clik
Release 0.92.5

Joe Joyce and contributors

May 23, 2019

Contents

1.1 Example

22 Workflow
23 Internals

1 Intro

1.2 Screencast
2 Development

2.1 Quickstart

2.4 Changelog
Python Module Index

1.3 Tutorial

AN\ W W

clik, Release 0.92.5

Clik is a Python library for writing complex command-line applications with a minimum of boilerplate. Clik gives
you access to the full power of argparse', but saves you the trouble of creating and managing parsers, subparsers,
and all the glue in between.

To get started, take a look at the intro section linked below.

! https://docs.python.org/3/library/argparse.html#module-argparse

Contents 1

https://docs.python.org/3/library/argparse.html#module-argparse

clik, Release 0.92.5

2 Contents

CHAPTER 1

Intro

The introductory materials revolve around a toy command-line application for managing a todo list.
The tutorial walks through development of the application step-by-step, explaining clik concepts along the way.
The screencast has roughly the same content as the tutorial but is, of course, in video form.

For a very quick overview of clik, take a look at the example listing linked below. It’s the final code from the tutorial
and, while it may not make perfect sense, it should give you a good idea of what clik applications look like.

1.1 Example

Following is the full code listing from the final step of the tutorial. See the design sketch (page 6) for what this code is
meant to accomplish.

#!bin/python

—*— coding: utf-8; mode: python —x-
import json

import os

import sys

from clik import app, args, g, parser

def print_list():
for i, item in enumerate(g.item_list):

o

print (' . "% (i, item))

@app
def todo():

mmn

Simple application for managing a todo list.

(continues on next page)

clik, Release 0.92.5

(continued from previous page)

mmn

parser.add_argument (
_f,
'—-—file',
default="todo. json',
help='file in which to store data (default: % (default)s)',

yield

g.item_list = []
if os.path.exists(args.file):
with open(args.file) as f:
g.item_list = json.load(f)

yield

with open (args.file, 'w') as f:
Json.dump (g.item_list, £, indent=2)
f.write('\n'")

@todo.bare

def bare():
yield
print_list ()

@todo
def add():
"""Add an item to the todo list."""
parser.add_argument (
'item',
help='item to add to do the todo list',
nargs='7?",

yield

item = args.item
if item is None:
item = input ('Item to add: ")
if item:
g.item_list.append(item)
else:
print ('error: empty item', file=sys.stderr)
yield 1

print ()
print ('Updated list:')
print_list ()

@todo (name="'1list', alias='ls")
def list_():

The data is stored as a JSON file, which defaults to todo. json.
See above for more information about arguments and subcommands.

(continues on next page)

Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

"""Show the items on the todo list."""
yield
print_list ()

@todo

def done () :
"""Remove an item from the todo list."""
group = parser.add_mutually_exclusive_group ()
group.add_argument (

v 1

-a
'--all"',
action="'store_true',
default=False,
help="'mark all items as complete’,
)
group.add_argument (
'7j_',
'-—index"',
help='integer index of the item to mark as complete’,
type=int,

yield

if args.all:
del g.item_ list[:]

else:

index = args.index

while index is None:
print ()
print_list ()
print ()
selection = input ('Index of item to delete? ')
try:

index = int (selection)

except ValueError:
print ('error: invalid int wvalue:', selection,
if -1 < index < len(g.item_list):
del g.item_list[index]
else:

file=sys.stderr)

print ('error: index out of bounds:', index, file=sys.stderr)

yield 1

print ()
print ('Updated list:"')
print_list ()

if name == '__main__ ':
todo.main ()

1.1. Example

clik, Release 0.92.5

1.2 Screencast

1.3 Tutorial

The tutorial covers the step-by-step development of a toy command-line application for managing a todo list. (Original,
I know.) Reading time is meant to be under an hour, assuming you play along with some of the examples. There is
also a screencast (page 6) that roughly follows the tutorial, if videos are more your speed.

1.3.1 Tutorial 00: Design

Before writing any code, let’s make a rough sketch of what the application should do.

In prose: todo should allow the end user to manage a todo list. Items may be added and deleted, and the current list
may be displayed.

We’ll keep data storage simple. The underlying data structure will be a list of strings. We’ll use Python’s built-in
JSON module to persist the data to a file.

Roughing out the interface:

todo [-f/--file=todo.]json] <COMMAND AND ARGS ...>

todo add ["item to add"] # prompt 1if item not given

todo list # print a O-indexed 1list of items

todo done [-i/--index|-a/--all] # if -a/-—-all given, all items are done
else if O-based index supplied,
delete item at that index
else print list and prompt for index

The final implementation may not look exactly like this, but it’s a good place to start!

Next, let’s set up the environment (page 6) for the app.

1.3.2 Tutorial 01: Setup

For the purposes of the tutorial, we’ll create a new virtual environment, install the c1ik package, and put the appli-
cation code inside the environment’s directory. For the hashbang line of the app, we’ll “cheat” and use a relative path
to the virtualenv’s Python interpreter (so it has access to c1ik). If you were developing a “real” end-user application,
you would probably want to use a proper package structure.

This means the demo app always has to be called from the working directory that contains it (i.e. . /todo.py <..
.>). If you really need to run this from other working directories, change the bin/python in the first line of the file
to an absolute path to the environment’s Python interpreter.

The following commands create the basic structure:

virtualenv todo

snip ...

cd todo

bin/pip install clik
snip ...

touch todo.py

chmod +x todo.py

Uy W S Ay oS Uy

Open the todo . py file and edit it to contain:

6 Chapter 1. Intro

clik, Release 0.92.5

#!bin/python
import clik
print ('Hello, world!")

Now you should be able to run the script:

$./todo.py
Hello, world!
$

If there are no errors, cool! Everything is working. In the next step we’ll tweak the file to use the if-name-main pattern
(page 7) common for Python executables.

1.3.3 Tutorial 02: Main

The next step is to structure our file the “standard” way for Python files that are used as executables. Note that the
import clik statement is gone; now that we’ve tested that we can import it, we don’t need it for the moment. We’ll
bring it back in a couple steps.

#!bin/python

if name == '__main__ ':
print ('Hello, world!")

__name___is a special variable that contains the name of the current module as a string. This is useful because
Python lets a file be both “import -able” and executable. If we were to import the todo.py file from another
module, __name___ would be equal to "todo".

When run directly, however, __name___is set to the special value "__main__". By checking for that special value
and running our code only when it’s set, it allows our file to “do the right thing” whether it’s imported or run directly:

$./todo.py

Hello, world!

$ python

... snip

>>> import todo

>>> # note that "hello world" is not printed above
>>> exit ()

$

For the demo application, this doesn’t matter very much — it is meant to always be run directly. And in fact, in the
next step we’ll make a change that makes it unimportable. Using this pattern is still good form, however, since it’s an
obvious marker for how the file is intended to be used (i.e. as an executable).

In the next step, we’ll remove the .py extension (page 7) to make the app more caller-friendly, then we’ll finally be
ready to get into clik proper!

1.3.4 Tutorial 03: Filename

Personally I don’t like the .py extension for CLI apps. And clik doesn’t care. So the demo app will be renamed to
just todo.

Since the filename no longer has an extension, we’ll add a modeline to keep it editor-friendly. We’ll add the encoding
specifier as well, since that is good practice in general:

1.3. Tutorial 7

clik, Release 0.92.5

#!bin/python
—x— coding: utf-8; mode: python —#*-

if _ name_ == '_ _main__ ':
print ('Hello, world!")

Renaming and running the app should produce the same results as before:

$ mv todo.py todo

$./todo
Hello, world!
$

Excellent. Now we can start getting into clik proper (page 8).

1.3.5 Tutorial 04: App

Note: This step is a bit longer and more involved than the others because it goes over some fundamentals that make
subsequent steps smaller and easier to explain.

With all the “formalities” out of the way, we can turn the Python script into a clik app:

#!bin/python
—+— coding: utf-8; mode: python —x*-
from clik import app

@app
def todo():

yield

print ('Hello, world!")
if _ name_ == '__main__ ':
todo.main ()

Running the program with no arguments produces the same results as before. If we run it with —h or ——help, though,
the app now has a help message! And if we run it with any other arguments, we get an error message indicating that
our program is not expecting them:

$./todo
Hello, world!

$./todo -h
usage: todo [-h]

optional arguments:
-h, —--help show this help message and exit

$./todo --help
usage: todo [-h]

optional arguments:
-h, —--help show this help message and exit

$./todo --foo

(continues on next page)

8 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

usage: todo [—-h]

todo: error: unrecognized arguments: —--foo
$ echo $7?
1

Looking at the new code chunk by chunk:

from clik import app

First the app decorator is imported. All the clik interfaces you will interact with will be imported from the top-level
clik package.

The app decorator tells clik what to call when your application is invoked. Here, we tell clik to call todo when the
end user runs the application:

@app
def todo():
... snip

The app decorator also controls the name of the application as seen in the usage and other automatically generated
help messages. By default, app uses the name of the thing being decorated — t odo in this case. Had we called the
function something different:

@app
def my_todo_app():
... snip
if name == '_ main__ ':

my_todo_app.main ()

the help output would have changed accordingly:

S ./todo -h
usage: my_todo_app [-h]

optional arguments:
-h, —--help show this help message and exit

The name can also be manually specified using the name parameter to the app decorator:

Qapp (name="'supercool-todo—app')
def todo():
... snip

$./todo -h
usage: supercool-todo—-app [—h]

optional arguments:
-h, —--help show this help message and exit

Typically it’s not necessary to manually specify name for the app decorator. But later on, when implementing
subcommands, the name parameter makes another appearance, and is extremely useful. (Think . /todo list —we
probably don’t want to define our own function named 11 st since that is a very core built-in.. . .)

Next let’s look at the function body:

1.3. Tutorial 9

clik, Release 0.92.5

def todo():
yield
print ('Hello, world!")

Technically, t odo is a generator — not a function. At a lower level this is an important distinction, but for our purposes
it doesn’t much matter. What matters are the two “rules” that being a generator implies:

1. Every clik-decorated function must have at least one yield statement.

2. You cannot call clik-decorated functions directly. Well, you can, but it’s virtually guaranteed to do gnarly and
unexpected things. Just don’t do it.

In terms of program design, the second rule has important implications. clik programs usually have two layers: an
internal API layer that is responsible for reading / writing / working on data and a UI layer that uses the internal API
and clik to implement the end-user interface. The internal API shouldn’t “know” about clik at all. (And in the spirit of
tutorials everywhere, this advice will be promptly eschewed because for our demo app the logic will be simple enough
to not warrant any kind of internal API.)

Within our function, there are three phases of execution:

def todo():
configure argument parser
yield # give control back to clik, which parses end user arguments
do something with parsed arguments

Right now our program has no arguments, so there’s no code in the “configure parser” phase. clik still parses end user
arguments (this is where it handles —h or errors out on unknown args). And the “do something” phase is where we
print “hello world.”

The last bit of code kicks off the whole process:

if name = main

todo.main ()

By default, the ma in method invokes the application with the arguments from sy s . argv, thencalls sys.exit with
the exit code from the application. You can override these by supplying the argv and exit arguments, respectively.
(This more advanced usage will not be covered in the tutorial. These arguments are mainly provided for testing
purposes — to allow test code to invoke the app with a given set of arguments but not have it exit the process upon
completion.)

Phew, That was a lot of words for twelve lines of code! Let’s take a breather and add some help text (page 10) before
we dive into arguments.

1.3.6 Tutorial 05: Help

Adding help text to the app is easy. Just add a docstring:

@app
def todo():

mmn

Command-line application for managing a todo list.

The 1ist is stored on disk as a simple JSON file containing an
array of strings. The file path is controlled by the —-f/--file
argument (see documentation for that argument for more
information) .

mmon

(continues on next page)

10 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

yield
print ('Hello, world!")

In argparse terms, the content before the first blank line is the description and all content after is the epilog:

$./todo -h
usage: todo [-h]

Command-line application for managing a todo list.

optional arguments:
-h, —--help show this help message and exit

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the —-f/--file argument (see
documentation for that argument for more information).

Easy peasy. Let’s implement the file argument (page 11) described in the help text.

1.3.7 Tutorial 06: Arguments

clik provides two “magic” variables for configuring and accessing arguments: the aptly-named parser and args:

from clik import app, args, parser

@app
def todo():
... snip
parser.add_argument (
_f,
'——file',
default="todo. json',
help='file in which to store data (default:) ',
)
yield
print ('File path is:', args.file)

2

parser is an argparse.ArgumentParser”. argsisanargparse.Namespace3—thesmneﬂﬁngyou
4

would get back from argparse.ArgumentParser.parse_args ().

This might remind you of the “execution phases” from step 4, which should make more sense now:

def todo () :
configure argument parser
yield # give control back to clik, which parses end user arguments
do something with parsed arguments

The behavior of the application is what you probably expect:

$./todo -h
usage: todo [-h] [-f FILE]

(continues on next page)

2 https://docs.python.org/3/library/argparse. html#argparse. ArgumentParser
3 https://docs.python.org/3/library/argparse.html#argparse. Namespace
4 https://docs.python.org/3/library/argparse.html#argparse. ArgumentParser.parse_args

1.3. Tutorial 11

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args

clik, Release 0.92.5

(continued from previous page)

Command-line application for managing a todo list.

optional arguments:
-h, --help show this help message and exit
-f FILE, --file FILE file in which to store data (default: todo. json)

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the —-f/--file argument (see
documentation for that argument for more information).

$./todo
File is: todo.json

$./todo -f myfile.json
File is: myfile.json

$./todo —-f=myfile.json
File is: myfile.json

$./todo -fmyfile.json
File is: myfile.json

$./todo --file myfile.json
File is: myfile.json

$./todo --file=myfile.json
File is: myfile.json

Of course, the code before the yield is not limited to simple calls to add_argument. It’s just arbitrary Python
code. As a silly example:

from datetime import datetime
from clik import app, args, parser

@app
def todo():
If it's 6PM or later, default to the "nighttime list,"
otherwise default to the "daytime list."
if datetime.today () .time () .hour > 17:
default = 'night.json’
else:
default = 'day. json'
parser.add_argument (
_f,
'——file',
default=default,
help='file in which to store data (default:) 'y,
)
yield
print ('File path is:', args.file)

As is often the case, with great power comes great responsibility. Code before the yield is run on every invocation
of the program. ..

e ...regardless of whether the arguments are valid or not

e ...evenif -h/——-help is specified

12 Chapter 1. Intro

clik, Release 0.92.5

e ...or, in the case of subcommands, even if the subcommand is not called!

In other words: don’t do expensive things before the yield or your program will feel/be unresponsive. (The Python

interpreter startup time is bad enough.)

To finish this step, let’s make the argument “do” something:

#!bin/python

—%— coding: utf-8; mode: python —x-
import json

import os

from clik import app, args, parser

@app
def todo () :

mmn

Command-1line application for managing a todo list.

The list is stored on disk as a simple JSON file containing an
array of strings. The file path is controlled by the -f/--file
argument (see documentation for that argument for more
information) .
parser.add_argument (

_f,

'--file"',

default="todo. json',

help='file in which to store data (default:) ',

yield

item_list = []
if os.path.exists(args.file):
with open(args.file) as f:
item_list = Jjson.load(f)

for item in item_ list:
print ('+', item)

if name == '__main '

todo.main ()

Assuming a test . json file with the following contents. ..

[
"Pick up nails from hardware store",
"Grab milk from the grocery",
"Clean up the kitchen",
"Feed the cats"

.. the application can now print out the items in the todo list:

$./todo
$./todo —-f test.json

(continues on next page)

1.3. Tutorial

13

clik, Release 0.92.5

(continued from previous page)

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

Lr * ok X %

Next we’ll get into the thick of what makes clik useful, and start implementing the interface we designed way back in
step 0! Get ready for subcommands! (page 14)

1.3.8 Tutorial 07: Subcommands

Note: This step is a bit longer and more involved than the others because it tries to tie together the core concepts in
clik, and emphasize the pattern that underlies the library.

The important code updates are all in the first listing. The rest of the step explains what’s going on using silly, verbose
examples for the sake of illustration.

To this point, everything we have done would be just as easy using stock argparse. clik really starts to shine when we
introduce subcommands:

@app
def todo () :
... snip

The following lines have been deleted from the example.
for item in item list:

print ('+', item)

@todo

def add():
"""Add an item to the list."""
yield

print ('hello from add')

@todo (name="'1list")

def list_():
"""Show the items on the 1list."""
yield
print ('hello from list')

@todo

def done():
"""Remove an item from the 1ist."""
yield
print ('hello from done')

Poking around at the application:

$./todo -h
usage: todo [-h] [-f FILE] {add,list,done}

Command-line application for managing a todo list.

(continues on next page)

14 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

optional arguments:
-h, —--help show this help message and exit
-f FILE, —-file FILE file in which to store data (default: todo.json)

subcommands:
{add, 1list, done}
add Add an item to the list.
list Show the items on the list.
done Remove an item from the list.

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the -f/--file argument (see
documentation for that argument for more information).

$./todo
usage: todo [-h] [-f FILE] {add,list,done}

todo: error: the following arguments are required: {add,list,done}

$./todo add -h
usage: todo add [-h]

Add an item to the list.

optional arguments:
-h, —--help show this help message and exit

$./todo add
hello from add

$./todo list -h
usage: todo list [-h]

Show the items on the list.

optional arguments:
-h, —--help show this help message and exit

$./todo list
hello from list

$./todo done -h
usage: todo done [—h]

Remove an item from the list.

optional arguments:
-h, —--help show this help message and exit

$./todo done
hello from done

Neat-o! Gluing all that together with argparse would have been straightforward, but would have involved quite a bit
of ceremony and boilerplate.

Subcommands look a lot like the app we’ve been working on to this point. (There is a reason for this — under the
covers they’re actually the same thing. clik.app.App (page 39) is a subclass of c1ik.command.Command

(page 41)1)

1.3. Tutorial 15

clik, Release 0.92.5

The function decorated by app (todo in our case) can itself be used as a decorator to register a subcommand:

@todo
def xyz():
... do subcommand stuff ...

Note: Once a single subcommand has been registered, it is no longer valid for end users to invoke the application
without a subcommand. (Unless a “bare” subcommand has been registered — more on that later.)

Subcommands can also be used as decorators to register sub-subcommands. It’s “turtles all the way down.” An
example, with a slew of dummy sub- (and sub-sub- and sub-sub-sub-) commands:

@todo
def foo():
yield

@foo
def spam() :
yield
print ('hai from foo spam')

@foo
def ham() :
yield
print ('hai from foo ham')

@foo
def eggs():
yield

@eggs
def alpha():
yield
print ('hai from foo eggs alpha')

@eggs
def bravo() :
yield
print ('hai from foo eggs bravo')

@eggs
def charlie():
yield
print ('hai from foo eggs charlie')

Poking around in the shell:

$./todo foo -h
usage: todo foo [-h] {spam,ham,eggs}

optional arguments:
-h, --help show this help message and exit

subcommands :
{spam, ham, eggs}
spam

(continues on next page)

16 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

ham
eggs

$./todo foo
usage: todo foo [-h] {spam,ham,eggs}

todo foo: error: the following arguments are required: {spam,ham,eggs}

$./todo foo spam
hai from foo spam

$./todo foo ham
hai from foo ham

$./todo foo eggs
usage: todo foo eggs [-h] {alpha,bravo,charlie}

todo foo eggs: error: the following arguments are required:

$./todo foo eggs -h
usage: todo foo eggs [-h] {alpha,bravo,charlie}

optional arguments:
-h, —--help show this help message and exit

subcommands :
{alpha,bravo, charlie}
alpha
bravo
charlie

$./todo foo eggs alpha -h
usage: todo foo eggs alpha [-h]

optional arguments:
-h, —--help show this help message and exit

$./todo foo eggs alpha
hai from foo eggs alpha

$./todo foo eggs bravo
hai from foo eggs bravo

$./todo foo eggs charlie
hai from foo eggs charlie

{alpha,bravo, charlie}

Like the app, the name for the subcommand defaults to the name of the function being decorated and can be overridden

by passing the name parameter to the decorator.

This is useful for our 1ist command since it’s a bad idea to redefine built-in functions (which 1ist is). We use
1list_ as the function name, and pass "1ist" to clik as the name it should use:

@todo (name="1list")

def list_():
"""Show the items on the 1list."""
yield
print ('hello from list')

The app, of course, works the same as it did before:

1.3. Tutorial

17

clik, Release 0.92.5

$./todo -h
usage: todo [-h] [-f FILE] {add,list,done}

Command-line application for managing a todo list.
optional arguments:

-h, --help show this help message and exit
-f FILE, --file FILE file in which to store data (default: todo.json)

subcommands:
{add, 1list, done}
add Add an item to the list.
list Show the items on the list.
done Remove an item from the list.

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the —-f/--file argument (see
documentation for that argument for more information).

$./todo list -h
usage: todo list [-h]

Show the items on the list.

optional arguments:
-h, —--help show this help message and exit

$./todo list
hello from list

As you’ve probably noticed, help messages are taken from docstrings. Like the app, content before the blank line is
the description and everything after is the epilog. As an example, let’s “lorem ipsum” the help for add:

@todo
def add():

mmn

Add an item to the 1list.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In
congue porttitor ornare. Aenean ac diam ipsum. Sed sit amet
libero ut ligula pretium consectetur eu quis justo. Integer
sollicitudin velit et nunc suscipit laoreet.

wnn

yield

print ('hello from add')

Predictably, the help text is:

$./todo -h
usage: todo [-h] [-f FILE] {add,list,done}

Command-line application for managing a todo list.
optional arguments:

-h, —--help show this help message and exit
—-f FILE, —-—-file FILE file in which to store data (default: todo. json)

(continues on next page)

18 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

subcommands:
{add, 1list, done}
add Add an item to the list.
list Show the items on the list.
done Remove an item from the list.

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the —-f/--file argument (see
documentation for that argument for more information).

$./todo add -h
usage: todo add [-h]

Add an item to the list.

optional arguments:
-h, —--help show this help message and exit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In congue porttitor
ornare. Aenean ac diam ipsum. Sed sit amet libero ut ligula pretium
consectetur eu quis justo. Integer sollicitudin velit et nunc suscipit
laoreet.

Nice! We are moving right along. Next we’ll take a quick look at aliases (page 19) before circling back to arguments
for our subcommands.

1.3.9 Tutorial 08: Aliases

For discoverability, it’s always a good idea to give your commands descriptive names. For commands that are com-
monly used, though, this can be a burden on end users. clik allows you to define aliases for these commands, giving
your application the best of both worlds: discoverability for new users and concision for power users.

Let’s say the end users of our todo program are grumpy systems administrators that are used to typing 1s instead of
list. The extra i and t are causing a serious problem for todo-related productivity.

An alias makes everyone happy:

@todo (name="'list', alias='ls"')

def list_():
"""Show the items on the list."""
yield
print ('hello from list")

In the shell:

$./todo -h
usage: todo [-h] [-f FILE] {add,list,done}

Command-line application for managing a todo list.
optional arguments:
-h, --help show this help message and exit

-f FILE, --file FILE file in which to store data (default: todo.json)

subcommands :
{add, 1list, done}

(continues on next page)

1.3. Tutorial 19

clik, Release 0.92.5

(continued from previous page)

add Add an item to the list.
list (1ls) Show the items on the list.
done Remove an item from the list.

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the -f/--file argument (see
documentation for that argument for more information).

$./todo list -h
usage: todo list [-h]

Show the items on the list.

optional arguments:
-h, —--help show this help message and exit

$./todo 1ls -h
usage: todo list [-h]

Show the items on the list.

optional arguments:
-h, —--help show this help message and exit

$./todo list
hello from list

$./todo 1s
hello from list

If a command has multiple aliases, supply the aliases argument instead. For example, if we wanted 1ist to be
aliased to 1s and 1:

@todo (name="'list', aliases=("'ls', '1"))
def list_():
"""Show the items on the list."""
yield

print ('hello from list')

Note: it’s perfectly valid to supply both alias and aliases. The reason there are two separate parameters is simply
to make calling code read more naturally.

Next, we’ll add arguments to the subcommands (page 20) and finally have a UI that looks like the one we sketched
out in step 0!

1.3.10 Tutorial 09: Arguments, Again

Adding arguments to the subcommands should look familiar:

@todo
def add{():
"""Add an item to the list."""
parser.add_argument (
'item',
default=None,

(continues on next page)

20 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

help="'item to add (prompts if not supplied)’',
nargs='7?",

)

yield

print ('item:', args.item)

... snip

@todo
def done () :

mmn

Remove an item from the 1list.

If no arguments are supplied, the current list is printed and
the program prompts for the index of the item to remove.
group = parser.add_mutually_exclusive_group ()
group.add_argument (
—ar,
'--all"',
action='store_true',
default=False,
help='remove all items from the list',
)
group.add_argument (
'*i',
'-—index"',
default=None,
help='0-based index of the item to remove',
type=int,
)
yield
print ('index:', args.index)
print('all:', args.all)

We use the same parser and args variables to configure and access arguments in subcommands! This is part of the
“magic” provided by clik. When used in the t odo function, parser refers to the top-level parser for the app. When
used in a subcommand, parser refers to the subparser for that subcommand.

Note: This type of magic will turn off some Pythonistas; it’s totally cool if you feel a little dirty and maybe a little
angry right now. I mean, I wrote the thing and I’m still not totally sure how to feel about this part of it. All I can say is:
I’ve been using this pattern for a few years now as clik has taken this final shape and, except for the occasional ringing
of “explicit is better than implicit” in my head, it’s been quite pleasant.

The t odo app now has the UI we sketched out at the very beginning:

$./todo add -h
usage: todo add [-h] [item]

Add an item to the list.

positional arguments:
item item to add (prompts if not supplied)

optional arguments:

(continues on next page)

1.3. Tutorial 21

clik, Release 0.92.5

(continued from previous page)

-h, —--help show this help message and exit

$./todo add
item: None

$./todo add "Wash the car"
item: Wash the car

$./todo done -h
usage: todo done [-h] [-a | -1 INDEX]

Remove an item from the list.

optional arguments:
-h, --help show this help message and exit
-a, —--all remove all items from the list
-i INDEX, --index INDEX
O-based index of the item to remove

If no arguments are supplied, the current list is printed and the program
prompts for the index of the item to remove.

$./todo done
index: None
all: False

$./todo done -i 2
index: 2
all: False

$./todo done -a
index: None
all: True

$./todo done -a —-i 2
usage: todo done [-h] [-a | -1 INDEX]
todo done: error: argument —-i/--index: not allowed with argument -a/--all

To show that parser is, in fact, different for the different subcommands, let’s try to use an argument in done that is
defined in add:

@todo
def done () :
... snip
yield
print ('item:', args.item) # defined in add

In the shell:

$./todo done
Traceback (most recent call last):
File "./todo", line 83, in <module>
todo.main ()

... snip traceback

AttributeError: 'Namespace' object has no attribute 'item'

22 Chapter 1. Intro

clik, Release 0.92.5

So that’s most of what makes clik clik: parser, args, and subcommands.
We’re now in the home stretch! Just a couple more steps and the application will be ready to ship.

(Also, I'd like to take this chance to thank you for continuing to read. I didn’t know whether you’d be angry about that
magic globals thing, and honestly I was a little afraid to bring it up with you. But now that we have that behind us and
we’re all cool, let’s finish up this app shall we?)

Let’s circle back and make the list command print the items (page 23) loaded from the data file.

1.3.11 Tutorial 10: Global

Right now, the todo items are “locked up” inside the t odo function:

@app

def todo():
... snip
yield

item_list = []
if os.path.exists(args.file):
with open(args.file) as f:
item_list = Jjson.load(f)

add, 1ist, and done all need to access/modify item_1list. How?

This is a common need for applications. The top-level app object reads data/configuration/etc, or opens a database
connection, or sets up a client for a remote service — or whatever — and the subcommands use those “handles” to do
their work.

clik provides a “global” object, g, to facilitate passing around global data/connection handles/etc:

from clik import app, args, g, parser # note the g

@app

def todo():
... snip
yield

g.item_list = []
if os.path.exists(args.file):
with open(args.file) as f:
g.item_list = json.load(f)

... snip

@todo (name="'list', alias='ls")

def list_():
"""Show the items on the list."""
yield
for i, item in enumerate(g.item_list):

o

print (' . "% (i, item))

Assuming the test . json file from before (with the following contents). ..

[
"Pick up nails from hardware store",
"Grab milk from the grocery",

(continues on next page)

1.3. Tutorial 23

clik, Release 0.92.5

(continued from previous page)

"Clean up the kitchen",
"Feed the cats"

. 1ist now prints our 0-indexed list of items:

./todo -f test.json list

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

w N P O WU

Under the covers, g is just a dictionary that allows you to access values using attributes instead of brackets. The
following sets of operations are identical:

g.foo = 'bar'
gl['foo'] = 'bar'

g.foo
gl['foo']

del g.foo
del g['foo']

We already know we’ll need to print the O-indexed list output inside done, so let’s factor it out into a function:

def print_list():
for i, item in enumerate(g.item_list):
print (' . "% (i, item))

... snip

@todo (name="'list', alias='ls"')

def list_():
"""Show the items on the 1list."""
yield
print_list ()

Since we’re thinking about it, let’s go ahead and implement done:

import sys
... snip

@todo

def done () :
... snip
yield

if args.all:
del g.item_list[:]
else:
index = args.index
while index is None:
print ()
print_list ()

(continues on next page)

24 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

print ()
selection = input('Item number to remove? ')
try:

index = int (selection)

except ValueError:
print ('error: not an integer:', selection, file=sys.stderr)
if -1 < index < len(g.item_list):
del g.item_list[index]
else:
print ('error: index out of range:', index, file=sys.stderr)

print ()
print ('Updated list:'")
print_list ()

This is all straightforward Python code; going over the details of the implementation is beyond the scope of this
tutorial.

add is simpler and shorter than done:

@todo
def add():
... snip
yield
item = args.item
if item is None:
item = input ('Item to add: ') or None
if item:
g.item_list.append(item)
print ()

print ('Updated list:'")
print_list ()
else:
print ('error: empty item', file=sys.stderr)

Playing with the new commands and the test . json file, we see that things are generally working. Changes are not
persisted to disk, but we’ll tackle that problem in the next step.

./todo —-f test.json ls

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

w N P O W

$./todo —-f test.json add "Hang picture on the wall"

Updated list:

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

Hang picture on the wall

Sw N PO

$./todo —-f test.json add
Item to add: Hang picture on the wall

Updated list:

(continues on next page)

1.3. Tutorial 25

clik, Release 0.92.5

(continued from previous page)

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

Hang picture on the wall

sw N RO

$./todo -f test.json add ""
error: empty item

$./todo -f test.json add ""
Item to add:
error: empty item

./todo —-f test.json ls

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

w N = O W»n

$./todo -f test.json done -i 2

Updated list:

0. Pick up nails from hardware store
1. Grab milk from the grocery

2. Feed the cats

$./todo —-f test.json done -a
Updated list:

$./todo -f test.json done

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen
Feed the cats

w N = O

Item number to remove? 3

Updated list:

0. Pick up nails from hardware store
1. Grab milk from the grocery

2. Clean up the kitchen

$./todo —-f test.json done -1 10
error: index out of range: 10

Updated list:

0. Pick up nails from hardware store
1. Grab milk from the grocery

2. Clean up the kitchen

3. Feed the cats

$./todo —-f test.json done

0. Pick up nails from hardware store
1. Grab milk from the grocery

(continues on next page)

26

Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

2. Clean up the kitchen
3. Feed the cats

Item number to remove? foo
error: not an integer: foo

Pick up nails from hardware store
Grab milk from the grocery

Clean up the kitchen

Feed the cats

w N = O

Item number to remove? 12
error: index out of range: 12

Updated list:

0. Pick up nails from hardware store
1. Grab milk from the grocery

2. Clean up the kitchen

3. Feed the cats

Nice! The application has really started to take shape. Next we’ll save the changes to disk using cleanup code in the
app function (page 27).

Note: g (along with the magic parser and args variables) is the other design decision experienced Pythonistas
might (rightfully) sneer at. Global variables are generally discouraged in Python, and g actively encourages their use
(even if veiled behind a not-technically-a-global-depending-on-how-you-look-at-it proxy object).

The justification is the same as for parser / args. This “g pattern” is one I've used extensively (in clik and in Flask)
and, while it may be against the Zen of Python, it’s damn useful. Used judiciously, it can be a real boon to productivity
and overall code clarity.

1.3.12 Tutorial 11: Cleanup

There’s a final phase to execution that we haven’t discussed yet: cleanup. For command functions with subcommands
(like our todo function), cleanup is an optional third block of code that gets run after child commands have run:

@app
def todo():
configure argument parser
yield # give control back to clik, which parses end user arguments
do something with parsed arguments
yield # give control back to clik, which runs child commands
clean up

This is where we’ll persist the changes that subcommands make to g.item_list:

@app

def todo():
... snip
yield

Same as before
g.item_list = []

(continues on next page)

1.3. Tutorial 27

clik, Release 0.92.5

(continued from previous page)

if os.path.exists(args.file):
with open(args.file) as f:
g.item_list = Jjson.load(f)

New stuff
yield

with open(args.file, 'w') as f:
Json.dump (g.item_list, £, indent=2)

f.write('\n")

And that’s it! The app now does what we sketched out in the first step:

$ 1s
bin 1lib test.json
include pip-selfcheck. json todo

$./todo 1s

$ 1s

bin pip-selfcheck. json todo. json
include test.json

1lib todo

$ cat todo.json

[]
$./todo add "Pick up

Updated list:
0. Pick up nails from

$ cat todo.json

[

"Pick up nails from

U

./todo 1s
Pick up nails from

o

$./todo add

nails from the hardware store"

the hardware store

the hardware store"

the hardware store

Item to add: Grab milk from the grocery

Updated list:
0. Pick up nails from
1. Grab milk from the

$ cat todo.json

"Pick up nails from
"Grab milk from the

U

./todo 1s
Pick up nails from
1. Grab milk from the

o

the hardware store
grocery

the hardware store",
grocery"

the hardware store
grocery

(continues on next page)

28

Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

$

./todo add "Clean up the kitchen"

Updated list:
Pick up nails from the hardware store

0.
1.
2.

Grab milk from the

grocery

Clean up the kitchen

./todo add "Feed the cats"

Updated list:
Pick up nails from the hardware store

0.

1
2.
3

Ur

Grab milk from the

grocery

Clean up the kitchen

Feed the cats

cat todo.json

"Pick up nails from the hardware store",

"Grab milk from the

grocery",

"Clean up the kitchen",

"Feed the cats"

./todo done -i 2

Updated list:

0.
1.
2.

=

Pick up nails from
Grab milk from the
Feed the cats

cat todo.json

"Pick up nails from
"Grab milk from the
"Feed the cats"
./todo done

Pick up nails from

Grab milk from the
Feed the cats

the hardware
grocery

the hardware
grocery",

the hardware
grocery

Item number to remove? 1

Updated list:

0.
1.

Pick up nails from
Feed the cats

cat todo.json
"Pick up nails from

"Feed the cats"

./todo done -a

the hardware

the hardware

store

store",

store

store

store",

(continues on next page)

1.3. Tutorial

29

clik, Release 0.92.5

(continued from previous page)

Updated list:

$ cat todo.json

[]

It works. Cool.

In the next couple steps we’ll put on some finishing touches by implementing error codes (page 30) for our couple
user-input-error situations, then adding one final tweak to let users simply run . /todo to get a list of items (instead
of ./todo list).

1.3.13 Tutorial 12: Exit Code

There are a lot of places execution can go wrong. clik lets you bail out at any point by yielding a non-None value.
The value yielded is used as the exit code for the invocation.

...well, kind of. When a subcommand yields non-None, clik immediately starts “unwinding” through the cleanup
blocks of the parent commands. Parent commands can override the exit code from children.

...and you really can unwind from anywhere. That first yield separating the “parser config” block from the “do
stuff” block? If you yield non-None from there the application will exit before the parser is even fully configured.
Meaning that it’s a hard fail, and end users won’t even be able to use —h/—-help. In general this isn’t what you
want, but consider a situation where a default value to a critical argument (say, “database host”) is expected to be in an
environment variable. You control all the machines the app runs on, and it really is a situation where, if that variable
is not set, all kinds of stuff is wrong. In that case it might be perfectly appropriate to hard fail without even initializing
the parser. The point is: clik gives you the choice and makes it easy to do that if you want to.

Back to our application:

@todo
def add():
... snip
if item:
g.item_list.append(item)
... snip
else:
print ('error: empty item', file=sys.stderr)
yield 1 # <-—— !!! new code !!! ——-
... snip
@todo
def done () :
... snip

if args.all:
del g.item_list/[:]
else:
... snip
if -1 < index < len(g.item_list):
del g.item_list[index]

else:
print ('error: index out of range:', index, file=sys.stderr)
yield 1 # <-——— !!! new code !!! ———
... snip

The application now has an exit code of 1 when the user provides invalid input and, as a nice side effect, the “Updated
list” is no longer printed when the list is not actually updated:

30 Chapter 1. Intro

clik, Release 0.92.5

$./todo add ""
error: empty item

$ echo $?
1

$./todo add
Item to add:
error: empty item

$ echo $?
1

$./todo add "Pick up nails from the hardware store"

Updated list:
0. Pick up nails from the hardware store

$ echo $?
0

$./todo done -i asdf

usage: todo done [-h] [-a | -1 INDEX]

todo done: error: argument -i/--index: invalid int value: 'asdf'
$ echo $7?

1

$./todo done -i -1

error: index out of range: -1
$ echo $?
1

$./todo done
0. Pick up nails from the hardware store

Item number to remove? 5
error: index out of range: 5

$ echo $?
1

$./todo done -i 0
Updated list:

$ echo $?
0

One final tweak (page 31) and the tutorial is complete!

1.3.14 Tutorial 13: Bare

It turns out the grumpy systems administrators from Tutorial 08: Aliases (page 19) were right. Printing the todo list
is such a common operation that the extra characters (even with the shortened 1s alias) are having company-wide

1.3. Tutorial 31

clik, Release 0.92.5

impacts on todo-related productivity.
It would make a lot of sense if running . /t odo without any arguments just printed the todo list.

Using clik, it can! “Bare commands” (named as such because I spent two weeks thinking about it and couldn’t come up
with anything better) allow a command with subcommands — which would normally require one of the subcommands
to be supplied — to be invoked “bare” (i.e. without a subcommand).

There are some (serious) limitations:

* Positional arguments are not allowed for bare commands (if the user runs . /app foo is foo a subcommand
or a positional argument?)

* Mutually exclusive groups are not allowed (this is an internal limitation)

* Unknown arguments are not allowed (similar rationale to positional arguments) (note: unknown arguments are
not covered in the tutorial)

So it’s far from perfect, but it’s better than nothing.

Implementing the “bare” command for our t odo app:

@todo.bare

def bare():
yield
print_list ()

Poking around in the shell (note the updated usage statement):

$./todo -h
usage: todo [-h] [-f FILE] {add,list,done}
todo [-h] [-f FILE]

Command-line application for managing a todo list.
optional arguments:

-h, --help show this help message and exit
-f FILE, --file FILE file in which to store data (default: todo. json)

subcommands:
{add, 1list, done}
add Add an item to the list.
list (1s) Show the items on the list.
done Remove an item from the list.

The list is stored on disk as a simple JSON file containing an array of
strings. The file path is controlled by the —-f/--file argument (see
documentation for that argument for more information).

$./todo add "Pick up nails from the hardware store"
snip
$./todo

0. Pick up nails from the hardware store

$./todo add "Grab milk from the grocery"
... snip

$./todo
0. Pick up nails from the hardware store

(continues on next page)

32 Chapter 1. Intro

clik, Release 0.92.5

(continued from previous page)

1. Grab milk from the grocery

$./todo 1s
Pick up nails from the hardware store
1. Grab milk from the grocery

o

And so, the demo application is finally complete. Ship it!

1.3. Tutorial 33

clik, Release 0.92.5

34 Chapter 1. Intro

CHAPTER 2

Development

2.1 Quickstart

2.1.1 Prerequisites

Requirements:
* Common development tools like git, make, a C compiler, etc
* Python 3.6 — this is the “main” interpreter used for development
* Virtualenv
Recommendations:
 All supported Python interpreters
Python 2.6
Python 2.7
Python 3.3

Python 3.4
Python 3.5
Python 3.6
- PyPy

- PyPy 3

Suggestions:

* LaTeX — for building the documentation as a PDF

35

clik, Release 0.92.5

2.1.2 Setup

The repository can be cloned anywhere you like on your local machine. At any time, you can delete the entire project
and its environment by rm —r £ -ing the local directory.

The following instructions clone the repository to ~/clik:

cd
git clone https://github.com/decafjoe/clik.git
cd clik

make env

Wait ~10m and you should be good to go!

Note that all dependencies are installed underneath the repository directory (take a peek at .env/). To delete the
development environment artifacts, you can run make pristine (see below). To delete everything, simply rm
—rf the clone.

2.1.3 Tooling

Clik’s developer tooling is exposed via make. Run make with no arguments to get a list of available targets. All
targets except make release are idempotent, so they can be run at any time.

Environment:
* make env installs the development environment; subsequent runs update the environment if required
* make clean deletes build artifacts like .pyc files, sdists, etc
* make pristine Kkills the local development environment
* make check-update checks for updates to Python packages installed in the development environment
Documentation:
* make html generates the HTML documentation to doc/_build/html/
* make pdf generates the PDF documentation to doc/_build/latex/clik.pdf
* make docs builds both HTML and PDF documentation to their respective locations
Build:
* make dist builds a sdist into dist/

* make release builds a clean sdist, uploads it to PyPI, tags the commit with the current version number,
bumps the version, then commits the new version number and pushes it up to GitHub (this is largely implemented
by the tool/pre-release and tool/post-release scripts)

QA:
* make lint runs the Flake8 linter on the Python files in the project
* make test runs the functional and unit test suites against the “main” development interpreter

* make test-all runs the linter, runs the functional and unit test suites against all supported interpreters, and
generates a coverage report to coverage/

Be aware of tool/test. It allows for precise selection of what tests to run. It’s a time-saver when working on a
small part of the codebase. Instead of running the entire test suite after every change, you can simply run the relevant
tests. See tool/test —h for more information.

36 Chapter 2. Development

clik, Release 0.92.5

2.2 Workflow

Note: Clik is currently maintained by a single person. For now, I don’t want to put any hard and fast rules on how
development should be done. What follows is a sketch.

Master must always be stable, working, QA-ed code. That is, at all times master must:

¢ Be free of linter violations

Pass the full test suite on all supported interpreters
* Maintain 100% code coverage (exceptions may be made)

 Contain approprite documentation for any changes (in end user documentation, docstrings, developer documen-
tation, etc)

* Have a descriptive commit messages

Development must happen off-master. In other words, you should almost never be committing or pushing directly
to master.

Once the patch is working, history must be rewritten to be linear and neat, and must be rebased off of the
current master. Group changes logically. Larger groups of smaller commits are preferable to smaller groups of larger
commits.

With the patch and history ready, submit a pull request. The pull request must provide a general description of the
change and the rationale for why clik needs the code. Commit messages are the “what”, pull request messages are the

tL)

“why”.

Submitting a pull request will automatically start a Travis CI run to check for linter violations or test failures. If the
test run passes, a clik committer will review your changes for a possible merge into master.

2.3 Internals

2.3.1 clik

The command line interface Kkit.
Clik is a tool for writing complex command-line interfaces with minimal boilerplate and bookkeeping.
This top-level package pulls together the end user API from the various modules within clik.

author Joe Joyce <joe @decafjoe.com>

copyright Copyright (c) Joe Joyce and contributors, 2009-2019.

license BSD

clik. wversion = '0.92.5'
Current version.

Type str’

5 https://docs.python.org/3/library/stdtypes.html#str

2.2. Workflow 37

mailto:joe@decafjoe.com
https://docs.python.org/3/library/stdtypes.html#str

clik, Release 0.92.5

2.3.2 clik.app

Top-level App (page 39) class and helpers.
author Joe Joyce <joe @decafjoe.com>
copyright Copyright (c) Joe Joyce and contributors, 2009-2019.
license BSD

clik.app.current_app
Magic variable containing the active application instance.

Type clik.magic.Magic (page46)— clik.app.App (page 39)

clik.app.parser
Magic variable containing the current parser.

Type clik.magic.Magic (paged6)— clik.argparse.ArgumentParser (page 40)

clik.app.args
Magic variable containing parsed arguments.

Type clik.magic.Magic (page 46) — argparse.Namespace®

clik.app.g
Magic variable containing globals.

Type clik.magic.Magic (page 46) —clik.app.AttributeDict

clik.app.run_children
Magic variable containing the function to run child commands.

Type clik.magic.Magic (page 46)

clik.app.unknown_args
Magic variable containing unknown arguments.

Type clik.magic.Magic (page46)—1ist’

clik.app.app (fn=None, name=None)
Decorate the main application generator function.

If the decorator is given no arguments, the name of the application is the name of the decorated generator
function:

Application will be named 'myapp' in this case
@app
def myapp () :

yield

The application name can be set by passing a string to name:

Application will be named 'theapp' in this case
@app (name="theapp"')
def myapp () :

yield

Parameters

6 https://docs.python.org/3/library/argparse.html#argparse. Namespace
7 https://docs.python.org/3/library/stdtypes.html#list

38 Chapter 2. Development

mailto:joe@decafjoe.com
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#list

clik, Release 0.92.5

* fn — Main application generator function. Name of the application will be set to fn.
__name__.

* name — Overrides name of application. Must not be used with the £n argument (if used
with £n, name is ignored).

Returns App (page 39) if £n is None, otherwise a decorator returning App (page 39).
class clik.app.App (fn, name=None)
Bases: clik.command.Command (page 41)
clik.Command subclass that implements the main () (page 39) method.
main () (page 39) is the user-level API for starting the application.

main (argv=None, exit=<built-in function exit>)
Start the application.

Parameters

* argv — Optional list of command-line arguments. If not supplied, this defaults to sys.
argv.

* exit (fn (integer_exit_code))—Optional function to call on exit. If not supplied,
this defaults to sys.exit ()%.

Returns Return value of exit

2.3.3 clik.argparse

Most of the hackery that makes clik tick.
author Joe Joyce <joe @decafjoe.com>
copyright Copyright (c) Joe Joyce and contributors, 2009-2019.
license BSD

clik.argparse.ALLOW _UNKNOWN = '_clik_unknown'
Name of the argument that contains whether to allow unknown arguments.

Type str’

exception clik.argparse.ArgumentParserExit (code)
Raised instead of allowing argparse'’tocall sys.exit ().

code = None
Exit code.

Type int!'?

exception clik.argparse.BareUnsupportedFeatureError (feature)
Raised when using a feature that is not supported by bare commands.

feature = None
Feature that is unsupported.

Type str'

8 https://docs.python.org/3/library/sys.html#sys.exit

9 https://docs.python.org/3/library/stdtypes.html#str

10 https://docs.python.org/3/library/argparse.html#module-argparse
1T https://docs.python.org/3/library/sys. html#sys. exit

12 https://docs.python.org/3/library/functions. html#int

13 https://docs.python.org/3/library/stdtypes.html#str

2.3. Internals

39

https://docs.python.org/3/library/sys.html#sys.exit
mailto:joe@decafjoe.com
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/sys.html#sys.exit
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

clik, Release 0.92.5

class clik.argparse.HelpFormatter (prog, indent_increment=2, max_help_position=24,

width=None)
Bases: argparse.HelpFormatter

Format usage with no trailing newline on usage.

class clik.argparse.ArgumentParser (*args, **kwargs)

Bases: argparse. ArgumentParserl4

argparse.ArgumentParser!’ specialized for clik.

_clik_bare_arguments ()
Context manager for bare command mode.

When the parser is in bare command mode, it disallows certain features (like positional args and mutually
exclusive groups). In addition, the argument destinations are recorded in order to do some post-processing
before running the selected command.

add_argument (*args, **kwargs)
Override default behavior to disallow posargs in bare commands.

Raise BareUnsupportedFeatureError (page 39) if adding a positional argument to a
bare command.

add_mutually exclusive_group (*args, **kwargs)
Override default behavior to disallow mutex groups in bare commands.

Raise BareUnsupportedFeatureError (page 39) if adding a mutually exclusive group
to a bare command.

allow_unknown_args ()
Allow unknown arguments, putting them in c1ik .unknown_args.

Raise UnknownArgsUnsupportedError if this parser has subparsers — unknown argu-
ments are allowed only on leaf commands.

exit (status=0, message=None)
Override default behavior to avoid interpreter exit.

By default, the parser calls sys.exit ()!% In certain situations — namely testing — we don’t actually
want to exit the Python interpreter.

So instead of exiting, this throws an ArgumentParserExit (page 39) exception which can be caught
by the caller.

Parameters
» status (int!”) — Exit status.

» message (st r'®) — Optional message. If supplied, will be printed to sys.stderr!
before raising the exception.

Raise ArgumentParserExit (page 39)

format_help ()
Override default behavior to support formatting bare commands.

format_usage ()
Override default behavior to use clik’s formatter.

14 https://docs.python.org/3/library/argparse. html#argparse. ArgumentParser
15 https://docs.python.org/3/library/argparse.html#argparse. ArgumentParser
16 https://docs.python.org/3/library/sys.html#sys.exit

17 https://docs.python.org/3/library/functions. html#int

18 https://docs.python.org/3/library/stdtypes.html#str

19 hitps://docs.python.org/3/library/sys.html#sys.stderr

40 Chapter 2. Development

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/sys.html#sys.exit
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.stderr

clik, Release 0.92.5

2.3.4 clik.command

All the recursive, argument-parsin’, context-managin’ goodness.
author Joe Joyce <joe @decafjoe.com>
copyright Copyright (c) Joe Joyce and contributors, 2009-2019.
license BSD

clik.command.catch = <object object>
Globally-unique value used by commands to indicate they want clik to send the exception (if one occurred) in
addition to the child exit code in response toa yield.

Type object?

clik.command.ARGS = 'args'
Name of the magic variable containing the parsed arguments.
Type str?!
clik.command.STACK = '_clik_stack'

Name of the argument that contains the stack of commands to be run.
Type str?

clik.command.SHOW_ SUBCOMMANDS = 3
If a parent has more than this number of subcommands, the help output will { command} instead of the full list
of subcommands.

Type int?

exception clik.command.BareAlreadyRegisteredError (command)
Raised when a bare command has already been registered.

command = None
Command caller was trying to register as the bare command.

Type Command (page 41)

class clik.command.Command (ctx, fin, name=None, alias=None, aliases=None)
Bases: object?

The invisible backend driving most of what the user interacts with.

__init__ (ctx, fn, name=None, alias=None, aliases=None)
Initialize the command object.

Parameters
e ctx(clik.context.Context (page 44)) — Context object.
e £n — Generator function — the actual command.
* name (st r>’)— Name of the command or None. If None, name willbe fn.__name__.

e alias (str”°)— Command alias or None. If None, the command has no aliases. If this
and aliases are both supplied, alias will be prepended to the aliases list.

20 https://docs.python.org/3/library/functions.html#object
21 https://docs.python.org/3/library/stdtypes.html#str

22 https://docs.python.org/3/library/stdtypes.html#str

23 https://docs.python.org/3/library/functions. html#int

24 https://docs.python.org/3/library/functions.html#object
25 https://docs.python.org/3/library/stdtypes.html#str

26 https://docs.python.org/3/library/stdtypes.html#str

2.3. Internals 4

mailto:joe@decafjoe.com
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

clik, Release 0.92.5

* aliases (1ist? or None) — List of additional aliases for the command or None.

__call__ (fn=None, name=None, alias=None, aliases=None)
Add subcommands to this command.

Basic use:

@myapp
def mysubcommand () :
yield

Customizing the subcommand:

@myapp (name="'subcommand', alias='sub', aliases=['s'])
def mysubcommand () :
yield

Parameters
* fn — Generator function or None. If £n is supplied, all other arguments are ignored.
* name (st r°*) — Name of the command or None.

* alias (str?’) — Command alias. See__init__ () (page 41) for information on how
aliases are handled.

* aliases (1ist’? or None) — List of additional aliases for the command or None.

_configure_parser (parser, parent=None, stack=None)
_check_bare_arguments ()
_run (child=False)

_aliases = None
Tuple of aliases for this command.

Type tuple’! of str??

_bare = None
Command (page 41) instance for the bare command or None if bare command is not set.

Type Command (page 41) or None

_children = None
List of child commands.

Type 1ist?® of Command (page 41) instances

_ctx = None
Context object for this command. This context is shared between all command instances associated with a

clik.app.App (page 39).
Type clik.context.Context (page 44)

27 https://docs.python.org/3/library/stdtypes.html#list
28 https://docs.python.org/3/library/stdtypes.html#str
29 https://docs.python.org/3/library/stdtypes.html#str
30 https://docs.python.org/3/library/stdtypes.html#list
31 https://docs.python.org/3/library/stdtypes.html#tuple
32 https://docs.python.org/3/library/stdtypes.html#str
33 https://docs.python.org/3/library/stdtypes.html#list

42 Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

clik, Release 0.92.5

_fn = None
Generator function — the actual command.

Type generator function

_generator = None
In-progress generator for _ £n (page 42). This is the object that we call generator.send ()>** and
generator.next () on.

Type generator

_name = None
Canonical name of the command.

Type str®

_parent = None
Parent command. For the root clik.app.App (page 39) instance, this is None. Set in
_configure_parser () (page 42).

Type Command (page 41) or None

_parser = None
Parser for this command. Setin _configure_parser () (page 42).

Type clik.argparse.ArgumentParser (page 40)

2.3.5 clik.compat

Python compatibility helpers.
author Joe Joyce <joe @decafjoe.com>
copyright Copyright (c) Joe Joyce and contributors, 2009-2019.
license BSD

clik.compat .PY2

Indicates whether we are on Python 2.
Type bool%

clik.compat .PY26

Indicates whether we are on Python 2.6.
Type bool?’

clik.compat.P¥33
Indicates whether we are on Python 3.3.

Type bool™®

2.3.6 clik.context

Manage bindings for c1ik.magic.Magic (page 46) variables.

author Joe Joyce <joe @decafjoe.com>

34 https://docs.python.org/3/reference/expressions.html#generator.send
35 https://docs.python.org/3/library/stdtypes.html#str

36 https://docs.python.org/3/library/functions.html#bool

37 https://docs.python.org/3/library/functions.html#bool

38 https://docs.python.org/3/library/functions.html#bool

2.3. Internals 43

https://docs.python.org/3/reference/expressions.html#generator.send
https://docs.python.org/3/library/stdtypes.html#str
mailto:joe@decafjoe.com
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
mailto:joe@decafjoe.com

clik, Release 0.92.5

copyright Copyright (c) Joe Joyce and contributors, 2009-2019.
license BSD

exception clik.context.LockedMagicError (name)
Raised when trying to acquire a magvar that is already acquired.

name = None
Name of the magic variable that is locked.

Type str?

exception clik.context.MagicNameConflictError (name)
Raised when trying to register an already-registered magvar.

name = None
Name of the magic variable that is already registered.
Type str*

exception clik.context.UnregisteredMagicNameError (name)
Raised when trying to access an unregistered magic variable.

name = None
Name of the magic variable that is unregistered.

Type str*

exception clik.context.UnboundMagicError (name)
Raised when trying to access a magic variable that is not bound.

name = None
Name of the magic variable that is unbound.

Type str*

class clik.context.Context
Bases: object®

Bindings manager for magic variables.

__call__ (**kwargs)
Context manager for push () (page 45) -ing kwargs during a code block.

Example:

context = Context ()

context.register('foo')

with context (foo='bar'):
pass # do some stuff

Before the block, each key/value pair in kwargs is passed to push () (page 45). After the block, each

key is pop () (page 45) -ped.

acquire (*magic_variables)
Context manager to lock magic_variables from use by other contexts.

Only one context at a time is allowed to control the binding of a magic variable. Using this context manager

ensures the caller can safely manipulate the binding without interference from other contexts:

39 https://docs.python.org/3/library/stdtypes.html#str
40 https://docs.python.org/3/library/stdtypes.html#str
41 https://docs.python.org/3/library/stdtypes.html#str
42 https://docs.python.org/3/library/stdtypes.html#str
43 https://docs.python.org/3/library/functions.html#object

44 Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

clik, Release 0.92.5

foo = Magic('foo')
contextl = Context ()
contextl.register('foo')
context?2 = Context ()
context2.register('foo')
with contextl.acquire (foo):
with contextl (foo='bar'):
pass # do some stuff
with context2.acquire (foo):
BOOM! LockedMagicError gets thrown

Before the block, each of the magic_variables is checked to see if it currently has a context. If so,
LockedMagicError (page 44) is thrown. Otherwise, the context is set to this instance.

After the block, the context for each magic variable is reset to None, freeing it up for use by other contexts.
Raise LockedMagicError (page 44)if one of magic_variables is already acquired

get (name)
Return currently-bound value of magic variable named name.

Parameters name (st r**) — Name of magic variable.
Raise UnregisteredMagicNameError (page 44) if name is not registered
Raise UnboundMagicError (page 44) if variable is not currently bound

pop (name)
Pop and return the current value off the variable’s stack.

This rebinds the variable to the next-highest item on the stack.
Parameters name (st r*) — Name of magic variable.
Raise UnregisteredMagicNameError (page 44) if name is not registered
Raise UnboundMagicError (page 44) if variable is not currently bound

push (name, obj)
Push a value on to a variable’s stack, rebinding its current value.

Parameters
* name (st r*%) — Name of magic variable.
* obj — New value to push on to the stack.
Raise UnregisteredMagicNameError (page 44) if name is not registered

register (name)
Register a magic variable name.

Requiring registration prevents accidental conflicts between modules. If two modules (which may not
know about each other) both try to register the same magic variable, clik will thrown an exception.

Parameters name (st r*’) — Name of magic variable.
Raise MagicNameConflictError (page 44) if name is already registered

unregister (name)
Unregister a magic variable name.

44 https://docs.python.org/3/library/stdtypes.html#str
45 https://docs.python.org/3/library/stdtypes.html#str
46 https://docs.python.org/3/library/stdtypes.html#str
47 https://docs.python.org/3/library/stdtypes.html#str

2.3. Internals 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

clik, Release 0.92.5

Parameters name (st r**) — Name of magic variable.

Raise UnregisteredMagicNameError (page 44) if name is not registered

2.3.7 clik.magic

Slightly adapted version of Werkzeug’s werkzeug.local.LocalProxy.
Original code licensed from the Werkzeug Team under the following terms:

Copyright (c) 2014 by the Werkzeug Team, see AUTHORS for more details.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* The names of the contributors may not be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

copyright Copyright (c) 2014 by the Werkzeug Team
authors See Werkzeug’s AUTHORS file

license BSD

class clik.magic.Magic (name)

2.3.8 clik.util

The ever-present utilities module.

author Joe Joyce <joe @decafjoe.com>

copyright Copyright (c) Joe Joyce and contributors, 2009-2019.

license BSD

class clik.util.AttributeDict
Bases: dict®

Simple dict " wrapper that allows key access via attribute.

48 https://docs.python.org/3/library/stdtypes.html#str
49 https://docs.python.org/3/library/stdtypes.html#dict
30 https://docs.python.org/3/library/stdtypes.html#dict

46

Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#str
mailto:joe@decafjoe.com
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

clik, Release 0.92.5

Example:

d = AttributeDict (foo='bar', baz="'qux')
d['"foo'] # 'bar'

d. foo # 'bar'
d['baz'] # 'qux'
d.baz # 'qux'
d.foo = "bup'

d['foo'] # 'bup'

d. foo # 'bup'
del d.foo

d.foo # KeyError

__delattr (name)
Delete via attribute name.

__getattr__ (name)
Get via attribute name.

___setattr_ _ (name, value)
Set via attribute name.

2.4 Changelog

2.4.1 0.92.5 — unreleased

2.4.2 0.92.4 - 2019-05-23

e The __doc___ attribute of Command instances were changed to be the decorated function’s ___doc___ rather
than the generic Command docstring.

2.4.3 0.92.3 - 2018-11-01

* Fixed logic bug that, when an end user is running Python 2.7 and does not supply a required positional argument,
causes an exception within clik instead of printing an error message.

2.4.4 0.92.2 - 2017-12-19

* Added introductory documentation: example code, tutorial, and screencast.

2.4.5 0.92.1 - 2017-11-28

¢ Fixed incorrect __version___ attribute.

2.4.6 0.92.0 - 2017-11-23

* Moved internal AttributeDict class from clik.apptoclik.util.

2.4. Changelog 47

clik, Release 0.92.5

2.4.7 0.91.0 - 2017-11-06

* Added a facility for handling unknown arguments.

2.4.8 0.90.2 - 2017-10-12

e Calling run_children () when there are no children no longer raised an exception; it simply returned O (i.e.
no error in the children).

2.4.9 0.90.1 — 2017-09-06

» Updated PyPI trove classifier Development Status from1l - Planningto3 - Alpha.

2.4.10 0.90.0 — 2017-09-05

¢ Initial public re-release.

2.4.11 Pre-0.90.0

The Dark Old Days.

48 Chapter 2. Development

Python Module Index

C

clik,
clik.
clik.
clik.
clik.
clik.
clik.
clik.

37

app, 38
argparse, 39
command, 41
compat, 43
context, 43
magic, 46
util, 46

49

clik, Release 0.92.5

50 Python Module Index

Index

Symbols

__call__ () (clik.command.Command method), 42
__call__ () (clik.context.Context method), 44

_ delattr__ () (clik.util. AttributeDict method), 47
__getattr__ () (clik.util. AttributeDict method), 47
__init__ () (clik.command.Command method), 41
_ setattr__ () (clikutil. AttributeDict method), 47

_ version__ (in module clik), 37
_aliases (clik.command. Command attribute)
_bare (clik.command. Command attribute), 42
_check_bare_arguments ()
(clik.command. Command method), 42

,42

_children (clik.command. Command attribute), 42

_clik_bare_arguments ()

(clik.argparse.ArgumentParser method),
40

_configure_parser () (clik.command. Command
method), 42

_ctx (clik.command. Command attribute), 42
_fn (clik.command. Command attribute), 42

_generator (clik.command. Command attribute), 43

_name (clik.command. Command attribute), 43

_parent (clik.command.Command attribute), 43
_parser (clik.command.Command attribute), 43

_run () (clik.command.Command method), 42

A

acquire () (clik.context.Context method), 44

add_argument () (clik.argparse.ArgumentParser

method), 40
add_mutually_exclusive_group ()

(clik.argparse.ArgumentParser

40

method),

ALLOW_UNKNOWN (in module clik.argparse), 39

allow_unknown_args ()
(clik.argparse.ArgumentParser
40

App (class in clik.app), 39

app () (in module clik.app), 38

method),

args (in module clik.app), 38

ARGS (in module clik.command), 41
ArgumentParser (class in clik.argparse), 40
ArgumentParserExit, 39
AttributeDict (class in clik.util), 46

B

BareAlreadyRegisteredError, 41
BareUnsupportedFeatureError, 39

C

catch (in module clik.command), 41

clik (module), 37

clik.app (module), 38

clik.argparse (module), 39

clik.command (module), 41

clik.compat (module), 43

clik.context (module), 43

clik.magic (module), 46

clik.util (module), 46

code (clik.argparse.ArgumentParserEXxit attribute), 39

Command (class in clik.command), 41

command (clik.command.BareAlreadyRegisteredError
attribute), 41

Context (class in clik.context), 44

current_app (in module clik.app), 38

E

exit () (clik.argparse.ArgumentParser method), 40

F

feature (clik.argparse.BareUnsupportedFeatureError
attribute), 39

format_help () (clik.argparse.ArgumentParser
method), 40

format_usage () (clik.argparse.ArgumentParser
method), 40

G

g (in module clik.app), 38

51

clik, Release 0.92.5

get () (clik.context.Context method), 45

H

HelpFormatter (class in clik.argparse), 40

L

LockedMagicError, 44

M

Magic (class in clik.magic), 46
MagicNameConflictError, 44
main () (clik.app.App method), 39

N

name (clik.context.LockedMagicError attribute), 44

name (clik.context.MagicNameConflictError attribute),
44

name (clik.context. UnboundMagicError attribute), 44

name (clik.context.UnregisteredMagicNameError at-
tribute), 44

P

parser (in module clik.app), 38

pop () (clik.context. Context method), 45
push () (clik.context.Context method), 45
PY2 (in module clik.compat), 43

PY26 (in module clik.compat), 43

PY33 (in module clik.compat), 43

R

register () (clik.context.Context method), 45
run_children (in module clik.app), 38

S

SHOW_SUBCOMMANDS (in module clik.command), 41
STACK (in module clik.command), 41

U

UnboundMagicError, 44

unknown_args (in module clik.app), 38
unregister () (clik.context.Context method), 45
UnregisteredMagicNameError, 44

52

Index

	Intro
	Example
	Screencast
	Tutorial

	Development
	Quickstart
	Workflow
	Internals
	Changelog

	Python Module Index

