configuration. Edit the `climada.conf` file in the working directory or in ~/climada/ and change the “cache_enabled” value, like this:

```json
... "data_api": {
 ... "cache_enabled": false
 },
...```

While `cache_enabled` is true (default), every result from the server is stored as a json file in ~/climada/data/apicache/ by a unique name derived from the method and arguments of the call. If the very same call is made again later, at a time where the server is not accessible, the client just comes back to the cached result from the previous call.
15.1 Contents

- Git and GitHub
- Gitflow
- Installing CLIMADA for development
- Features and branches
- Pull requests
- General tips and tricks

15.2 Git and GitHub

- Git's not that scary
 - 95% of your work on Git will be done with the same handful of commands
 - (the other 5% will always be done with careful Googling)
 - Almost everything in Git can be undone by design (but use rebase, --force and --hard with care!)
 - Your favourite IDE (Spyder, PyCharm, …) will have a GUI for working with Git, or you can download a standalone one.
- The Git Book is a great introduction to how Git works and to using it on the command line.
- Consider using a GUI program such as “git desktop” or “Gitkraken” to have a visual git interface, in particular at the beginning. Your python IDE is also likely to have a visual git interface.
- Feel free to ask for help
15.2.1 What I assume you know

I’m assuming you’re all familiar with the basics of Git.

- What (and why) is version control
- How to clone a repository
- How to make a commit and push it to GitHub
- What a branch is, and how to make one
- How to merge two branches
- The basics of the GitHub website

If you’re not feeling great about this, I recommend

- sending me a message so we can arrange an introduction with CLIMADA
- exploring the Git Book
15.2.2 Terms we’ll be using today

These are terms I’ll be using a lot today, so let’s make sure we know them

• local versus remote
 – Our **remote** repository is hosted on GitHub. This is the central location where all updates to CLIMADA that we want to share end up. If you’re updating CLIMADA for the community, your code will end up here too.
 – Your **local** repository is the copy you have on the machine you’re working on, and where you do your work.
 – Git calls the (first, default) remote the **origin**
 – (It’s possible to set more than one remote repository, e.g. you might set one up on a network-restricted computing cluster)

• push, pull and pull request
 – You **push** your work when you send it from your local machine to the remote repository
 – You **pull** from the remote repository to update the code on your local machine
 – A **pull request** is a standardised review process on GitHub. Usually it ends with one branch merging into another

• Conflict resolution
 – Sometimes two people have made changes to the same bit of code. Usually this comes up when you’re trying to merge branches. The changes have to be manually compared and the code edited to make sure the ‘correct’ version of the code is kept.

15.3 Gitflow

Gitflow is a particular way of using git to organise projects that have

• multiple developers
• working on different features
• with a release cycle

It means that

• there’s always a stable version of the code available to the public
• the chances of two developers’ code conflicting are reduced
• the process of adding and reviewing features and fixes is more standardised for everyone

Gitflow is a **convention**, so you don’t need any additional software.

• … but if you want you can get some: a popular extension to the git command line tool allows you to issue more intuitive commands for a Gitflow workflow.
• Mac/Linux users can install git-flow from their package manager, and it’s included with Git for Windows
15.3.1 Gitflow works on the develop branch instead of main

- The critical difference between Gitflow and ‘standard’ git is that almost all of your work takes place on the develop branch, instead of the main (formerly master) branch.
- The main branch is reserved for planned, stable product releases, and it’s what the general public download when they install CLIMADA. The developers almost never interact with it.

15.3.2 Gitflow is a feature-based workflow

- This is common to many workflows: when you want to add something new to the model you start a new branch, work on it locally, and then merge it back into develop with a pull request (which we'll cover later).
- By convention we name all CLIMADA feature branches feature/* (e.g. feature/meteorite).
• Features can be anything, from entire hazard modules to a smarter way to do one line of a calculation. Most of the work you’ll do on CLIMADA will be a features of one size or another.
• We’ll talk more about developing CLIMADA features later!

15.3.3 Gitflow enables a regular release cycle

• A release is usually more complex than merging develop into main.
• So for this a release-* branch is created from develop. We’ll all be notified repeatedly when the deadline is to submit (and then to review) pull requests so that you can be included in a release.
• The core developer team (mostly Emanuel) will then make sure tests, bugfixes, documentation and compatibility requirements are met, merging any fixes back into develop.
• On release day, the release branch is merged into main, the commit is tagged as a release and the release notes are published on the GitHub at https://github.com/CLIMADA-project/climada_python/releases
15.3.4 Everything else is hotfixes

- The other type of branch you’ll create is a hotfix.
- Hotfixes are generally small changes to code that do one thing, fixing typos, small bugs, or updating docstrings. They’re done in much the same way as features, and are usually merged with a pull request.
- The difference between features and hotfixes is fuzzy and you don’t need to worry about getting it right.
- Hotfixes will occasionally be used to fix bugs on the main branch, in which case they will merge into both main and develop.
- Some hotfixes are so simple - e.g. fixing a typo or a docstring - that they don’t need a pull request. Use your judgement, but as a rule, if you change what the code does, or how, you should be merging with a pull request.

15.4 Installing CLIMADA for development

0. Install Git and Anaconda (or Miniconda).
 Also consider installing Git flow. This is included with Git for Windows and has different implementations e.g. here for Windows and Mac.

1. Clone (or fork) the project on GitHub
 From the location where you want to create the project folder, run in your terminal::
2. **Install the packages** in `climada_python/requirements/env_climada.yml` and `climada_python/requirements/env_developer.yml` (see *Installation*). You might need to install additional environments contained in `climada_python/requirements` when using specific functionalities.

15.5 Features and branches

15.5.1 Planning a new feature

Here we're talking about large features such as new modules, new data sources, or big methodological changes. Any extension to CLIMADA that might affect other developers’ work, modify the CLIMADA core, or need a big code review. Smaller feature branches don’t need such formalities. Use your judgment, and if in doubt, let people know.

15.5.2 Talk to the group

- Before starting coding a module, do not forget to coordinate with one of the repo admins (Emanuel, Chahan or Lukas)
- This is the chance to work out the Big Picture stuff that is better when it’s planned with the group - possible intersections with other projects, possible conflicts, changes to the CLIMADA core, additional dependencies
- Also talk with others from the core development team (see the GitHub wiki).
- Bring it to a developers meeting - people may be able to help/advise and are always interested in hearing about new projects. You can also find reviewers!
- Also, keep talking! Your plans will change :)

15.5.3 Planning the work

- Does the project go in its own repository and import CLIMADA, or does it extend the main CLIMADA repository?
 - The way this is done is slowly changing, so definitely discuss it with the group.
 - Chahan will discuss this later!
- Find a few people who will help to review your code.
 - Ask in a developers’ meeting, on Slack (for WCR developers) or message people on the development team (see the GitHub wiki).
 - Let them know roughly how much code will be in the reviews, and when you’ll be creating pull requests.
- How can the work split into manageable chunks?
 - A series of smaller pull requests is far more manageable than one big one (and takes off some of the pre-release pressure)
 - Reviewing and spotting issues/improvements/generalisations early is always a good thing.
 - It encourages modularisation of the code: smaller self-contained updates, with documentation and tests.
- Will there be any changes to the CLIMADA core?
• These should be planned carefully
 • Will you need any new dependencies? Are you sure?
 • Chahan will discuss this later!

15.5.4 Working on feature branches

When developing a big new feature, consider creating a feature branch and merging smaller branches into that feature branch with pull requests, keeping the whole process separate from develop until it’s completed. This makes step-by-step code review nice and easy, and makes the final merge more easily tracked in the history.

e.g. developing the big feature/meteorite module you might write feature/meteorite-hazard and merge it in, then feature/meteorite-impact, then feature/meteorite-stochastic-events etc... before finally merging feature/meteorite into develop. Each of these could be a reviewable pull request.

15.5.5 Make a new branch

For new features in Git flow:

```bash
git flow feature start feature_name
```

Which is equivalent to (in vanilla git):

```bash
git checkout -b feature/feature_name
```

Or work on an existing branch:

```bash
git checkout -b branch_name
```

15.5.6 Follow the python do’s and don’t and performance guides. Write small readable methods, classes and functions.

get the latest data from the remote repository and update your branch

```bash
git pull
```

see your locally modified files

```bash
git status
```

add changes you want to include in the commit

```bash
git add climada/modified_file.py climada/test/test_modified_file.py
```

commit the changes

```bash
git commit -m "new functionality of .. implemented"
```
15.5.7 Make unit and integration tests on your code, preferably during development

see Guide on unit and integration tests

15.6 Pull requests

We want every line of code that goes into the CLIMADA repository to be reviewed!

Code review:

• catches bugs (there are always bugs)
• lets you draw on the experience of the rest of the team
• makes sure that more than one person knows how your code works
• helps to unify and standardise CLIMADA’s code, so new users find it easier to read and navigate
• creates an archived description and discussion of the changes you’ve made

15.6.1 When to make a pull request

• When you’ve finished writing a big new class or method (and its tests)
• When you’ve fixed a bug or made an improvement you want to merge
• When you want to merge a change of code into develop or main
• When you want to discuss a bit of code you’ve been working on - pull requests aren’t only for merging branches

Not all pull requests have to be into develop - you can make a pull request into any active branch that suits you.

Pull requests need to be made latest two weeks before a release, see releases.

15.6.2 Step by step pull request!

Let’s suppose you’ve developed a cool new module on the feature/meteorite branch and you’re ready to merge it into develop.

15.6.3 Checklist before you start

• Documentation
• Tests
• Tutorial (if a complete new feature)
• Updated dependencies (if need be)
• Added your name to the AUTHORS file
• Added an entry to the CHANGELOG.md file. See https://keepachangelog.com for information on how this should look like.
• (Advanced, optional) interactively rebase/squash recent commits that aren’t yet on GitHub.
15.6.4 Steps

1) Make sure the develop branch is up to date on your own machine

   ```
   git checkout develop
   git pull
   ```

2) Merge develop into your feature branch and resolve any conflicts

   ```
   git checkout feature/meteorite
   git merge develop
   ```

 In the case of more complex conflicts, you may want to speak with others who worked on the same code. Your IDE should have a tool for conflict resolution.

3) Check all the tests pass locally

   ```
   make unit_test
   make integ_test
   ```

4) Perform a static code analysis using pylint with CLIMADA's configuration .pylintrc (in the climada root directory). Jenkins executes it after every push.
 If you do it locally, your IDE probably provides a tool, or you can run `make lint` and see the output in `pylint.log`.

5) Push to GitHub. If you're pushing this branch for the first time, use

   ```
   git push -u origin feature/meteorite
   ```

 and if you're updating a branch that's already on GitHub:

   ```
   git push
   ```

6) Check all the tests pass on the WCR Jenkins server (https://ied-wcr-jenkins.ethz.ch). See Emanuel's presentation for how to do this! You should regularly be pushing your code and checking this!

7) Create the pull request!

 - On the CLIMADA GitHub page, navigate to your feature branch (there's a drop-down menu above the file structure, pointing by default to main).
 - Above the file structure is a branch summary and an icon to the right labelled “Pull request”.
 - Choose which branch you want to merge with. This will usually be develop, but may be another feature branch for more complex feature development.
 - Give your pull request an informative title (like a commit message).
 - Write a description of the pull request. This can usually be adapted from your branch's commit messages (you wrote informative commit messages, didn’t you?), and should give a high-level summary of the changes, specific points you want the reviewers' input on, and explanations for decisions you've made. The code documentation (and any references) should cover the more detailed stuff.
 - Assign reviewers in the page's right hand sidebar. Tag anyone who might be interested in reading the code. You should already have found one or two people who are happy to read the whole request and sign it off (they could also be added to 'Assignees').
 - Create the pull request.
 - Contact the reviewers to let them know the request is live. GitHub's settings mean that they may not be alerted automatically. Maybe also let people know on the WCR Slack!
8) Talk with your reviewers
 - Use the comment/chat functionality within GitHub’s pull requests - it’s useful to have an archive of discussions and the decisions made.
 - Take comments and suggestions on board, but you don’t need to agree with everything and you don’t need to implement everything.
 - If you feel someone is asking for too many changes, prioritise, especially if you don’t have time for complex rewrites.
 - If the suggested changes and or features don’t block functionality and you don’t have time to fix them, they can be moved to Issues.
 - Chase people up if they’re slow. People are slow.

9) Once you implement the requested changes, respond to the comments with the corresponding commit implementing each requested change.

10) If the review takes a while, remember to merge develop back into the feature branch every now and again (and check the tests are still passing on Jenkins). Anything pushed to the branch is added to the pull request.

11) Once everyone reviewing has said they’re satisfied with the code you can merge the pull request using the GitHub interface. Delete the branch once it’s merged, there’s no reason to keep it. (Also try not to re-use that branch name later.)

12) Update the develop branch on your local machine.

15.6.5 How to review a pull request

- Be friendly
- Read and follow the Reviewer Checklist
- Decide how much time you can spare and the detail you can work in. Tell the author!
- Use the comment/chat functionality within GitHub’s pull requests - it’s useful to have an archive of discussions and the decisions made.
- Fix the big things first! If there are more important issues, not every style guide has to be stuck to, not every slight increase in speed needs to be pointed out, and test coverage doesn’t have to be 100%.
- Make it clear when a change is optional, or is a matter of opinion

At a minimum
- Make sure unit and integration tests are passing.
- (For complete modules) Run the tutorial on your local machine and check it does what it says it does
- Check everything is fully documented

At least one reviewer needs to
- Review all the changes in the pull request. Read what it’s supposed to do, check it does that, and make sure the logic is sound.
- Check that the code follows the CLIMADA style guidelines #TODO: link
- If the code is implementing an algorithm it should be referenced in the documentation. Check it’s implemented correctly.
• Try to think of edge cases and ways the code could break. See if there’s appropriate error handling in cases where the function might behave unexpectedly.
• (Optional) suggest easy ways to speed up the code, and more elegant ways to achieve the same goal.

There are a few ways to suggest changes
• As questions and comments on the pull request page
• As code suggestions (max a few lines) in the code review tools on GitHub. The author can then approve and commit the changes from GitHub pull request page. This is great for typos and little stylistic changes.
• If you decide to help the author with changes, you can either push them to the same branch, or create a new branch and make a pull request with the changes back into the branch you’re reviewing. This lets the author review it and merge.

15.7 General tips and tricks

15.7.1 Ask for help with Git
• Git isn’t intuitive, and rewinding or resetting is always work. If you’re not certain what you’re doing, or if you think you’ve messed up, send someone a message.

15.7.2 Don’t push or commit to develop or main
• Almost all new additions to CLIMADA should be merged into the develop branch with a pull request.
• You won’t merge into the main branch, except for emergency hotfixes (which should be communicated to the team).
• You won’t merge into the develop branch without a pull request, except for small documentation updates and typos.
• The above points mean you should never need to push the main or develop branches.

So if you find yourself on the main or develop branches typing git merge ... or git push stop and think again - you should probably be making a pull request.

This can be difficult to undo, so contact someone on the team if you’re unsure!

15.7.3 Commit more often than you think, and use informative commit messages
• Committing often makes mistakes less scary to undo

 git reset --hard HEAD

• Detailed commit messages make writing pull requests really easy
• Yes it’s boring, but trust me, everyone (usually your future self) will love you when they’re rooting through the git history to try and understand why something was changed
15.7.4 Commit message syntax guidelines

Basic syntax guidelines taken from here https://chris.beams.io/posts/git-commit/ (on 17.06.2020)

• Limit the subject line to 50 characters
• Capitalize the subject line
• Do not end the subject line with a period
• Use the imperative mood in the subject line (e.g. “Add new tests”)
• Wrap the body at 72 characters (most editors will do this automatically)
• Use the body to explain what and why vs. how
• Separate the subject from body with a blank line (This is best done with a GUI. With the command line you have to use text editor, you cannot do it directly with the git command)
• Put the name of the function/class/module/file that was edited
• When fixing an issue, add the reference gh-ISSUENUMBER to the commit message e.g. “fixes gh-40.” or “Closes gh-40.” For more infos see here https://docs.github.com/en/enterprise/2.16/user/github/managing-your-work-on-github/closing-issues-using-keywords#about-issue-references.

15.7.5 What not to commit

There are a lot of things that don’t belong in the Git repository:

• Don’t commit data, except for config files and very small files for tests.
• Don’t commit anything containing passwords or authentication credentials or tokens. (These are annoying to remove from the Git history.) Contact the team if you need to manage authorisations within the code.
• Don’t commit anything that can be created by the CLIMADA code itself

If files like this are going to be present for other users as well, add them to the repository’s .gitignore.

Jupyter Notebook metadata

Git compares file versions by text tokens. Jupyter Notebooks typically contain a lot of metadata, along with binary data like image files. Simply re-running a notebook can change this metadata, which will be reported as file changes by Git. This causes excessive Diff reports that cannot be reviewed conveniently.

To avoid committing changes of unrelated metadata, open Jupyter Notebooks in a text editor instead of your browser renderer. When committing changes, make sure that you indeed only commit things you did change, and revert any changes to metadata that are not related to your code updates.

Several code editors use plugins to render Jupyter Notebooks. Here we collect the instructions to inspect Jupyter Notebooks as plain text when using them:

• VSCode: Open the Jupyter Notebook. Then open the internal command prompt (Ctrl + Shift + P or Cmd + Shift + P on macOS) and type/select ‘View: Reopen Editor with Text Editor’
15.7.6 Log ideas and bugs as GitHub Issues

If there’s a change you might want to see in the code - something that generalises, something that’s not quite right, or a cool new feature - it can be set up as a GitHub Issue. Issues are pages for conversations about changes to the codebase and for logging bugs, and act as a ‘backlog’ for the CLIMADA project.

For a bug, or a question about functionality, make a minimal working example, state which version of CLIMADA you are using, and post it with the Issue.

15.7.7 How not to mess up the timeline

Git builds the repository through incremental edits. This means it’s great at keeping track of its history. But there are a few commands that edit this history, and if histories get out of sync on different copies of the repository you’re going to have a bad time.

- Don’t rebase any commits that already exist remotely!
- Don’t --force anything that exists remotely unless you know what you’re doing!
- Otherwise, you’re unlikely to do anything irreversible
- You can do what you like with commits that only exist on your machine.

That said, doing an interactive rebase to tidy up your commit history before you push it to GitHub is a nice friendly gesture :)

15.7.8 Do not fast forward merges

(This shouldn’t be relevant - all your merges into develop should be through pull requests, which doesn’t fast forward. But:) Don’t fast forward your merges unless your branch is a single commit. Use git merge --no-ff ...

The exceptions is when you’re merging develop into your feature branch.

15.7.9 Merge the remote develop branch into your feature branch every now and again

- This way you’ll find conflicts early

```bash
git checkout develop
git pull
git checkout feature/myfeature
git merge develop
```
15.7.10 Create frequent pull requests

I said this already:

- It structures your workflow
- It’s easier for reviewers
- If you’re going to break something for other people you all know sooner
- It saves work for the rest of the team right before a release

15.7.11 Whenever you do something with CLIMADA, make a new local branch

You never know when a quick experiment will become something you want to save for later.

15.7.12 But do not do everything in the CLIMADA repository

- If you’re running CLIMADA rather than developing it, create a new folder, initialise a new repository with `git init` and store your scripts and data there
- If you’re writing an extension to CLIMADA that doesn’t change the model core, create a new folder, initialise a new repository with `git init` and import CLIMADA. You can always add it to the model later if you need to.

15.7.13 Questions

https://xkcd.com/1597/
16.1 Content

- Why tutorials
- Basic structure
- Good examples
- Use only Markdown for headers and table of content

16.2 Why tutorials

Main goal:
The main goal of the tutorials is it to give a complete overview on:

- essential CLIMADA components
- introduce newly developed modules and features

More specifically, tutorials should introduce CLIMADA users to the core functionalities and modules and guide users in their application. Hence, each new module created needs to be accompanied with a tutorial. The following sections give an overview of the basic structure desired for CLIMADA tutorials.

Important:
A tutorial needs to be included with the final pull request for every new feature.

16.3 Basic structure

Every tutorial should cover the following main points. Additional features characteristic to the modules presented can and should be added as seen fit.
16.3.1 Introduction

• What is the feature presented?
 Briefly describe the feature and introduce how it’s presented in the CLIMADA framework.

• What is its data structure?
 Present and overview (in the form of a table for example) of where the feature is built into CLIMADA. What class
does it belong to, what are the variables of the feature, what is their data structure.

• Table of content:
 How is this tutorial structured?

16.3.2 Illustration of feature functionality and application

Walk users through the core functions of the module and illustrate how the feature can be used. This obviously is dependent
on the feature itself. A few core points should be considered when creating the tutorial:

• SIZE MATTERS!
 – each notebook as a total should not exceed the critical (yet vague) size of “a couple MB”
 – keep the size of data you use as examples in the tutorial in mind
 – we aim for computational efficiency
 – a lean, well-organized, concise notebook is more informative than a long, messy all-encompassing one.

• follow the general CLIMADA naming convention for the notebook. For example: “cli-
mada_hazard_TropCyclone.ipynb”

16.4 Good examples

The following examples can be used as templates and inspiration for your tutorial:

• Exposure tutorial
• Hazard tutorial

16.5 Use only Markdown for headers and table of content

To create headers or a table of content with links, avoid using html and prefer instead purely Markdown syntax. Follow
Markdown conventions in the Markdown Guide and the following key points presented in the section below to know
how to use correct Markdown syntax which is consistent with the rest of CLIMADA documentation. If in doubt, check
existing tutorials to see how it is done.
16.5.1 Headers

To structure your tutorial, use headers of different levels to create sections and subsections.

To create an header, write the symbol(#) before your header name

‘#’ : create a header of level 1
‘##’ : create a header of level 2
‘###’ : create a header of level 3
‘####’ : create a header of level 4

The title of the tutorial should be of level 1 (#), should have its own cell, and should be the first cell of the notebook.

16.6 Table of content

The second cell of the notebook should be the table of content and should have a header name ‘Content’ and a level of 2 (##).

To create the table of content, avoid using numbers to list the different sections, prefer instead simple dots by using ‘.’:

•

Instead of numbers:

1.

2.

Additionally, the table of content should only contain headers of level 2 (##).

To create a link from the table of content to a certain section of the tutorial, write [Name of your choice] followed by (#Exactly-the-header-name-you-want-to-direct-the-user-to).

Remember to fill white spaces with ‘-‘ and that links to headers are case sensitive! (#This-paRt-Is-CaSe-sEnSitIve).

See the syntax of the example below to create a table of content.

16.6.1 Input:

\[
\begin{array}{|l|}
\hline
\textbf{# Content} \\
\hline
- [My first header](#My-first-header) \\
- [My second header](#My-second-header) \\
- [My third header](#My-third-header) \\
\hline
\end{array}
\]
16.6.2 Output:

16.7 Content

- My first header
- My second header
- My third header
17.1 Content

- Constants
 - Hard Coded
 - Configurable
 - Where to put constants?
- Configuration
 - Configuration files
 - Accessing configuration values
 - Default Configuration
 - Test Configuration

17.2 Constants

Constants are values that, once initialized, are never changed during the runtime of a program. In Python, constants are assigned to variables with capital letters by convention, and vice versa, variables with capital letters are supposed to be constants.

In principle there are about four ways to define a constant’s value:

- **hard coding**: the value is defined in the python code directly
- **argument**: the value is taken from an execution argument
- **context**: the value is derived from the environmental context of the execution, e.g., the current working directory or the date-time of execution start.
- **configuration**: read from a file or database

In CLIMADA, we only use **hard coding** and **configuration** to assign values to constants.
17.2.1 Hard Coded

Hard coding constants is the preferred way to deal with strings that are used to identify objects or files.

```python
# suboptimal
my_dict = {'x': 4}
if my_dict['x'] > 3:
    msg = 'well, arh, ...
msg

'well, arh, ...

# good
X = 'x'
my_dict = {X: 4}
if my_dict[X] > 3:
    msg = 'yeah!
msg

'yeah!

# possibly overdoing it
X = 'x'
Y = "this doesn't mean that every string must be a constant"
my_dict = {X: 4}
if my_dict[X] > 3:
    msg = Y
msg

"this doesn't mean that every string must be a constant"

import pandas as pd
X = 'x'
df = pd.DataFrame({'x':[1,2,3], 'y':[4,5,6]})
try:
    df.X
except:
    from sys import stderr; stderr.write("this does not work\n")
df[X] # this does work but it's less pretty
df.x

this does not work

0 1
1 2
2 3
Name: x, dtype: int64
```
17.2.2 Configurable

When it comes to absolute paths, it is urgently suggested to not use hard coded constant values, for the obvious reasons. But also relative paths can cause problems. In particular, they may point to a location where the user has not sufficient access permissions. In order to avoid these problems, all paths constants in CLIMADA are supposed to be defined through configuration.
→ paths must be configurable

The same applies to urls to external resources, databases or websites. Since they may change at any time, there addresses are supposed to be defined through configuration. Like this it will be possible to access them without the need of tampering with the source code or waiting for a new release.
→ urls must be configurable

Another category of constants that should go into the configuration file are system specifications, such as number of CPU’s available for CLIMADA or memory settings.
→ OS settings must be configurable

17.2.3 Where to put constants?

As a general rule, constants are defined in the module where they intrinsically belong to. If they belong equally to different modules though or they are meant to be used globally, there is the module climada.util.constants which is compiling constants CLIMADA wide.

17.3 Configuration

17.3.1 Configuration files

The proper place to define constants that a user may want (or need) to change without changing the CLIMADA installation are the configuration files.
These are files in json format with the name climada.conf. There is a default config file that comes with the installation of CLIMADA. But it’s possible to have several of them. In this case they are complementing one another.

CLIMADA looks for configuration files upon import climada. There are four locations to look for configuration files:
• climada/conf, the installation directory
• ~/climada/conf, the user’s default climada directory
• ~/.config, the user’s configuration directory,
• ., the current working directory

At each location, the path is followed upwards until a file called climada.conf is found or the root of the path is reached. Hence, if e.g., ~/climada/climada.conf is missing but ~/climada.conf is present, the latter would be read.

When two config files are defining the same value, the priorities are:
[...]./climada.conf > ~/.config/climada.conf > ~/climada/conf/climada.conf > installation_dir/climada/conf/climada.conf
A configuration file is a JSON file, with the additional restriction, that all keys must be strings without a ‘.’ (dot) character.

The JSON format looks a lot like a Python dict. But note, that all strings must be surrounded by double quotes and trailing commas are not allowed anywhere.

For configuration values that belong to a particular module it is suggested to reflect the code repositories file structure in the json object. For example if a configuration for `my_config_value` that belongs to the module `climada.util.dates_times` is wanted, it would be defined as

```json
{
    "util": {
        "dates_times": {
            "my_config_value": 42
        }
    }
}
```
Configuration string values can be referenced from other configuration values. E.g.

```
{
    "a": "x",
    "b": "\{a\}y"
}
```

In this example “b” is eventually resolved to “xy”.

17.3.2 Accessing configuration values

Configuration values can be accessed through the (constant) `CONFIG` from the `climada` module:

```python
from climada import CONFIG

CONFIG.hazard

{trop_cyclone: {random_seed: 54}, storm_europe: {forecast_dir: ./results/forecast/hazards}, test_data: .../climada/hazard/test/data}
```

Data Types

The configuration itself and its attributes have the data type `climada.util.config.Config`

```
CONFIG.__class__, CONFIG.hazard.trop_cyclone.random_seed.__class__
```

```
(climada.util.config.Config, climada.util.config.Config)
```

The actual configuration values can be accessed as basic types (bool, float, int, str), provided the definition is according to the respective data type:

```python
CONFIG.hazard.trop_cyclone.random_seed.int()
```

```
54
```

```python
try:
    CONFIG.hazard.trop_cyclone.random_seed.str()
except Exception as e:
    from sys import stderr; stderr.write(f"cannot convert random_seed to str: {e}\n"
```

```
cannot convert random_seed to str: <class 'int'>, not str
```

However, configuration string values can be converted to `pathlib.Path` objects if they are pointing to a directory.

```python
CONFIG.hazard.storm_europe.forecast_dir.dir()
```

Note that converting a configuration string to a `Path` object like this will create the specified directory on the fly, unless `dir` is called with the parameter `create=False`.
17.3.3 Default Configuration

The configuration file `climada/conf/climada.conf` contains the default configuration. On the top level it has the following attributes:

- **local_data**: definition of main paths for accessing and storing CLIMADA related data
 - **system**: top directory, where (persistent) climada data is stored
 - default: `~/climada/data`
 - **demo**: top directory for data that is downloaded or created in the CLIMADA tutorials
 - default: `~/climada/demo/data`
 - **save_dir**: directory where transient (non-persistent) data is stored
 - default: `.results`

- **log_level**: minimum log level showed by logging, one of DEBUG, INFO, WARNING, ERROR or CRITICAL.
 - default: INFO

- **max_matrix_size**: maximum matrix size that can be used, can be decreased in order to avoid memory issues
 - default: 100000000 (1e8)

- **exposures**: exposures modules specific configuration

- **hazard**: hazard modules specific configuration

```python
CONFIG.__dict__.keys()
```

dict_keys(['_root', '_comment', 'local_data', 'engine', 'exposures', 'hazard', 'util',
 'log_level', 'max_matrix_size', 'data_api', 'test_directory', 'test_data', 'disc_rates',
 'impact_funcs', 'measures'])

17.3.4 Test Configuration

The configuration values for unit and integration tests are not part of the default configuration, since they are irrelevant for the regular CLIMADA user and only aimed for developers.

The default test configuration is defined in the `climada.conf` file of the installation directory. This file contains paths to files that are read during tests. If they are part of the GitHub repository, their path i.e. starts with the `climada` folder within the installation directory:

```json
{
   "_comment": "this is a climada configuration file meant to supersede the default configuration in climada/conf during test",
   "test_directory": "./climada",
   "test_data": "{test_directory}/test/data",
   "disc_rates": {
      "test_data": "{test_directory}/entity/disc_rates/test/data"
   }
}
```

Obviously, the default `test_directory` is given as the relative path to `./climada`. This is fine if (but only if) unit or integration tests are started from the installation directory, which is the case in the automated tests on the CI server.

Developers who intend to start a test from another working directory may have to edit this file and replace the relative path with the absolute path to the installation directory:

```json
{
   "_comment": "this is a climada configuration file meant to supersede the default configuration in climada/conf during test",
}
```

(continues on next page)
17.3.5 Data Initialization

When `import climada` is executed in a python script or shell, data files from the installation directory are copied to the location specified in the current configuration. This happens only when climada is used for the first time with the current configuration. Subsequent execution will only check for presence of files and won't overwrite existing files.

Thus, the home directory will automatically be populated with a climada directory and several files from the repository when climada is used. To prevent this and keep the home directory clean, create a config file `~/.config/climada.conf` with customized values for `local_data.system` and `local_data.demo`. As an example, a file with the following content would suppress creation of directories and copying of files during execution of CLIMADA code:

```json
{
    "local_data": {
        "test_directory": "/path/to/installation-dir/climada",
        "test_data": "{test_directory}/test/data",
        "disc_rates": {
            "test_data": "{test_directory}/entity/disc_rates/test/data"
        }
    }
}
```
"system": "/path/to/installation-dir/climada/data/system",
"demo": "/path/to/installation-dir/climada/data/demo"
18.1 Content

- Testing CLIMADA
- Notes on Testing
- Continuous Integration

18.2 Testing CLIMADA

Executing the entire test suite requires you to install the additional requirements for testing. See the installation instructions for developer dependencies for further information.

18.2.1 Installation Test

From the installation directory run

```
make install_test
```

It lasts about 45 seconds. If it succeeds, CLIMADA is properly installed and ready to use.

18.2.2 Unit Tests

From the installation directory run

```
make unit_test
```

It lasts about 5 minutes and runs unit tests for all modules.
18.2.3 Integration Tests

From the installation directory run

```
make integ_test
```

It lasts about 15 minutes and runs extensive integration tests, during which also data from external resources is read. An open internet connection is required for a successful test run.

18.3 Notes on Testing

Any programming code that is meant to be used more than once should have a test, i.e., an additional piece of programming code that is able to check whether the original code is doing what it’s supposed to do.

Writing tests is work. As a matter of facts, it can be a lot of work, depending on the program often more than writing the original code.

Luckily, it essentially follows always the same basic procedure and a there are a lot of tools and frameworks available to facilitate this work.

In CLIMADA we use the Python in-built test runner `unittest` for execution of the tests and the Jenkins framework for continuous integration, i.e., automated test execution and code analysis.

Why do we write test?

- The code is most certainly buggy if it’s not properly tested.
- Software without tests is worthless. It won’t be trusted and therefore it won’t be used.

When do we write test?

- **Before implementation.** A very good idea. It is called Test Driven Development.
- **During implementation.** Test routines can be used to run code even while it’s not fully implemented. This is better than running it interactively, because the full context is set up by the test.

 By command line:
 `python -m unittest climada.x.test_y.TestY.test_z`

 Interactively:
 `climada.x.test_y.TestY().test_z()`

- **Right after implementation.** In case the coverage analysis shows that there are missing tests, see Test Coverage.
- **Later, when a bug was encountered.** Whenever a bug gets fixed, also the tests need to be adapted or amended.

18.3.1 Basic Test Procedure

- **Test data setup**
 Creating suitable test data is crucial, but not always trivial. It should be extensive enough to cover all functional requirements and yet as small as possible in order to save resources, both in space and time.

- **Code execution**
 The main goal of a test is to find bugs before the user encounters them. Ultimately every single line of the program should be subject to test.

 In order to achieve this, it is necessary to run the code with respect to the whole parameter space. In practice that means that even a simple method may require a lot of test code.

 (Bear this in mind when designing methods or functions: the number of required tests increases dramatically with the number of function parameters!)
• **Result validation**
 After the code was executed the *actual* result is compared to the *expected* result. The expected result depends on test data, state and parametrization.
 Therefore result validation can be very extensive. In most cases it won’t be practical nor required to validate every single byte. Nevertheless attention should be paid to validate a range of results that is wide enough to discover as many thinkable discrepancies as possible.

18.3.2 Testing types

Despite the common basic procedure there are many different kinds of tests distinguished. (See [WikiPedia:Software testing](https://en.wikipedia.org/wiki/Software_testing)). Very commonly a distinction is made based on levels:

- **Unit Test**: tests only a small part of the code, a single function or method, essentially without interaction between modules
- **Integration Test**: tests whether different methods and modules work well with each other
- **System Test**: tests the whole software at once, using the exposed interface to execute a program

18.3.3 Unit Tests

Unit tests are meant to check the correctness of program units, i.e., single methods or functions, they are supposed to be fast, simple and easy to write.

For each module in CLPD

Developer guidelines:

- Each module in CLIMADA has a counter part containing unit tests.
 Naming suggestion: `climada.x.y → climada.x.test.test_y`

- Write a test class for each class of the module, plus a test class for the module itself in case it contains (module) functions.
 Naming suggestion: `class X → class TestX(unittest.TestCase), module climada.x.y → class TestY(unittest.TestCase)`

- Ideally, each method or function should have at least one test method.
 Naming suggestion: `def xy() → def test_xy(), def test_xy_suffix1(), def test_xy_suffix2()`
 Functions that are created for the sole purpose of structuring the code do not necessarily have their own unit test.

- **Aim at having very fast unit tests!**
 There will be hundreds of unit tests and in general they are called in corpore and expected to finish after a reasonable amount of time.
 Less than 10 millisecond is good, 2 seconds is the maximum acceptable duration.

- **A unit test shouldn’t call more than one climada method or function.**
 The motivation to combine more than one method in a test is usually creation of test data. Try to provide test data by other means. Define them on the spot (within the code of the test module) or create a file in a test data directory that can be read during the test. If this is too tedious, at least move the data acquisition part to the constructor of the test class.

- **Do not use external resources in unit tests.**
 Methods depending on external resources can be skipped from unit tests. See Dealing with External Resources.
18.3.4 Integration Tests

Integration tests are meant to check the correctness of interaction between units of a module or a package. As a general rule, more work is required to write integration tests than to write unit tests and they have longer runtime.

Developer guidelines:

• Write integration tests for all intended use cases.
• Do not expect external resources to be immutable.
 If calling on external resources is part of the workflow to be tested, take into account that they may change over time.
 If the according API has means to indicate the precise version of the requested data, make use of it, otherwise, adapt your expectations and leave room for future changes.
 Example given: your function is ultimately relying on the current GDP retrieved from an online data provider, and you test it for Switzerland where it's in about 700 Bio CHF at the moment. Leave room for future development, try to be on a reasonably save side, tolerate a range between 70 Bio CHF and 7000 Bio CHF.
• Test location.
 Integration are written in modules climada.test.test_xy or in climada.x.test.test_y, like the unit tests.
 For the latter it is required that they do not use external resources and that the tests do not have a runtime longer than 2 seconds.

18.3.5 System Tests

System tests are meant to check whether the whole software package is working correctly.

In CLIMADA, the system test that checks the core functionality of the package is executed by calling make install_test from the installation directory.

18.3.6 Error Messages

When a test fails, make sure the raised exception contains all information that might be helpful to identify the exact problem.

If the error message is ever going to be read by someone else than you while still developing the test, you best assume it will be someone who is completely naive about CLIMADA.

Writing extensive failure messages will eventually save more time than it takes to write them.

Putting the failure information into logs is neither required nor sufficient: the automated tests are built around error messages, not logs.

Anything written to stdout by a test method is useful mainly for the developer of the test.
18.3.7 Dealing with External Resources

Methods depending on external resources (calls a url or database) are ideally atomic and doing nothing else than providing data. If this is the case they can be skipped in unit tests on safe grounds - provided they are tested at some point in higher level tests.

In CLIMADA there are the utility functions `climada.util.files_handler.download_file` and `climada.util.files_handler.download_ftp`, which are assigned to exactly this task for the case of external data being available as files.

Any other method that is calling such a data providing method can be made compliant to unit test rules by having an option to replace them by another method. Like this one can write a dummy method in the test module that provides data, e.g., from a file or hard coded, which be given as the optional argument.

```python
import climada
def x(download_file=climada.util.files_handler.download_file):
    filepath = download_file('http://real_data.ch')
    return Path(filepath).stat().st_size

import unittest
class TestX(unittest.TestCase):
    def download_file_dummy(self):
        return "phony_data.ch"
    def test_x(self):
        self.assertEqual(44, x(download_file=self.download_file_dummy))
```

Developer guideline:

- When introducing a new external resource, add a test method in `test_data_api.py`.

18.3.8 Test Configuration

Use the configuration file `climada.config` in the installation directory to define file paths and external resources used during tests (see the Constants and Configuration Guide).

18.4 Continuous Integration

The CLIMADA Jenkins server used for continuous integration is at (https://ied-wcr-jenkins.ethz.ch).

18.4.1 Automated Tests

On Jenkins tests are executed and analyzed automatically, in an unbiased environment. The results are stored and can be compared with previous test runs.

Jenkins has a GUI for monitoring individual tests, full test runs and test result trends. Developers are requested to watch it. At first when they push commits to the code repository, but also later on, when other changes in data or sources may make it necessary to review and refactor code that once passed all tests.
Developer guidelines:

- All tests must pass before submitting a pull request.
- Integration tests don’t run on feature branches in Jenkins, therefore developers are requested to run them locally.
- After a pull request was accepted and the changes are merged to the develop branch, integration tests may still fail there and have to be addressed.

GitHub Actions

We adopted test automation via GitHub Actions in an experimental state. See GitHub Actions CI for details.

18.4.2 Test Coverage

Jenkins also has an interface for exploring code coverage analysis result. This shows which part of the code has never been run in any test, by module, by function/method and even by single line of code.

Ultimately every single line of code should be tested.

Developer guidelines:

- Make sure the coverage of novel code is at 100% before submitting a pull request.

Be aware that the having a code coverage alone does not grant that all required tests have been written! The following artificial example would have a 100% coverage and still obviously misses a test for $y(False)$.

```python
def x(b: bool):
    if b:
        print('been here')
        return 4
    else:
        print('been there')
        return 0

def y(b: bool):
    print('been everywhere')
    return 1 / x(b)

import unittest
class TestXY(unittest.TestCase):
    def test_x(self):
        self.assertEqual(x(True), 4)
        self.assertEqual(x(False), 0)

    def test_y(self):
        self.assertEqual(y(True), 0.25)

unittest.TextTestRunner().run(unittest.TestLoader().loadTestsFromTestCase(TestXY));
```

..
18.4.3 Static Code Analysis

At last Jenkins provides an elaborate GUI for pylint findings which is especially useful when working in feature branches. *Observe it!*

Developer guidelines:

- *High Priority Warnings* are as severe as test failures and must be addressed at once.
- Do not introduce new *Medium Priority Warnings*.
- Try to avoid introducing *Low Priority Warnings*, in any case their total number should not increase.

18.4.4 Jenkins Projects Overview

-
-
-
-
-
-
-
-

climada_install_env

Branch: **develop**
Runs every day at 1:30AM CET
- creates conda environment from scratch
- runs core functionality system test (*make install_test*)
climada_ci_night

Branch: **develop**
Runs when climada_install_env has finished successfully
 - runs all test modules
 - runs static code analysis

climada_branches

Branch: **any**
Runs when a commit is pushed to the repository
 - runs all test modules *outside of climada.test*
 - runs static code analysis

climada_data_api

Branch: **develop**
Runs every day at 0:20AM CET
 - tests availability of external data APIs

climada_data_api

Branch: **develop**
No automated running
 - tests executability of CLIMADA tutorial notebooks.
REVIEWER CHECKLIST

• The code must be readable without extra effort from your part. The code should be easily readable (for infos e.g. here)
• Include references to the used algorithms in the docstring
• If the algorithm is new, please include a description in the docstring, or be sure to include a reference as soon as you publish the work
• Variable names should be chosen to be clear. Avoid `item, element, var, list, data` etc... A good variable name makes it immediately clear what it contains.
• Avoid as much as possible hard-coded indices for list (no `x = l[0], y = l[1]`). Rather, use tuple unpacking (see here). Note that tuple unpacking can also be used to update variables. For example, the Fibonacci sequence next number pair can be written as `n1, n2 = n2, n1+n2`.
• Do not use mutable (lists, dictionaries, …) as default values for functions and methods. Do not write:

```python
def function(default=[]):
```

but use

```python
def function(default=None):
    if default is None: default=[]
```

• Use pythonic loops, list comprehensions
• Make sure the unit tests are testing all the lines of the code. Do not only check for working cases, but also the most common wrong use cases.
• Check the docstrings (Do they follow the Numpydoc conventions, is everything clearly explained, are the default values given and is it clear why they are set to this value)
• Keep the code simple. Avoid using complex Python functionalities whose use is opaque to non-expert developers unless necessary. For example, the @staticmethod decorator should only be used if really necessary. Another example, for counting the dictionary `colors = ['red', 'green', 'red', 'blue', 'green', 'red']`, version:

```python
d = {}
for color in colors:
    d[color] = d.get(color, 0) + 1
```

is perfectly fine, no need to complicate it to a maybe more pythonic version

```python
d = collections.defaultdict(int)
for color in colors:
    d[color] += 1
```
• Did the code writer perform a static code analysis? Does the code respect Pep8 (see also the `pylint config file`)?

• Did the code writer perform a profiling and checked that there are no obviously inefficient (computation time-wise and memory-wise) parts in the code?
20.1 Content

- To Code or Not to Code?
- Clean Code
- Commenting & Documenting
- Exception Handling and Logging
- Importing
- How to structure a method or function
- Debugging

20.2 To Code or Not to Code?

Before you start implementing functions which then go into the climada code base, you have to ask yourself a few questions:

Has something similar already been implemented? This is far from trivial to answer! First, search for functions in the same module where you’d be implementing the new piece of code. Then, search in the `util` folders, there’s a lot of functions in some of the scripts! You could also search the index (a list of all functions and global constants) in the climada documentation for key-words that may be indicative of the functionality you’re looking for.

Don’t expect this process to be fast!

Even if you want to implement *just* a small helper function, which might take 10mins to write, it may take you 30mins to check the existing code base! That’s part of the game! Even if you found something, most likely, it’s not the *exact* same thing which you had in mind. Then, ask yourself how you can re-use what’s there, or whether you can easily add another option to the existing method to also fit your case, and only if it’s nearly impossible or highly unreadable to do so, write your own implementation.

Can my code serve others? You probably have a very specific problem in mind. Yet, think about other use-cases, where people may have a similar problem, and try to either directly account for those, or at least make it easy to configure to other cases. Providing keyword options and hard-coding as few things as possible is usually a good thing. For example, if you want to write a daily aggregation function for some time-series, consider that other people might find it useful to have a general function that can also aggregate by week, month or year.

Can I get started? Before you finally start coding, be sure about placing them in a sensible location. Functions in non-util modules are actually specific for that module (e.g. a file-reader function is probably not river-flood specific, so put it into the `util` section, not the RiverFlood module, even if that’s what you’re currently working on)! If unsure, talk with other people about where your code should go.
If you're implementing more than just a function or two, or even an entirely new module, the planning process should be talked over with someone doing climada-administration.

20.3 Clean Code

A few basic principles:

- Follow the PEP 8 Style Guide. It contains, among others, recommendations on:
 - code layout
 - basic naming conventions
 - programming recommendations
 - commenting (in detail described in Chapter 4)
 - varia

- Perform a static code analysis - or: PyLint is your friend

- Follow the best practices of Correctness - Tightness - Readability

- Adhere to principles of pythonic coding (idiomatic coding, the “python way”)

The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
20.3.1 PEP 8 Quickie: Code Layout

- **Indentation**: 4 spaces per level. For continuation lines, decide between vertical alignment & hanging indentation as shown here:

- **Line limit**: maximum of 79 characters (docstrings & comments 72).

- **Blank lines**:
 - **Two**: Surround top-level function and class definitions;
 - **One**: Surround Method definitions inside a class
 - **Several**: may be used (sparingly) to separate groups of related functions
 - **None**: Blank lines may be omitted between a bunch of related one-liners (e.g. a set of dummy implementations).

- **Whitespaces**:
 - **None** immediately inside parentheses, brackets or braces; after trailing commas; for keyword assignments in functions.
 - **Do** for assignments \(i = i + 1 \), around comparisons \(>=, ==, \text{etc.} \), around booleans \(\text{and, or, not} \)

- There’s more in the PEP 8 guide!

20.3.2 PEP 8 Quickie: Basic Naming Conventions

A **short typology**: b (single lowercase letter); B (single uppercase letter); lowercase; lower_case_with_underscores; UPPERCASE; UPPER_CASE_WITH_UNDERSCORES; CapitalizedWords (or CapWords, or CamelCase); mixedCase; Capitalized_Words_With_Underscores (ugly!)

A few basic rules:

- **packages and modules**: short, all-lowercase names. Underscores can be used in the module name if it improves readability. E.g. numpy, climada
- **classes**: use the CapWords convention. E.g. RiverFlood
- **functions, methods and variables**: lowercase, with words separated by underscores as necessary to improve readability. E.g. from_raster(), dst_meta
- **function- and method arguments**: Always use \texttt{self} for the first argument to instance methods, \texttt{cls} for the first argument to class methods.
- **constants**: all capital letters with underscores, e.g. DEF_VAR_EXCEL

Use of underscores

- **single_leading_underscore**: weak “internal use” indicator. E.g. from M import * does not import objects whose names start with an underscore. A side-note to this: Always decide whether a class’s methods and instance variables (collectively: “attributes”) should be public or non-public. If in doubt, choose non-public; it’s easier to make it public later than to make a public attribute non-public. Public attributes are those that you expect unrelated clients of your class to use, with your commitment to avoid backwards incompatible changes. Non-public attributes are those that are not intended to be used by third parties; you make no guarantees that non-public attributes won’t change or even be removed. Public attributes should have no leading underscores.
- **single_trailing_underscore**: used by convention to avoid conflicts with Python keyword, e.g. tkinter.Toplevel(master, class_='ClassName')
• **double_leading_and_trailing_underscore**: “magic” objects or attributes that live in user-controlled namespaces. E.g. __init__, __import__ or __file__. Never invent such names; only use them as documented.

There are many more naming conventions, some a bit messy. Have a look at the PEP8 style guide for more cases.

20.3.3 PEP 8 Quickie: Programming Recommendations

- comparisons to singletons like `None` should always be done with `is` or `is not`, never the equality operators.
- Use `is not` operator rather than `not ... is`.
- Be consistent in return statements. Either all return statements in a function should return an expression, or none of them should. Any return statements where no value is returned should explicitly state this as `return None`.
- Object type comparisons should always use `isinstance()` instead of comparing types directly:
 - Remember: sequences (strings, lists, tuples) are false if empty; this can be used:
 - Don’t compare boolean values to True or False using `==`:
 - Use `str.startswith()` and `str.endswith()` instead of string slicing to check for prefixes or suffixes.
 - Context managers exist and can be useful (mainly for opening and closing files)

20.3.4 Static Code Analysis and PyLint

Static code analysis detects style issues, bad practices, potential bugs, and other quality problems in your code, all without having to actually execute it. In Spyder, this is powered by the best in class PyLint back-end, which can intelligently detect an enormous and customizable range of problem signatures. It follows the style recommended by PEP 8 and also includes the following features: Checking the length of each line, checking that variable names are well-formed according to the project’s coding standard, checking that declared interfaces are truly implemented.

A detailed instruction can be found [here](#).

In brief: In the editor, select the Code Analysis pane (if not visible, go to View -> Panes -> Code Analysis) and the file you want to be analyzed; hit the Analyze button.
The output will look somewhat similar to that:

There are 4 categories in the analysis output:

- convention,
- refactor,
- warning,
- error

- a global score regarding code quality.

All messages have a line reference and a short description on the issue. Errors must be fixed, as this is a no-go for actually executing the script. Warnings and refactoring messages should be taken seriously; so should be the convention messages, even though some of the naming conventions etc. may not fit the project style. This is configurable.

In general, there should be no errors and warnings left, and the overall code quality should be in the “green” range (somewhere above 5 or so).

There are advanced options to configure the type of warnings and other settings in pylint.
20.3.5 A few more best practices

Correctness

Methods and functions must return correct and verifiable results, not only under the best circumstances but in any possible context. I.e. ideally there should be unit tests exploring the full space of parameters, configuration and data states. This is often clearly a non-achievable goal, but still - we aim at it.

Tightness

• Avoid code redundancy.
• Make the program efficient, use profiling tools for detection of bottlenecks.
• Try to minimize memory consumption.
• Don’t introduce new dependencies (library imports) when the desired functionality is already covered by existing dependencies.
• Stick to already supported file types.

Readability

• Write complete Python Docstrings.
• Use meaningful method and parameter names, and always annotate the data types of parameters and return values.
• No context-dependent return types! Also: Avoid None as return type, rather raise an Exception instead.
• Be generous with defining Exception classes.
• Comment! Comments are welcome to be redundant. And whenever there is a particular reason for the way something is done, comment on it! See below for more detail.
• For functions which implement mathematical/scientific concepts, add the actual mathematical formula as comment or to the Doctstrings. This will help maintain a high level of scientific accuracy. E.g. How is are the random walk tracks computed for tropical cyclones?

20.3.6 Pythonic Code

In Python, there are certain structures that are specific to the language, or at least the syntax of how to use them. This is usually referred to as “pythonic” code.

There is an extensive overview on on crucial “pythonic” structures and methods in the Python 101 library.

A few important examples are:

• iterables such as dictionaries, tuples, lists
• iterators and generators (a very useful construct when it comes to code performance, as the implementation of generators avoids reading into memory huge iterables at once, and allows to read them lazily on-the-go; see this blog post for more details)
• f-strings (“formatted string literals,” have an f at the beginning and curly braces containing expressions that will be replaced with their values:

```python
>>> name = "Eric"
>>> age = 74
>>> f"Hello, {name}. You are {age}."
'Hello, Eric. You are 74.'
```
• decorators (a design pattern in Python that allows a user to add new functionality to an existing object without modifying its structure) something like

```python
def function(x, list=[]):
    default_list.append(x)
```

Your list will be mutated for future calls of the functions too. The correct implementation would be the following:

```python
def func(x, list=None):
    list = [] if list is None
```

• lambda functions (little, anonymous functions, sth like `high_ord_func(2, lambda x: x * x)`)
• list comprehensions (a short and possibly elegant syntax to create a new list in one line, sth like `newlist = [x for x in range(10) if x < 5]` returns `[0, 1, 2, 3, 4]`)

It is recommended to look up the above concepts in case not familiar with them.

20.4 Commenting & Documenting

20.4.1 What is what

Comments are for developers. They describe parts of the code where necessary to facilitate the understanding of programmers. They are marked by putting a # in front of every comment line (for multi-liners, wrapping them inside triple double quotes """" is basically possible, but discouraged to not mess up with docstrings). A documentation string (docstring) is a string that describes a module, function, class, or method definition. The docstring is a special attribute of the object (object.__doc__) and, for consistency, is surrounded by triple double quotes (""""). This is also where elaboration of the scientific foundation (explanation of used formulae, etc.) should be documented.

A few general rules:

- Have a look at this blog-post on commenting basics
- Comments should be D.R.Y (“Don’t Repeat Yourself.”)
- Obvious naming conventions can avoid unnecessary comments (cf. `families_by_city[city]` vs. `my_dict[p]`)
- comments should rarely be longer than the code they support
- All public methods need a doc-string. See below for details on the convention used within the climada project.
- Non-public methods that are not immediately obvious to the reader should at least have a short comment after the

```python
def complicated_function(s):
    # This function does something complicated
```

def line:
20.4.2 Numpy-style docstrings

Full reference can be found here. The standards are such that they use re-structured text (reST) syntax and are rendered using Sphinx.

There are several sections in a docstring, with headings underlined by hyphens (---). The sections of a function's docstring are:

1. **Short summary**: A one-line summary that does not use variable names or the function name

   ```python
def add(a, b):
    """The sum of two numbers.
    """
```

2. **Deprecation warning** (use if applicable): to warn users that the object is deprecated, including version the object that was deprecated, and when it will be removed, reason for deprecation, new recommended way of obtaining the same functionality. Use the `deprecated` Sphinx directive:

   ```python
   .. deprecated:: 1.6.0
      `ndobj_old` will be removed in NumPy 2.0.0, it is replaced by
      `ndobj_new` because the latter works also with array subclasses.
   ```

3. **Extended Summary**: A few sentences giving an extended description to clarify functionality, not to discuss implementation detail or background theory (see Notes section below!)

4. **Parameters**: Description of the function arguments, keywords and their respective types. Enclose variables in single backticks in the description. The colon must be preceded by a space, or omitted if the type is absent. For the parameter types, be as precise as possible. If it is not necessary to specify a keyword argument, use `optional` after the type specification: e.g. `x: int, optional`. Default values of optional parameters can also be detailed in the description. (e.g. `... description of parameter ... (default is -1)```

5. **Returns**: Explanation of the returned values and their types. Similar to the Parameters section, except the name of each return value is optional, type isn't. If both the name and type are specified, the Returns section takes the same form as the Parameters section.

   ```python
   Parameters
   ----------
x : type
   Description of parameter `x`.

   Returns
   -------
   err_code : int
      Non-zero value indicates error code, or zero on success.
   err_msg : str or None
      Human readable error message, or None on success.
```

There is a range of other sections that can be included, if sensible and applicable, such as Yield (for generator functions only), Raises (which errors get raised and under what conditions), See also (refer to related code), Notes (additional information about the code, possibly including a discussion of the algorithm; may include mathematical equations, written in LaTeX format), References, Examples(to illustrate usage).
20.5 Exception Handling and Logging

Exception handling and logging are two important components of programming, in particular for debugging purposes. Detailed technical guides are available online (e.g., Loggin, Error and Exceptions). Here we only repeat a few key points and list a few guidelines for CLIMADA.

20.5.1 Exception handling

CLIMADA guidelines

1. Catch specific exceptions if possible, i.e. if not needed do not catch all exceptions.
2. Do not catch exception if you do not handle them.
3. Make a clear explanatory message when you raise an error (similarly to when you use the logger to inform the user).
 Think of future users and how it helps them understanding the error and debugging their code.
4. Catch an exception when it arises.
5. When you can an exception and raise an error, it is in often (but not always) a good habit to not throw away the first caught exception as it may contain useful information for debugging. (use \texttt{raise Error from})

```python
# Bad (1)
x = 1
try:
    l = len(events)
    if l < 1:
        print("l is too short")
except:
    pass

# Still bad (2)
try:
    l = len(events)
    if l < 1:
        print("l is too short")
except TypeError:
    pass

# Better, but still unsufficient (3)
try:
    l = len(events)
    if l < 1:
        raise ValueError("To compute an impact there must be at least one event.")
except TypeError:
    raise TypeError("The provided variable events is not a list")

# Even better (4)
try:
    l = len(events)
except TypeError:
    raise TypeError("The provided variable events is not a list")
if l < 1:
    raise ValueError("To compute an impact there must be at least one event.")
```
Even better (5)

```python
try:
    l = len(events)
except TypeError as tper:
    raise TypeError("The provided variable events is not a list") from tper
if l < 1:
    raise ValueError("To compute an impact there must be at least one event.")
```

Exceptions reminder

Why do we bother to handle exceptions?

- The most essential benefit is to inform the user of the error, while still allowing the program to proceed.

20.5.2 Logging

CLIMADA guidelines

- In CLIMADA, you cannot use printing. Any output must go into the LOGGER.
- For any logging messages, always think about the audience. What would a user or developer need for information? This also implies to carefully think about the correct LOGGER level. For instance, some information is for debugging, then use the debug level. In this case, make sure that the message actually helps the debugging process! Some message might just to inform the user about certain default parameters, then use the inform level. See below for more details about logger levels.
- Do not overuse the LOGGER. Think about which level of logging. Logging errors must be useful for debugging.

You can set the level of the LOGGER using `climada.util.config.LOGGER.setLevel(logging.XXX)`. This way you can for instance ‘turn-off’ info messages when you are making an application. For example, setting the logger to the “ERROR” level, use:

```python
import logging
from climada.util.config import LOGGER
LOGGER.setLevel(logging.ERROR)
```

What levels to use in CLIMADA?

- Debug: what you would print while developing/debugging
- Info: information for example in the check instance
- Warning: whenever CLIMADA fills in values, makes an extrapolation, computes something that might potentially lead to unwanted results (e.g., the 250-year damages extrapolated from data over 20 years)

No known use case:

- Error: instead, raise an Error and add the message (raise ValueError("Error message"))
- Critical: …
Reminder about Logging

“Logging is a means of tracking events that happen when some software runs.”

When to use logging

“Logging provides a set of convenience functions for simple logging usage. These are debug(), info(), warning(), error() and critical(). To determine when to use logging, see the table below, which states, for each of a set of common tasks, the best tool to use for it.”

<table>
<thead>
<tr>
<th>Task you want to perform</th>
<th>The best tool for the task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display console output for ordinary usage of a command line script or program</td>
<td>print()</td>
</tr>
<tr>
<td>Report events that occur during normal operation of a program (e.g. for status monitoring or fault investigation)</td>
<td>logging.info() (or logging.debug() for very detailed output for diagnostic purposes)</td>
</tr>
<tr>
<td>Issue a warning regarding a particular runtime event</td>
<td>warnings.warn() in library code if the issue is avoidable and the client application should be modified to eliminate the warning, logging.warning() if there is nothing the client application can do about the situation, but the event should still be noted</td>
</tr>
<tr>
<td>Report an error regarding a particular runtime event</td>
<td>Raise an exception</td>
</tr>
<tr>
<td>Report suppression of an error without raising an exception (e.g. error handler in a long-running server process)</td>
<td>logging.error(), logging.exception() or logging.critical() as appropriate for the specific error and application domain</td>
</tr>
</tbody>
</table>

Logger level

“The logging functions are named after the level or severity of the events they are used to track. The standard levels and their applicability are described below (in increasing order of severity):”

<table>
<thead>
<tr>
<th>Level</th>
<th>When it's used</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG</td>
<td>Detailed information, typically of interest only when diagnosing problems.</td>
</tr>
<tr>
<td>INFO</td>
<td>Confirmation that things are working as expected.</td>
</tr>
<tr>
<td>WARNING</td>
<td>An indication that something unexpected happened, or indicative of some problem in the near future (e.g. ‘disk space low’). The software is still working as expected.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Due to a more serious problem, the software has not been able to perform some function.</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>A serious error, indicating that the program itself may be unable to continue running.</td>
</tr>
</tbody>
</table>
20.6 Importing

General remarks

• Imports should be grouped in the following order:
 – Standard library imports (such as re, math, datetime, cf. here)
 – Related third party imports (such as numpy)
 – Local application/library specific imports (such as climada.hazard.base)
• You should put a blank line between each group of imports.
• Don’t introduce new dependencies (library imports) when the desired functionality is already covered by existing dependencies.

Avoid circular importing!!

Circular imports are a form of circular dependencies that are created with the import statement in Python; e.g. module A loads a method in module B, which in turn requires loading module A. This can generate problems such as tight coupling between modules, reduced code reusability, more difficult maintenance. Circular dependencies can be the source of potential failures, such as infinite recursions, memory leaks, and cascade effects. Generally, they can be resolved with better code design. Have a look here for tips to identify and resolve such imports.

Varia

• there are absolute imports (uses the full path starting from the project’s root folder) and relative imports (uses the path starting from the current module to the desired module; usually in the for from .<module/package> import X; dots . indicate how many directories upwards to traverse. A single dot corresponds to the current directory; two dots indicate one folder up; etc.)
• generally try to avoid star imports (e.g. from packagename import *)

Importing utility functions

When importing CLIMADA utility functions (from climada.util), the convention is to import the function as “u_name_of_function”, e.g.:

```
from climada.util import coordinates as u_coord
u_coord.make_map()
```

20.7 How to structure a method or function

To clarify ahead: The questions of how to structure an entire module, or even “just” a class, are not treated here. For this, please get in contact with the repository admins to help you go devise a plan.

The following few principles should be adhered to when designing a function or method (which is simply the term for a function inside a class):

• have a look at this blog-post summarizing a few important points to define your function (key-words abstraction, reusability, modularity)
• separate algorithmic computations and data curation
• adhere to a maximum method length (rule of thumb: if it doesn’t fit your screen, it’s probably an indicator that you should refactor into sub-functions)
• divide functions into single purpose pieces (one function, one goal)
20.8 Debugging

When writing code, you will encounter bugs and hence go through (more or less painful) debugging. Depending on the IDE you use, there are different debugging tools that will make your life much easier. They offer functionalities such as stopping the execution of the function just before the bug occurs (via breakpoints), allowing to explore the state of defined variables at this moment of time.

For spyder specifically, have a look at the instructions on how to use ipdb
This guide covers the following recommendations:

1. **Use profiling tools** to find and assess performance bottlenecks.
2. **Replace for-loops** by built-in functions and efficient external implementations.
3. **Consider algorithmic performance**, not only implementation performance.
4. **Get familiar with NumPy**: vectorized functions, slicing, masks and broadcasting.
5. **Miscellaneous**: sparse arrays, Numba, parallelization, huge files (xarray), memory.
6. **Don’t over-optimize** at the expense of readability and usability.

21.1 Contents

- Profiling
- General considerations
- NumPy-related tips and best practice
- Miscellaneous
- Take-home message

21.2 Profiling

Python comes with powerful packages for the **performance assessment** of your code. Within IPython and notebooks, there are several magic commands for this task:

- `%time`: Time the execution of a single statement
- `%timeit`: Time repeated execution of a single statement for more accuracy
- `%%timeit`: Does the same as `%timeit` for a whole cell
- `%prun`: Run code with the profiler
- `%lprun`: Run code with the line-by-line profiler
- `%memit`: Measure the memory use of a single statement
- `%mprun`: Run code with the line-by-line memory profiler

While it’s easy to assess how fast or slow parts of your code are, including finding the bottlenecks, generating an improved version of it is much harder. This guide is about simple best practices that everyone should know who works with Python, especially when models are performance-critical.

In the following, we will focus on arithmetic operations because they play an important role in CLIMADA. Operations on non-numeric objects like strings, graphs, databases, file or network IO might be just as relevant inside and outside of the CLIMADA context. Some of the tips presented here do also apply to other contexts, but it’s always worth looking for context-specific performance guides.

21.3 General considerations

This section will be concerned with:

- **for-loops** and built-ins
- **external implementations** and converting data structures
- **algorithmic efficiency**
- **memory usage**

As this section’s toy example, let’s assume we want to sum up all the numbers in a list:

```python
list_of_numbers = list(range(10000))
```

21.3.1 for-loops

A developer with a background in C++ would probably loop over the entries of the list:

```python
%%timeit
result = 0
for i in list_of_numbers:
    result += i
```

`332 µs ± 65.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)`

The built-in function `sum` is much faster:

```python
%%timeit
sum(list_of_numbers)
```

`54.9 µs ± 5.63 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)`

The timing improves by a factor of 5-6 and this is not a coincidence: for-loops generally tend to get prohibitively expensive when the number of iterations increases.

When you have a for-loop with many iterations in your code, check for built-in functions or efficient external implementations of your programming task.

A special case worth noting are `append` operations on lists which can often be replaced by more efficient `list comprehensions`.
21.3.2 Converting data structures

When you find an external library that solves your task efficiently, always consider that it might be necessary to convert your data structure which takes time.

For arithmetic operations, NumPy is a great library, but if your data comes as a Python list, NumPy will spend quite some time converting it to a NumPy array:

```python
import numpy as np
%timeit np.sum(list_of_numbers)
```

572 µs ± 80 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

This operation is even slower than the for-loop!

However, if you can somehow obtain your data in the form of NumPy arrays from the start, or if you perform many operations that might compensate for the conversion time, the gain in performance can be considerable:

```python
# do the conversion outside of the `%timeit`
ndarray_of_numbers = np.array(list_of_numbers)
%timeit np.sum(ndarray_of_numbers)
```

10.6 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Indeed, this is 5-6 times faster than the built-in sum and 20-30 times faster than the for-loop.

21.3.3 Always consider several implementations

Even for such a basic task as summing, there exist several implementations whose performance can vary more than you might expect:

```python
%timeit ndarray_of_numbers.sum()
%timeit np.einsum("i->", ndarray_of_numbers)
```

9.07 µs ± 1.39 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.55 µs ± 383 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

This is up to 50 times faster than the for-loop. More information about the einsum function will be given in the NumPy section of this guide.

21.3.4 Efficient algorithms

Consider algorithmic performance, not only implementation performance.

All of the examples above do exactly the same thing, algorithmically. However, often the largest performance improvements can be obtained from algorithmic changes. This is the case when your model or your data contain symmetries or more complex structure that allows you to skip or boil down arithmetic operations.

In our example, we are summing the numbers from 1 to 10,000 and it's a well-known mathematical theorem that this can be done using only two multiplications and an increment:

```python
n = max(list_of_numbers)
%timeit 0.5 * n * (n + 1)
```
Not surprisingly, this is almost 100 times faster than even the fastest implementation of the 10,000 summing operations listed above.

You don’t need a degree in maths to find algorithmic improvements. Other algorithmic improvements that are often easy to detect are:

- **Filter your data set as much as possible** to perform operations only on those entries that are really relevant. *Example:* When computing a physical hazard (e.g. extreme wind) with CLIMADA, restrict to Centroids on land unless you know that some of your exposure is off shore.

- **Make sure to detect inconsistent or trivial input parameters early on,** before starting any operations. *Example:* If your code does some complicated stuff and applies a user-provided normalization factor at the very end, make sure to check that the factor is not 0 before you start applying those complicated operations.

ribbon: In general: Before starting to code, take pen and paper and write down what you want to do from an algorithmic perspective.

21.3.5 Memory usage

ribbon: Be careful with deep copies of large data sets and only load portions of large files into memory as needed.

Write your code in such a way that you **handle large amounts of data chunk by chunk** so that Python does not need to load everything into memory before performing any operations. When you do, Python’s generators might help you with the implementation.

ribbon: Allocating unnecessary amounts of memory might slow down your code substantially due to swapping.

21.4 NumPy-related tips and best practice

As mentioned above, arithmetic operations in Python can profit a lot from NumPy’s capabilities. In this section, we collect some tips how to make use of NumPy’s capabilities when performance is an issue.

21.4.1 Vectorized functions

We mentioned above that Python’s **for-loops are really slow**. This is even more important when looping over the entries in a NumPy array. Fortunately, NumPy’s masks, slicing notation and vectorization capabilities help to avoid for-loops in almost every possible situation:

```python
# TASK: compute the column-sum of a 2-dimensional array
input_arr = np.random.rand(100, 3)

%%timeit
# SLOW: summing over columns using loops
output = np.zeros(100)
for row_i in range(input_arr.shape[0]):
    for col_i in range(input_arr.shape[1]):
        output[row_i] += input_arr[row_i, col_i]
```

```
145 µs ± 5.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```
FASTER: using NumPy's vectorized `sum` function with `axis` attribute

```python
%timeit output = input_arr.sum(axis=1)
```

4.23 µs ± 216 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In the special case of multiplications and sums (linear operations) over the axes of two multi-dimensional arrays, NumPy's `einsum` is even faster:

```python
%timeit output = np.einsum("ij->i", input_arr)
```

2.38 µs ± 214 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Another `einsum` example: **Euclidean norms**

```python
many_vectors = np.random.rand(1000, 3)
%timeit np.sqrt((many_vectors**2).sum(axis=1))
%timeit np.linalg.norm(many_vectors, axis=1)
%timeit np.sqrt(np.einsum("...j,...j->...", many_vectors, many_vectors))
```

24.4 µs ± 2.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
26.5 µs ± 2.44 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
9.5 µs ± 91.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

For more information about the capabilities of NumPy's `einsum` function, refer to the official NumPy documentation. However, note that future releases of NumPy will eventually improve the performance of core functions, so that `einsum` will become an example of over-optimization (see above) at some point. Whenever you use `einsum`, consider adding a comment that explains what it does for users that are not familiar with `einsum`'s syntax.

Not only `sum`, but many NumPy functions come with similar vectorization capabilities. You can take minima, maxima, means or standard deviations along selected axes. But did you know that the same is true for the `diff` and `argmin` functions?

```python
arr = np.random.randint(low=0, high=10, size=(4, 3))
arr
```

```
[[4, 2, 6],
 [2, 3, 4],
 [3, 3, 3],
 [3, 2, 4]]
```

```python
arr.argmin(axis=1)
```

```
array([1, 0, 0, 1])
```
21.4.2 Broadcasting

When operations are performed on several arrays, possibly of differing shapes, be sure to use NumPy's broadcasting capabilities. This will save you a lot of memory and time when performing arithmetic operations.

Example: We want to multiply the columns of a two-dimensional array by values stored in a one-dimensional array. There are two naive approaches to this:

```python
input_arr = np.random.rand(100, 3)
col_factors = np.random.rand(3)

# SLOW: stack/tile the one-dimensional array to be two-dimensional
%timeit output = np.tile(col_factors, (input_arr.shape[0], 1)) * input_arr

5.67 µs ± 718 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

%%timeit
# SLOW: loop over columns and factors
output = input_arr.copy()
for i, factor in enumerate(col_factors):
    output[:, i] *= factor

9.63 µs ± 95.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
```

The idea of broadcasting is that NumPy **automatically matches axes from right to left and implicitly repeats data along missing axes** if necessary:

```python
%timeit output = col_factors * input_arr
```

1.41 µs ± 51.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

For automatic broadcasting, the *trailing* dimensions of two arrays have to match. NumPy is matching the shapes of the arrays *from right to left*. If you happen to have arrays where other dimensions match, **you have to tell NumPy which dimensions to add by adding an axis of length 1 for each missing dimension**:

```python
input_arr = np.random.rand(3, 100)
row_factors = np.random.rand(3)
output = row_factors.reshape(3, 1) * input_arr
```

Because this concept is so important, there is a short-hand notation for adding an axis of length 1. In the slicing notation, **add None in those positions where broadcasting should take place**.
21.4.3 A note on in-place operations

While in-place operations are generally faster than long and explicit expressions, they shouldn’t be over-estimated when looking for performance bottlenecks. Often, the loss in code readability is not justified because NumPy’s memory management is really fast.

⚠ Don’t over-optimize!

```python
shape = (1200, 1700)
arr_a = np.random.rand(*shape)
arr_b = np.random.rand(*shape)
arr_c = np.random.rand(*shape)

# long expression in one line
%timeit arr_d = arr_c * (arr_a + arr_b) - arr_a + arr_c
17.3 ms ± 820 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
# almost same performance: in-place operations
arr_d = arr_a + arr_b
arr_d *= arr_c
arr_d -= arr_a
arr_d += arr_c
17.4 ms ± 618 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

# You may want to install the module "memory_profiler" first: activate the...
--environment climada_env in an Anaconda prompt,
# type "pip install memory_profiler" and execute it
%load_ext memory_profiler

# long expression in one line
%memit arr_d = arr_c * (arr_a + arr_b) - arr_a + arr_c
peak memory: 156.68 MiB, increment: 31.20 MiB

%memit
# almost same memory usage: in-place operations
arr_d = arr_a + arr_b
arr_d *= arr_c
arr_d -= arr_a
arr_d += arr_c
peak memory: 157.27 MiB, increment: 0.00 MiB
```
21.5 Miscellaneous

21.5.1 Sparse matrices

In many contexts, we deal with sparse matrices or sparse data structures, i.e. two-dimensional arrays where most of the entries are 0. In CLIMADA, this is especially the case for the intensity attributes of Hazard objects. This kind of data is usually handled using SciPy’s submodule `scipy.sparse`.

- When dealing with sparse matrices make sure that you always understand exactly which of your variables are sparse and which are dense and only switch from sparse to dense when absolutely necessary.
- Multiplications (`multiply`) and matrix multiplications (`dot`) are often faster than operations that involve masks or indexing.

As an example for the last rule, consider the problem of multiplying certain rows of a sparse array by a scalar:

```python
import scipy.sparse as sparse

array = np.tile(np.array([0, 0, 0, 2, 0, 0, 1, 0], dtype=np.float64), (100, 80))
row_mask = np.tile(np.array([False, False, True, False, True], dtype=bool), (20,))

# In the following cells, note that the code in the first line after the %%timeit statement is not timed, it's the setup line.

%%time
sparse_array = sparse.csr_matrix(array)
sparse_array[row_mask, :]*= 5
  self.data *= other

1.52 ms ± 155 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%%time
sparse_array = sparse.csr_matrix(array)
sparse_array.multiply(np.where(row_mask, 5, 1)[:,:None]).tocsr()

340 µs ± 7.32 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%%time
sparse_array = sparse.csr_matrix(array)
sparse.diags(np.where(row_mask, 5, 1)).dot(sparse_array)

400 µs ± 6.43 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

21.5.2 Fast for-loops using Numba

As a last resort, if there’s no way to avoid a for-loop even with NumPy’s vectorization capabilities, you can use the @njit decorator provided by the Numba package:

```python
from numba import njit

@njit
def sum_array(arr):
    result = 0.0
    for i in range(arr.shape[0]):
        (continues on next page)
```
In fact, the Numba function is more than 100 times faster than without the decorator:

```python
input_arr = np.float64(np.random.randint(low=0, high=10, size=(10000,)))
```

```bash
%timeit sum_array(input_arr)
10.9 µs ± 444 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
```

```
# Call the function without the @njit
%timeit sum_array.py_func(input_arr)
1.84 ms ± 65.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

However, whenever available, NumPy's own vectorized functions will usually be faster than Numba.

```bash
%timeit np.sum(input_arr)
%timeit input_arr.sum()
%timeit np.einsum("i->", input_arr)
```

7.6 µs ± 687 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.27 µs ± 411 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
7.89 µs ± 499 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

⚠️ Make sure you understand the basic idea behind Numba before using it, read the Numba docs.

⚠️ Don't use @jit, but use @njit which is an alias for @jit(nopython=True).

When you know what you are doing, the fastmath and parallel options can boost performance even further: read more about this in the Numba docs.

21.5.3 Parallelizing tasks

Depending on your hardware setup, parallelizing tasks using pathos and Numba's automatic parallelization feature can improve the performance of your implementation.

⚠️ Expensive hardware is no excuse for inefficient code.

Many tasks in CLIMADA could profit from GPU implementations. However, currently there are no plans to include GPU support in CLIMADA because of the considerable development and maintenance workload that would come with it. If you want to change this, contact the core team of developers, open an issue or mention it in the bi-weekly meetings.
21.5.4 Read NetCDF datasets with xarray

When dealing with NetCDF datasets, memory is often an issue, because even if the file is only a few megabytes in size, the uncompressed raw arrays contained within can be several gigabytes large (especially when data is sparse or similarly structured). One way of dealing with this situation is to open the dataset with xarray.

xarray allows to read the shape and type of variables contained in the dataset without loading any of the actual data into memory.

Furthermore, when loading slices and arithmetically aggregating variables, memory is allocated not more than necessary, but values are obtained on-the-fly from the file.

21.6 Take-home messages

We conclude by repeating the gist of this guide:

- Use profiling tools to find and assess performance bottlenecks.
- Replace for-loops by built-in functions and efficient external implementations.
- Consider algorithmic performance, not only implementation performance.
- Get familiar with NumPy: vectorized functions, slicing, masks and broadcasting.
- Miscellaneous: sparse arrays, Numba, parallelization, huge files (xarray), memory.
- Don’t over-optimize at the expense of readability and usability.
CHAPTER TWENTYTWO

MISCELLANEOUS CLIMADA CONVENTIONS

22.1 Contents

- Dependencies (python packages)
- Class inheritance
- Does it belong into CLIMADA?
- Paper repository
- Utility function
- Impact function renaming - if to impf
- Data dependencies
- Side Note on Parameters

22.2 Dependencies (python packages)

Python is extremely powerful thanks to the large amount of available libraries, packages and modules. However, maintaining a code with a large number of such packages creates dependencies which is very care intensive. Indeed, each package developer can and does update and develop continuously. This means that certain code can become obsolete over time, stop working altogether, or become incompatible with other packages. Hence, it is crucial to keep the philosophy:

As many packages as needed, as few as possible.

Thus, when you are coding, follow these priorities:

1. Python standard library
2. Funktion and methods already implemented in CLIMADA (do NOT introduce circular imports though)
3. Packages already included in CLIMADA
4. Before adding a new dependency:
 - Contact a repository admin to get permission
 - Open an issue

Hence, first try to solve your problem with the standard library and function/methods already implemented in CLIMADA (see in particular the util functions) then use the packages included in CLIMADA, and if this is not enough, propose the addition of a new package. Do not hesitate to propose new packages if this is needed for your work!
22.3 Class inheritance

In Python, a class can inherit from other classes, which is a very useful mechanism in certain circumstances. However, it is wise to think about inheritance before implementing it. Very important, is that CLIMADA classes do not inherit from external library classes. For example, Exposure directly inherited from Geopandas. This caused problems in CLIMADA when the package Geopandas was updated.

CLIMADA classes shall NOT inherit classes from external modules

22.4 Does it belong into CLIMADA?

When developing for CLIMADA, it is important to distinguish between core content and particular applications. Core content is meant to be included into the climada_python repository and will be subject to a code review. Any new addition should first be discussed with one of the repository admins. The purpose of this discussion is to see

- How does the planned module fit into CLIMADA?
- What is an optimal architecture for the new module?
- What parts might already exist in other parts of the code?

Applications made with CLIMADA, such as an ECA study can be stored in the paper repository once they have been published. For other types of work, consider making a separate repository that imports CLIMADA as an external package.

22.5 Paper repository

Applications made with CLIMADA which are published in the form of a paper or a report are very much encouraged to be submitted to the climada/paper repository. You can either:

- Prepare a well-commented jupyter notebook with the code necessary to reproduce your results and upload it to the climada/paper repository. Note however that the repository cannot be used for storing data files.
- Upload the code necessary to reproduce your results to a separate repository of your own. Then, add a link to your repository and to your publication to the readme file on the climada/paper repository.

Notes about DOI

Some journals requires you to provide a DOI to the code and data used for your publication. In this case, we encourage to create a separate repository for your code and create a DOI using Zenodo or any specific service from your institution (e.g. ETH Zürich).

The CLIMADA releases are also identified with a DOI.

22.6 Utility function

In CLIMADA, there is a set of utility functions defined in climada.util. A few examples are:

- convert large monetary numbers into thousands, millions or billions together with the correct unit name
- compute distances
- load hdf5 files
- convert iso country numbers between formats
Whenever you develop a module or make a code review, be attentive to see whether a given functionality has already been implemented as a utility function. In addition, think carefully whether a given function/method does belong in its module or is actually independent of any particular module and should be defined as a utility function.

It is very important to not reinvent the wheel and to avoid unnecessary redundancies in the code. This makes maintenance and debugging very tedious.

22.7 Impact function renaming - if to impf

In the original CLIMADA code, the impact function is often referred to as `if` or `if_`. This is easy to confuse with the conditional operator `if`. Hence, in future a transition from `if` \rightarrow `impf` will be performed. Once the change is active, known developers will be notified and this message updated.

22.8 Data dependencies

22.8.1 Web APIs

CLIMADA relies on open data available through web APIs such as those of the World Bank, Natural Earth, NASA and NOAA. You might execute the test `climada_python-x.y.z/test_data_api.py` to check that all the APIs used are active. If any is out of service (temporarily or permanently), the test will indicate which one.

22.8.2 Manual download

As indicated in the software and tutorials, other data might need to be downloaded manually by the user. The following table shows these last data sources, their version used, its current availability and where they are used within CLIMADA:

<table>
<thead>
<tr>
<th>Availability</th>
<th>Name</th>
<th>Version</th>
<th>Link</th>
<th>CLIMADA class</th>
<th>CLIMADA version</th>
<th>CLIMADA tutorial reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Fire Information for Resource Management System</td>
<td>FIRMS</td>
<td>BushFire</td>
<td>>V1.2.5</td>
<td>climada_hazard_BushFire.ipynb</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Gridded Population of the World (GPW)</td>
<td>v4.11</td>
<td>GPW4.</td>
<td>ILitPop</td>
<td>v1.2.3</td>
<td>climada_entity_LitPop.ipynb</td>
</tr>
<tr>
<td>FAILED</td>
<td>Gridded Population of the World (GPW)</td>
<td>v4.10</td>
<td>GPW4.</td>
<td>ILitPop</td>
<td>>= v1.2.0</td>
<td>climada_entity_LitPop.ipynb</td>
</tr>
</tbody>
</table>
22.9 Side Note on Parameters

22.9.1 Don’t use *args and **kwargs parameters without a very good reason.

There are valid use cases for this kind of parameter notation. In particular, *args comes in handy when there is an unknown number of equal typed arguments to be passed. E.g., the `pathlib.Path` constructor. But if the parameters are expected to be structured in any way, it is just a bad idea.

```python
def f(x, y, z):
    return x + y + z

def g(*args, **kwargs):
    x = args[0]
y = kwargs['y']
s = f(*args, **kwargs)
    print(x, y, s)
g(1, y=2, z=3)
```

1 2 6

```python
# usually just fine
def g(x, y, z):
s = f(x, y, z)
    print(x, y, s)
g(1, y=2, z=3)
```

22.9.2 Decrease the number of parameters.

Though CLIMADA’s pylint configuration .pylintrc allows 7 arguments for any method or function before it complains, it is advisable to aim for less. It is quite likely that a function with so many parameters has an inherent design flaw.

There are very well designed command line tools with innumerable optional arguments, e.g., rsync - but these are command line tools. There are also methods like pandas.DataFrame.plot() with countless optional arguments and it makes perfectly sense.

But within the climada package it probably doesn’t. divide et impera!

Whenever a method has more than 5 parameters, it is more than likely that it can be refactored pretty easily into two or more methods with less parameters and less complexity:

```python
def f(a, b, c, d, e, f, g, h):
    print(f'f does many things with a lot of arguments: {a, b, c, d, e, f, g, h}')
    return sum([a, b, c, d, e, f, g, h])

f(1, 2, 3, 4, 5, 6, 7, 8)
f does many things with a lot of arguments: (1, 2, 3, 4, 5, 6, 7, 8)
```

36
```python
def f1(a, b, c, d):
    print(f'f1 does less things with fewer arguments: (a, b, c, d)')
    return sum([a, b, c, d])

def f2(e, f, g, h):
    print(f'f2 dito: (e, f, g, h)')
    return sum([e, f, g, h])

def f3(x, y):
    print(f'f3 dito, but on a higher level: (x, y)')
    return sum([x, y])
f3(f1(1, 2, 3, 4), f2(5, 6, 7, 8))
```

This of course pleads the case on a strictly formal level. No real complexities have been reduced during the making of this example. Nevertheless there is the benefit of reduced test case requirements. And in real life real complexity will be reduced.
The CLIMADA documentation consists of .rst files and Jupyter Notebooks. It is built into an HTML webpage by the Sphinx package.

The online documentation is automatically built when the main or develop branch are updated. Additionally, documentation previews will be built for every pull request on GitHub, and will be displayed under “Checks”.

Note that the online documentation allows you to switch versions. By default, you will see the stable version, which refers to the latest release. You can switch to latest, which refers to the latest version of the develop branch.

23.1 Local Build

You can also build and browse the documentation on your machine. This can be useful if you want to access the documentation of a particular feature branch or to check your updates to the documentation.

For building the documentation, you need to follow the advanced installation instructions. Make sure to install the developer requirements as well.

Then, activate the climada_env and navigate to the doc directory:

```bash
conda activate climada_env
cd climada_python/doc
```

Next, execute make (this might take a while when executed for the first time)

```bash
make html
```

The documentation will be placed in doc/_html. Simply open the page doc/_html/index.html with your browser.

23.2 Updating the Documentation Environment for Readthedocs.org

The online documentation is built by readthedocs.org. Their servers have a limited capacity, which is typically exceeded by Anaconda when it tries to resolve all dependencies for CLIMADA. We therefore provide a dedicated environment with fixed package versions in requirements/env_docs.yml.

For re-creating this environment, we provide a Dockerfile. You can use it to build a new environment and extract the exact versions from it. This might be necessary when we upgrade to a new version of Python, or when dependencies are updated. NOTE: Your machine must be able to run/virtualize an AMD64 OS.

Follow these instructions:

1. Install Docker on your machine.
2. Enter the top-level directory of the CLIMADA repository with your shell:

```
cd climada_python
```

3. Instruct Docker to build an image from the `doc/create_env_doc.dockerfile`:

```
docker build -f doc/create_env_doc.dockerfile -t climada_env_doc ./
```

4. Run a container from this image:

```
docker run -it climada_env_doc
```

5. You have now entered the container. Activate the conda environment and export its specs:

```
conda activate climada_doc
conda env export
```

Copy and paste the shell output of the last command into the `requirements/env_docs.yml` file in the CLIMADA repository, overwriting all its contents.
CLIMADA has been using a private Jenkins instance for automated testing (Continuous Integration, CI), see *Testing and Continuous Integration*. We recently adopted *GitHub Actions* for automated unit testing. GitHub Actions is a service provided by GitHub, which lets you configure CI/CD pipelines based on YAML configuration files. GitHub provides servers which ample computational resources to create software environments, install software, test it, and deploy it. See the *GitHub Actions Overview* for a technical introduction, and the *Workflow Syntax* for a reference of the pipeline definitions.

The CI results for each pull request can be inspected in the “Checks” tab. For GitHub Actions, users can inspect the logs of every step for every job.

Note: As of CLIMADA v4.0, the default CI technology remains Jenkins. GitHub Actions CI is currently considered experimental for CLIMADA development.

24.1 Unit Testing Pipeline

This pipeline is defined by the `.github/workflows/ci.yml` file. It contains a single job which will create a CLIMADA environment with Mamba for multiple Python versions, install CLIMADA, run the unit tests, and report the test coverage as well as the simplified test results. The job has a `strategy` which runs it for multiple times for different Python versions. This way, we make sure that CLIMADA is compatible with all currently supported versions of Python.

The coverage reports in HTML format will be uploaded as job artifacts and can be downloaded as ZIP files. The test results are simple testing summaries that will appear as individual checks/jobs after the respective job completed.
CLIMADA stands for CLImate ADAptation and is a probabilistic natural catastrophe impact model, that also calculates averted damage (benefit) thanks to adaptation measures of any kind (from grey to green infrastructure, behavioural, etc.).

As of today, CLIMADA provides global coverage of major climate-related extreme-weather hazards at high resolution (4x4km) via a data API. For select hazards, historic and probabilistic events sets, for past, present and future climate exist at distinct time horizons. You will find a repository containing scientific peer-reviewed articles that explain software components implemented in CLIMADA here.

CLIMADA is divided into two parts (two repositories):

1. the core climada_python contains all the modules necessary for the probabilistic impact, the averted damage, uncertainty and forecast calculations. Data for hazard, exposures and impact functions can be obtained from the data API. Litpop is included as demo Exposures module, and Tropical cyclones is included as a demo Hazard module.

2. the petals climada_petals contains all the modules for generating data (e.g., TC_Surge, WildFire, OpenStreeMap, …). Most development is done here. The petals builds-upon the core and does not work as a stand-alone.

It is recommend for new users to begin with the core (1) and the tutorials therein.

This is the Python (3.9+) version of CLIMADA - please see here for backward compatibility with the MATLAB version.

25.1 Getting started

CLIMADA runs on Windows, macOS and Linux. The released versions of the CLIMADA core can be installed directly through Anaconda:

```
conda install -c conda-forge climada
```

It is **highly recommended** to install CLIMADA into a separate Anaconda environment. See the installation guide for further information.

Follow the tutorials in a Jupyter Notebook to see what can be done with CLIMADA and how.
25.2 Documentation

The online documentation is available on Read the Docs. The documentation of each release version of CLIMADA can be accessed separately through the drop-down menu at the bottom of the left sidebar. Additionally, the version ‘stable’ refers to the most recent release (installed via conda), and ‘latest’ refers to the latest unstable development version (the develop branch).

CLIMADA python:
 • online (recommended)
 • PDF file
 • core Tutorials on GitHub

CLIMADA petals:
 • online (recommended)
 • PDF file
 • petals Tutorials on GitHub

The documentation can also be built locally.

25.3 Citing CLIMADA

See the Citation Guide.

Please use the following logo if you are presenting results obtained with or through CLIMADA:

[CLIMADA logo]

25.4 Contributing

See the Contribution Guide.

25.5 Versioning

We use SemVer for versioning. For the versions available, see the releases on this repository.
25.6 License

Copyright (C) 2017 ETH Zurich, CLIMADA contributors listed in AUTHORS.

CLIMADA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3, 29 June 2007 as published by the Free Software Foundation, https://www.gnu.org/licenses/gpl-3.0.html

CLIMADA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details: https://www.gnu.org/licenses/gpl-3.0.html
CHAPTER TWENTYSIX

CHANGELOG

26.1 4.0.1

Release date: 2023-09-27

26.1.1 Dependency Changes

Added:
 • matplotlib-base None → >=3.8

Changed:
 • geopandas >=0.13 → >=0.14
 • pandas >=1.5,<2.0 → >=2.1

Removed:
 • matplotlib >=3.7

26.1.2 Changed

 • Rearranged file-system structure: data directory moved into climada package directory. #781

26.1.3 Fixed

 • climada.util.coordinates.get_country_code bug, occurring with non-standard longitudinal coordinates around the anti-meridian. #770

26.2 4.0.0

Release date: 2023-09-01
26.2.1 Dependency Updates

Added:

- pytest #726
- pytest-cov #726
- pytest-subtests #726
- unittest-xml-reporting

Changed:

- cartopy >=0.20.0,<0.20.3 → >=0.21
- cfgrib >=0.9.7,<0.9.10 → =0.9.9
- contextily >=1.0 → >=1.3
- dask >=2.25 → >=2023
- eccodes [auto] → =2.27
- gdal !=3.4.1 → =3.6
- geopandas >=0.8 → >=0.13
- h5py >=2.10 → >=3.8
- haversine >=2.3 → >=2.8
- matplotlib >=3.2,< 3.6 → >=3.7
- netcdf4 >=1.5 → >=1.6
- numba >=0.51,!=0.55.0 → >=0.57
- openpyxl >=3.0 → >=3.1
- pandas-datareader >=0.9 → >=0.10
- pathos >=0.2 → >=0.3
- pint >=0.15 → >=0.22
- proj !=9.0.0 → >=9.1
- pycountry >=20.7 → >=22.3
- pytables >=3.6 → >=3.7
- rasterio 1.2.7,<1.3 → >=1.3
- requests >=2.24 → >=2.31
- salib >=1.3.0 → >=1.4
- scikit-learn >=1.0 → >=1.2
- scipy >=1.6 → >=1.10
- sparse >=0.13 → >=0.14
- statsmodels >=0.11 → >=0.14
- tabulate >=0.8 → >=0.9
- tqdm >=4.48 → >=4.65
- xarray >=0.13 → >=2023.5
• `xlrd >=1.2 -> >=2.0`
• `xlsxwriter >=1.3 -> >=3.1`

Removed:
• `nbsphinx #712`
• `pandoc #712`
• `xmlrunner`

26.2.2 Added

- `Impact.impact_at_reg` method for aggregating impacts per country or custom region `#642`
- `Impact.match_centroids` convenience method for matching (hazard) centroids to impact objects `#602`
- `climada.util.coordinates.match_centroids` method for matching (hazard) centroids to Geo-DataFrames `#602`
- "Extra" requirements `doc, test, and dev` for Python package `#712`
- Added method `Exposures.centroids_total_value` to replace the functionality of `Exposures.affected_total_value`. This method is temporary and deprecated. `#702`
- New method `climada.util.api_client.Client.purge_cache`: utility function to remove outdated files from the local file system to free disk space. `(#737)`
- New attribute `climada.hazard.Hazard.haz_type`: used for assigning impacts to hazards. In previous versions this information was stored in the now removed `climada.hazard.tag.Tag` class. `#736`
- New attribute `climada.entity.exposures.Exposures.description`: used for setting the default title in plots from plotting methods `plot_hexbin` and `plot_scatter`. In previous versions this information was stored in the deprecated `climada.entity.tag.Tag` class. `#756`
- Added advanced examples in unsequa tutorial for coupled input variables and for handling efficiently the loading of multiple large files `#766`

26.2.3 Changed

- Improved error messages from `climada.CONFIG` in case of missing configuration values `#670`
- Refactored `Exposure.assign_centroids` using a new `util` function `u_coord.match_centroids` `#602`
- Renamed `climada.util.coordinate.assign_grid_points` to `match_grid_points` and `climada.util.coordinates.assign_coordinates` to `match_coordinates` `#602`
- Modified the method to disaggregate lines in the `lines_polys_handler` utility module in order to better conserve the total length of all lines on average `#679`.
- Added test for non-default impact function id in the `lines_polys_handler` `#676`
- The sigmoid and step impact functions now require the user to define the hazard type. `#675`
- Improved error messages produced by `ImpactCalc.impact()` in case hazard type is not found in exposures/impf_set `#691`
- Tests with long runtime were moved to integration tests in `climada/test` `#709`
- Use `myst-nb` for parsing Jupyter Notebooks for the documentation instead of `nbsphinx` `#712`
• Installation guide now recommends installing CLIMADA directly via `conda install` #714

• Exposures.affected_total_value now takes a hazard intensity threshold as argument. Affected values are only those for which at least one event exceeds the threshold. (previously, all exposures points with an assigned centroid were considered affected). By default the centroids are reassigned. #702 #730

• Add option to pass region ID to `LitPop.from_shape` #720

• Slightly improved performance on `LitPop`-internal computations #720

• Use `pytest` for executing tests #726

• Users can opt-out of the climada specific logging definitions and freely configure logging to their will, by setting the config value `logging.managed` to `false`. #724

• Add option to read additional variables from IBTrACS when using `TCTracks.from_ibtracs_netcdf` #728

• New file format for `TCTracks` I/O with better performance. This change is not backwards compatible: If you stored `TCTracks` objects with `TCTracks.write_hdf5`, reload the original data and store them again. #735

• Add option to load only a subset when reading TC tracks using `TCTracks.from_simulations_emmanuel`. #741

• Set `save_mat` to `False` in the `unsequa` module #746

• `list_dataset_infos` from `climada.util.api_client.Client` the properties argument, a dict, can now have `None` as values. Before, only strings and lists of strings were allowed. Setting a particular property to `None` triggers a search for datasets where this property is not assigned. #752

• Reduce memory requirements of `TropCyclone.from_tracks` #749

• Support for different wind speed and pressure units in `TCTracks` when running `TropCyclone.from_tracks` #749

• The title of plots created by the `Exposures` methods `plot_hexbin` and `plot_scatter` can be set as a method argument. #756

• Changed the parallel package from Pathos to Multiprocess in the `unsequa` module #763

• Updated installation instructions to use conda for core and petals #776

26.2.4 Fixed

• `util.lines_polys_handler` solve polygon disaggregation issue in metre-based projection #666

• Problem with `pyproj.CRS` as Impact attribute. #706. Now CRS is always stored as `str` in WKT format.

• Correctly handle assertion errors in `Centroids.values_from_vector_files` and fix the associated test #768

• Text in `Forecast` class plots can now be adjusted #769

• `Impact.impact_at_reg` now supports impact matrices where all entries are zero #773

• upgrade pathos 0.3.0 -> 0.3.1 issue #761 (for unsequa module #763)

• Fix bugs with pandas 2.0 (iteritems -> items, append -> concat) (fix issue #700 for unsequa module) #763

• Remove `matplotlib` styles in `unsequa` module (fixes issue #758) #763
26.2.5 Deprecated

- `Centroids.from_geodataframe` and `Centroids.from_pix_bounds` #721
- `Impact.tot_value`: Use `Exposures.affected_total_value` to compute the total value affected by a hazard intensity above a custom threshold #702
- `climada.entity.tag.Tag`. The class is not used anymore but had to be kept for reading `Exposures` HDF5 files that were created with previous versions of CLIMADA.

26.2.6 Removed

- `Centroids.set_raster_from_pix_bounds` #721
- `requirements/env_developer.yml` environment specs. Use 'extra' requirements when installing the Python package instead #712
- The `climada.entity.tag.Tag` class, together with `Impact.tag`, `Exposures.tag`, `ImpactFuncSet.tag`, `MeasuresSet.tag`, `Hazard.tag` attributes. This may break backwards-compatibility with respect to the files written and read by the `Impact` class. #736, #743, #753, #754, #756, #767, #779
- `impact.tot_value` attribute removed from unsequa module #763

26.3 v3.3.2

Release date: 2023-03-02

26.3.1 Dependency Updates

Removed:

- `pybufrkit` #662

26.4 v3.3.1

Release date: 2023-02-27

26.4.1 Description

Patch-release with altered base config file so that the basic installation test passes.
26.4.2 Changed

- The base config file `climada/conf/climada.conf` has an entry for `CONFIG.hazard.test_data`.

26.5 v3.3.0

Release date: 2023-02-17

26.5.1 Dependency Changes

new:

- `sparse` (>=0.13) for #578

updated:

- `python 3.9` - python 3.8 will still work, but python 3.9 is now the default version for installing climada (#614)
- `contextily` >=1.0 (no longer restricted to <1.2 as `contextily.sources` has been replaced in #517)
- `cartopy` >=0.20.0,<0.20.3 (>=0.20.3 has an issue with geographic crs in plots)
- `matplotlib` >=3.2,<3.6 (3.6 depends on cartopy 0.21)

26.5.2 Added

- `climada.hazard.Hazard.from_xarray_raster(_file)` class methods for reading Hazard objects from an `xarray.Dataset`, or from a file that can be read by `xarray`. #507, #589, #652.
- `climada.engine.impact.Impact` objects have new methods `from_hdf5` and `write_hdf5` for reading their data from, and writing it to, H5 files #606
- `climada.engine.impact.Impact` objects has a new class method `concat` for concatenation of impacts based on the same exposures #529.
- `climada.engine.impact_calc` this module was separated from `climada.engine.impact` and contains the code that dealing with impact calculation while the latter focuses on impact data #560.
- The classes `Hazard, Impact` and `ImpactFreqCurve` have a novel attribute `frequency_unit`. Before it was implicitly set to annual, now it can be specified and accordingly displayed in plots. #532.
- CONTRIBUTING.md #518.
- Changelog based on the CLIMADA release overview and https://keepachangelog.com template #626.

26.5.3 Changed based on the CLIMADA release overview and https://keepachangelog.com template #626.

- The `Impact` calculation underwent a major refactoring. Now the suggested way to run an impact calculation is by `climada.engine.impact_calc.ImpactCalc.impact()` #436, #527.
- Addition of uncertainty helper methods variables: list of hazard, list of impact function sets, and hazard fraction. This allows to pre-compute hazards or impact function sets from different sources from which one can then sample uniformly. #513
• Full initialization of most Climada objects is now possible (and suggested!) in one step, by simply calling the
constructor with all arguments required for coherently filling the object with data: #560, #553, #550, #564, #563,
#565, #573, #569, #570, #574, #559, #571, #549, #567, #568, #562.

• It is possible now to set the fraction of a Hazard object to None which will have the same effect as if it were
1 everywhere. This saves a lot of memory and calculation time, #541.

• The online documentation has been completely overhauled: #597, #600, #609, #620, #615, #617, #622, #656.

• Updated installation instructions #644

26.5.4 Fixed

• several antimeridian issues: #524, #551, #613.

• bug in climada.hazard.Centroids.set_on_land() when coordinates go around the globe: #542,
#543.

• bug in climada.util.coordinates.get_country_code() when all coordinates are on sea.

• suppress pointless warnings in plotting functions, #520.

• test coverage improved: #583, #594, #608, #616, #637.

• deprecated features removed: #517, #535, #566,

26.5.5 Deprecated

calc_impact_yearset() #436.
CLIMADA LIST OF AUTHORS

• Gabriela Aznar-Siguan
• David N. Bresch
• Samuel Eberenz
• Jan Hartman
• Marine Perus
• Thomas Röösli
• Dario Stocker
• Veronica Bozzini
• Tobias Geiger
• Carmen B. Steinmann
• Evelyn Mühlhofer
• Rachel Bungerer
• Inga Sauer
• Samuel Lüthi
• Pui Man Kam
• Simona Meiler
• Alessio Ciullo
• Thomas Vogt
• Benoit P. Guillod
• Chahan Kropf
• Emanuel Schmid
• Chris Fairless
• Jan Wüthrich
• Zélie Standhanske
• Yue Yu
• Lukas Riedel
• Raphael Portmann
• Nicolas Colombi
• Leonie Villiger
Thank you for contributing to CLIMADA!

28.1 Overview

Before you start, please have a look at our Developer Guide.

To contribute follow these steps:

1. Install CLIMADA following the installation instructions for developers.

2. In the CLIMADA repository, create a new feature branch from the latest develop branch:

   ```
git checkout develop && git pull
git checkout -b feature/my-fancy-branch
   ```

3. Implement your changes and commit them with meaningful and well formatted commit messages.

4. Add unit and integration tests to your code, if applicable.

5. Use Pylint for a static code analysis of your code with CLIMADA’s configuration .pylintrc:

   ```
   pylint
   ```

6. Add your name to the AUTHORS file.

7. Push your updates to the remote repository:

   ```
git push --set-upstream origin feature/my-fancy-branch
   ```

NOTE: Only team members are allowed to push to the original repository. Most contributors are/will be team members. To be added to the team list and get permissions please contact one of the owners. Alternatively, you can fork the CLIMADA repository and add this fork as a new remote to your local repository. You can then push to the fork remote:

   ```
git remote add fork <your-fork-url>
git push --set-upstream fork feature/my-fancy-branch
   ```

8. On the CLIMADA-project/climada_python GitHub repository, create a new pull request with target branch develop. This also works if you pushed to a fork instead of the main repository. Add a description and explanation of your changes and work through the pull request author checklist provided. Feel free to request reviews from specific team members.

9. After approval of the pull request, the branch is merged into develop and your changes will become part of the next CLIMADA release.
28.2 Resources

The CLIMADA documentation provides a Developer Guide. Here’s a selection of the commonly required information:

- How to use Git and GitHub for CLIMADA development: Development and Git and CLIMADA
- Coding instructions for CLIMADA: Python Dos and Don’ts, Performance Tips, CLIMADA Conventions
- How to execute tests in CLIMADA: Testing and Continuous Integration

28.3 Pull Requests

After developing a new feature, fixing a bug, or updating the tutorials, you can create a pull request to have your changes reviewed and then merged into the CLIMADA code base. To ensure that your pull request can be reviewed quickly and easily, please have a look at the Resources above before opening a pull request. In particular, please check out the Pull Request instructions.

We provide a description template for pull requests that helps you provide the essential information for reviewers. It also contains a checklist for both pull request authors and reviewers to guide the review process.
CHAPTER

TWENTYNINE

CITATION GUIDE

If you use CLIMADA for your work, please cite the appropriate publications. A list of all CLIMADA code related articles is available on Zotero and can be downloaded as single Bibtex file: climada_publications.bib

29.1 Publications by Module

If you use specific tools and modules of CLIMADA, please cite the appropriate publications presenting these modules according to the following table:

<table>
<thead>
<tr>
<th>Module or tool used</th>
<th>Publication to cite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>The Zenodo archive of the CLIMADA version you are using</td>
</tr>
<tr>
<td>Lines and polygons exposures or Open Street Map exposures</td>
<td>Mühlhofer, E., et al. (2023): OpenStreetMap for Multi-Faceted Climate Risk Assessments https://eartharxiv.org/repository/view/5615/</td>
</tr>
</tbody>
</table>

Please find the code to reprodeuce selected CLIMADA-related scientific publications in our repository of scientific publications.

29.2 Links and Logo

In presentations or other graphical material, as well as in reports etc., where applicable, please add the following logo: climada_logo_QR.png:
As key link, please use https://wcr.ethz.ch/research/climada.html, as it provides a brief introduction especially for those not familiar with GitHub.
C
climada.engine.calibration_opt, 45
climada.engine.cost_benefit, 48
climada.engine.forecast, 53
climada.engine.impact, 58
climada.engine.impact_calc, 69
climada.engine.impact_data, 73
climada.engine.unsequa.calc_base, 25
climada.engine.unsequa.calc_cost_benefit
27
climada.engine.unsequa.calc_impact, 29
climada.engine.unsequa.input_var, 32
climada.engine.unsequa.unc_output, 38
climada.entity.disc_rates.base, 78
climada.entity.entity_def, 115
climada.entity.exposures.base, 92
climada.entity.exposures.litpop.gpw_population,
81
climada.entity.exposures.litpop.litpop,
82
climada.entity.exposures.litpop.nightlight,
88
climada.entity.impact_funcs.base, 100
climada.entity.impact_funcs.impact_func_set,
103
climada.entity.impact_funcs.storm_europe,
105
climada.entity.impact_funcs.trop_cyclone,
106
climada.entity.measures.base, 109
climada.entity.measures.measure_set, 112
climada.entity.tag, 116
climada.hazard.base, 126
climada.hazard.centroids.centr, 116
climada.hazard.isimip_data, 141
climada.hazard.storm_europe, 141
climada.hazard.tc_clim_change, 145
climada.hazard.tc_tracks, 145
climada.hazard.tc_tracks_synth, 154
climada.hazard.trop_cyclone, 156
climada.util.api_client, 161
climada.util.checker, 169
climada.util.config, 170
climada.util.constants, 170
climada.util.coordinates, 172
climada.util.dates_times, 190
climada.util.dwd_icon_loader, 191
climada.util.files_handler, 192
climada.util.finance, 192
climada.util.hdf5_handler, 193
climada.util.lines_polys_handler, 194
climada.util.plot, 200
climada.util.save, 202
climada.util.scalebar_plot, 203
climada.util.select, 203
climada.util.value_representation, 204
climada.util.yearsets, 205
Symbols

__init__() (climada.engine.cost_benefit.CostBenefit method), 49
__init__() (climada.engine.cost_benefit.CalcCostBenefit method), 49
__init__() (climada.engine.forecast.Forecast method), 54
__init__() (climada.engine.impact.Impact method), 60
__init__() (climada.engine.impact.ImpactFreqCurve method), 58
__init__() (climada.engine.impact_calc.ImpactCalc method), 25
__init__() (climada.engine.unsequa.calc_base.Calc method), 28
__init__() (climada.engine.unsequa.calc_cost_benefit.CalcCostBenefit method), 28
__init__() (climada.engine.unsequa.calc_impact.CalcImpact method), 30
__init__() (climada.engine.unsequa.input_var.InputVar method), 33
__init__() (climada.engine.unsequa.unc_output.UncCostBenefitOutput method), 38
__init__() (climada.engine.unsequa.unc_output.UncImpactOutput method), 44
__init__() (climada.engine.unsequa.unc_output.UncOutput method), 45
__init__() (climada.entity.disc_rates.base.DiscRates method), 78
__init__() (climada.entity.impact_funcs.base.ImpactFuncs method), 101
__init__() (climada.entity.impact_funcs.base.ImpactFuncSet method), 103
__init__() (climada.entity.impact_funcs.base.ImpactFuncSet method), 103
__init__() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 105
__init__() (climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone method), 106
__init__() (climada.entity.measures.base.Measure method), 110
__init__() (climada.entity.measures.measure_set.MeasureSet method), 112
__init__() (climada.entity.tag.Tag method), 116
__init__() (climada.hazard.base.Hazard method), 127
__init__() (climada.hazard.centroids.centr.Centroids method), 118
__init__() (climada.hazard.storm_europe.StormEurope method), 141
__init__() (climada.hazard.tc_tracks.TCTracks method), 146
__init__() (climada.hazard.trop_cyclone.TropCyclone method), 157
__init__() (climada.util.api_client.Client method), 162
__init__() (climada.util.api_client.DatasetInfo method), 163
__init__() (climada.util.api_client.DataTypeInfo method), 163
__init__() (climada.util.api_client.FileInfo method), 164
__init__() (climada.util.api_client.DataTypeInfo method), 164
__init__() (climada.util.api_client.DataTypeInfo method), 165
__init__() (climada.util.api_client.DataTypeInfo method), 165
__init__() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 103
__init__() (climada.entity.measures.measure_set.MeasureSet method), 112
_input_val_names (climada.entity.measures.measure_set.MeasureSet attribute), 25
_input_val_names (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet attribute), 28
_input_val_names (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet attribute), 28
_metric_names (climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone attribute), 30

641
Index

A

- `_metric_names` (climada.engine.unsequa.calc_impact.CalcImpact attribute), 30
- `aai_agg` (climada.engine.impact.Impact attribute), 59
- `aai_agg_from_at_event()` (in module climada.util.lines_polys_handler), 199
- `aai_agg_from_eai_exp()` (climada.engine.impact_impact.calc.ImpactCalc static method), 73
- `activation_date` (climada.util.api_client.DatasetInfo attribute), 162
- `add_centry_names()` (in module climada.util.plot), 202
- `add_populated_places()` (in module climada.util.plot), 201
- `add_sea()` (in module climada.entity.exposures.base), 99
- `add_shapes()` (in module climada.util.plot), 201
- `affected_total_value()` (climada.entity.exposures.base.Exposures method), 99
- `AggMethod` (class in climada.util.lines_polys_handler), 194
- `ai_agg()` (climada.engine.forecast.Forecast method), 54
- `align_raster_data()` (in module climada.util.plot), 188
- `append()` (climada.entity.disc_rates.base.DiscRates method), 79
- `append()` (climada.entity.measures_impact_impact_funcs.impact_func_set.ImpactFuncSet method), 103
- `append()` (climada.entity.measures.measures.measures_set.MeasureSet method), 112
- `append()` (climada.hazard.base.Hazard method), 139
- `append()` (climada.hazard.centroids.cent.cent. Centroids method), 122
- `append()` (climada.hazard.tc_tracks.TCTracks method), 147
- `apply()` (climada.entity.measures.measures.base. MeasureSet method), 111
- `apply_climate_scenario_knu()` (climada.hazard.trop_cyclone.TropCyclone method), 159
- `apply_cover_to_mat()` (climada.engine.impact_impact.calc.ImpactCalc static method), 72
- `apply_deductible_to_mat()` (climada.engine.impact_impact.calc.ImpactCalc static method), 72
- `apply_risk转让()` (climada.engine.costBenefit.CostBenefit method), 50
- `area_pixel` (climada.hazard.centroids.cent.cent. Centroids attribute), 117

B

- `array_default()` (in module climada.util.checker), 169
- `array_optional()` (in module climada.util.checker), 169
- `assign_centroids()` (climada.entity.exposures.base.Exposures method), 94
- `assign_coordinates()` (in module climada.util.plot), 199
- `assign_grid_points()` (in module climada.util.plot), 179
- `assign_hazard_to_emat()` (in module climada.engine.impact_impact.calc.ImpactCalc static method), 73
- `assign_track_to_em()` (in module climada.engine.impact_impact.calc.ImpactCalc static method), 75
- `at_event` (climada.engine.impact.Impact attribute), 59
- `at_event_from_mat()` (climada.engine.impact_impact.calc.ImpactCalc static method), 73

C

- `Cacher` (class in climada.util.api_client), 163
- `Calc` (class in climada.engine.unsequa.calc_impact), 25
- `calc()` (climada.engine.costBenefit.CostBenefit method), 49
- `calc()` (climada.engine.forecast.Forecast method), 55
- `calc()` (climada.engine.impact.Impact method), 60
- `calc_at_event` (climada.engine.unsequa.calc_impact.CalcImpact attribute), 30
- `calc_eai_exp` (climada.engine.unsequa.calc_impact.CalcImpact attribute), 30
- `calc_freq_curve()` (climada.engine.impact.Impact method), 62
- `calc_geom_impact()` (in module climada.util.plot), 194
- `calc_grid_impact()` (in module climada.util.plot), 195
- `calc_impact()` (climada.entity.measures.measures.base. MeasureSet method), 111
concat() (climada.entity.exposures.base.Exposures static method), 99
concat() (climada.hazard.base.Hazard class method), 139
convert_monetary_value() (in module climada.util.value_representation), 204
convert_wgs_to_utm() (in module climada.util.coordinates), 176
coord (climada.hazard.centroids.centr.Centroids property), 126
coord_exp (climada.engine.impact.Impact attribute), 59
coord_on_land() (in module climada.util.coordinates), 177
copy() (climada.entity.exposures.base.Exposures method), 98
cost (climada.entity.measures.base.Measure attribute), 109
cost_ben_ratio (climada.engine.cost_benefit.CostBenefit attribute), 49
CostBenefit (class in climada.engine.cost_benefit), 48
country_faocode2iso() (in module climada.util.coordinates), 190
country_iso2faocode() (in module climada.util.coordinates), 190
country_iso2natid() (in module climada.util.coordinates), 181
country_iso_alpha2numeric() (in module climada.util.coordinates), 181
country_natid2iso() (in module climada.util.coordinates), 181
country_to_iso() (in module climada.util.coordinates), 180
cover (climada.entity.exposures.base.Exposures attribute), 93
create_lookup() (in module climada.engine.impact_data), 74
crs (climada.engine.impact.Impact attribute), 59
crs (climada.hazard.base.Hazard attribute), 126
crs (climada.hazard.centroids.centr.Centroids property), 125
data_type_group (climada.util.api_client.DataTypeShortInfo attribute), 162
DatasetsInfo (class in climada.util.api_client), 162
DataType (class in climada.util.api_client), 162
DataTypeShortInfo (class in climada.util.api_client), 162
date (climada.engine.impact.Impact attribute), 59
date (climada.hazard.base.Hazard attribute), 126
date_to_str() (in module climada.util.dates_times), 190
datetime64_toOrdinal() (in module climada.util.dates_times), 190
deductible (climada.entity.exposures.base.Exposures attribute), 93
def_file (climada.entity.entity_def.Entity attribute), 115
delete_icon_grib() (in module climada.util.dwd_icon_loader), 191
DEM_NODATA (in module climada.util.coordinates), 172
DEMO_DIR (in module climada.util.constants), 170
description (climada.entity.exposures.base.Exposures attribute), 92
description (climada.util.api_client.DatasetInfo attribute), 162
description (climada.util.api_client.DataTypeInfo attribute), 162
DisaggMethod (class in climada.util.lines_polys_handler), 194
disc_rates (climada.entity.entity_def.Entity attribute), 115
DiscRates (class in climada.entity.disc_rates.base), 78
dist_approx() (in module climada.util.coordinates), 174
dist_coast (climada.hazard.centroids.centr.Centroids attribute), 117
dist_to_coast() (in module climada.util.coordinates), 176
dist_to_coast_nasa() (in module climada.util.coordinates), 176
distr_dict (climada.engine.unsequa.calc_base.Calc property), 26
distr_dict (climada.engine.unsequa.input_var.InputVar attribute), 32
DIVER (climada.util.lines_polys_handler.DisaggMethod attribute), 194
DoesNotExist (climada.util.api_client.Download attribute), 161
doi (climada.util.api_client.DatasetInfo attribute), 161
Download (class in climada.util.api_client), 161
DownloadFailed, 161
download_dataset() (climada.util.api_client.Client method), 165
download_icon_centroids_file() (in module climada.util.dwd_icon_loader), 191
download_icon_grib() (in module climada.util.dwd_icon_loader), 191
download_nl_files() (in module climada.entity.exposures.litpop.nightlight), 90
DOWNLOAD_TIMEOUT (climada.util.api_client.Client attribute), 164

E

eai_exp (climada.engine.impact.Impact attribute), 59
eai_exp_from_mat() (climada.engine.impact_calc.ImpactCalc static method), 72
eai_exp_from_mat() (in module climada.util.lines_polys_handler), 199
EARTH_RADIUS_KM (in module climada.util.constants), 170
ei_exp() (climada.engine.forecast.Forecast method), 54
elevation (climada.hazard.centroids.ctrn.Centroids attribute), 117
emdat_countries_by_hazard() (in module climada.engine.impact_data), 76
emdat_impact_event() (in module climada.engine.impact_data), 77
emdat_impact_yearlysum() (in module climada.engine.impact_data), 76
emdat_possible_hit() (in module climada.engine.impact_data), 74
emdat_to_impact() (in module climada.engine.impact_data), 77
empty_geometry_points() (climada.hazard.centroids.ctrn.Centroids method), 125
enddownload (climada.util.api_client.Download attribute), 161
ent() (climada.engine.unsequa.input_var.InputVar static method), 35
ENT_DEMO_FUTURE (in module climada.util.constants), 170
ENT_DEMO_TODAY (in module climada.util.constants), 170
ent_fut_input_var (climada.engine.unsequa.calc_cost_benefit.CalcCostBenefit attribute), 28
ent_input_var (climada.engine.unsequa.calc_cost_benefit.CalcCostBenefit attribute), 28
ENT_TEMPLATE_XLS (in module climada.util.constants), 170
entfut() (climada.engine.unsequa.input_var.InputVar static method), 37
Entity (class in climada.entity.entity_def), 115

equal() (climada.hazard.centroids.ctrn.Centroids method), 118
equal_crs() (in module climada.util.coordinates), 184
equal_timestep() (climada.hazard.tc_tracks.TCTracks method), 151
est_comp_time() (climada.engine.unsequa.calc_base.Calc method), 26
evaluate() (climada.engine.unsequa.input_var.InputVar method), 33
event_date (climada.engine.forecast.Forecast attribute), 53
event_id (climada.engine.impact.Impact attribute), 58
event_id (climada.hazard.base.Hazard attribute), 126
event_name (climada.engine.impact.Impact attribute), 59
event_name (climada.hazard.base.Hazard attribute), 126
exp() (climada.engine.unsequa.input_var.InputVar static method), 34
EXP_DEMO_H5 (in module climada.util.constants), 171
exp_geom_to_grid() (in module climada.util.lines_polys_handler), 197
exp_geom_to_pnt() (in module climada.util.lines_polys_handler), 197
exp_input_var (climada.engine.unsequa.calc_impact.CalcImpact attribute), 30
exp_region_id (climada.entity.measures.base.Measure attribute), 110
expiration_date (climada.util.api_client.DatasetInfo attribute), 162
exponents (climada.entity.exposures.litpop.LitPop attribute), 82
exposure (climada.engine.forecast.Forecast attribute), 53
exposure_name (climada.engine.forecast.Forecast attribute), 53
Exposures (class in climada.entity.exposures.base), 92
exposures (climada.entity.entity_def.Entity attribute), 115
exposures_set (climada.entity.measures.base.Measure attribute), 110
extend() (climada.entity.measures.measure_set.MeasureSet method), 114
extent (climada.hazard.tc_tracks.TCTracks property), 152
fao_code_def() (in module climada.util.coordinates), 190
fetch() (climada.util.api_client.Cacher method), 163
file_format (climada.util.api_client.DatasetInfo attribute), 161
file_name (climada.util.api_client.DatasetInfo attribute), 161
file_size (climada.util.api_client.DatasetInfo attribute), 161
 FileInfo (class in climada.util.api_client), 161
files (climada.util.api_client.DatasetInfo attribute), 162
fin_mode (climada.entity.exposures.litpop.litpop.LitPop attribute), 82
first_year() (in module climada.util.dates_times), 190
FIX (climada.util.lines_polys_handler.DisaggMethod attribute), 194
Forecast (class in climada.engine.forecast), 53
fraction (climada.hazard.base.Hazard attribute), 127
frequency (climada.engine.impact.Impact attribute), 59
frequency (climada.hazard.base.Hazard attribute), 127
frequency_from_tracks() (climada.hazard.trop_cyclone.TropCyclone method), 160
frequency_unit (climada.engine.impact.Impact attribute), 59
frequency_unit (climada.engine.impact.ImpactFreqCurve attribute), 58
frequency_unit (climada.hazard.base.Hazard attribute), 127
from_base_grid() (climada.hazard.centroids.centr.Centroids static method), 118
from_calibratedRegional_ImpfSet() (climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone class method), 107
from_cosmoe_file() (climada.hazard.storm_europe.StormEurope class method), 142
from_countries() (climada.entity.exposures.litpop.litpop.LitPop class method), 82
from_csv() (climada.engine.impact.Impact class method), 66
from_eih() (climada.engine.impact.Impact class method), 60
from_emanuel_usa() (climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone class method), 107
from_excel() (climada.engine.impact.Impact class method), 66
from_excel() (climada.entity.entity_def.Entity class method), 116
from_excel() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet class method), 105
from_excel() (climada.entity.measures.measure_set.MeasureSet class method), 114
from_excel() (climada.hazard.base.Hazard class method), 135
from_excel() (climada.hazard.centroids.centr.Centroids class method), 122
from_footprints() (climada.hazard.storm_europe.StormEurope method), 142
from_geodataframe() (climada.hazard.centroids.centr.Centroids class method), 118
from_gettelman() (climada.hazard.tc_tracks.TCTracks class method), 150
from_hdf5() (climada.engine.impact.Impact class method), 67
from_hdf5() (climada.engine.unsequa.unc_output.UncOutput static method), 44
from_hdf5() (climada.entity.exposures.base.Exposures class method), 98
from_hdf5() (climada.hazard.base.Hazard class method), 139
from_hdf5() (climada.hazard.centroids.centr.Centroids class method), 125
from_hdf5() (climada.hazard.tc_tracks.TCTracks class method), 153
from_ibtracs_netcdf() (climada.hazard.tc_tracks.TCTracks class method), 147
from_icon_grib() (climada.hazard.storm_europe.StormEurope class method), 143
from_json() (climada.util.api_client.DatasetInfo static method), 162
from_lat_lon() (climada.hazard.centroids.centr.Centroids class method), 120
from_mat() (climada.entity.disc_rates.base.DiscRates class method), 79
from_mat() (climada.entity.entity_def.Entity class method), 115
from_mat() (climada.entity.exposures.base.Exposures class method), 98
from_mat() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet class method), 105
from_mat() (climada.entity.measures.measure_set.MeasureSet class method), 114
from_mat() (climada.hazard.base.Hazard class method), 67

get_coastlines() (in module climada.util.coordinates), 175
get_countries_per_region() (climada.entity.impact_funcs.trop_cyclone.ImpfSetTropCyclone static method), 108
get_country_code() (in module climada.util.coordinates), 182
get_country_geometries() (in module climada.util.coordinates), 177
get_data_type_info() (climada.util.api_client.Client method), 165
get_default() (climada.hazard.base.Hazard class method), 128
get_event_date() (climada.hazard.base.Hazard method), 138
get_event_id() (climada.hazard.base.Hazard method), 137
get_event_name() (climada.hazard.base.Hazard method), 138
get_exposures() (climada.util.api_client.Client method), 166
get_extent() (climada.hazard.tc_tracks.TCTracks method), 152
get_file_names() (in module climada.util.files_handler), 192
get_func() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 103
get_gpw_file_path() (in module climada.entity.exposures.litpop.gpw_population), 81
get_gridcellarea() (in module climada.util.coordinates), 175
get_hazard() (climada.util.api_client.Client method), 166
get_hazard_types() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 104
get_hazard_types() (climada.entity.measures.measure_set.MeasureSet method), 113
get_ids() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 104
get_impf_column() (climada.entity.exposures.base.Exposures method), 94
get_knutson_criterion() (in module climada.hazard.tc_clim_change), 145
get_land_geometry() (in module climada.util.coordinates), 177
get_largest_si() (climada.engine.unsequa.unc_output.UncOutput method), 40
get_list_str_from_ref() (in module climada.util.hdf5_handler), 194
get_litpop() (climada.util.api_client.Client method), 167
get_mdr() (climada.hazard.base.Hazard method), 140
get_measure() (climada.entity.measures.measure_set.MeasureSet method), 113
get_names() (climada.entity.measures.measure_set.MeasureSet method), 113
get_paa() (climada.hazard.base.Hazard method), 140
get_property_values() (climada.util.api_client.Client static method), 168
get_region_gridpoints() (in module climada.util.coordinates), 178
get_required_nl_files() (in module climada.entity.exposures.litpop.nightlight), 89
get_resolution() (in module climada.util.coordinates), 183
get_resolution_id() (in module climada.util.coordinates), 182
get_samples_df() (climada.engine.unsequa.unc_output.UncOutput method), 39
get_sens_df() (climada.engine.unsequa.unc_output.UncOutput method), 39
get_sensitivity() (climada.engine.unsequa.unc_output.UncOutput method), 40
get_sparse_csr_mat() (in module climada.util.hdf5_handler), 194
get_str_from_ref() (in module climada.util.hdf5_handler), 193
gw_version (in module climada.entity.exposures.litpop.litpop.LitPop)}
INDEX

Indicators

- INDICATOR_IMPFR (in module climada.entity.exposures.base), 100
- init_impact_data() (in module climada.engine.calibration_opt), 46
- init_impf() (in module climada.engine.calibration_opt), 46
- input_vars (climada.engine.unsequa.calc_base.Calculator property), 26
- InputVar (class in climada.engine.unsequa.input_var), 32
- insured_mats_gen() (climada.engine.impact_impf.ImpactCalc method), 71
- intensity (climada.entity.impact_funcs.base.ImpactFunc attribute), 100
- intensity (climada.hazard.base.Hazard attribute), 127
- intensity_thres (climada.hazard.base.Hazard attribute), 127
- intensity_thres (climada.hazard.storm_europe.StormEurope attribute), 141
- intensity_thres (climada.hazard.trop_cyclone.TropCyclone attribute), 157
- intensity_unit (climada.entity.impact_funcs.base.ImpactFunc attribute), 100
- interp_raster_data() (in module climada.util.coordinates), 186
- into_datasets_df() (climada.util.api_client.Client static method), 168
- into_files_df() (climada.util.api_client.Client static method), 169
- ISIMIP_GPWV3_NATID_150AS (in module climada.util.constants), 171

K

Key (climada.engine.cost_benefit.CostBenefit attribute), 49
- key_reference (climada.util.api_client.DataTypeInfo attribute), 162

L

- label (climada.engine.impact.ImpactFreqCurve attribute), 58
- labels (climada.engine.unsequa.input_var.InputVar attribute), 32
- LANDFALL_DECAY_P (in module climada.hazard.tc_tracks_synth), 154
- LANDFALL_DECAY_V (in module climada.hazard.tc_tracks_synth), 154
- last_year() (in module climada.util.dates_times), 190
- lat (climada.hazard.centroids.centr.Centroids attribute), 117
- latitude (climada.entity.exposures.base.Exposures attribute), 92
- latlon_bounds() (in module climada.util.coordinates), 173
- latlon_to_geosph_vector() (in module climada.util.coordinates), 172
- lead_time() (climada.engine.forecast.Forecast method), 55
- license (climada.util.api_client.DatasetInfo attribute), 162
- list_data_type_infos() (climada.util.api_client.Client method), 165
- list_dataset_infos() (climada.util.api_client.Client method), 164
- LitPop (class in climada.entity.exposures.litpop.litpop), 82
- load() (in module climada.util.save), 202
- load_gpw_pop_shape() (in module climada.entity.exposures.litpop gpw_population), 81
- load_nasa_nl_shape() (in module climada.entity.exposures.litpop.nightlight), 89
- load_nasa_nl_shape_single_tile() (in module climada.entity.exposures.litpop.nightlight), 90
- load_nightlight_nasa() (in module climada.entity.exposures.litpop.nightlight), 91
- local_exceedance_imp() (climada.engine.impact.Impact method), 62
- local_exceedance_intensity() (climada.hazard.base.Hazard method), 136
- lon (climada.hazard.centroids.centr.Centroids attribute), 117
- lon_bounds() (in module climada.util.coordinates), 172
- lon_normalize() (in module climada.util.coordinates), 172
- longitude (climada.entity.exposures.base.Exposures attribute), 92

M

- make_map() (in module climada.plot), 201
- make_sample() (climada.engine.unsequa.calc_base.Calculator method), 26
- mask_raster_with_geometry() (in module climada.util.coordinates), 189
- match_centroids() (climada.engine.impact.Impact method), 69
- match_centroids() (in module climada.util.coordinates), 180
- match_coordinates() (in module climada.util.coordinates), 179
match_em_id() (in module climada.engine.impact_data), 74
match_grid_points() (in module climada.util.coordinates), 178
MAXDEM_TILES_DOWN (in module climada.util.coordinates), 172
MAX_WAITING_PERIOD (climada.util.api_client.Client attribute), 164
mdd (climada.entity.impact_funcs.base.ImpactFunc attribute), 100
mdd_impact (climada.entity.measures.base.Measure attribute), 110
Measure (class in climada.entity.measures.base), 109
MeasureSet (class in climada.entity.measures.measure_set), 112
meta (climada.entity.exposures.base.Exposures attribute), 92
meta (climada.entity.exposures.litpop.centroids.Centroids attribute), 117
minimal_exp_gdf() (climada.engine.impact_calc.ImpactCalc method), 70
module
climada.engine.calibration_opt, 45
climada.engine.cost_benefit, 48
climada.engine.impact, 58
climada.engine.impact_calc, 69
climada.engine.impact_data, 73
climada.engine.unsequa.calc_base, 25
climada.engine.unsequa.calc_cost_benefit, climada.util.yearsets, 205
27
climada.engine.unsequa.calc_impact, 29
climada.engine.unsequa.input_var, 32
climada.engine.unsequa.unc_output, 38
climada.entity.disc_rates.base, 78
climada.entity.entity_def, 115
climada.entity.exposures.base, 92
climada.entity.exposures.litpop.gpw_population, 81
climada.entity.exposures.litpop.litpop, 82
climada.entity.exposures.litpop.nightlight, 88
climada.entity.impact_funcs.base, 100
climada.entity.impact_funcs.impact_func_set, 103
climada.entity.impact_funcs.storm_europe, 105
climada.entity.impact_funcs.trop_cyclone, 106
climada.entity.measures.base, 109
climada.entity.measures.measure_set, 112
climada.entity.tag, 116
climada.hazard.base, 126
climada.hazard.centroids, 116
climada.hazard.isimip_data, 141
climada.hazard.storm_europe, 141
climada.hazard.tc_clim_change, 145
climada.hazard.tc_tracks, 145
climada.hazard.tc_tracks_syn, 154
climada.hazard.trop_cyclone, 156
climada.util.api_client, 161
climada.util.checker, 169
climada.util.config, 170
climada.util.constants, 170
climada.util.coordinates, 172
climada.util.dates_times, 190
climada.util.dwd_icon_loader, 191
climada.util.files_handler, 192
climada.utilfinance, 192
climada.util.hdf5_handler, 193
climada.util.lines_polys_handler, 194
climada.util.plot, 200
climada.util.save, 202
climada.util.scalebar_plot, 203
climada.util.select, 203
climada.util.value_representation, 204
NASA_RESOLUTION_DEG (in module climada.entity.exposures.litpop.nightlight), 88
N
n_events (climada.engine.impact_calc.ImpactCalc property), 70
n_exp_pnt (climada.engine.impact_calc.ImpactCalc property), 70
n_samples (climada.entity.unsequa.unc_output.UncOutput property), 38
n_samples (climada.entity.unsequa.unc_output.UncOutput property), 39
climada.entity.impact_funcs.base.ImpactFunc attribute), 100
(climada.entity.measures.base.Measure attribute), 109
name (climada.util.api_client.DatasetInfo attribute), 162
NASA_RESOLUTION_DEG (in module climada.entity.exposures.litpop.nightlight), 88
NASA_TILE_SIZE (in module climada.entity.exposures.litpop.nightlight), 88
nat_earth_resolution() (in module climada.util.coordinates), 177
plot_arrow_averted() (climada.engine.cost_benefit.CostBenefit method), 52
plot_basemap() (climada.entity.exposures.base.Exposures method), 97
plot_basemap_eai_exposure() (climada.engine.impact.Impact method), 63
plot_basemap_impact_exposure() (climada.engine.impact.Impact method), 65
plot_cost_benefit() (climada.engine.cost_benefit.CostBenefit method), 51
plot_eai_exp_geom() (in module climada.util.lines_polys_handler), 196
plot_event_view() (climada.engine.cost_benefit.CostBenefit method), 51
plot_exceedence_prob() (climada.engine.forecast.Forecast method), 56
plot_fraction() (climada.hazard.base.Hazard method), 137
plot_hexbin() (climada.entity.exposures.base.Exposures method), 96
plot_hexbin_eai_exposure() (climada.engine.impact.Impact method), 63
plot_hexbin_ei_exposure() (climada.engine.forecast.Forecast method), 58
plot_hexbin_impact_exposure() (climada.engine.impact.Impact method), 64
plot_hist() (climada.engine.forecast.Forecast method), 56
plot_imp_map() (climada.engine.forecast.Forecast method), 55
plot_intensity() (climada.hazard.base.Hazard method), 137
plot_raster() (climada.entity.exposures.base.Exposures method), 97
plot_raster_eai_exposure() (climada.engine.impact.Impact method), 63
plot_rp_imp() (climada.engine.impact.Impact method), 65
plot_rp_intensity() (climada.hazard.base.Hazard method), 136
plot_rp_uncertainty() (climada.engine.unsequa.unc_output.UncOutput method), 41
plot_sample() (climada.engine.unsequa.unc_output.UncOutput method), 41
plot_scatter() (climada.entity.exposures.base.Exposures method),

Index
plot_scatter_eai Exposure() (climada.engine.impact.Impact method), 62
plot_sensitivity() (climada.engine.unseqa.unc_output.UncOutput method), 42
plot_sensitivity_map() (climada.engine.unseqa.unc_output.UncOutput method), 43
plot_sensitivity_second_order() (climada.engine.unseqa.unc_output.UncOutput method), 42
plot_ssi() (climada.hazard.storm_europe.StormEurope method), 144
plot_sensitivity() (climada.engine.unseqa.unc_output.UncOutput method), 41
plot_sensitivity_map() (climada.engine.unseqa.unc_output.UncOutput method), 42
plot_sensitivity_second_order() (climada.engine.unseqa.unc_output.UncOutput method), 42
plot_waterfall() (climada.engine.cost_benefit.CosBenefit static method), 51
plot_waterfall_accumulated() (climada.engine.cost_benefit.CosBenefit method), 52
points_to_raster() (in module climada.util.coordinates), 183
present_year (climada.engine.cost_benefit.CosBenefit attribute), 48
problem_sa (climada.engine.unseqa.unc_output.UncOutput attribute), 38
problem_sa (climada.engine.unseqa.unc_output.UncOutput property), 39
properties (climada.util.api_client.DatasetInfo attribute), 162
properties (climada.util.api_client.DataTypeInfo attribute), 162
pts_to_raster_meta() (in module climada.util.coordinates), 183
purge_cache() (climada.util.api_client.Client method), 169
purge_cache_db() (climada.util.api_client.Client static method), 166
Q
QUERY_TIMEOUT (climada.util.api_client.Client attribute), 164
R
raster_to_meshgrid() (in module climada.util.coordinates), 183
raster_to_vector() (climada.hazard.base.Hazard method), 135
read() (in module climada.util.hdf5_handler), 193
read_bm_file() (in module climada.entity.exposures.litpop.nightlight), 91
read_cosmo_file() (climada.hazard.storm_europe.StormEurope method), 142
read_csv() (climada.engine.impact.Impact method), 66
read_excel() (climada.engine.impact.Impact method), 66
read_excel() (climada.entity.disc_rates.base.DiscRates attribute), 78
read() (in module climada.entity.exposures.litpop.nightlight), 91
read_hdf5() (climada.entity.exposures.base.Exposures method), 98
read_hdf5() (climada.hazard.centroids.centr.Centroids method), 125
read_hdf5() (climada.hazard.centroids.centr.Centroids method), 122
read_hdf5() (climada.hazard.base.Hazard method), 135
read_hdf5() (climada.hazard.centroids.centr.Centroids method), 128
read_icon_grib() (climada.hazard.storm_europe.StormEurope method), 143
read_mat() (climada.entity.exposures.base.Exposures method), 98
read_mat() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 105
read_mat() (climada.entity.measures.measure_set.MeasureSet method), 114
read_mat() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 105
read_mat() (climada.entity.measures.measure_set.MeasureSet method), 114
read_one_gettelman() (climada.hazard.tc_tracks.TCTracks method)
mada.hazard.tc_tracks.TCTracks method), 150
read_processed_ibtracs_csv() (climada.hazard.tc_tracks.TCTracks method), 149
read_raster() (in module climada.util.coordinates), 184
read_raster_bounds() (in module climada.util.coordinates), 184
read_raster_sample() (in module climada.util.coordinates), 185
read_raster_sample_with_gradients() (in module climada.util.coordinates), 185
read_simulations_chaz() (climada.hazard.tc_tracks.TCTracks method), 150
read_simulations_emmanuel() (climada.hazard.tc_tracks.TCTracks method), 150
read_simulations_storm() (climada.hazard.tc_tracks.TCTracks method), 150
read_sparse_csr() (climada.engine.impact.Impact static method), 66
read_vector() (in module climada.util.coordinates), 187
ref_year (climada.entity.exposures.base.Exposures attribute), 92
refine_raster_data() (in module climada.util.coordinates), 186
region2isos() (in module climada.util.coordinates), 180
region_id (climada.entity.exposures.base.Exposures attribute), 93
region_id (climada.hazard.centroids.centr.Centroids attribute), 117
remove_duplicate_points() (climada.hazard.centroids.centr.Centroids method), 124
remove_duplicates() (climada.hazard.base.Hazard method), 138
remove_func() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 103
remove_measure() (climada.engine.cost_benefit.CostBenefit method), 51
remove_measure() (climada.entity.measures.measure_set.MeasureSet method), 113
reproject_grid() (in module climada.util.lines_polys_handler), 198
reproject_poly() (in module climada.util.lines_polys_handler), 198
reproject_raster() (climada.hazard.base.Hazard method), 134
reproject_vector() (climada.hazard.base.Hazard method), 134
residual_risk() (climada.engine.impact.Impact method), 61
return_per (climada.engine.impact.ImpactFreqCurve attribute), 58
risk_aai_agg() (in module climada.engine.cost_benefit), 52
risk_metrics() (climada.engine.impact_calc.ImpactCalc class method), 73
risk_rp_100() (in module climada.engine.cost_benefit), 52
risk_rp_250() (in module climada.engine.cost_benefit), 53
risk_transf_attach (climada.entity.measures.base.Measure attribute), 110
risk_transf_cost_factor (climada.entity.measures.base.Measure attribute), 110
risk_transf_cover (climada.entity.measures.base.Measure attribute), 110
RIVER_FLOOD_REGIONS_CSV (in module climada.util.constants), 171
rp (climada.engine.unsequa.calc_impact.CalcImpact attribute), 30
run_datetime (climada.engine.forecast.Forecast attribute), 30

S
SAFFIR_SIM_CAT (in module climada.hazard.tc_tracks), 145
sample_events() (in module climada.util.yearsets), 206
sample_from_poisson() (in module climada.util.yearsets), 206
samples_df (climada.engine.unsequa.unc_output.UncOutput attribute), 38
sampling_kwars (climada.engine.unsequa.unc_output.UncOutput property), 39
sampling_method (climada.engine.unsequa.unc_output.UncOutput attribute), 38
sampling_method (climada.engine.unsequa.unc_output.UncOutput property), 39
sanitize_event_ids() (climada.hazard.base.Hazard method), 137
save() (in module climada.util.save), 202
scale_bar() (in module climada.util.scalebar_plot), 203
scale_impact2refyear() (in module climada.engine.impact_data), 76
select() (climada.engine.impact.Impact method), 68
select() (climada.entity.disc_rates.base.DiscRates method), 79
select() (climada.hazard.base.Hazard method), 135
select() (climada.hazard.centroids.centr.Centroids method), 124
set_custom_shape() (climada.hazard.centroids.centr.Centroids method), 123
set_dist_coast() (climada.hazard.centroids.centr.Centroids method), 124
set_elevation() (climada.hazard.centroids.centr.Centroids method), 123
set_emmanuel_usa() (climada.entity.impact_funcs.trop_cyclone.ImpfTropCyclone method), 106
set_frequency() (climada.hazard.base.Hazard method), 138
set_from_raster() (climada.entity.exposures.base.Exposures method), 95
set_from_tracks() (climada.hazard.trop_cyclone.TropCyclone method), 157
set_gdf() (climada.entity.exposures.base.Exposures method), 94
set_imp_mat() (in module climada.util.lines_polys_handler), 199
set_lat_lon() (climada.entity.exposures.base.Exposures method), 95
set_lat_lon() (climada.entity.impact_funcs.trop_cyclone.ImpfTropCyclone method), 107
set_lat_lon_to_meta() (climada.hazard.centroids.centr.Centroids method), 124
set_meta_to_lat_lon() (climada.hazard.centroids.centr.Centroids method), 125
set_nightlight_intensity() (climada.entity.exposures.litpop.litpop.LitPop method), 83
set_population() (climada.entity.exposures.litpop.litpop.LitPop method), 84
set_raster() (climada.hazard.base.Hazard method), 129
set_raster_file() (climada.hazard.centroids.centr.Centroids method), 120
set_raster_from_pnt_bounds() (climada.util.coordinates), 189
write_excel() (climada.entity.entity_def.Entity method), 116
write_excel() (climada.entity.impact_funcs.impact_func_set.ImpactFuncSet method), 105
write_excel() (climada.entity.measures.measure_set.MeasureSet method), 114
write_hdf5() (climada.engine.impact.Impact method), 66
write_hdf5() (climada.entity.exposures.base.Exposures method), 98
write_hdf5() (climada.hazard.base.Hazard method), 138
write_hdf5() (climada.hazard.centroids.centr.Centroids method), 125
write_hdf5() (climada.hazard.tc_tracks.TCTracks method), 153
write_netcdf() (climada.hazard.tc_tracks.TCTracks method), 153
write_raster() (climada.entity.exposures.base.Exposures method), 99
write_raster() (climada.hazard.base.Hazard method), 138
write_raster() (in module climada.util.coordinates), 187
write_sparse_csr() (climada.engine.impact.Impact method), 66
WS_DEMO_NC (in module climada.util.constants), 171

Y

years (climada.entity.disc_rates.base.DiscRates attribute), 78