

Welcome to clients’ documentation.

HTTP for humanitarians.

Quickstart

As great as requests [https://python-requests.org] is, typical usage is falling into some anti-patterns.

	Being url-based, realistically all code needs to deal with url joining.
Which tends to be redundant and suffer from leading or trailing slash issues.

	The module level methods don’t take advantage of connection pooling, and require duplicate settings.
Given the “100% automatic” documentation of connection reuse, it’s unclear how widely known this is.

	Using Sessions [http://docs.python-requests.org/en/master/user/advanced/#session-objects] requires assigning every setting individually, and still requires url joining.

Clients aim to be encourage best practices by making Sessions even easier to use than the module methods.
Examples use the httpbin [http://httpbin.org] client testing service.

client = clients.Client(url, auth=('user', 'pass'), headers={'x-test': 'true'})
r = client.get('headers', headers={'x-test2': 'true'})
assert {'x-test', 'x-test2'} <= set(r.request.headers)

r = client.get('cookies', cookies={'from-my': 'browser'})
assert r.json() == {'cookies': {'from-my': 'browser'}}
r = client.get('cookies')
assert r.json() == {'cookies': {}}

client.get('cookies/set', params={'sessioncookie': '123456789'})
r = client.get('cookies')
assert r.json() == {'cookies': {'sessioncookie': '123456789'}}

Which reveals another anti-pattern regarding Responses [http://docs.python-requests.org/en/master/user/quickstart/#response-content]. Although the response object is sometimes required,
naturally the most common use case is to access the content. But the onus is on the caller to check the
status_code and content-type.

Resources aim to making writing custom api clients or sdks easier.
Their primary feature is to allow direct content access without silencing errors.
Response content type is inferred from headers: json, content, or text.

resource = clients.Resource(url)
assert resource.get('get')['url'] == url + '/get'
with pytest.raises(IOError):
 resource.get('status/404')
assert '<html>' in resource.get('html')
assert isinstance(resource.get('bytes/10'), bytes)

Advanced Usage

Clients allow any base url, not just hosts, and consequently support path concatenation.
Following the semantics of urljoin however, absolute paths and urls are treated as such.
Hence there’s no need to parse a url retrieved from an api.

client = clients.Client(url)
cookies = client / 'cookies'
assert isinstance(cookies, clients.Client)
assert cookies.get().url == url + '/cookies'

assert cookies.get('/').url == url + '/'
assert cookies.get(url).url == url + '/'

Some api endpoints require trailing slashes; some forbid them. Set it and forget it.

client = clients.Client(url, trailing='/')
assert client.get('ip').status_code == 404

Note trailing isn’t limited to only being a slash. This can be useful for static paths below a parameter:
api/v1/{query}.json.

Asyncio

Using httpx [https://www.encode.io/httpx] instead of requests [https://python-requests.org], AsyncClients and AsyncResources
implement the same interface, except the request methods return asyncio coroutines [https://docs.python.org/3/library/asyncio-task.html#coroutines].

Avant-garde Usage

Resources support operator overloaded syntax wherever sensible.
These interfaces often obviate the need for writing custom clients specific to an API.

	__getattr__: alternate path concatenation

	__getitem__: GET content

	__setitem__: PUT json

	__delitem__: DELETE

	__contains__: HEAD ok

	__iter__: GET streamed lines or content

	__call__: GET with params

resource = clients.Resource(url)
assert set(resource['get']) == {'origin', 'headers', 'args', 'url'}
resource['put'] = {}
del resource['delete']

assert '200' in resource.status
assert '404' not in resource.status
assert [line['id'] for line in resource / 'stream/3'] == [0, 1, 2]
assert next(iter(resource / 'html')) == '<!DOCTYPE html>'
assert resource('cookies/set', name='value') == {'cookies': {'name': 'value'}}

Higher-level methods for common requests.

	iter: __iter__ with args

	update: PATCH with json params, or GET with conditional PUT

	create: POST and return location

	download: GET streamed content to file

	authorize: acquire oauth token

resource = clients.Resource(url)
assert list(map(len, resource.iter('stream-bytes/256'))) == [128] * 2
assert resource.update('patch', name='value')['json'] == {'name': 'value'}
assert resource.create('post', {'name': 'value'}) is None
file = resource.download(io.BytesIO(), 'image/png')
assert file.tell()

A singleton decorator can be used on subclasses,
conveniently creating a single custom instance.

@clients.singleton('http://localhost/')
class custom_api(clients.Resource):
 pass # custom methods

assert isinstance(custom_api, clients.Resource)
assert custom_api.url == 'http://localhost/'

Remote and AsyncRemote clients default to POSTs with json bodies,
for APIs which are more RPC than REST.

Graph and AsyncGraph remote clients execute GraphQL queries.

Proxy and AsyncProxy clients provide load-balancing across multiple hosts,
with an extensible interface for different algorithms.

Contents:

	Client

	Resource

	Remote

	Graph

	Proxy

	AsyncClient

	AsyncResource

	AsyncRemote

	AsyncGraph

	AsyncProxy

	singleton

Indices and tables

	Index

	Module Index

	Search Page

Client

	
class clients.Client(url, trailing='', headers=(), auth=None, **attrs)

	Bases: requests.sessions.Session

A Session which sends requests to a base url.

	Parameters

	
	url – base url for requests

	trailing – trailing chars (e.g. /) appended to the url

	headers – additional headers to include in requests

	auth – additional authorization support for {token_type: access_token},
available per request as well

	attrs – additional Session attributes

	
__truediv__(path: str) → clients.base.Client

	Return a cloned client with appended path.

	
delete(path='', **kwargs)

	DELETE request with optional path.

	
get(path='', **kwargs)

	GET request with optional path.

	
head(path='', allow_redirects=False, **kwargs)

	HEAD request with optional path.

	
options(path='', **kwargs)

	OPTIONS request with optional path.

	
patch(path='', json=None, **kwargs)

	PATCH request with optional path and json body.

	
post(path='', json=None, **kwargs)

	POST request with optional path and json body.

	
put(path='', json=None, **kwargs)

	PUT request with optional path and json body.

	
request(method, path, auth=None, **kwargs)

	Send request with relative or absolute path and return response.

Resource

	
class clients.Resource(url, trailing='', headers=(), auth=None, **attrs)

	Bases: clients.base.Client

A Client which returns json content and has syntactic support for requests.

	
content_type(response)

	Return name {json, text,… } of response’s content_type.

	
__call__(path: str = '', **params)

	GET request with params.

	
__contains__(path: str)

	Return whether endpoint exists according to HEAD request.

	
__delitem__(path='', **kwargs)

	DELETE request with optional path.

	
__getattr__(name: str) → clients.base.Client

	Return a cloned client with appended path.

	
__getitem__(path='', **kwargs)

	GET request with optional path.

	
__iter__(path: str = '', **kwargs) → Iterator[T_co]

	Iterate lines or chunks from streamed GET request.

	
__setitem__(path='', json=None, **kwargs)

	PUT request with optional path and json body.

	
authorize(path: str = '', **kwargs) → dict

	Acquire oauth access token and set auth.

	
client

	upcasted Client

	
content_type = functools.partial(<function content_type>, text='text/', json='application/(\\w|\\.)*\\+?json')

	

	
create(path: str = '', json=None, **kwargs) → str

	POST request and return location.

	
download(file, path: str = '', **kwargs)

	Output streamed GET request to file.

	
iter(path: str = '', **kwargs) → Iterator[T_co]

	Iterate lines or chunks from streamed GET request.

	
request(method, path, **kwargs)

	Send request with path and return processed content.

	
update(path: str = '', callback: Callable = None, **json)

	PATCH request with json params.

	Parameters

	callback – optionally update with GET and validated PUT.
callback is called on the json result with keyword params, i.e.,
dict correctly implements the simple update case.

	
updating(path: str = '', **kwargs)

	Provisional context manager to GET and conditionally PUT json data.

Remote

	
class clients.Remote(url: str, json=(), **kwargs)

	Bases: clients.base.Client

A Client which defaults to posts with json bodies, i.e., RPC.

	Parameters

	
	url – base url for requests

	json – default json body for all calls

	kwargs – same options as Client

	
__call__(path: str = '', **json)

	POST request with json body and check() result.

	
__getattr__(name: str) → clients.base.Client

	Return a cloned client with appended path.

	
__init__(url: str, json=(), **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
static check(result)

	Override to return result or raise error, for APIs which don’t use status codes.

	
client

	upcasted Client

Graph

	
class clients.Graph(url: str, json=(), **kwargs)

	Bases: clients.base.Remote

A Remote client which executes GraphQL queries.

	
Error

	alias of requests.exceptions.HTTPError

	
classmethod check(result: dict)

	Return data or raise errors.

	
execute(query: str, **variables)

	Execute query over POST.

Proxy

	
class clients.Proxy(*urls, **kwargs)

	Bases: clients.base.Client

An extensible embedded proxy client to multiple hosts.

The default implementation provides load balancing based on active connections.
It does not provide error handling or retrying.

	Parameters

	
	urls – base urls for requests

	kwargs – same options as Client

	
class Stats

	Bases: collections.Counter

Thread-safe Counter.

Context manager tracks number of active connections and errors.

	
add(**kwargs)

	Atomically add data.

	
choice(method: str) → str

	Return chosen url according to priority.

	Parameters

	method – placeholder for extensions which distinguish read/write requests

	
priority(url: str)

	Return comparable priority for url.

Minimizes errors, failures (500s), and active connections.
None may be used to eliminate from consideration.

	
request(method, path, **kwargs)

	Send request with relative or absolute path and return response.

AsyncClient

	
class clients.AsyncClient(url: str, *, trailing: str = '', auth=None, **attrs)

	Bases: httpx.client.AsyncClient

An asynchronous Client which sends requests to a base url.

	Parameters

	
	url – base url for requests

	trailing – trailing chars (e.g. /) appended to the url

	params – default query params

	auth – additional authorization support for {token_type: access_token},
available per request as well

	attrs – additional AsyncClient options

	
__truediv__(path: str) → clients.base.Client

	Return a cloned client with appended path.

	
delete(path='', **kwargs)

	DELETE request with optional path.

	
get(path='', **kwargs)

	GET request with optional path.

	
head(path='', allow_redirects=False, **kwargs)

	HEAD request with optional path.

	
options(path='', **kwargs)

	OPTIONS request with optional path.

	
patch(path='', json=None, **kwargs)

	PATCH request with optional path and json body.

	
post(path='', json=None, **kwargs)

	POST request with optional path and json body.

	
put(path='', json=None, **kwargs)

	PUT request with optional path and json body.

	
request(method, path, auth=None, **kwargs)

	Send request with relative or absolute path and return response.

	
run(name: str, *args, **kwargs)

	Synchronously call method and run coroutine.

AsyncResource

	
class clients.AsyncResource(url: str, *, trailing: str = '', auth=None, **attrs)

	Bases: clients.aio.AsyncClient

An AsyncClient which returns json content and has syntactic support for requests.

	
__call__(path: str = '', **params)

	GET request with params.

	
__getattr__(path: str) → clients.base.Client

	Return a cloned client with appended path.

	
__getitem__(path='', **kwargs)

	GET request with optional path.

	
authorize(path: str = '', **kwargs) → dict

	Acquire oauth access token and set auth.

	
client

	upcasted AsyncClient

	
content_type = functools.partial(<function content_type>, text='text/', json='application/(\\w|\\.)*\\+?json')

	

	
request(method, path, **kwargs)

	Send request with path and return processed content.

	
update(path='', callback=None, **json)

	PATCH request with json params.

	Parameters

	callback – optionally update with GET and validated PUT.
callback is called on the json result with keyword params, i.e.,
dict correctly implements the simple update case.

	
updating(path: str = '', **kwargs)

	Provisional context manager to GET and conditionally PUT json data.

AsyncRemote

	
class clients.AsyncRemote(url: str, json=(), **kwargs)

	Bases: clients.aio.AsyncClient

An AsyncClient which defaults to posts with json bodies, i.e., RPC.

	Parameters

	
	url – base url for requests

	json – default json body for all calls

	kwargs – same options as AsyncClient

	
__call__(path='', **json)

	POST request with json body and check result.

	
__getattr__(path: str) → clients.base.Client

	Return a cloned client with appended path.

	
__init__(url: str, json=(), **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
static check(result)

	Override to return result or raise error, for APIs which don’t use status codes.

	
client

	upcasted AsyncClient

AsyncGraph

	
class clients.AsyncGraph(url: str, json=(), **kwargs)

	Bases: clients.aio.AsyncRemote

An AsyncRemote client which executes GraphQL queries.

	
Error

	alias of httpx.exceptions.HTTPError

	
classmethod check(result: dict)

	Return data or raise errors.

	
execute(query: str, **variables)

	Execute query over POST.

AsyncProxy

	
class clients.AsyncProxy(*urls, **kwargs)

	Bases: clients.aio.AsyncClient

An extensible embedded proxy client to multiple hosts.

The default implementation provides load balancing based on active connections.
It does not provide error handling or retrying.

	Parameters

	
	urls – base urls for requests

	kwargs – same options as AsyncClient

	
class Stats

	Bases: collections.Counter

Thread-safe Counter.

Context manager tracks number of active connections and errors.

	
add(**kwargs)

	Atomically add data.

	
choice(method: str) → str

	Return chosen url according to priority.

	Parameters

	method – placeholder for extensions which distinguish read/write requests

	
priority(url: str)

	Return comparable priority for url.

Minimizes errors, failures (500s), and active connections.
None may be used to eliminate from consideration.

	
request(method, path, **kwargs)

	Send request with relative or absolute path and return response.

singleton

	
clients.singleton(*args, **kwargs)

	Return a decorator for singleton class instances.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 clients	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | O
 | P
 | R
 | S
 | U

_

 	
 	__call__() (clients.AsyncRemote method)

 	(clients.AsyncResource method)

 	(clients.Remote method)

 	(clients.Resource method)

 	__contains__() (clients.Resource method)

 	__delitem__() (clients.Resource method)

 	__getattr__() (clients.AsyncRemote method)

 	(clients.AsyncResource method)

 	(clients.Remote method)

 	(clients.Resource method)

 	
 	__getitem__() (clients.AsyncResource method)

 	(clients.Resource method)

 	__init__() (clients.AsyncRemote method)

 	(clients.Remote method)

 	__iter__() (clients.Resource method)

 	__setitem__() (clients.Resource method)

 	__truediv__() (clients.AsyncClient method)

 	(clients.Client method)

A

 	
 	add() (clients.AsyncProxy.Stats method)

 	(clients.Proxy.Stats method)

 	AsyncClient (class in clients)

 	AsyncGraph (class in clients)

 	AsyncProxy (class in clients)

 	
 	AsyncProxy.Stats (class in clients)

 	AsyncRemote (class in clients)

 	AsyncResource (class in clients)

 	authorize() (clients.AsyncResource method)

 	(clients.Resource method)

C

 	
 	check() (clients.AsyncGraph class method)

 	(clients.AsyncRemote static method)

 	(clients.Graph class method)

 	(clients.Remote static method)

 	choice() (clients.AsyncProxy method)

 	(clients.Proxy method)

 	Client (class in clients)

 	
 	client (clients.AsyncRemote attribute)

 	(clients.AsyncResource attribute)

 	(clients.Remote attribute)

 	(clients.Resource attribute)

 	clients (module)

 	content_type (clients.AsyncResource attribute)

 	(clients.Resource attribute)

 	create() (clients.Resource method)

D

 	
 	delete() (clients.AsyncClient method)

 	(clients.Client method)

 	
 	download() (clients.Resource method)

E

 	
 	Error (clients.AsyncGraph attribute)

 	(clients.Graph attribute)

 	
 	execute() (clients.AsyncGraph method)

 	(clients.Graph method)

G

 	
 	get() (clients.AsyncClient method)

 	(clients.Client method)

 	
 	Graph (class in clients)

H

 	
 	head() (clients.AsyncClient method)

 	(clients.Client method)

I

 	
 	iter() (clients.Resource method)

O

 	
 	options() (clients.AsyncClient method)

 	(clients.Client method)

P

 	
 	patch() (clients.AsyncClient method)

 	(clients.Client method)

 	post() (clients.AsyncClient method)

 	(clients.Client method)

 	priority() (clients.AsyncProxy method)

 	(clients.Proxy method)

 	
 	Proxy (class in clients)

 	Proxy.Stats (class in clients)

 	put() (clients.AsyncClient method)

 	(clients.Client method)

R

 	
 	Remote (class in clients)

 	request() (clients.AsyncClient method)

 	(clients.AsyncProxy method)

 	(clients.AsyncResource method)

 	(clients.Client method)

 	(clients.Proxy method)

 	(clients.Resource method)

 	
 	Resource (class in clients)

 	Resource.content_type() (in module clients)

 	run() (clients.AsyncClient method)

S

 	
 	singleton() (in module clients)

U

 	
 	update() (clients.AsyncResource method)

 	(clients.Resource method)

 	
 	updating() (clients.AsyncResource method)

 	(clients.Resource method)

 nav.xhtml

 Table of Contents

 		
 Welcome to clients’ documentation.

 		
 Client

 		
 Resource

 		
 Remote

 		
 Graph

 		
 Proxy

 		
 AsyncClient

 		
 AsyncResource

 		
 AsyncRemote

 		
 AsyncGraph

 		
 AsyncProxy

 		
 singleton

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

