

clik-shell

clik-shell is a tiny glue library between clik [https://clik.readthedocs.io] and cmd [https://docs.python.org/3/library/cmd.html]:

from clik import app
from clik_shell import DefaultShell

@app
def myapp():
 yield

... subcommands for myapp ...

@myapp
def shell():
 yield
 DefaultShell(myapp).cmdloop()

See the quickstart for more documentation on what
clik-shell can do.

	Quickstart
	Example Program

	Add Shell Subcommand

	Intended Usage

	Excluding Commands from the Shell

	Shell-Only Commands

	Base Shell Classes

	Hyphenated Commands

	API

	Internals

	Changelog
	0.90.0 – 2017-10-22

Quickstart

clik-shell makes it easy to add an interactive command shell to your
clik [https:://clik.readthedocs.io] application.

Example Program

Here’s the program we’ll be working with:

from clik import app

@app
def myapp():
 """Example application for clik-shell."""
 yield
 print('myapp')

@myapp
def foo():
 """Print foo."""
 yield
 print('foo')

@myapp
def bar():
 """Print bar."""
 yield
 print('bar')

@myapp
def baz():
 """A subcommand with subcommands."""
 yield
 print('baz')

@baz
def spam():
 """Print spam."""
 yield
 print('spam')

@baz
def ham():
 """Print ham."""
 yield
 print('ham')

@baz
def eggs():
 """Print eggs."""
 yield
 print('eggs')

if __name__ == '__main__':
 myapp.main()

Add Shell Subcommand

Add a new subcommand that makes use of
clik_shell.DefaultShell:

from clik_shell import DefaultShell

@myapp
def shell():
 """Interactive command shell for my application."""
 yield
 DefaultShell(myapp).cmdloop()

That’s it! The example application now has an interactive command
shell:

$./example.py shell
myapp
myapp> help

Documented commands (type help <topic>):
==
EOF bar baz exit foo help quit shell

myapp> help foo
usage: foo [-h]

Print foo.

optional arguments:
 -h, --help show this help message and exit

myapp> help baz
usage: baz [-h] {spam,ham,eggs} ...

A subcommand with subcommands.

optional arguments:
 -h, --help show this help message and exit

subcommands:
 {spam,ham,eggs}
 spam Print spam.
 ham Print ham.
 eggs Print eggs.

myapp> foo
foo
myapp> baz
usage: baz [-h] {spam,ham,eggs} ...
baz: error: the following arguments are required: {spam,ham,eggs}

myapp> qux
error: unregonized command: qux (enter ? for help)

myapp> baz spam
baz
spam
myapp> exit

$

Intended Usage

In practice, the base shell is designed to be subclassed:

class Shell(DefaultShell):
 def __init__(self):
 super(Shell, self).__init__(myapp)

@myapp
def shell():
 """Interactive command shell for my application."""
 yield
 Shell().cmdloop()

DefaultShell is a subclass of
Cmd [https://docs.python.org/3/library/cmd.html#cmd.Cmd], so subclasses of DefaultShell can make use of everything in Cmd [https://docs.python.org/3/library/cmd.html#cmd.Cmd]. This is useful for things like customizing the prompt and
adding introductory text:

class Shell(DefaultShell):
 intro = 'Welcome to the myapp shell. Enter ? for a list of commands.\n\n'
 prompt = '(myapp)% '

With those updates:

$./example.py shell
myapp
Welcome to the myapp shell. Enter ? for a list of commands.

(myapp)%

Excluding Commands from the Shell

As implemented, the shell command is available from within the
shell:

$./example.py shell
myapp
myapp> ?

Documented commands (type help <topic>):
==
EOF bar baz exit foo help quit shell

myapp> shell
myapp> exit

myapp> exit

$

This works, but isn’t the desired behavior. There’s no reason for
users to start a “subshell.” For this case,
clik_shell.exclude_from_shell() is available:

from clik_shell import DefaultShell, exclude_from_shell

@exclude_from_shell
@myapp
def shell():
 """Interactive command shell for my application."""
 yield
 Shell().cmdloop()

Now users cannot call shell from within the shell:

$./example.py shell
myapp
myapp> ?

Documented commands (type help <topic>):
==
EOF bar baz exit foo help quit

myapp> shell
error: unregonized command: shell (enter ? for help)

myapp> exit

$

Note that exclude_from_shell
is not limited to the shell command itself – it may be used on any
subcommand to exclude that subcommand from the shell interface.

Shell-Only Commands

To create a command that is available only in the shell, define a new
do_* method as outlined in the cmd [https://docs.python.org/3/library/cmd.html#module-cmd] documentation:

import subprocess

class Shell(DefaultShell):
 def do_clear(self, _):
 """Clear the terminal screen."""
 yield
 subprocess.call('clear')

Base Shell Classes

DefaultShell adds a few commonly
desired facilities to the default command loop:

	exit and quit commands to exit the shell

	EOF handler, which exits the shell on Ctl-D

	KeyboardInterrupt handler, which exits the shell on Ctl-C

	cmd.Cmd.emptyline() [https://docs.python.org/3/library/cmd.html#cmd.Cmd.emptyline] override to a no-op (by default it runs
the last command entered)

If you want to implement these facilities yourself, subclass
clik_shell.BaseShell instead of the default shell. The base
shell defines only three methods on top of cmd.Cmd [https://docs.python.org/3/library/cmd.html#cmd.Cmd]:

	__init__, which dynamically
generates the do_* and help_* methods

	default, which overrides the
default cmd.Cmd.default() [https://docs.python.org/3/library/cmd.html#cmd.Cmd.default] implementation in order to hack in
support for hyphenated command names (see below)

	error, which is called when a
command exits with a non-zero code

Hyphenated Commands

cmd [https://docs.python.org/3/library/cmd.html#module-cmd] does not natively support commands with hyphenated names –
commands are defined by creating a do_* method and methods may not
have hyphens in them. Due to this constraint, there’s not much
clik-shell can do but work around it as best as possible:

	For the purpose of defining methods, all hyphens are converted to
underscores – so my-subcommand becomes my_subcommand

	A hook is added to cmd.Cmd.default() [https://docs.python.org/3/library/cmd.html#cmd.Cmd.default] to recognize
my-subcommand and redirect it to my_subcommand

Le sigh. This sucks because:

	The underscore names aren’t the “real” command names

	The hyphen names don’t show up in the help documentation

	In theory someone could define my-subcommand and
my_subcommand, which totally breaks this scheme (in practice,
anyone who designs a CLI where those two commands do different
things deserves to have their app broken)

But, I mean, at least my-subcommand doesn’t bail out. And that’s
the only reason the workaround was implemented. Otherwise it’s a
pretty ugly wart on an otherwise reasonably-designed API.

API

	
clik_shell.exclude_from_shell(command_or_fn)

	Exclude command from the shell interface.

This decorator can be applied before or after the command decorator:

@exclude_from_shell
@myapp
def mycommand():

is the same as

@myapp
@exclude_from_shell
def mycommand():

	Parameters

	command_or_fn (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command] or function) – Command instance or function

	Returns

	Whatever was passed in

	
class clik_shell.BaseShell(command)

	Bases: cmd.Cmd [https://docs.python.org/3/library/cmd.html#cmd.Cmd]

Minimal implementation to integrate clik and cmd.

	
__init__(command)

	Instantiate the command loop.

	Parameters

	command (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command]) – “Root” command object (usually the application object
created by clik.app.app() [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.app.app])

	
default(line)

	Override that hackily supports commands with hyphens.

See the quickstart in the documentation for further explanation.

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line whose command is unrecognized

	Return type

	None

	
error(exit_code)

	Handle non-zero subcommand exit code.

By default, this prints a generic error message letting the user know
the exit code.

	Parameters

	exit_code (int [https://docs.python.org/3/library/functions.html#int]) – Exit code from the subcommand

	Return type

	None

	
prompt = None

	Prompt for the command loop. If None, the prompt is set to
"name> ", where name is the name of the root command
object.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
class clik_shell.DefaultShell(command)

	Bases: clik_shell.BaseShell

Command loop subclass that implements commonly desire facilities.

	
cmdloop()

	Override that supports graceful handling of keyboard interrupts.

	
do_EOF(_)

	Exit the shell.

	
do_exit(_)

	Exit the shell.

	
do_quit(_)

	Exit the shell.

	
emptyline()

	Override that turns an empty line into a no-op.

By default, the command loop runs the previous command when an empty
line is received. This is bad default behavior because it’s not what
users expect.

If “run the last command” is the desired behavior, you should extend
BaseClass rather than this class.

Internals

Clik extension for adding an interactive command shell to an application.

	author

	Joe Joyce <joe@decafjoe.com>

	copyright

	Copyright (c) Joe Joyce and contributors, 2017-2019.

	license

	BSD

	
clik_shell.EXCLUDE = <object object>

	Unique object used to indicate that a command should not be present
in the shell.

	Type

	object

	
clik_shell.get_shell_subcommands_for(parent_command)

	Return list of command objects that should be present in the shell.

This excludes the commands that have been marked with
exclude_from_shell().

	Parameters

	command (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command]) – Command for which to get shell subcommands

	Returns

	List of commands that should be present in the shell

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command] instances

	
clik_shell.parser_for(*args, **kwds)

	Context manager that creates a root parser object for command.

See make_action_method() and make_help_method() for usage.

	Parameters

	command (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command]) – Command for which to create a parser

	Returns

	Argument parser for the command

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
clik_shell.make_action_method(command)

	Dynamically generate the do_ method for command.

	Parameters

	command (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command]) – Command for which to generate do_ method

	Returns

	Method that calls the given command

	Return type

	fn(self, line)

	
clik_shell.make_help_method(command)

	Dynamically generate the help_ method for command.

	Parameters

	command (clik.command.Command [https://clik.readthedocs.io/en/0.92.4/development/internals.html#clik.command.Command]) – Command for which to generate help_ method

	Returns

	Method that prints the help for the given command

	Return type

	fn(self)

Changelog

0.90.0 – 2017-10-22

	Initial public release.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 clik_shell	

Index

 _
 | B
 | C
 | D
 | E
 | G
 | M
 | P

_

 	
 	__init__() (clik_shell.BaseShell method)

B

 	
 	BaseShell (class in clik_shell)

C

 	
 	clik_shell (module)

 	
 	cmdloop() (clik_shell.DefaultShell method)

D

 	
 	default() (clik_shell.BaseShell method)

 	DefaultShell (class in clik_shell)

 	
 	do_EOF() (clik_shell.DefaultShell method)

 	do_exit() (clik_shell.DefaultShell method)

 	do_quit() (clik_shell.DefaultShell method)

E

 	
 	emptyline() (clik_shell.DefaultShell method)

 	error() (clik_shell.BaseShell method)

 	
 	EXCLUDE (in module clik_shell)

 	exclude_from_shell() (in module clik_shell)

G

 	
 	get_shell_subcommands_for() (in module clik_shell)

M

 	
 	make_action_method() (in module clik_shell)

 	
 	make_help_method() (in module clik_shell)

P

 	
 	parser_for() (in module clik_shell)

 	
 	prompt (clik_shell.BaseShell attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 clik-shell

 		
 Quickstart

 		
 Example Program

 		
 Add Shell Subcommand

 		
 Intended Usage

 		
 Excluding Commands from the Shell

 		
 Shell-Only Commands

 		
 Base Shell Classes

 		
 Hyphenated Commands

 		
 API

 		
 Internals

 		
 Changelog

 		
 0.90.0 – 2017-10-22

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

