clichain Documentation
Release 0.1.0

Loic Peron

Mar 12, 2019

documentation:

1 documentation

L1 quickstart o . o e e e e e e e e e e e e
1.2 creatingafactory
1.3 implementing atask e e e e e e e e
1.4 registering atask Ll e e e
1.5 running the command linetool e e
1.6 eStiNg . . . o o i e e e e e e e e e e e e e e e
L7 1og@Ing o e e e e e e e e e e
1.8 exceptions handling L e e e e

2 source documentation

21 chi.....
2.2 pipeline . .

3 clichain

4 install and test

4.1 nstall from pypl o e e e e e e e e e e e e e e

4.2 devinstall .
4.3 run the tests
4.4 build the doc

5 Documentation
6 Meta
7 Indices and tables

Python Module Index

O 00 1 1O\ N W =

29

31
31
31
31
32

33

35

37

39

CHAPTER 1

documentation

here’s a practical documentation, for source documentation please see source documentation

1.1 quickstart

to create a command line tool with c1ichain you need:

* to create a factory:

from clichain import cli
tasks = cli.Tasks /()

* to implement task types using coroutine functions:
See also:
http://www.dabeaz.com/coroutines

The easiest way of implementing a task type is to use the task decorator:

from clichain import pipeline
import logging
import ast

@pipeline.task

def add_offset (ctrl, offset):
logger = logging.getlLogger (f'/ name .
logger.info(f'starting, offset = {offset}")

with ctrl as push:
while True:
value = yield
push (value + offset)

(continues on next page)

http://www.dabeaz.com/coroutines

clichain Documentation, Release 0.1.0

(continued from previous page)

logger.info ('offset task finished, no more value')

@pipeline.task
def parse(ctrl):
_parse = ast.literal_eval
with ctrl as push:
while True:
push (_parse ((yield)))

See also:
clichain.pipeline.task
* to register task types into the factory:
tasks are integrated into the command line tool using c1ick commands

The simplest way of registering a task type is to decorate it with the factory:

import click

@tasks
@click.command (name="offset")
@click.argument ('offset’")
def offset_cli(offset):
"add offset to value"
offset = ast.literal eval (offset)
return add_offset (offset)

@tasks

@click.command (name="parse')

def parse_cli():
"parse input data with ast.literal_eval"
return parse ()

See also:

c1ick documentation for more details about commands

Note: it’s up to you to determine where and how you want the tasks to be registered into the factory, one way
of doing this is to make the factory a module attribute and use it into separate scripts. . .

* to start the main command from your main entry point:

if name == "'"__main__ ':
cli.app(tasks)

If we combine all the previous code into a single script, we get this:

#1!

/usr/bin/env python

—#— coding: utf—-8 —#-—
from clichain import cli, pipeline
import click

(continues on next page)

Chapter 1. documentation

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

(continued from previous page)

import logging
import ast

tasks = cli.Tasks ()

et #
implement tasks
Fomm #

@pipeline.task
def add_offset (ctrl, offset):
logger = logging.getLogger (f'/

logger.info (f'starting, offset =

with ctrl as push:
while True:
value = yield
push (value + offset)

logger.info('offset task finished, no more value')

@pipeline.task
def parse(ctrl):
_parse = ast.literal_eval
with ctrl as push:
while True:
push (_parse ((yield)))

et #
register tasks
o #
@tasks

@click.command (name='"offset")
@click.argument ('offset")
def offset_cli(offset):
"add offset to value"
offset = ast.literal_eval (offset)
return add_offset (offset)

@tasks

@click.command (name="parse')

def parse_cli():
"parse input data with ast.literal_eval"
return parse ()

#o—mm e #
run cli
F oo #
if _ name_ == '_ _main__ ':

cli.app(tasks)

if our script is called ‘dummy.py’, we can use —help option to get a full description:

1.1. quickstart 3

clichain Documentation, Release 0.1.0

$./dummy.py —--help
Usage: dummy.py [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

create a pipeline of tasks, read text data from the standard input
and send results to the standard output:

stdin(text) —--> tasks... ——> stdout (text)
[...]
Options:
-1, ——-logfile PATH wuse a logfile instead of stderr
-v, ——-verbose set the log level: None=WARNING, -v=INFO, -vv=DEBUG
—--help Show this message and exit.
Commands :

offset add offset to value
parse parse input data with ast.literal_eval

[begin fork

] end fork

, new branch

{ begin debug name group
} end debug name group

we can see our two task types are availables, we can use —help option as well on it:

$./dummy.py offset --help
Usage: dummy.py offset [OPTIONS] OFFSET

add offset to value

Options:
—--help Show this message and exit.

See also:
click

assuming we want to run this:

+——> +10 ——| - +
\ +==> +2 ——+ \

inp >> parse——| +-=> >> out
+-=> +100 --> +1 —————————— +

we can use our tool as followings (sh):

$ PIPELINE="parse [offset 10 [offset 1 , offset 2] , offset 100 offset 1 "
$ python —-c 'print ("\n".join("123456789"))"' | ./dummy.py SPIPELINE

12

13

102

13

14

103

(continues on next page)

4 Chapter 1. documentation

https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

(continued from previous page)

14
15
104
15
16
105
16
17
106
17
18
107
18
19
108
19
20
109
20
21
110

Note: everything is run into a single process and thread

1.2 creating a factory

Task types are integrated into the command line tool using c1ick commands.

In order to achieve this we register commands into a factory and then use that factory when running the main command
line interface.

from clichain import cli
tasks = cli.Tasks ()

The created factory will register all the commands into a dict, which can be accessed via the commands attribute.
See also:
clichain.cli.Tasks

It’s up to the user to define a strategy about where to create the factory and how to access it from different parts of the
program.

1.3 implementing a task

Task types are implemented using coroutine functions:
See also:
http://www.dabeaz.com/coroutines

Though you can implement a coroutine by yourself, the framework provides two ways of implementing a coroutine as
expected by the framework:

1.2. creating a factory 5

https://click.palletsprojects.com/en/7.x/api/#module-click
https://docs.python.org/3/library/stdtypes.html#dict
http://www.dabeaz.com/coroutines

clichain Documentation, Release 0.1.0

e clichain.pipeline.coroutine decorator

this is simply a trivial decorator which creates a coroutine function that will be primed when called, i.e advanced
to the first yield.

example:

from clichain import pipeline

@pipeline.coroutine
def cr(xargs, =**kw):
print ('starting...")
try:
while True:
item = yield
print (f'processing: ")
except GeneratorExit:
print ('ending...")

When used in a pipeline, the coroutine function will be called with specific keyword arguments:

See also:

clichain.pipeline.create for more details
— context: a clichain.pipeline.Context object shared by all the coroutines of the pipeline.
— targets: an iterable containing the following coroutines in the pipeline (default is no targets).

— debug: an optional name (used by c1ichain.pipeline. task, see below)

Note: Default value is the coroutine’s key in the pipeline definition (default will be used if value is None
or an empty string).

e clichain.pipeline.task decorator

this is the easiest way of implementing a task type because the decorated function won’t have to worry about
the input args and GeneratorExit handling, in addition automatic exception handling will be performed if
an exception occurs (see clichain.pipeline. task for details).

The clichain.pipeline.Control object will provide a push function to directly send data to next stages
of the pipeline, and a name attribute can be used to identify the coroutine instance (when logging for example).
The name is optionally given when creating the pipeline object using clichain.pipeline.create.

example:

from clichain import pipeline

@pipeline.task
def add_offset (ctrl, offset):
with ctrl as push:
while True:
value = yield
push (value + offset)

1.4 registering a task

Task types are integrated into the command line tool using c1ick commands.

6 Chapter 1. documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#GeneratorExit
https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

See also:
click documentation for more details about commands

The factory (see creating a factory) is a callable object meant to be used as a decorator to register a new click
command into its commands dictionary.

import click

@tasks
@click.command (name="offset")
@click.argument ('offset’")
def offset_cli(offset):
"add offset to value"
offset = ast.literal_eval (offset)
return add_offset (offset)

The click command function is expected to return a coroutine function that can be integrated into the created
pipeline, see implementing a task section for details.

Note: in the previous example we can access the registered task through the commands attribute of the factory:

assert tasks.commands['offset'] is offset_cli

Note the offset_cli callback function is a decorated version of the original callback function (defined by the user).

1.5 running the command line tool

The main command is executed by c1ick framework. Use the clichain.cli.app function to run it with the
factory, example:

' main_ ':

cli.app(tasks)

if name ==

Note: additional args and kwargs will be kept in the c11 ck context object, see c1ichain.cli.app for details.

1.6 testing

In order to perform automated tests you can run the clichain.cli.test function, which will run the main
command using click.testing framework.

example:

from clichain import cli
tasks = cli.Tasks ()

register the 'compute' task

[...]

(continues on next page)

1.5. running the command line tool 7

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

(continued from previous page)

test

args = ['compute', '——help']

inputs = [1, 2, 3]

result = cli.test (tasks, args, inputs=inputs)
assert result.output == "foo"

assert result.exit_code ==
assert not result.exception

Note: the test function supports additional arguments, see c1ichain.cli.test for details.

1.7 logging

Automatic logging is performed for registered tasks by c1ichain.pipeline framework when an unhandled ex-
ception occurs.

In this case the exception will be logged at ERROR level with exception info (see 1ogging.error), using the
optional name of the coroutine to determine the logger path.

Todo: custom kwargs cannot be passed to c1ichain.pipeline.create whenusing clichain.cli frame-
work (clichain.cli.appor clichain.cli.test),such as custom root logger.

Note: when creating the pipeline the root logger to use can be specified, see c1ichain.pipeline.create for
details. The default root logger will be clichain.pipeline.logger.

Note: an optional name can be given by the user (using a specific command defined in c1ichain.cl1i) to corou-
tines when creating the pipeline, see c1ichain.pipeline.create and implementing a task for more details.

Using the optional name to perform logging in tasks implementation is advised, example:

from clichain import pipeline
import logging

logger = logging.getLogger (name)

@pipeline.task

def add_offset (ctrl, offset):
log = logger.getChild(ctrl.name)
log.info(f'starting, offset = {offset)}"')

with ctrl as push:
while True:
value = yield
push (value + offset)

log.info('offset task finished, no more value')

8 Chapter 1. documentation

https://docs.python.org/3/library/logging.html#logging.error

clichain Documentation, Release 0.1.0

1.8 exceptions handling

Exceptions in c11ick commands should be handled using c11ck exception handling framework.

example:

@tasks
@click.command (name="offset")
@click.argument ('offset")
def offset_cli(offset):
"add offset to value"
try:
offset = ast.literal_eval (offset)
except:
raise click.BadParameter (f'wrong value: ")

return add_offset (offset)

If an unhandled exception occurs in a task when the pipeline is running, then the exception will be logged (see logging)
and the main command will abort (using c1ick .Abort) after all the coroutines have been closed.

example:

@pipeline.task
def add_offset (ctrl, offset):
with ctrl as push:
while True:
value = yield
if value > 0:
push (value + offset)
else:
raise NotImplementedError (value)

Note: In the above example, all the tasks after ‘add_offset’ in the pipeline will be terminated, all the tasks before
‘add_offset’ will fail. This behaviour is the native behaviour of coroutines, since coroutines following ‘add_offset’
will have no more values and coroutines before ‘add_offset’ will face a Stoplteration.

Whatever the exit state of the process (fail or completed), all the coroutines of the pipeline will be closed (i.e corou-
tine.close() will be called), that means the following coroutine will close the file as soon as the pipeline stops anyways:

@coroutine
def cr(xargs, =**kw):
with open('foo/bar') as f:
while True:
data = yield
[...]

See also:

clichain.pipeline.Pipeline

1.8. exceptions handling 9

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.Abort

clichain Documentation, Release 0.1.0

10 Chapter 1. documentation

CHAPTER 2

source documentation

2.1 cli

c1li focuses on the command line tool aspect using c1ick
See also:
Tasks, usage, clichain.pipeline

class clichain.cli.Cli (name=None, invoke_without_command=False, no_args_is_help=None,

su.bcommand_metavar:None, chain=False, result_callback=None, **attrs)
Implements root command using click.MultiCommand

See also:
click

C11i provides implementation for the root command by extending c1lick.MultiCommand (Then the click
command is created specifying C1 1 as “cls” parameter in the c1ick .command decorator.

See also:
app, Tasks

get__command (ctx, name)
Given a context and a command name, this returns a Command object if it exists or returns None.

list_commands (ctx)
Returns a list of subcommand names in the order they should appear.

class clichain.cli.Tasks (commands=None)
Defines a factory to register tasks types.

Tasks provides a factory to register and hold implemented tasks so they get available to the user.
Tasks are implemented by coroutines.
See also:

clichain.pipeline

11

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.MultiCommand
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.MultiCommand
https://click.palletsprojects.com/en/7.x/api/#click.command
https://docs.python.org/3/library/constants.html#None

clichain Documentation, Release 0.1.0

The command line interface is implemented using c1ick. In order to make a task usable from the command
line interface, you need to define a c1ick command (for most cases using click.command decorator).
example:

@click.command (name="compute"')
@click.option('-—approximate', '-a',
help="'compute with approximation')
@click.argument ('x")
def my_compute_task (approximate, x):
" the task doc that will appear as help "
process inputs parameters and options...

See also:
click for details on how to implements commands

The command is expected to return a coroutine function such as clichain.pipeline.coroutine, see
clichain.pipeline.create for details.

full example:

from clichain import pipeline, cli
import ast

creates the factory here but should be
common to all task types...
tasks = cli.Tasks ()

@pipeline.task
def divide (ctrl, den):

print (£' {ctrl.n: is starting')

with ctrl as push:
while True:
value = yield
push (value / den)

print (f' {ctrl.nec has finished with no error')

the task will be made available as 'compute' in the
command line interface

@tasks
@click.command (name="compute")
@click.option('-—approximate', '-a',

help="'compute with approximation')
@click.argument ('den')
def compute_task_cli (approximate, den):
" the task doc that will appear as help "
if den == 0:
raise click.BadParameter ("can't devide by 0")
if approximate:
den = round (den)
return devide (den)

@pipeline.task
def parse(ctrl):
_parse = ast.literal_eval

(continues on next page)

12 Chapter 2. source documentation

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.command
https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

(continued from previous page)

with ctrl as push:
while True:
try:
push (_parse ((yield)))
except (SyntaxError, ValueError):
pass

@tasks
@click.command (name="parse')
def parse_cli():

" performs literal_eval on data "
return parse()

See also:

usage

__call_ (cmd)

wraps and register a c1ick . command object into the factory

Tasks object is intended to be used as a decorator:

tasks = cli.Tasks ()

register 'compute' command into 'tasks'
@tasks
@click.command (name="compute")

[...]

The command is expected to return a coroutine function such as cl1ichain.pipeline.coroutine,
see clichain.pipeline.create for details.

Note: alog message will be emitted to indicate this task is created every time the command is called

__init__ (commands=None)

initializes new factory with commands
commands is a dict containing all registered commands, and will be set to a new empty dict if None.

context is the current click context, it’s set to None until the main command is called (see app), which
will set context to the current context value.

_prepare_cmd (cmd)

wraps the c1ick.command callback function and replace it
the wrapper function will:
* log a ‘create’ message (using logger.info)

* use the callback function result to create the next coroutine in the pipeline. The coroutine function
created by the callback function is stored in the current c1ick context. A stack is used to process
pipeline’s branches.

See also:
clichain.pipeline for details on how the pipeline is specified
The wrapper function does not return anything

See also:

2.1.

cli

13

https://click.palletsprojects.com/en/7.x/api/#click.command
https://click.palletsprojects.com/en/7.x/api/#click.command
https://click.palletsprojects.com/en/7.x/api/#module-click

clichain Documentation, Release 0.1.0

this method is called by Tasks.__call

clichain.cli._get_obj (tasks, args, kwargs)

get obj parameter for c11ick context
The created obj is a dict, it’s used internally when processing commands.
* tasks is the Tasks factory to use (containing user commands)

e optional args and kwargs will be send to the click context (in context.obj[‘args’] and con-
text.obj[‘(kwargs’]), they will not be used by the framework.

This function is used by app and test.

clichain.cli.app (tasks, *args, **kw)

run c1ick main command: this will start the CLI tool.

See also:

test

tasks is the Tasks factory to use (containing user commands)

extra args and kwargs are added to the c 11 ck context’s obj (a dict) as ‘args’ and ‘kwargs’, they’re not used
by the framework.

app uses CI11i which extends click.MultiCommand to create the main command as a multicommand
interface. This main command holds all the user defined commands and is the main entry point of the created
tool.

The pipeline itself is created and run by the process function, which is called when the main command itself
returns, i.e when the all the input args have been processed by c1ick.

See also:
Tasks, process
See also:

the main command itself only set up logging, see also usage

clichain.cli.process (0bj, rv, logfile, verbose)

callback of the main command, called by c1ick

process creates the pipeline (using c1ichain.pipeline.create), then run it with inputs from stdin
and sending outputs to stdout (getting stdin and stdout from click.get_text_stream).

if an exception occures then log the exception and raise click.Abort.
See also:

clichain.pipeline

clichain.cli.test (tasks, clargs, args=None, kwargs=None, **kw)

run the CLI using click.testing, intended for automated tests
See also:

app

The main command is then run with click.testing.CliRunner

this is roughly equivalent to:

>>> runner = click.testing.CliRunner ()
>>> obj = cli._get_obj(tasks, args, kwargs)
>>> result = runner.invoke(cli._app, clargs, obj=obj, =*=*kw)

14

Chapter 2. source documentation

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.MultiCommand
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.get_text_stream
https://click.palletsprojects.com/en/7.x/api/#click.Abort
https://click.palletsprojects.com/en/7.x/api/#click.testing.CliRunner

clichain Documentation, Release 0.1.0

* tasks is the Tasks factory to use (containing user commands)
e clargs isalist containing the command line arguments, i.e what the user would send in interactive mode.

» optional args and kwargs will be sent to the click context (in context.obj[‘args’] and con-
text.obj[‘kwargs’]), they will not be used by the framework.

* extra kw will be forwarded to click.testing.CliRunner.invoke, for example:

input=[1,2,3], catch_exceptions=False

createsa click.testing.CliRunner to invoke the main command and returns runner.invoke result.
See also:
click.testing

clichain.cli.usage()
create a pipeline of tasks, read text data from the standard input and send results to the standard output:

stdin(text) —--> tasks... ——> stdout (text)

The overall principle is to run a data stream processor by chaining different kinds of tasks (available tasks
depending on the implementation, see list below).

you can create a single branch pipeline as a sequence of tasks, for instance:

inp >>> A -> B -> C >>> out

or you can create a more complex pipeline defining multiple branches, for instance:

+-—> B ——> C ——+
inp >>> A-—| +-—> F >>> out
+——> D -—> E ——+

tasks are implemented by coroutines functions as described by David Beazle (see http://www.dabeaz.com/
coroutines/ for details).

» Specifying pipeline workflow:
basic syntax allows you to specify the worflow of the pipeline.

A single sequence of tasks as the following:

’inp >>> A -> B —-> C >>> out

is specified as:

’A B C

Note: plus parameters and options of the tasks themselves, i.e:

’A -x -y argl B -z

Creating branches requires ‘workflow commands’, for instance the following example:

+——> B ——> C ——+
inp >>> A-——| +-=> F >>> out
+--> D -—> E ——+

2.1. cli 15

https://click.palletsprojects.com/en/7.x/api/#module-click
https://click.palletsprojects.com/en/7.x/api/#click.testing.CliRunner.invoke
https://click.palletsprojects.com/en/7.x/api/#click.testing.CliRunner
http://www.dabeaz.com/coroutines/
http://www.dabeaz.com/coroutines/

clichain Documentation, Release 0.1.0

would be specified as:

A[BC,DE]F

the same way we can define sub branches, for instance:

+-—> Cl ——+
+-—> B ——| o= +
\ +--> C2 —-—-+ |
inp >>> A——| +-—=> F >>> out
+==>D ——> E ———————————— +

would be specified as:

A[B[ClL,C2], DE]F

¢ Execution order:

When parallel branches are defined (as ‘C1° and ‘C2’ in the previous example) they are processed in the
same order as they are defined in the command line arguments, that means in this example:

A[BJ[ClL, C2],DE]TF

If the input data is:

1
2

[...1]

Then the workflow will be such as:

data will go through C1 then C2

1 ->A ->B ->Cl —>F
1 ->A ->B > C2 —>F
2 -—>A ->B -—>Cl —> F
2 -—>A ->B —> C2 —> F
[..

-]

And the order is reproducible

Attaching a name to branches or tasks:

You can attach a name to coroutines when defining the pipeline, which will be used as a suffix to get the
logger if an exception occurs in the coroutne, i.e:

base_logger.getChild (<name>)

Note: This is useful in particular if you’re using the same task type in several branches. The name could
be used as well in the coroutine, depending on its implementation (see c1ichain.pipeline.create
for more details).

example:

+--> B —--> C ——+
inp >>> A——| +--> B >>> out
+——> B -—> D ——+

16 Chapter 2. source documentation

clichain Documentation, Release 0.1.0

you could specify the name of the branches (i.e all the coroutines of those branches) with:

A[{ 'plI"BC?}, { '"w2" BD }] { '"b3" B)

Note: the name specification is valid for every coroutine whose definition starts within the parenthesis,
for example:

’A { 'kl [BC, BDI] } B

is equivalent to:

’A [{ '"bI" BC, BD}] B

which is also equivalent to:

’A [{ '"bI" BC, BD] } B

which is equivalent to:

’A [{ '"bI" BC} , { '"bl" BD }] B

note the output ‘B’ coroutine will have no name

And using the following specification:

’A [{ '"bI" B} C, { '"b2" B } D] B

will only give ‘b1’ and ‘b2’ names to the ‘B’ coroutines (and not to the ‘C’ and ‘D’ coroutines as in the
previous example).

Then note the following:

’A { '"bl" [BC, { '"b2" B} D] } B

is equivalent to:

’A [{ '"bI" BC} , { '"b2" B} { '"b1" D }] B

Then note that the following:

’A [{ '"1I" } B, { 'b2'" } B 1 B

will have no effect at all.

2.2 pipeline

pipeline module provides tools to create a pipeline of tasks

a pipeline can be composed of one or several branches, but everything runs in a single thread. The initial goal of
this framework is to provide a simple and direct way of defining task types and reuse them in different pipeline
configurations.

The motivation is not to parallelise tasks yet tasks could be parallelized in some configurations, depending on the
exact use case and the context. ..

2.2. pipeline 17

clichain Documentation, Release 0.1.0

tasks are implemented by coroutines functions as described by David Beazle (see http://www.dabeaz.com/coroutines/
for details).

This module is used by c1ichain. cli module.

class clichain.pipeline.Context (logger=<Logger clichain.pipeline (WARNING)>, obj=None)
will be passed to all ‘coroutine‘s in the pipeline

Context object is a common object shared by all coroutines in the pipeline.
attributes:

* exceptions is a list which remains empty until an exception occurs within a t ask and is handled by
the module. Then except ion contains each exception caught by the module. Each exception is logged
only one time with its traceback when it’s caught by Cont rol context manager.

Note: if an exception is caught by the module it will be “re-raised” thus terminate the process but user
code could still raise another exception(s) for example if a coroutine is not implemented using task or
GeneratorExit is handled within the user loop. ..

* logger will be used for every message logged by the module, and can be used by the user. The default
is to use the module’s 1ogger.

* obj attribute is an arbitrary object provided by the user when creating the pipeline. The default is None.
See also:
create

__init__ (logger=<Logger clichain.pipeline (WARNING)>, obj=None)
init the Context which will be shared by coroutines

class clichain.pipeline.Control (context, name, targets)
Internal, ‘control’ obj received by task decorated functions

Control is a context manager
See also:
Control.___init_

__enter_ ()
return push function

See also:
Control.push, Control.__exit___

__exit__ (tpe, value, tb)
handle GeneratorExit exception and log unhandled exceptions

Control object is created by task decorator, the decorated function gets the Control object as first
arg, and is expected to use it as a context manager, which will handle GeneratorExit and log any unhandled
exception.

context attribute (Context object) will be used if the exception is not None or GeneratorExit,
in order to:

* determine if the exception traceback should be logged, if the exception has already been logged by an-
other Cont rol object (i.e in another coroutine), then only an error message will be logged, otherwise
the full exception will be recorded.

* get the base logger to use

18 Chapter 2. source documentation

http://www.dabeaz.com/coroutines/
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#GeneratorExit

clichain Documentation, Release 0.1.0

See also:

task, Control._ _init__ , Context

__init__ (context, name, targets)
initialize new Control object

* context is a Context object, Cont rol object will use it to log exception if an exception occurs
in the coroutine while used as a context manager. The Context object is also accessible through the
context attribute.

¢ name will be accessible as name attribute (rw)

eX:

logger = logging.getLogger (f' . ")

* targets will be accessible through target s property (ro)
See also:
Control.targets

targets is read only to ensure consistency with push function returned by Control.__enter :
Control object is expected to be used as a context manager:

with ctrl as push:
while True:
data = yield
push (data) # send data to next coroutines

a push function is defined and returned when Cont rol is used as a context manager, but can actually be
created using Cont rol . push property.

the purpose is to force using an efficient solution avoiding attributes lookup (using self) for every call,
which has an impact given this function is likely to be called a lot (usually for each processed item). This
way we define the function and reference it once in the user function (as ‘push’ in the example).

See also:

task decorator

push
return a ‘push’ function sending data to next coroutines
See also:
Control._ _init___

targets

next coroutines in the pipeline

class clichain.pipeline.Pipeline (fargets)
User interface returned by create function

Pipeline object contains the ‘coroutine‘s of a pipeline.
When used as a context manager, it ensures that coroutines will be closed immediately at the end of the process.
See also:

Pipeline.___enter. ,Pipeline._ _exit___

Pipeline also has an additional Pipeline. run method which can be called to run the pipeline over an
input stream and wait until the process complete.

2.2. pipeline 19

clichain Documentation, Release 0.1.0

__enter_ ()
return a function sending data thtough the pipeline

€X:

with pipeline as process:
for data in stream:
process (data)

Note: this is equivalent to:

with pipeline:
target = pipeline.target
for data in stream:
target.send(data)

See also:
Pipeline.__exit_

__exit__ (tpe, value, tb)
close all the coroutines of the pipeline, raise exc if any

The purpose of using the Pipeline object as a context manager is essentially to make sure all the
coroutines will be terminated (closed) at the end of the process.

This can be critical if user functions are expected to do some teardown jobs after processing data, for
instance:

file won't be closed until the coroutine is closed
(see while loop...)

@coroutine
def cr(targets, =xargs, file, *xkw):
with open(file) as f:
while True:
data = yield
[...]

See also:
Pipeline.__enter___

__init__ (targets)
initialize a new pipeline with ‘coroutine‘s

targets is an iterable containing the coroutines of the pipeline, the first item must be the input coroutine.
See also:
Pipeline.run

run (inputs)
run the pipeline over inputs iterator

send data from inputs to the pipeline until their is no more data in inputs or an exception occurs.

clichain.pipeline._listify (obj)
makes sure objisa list

20 Chapter 2. source documentation

https://docs.python.org/3/library/stdtypes.html#list

clichain Documentation, Release 0.1.0

clichain.pipeline.coroutine (func)
coroutine decorator, ‘prime’ the coroutine function

this function is intended to be used as a decorator to create a basic coroutine function, for instance:

@coroutine
def cr(xargs, =*x*kw):
print ('starting...")
try:
while True:
item = yield
print (f'processing: ")
except GeneratorExit:
print ('ending...")

calling the decorated function will automatically get it to the first yield statement.

>>> cr ()
starting...

Note: the decorated function is wrapped using functools.wraps

See also:
http://www.dabeaz.com/coroutines/

clichain.pipeline.create (fasks, output=<built-in function print>, **kw)
create a pipeline of coroutines from a specification

a pipeline is a succession of coroutines organized into one or several branches.

output is a strategy to use for the pipeline output, the default strategy is print. output will be called for
each data reaching the pipeline’s output, it takes a single argument.

extra keyword args will be used to initialize the Context object that will be send to all the coroutines of the
pipeline.

tasks argument describes the pipeline and consists of a mapping of coroutines as key: value pairs, where each
single key identifies a single coroutine.

each coroutine is defined either by a single corout i ne function (see task field below) or a dictionnay, which
contains the following fields:

» task: the coroutine function to use
See also:
task decorator
the coroutine function will be called with the following keyword arguments:
— context: the Context object shared by all the coroutines of the pipeline.
— targets: an iterable containing the following coroutines in the pipeline (default is no targets).

— debug: an optional name, used by task to get a child logger from the Context logger, which
will be used to log error if an exception occurs. The exception will be logged at error level and
the exc_info will be passed to the log record. The value will be accessible (and writeable) through
Control.name attribute, which can be usefull for logging:

eXx:

2.2. pipeline 21

https://docs.python.org/3/library/functools.html#functools.wraps
http://www.dabeaz.com/coroutines/
https://docs.python.org/3/library/functions.html#print

clichain Documentation, Release 0.1.0

logger = logging.getLogger (f' . ")

Note: Default value is the coroutine’s key in the pipeline definition (default will be used if value is

None or an empty string).

 input: (optional) set this coroutine as a ‘target’ of the coroutine(s) defined by input. input can be a single
key or an iterable containing keys of other coroutines defined in the pipeline dictionnary.

Note: None value will be interpreted as the pipeline’s main input. No value or an empty list is equivalent
as None if this coroutine is not specified as output of an other coroutine in the pipeline.

* output: (optional) set the coroutine(s) whose keys are defined in output as a ‘target’ of this coroutine.
output can be a single key or an iterable containing keys of other coroutines defined in the pipeline dictio-

nnary.

Note: None value will be interpreted as the pipeline’s main output. No value or an empty list is equivalent
as None if this coroutine is not specified as input of an other coroutine in the pipeline.

* debug: (optional) a debug name to use in logging if an unhandled exception occurs. see above description.

Note:
only the task field.

specifying a coroutine by a coroutine function is equivalent as providing a dictionnary containing

examples:
See also:

task and corout ine decorators

given we have the following declarations:

@coroutine
def output (targets,
try:
while True:
for t in targets:

xxkw) :

except GeneratorExit:
return

@task
def parse(ctrl):
with ctrl as push:
while True:
try:

except
continue
push (value)

@task
def mytask(ctrl,

param) :

t.send ('RESULT:

'.format ((yield)))

value = ast.literal_eval((yield))

(SyntaxError, ValueError):

(continues on next page)

22

Chapter 2.

source documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

clichain Documentation, Release 0.1.0

(continued from previous page)

logger = logging.getLogger (f' . ")
logger.info('starting task'")
with ctrl as push:
while True:
[...]
logger.info('finishing task')

* defining a pipeline composed of a single sequence:

example:

inp >>> a ——=> b -—> ¢ —-—> d >>> out

here’s how we could define it:

pipeline = pipeline.create ({

'a': parse(),

'b': {'task': mytask(l), 'input': 'a'},
'c': {'task': mytask(2), 'input': 'b'},
'd': {'task': output, 'input': 'c'},

})

the created pipeline is a Pipeline object, it can be run over any input generator using its ‘Pipeline.run’
method, sending data to stdout by default.

See also:
Pipeline.run
¢ define a pipeline with branches:

example:

+-—> B ——-> C >>> out
inp >>> A——|
+--> D ——> E >>> out

here’s how we could define it:

pipeline = pipeline.create ({
'a': {'task': A, 'output': ('b', 'd")},
'b': B,
'd': D,
'c': {'task': C, 'input': 'b'},
'e': {'task': E, 'input': 'd'},

})

redoundant specification is not an issue, and the following example is equivalent to the previous one:

pipeline = pipeline.create ({

'a': {'task': A, 'output': ('b', 'd')},

'b': {'task': B, 'input': 'a', 'output': 'c'},

'd': {'task': D, 'input': 'a', 'output': 'e'},
'c': {'task': C, 'input': 'b', 'output': None},
'e': {'task': E, 'input': 'd', 'output': ()},

})

* join branches

2.2. pipeline 23

clichain Documentation, Release 0.1.0

example: given we want to implement this:

+--> B --> C ——+
inp >>> A——| +—-—> N >>> out
+-—> D —--> E ——+

here’s how we could define it:

pipeline = pipeline.create ({
'a': {'task': A, 'output': ('b', 'd")},
'b': B,
'c': {'task': C, 'input': 'b', 'output': 'f'},
'd': D,
'e': {'task': E, 'input': 'd', 'output': 'f'},
"' F

})

control branches order
the order in which coroutines are initialized, called and closed is reproducible.

to control the data flow order between several branches just use the keys in the pipeline definition, as they
will be sorted, like in the following example:

t==> (1) X ——+
+==> (2) X ——+
inp >>> A-—+-—-> (3) X ——+-—-> B >>> out
+-—> (4) X ——+
+==> (5) X ——+

here’s how we could define it:

pipeline = pipeline.create ({

'a': A,

1: {'task': X, 'input': 'a', 'output': 'b'},
2: {'task': X, 'input': 'a', 'output': 'b'},
3: {'task': X, 'input': 'a', 'output': 'b'},
4: {'task': X, 'input': 'a', 'output': 'b'},
5: {'task': X, 'input': 'a', 'output': 'b'},
'b': B,

})

the ‘X’ coroutines will be initialized and processed in the expected order: 1, 2, 3, 4, 5 (they will be closed,
if no exception occurs, in the opposite order).

loop back

Warning: looping is currently not implemented and will raise a Not ImplementedError when
creating the pipeline.

example: given we want to implement this:

t-=> B ——> C ——+ + >>> out
inp >>> A——| fees N —— +
+——> D -——> E ——+ \

\ \
+—=> F ——+ |

(continues on next page)

24

Chapter 2. source documentation

https://docs.python.org/3/library/exceptions.html#NotImplementedError

clichain Documentation, Release 0.1.0

(continued from previous page)

here’s how we could define it:

pipeline = pipeline.create ({
'a': {'task': A, 'output': ('b', 'd')},
'b': {'task': B, 'output': 'c'},
'c': {'task': C},
'd': {'task': D, 'output': 'e'},
'e': {'task': E},
'n': {'task': N, 'input': ('c', 'e'), 'output': None},
'f': {'task': F, 'input': 'n', 'output': 'n'},

Warning: defining a loop can end up in an infinite recursion , no control is done on this, so it’s up to
the tasks implementation to handle this. ..

* specify coroutines name
in some contexts we may want to define a name for a coroutine which is different from its key.

example: the previous example with ordered branches was:

+-==> (1) X ——+
+==> (2) X ——+
inp >>> A-——+--> (3) X ——+-—-> B >>> out
+——> (4) X ——+
+——> (5) X ——+
here’s how we could define it:
pl = {
'a': A,
'b': B,
}
pl.update ({
i: {'task': X, 'input': 'a', 'output': 'b',
'debug': f"the X task number "}
for i in range(l, 6)
)
pl = pipeline.create (pl)

clichain.pipeline.task (func)
make “partial” corout ines expected to be used with create.

task will create a “partial” function, which when called with args and keyword args will actually return a
coroutine function designed to be used with create function.

example:

a basic coroutine adding offset to input data could be defined as follows using task:

2.2. pipeline

25

clichain Documentation, Release 0.1.0

@Qtask
def offset (ctrl, offset):
print ('pre-processing')

with ctrl as push:
while True:
value = yield
push (value + offset)

will be executed unless an exception occurs 1in
the 'while' loop
print ('post_processing')

e ctrl will handle the GeneratorExit exception and log any unhandled exception.

* the push method send data to the next coroutines in the pipeline.

the resulting function is called with the original function’s args and keyword args:

off = offset (offset=1)

off is a partial corout ine function expected to be used in a pipeline defintion with create.

the coroutine will eventually be created calling this new function with specific arguments depending on the
pipeline specification (see create for details), ex:

create the coroutine
off off (targets=[tl, t2...])

Note: asfor coroutine, all the functions (partial or final functions) are wrapped using functools.wraps

example:

@task
def output (ctrl):
with ctrl:
while True:
print ((yield))

@Qtask
def parse(ctrl):
with ctrl as push:
while True:
try:
value = ast.literal_eval ((yield))
except (SyntaxError, ValueError):
continue
push (value)

@task

def offset (ctrl, offset):
offset = int (offset)
logger = logging.getLogger (f' . ")
logger.info(f'offset: ")

(continues on next page)

26 Chapter 2. source documentation

https://docs.python.org/3/library/exceptions.html#GeneratorExit
https://docs.python.org/3/library/functools.html#functools.wraps

clichain Documentation, Release 0.1.0

(continued from previous page)

with ctrl as push:
while True:
value = yield
push (value + offset)

logger.info('offset task finished, no more value')

if name == '_ main_
out = output ()

offl = offset (10)
off2 = offset (offset=100)

parse = parse ()

the previous results (out, offl, off2, proc) should

be used in the pipeline definition and the followings
should be performed by "create"

out = out ()

offl = offl((out,))

off2 off2 ((out,))

parse = parse([offl, off2])

with open('foo.txt') as inputs:
for data in inputs:
parse.send(data)

out.close ()

offl.close ()
off2.close ()
parse.close ()

See also:

coroutine, create

2.2. pipeline

27

clichain Documentation, Release 0.1.0

28 Chapter 2. source documentation

CHAPTER 3

clichain

Create a command line interface to chain tasks as a pipeline
clichain is a framework to easily define task types and chain them from a command line interface.

The goal of this framework is to use David Beazle’s idea to implement task types as coroutines and use them to create
and run a pipeline.

The goal is not to parallelize tasks but to be able to reuse task types in different configurations without need for coding
and in some cases reuse a result from a long computational task for different purposes without running it several times.

29

https://pypi.python.org/pypi/clichain
https://travis-ci.org/loicpw/clichain
http://clichain.readthedocs.io/en/latest/?badge=latest
https://coveralls.io/github/loicpw/clichain?branch=master
https://badge.fury.io/py/clichain
http://www.dabeaz.com/coroutines/

clichain Documentation, Release 0.1.0

30 Chapter 3. clichain

CHAPTER 4

install and test

4.1 install from pypi

using pip:

’$ pip install clichain

4.2 dev install

There is a makefile in the project root directory:

’$ make dev

Using pip, the above is equivalent to:

$ pip install -r requirements-dev.txt
$ pip install -e .

4.3 run the tests

Use the makefile in the project root directory:

’$ make test

This runs the tests generating a coverage html report

31

clichain Documentation, Release 0.1.0

4.4 build the doc

The documentation is made with sphinx, you can use the makefile in the project root directory to build html doc:

’$ make doc

32 Chapter 4. install and test

CHAPTER B

Documentation

Documentation on Read The Docs.

33

http://clichain.readthedocs.io/en/latest/

clichain Documentation, Release 0.1.0

34 Chapter 5. Documentation

CHAPTER O

Meta

loicpw - peronloic.us @gmail.com
Distributed under the MIT license. See LICENSE . t xt for more information.

https://github.com/loicpw

35

mailto:peronloic.us@gmail.com
https://github.com/loicpw

clichain Documentation, Release 0.1.0

36 Chapter 6. Meta

CHAPTER /

Indices and tables

* genindex
* modindex

e search

37

clichain Documentation, Release 0.1.0

38 Chapter 7. Indices and tables

Python Module Index

C

clichain.cli, 1l
clichain.pipeline, 17

39

clichain Documentation, Release 0.1.0

40 Python Module Index

Index

Symbols

__call__() (clichain.cli.Tasks method), 13
__enter__() (clichain.pipeline.Control method), 18
__enter__ () (clichain.pipeline.Pipeline method), 19
__exit__() (clichain.pipeline.Control method), 18
__exit__() (clichain.pipeline.Pipeline method), 20
__init__() (clichain.cli.Tasks method), 13
__init__() (clichain.pipeline.Context method), 18
__init__() (clichain.pipeline.Control method), 19
__init__() (clichain.pipeline.Pipeline method), 20
_get_obj() (in module clichain.cli), 14

_listify() (in module clichain.pipeline), 20
_prepare_cmd() (clichain.cli.Tasks method), 13

A

app() (in module clichain.cli), 14

C

Cli (class in clichain.cli), 11

clichain.cli (module), 11

clichain.pipeline (module), 17

Context (class in clichain.pipeline), 18
Control (class in clichain.pipeline), 18
coroutine() (in module clichain.pipeline), 20
create() (in module clichain.pipeline), 21

G

get_command() (clichain.cli.Cli method), 11

L

list_commands() (clichain.cli.Cli method), 11

P

Pipeline (class in clichain.pipeline), 19
process() (in module clichain.cli), 14
push (clichain.pipeline.Control attribute), 19

R

run() (clichain.pipeline.Pipeline method), 20

T

targets (clichain.pipeline.Control attribute), 19
task() (in module clichain.pipeline), 25

Tasks (class in clichain.cli), 11

test() (in module clichain.cli), 14

U

usage() (in module clichain.cli), 15

41

	documentation
	quickstart
	creating a factory
	implementing a task
	registering a task
	running the command line tool
	testing
	logging
	exceptions handling

	source documentation
	cli
	pipeline

	clichain
	install and test
	install from pypi
	dev install
	run the tests
	build the doc

	Documentation
	Meta
	Indices and tables
	Python Module Index

