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ClarityNLP is an “interoperable NLP” platform developed to streamline analysis of unstructured clinical text. The plat-
form accelerates review of medical charts to extract data and identify patients for a wide variety of purposes, including
research, clinical care, and quality metrics. ClarityNLP combines NLP techniques and libraries with a powerful query
language, NLPQL, that lets you create and deploy NLP jobs quickly without a lot of custom configuration.
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CHAPTER 1

Documentation

1.1 Setup

The instructions below will guide you through the ClarityNLP setup and installation process. There are several instal-
lation options for you to choose from:

1. Local Machine Setup with Docker

Choose this option if you want ClarityNLP on your laptop or desktop, and you want everything to be configured
for you.

2. Local Machine Setup without Docker

Choose this option if you want ClarityNLP on your laptop or desktop, and you want to configure everything
yourself.

3. Server Setup

Choose this option if you want ClarityNLP deployed on a network-accessible server. This is a Docker-based
installation with OAuth2 security, Traefik, and Let’s Encrypt.

1.1.1 Local Machine Setup

Local Machine Setup With Docker

The instructions below will get you up and running with a Docker-based ClarityNLP instance on your laptop or desk-
top. We walk you through how to configure and deploy a set of Docker containers comprising a complete ClarityNLP
installation for a single user. There is no need for you to separately install Solr, MongoDB, PostgreSQL, or any of the
other technologies that ClarityNLP uses.

If you want to run ClarityNLP without using Docker, then you need our Local Machine Setup without Docker.
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Prerequisites

Download Source Code

git clone https://github.com/ClarityNLP/ClarityNLP

Checkout Branch

cd ClarityNLP
git checkout <branch> # develop for latest, master for stable, or tagged version

Install Docker

Follow the installation instructions.

These are the recommended Docker settings for ClarityNLP. In Docker, they can be updated via Docker > Preferences
> Advanced.

• Memory: >8GB

• Disk: >256GB recommended, but can run on much less (depends on data needs)

Install Docker Compose

Follow the installation guide.

Run the Stack

The first time running it will take a couple minutes to pull the pre-built images from the Docker Hub registry. Open a
terminal at the project root and run the following:

make start-clarity-localhost

To stop the stack, run this command:

make stop-clarity-localhost

Tips & Tricks

To verify that the Docker containers are running, open a terminal and run:

docker ps

You should see a display that looks similar to this. There are 15 containers and all should have a status of Up when the
system has fully initialized:
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CONTAINER ID IMAGE COMMAND
→˓CREATED STATUS PORTS
→˓NAMES
55ac065604e5 claritynlp_ingest-api "/app/wait-for-it-ex..."
→˓54 seconds ago Up 24 seconds 1337/tcp
→˓INGEST_API
ce2baf43bab0 claritynlp_nlp-api "/api/wait-for-it-ex..."
→˓56 seconds ago Up 54 seconds 5000/tcp
→˓NLP_API
c028e60d1fab redis:4.0.10 "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 6379/tcp
→˓REDIS
4e1752025734 jpillora/dnsmasq "webproc --config /e..."
→˓About a minute ago Up 56 seconds 0.0.0.0:53->53/udp
→˓DNSMASQ
2cf1dd63257a mongo "docker-entrypoint.s..."
→˓About a minute ago Up 55 seconds 27017/tcp
→˓NLP_MONGO
34385b8f4306 claritynlp_nlp-postgres "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 5432/tcp
→˓NLP_POSTGRES
500b36b387b7 claritynlp_ingest-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓INGEST_CLIENT
f528b68a7490 claritynlp_dashboard-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓DASHBOARD_CLIENT
8290a3846ae0 claritynlp_results-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓RESULTS_CLIENT
77fce3ae48fc claritynlp_identity-and-access-proxy "pm2-dev process.json"
→˓About a minute ago Up 57 seconds 6010/tcp
→˓IDENTITY_AND_ACCESS_PROXY
b6610c74ec4c claritynlp_nlp-solr "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 8983/tcp
→˓NLP_SOLR
45503f0fd389 claritynlp_identity-provider "docker-entrypoint.s..."
→˓About a minute ago Up 57 seconds 5000/tcp
→˓IDENTITY_PROVIDER
6dc0f7f21a48 claritynlp_nginx-proxy "/app/docker-entrypo..."
→˓About a minute ago Up 56 seconds 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp
→˓NGINX_PROXY
1d601b064a1c axiom/docker-luigi:2.7.1 "/sbin/my_init --qui..."
→˓About a minute ago Up 57 seconds 8082/tcp
→˓LUIGI_SCHEDULER
7ab4b8e19c86 mongo:3.4.2 "docker-entrypoint.s..."
→˓About a minute ago Up 58 seconds 27017/tcp
→˓INGEST_MONGO

The Luigi container will monitor for active tasks. Once everything initializes, you should periodically see the following
lines in the console output:

LUIGI_SCHEDULER | 2018-10-16 19:46:19,149 luigi.scheduler INFO Starting pruning
→˓of task graph
LUIGI_SCHEDULER | 2018-10-16 19:46:19,149 luigi.scheduler INFO Done pruning
→˓task graph
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ClarityNLP Links

The user interface (UI) components of ClarityNLP can be accessed on your machine by opening a web browser and
entering the URLs provided below.

Dashboard

The ui_dashboard is the main user interface to ClarityNLP. It provides controls for ingesting documents, creating
NLPQL files, accessing results and lots more.

Dashboard URL: http://localhost/dashboard

Solr Administrative User Interface

Solr provides an administrative user interface that you can use to configure and explore your ClarityNLP Solr instance.
The Apache project provides full documentation on the admin UI which you can find here.

Perhaps the most useful component of this UI is the query tool, which lets you submit queries to Solr and find docu-
ments of interest. The ClarityNLP Solr installation provides more than 7000 documents in a core called sample.

Solr Admin Interface URL: http://localhost/solr

Luigi Task Monitor

The Luigi project provides a task monitor that displays information on the currently running ClarityNLP job. Clari-
tyNLP processes documents by dividing the workload into parallel tasks that are scheduled by Luigi. The task monitor
displays the number of running tasks, how many have finished, any failures, etc. You can update the task counts by
simply refreshing the page.

Lugi Task Monitor URL: http://localhost/luigi

Ingest Client

The Ingest Client provides an easy-to-use interface to help you load new documents into your ClarityNLP Solr in-
stance. It also helps you map the fields in your documents to the fields that ClarityNLP expects.

Ingest Client URL: http://localhost/ingest

Results Viewer

The Results Viewer helps you examine the results from each of your ClarityNLP runs. It highlights specific terms and
values and provides an evaluation mechanism that you can use to score the results that ClarityNLP found.

Clarity Results Viewer URL: http://localhost/results

NLP API

<TODO - example of how to POST an NLPQL file using Postman or curl with access tokens>
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Local Machine Setup without Docker

This page provides instructions on how to run ClarityNLP locally on your machine without having to use Docker or
OAuth2. We call this a native installation of ClarityNLP. It is much simpler to use Docker, since everything is provided
and configured for you. But if you want more control over your ClarityNLP installation and you prefer to configure
everything yourself, then these are the instructions you need.

This installation is also useful if you neither need nor want the OAuth2 security layers built into the Docker version
of ClarityNLP. A native installation is emphatically NOT appropriate for patient data that must be protected in a
HIPAA-compliant manner. So only store de-identified public data in your Solr instance if you choose to do this.

Overview

There are five major components in a ClarityNLP installation: Solr, PostgreSQL, MongoDB, Luigi, and Flask.

ClarityNLP uses Solr to index, store, and search documents; Postgres to store job control data and lots of medical
vocabulary; Mongo to store results; Luigi to control and schedule the various processing tasks, and Flask to provide
API endpoints and the underlying web server.

A native installation means that, at a minimum, Luigi and Flask are installed and run locally on your system. Solr,
Postgres, and Mongo can also be installed and run locally on your system, or one or more of these can be hosted
elsewhere.

A university research group, for example, could have a hosted Solr instance on a VPN that is accessible to all members
of the group. The Solr instance might contain MIMIC or other de-identified, public data. Members of the research
group running a native ClarityNLP installation would configure their laptops to use the hosted Solr instance. This can
be accomplished via settings in a ClarityNLP configuration file, as explained below. These users would install and run
Postgres, Mongo, Luigi, and Flask on their laptops.

At GA Tech we have hosted versions of Solr, Postgres, and MongoDB. Our native ClarityNLP users only need to install
and run Luigi and Flask on their laptops, and then setup their configuration file to “point” to the hosted instances.

These flexible configuration options are also available with the container-based, secure version of ClarityNLP.

The instructions below have been tested on:

• MacOS 10.14 “Mojave”

• MacOS 10.13 “High Sierra”

• Ubuntu Linux 18.04 LTS “Bionic Beaver”

Recent versions of MongoDB, PostgreSQL, and Solr are assumed:

• MongoDB version 3.6 or greater

• PostgreSQL version 10 or 11

• Solr version 7 or 8

Roadmap

This installation and configuration process is somewhat lengthy, so here’s a high-level overview of what we’ll be
doing.

First, we’ll need to setup and install the source code, the necessary python libraries, and all of the associated python
and non-python dependencies. We will perform the installation inside of a custom conda-managed environment so
that ClarityNLP will not interfere with other software on your system.
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Next we’ll install and/or configure Solr, PostgreSQL, and MongoDB, depending on whether you have access to hosted
instances or not.

Then we’ll ingest some test documents into Solr and run a sample NLPQL file so that we can verify that the system
works as expected.

After that we’ll show you where you can find instructions for ingesting your own documents into Solr, after which you
will be ready to do your own investigations.

The instructions below denote MacOS-specific instructions with [MacOS], Ubuntu-specific instructions with
[Ubuntu], and instructions valid for all operating systems with [All].

Install the Prerequisites

[MacOS] Install the Homebrew package manager by following the instructions provided at the Homebrew website.
We prefer to use Homebrew since it allows packages to be installed and uninstalled without superuser privileges.

After installing homebrew, open a terminal window and update your homebrew installation with:

brew update
brew upgrade

Next, use homebrew to install the git version control system, the curl command line data transfer tool, and the
wget file transfer tool with these commands:

brew install git curl wget

[Ubuntu] Update your system using the apt package manager with:

sudo apt update
sudo apt upgrade

Then use apt to install the three tools:

sudo apt install git curl wget

[All] Solr requires the java runtime to be installed on your system. In a terminal window run this command:

java --version

If you see a message about the command java not being found, then you need to install the java runtime. Please visit
the Oracle Java download site and follow the instructions to download and install the latest version of the Java runtime
environment (JRE).

Next, visit the Conda website and install either the Anaconda python distribution or its much smaller Miniconda
cousin. Anaconda provides a full python-based numerical computing and machine learning stack. Miniconda provides
a minimal python installation. Both give you the conda package manager, an essential tool for resolving labyrinthine
dependencies among python and non-python packages. The installation package and instructions for both are provided
at the Anaconda website. For these instructions we will assume that you choose the smaller Miniconda distribution.

Important: download the Miniconda installation package for the latest python 3 release, not python 2.7.

After installing Miniconda, update to the latest version of conda with:

conda update -n base -c defaults conda
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Clone the ClarityNLP GitHub Repository

Open a terminal window on your system and change directories to wherever you want to install ClarityNLP. Create
a new folder called ClarityNLPNative, to emphasize that it will hold a version of ClarityNLP configured for
running locally on your system without Docker or OAuth2. You can create this folder, clone the repo, and initialize all
submodules with these commands:

cd /some/location/on/your/disk
mkdir ClarityNLPNative
cd ClarityNLPNative
git clone https://github.com/ClarityNLP/ClarityNLP.git
cd ClarityNLP

This command sequence will give you an up-to-date checkout of the master branch of the main ClarityNLP project. It
will also checkout the latest master branch of all git submodules (additional code that ClarityNLP needs).

The master branch of the git repository holds the most stable and well-tested version of ClarityNLP. If you instead want
the latest development code, with the caveat that it will be less mature than the code in the master branch, checkout
the develop branch of the repo with these additional commands:

git checkout develop

After checking out your desired branch of the repository, change to the native_setup folder of the repo with:

cd native_setup

Create the Conda Environment for ClarityNLP

From the ClarityNLPNative/ClarityNLP/native_setup folder, create a new conda managed environ-
ment with:

conda create --name claritynlp python=3.6
conda activate claritynlp
conda config --env --append channels conda-forge
conda install --file conda_requirements.txt
pip install -r conda_pip_requirements.txt

The conda version of pip knows about conda environments and will install the packages listed in
conda_pip_requirements.txt into the claritynlp custom environment, NOT the system folders.

You can activate the claritynlp custom environment with the command

conda activate claritynlp

Whenever the claritynlp environment is active, the command line in the terminal window displays (claritynlp)
to the left of the prompt. If the default environment is active it will display (base) instead.

Always activate the claritynlp environment whenever you want to do anything with ClarityNLP from a terminal
window.

Install Additional Model Files

ClarityNLP uses the spacy and nltk natural language processing libraries, which require additional support files. From
the same terminal window in the native_setup folder, run these commands to install the support files:
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conda activate claritynlp # if not already active
python -m spacy download en_core_web_sm
python ../nlp/install_models.py

Setup MongoDB

ClarityNLP stores results in MongoDB. If you do not have access to a hosted MongoDB installation, you will need to
install it on your system.

[MacOS] Use Homebrew to install MongoDB with:

brew install mongodb-community@4.2

The @4.2 in the installation command specifies the version of the mongodb-community software package, which
is 4.2 as of this writing. Check the MongoDB website for the latest version and use that if you prefer.

After the installation finishes, run the command brew info mongodb-community, which displays information
about how to start the MongoDB server. You can either configure the server to start automatically each time your
system reboots, or you can start the server manually. We will assume manual startup, which can be accomplished by
opening another terminal window and running this command (assumes the default path to the mongo config file):

mongod --config /usr/local/etc/mongod.conf

After the server initializes it will deactivate the prompt in the terminal window, indicating that it is running.

[Ubuntu] Use apt to install MongoDB with:

sudo apt install mongodb

The installation process on Ubuntu should automatically start the MongoDB server. Verify that it is active with:

sudo systemctl status mongodb

You should see a message stating that the mongodb.service is active and running. If it is not, start it with:

sudo systemctl start mongodb

Then repeat the status check to verify that it is running.

[All] Now start up the Mongo client and find out if it can communicate with the running MongoDB server. From a
terminal window start the MongoDB client by running mongo. If the client launches successfully you should see a >
prompt. Enter show databases at the prompt and press enter. The system should respond with at least the admin
database. If you see this your installation should be OK. You can stop the client by typing exit at the prompt.

If you have access to a hosted MongoDB instance, you will need to know the hostname for your mongod server as
well as the port number that it listens on. If your hosted instance requires user accounts, you will also need to know
your username and password. These will be entered into the project.cfg file in a later step below.

Setup PostgreSQL

Now we need to install and configure PostgreSQL. ClarityNLP uses Postgres for job control and for storing OMOP
vocabulary and concept data.

[MacOS] Perhaps the easiest option for installing Postgres on MacOSX is to download and install Postgres.app,
which takes care of most of the setup and configuration for you. If you do not have access to a hosted Postgres server,
download the .dmg file from the Postgres.app website, run the installer, and click initialize to create a new server.
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After everything is installed and running, you will see an elephant icon in the menu bar at the upper right corner of
your screen. Click the icon and a menu will appear. The button in the lower right corner of the menu can be used to
start and stop the database server. For now, click the button and stop the server, since we need to make a small change
to the postgres configuration file.

[Ubuntu] Install postgres with:

sudo apt install postgresql

The installation process should automatically start the postgres server, as it did with the MongoDB installation. For
now, stop the server with:

sudo systemctl stop postgresql

Edit the PostgreSQL Config File

You will need to follow these configuration steps as well if you have a hosted Postgres instance. You may need to ask
your local database admin to perform the configuration, depending on whether or not you have superuser privileges
for your particular installation. The location of the data directory on your hosted instance will likely differ from that
provided below, which is specific to a local installation.

[MacOS] With the Postgres server stopped, click the elephant icon, click the Open Postgres menu item, and
then click the Server Settings button on the dialog that appears. Note the location of the data directory, which
defaults to ~/Library/Application Support/Postgres/var-11. The postgresql.conf file is lo-
cated in the data directory and contains various important parameters that govern the operation of the database. We
need to edit one of those params to make the data ingest process run more smoothly.

[Ubuntu] The postgres config file for Postgres 10 is stored by default in /etc/postgresql/10/main/
postgresql.conf. If you installed Postgres 11 the 10 should be replaced by an 11. This file is owned by the
special postgres user. To edit the file, switch to this user account with:

sudo -i -u postgres
whoami

The whoami command should display postgres.

[All] Open a text editor, browse to the location indicated above and open the file postgresql.conf. Search the
file for the entry max_wal_size, which governs the size of the write-ahead log (hence the WAL acronym). If the
entry happens to be commented out, uncomment it. Set its value to 30GB (if the value is already greater than 30GB
don’t change it). By doing this we prevent checkpoints from occurring too frequently and slowing down the data ingest
process. Save the file after editing.

[Ubuntu] Log out as the postgres user with:

exit

Then restart the Postgres server with either:

[MacOS] Click on the elephant icon and press the start button.

[Ubuntu] Use systemctl to start it:

sudo systemctl start postgresql
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Create the Database and a User Account

With the database server installed, configured, and running, we now need to create a user account. Open a terminal
and browse to ClarityNLPNative/ClarityNLP/utilities/nlp-postgres. From this folder run the
command appropriate to your operating system to start psql:

[MacOS]

psql postgres

[Ubuntu]

sudo -u postgres psql

Then run this command sequence (we suggest using a better password) to setup the database:

CREATE USER clarity_user WITH LOGIN PASSWORD 'password';
CREATE DATABASE clarity;
\connect clarity
\i ddl/ddl.sql
\i ddl/omop_vocab.sql
\i ddl/omop_indexes.sql
GRANT USAGE ON SCHEMA nlp TO clarity_user;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA nlp TO clarity_user;
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA nlp TO clarity_user;

These commands create the database, setup the tables and indexes, and grant the clarity_user sufficient privileges
to use it with ClarityNLP.

Load OMOP Vocabulary Files

THIS STEP IS OPTIONAL. The OMOP vocabulary and concept data is used by the ClarityNLP synonym expansion
macros. Synonym expansion is an optional feature of ClarityNLP. If you are unfamiliar with OMOP or do not forsee
a need for such synonym expansion you can safely skip this step. The ingestion process is time-consuming and could
take from one to two hours or more, depending on the speed of your system. If you only want to explore basic features
of ClarityNLP you do not need to load this data, and you can skip ahead to the Solr setup instructions.

If you do choose to load the data, then keep your psql terminal window open. From a different terminal window
follow these steps to download and prepare the data for ingest:

cd /tmp
mkdir vocabs
cd vocabs
wget http://healthnlp.gtri.gatech.edu/clarity-files/omop_vocabulary_set.zip
unzip omop_vocabulary_set.zip
rm omop_vocabulary_set.zip

You should see these files in /tmp/vocabs after unzipping:

DOMAIN.csv
CONCEPT_CLASS.csv
CONCEPT.csv
CONCEPT_ANCESTOR.csv
RELATIONSHIP.csv
CONCEPT_SYNONYM.csv
VOCABULARY.csv

(continues on next page)
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(continued from previous page)

CONCEPT_RELATIONSHIP.csv
DRUG_STRENGTH.csv

Go back to your psql window and begin the process of loading data into the database with:

\i dml/copy_vocab.sql

As mentioned above, the loading process could take a long time, possibly more than two hours, depending on the
speed of your system. As the load progresses, it should gradually generate the following output:

SET
COPY 2465049
COPY 2781581
COPY 23396378
COPY 21912712
COPY 3878286
COPY 27
COPY 446
COPY 321
COPY 40

Once you start the loading process, just let it run. . . it will eventually finish. After loading completes, log out with the
command \q. You can close this window and the tmp/vocabs window.

Setup Solr

ClarityNLP uses Solr as its document store. If you do not have access to a hosted Solr instance you will need to install
it on your system.

[MacOS] Use Homebrew to install Solr with:

brew install solr

When the installation finishes run the command brew info solr to learn how to start Solr. You can either have it
start on boot or on demand with the command

solr start

Start the solr server.

[Ubuntu] Ubuntu does not seem to provide a suitable apt package for Solr, so you will need to download the Solr
distribution from the Apache web site. Open a web browser to the Solr download site and download the binary release
for the latest version of Solr 8. For now we will assume that you download the 8.1.1 binary release, which is in the
file solr-8.1.1.tgz.

Open a terminal window and run these commands to unzip the distribution into your home directory:

cd ~
mkdir solr
tar -C solr -zxvf ~/Downloads/solr-8.1.1.tgz
mv ~/solr/solr-8.1.1 ~/solr/8.1.1

Open a text editor and add this line to your .bashrc file, which places the Solr binaries on your path:

export PATH=~/solr/8.1.1/bin:$PATH
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Close the text editor, exit the terminal window, and open a new terminal window to update your path. Run which
solr and verify that ~/solr/8.1.1/bin/solr is found.

Start your Solr server by running:

solr start

[All] After starting Solr, check to see that it is running by opening a web browser to http://localhost:8983
(or the appropriate URL for your hosted instance). You should see the Solr admin dashboard. If you do, your Solr
installation is up and running.

We need to do some additional configuration of the Solr server and ingest some test documents. We provide a python
script to do this for you. This script assumes that you are running a recent version of Solr, version 7 or later. If
you are running an older version this script will not work, since some field type names changed at the transition from
Solr 6 to Solr 7.

Open a terminal window to ClarityNLPNative/ClarityNLP/native_setup. If you installed Solr on your
local system run:

conda activate claritynlp
python ./configure_solr.py

If you use a hosted Solr instance, you should run these commands instead, replacing the <hostname> and
<port_number> placeholders with the values for your hosted instance:

conda activate claritynlp
python ./configure_solr.py --hostname <hostname_string> --port <port_number>

This script creates a Solr core named claritynlp_test, adds some custom fields and types, and loads test docu-
ments contained in four .csv files. You should confirm that the files sample.csv, sample2.csv, sample3.
csv, and sample4.csv were loaded successfully (load statements appear in the console as the script runs). If the
load failed for any reason an error message will be written to stdout.

If the script ran without error, your claritynlp_test Solr core should have ingested 7016 documents. Verify this
by opening a web browser to http://localhost:8983, or if you have a hosted Solr instance, to its admin page.
From the core selector at the left of the screen, select the claritynlp_test core and look in the Statistics
window. The value of the Num Docs field should equal 7016.

ClarityNLP expects the ingested documents to have a minimal set of fields, which appear in the next table:

Field Name Description
id a unique ID for this document
report_id a unique ID for this document (can use same value as

id field)
source the name of the document set, the name of your institu-

tion, etc.
subject a patient ID, drug name, or other identifier
report_type type of data in the document, i.e. discharge

summary, radiology, etc.
report_date timestamp in a format accepted by Solr:

• YYYY-MM-DDThh:mm:ssZ
• YYYY-MM-DDThh:mm:ss.fZ
• YYYY-MM-DDThh:mm:ss.ffZ
• YYYY-MM-DDThh:mm:ss.fffZ

report_text the actual text of the document, plain text
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The test documents have all been configured with these fields. If you decide to ingest additional documents into the
claritynlp_test Solr core, you will need to ensure that they contain these fields as well. Additional information
on document ingestion can be found here.

Python scripts for ingesting some common document types can be found here.

Setup the Project Configuration File

In the ClarityNLPNative/native_setup directory you will find a file named project.cfg. This file gets
loaded on startup and it configures Clarity to run locally on your system.

If you plan to use hosted instances of either Solr, Postgres, or MongoDB, you will need to edit the file and set the values
appropriate for your system. The file has a simple key=value format for each parameter. The Solr parameters are
located under the [solr] header, the Postgres params under the [pg] header, and the MongoDB params under the
[mongo] header.

For instance, if you installed everything locally, but you changed the PostgreSQL password above when you
created the user account, you need to open project.cfg in a text editor, locate the [pg] section, find the
password=password entry, and change the text on the right side of the equals sign to the password that you
used. If you used a password of jx8#$04!Q%, change the password line to password=jx8#$04!Q%.

Make the appropriate changes for Solr, Postgres, and MongoDB to conform to your desired configuration. Note that
the username and password entries for MongodB are commented out. It is possible to use MongoDB without having
to create a user account. If this is the case for your system, just leave these entries commented out. Otherwise,
uncomment them and set the values appropriate for your system.

If you followed the instructions above exactly and installed everything locally, you do not need to change anything in
this file.

The provided project.cfg file tells ClarityNLP to use /tmp as the location for the log file and various temporary
files needed during the run. If you want to put these files somewhere else, create the desired folders on your system,
make them writable, and set the paths in the [tmp] and [log] sections of project.cfg. The paths would look
like this after any changes:

[tmp]
dir=/path/to/my/preferred/tmp/dir

[log]
dir=/path/to/my/preferred/log/dir

Double-check all entries in this file! You will have problems getting the system to run if you have typos or other
errors for these parameters.

Once you are satisifed that the data in the file is correct, copy project.cfg from the native_setup folder into
the nlp folder, which is where ClarityNLP expects to find it:

cp project.cfg ../nlp/project.cfg

Running Locally without Docker

Now we’re finally ready to run. Here are the instructions for running a job with your native ClarityNLP system. We
open several terminal windows to start the various servers and schedulers. You can reduce the number of windows by
configuring Mongo, Postgres, and Solr to start as background processes after each reboot, as mentioned above.
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1. Start Solr

If you installed Solr locally and chose the manual start method, start Solr by opening a terminal window and running
solr start.

Verify that you can communicate with your Solr core by pinging it. For a local installation, open a Web browser and
visit this URL: http://localhost:8983/solr/claritynlp_test/admin/ping. For a hosted instance,
change localhost to whatever is appropriate for your system.

The Web browser should display a status of OK in the final line of output if it is connected. If you get an HTTP 404
error, make recheck your URL and make sure that your Solr instance is actually running.

2. Start the MongoDB Server

If you installed MongoDB locally, launch the the mongod server with one of these options:

[MacOS] Provide the path to your local MongoDB config file as follows (this command uses the default location):

mongod --config /usr/local/etc/mongod.conf

[Ubuntu]

sudo systemctl start mongodb

Verify that the mongo server is running by typing mongo into a terminal to start the mongo client. It should connect
to the database and prompt for input. Exit the client by typing exit in the terminal.

For a hosted MongoDB instance you need to supply the connection params from the terminal. If your Mongo installa-
tion does not require accounts and passwords, connect to it with this command, replacing the <hostname or ip>
and <port number> placeholders with values appropriate for your system:

mongo --host <hostname or ip> --port <port number>

If your hosted instance requires a user name and password, you will need to supply those as well. More info on
connecting to a remote Mongo server can be found here.

3. Start the Postgres Server

If you installed Postgres locally:

[MacOS] Start the server by clicking the elephant icon in the menu bar at the upper right corner of your screen. Press
the start button at the lower right of the popup menu.

[Ubuntu] Start the server with:

sudo systemctl start postgresql

Verify that your server is available by running the command pg_isready from a terminal window. It should report
accepting connections.

If you use a hosted Postgres instance, check to see that it is up and running with this command, replacing the hostname
and port number with values suitable for your installation:

pg_isready -h <hostname> -p <port number>

If your Postgres server is running it should respond with accepting connections.
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4. Start the Luigi Task Scheduler

ClarityNLP uses Luigi to schedule and manage the data processing tasks. Luigi must be started manually in a native
setup.

We will run Luigi from a dedicated directory, ~/tmp/luigi. Open another terminal window and create ~/tmp/
luigi with these commands (this only needs to be done once):

mkdir -p ~/tmp/luigi
cd ~/tmp/luigi
mkdir logs

Launch Luigi with:

conda activate claritynlp
cd ~/tmp/luigi
luigid --pidfile pid --logdir logs --state-path statefile

Luigi should start and the command prompt should become inactive. Keep Luigi running for your entire ClarityNLP
session. You only need to start Luigi once, even if you plan to run multiple ClarityNLP jobs.

5. Start the Flask Web Server

ClarityNLP uses Flask as the underlying web framework. Flask must be started manually in a native setup.

Open yet another terminal window, cd to the ClarityNLPNative/ClarityNLP/nlp directory, and launch the
web server with:

conda activate claritynlp
export FLASK_APP=api.py
python -m flask run

Just like Luigi, the Flask web server only needs to be started once. The web server prints startup information to the
screen as it initializes. You can safely ignore any No section: warnings. When initialization completes you should
see output similar to this:

* Serving Flask app "nlp.api"

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

At this point ClarityNLP is fully initialized and waiting for commands.

6. Run a Validation Job

Open (yet another) terminal window and cd to ClarityNLPNative/ClarityNLP/native_setup. Run the
ls command and note the file validation0.nlpql. This is an NLPQL file that runs several ClarityNLP tasks on
a special validation document that was loaded into the claritynlp_test Solr core during setup.

When we run this validation job, ClarityNLP will process the validation document, run the validation tasks, and write
results to MongoDB. We can extract the results into a CSV file for easy viewing and then run a special python script
to check that the results are correct.

You launch a ClarityNLP job by performing an HTTP POST of your NLPQL file to the ClarityNLP nlpql API end-
point. Since the local running instance of ClarityNLP is listening at http://localhost:5000, the appropriate
URL is http://localhost:5000/nlpql. We will see how to post the file using the curl command line tool
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below. If you are familiar with Postman or other HTTP clients you could certainly use those instead of curl. Any
HTTP client that can POST files as plain text should be OK.

Before running the NLPQL file, we should first check it for syntax errors. That can be accomplished by POSTing the
NLPQL file to the nlpql_tester API endpoint. From your terminal window run these commands to do so:

conda activate claritynlp
curl -i -X POST http://localhost:5000/nlpql_tester -H "Content-type:text/plain" --
→˓data-binary "@validation0.nlpql"

The curl command should generate output that looks similar to this:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 2379
Access-Control-Allow-Origin: *
Server: Werkzeug/0.15.2 Python/3.6.6
Date: Thu, 06 Jun 2019 00:37:26 GMT

{
"owner": "claritynlp",
"name": "Validation 0",
"population": "All",
"context": "Patient",

<lots of content omitted...>

"debug": false,
"limit": 100,
"phenotype_id": 1

}

This is the JSON representation of the NLPQL file generated by the ClarityNLP front end. If you see JSON output
similar to this your syntax is correct. If you do not get JSON output then something is wrong with your NLPQL
syntax. There should be an error message printed in the Flask window. The validation0.nlpql file has been
checked and should contain no syntax errors.

After the syntax check we’re ready to run the job. POST the NLPQL file to the nlpql endpoint with this command:

curl -i -X POST http://localhost:5000/nlpql -H "Content-type:text/plain" --data-
→˓binary "@validation0.nlpql"

The system should accept the job and print out a message stating where you can download the results. The message
should look similar to this:

{
"job_id": "1",
"phenotype_id": "1",
"phenotype_config": "http://localhost:5000/phenotype_id/1",
"pipeline_ids": [

1
],
"pipeline_configs": [

"http://localhost:5000/pipeline_id/1"
],
"status_endpoint": "http://localhost:5000/status/1",
"results_viewer": "?job=1",
"luigi_task_monitoring": "http://localhost:8082/static/visualiser/index.html

→˓#search__search=job=1",
(continues on next page)
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(continued from previous page)

"intermediate_results_csv": "http://localhost:5000/job_results/1/phenotype_
→˓intermediate",

"main_results_csv": "http://localhost:5000/job_results/1/phenotype"
}

The job_id increments each time you submit a new job. The system should launch approximately 22 tasks to run
the commands in this sample file. If you open a web browser to the luigi_task_monitoring URL, you can
watch the tasks run to completion in the luigi task status display. Just refresh the window periodically to update the
task counts.

After the job finishes you can download a CSV file to see what ClarityNLP found. The
intermediate_results_csv file contains all of the raw data values that the various tasks found.

To check the results, you need to generate a CSV file from the intermediate data with a comma for the record delimiter,
not a tab. A tab character seems to be the default delimiter for Microsoft Excel.

Excel users can correct this as follows. Assuming that you have the intermediate result file open in Excel, press
the key combination <COMMAND>-A. This should highlight the leftmost column of data in the spreadsheet. After
highlighting, click the Data menu item, then press the Text to Columns icon in the ribbon at the top. When
the wizard dialog appears, make sure the Delimited radio button is highlighted. Click Next. For the delimters,
make sure that Comma is checked and that Tab is unchecked. Then click the Finish button. The data should
appear neatly arranged into columns. Then click the File|Save As... menu item. On the dialog that appears,
set the File Format combo box selection to Comma Separated Values (.csv). Make sure that a .csv
extension appears in the Save As edit control at the top of the dialog. Give the file a new name if you want (but with
a .csv extension), then click the Save button.

Users of other spreadsheet software will need to consult the documentation on how to save CSV files with a comma
for the record separator.

With the file saved to disk in proper CSV format, run this command from the ClarityNLPNative/ClarityNLP/
native_setup folder to check the values:

conda activate claritynlp # if not already active
python ./validate_results0.py --file /path/to/your/csv/file.csv

This command runs a python script to check each result. If the script finds no errors it will print All results are
valid. to stdout. If ClarityNLP is working properly no errors should be found.

Shutdown

Perform these actions to completely shutdown ClarityNLP on your system:

1. Stop the Flask webserver by entering <CTRL>-C in the flask terminal window.

2. Stop the Luigi task scheduler by entering <CTRL>-C in the luigi terminal window.

3. MacOS users can stop the MongoDB database server by entering <CTRL>-C in the MongoDB terminal window.
Ubuntu users can run the command sudo systemctl stop mongodb.

4. Stop Solr by entering solr stop -all in a terminal window.

5. MacOS users can stop Postgres by first clicking on the elephant icon in the menu bar at the upper right corner
of the screen. Click the stop button on the menu that appears. Ubuntu users can run the command sudo
systemctl stop postgresql.

Alternatively, you could just terminate Flask and Luigi and keep the other servers running if you plan to run more jobs
later.
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If you restart, always start Luigi before Flask, exactly as documented above.

Final Words

An introduction to NLPQL can be found here.

Additional information on how to run jobs with ClarityNLP can be found in our Cooking with Clarity sessions. These
are Jupyter notebooks presented in a tutorial format. Simply click on any of the .ipynb files to open the notebook in
a Web browser. These notebooks provide in-depth explorations of topics relevant to computational phenotyping.

1.1.2 Server Setup

Server Setup

The instructions below will get you up and running with a Docker-based ClarityNLP instance on your server. We walk
you through how to configure and deploy a set of Docker containers comprising a complete ClarityNLP installation.
There is no need for you to separately install Solr, MongoDB, PostgreSQL, or any of the other technologies that
ClarityNLP uses.

Prerequisites

Download Source Code

git clone https://github.com/ClarityNLP/ClarityNLP

Edit Config File

Open the env.sh file for editing.

If you are using a domain name, change HOST to be your domain name.

If you are using an IP address with no domain name, do nothing to HOST. Please read the Tip and Tricks section below
if you are using an IP address with no domain name.

Install Docker

Follow the installation instructions.

These are the recommended Docker settings for ClarityNLP. In Docker, they can be updated via Docker > Preferences
> Advanced.

• Memory: >8GB

• Disk: >256GB recommended, but can run on much less (depends on data needs)

Install Docker Compose

Follow the installation guide.
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Run the Stack

The first time running it will take a couple minutes to pull the pre-built images from the Docker Hub registry. Open a
terminal at the project root and run the following:

make start-clarity

To stop the stack, run this command:

make stop-clarity

Tips & Tricks

ClarityNLP uses Let’s Encrypt to provide TLS. By default, ClarityNLP informs the ACME to use the TLS-ALPN-01
challenge to generate and renew certificates. When using the TLS-ALPN-01 challenge, the server running ClarityNLP
must be reachable by Let’s Encrypt through port 443.

If your server is behind a VPN and port 443 is not reachable by Let’s Encrypt, use a DNS-01 challenge instead. Follow
the instructions on configuring a DNS-01 challenge by reading the Traefik documentation.

Let’s Encrypt does not issue certificates for public IP addresses, only domain names.

If you are not using a domain name, a default certificate will be generated. This certificate is not backed by a CA.
ClarityNLP will still function, however browsers will display a certificate warning to users.

To verify that the Docker containers are running, open a terminal and run:

docker ps

You should see a display that looks similar to this. There are 15 containers and all should have a status of Up when the
system has fully initialized:

CONTAINER ID IMAGE COMMAND
→˓CREATED STATUS PORTS
→˓NAMES
55ac065604e5 claritynlp_ingest-api "/app/wait-for-it-ex..."
→˓54 seconds ago Up 24 seconds 1337/tcp
→˓INGEST_API
ce2baf43bab0 claritynlp_nlp-api "/api/wait-for-it-ex..."
→˓56 seconds ago Up 54 seconds 5000/tcp
→˓NLP_API
c028e60d1fab redis:4.0.10 "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 6379/tcp
→˓REDIS
4e1752025734 jpillora/dnsmasq "webproc --config /e..."
→˓About a minute ago Up 56 seconds 0.0.0.0:53->53/udp
→˓DNSMASQ
2cf1dd63257a mongo "docker-entrypoint.s..."
→˓About a minute ago Up 55 seconds 27017/tcp
→˓NLP_MONGO
34385b8f4306 claritynlp_nlp-postgres "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 5432/tcp
→˓NLP_POSTGRES
500b36b387b7 claritynlp_ingest-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓INGEST_CLIENT
f528b68a7490 claritynlp_dashboard-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓DASHBOARD_CLIENT

(continues on next page)
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(continued from previous page)

8290a3846ae0 claritynlp_results-client "/bin/bash /app/run...."
→˓About a minute ago Up 56 seconds 3000/tcp, 35729/tcp
→˓RESULTS_CLIENT
77fce3ae48fc claritynlp_identity-and-access-proxy "pm2-dev process.json"
→˓About a minute ago Up 57 seconds 6010/tcp
→˓IDENTITY_AND_ACCESS_PROXY
b6610c74ec4c claritynlp_nlp-solr "docker-entrypoint.s..."
→˓About a minute ago Up 56 seconds 8983/tcp
→˓NLP_SOLR
45503f0fd389 claritynlp_identity-provider "docker-entrypoint.s..."
→˓About a minute ago Up 57 seconds 5000/tcp
→˓IDENTITY_PROVIDER
6dc0f7f21a48 claritynlp_nginx-proxy "/app/docker-entrypo..."
→˓About a minute ago Up 56 seconds 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp
→˓NGINX_PROXY
1d601b064a1c axiom/docker-luigi:2.7.1 "/sbin/my_init --qui..."
→˓About a minute ago Up 57 seconds 8082/tcp
→˓LUIGI_SCHEDULER
7ab4b8e19c86 mongo:3.4.2 "docker-entrypoint.s..."
→˓About a minute ago Up 58 seconds 27017/tcp
→˓INGEST_MONGO

The Luigi container will monitor for active tasks. Once everything initializes, you should periodically see the following
lines in the console output:

LUIGI_SCHEDULER | 2018-10-16 19:46:19,149 luigi.scheduler INFO Starting pruning
→˓of task graph
LUIGI_SCHEDULER | 2018-10-16 19:46:19,149 luigi.scheduler INFO Done pruning
→˓task graph

ClarityNLP Links

The user interface (UI) components of ClarityNLP can be accessed on your machine by opening a web browser and
entering the URLs provided below.

Dashboard

The ui_dashboard is the main user interface to ClarityNLP. It provides controls for ingesting documents, creating
NLPQL files, accessing results and lots more.

Dashboard URL: https://<host>/dashboard

Solr Administrative User Interface

Solr provides an administrative user interface that you can use to configure and explore your ClarityNLP Solr instance.
The Apache project provides full documentation on the admin UI which you can find here.

Perhaps the most useful component of this UI is the query tool, which lets you submit queries to Solr and find docu-
ments of interest. The ClarityNLP Solr installation provides more than 7000 documents in a core called sample.

Solr Admin Interface URL: https://<host>/solr
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Luigi Task Monitor

The Luigi project provides a task monitor that displays information on the currently running ClarityNLP job. Clari-
tyNLP processes documents by dividing the workload into parallel tasks that are scheduled by Luigi. The task monitor
displays the number of running tasks, how many have finished, any failures, etc. You can update the task counts by
simply refreshing the page.

Lugi Task Monitor URL: https://<host>/luigi

Ingest Client

The Ingest Client provides an easy-to-use interface to help you load new documents into your ClarityNLP Solr in-
stance. It also helps you map the fields in your documents to the fields that ClarityNLP expects.

Ingest Client URL: https://<host>/ingest

Results Viewer

The Results Viewer helps you examine the results from each of your ClarityNLP runs. It highlights specific terms and
values and provides an evaluation mechanism that you can use to score the results that ClarityNLP found.

Clarity Results Viewer URL: https://<host>/results

NLP API

<TODO - example of how to POST an NLPQL file using Postman or curl with access tokens>

1.1.3 Document Ingestion

General Document Ingestion

See guide to Solr for more information about Solr setup with ClarityNLP.

Solr has built-in APIs for ingesting documents, which are documented here. The simplest way is generally to use
curl to upload JSON, CSV, or XML. Documents need to be pre-processed as plain text before they are uploaded into
ClarityNLP.

Sample JSON upload for ClarityNLP:

curl -X POST -H 'Content-Type: application/json' 'http://localhost:8983/solr/report_
→˓core/update/json/docs' --data-binary '
{

"report_type":"Report Type",
"id":"1",
"report_id":"1",
"source":"My Institution",
"report_date":"1970-01-01T00:00:00Z",
"subject":"the_patient_id_or_other_identifier",
"report_text":"Report text here"

}'
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Upload Scripts

A collection of scripts for ingesting popular datasets (MIMIC, AACT Clinical Trials, Gleason Pathology Documents,
etc.) is available here.

1.2 User Guide

1.2.1 Overview

ClarityNLP is is a natural language processing platform designed to accelerate review of medical charts for a wide
variety of purposes, including research, clinical care, quality metrics, and risk adjustment. This guide is intended for
end users of ClarityNLP.

We host webinars biweekly on Wednesday where we present and discuss topics around ClarityNLP. See upcoming
and previous sessions here. For more information, contact us.

1.2.2 User Interface

Dashboard

The Dashboard is designed to give you a summary of your ClarityNLP instance at a glance. The Dashboard shows
you the following:

• The document types (and number of each type) stored in your Solr instance

• The NLPQL queries you have created and saved via the Query Builder

• The name, date, runtime, cohort size, and validation status of your NLPQL jobs
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To view all of your documents, results, or NLPQL queries, simply click on the expand button at the top right of the
corresponding box. This action expands the box to full screen and provides more information on the given field. To
return to the default view, click on the collapse button located at the top right corner.
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Additional Features

If you would like to quickly navigate to the results of one your recent jobs, you can click on that job’s row in the results
table to go directly to the results in the Results Viewer.

Alternatively, if you would like to open the NLPQL file of a previously saved query, click on the respective row in the
NLPQL table to open that query in the Query Builder.

You can run saved queries by pressing the play button (right-pointing arrowhead) in the same row as the query.

You can delete a saved query by pressing the trash can icon next to the name of the query.

Ingest Client

Query Builder

The Query Builder is a tool to assist in the development of NLPQL queries.

When you open the Query Builder, it will prompt you to enter a name and version number for your NLPQL query.

NOTE: a previously-saved query cannot be overwritten. Each query must be saved with a unique version number.
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After you have named and versioned your query, you can begin building your query.

To add a component to the query, simply click on the component you would like to add, fill out the fields that you
need, and click the corresponding add button.
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After you finish building your query, you can click the save button just above the dropdowns to save your query
indefinitely. You can also run the query by clicking the run button at the top right.

You can specify a limit to the number of documents processed by using an NLPQL limit statement. The form in the
next image allows you to specify a limit:
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If your NLPQL query passes the validity checks, you will be shown some metadata about your query:

NOTE: If at any point you want to delete your query you can click the clear button at the bottom of the text area to
start over.

Loading a Query

If you navigated here from a link or from the Dashboard, your query will automatically load into the text area.
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You can edit this query by clicking the edit button below the text area.

To learn more about NLPQL, please see the NLPQL Reference.

Results Viewer

The Results viewer is designed to give you a comprehensive look at the results from a ClarityNLP run.

The first screen provides a list of the 20 most recently-submitted jobs. You can navigate the results by using the “Next
page” and “Previous” buttons at the top right of the list. Each job has many interactions associated with it, which are:

• The name of the query

• The query submission date

• The current status of the job. If the job is not finished, the job status appears as a hyperlink that takes you to the
Luigi task viewer for that job.

• The cohort size for that particular query

• The accuracy score from an evaluation of the results

• Download links for the job that includes CSVs of:

– Results

– Cohort

– Annotations

• Actions that can be taken for the job, which include:

– Viewing the text representation of the query

– Viewing the JSON representation of the query

– Deleting the job
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NOTE: Job deletion is permanent and cannot be undone.
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This list is also searchable via terms entered into the text box above the list:
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To delve deeper into the results for a job, click on that job’s row in the list. This brings you to a screen where you can
see individual results from the query. You can also see the number of events that were recognized for each result.

If no results were found for a query, a blank screen will appear.
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At the top right of the page, you can cycle through the “Explore”, “Feature”, and “Cohort” views. The Feature and
Cohort views appear as scrollable tables. The Explore view is the default.
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If you want to view the results for a patient, click that patient’s row in the list. This will bring you to a screen where
you can see highlighted results.

The “Next Page” and “Previous” buttons to the top right will cycle you through the various patients for that job.

At the left side of the page is a list of the NLPQL features for which results were found. Clicking one of these features
will show the results for that feature only. All results are displayed by default.
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Each result box shows the name of the relevant NLPQL feature, the definition of that feature immediately below it,
and an extract from a source document. The extract highlights relevant terms and values associated with the feature.

In the upper right corner of each result box is a set of buttons that can be used to evaluate ClarityNLP’s results. You
can:

• Click the checkmark if the result is correct

• Click the X if the result is incorrect

• Click the notepad to enter a comment about the result
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You can click on the sentence to view the complete source document:

1.2.3 How to Write a Query

ClarityNLP at a Glance

ClarityNLP is designed to simplify the process of analyzing unstructured data (eg. provider notes, radiology reports,
pathology results, etc) to find particular data or patients from electronic medical records.

We refer to the definition of what you are trying to find as a phenotype. Phenotypes are useful for research, clinical,
quality, or payment purposes, because they allow a very explicit definition of the criteria that make up a patient of
interest. With ClarityNLP, these criteria can be shared using machine-interpretable code that can be run on any clinical
dataset.

How is this accomplished? ClarityNLP uses a query syntax called Natural Language Processing Query Language
(NLPQL), based on the CQL syntax from HL7. The ClarityNLP platform provides mapping tools that allow NLPQL
phenotypes to run on any dataset.

Let’s take a look at how NLPQL works.

Example NLPQL Phenotype Walkthrough

Imagine you have a dataset with thousands of clinical documents and would like to extract a particular data element.
You can create an NLPQL file to specify what you would like to extract.

Here is a basic NLPQL phenotype that extracts Temperature values from Nursing notes.

phenotype "Patient Temperatures" version "2";

include ClarityCore version "1.0" called Clarity;

documentset NursingNotes:

(continues on next page)
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(continued from previous page)

Clarity.createReportTagList(["Nurse"]);

termset TemperatureTerms:
["temp","temperature","t"];

define Temperature:
Clarity.ValueExtraction({

termset:[TemperatureTerms],
documentset: [NursingNotes],
minimum_value: "96",
maximum_value: "106"
});

define final hasFever:
where Temperature.value >= 100.4;

Let’s break down the NLPQL above.

Phenotype Name

phenotype "Patient Temperatures" version "2";

Every ClarityNLP phenotype definition needs a name. We give it a name (and optionally a version) using the
phenotype command. Here, we are just declaring that our phenotype will be called “Patient Temperatures”.

Libraries

include ClarityCore version "1.0" called Clarity;

NLPQL is designed to be extensible and make it easy for developers to build new NLP algorithms and run them
using the ClarityNLP platform. A common paradigm for making software extensible is the use of libraries. Using the
include command, we are saying to include the core Clarity library which has lots of handy commands and NLP
algorithms built-in. The called phrase allows us to select a short name to refer to the library in the NLPQL that
follows. In this case, we have selected to call it “Clarity”.

Document Sets

documentset NursingNotes:
Clarity.createReportTagList(["Nurse"]);

Document sets are lists of document types that you would like ClarityNLP to process. (If no document sets are
created, ClarityNLP will simply analyze all documents in your repository.) Built into the Clarity core library is the
createReportTagList function, which allows you to enumerate a set of document type tags from the LOINC
document ontology. Typically, these tags are assigned to your documents at the time of ingestion through use of the
Report Type Mapper.

In this case, we have declared a document set called “Nursing Notes” and included in it all documents with the Nurse
tag. We could have selected another provider type (eg. Physician), a specialty type (eg. Endocrinology), a setting type
(eg. Emergency Department), or a combination such as ["Physician","Emergency Department"].
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documentset AmoxDischargeNotes:
Clarity.createDocumentSet({

"report_types":["Discharge summary"],
"report_tags": [],
"filter_query": "",
"query":"report_text:amoxicillin"});

ClarityNLP provides an additional document set, createDocumentSet, which provides more control over docu-
ment section, allowing users to select report tags or report types, and provides flexibility to write custom queries.

Term Sets

termset TemperatureTerms:
["temp","temperature","t"];

Term sets are lists of terms or tokens you would like to input into an NLP method. You can create these lists manually
(as shown in this example) or generate them based on ontologies. Furthermore you can extend termsets with synonyms
and lexical variants.

In this case, we have created a term set called “TemperatureTerms” and included three common ways temperature is
referenced in a clinical note (“temperature”, “temp”, and “t”).

Phenotype Features

Features are the clinical elements that you wish to find and analyze in order to identify your patients of interest.
Features specify an NLPQL task you’d like to run as well as optional parameters such as document sets, term sets,
patient cohorts, and more. See the NLPQL examples to get a better sense of how different features can be created.

We have two features in our example NLPQL. Let’s take a look at each.

define Temperature:
Clarity.ValueExtraction({

termset:[TemperatureTerms],
documentset: [NursingNotes],
minimum_value: "96",
maximum_value: "106"
});

Features are specified in NLPQL using the define keyword followed by a feature name and a function. In this case,
we are assigning the name “Temperature” to the output of a particular NLP method that is included in the Clarity core
library called Value Extraction. (This could just as easily have been an NLP method from another Python library or an
external API using External NLP Method Integration.)

In the example, we provide the Value Extraction method with a set of parameters including our document set (“Nurs-
ingNotes”), term set (“TemperatureTerms”), and min/max values to include in the temperature results. The accuray of
this definition for temperature can be evaluated using the ClarityNLP validation framework, which is a feature built
into the Results Viewer.

Now on to the second feature in the example:

Final Features

define final hasFever:
where Temperature.value >= 100.4;
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With this statement, we are creating a new feature called “hasFever” that includes any patients with a temperature
value greater than 100.4. There are two things to note about this syntax.

• final A phenotype may involve the creation of numerous intermediate features that are extracted by NLP
processes but are not themselves the final result of the analysis. For example, we may be interested only in
patients with a fever, rather than any patient who has a temperature value recorded. The final keyword allows us
to indicate the final output or outputs of the phenotype definition.

• value Every NLP method returns a result. The specific format and content of these results will vary by method.
As a convenience, ClarityNLP returns a value parameter for most methods. The Value Extraction method used
here also returns several other parameters. ClarityNLP is flexible in that it can take any parameter you provide
and perform operations on it. However, this will only work if the method being called returns that parameter.
Please consult the documentation for individual methods to see what parameters can be referenced.

Running NLPQL Queries

In the full guide, we will walk you through the steps of ingesting and mapping your own data. Once in place, you
will be able to run queries by hitting the nlpql API endpoint on your local server or by visiting <your_server
url>:5000/nlpql. But to run a quick test, feel free to use our NLPQL test page.

Next Steps

The next steps for you are to install ClarityNLP, follow through some of our Cooking with Clarity tutorials to learn
how to create a full-blown ClarityNLP project, and join our channel on Slack. Thanks for your interest!

1.2.4 Basic NLP Phenotype Examples

Overview

Before going through these examples, make sure to review the NLPQL walkthrough to get an understanding of the
general components of NLPQL. For this set of examples, we will be focusing on extracting data relevant to congestive
heart failure.

Note we recommend prepending each query with limit 100; which keeps the job small and allows you to test
queries without taking up a lot of time and compute resources. Once you have developed a query and want to scale it
to the full dataset, simply remove the limit statement.

All of the sample results shown here are from the de-identified MIMIC III dataset.

Example 1: Finding Symptoms of a Disease

In this first example, we are looking for certain symptoms of congestive heart failure likely to be found only in the
clinical notes. Specifically we are looking for orthopnea and paroxysmal nocturnal dyspnea (PND).

Using TermFinder

limit 100;

//phenotype name
phenotype "Orthopnea" version "2";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

(continues on next page)
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(continued from previous page)

termset Orthopnea:
["orthopnea","orthopnoea","PND"];

define hasOrthopnea:
Clarity.TermFinder({
termset:[Orthopnea]
});

Here we have simply defined a set of terms we are interested and lumped them into a termset called Orthopnea.
We could have named this termset anything.

The TermFinder function simply takes in that list of terms and finds all documents with these terms, without any
additional filtering. Here are example results.

Orthopnea
Sample Results

As you can see, while the TermFinder was helpful in finding mentions of our Orthopnea terms, much of what was
found were actually negative mentions (ie, the patient did not have the symptom). So ClarityNLP lets you set a variety
of constraints around TermFinder, for example limiting results to particular sections of the note or just to affirmed
mentions.

define hasOrthopnea:
Clarity.TermFinder({
termset:[Orthopnea],
negated:"Affirmed",
sections:["CHIEF_COMPLAINT","HISTORY_PRESENT_ILLNESS"]
});

But because in most situations we need to find positive mentions that are current and relevant to the patient, ClarityNLP
has a convenient function called ProviderAssertion that allows you to bypass entering all the typical parameters.
Here is a simple example.

Using ProviderAssertion

limit 100;
//phenotype name
phenotype "Orthopnea" version "2";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset Orthopnea:
["orthopnea","orthopnoea","PND"];

define hasOrthopnea:
Clarity.ProviderAssertion({
termset:[Orthopnea]
});

As you can see, the results are now limited to just positive mentions.
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Example
1.1 Results

Example 2: Extracting Quantitative Values

In this example, we will be searching for ejection fraction values using a very simple algorithm. Specifically, we
will be looking for certain terms and subsequent values that would be typical for EF values. There are many more
sophisticated methods to find ejection fraction (e.g Kim et al). Our goal in this example is to provide you familiarity
with the use of the ClarityNLP ValueExtraction functionality.

limit 100;
//phenotype name
phenotype "Ejection Fraction Values" version "1";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset EjectionFractionTerms:
["ef","ejection fraction","lvef"];

define EjectionFraction:
Clarity.ValueExtraction({
termset:[EjectionFractionTerms],
minimum_value: "10",
maximum_value: "85"
});

Example
2.1 Results

If you wanted to find only low ejection fractions, you could do this in two ways. The first is by modifying the min and
max parameters. For example:

define EjectionFraction:
Clarity.ValueExtraction({
termset:[EjectionFractionTerms],
maximum_value: "30"
});

This will filter your results to only those <30%.

Example 3: Extracting Non-Quantitative Values

In some cases you may want to extract data points that are values but not numeric. A good example is CHF class.
Below is an example of NLPQL to pull out NYHA classifications.
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limit 100;
//phenotype name
phenotype "NYHA Class" version "1";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called Clarity;

termset NYHATerms:
["nyha"];

define NYHAClass:
Clarity.ValueExtraction({
termset:[NYHATerms],
enum_list: ["3","4","iii","iv"];
});

Looking up more stuff

Note: we recommend prepending each query with limit 100; which keeps the job small and allows you to test
queries without taking up a lot of time and compute resources. Once you have developed a query and want to scale it
to the full dataset, simply remove the limit statement.

1.3 Developer Guide

1.3.1 For Algorithm Developers

Technical Overview

Technologies We Use

ClarityNLP is built on several popular open-source projects. In this section we provide a brief overview of each project
and describe how it is used by ClarityNLP.

Docker

Docker uses operating-system-level virtualization to provide a means of isolating applications from each other and
controlling their access to system resources. Isolated applications run in restricted environments called containers. A
container includes the application and all dependencies so that it can be deployed as a self-contained unit.

ClarityNLP can be deployed as a set of Docker containers. The secure OAuth2-based server configuration assumes
this deployment mechanism. You can find out more about the ClarityNLP setup options and our use of Docker in our
setup documentation.

Solr

Apache Solr is an enterprise search platform with many advanced features including fault tolerance, distributed index-
ing, and the ability to scale to billions of documents. It is fast, highly configurable, and supports a wide range of user
customizations.
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ClarityNLP uses Solr as its primary document store. Any documents that ClarityNLP processes must be retrieved
from Solr. We provide instructions on how to ingest documents into Solr. We also provide some python scripts to help
you with common data sets. See our document ingestion documentation for more.

PostgresSQL

PostgreSQL is one of the leading open-source relational database systems, distinguished by its robust feature set, ACID
compliance, and excellent performance. ClarityNLP uses Postgres to store data required to manage each NLPQL job.
Postgres is also used to store a large amount of medical vocabulary and concept data.

MongoDB

MongoDB is a popular NoSQL document store. A mongo document is a JSON object with user-defined fields and
values. There is no rigid structure imposed on documents. Multiple documents form groups called collections, and
one or more collections comprise a database.

ClarityNLP uses Mongo to store the results that it finds. The ClarityNLP built-in and custom tasks all define result
documents with fields meaningful to each task. ClarityNLP augments the result documents with additional job-specific
fields and stores everything in a single collection.

ClarityNLP also evaluates NLPQL expressions by translating them into a MongoDB aggregation pipeline.

NLP Libraries (spaCy, textacy, nltk)

The natural language processing libraries spaCy and nltk provide implementations of the fundamental NLP algorithms
that ClarityNLP needs. These algorithms include sentence segmentation, part-of-speech tagging, and dependency
parsing, among others. ClarityNLP builds its NLP algorithms on top of the foundation provided by spaCy and nltk.

Textacy is a higher-level NLP library built on spaCy. ClarityNLP uses textacy for its Clarity.ngram task and for
computing text statistics with Clarity.TextStats.

Luigi

Luigi is a python library that manages and schedules pipelines of batch processes. A pipeline is an ordered sequence
of tasks needed to compute a result. The tasks in the pipeline can have dependencies, which are child tasks that must
run and finish before the parents can be scheduled to run. Luigi handles the task scheduling, dependency management,
restart-on-failure, and other necessary aspects of managing these pipelines.

The NLPQL Reference defines a set of core and custom tasks that comprise the data processing capabilities of Clari-
tyNLP. ClarityNLP uses Luigi to schedule and manage the execution of these tasks.

Flask

Flask is a “micro” framework for building Web applications. Flask provides a web server and a minimal set of core
features, as well as an extension mechanism for including features found in more comprehensive Web frameworks.

The ClarityNLP component that provides the NLP Web APIs is built with Flask.
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Redis

Redis is an in-memory key-value store that is typically used as a fast cache for frequently-accessed data. The values
mapped to each key can either be strings or more complex data structures. Redis supports many advanced features
such as partitioning and time-based key expiration.

ClarityNLP uses Redis as a fast query cache.

Pandas

Pandas is a python library for data analysis, with particular strengths in manipulating tabular and labeled data. It
provides data structures and methods for doing operations that one would typically use a spreadsheet for. It provides
a powerful I/O library and integrates fully with the python machine learning, data analysis, and visualization stack.

ClarityNLP uses pandas for some I/O operations and for various forms of data manipulation.

Client-side Libraries (React, Sails)

TBD

Solr Setup and Configuration

Data types

We use standard Solr data types with one custom data type, searchText. searchText is a text field, tokenized
on spaces, with filtering to support case insensitivity.

Fields

All documents in ClarityNLP are stored in Solr. These are the minimal required fields:

{
"report_type":"Report Type",
"id":"1",
"report_id":"1",
"source":"My Institution",
"report_date":"1970-01-01T00:00:00Z",
"subject":"the_patient_id_or_other_identifier",
"report_text":"Report text here"

}

id and report_id should be unique in the data set, but can be equal. report_text should be plain text.
subject is generally the patient identifier, but could also be some other identifier, such as drug_name. source
is generally your institution or the name of the document set.

Additional fields can be added to store additional metadata. The following fields are allowable as dynamic fields:

• *_section (searchText); e.g. past_medical_history_section (for indexing specific sections of
notes)

• *_id (long) e.g.doctor_id (any other id you wish to store)

• *_ids (long, multiValued) e.g. medication_ids (any other id as an array)
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• *_system (string) e.g. code_system (noting any system values)

• *_attr (string) e.g.clinic_name_attr (any single value custom attribute)

• *_attrs (string, multiValued) e.g. insurer_names (any multi valued custom attribute)

Custom Solr Setup

This should be completed for you if you are using Docker. However, here are the commands to setup Solr.

• Install Solr

• Setup custom tokenized field type:

curl -X POST -H 'Content-type:application/json' --data-binary '{
"add-field-type" : {

"name":"searchText",
"class":"solr.TextField",
"positionIncrementGap":"100",
"analyzer" : {

"charFilters":[{
"class":"solr.PatternReplaceCharFilterFactory",
"replacement":"$1$1",
"pattern":"([a-zA-Z])\\\\1+" }],

"tokenizer":{
"class":"solr.WhitespaceTokenizerFactory" },

"filters":[{
"class":"solr.WordDelimiterFilterFactory",
"preserveOriginal":"0" },
{"class": "solr.LowerCaseFilterFactory"
}]}}

}' http://localhost:8983/solr/report_core/schema

• Add standard fields (Solr 6):

curl -X POST -H 'Content-type:application/json' --data-binary '{
"add-field":{"name":"report_date","type":"date","indexed":true,"stored":true,

→˓"default":"NOW"},
"add-field":{"name":"report_id","type":"string","indexed":true,"stored":true},
"add-field":{"name":"report_text","type":"searchText","indexed":true,"stored":true,

→˓"termPositions":true,"termVectors":true,"docValues":false,"required":true},
"add-field":{"name":"source","type":"string","indexed":true,"stored":true},
"add-field":{"name":"subject","type":"string","indexed":true,"stored":true},
"add-field":{"name":"report_type","type":"string","indexed":true,"stored":true}

}' http://localhost:8983/solr/report_core/schema

• Add standard fields (Solr 7 and later):

curl -X POST -H 'Content-type:application/json' --data-binary '{
"add-field":{"name":"report_date","type":"pdate","indexed":true,"stored":true,

→˓"default":"NOW"},
"add-field":{"name":"report_id","type":"string","indexed":true,"stored":true},
"add-field":{"name":"report_text","type":"searchText","indexed":true,"stored":true,

→˓"termPositions":true,"termVectors":true,"docValues":false,"required":true},
"add-field":{"name":"source","type":"string","indexed":true,"stored":true},
"add-field":{"name":"subject","type":"string","indexed":true,"stored":true},
"add-field":{"name":"report_type","type":"string","indexed":true,"stored":true}

}' http://localhost:8983/solr/report_core/schema
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• Add dynamic fields (Solr 6):

curl -X POST -H 'Content-type:application/json' --data-binary '{
"add-dynamic-field":{"name":"*_section","type":"searchText","indexed":true,"stored

→˓":false},
"add-dynamic-field":{"name":"*_id","type":"long","indexed":true,"stored":true},
"add-dynamic-field":{"name":"*_ids","type":"long","multiValued":true,"indexed":true,

→˓"stored":true},
"add-dynamic-field":{"name":"*_system","type":"string","indexed":true,"stored":true}

→˓,
"add-dynamic-field":{"name":"*_attr","type":"string","indexed":true,"stored":true},
"add-dynamic-field":{"name":"*_attrs","type":"string","multiValued":true,"indexed

→˓":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema

• Add dynamic fields (Solr 7 and later):

curl -X POST -H 'Content-type:application/json' --data-binary '{
"add-dynamic-field":{"name":"*_section","type":"searchText","indexed":true,"stored

→˓":false},
"add-dynamic-field":{"name":"*_id","type":"plong","indexed":true,"stored":true},
"add-dynamic-field":{"name":"*_ids","type":"plongs","multiValued":true,"indexed

→˓":true,"stored":true},
"add-dynamic-field":{"name":"*_system","type":"string","indexed":true,"stored":true}

→˓,
"add-dynamic-field":{"name":"*_attr","type":"string","indexed":true,"stored":true},
"add-dynamic-field":{"name":"*_attrs","type":"strings","multiValued":true,"indexed

→˓":true,"stored":true}
}' http://localhost:8983/solr/report_core/schema

• Ingest data

Deleting documents

These commands will permanently delete your documents; use with caution.

Delete documents based on a custom query:

curl "http://localhost:8983/solr/report_core/update?commit=true" -H "Content-Type:
→˓text/xml" --data-binary '<delete><query>source:"My Source"</query></delete>'

Delete all documents:

curl "http://localhost:8983/solr/report_core/update?commit=true" -H "Content-Type:
→˓text/xml" --data-binary '<delete><query>*:*</query></delete>'

Pipelines

Pipelines are the lowest level type jobs that can be run with Luigi and ClarityNLP. Generally they have one purpose
such as finding provider assertions or extracting temperature measurements. NLPQL is generally composed of one
or more pipelines, so usually pipelines don’t need to be run standalone, but can be for testing purposes. They can
be run from the command line through Luigi (see below), or via POSTing pipeline JSON to the endpoint http://
nlp-api:5000/pipeline.
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Running a standalone pipeline from the command line

PYTHONPATH='.' luigi --module luigi_pipeline NERPipeline --pipeline 1 --job 1234 --
→˓owner user

Utility Algorithms

Section Tagging

Overview

The section tagger ingests clinical documents and uses textual clues to partition the documents into sections. Sections
consist of groups of sentences sharing a common purpose such as “History of Present Illness”, “Medications”, or
“Discharge Instructions”. Effective section tagging can reduce the amount of text processed for NLP tasks. This
document describes the ClarityNLP section tagger and how it works.

The starting point for the section tagger is the open-source SecTag database of J. Denny and colleagues1.

Source Code

The source code for the section tagger is located in nlp/algorithms/sec_tag. The file
sec_tag_db_extract.py extracts data from the SecTag database, builds the SecTag concept graph
(concept_graph.py), and generates data files required by the section tagger for its operation. These files
are written to the data folder. The file section_tagger.py contains the code for the section tagger itself.

The section tagger can also run interactively from a command line and process a file of health records in JSON format.
The file sec_tag_file.py provides a command-line interface to the section tagger. Help can be obtained by
running the file with this command: python3 ./sec_tag_file.py. This interactive application writes results
(input file with tag annotations) to stdout.

SecTag Database

The section tagger requires three input files for its operation, all of which can be found in the nlp/algorithms/
sec_tag/data folder. These files are concepts_and_synonyms.txt, a list of clinical concepts and associ-
ated synonyms; graph.txt, a list of graph vertices and associated codes for the concept graph, and normalize.
py, which contains a map of frequently-encountered synonyms and their “normalized” forms2.

1

J. Denny, A. Spickard, K. Johnson, N. Peterson, J. Peterson, R. Miller
Evaluation of a Method to Identify and Categorize Section Headers
in Clinical Documents
J Am Med Inform Assoc. 16:806-815, 2009.
https://www.vumc.org/cpm/sectag-tagging-clinical-note-section-headers

2

J. Denny, R. Miller, K. Johnson, A. Spickard
Development and Evaluation of a Clinical Note Section Header Terminology
AMIA Annual Symposium Proceedings 2008, Nov 6:156-160.
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Generation of these files requires an installation of the SecTag database. The SecTag SQL files were originally written
for MySQL, so that database server will be assumed here. These files do not need to be generated again unless new
concepts and/or synonyms are added to the SecTag database.

To populate the database, install MySQL and create a root account. Start the MySQL server, log in as root and enter
these commands, which creates a user named “sectag” with a password of “sectag”:

1 CREATE USER 'sectag'@'localhost' IDENTIFIED BY 'sectag';
2 CREATE DATABASE SecTag_Terminology;
3 GRANT ALL ON SecTag_Terminology.* TO 'sectag'@'localhost';
4 GRANT FILE ON *.* TO 'sectag'@'localhost';

The user name and the password can be changed, but the database connection string at the end of
sec_tag_db_extract.py will need to be updated to match.

After running these commands, log out as the MySQL root user.

Next, download the sec_tag.zip file from the link in1. Unzip the file and find SecTag_Terminology.sql.

Populate the database as the sectag user with this command, entering the password ‘sectag’ when prompted:

mysql -p -u sectag SecTag_Terminology < SecTag_Terminology.sql

The SecTag database name is “SecTag_Terminology”. Additional information on the contents of the database can be
found in1 and2.

Concepts and Synonyms

The section tagger operates by scanning the report text and recognizing synonyms for an underlying set of concepts.
The synonyms recognized in the text are mapped to their associated concepts and the document sections are tagged
with the concepts. The SecTag database provides an initial set of concepts and synonyms which ClarityNLP expands
upon.

For example, concept 158 “history_present_illness” has synonyms “indication”, “clinical indication”, and “clinical
presentation”, among others. The synonyms represent the various orthographic forms by which the concept could
appear in a clinical note.

The code in sec_tag_db_extract.py extracts the concepts and synonyms from the SecTag database; adds new
synonyms to the list; adds a few new concepts; corrects various errors occurring in the SecTag database, and writes
output to the nlp/algorithms/sec_tag/data folder. Run the extraction code with this command:

python3 ./sec_tag_db_extract.py

Each concept has a “treecode”, which is a string consisting of integers separated by periods, such as 6.41.149.
234.160.165 (the treecode for the concept “chest_xray”). The numbers encode a path through the concept graph
from a small set of general concepts to a much larger set of very specific leaf node concepts. The code 6 represents
the concept “objective_data”, which is very general and broad in scope. The code 6.41 represents the concept “lab-
oratory_and_radiology_data”, which is a form of “objective_data”, but more specific. The code 6.41.149 represents
the concept “radiographic_studies”, which is a more specific form of “laboratory_and_radiology_data”. The concepts
increase in specificity as the treecodes increase in length. Each node in the concept graph has a unique code that
represents a path through the graph from the highest-level concepts to it.

SecTag Errors

There are a few errors in the SecTag database. Two concepts are misspelled. These are concept 127, “prin-
cipal_diagnosis”, misspelled as “principle_diagnosis”, and concept 695, “level_of_consciousness”, misspelled as
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“level_of_cousciousness”. ClarityNLP’s db extraction code corrects both of these misspellings.

Concept 308, “sleep_habits”, has as concept text “sleep_habits,_sleep”. The extraction program converts this to just
“sleep_habits”.

Concept 2921, “preoperative_medications” is missing a treecode. A closely related concept, number 441 “postopera-
tive_medications” has treecode 5.37.106.127 and no children. This concept hierarchy resolves to:

patient_history: 5
medications: 5.37
medications_by_situation: 5.37.106
preoperative_medications: 5.37.106.127

Using this hierarchy as a guide, the extraction program assigns the treecode 5.37.106.500 to the concept “preop-
erative_medications”.

The final error that the extraction program corrects is for concept 745, “appearance”. This entry has an invalid treecode
and is an isolated concept at level 10. This strange entry is skipped entirely and is not written to the output files.

Each concept and synonym has a unique integer identifier. The values of these identifiers are all less than 500 for
concepts and 6000 for synonyms. The new concepts added by the extraction program begin numbering at 500 and the
new synonyms at 6000.

The concepts added by ClarityNLP are:

Concept Name Treecode
renal_course 5.32.77.79.18.500
preoperative_medications 5.37.106.500
nasopharynx_exam 6.40.139.191.120.500
hypopharynx_exam 6.40.139.191.120.501
xray_ankle 6.41.149.234.160.167.92.500
computed_tomography 6.41.149.234.162.500
cerebral_ct 6.41.149.234.162.500.1
thoracic_ct 6.41.149.234.162.500.2
abdominal_ct 6.41.149.234.162.500.3
renal_and_adrenal_ct 6.41.149.234.162.500.4
extremities_ct 6.41.149.234.162.500.5
nonradiographic_studies 6.41.500
types_of_nonradiographic_studies 6.41.500.1
nonradiographic_contrast_studies 6.41.500.1.1
magnetic_resonance_imaging 6.41.500.1.1.1
cerebral_mri 6.41.500.1.1.1.1
thoracic_mri 6.41.500.1.1.1.2
abdominal_mri 6.41.500.1.1.1.3
renal_and_adrenal_mri 6.41.500.1.1.1.4
extremities_mri 6.41.500.1.1.1.5
magnetic_resonance_angiography 6.41.500.1.1.2
cerebral_mra 6.41.500.1.1.2.1
thoracic_mra 6.41.500.1.1.2.2
abdominal_mra 6.41.500.1.1.2.3
renal_and_adrenal_mra 6.41.500.1.1.2.4
extremities_mra 6.41.500.1.1.2.5

Algorithm
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Initialization and Sentence Tokenization

The section tagger begins its operation with an initialization phase in which it loads the data files mentioned above and
creates various data structures. One data structure is a mapping of synonyms to concepts, used for fast text lookups.
This is a one-to-many mapping since a given synonym can be associated with multiple concepts.

After initialization completes, the section tagger reads the report text and runs the NLTK3 sentence tokenizer to parti-
tion the text into individual sentences. For narrative sections of text the sentence tokenizer performs well. For sections
of text containing vital signs, lab results, and extensive numerical data the tokenizer performance is substantially
worse. Under these conditions a “sentence” often comprises large chunks of report text spanning multiple sentences
and sentence fragments.

Synonym Matching

The section tagger scans each sentence and looks for strings indicating the start of a new section. Clinical note
sections tend to be delimited by one or more keywords followed by a termination character. The terminator is usually
a colon “:”, but dashes and double-dashes also appear as delimeters. The section tagger employs various regular
expressions that attempt to match all of these possibilities. The winning match is the longest string of characters
among all matches. Any overlapping matches are merged, if possible, prior to deciding the winning match. Each
match represents the possible start of a new report section.

For each match, which consists of one or more words followed by a terminator, the section tagger extracts the matching
text and performs a series of validity checks on it. Dash-terminated matches are checked to verify that they do not end
in the middle of a hyphenated word. They are also checked to ensure that they do not terminate within a hyphenated
lab result, such as SODIUM-135. Any such matches are discarded. Several other tests are performed as well.

If any matches survive these checks, the terminating characters and possible leading newlines are stripped from the
matching text, and any bracketed data (such as anonymized dates) is removed. The remaining text then gets converted
to lowercase and searched for concept synonyms and thus candidate headers.

The candidate header discovery processes proceeds first by trying an exact match to the candidate text string. The text
itself (after lowercasing) becomes the lookup key for the synonym map built during initialization. If an exact match is
found, the associated concept(s) are looked up and inserted into the list of candidate concepts for this portion of report
text.

If the exact match fails, the section tagger splits the text into individual words and tries to match the longest sequence
of words, if any, to a known synonym. It proceeds to do this by removing words from each end of the word list. It
first tries a match anchored to the right, removing words one-by-one from the left. Any matches found are resolved
into concepts and added to the candidate concept list. If no matches are found, the section tagger tries again, this time
with the matches anchored from the left, and words removed one-by-one from the right. If still no matches are found,
the word list is pruned of stop words and the remaining words replaced by their “normalized” forms. The sequence
of match attempts repeats on this new word list, first with an exact match, then one anchored right, then one anchored
left. If all of these match attempts fail, section tagger gives up and concludes that the text does not represent the start
of a new section.

If at least one match attempt succeeds, the synonyms are resolved into concepts via map lookup and returned as
candidate concepts for a new section label. If there is only one candidate concept as the result of this process, that
concept becomes the header for the next section of text. If two or more candidate concepts remain, the section tagger
employs an ambiguity resolution process to decide on the winning concept. The ambiguity resolver uses a concept
stack to guide its decisions, which we describe next.

3

Natural Language Toolkit
https://www.nltk.org/
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The Concept Stack

The sections in a clinincal note tend to be arranged as flattened hierarchies extending over several consecutive sections.
For instance, in a discharge report one might encounter a section labeled GENERAL_EXAM, followed by a section
labeled HEAD_AND_NECK_EXAM, which represents a more specific type of general exam. This section could be
followed by a section labeled EYE_EXAM, which is an even more specific type of head and neck exam. Although
these sections would be listed sequentially in the report, they naturally form a hierarchy of EXAM concepts proceeding
from general to specific. Other section groups in the report exhibit the same characteristics.

A data structure for managing hierarchies such as this is a stack. The section tagger manages a “concept stack” as it
processes the report text. It uses the stack to identify these natural concept groups, to keep track of the scope of each,
and to resolve ambiguities as described in the previous section.

The specificity of a concept is determined by its graph treecode. The longer the treecode, the more specific the concept.
Two concepts with identical length treecodes have the same degree of specificity.

Each time the section tagger recognizes a concept C it updates the stack according to this set of empirically-determined
rules:

Let T be the concept at the top of the stack.

• If C is a more specific concept than T, push C onto the stack. In other words keep pushing concepts as they get
more specific.

• If C has the same specificity as T, pop T from the stack and push C. If two concepts have the same specificity,
there is no a priori reason to prefer one vs. the other, so take the most recent one.

• If C is more general than T, pop all concepts from the stack that have specificity >= C. In other words, pop all
concepts more specific than C, since C could represent the start of a new concept hierarchy.

Thus the section tagger pushes concept C onto the stack if it is more specific than concept T. It pops concepts from the
stack until concept T is at the same level of specificity (or less specific) than C. The concepts in the stack represent the
full set of open concept scopes at any stage of processing.

Concept Ambiguity Resolution

The section tagger uses the concept stack to select a single concept from a list of candidates, such the candidate
concepts produced by the synonym matching process described above. The basic idea is that a concept should be
preferred as a section label if it posesses the nearest common ancestor among all concepts in the concept stack. A
concept is preferable as a section label if it is “closer” to those in the concept stack than all other candidates. Here the
distance metric is the shortest path between the two concept nodes in the concept graph.

The concept ambiguity resolution process proceeds as follows. Let L be a list of concepts and let S be the concept
stack. For each concept C in stack S, starting with the concept at the stack top:

• For all candidate concepts in L, find the nearest common ancestor to C.

– If there is a single ancestor A closer than all others, choose A as the current winner. Save A in the
best_candidates list. Move one level deeper in the stack and try again.

– If multiple ancestors are closer than the others, save these as best_candidates if they are closer than those
already present in best_candidates. Move one level deeper in the stack and try again.

– If all ancestors are at the same level in the concept graph (have the same specificity), there is no clear
winner. Move one element deeper in the stack and try again.

This process continues until all elements in the stack have been examined. If one winner among the candidates in L
emerges from this procedure, it is declared the winning concept and it is used for the section label.

If there is no single winning concept:
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• If there are any best_candidate concepts:

– Select the most general concept from among these as the winner.

– If all best_candidate concepts have the same specificity, select the first of the best candidates as the winner.

• Otherwise, take the most general concept from those in L, if any.

• Otherwise, declare failure for the ambiguity resolution process.

Example

An example may help to clarify all of this. Consider this snippet of text from one of the MIMIC discharge notes:

...CV: The patient's vital signs were routinely monitored, and
was put on vasopressin, norepinephrine and epinephrine during her
stay to maintain appropriate hemodynamics. Pulmonary: Vital
signs were routinely monitored. She was intubated and sedated
throughout her admission, and her ventilation settings were
adjusted based on ABG values...

As the section tagger scans this text it finds a regex match for the text Pulmonary:. No additional words match
at this point, since this text starts a new sentence. As described above, the section tagger removes the terminating
colon and converts the text to lowercase, producing pulmonary. It then checks the synonym map for any concepts
associated with the text pulmonary. It tries an exact match first, which succeeds and produces the following list of
candidate concepts and their treecodes (the list L above):

L[0] PULMONARY_COURSE [5.32.77.87]
L[1] PULMONARY_FAMILY_HISTORY [5.34.79.103.71]
L[2] PULMONARY_REVIEW [5.39.132]
L[3] PULMONARY_EXAM [6.40.139.195.128]
L[4] PULMONARY_PLAN [13.51.157.296]

These are the candidate concepts in list L. The concept stack S at this point is:

S[0] CARDIOVASCULAR_COURSE [5.32.77.75]
S[1] HOSPITAL_COURSE [5.32]

How does the section tagger use S to choose the “best” section tag from concepts in L?

To begin, the ambiguity resolution process starts with the concept at the top of the stack,
CARDIOVASCULAR_COURSE. It proceeds to compute the ancestors shared by this concept and each concept
in L. It hopes to find a single most-specific ancestor concept shared between elements of L and S. This is the nearest
common ancestor concept for those in L and S.

The nearest common ancestor can be computed from the treecodes. If two treecodes share a common initial digit
sequence they have a common ancestor. The treecode of the nearest common ancestor is the longest shared treecode
prefix string. If two treecodes have no common prefix string they have no common ancestor. The nearest common
ancestor for concept A with treecode 6.40.37 and concept B with treecode 6.40.21 is that unique concept with treecode
6.40, since 6.40 is the longest shared prefix string for concepts A and B.

Computing the common ancestors of the concept at the top of the stack, CARDIOVASCULAR_COURSE [5.32.
77.75], and each concept in L gives:

S[0] & L[0]: [5.32.77]
S[0] & L[1]: [5]
S[0] & L[2]: [5]

(continues on next page)
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(continued from previous page)

S[0] & L[3]: [ ]
S[0] & L[4]: [ ]

Concepts S[0] and L[0] share the longest prefix string. Concepts L[3] and L[4] share no common ancestor with
concept S[0], as the empty brackets indicate. The section tagger declares concept L[0] PULMONARY_COURSE to
be the winner of this round, since it has the longest shared prefix string with concept S[0], indicating that it is closer
to S[0] than all other candidate concepts. It then proceeds to the next level in the stack and repeats the procedure,
generating these results:

S[1] & L[0]: [5.32]
S[1] & L[1]: [5]
S[1] & L[2]: [5]
S[1] & L[3]: [ ]
S[1] & L[4]: [ ]

The winner of this round is also L[0], indicating that the node with treecode 5.32 is the nearest common ancestor
for concepts S[1] HOSPITAL_COURSE and L[0] PULMONARY_COURSE. This common ancestor has a shorter
treecode than that found in the initial round, indicating that it is located at a greater distance in the concept graph, so
the results of this round are discarded.

All elements of the concept stack have been examined at this point, and there is is a single best candidate concept,
L[0] PULMONARY_COURSE. The section tagger declares this concept to be the winner and labels the section with
the tag PULMONARY_COURSE. Thefore concept L[0] PULMONARY_COURSE shares the nearest common ancestor
with those in S, and it is the most appropriate concept with which to label the Pulmonary: section.

At this point concept C, which is the most recently-recognized concept, becomes PULMONARY_COURSE [5.32.
77.87]. The concept T at the top of the stack is CARDIOVASCULAR_COURSE [5.32.77.75]. Since concepts
C and T have identical treecode lengths, they have the same specificity. Following the stack manipulation rules
described above, the section tagger pops the stack and pushes C, which yields this result for the concept stack:

S[0] PULMONARY_COURSE [5.32.77.87]
S[1] HOSPITAL_COURSE [5.32]

After these stack adjustments the section tagger resumes scanning and the process continues.

References

ConText

Overview

ConText is based on the algorithm developed by Chapman, et al.12 to determine negation, experiencer and temporality
modifiers around clinical concepts. The algorithm uses rules, and text windows (or spans) along with an input concept

1

Harkema H, Dowling JN, Thornblade T, Chapman WW
Context: An Algorithm for Determining Negation, Experiencer, and Temporal Status
from Clinical Reports
Journal of biomedical informatics. 2009;42(5):839-851.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757457/

2

Chapman WW, Chu D, Dowling JN
ConText: An algorithm for identifying contextual features from clinical text.
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to determine the 3 ConText types. Resulting values from ConText can be any of the following, where the bolded item
notes the default.

Temporality

• Recent

• Historical

• Hypothetical

Experiencer

• Patient

• Other

Negation

• Affirmed

• Negated

• Possible

Source Code

The source code is found in nlp/algorithms/context/context.py.

Concepts

ConText has a pre-defined set of concepts for each ConText type. They can be found at nlp/algorithms/
context/data. Each ConText keyword has a category which either indicates it as a candidate for a ConText
type, a pseudo-candidate (which would be excluded), or a term that indicates a change in the sentence phrase, such as
a conjunction (which would close a ConText window).

Algorithm

We have a Python implementation of the ConText algorithm.

References

Lexical Variants

BioNLP Workshop of the Association for Computational Linguistics. June 29, 2007.
http://dl.acm.org/citation.cfm?id=1572408
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Overview

ClarityNLP uses the term lexical variants to mean either plurals, verb inflections, or both. Pluralization is a famil-
iar concept and is assumed to be self-explanatory. English verbs have four inflected forms (i.e. a different ending
depending on use), which are as follows, using the verb ‘walk’ as an example:

Description Inflected Form
bare infinitive (base form) walk
3rd person singular present walks
present participle walking
past tense (preterite) walked
past participle walked

Regular English verbs have inflected forms that can be computed from relatively straightforward rules (but there are
many exceptions). Irregular verbs have inflected forms for the past tense and/or past participle that violate the rules.

ClarityNLP includes a pluralizer and a verb inflector that attempt to compute the plurals and inflected forms of English
words. The verb inflector ignores archaic forms and focuses primarily on contemporary American English.

Plurals

The ClarityNLP pluralizer generates plural forms of words and phrases. Several functions are offered depending on
whether the part of speech of the term to be pluralized is known. The source code for the pluralizer can be found in
nlp/algorithms/vocabulary/pluralize.py. The pluralizer is mainly a wrapper around the Python port
of Damian Conway’s well-known inflect module1. An error-correction mechanism has also been incorporated to
improve the module’s performance on medical text.

Inputs

A single string, representing the word or phrase to be pluralized.

Outputs

A list of strings containing all known plural forms for the input.

Functions

The functions provided by the pluralize module are (all arguments are strings):

plural_noun(noun)
plural_verb(verb)
plural_adj(adjective)
plural(text_string)

Use the more specific functions if the part of speech of the input text is known. Use plural if nothing is known
about the text.

1 http://users.monash.edu/~damian/papers/extabs/Plurals.html
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Verb Inflections

The verb inflector module computes verb inflections from a given verb in base form. The base form of a verb is also
known as “plain form”, “dictionary form”, “bare infinitive form”, or as the “principal part” of the verb. Here is a list
of some common verbs and their base forms:

Verb Base Form
running run
walks walk
eaten eat
were be

It is not possible to unambiguously compute the base form of a verb from an arbitrary inflected form. Observe:

Verb Possible Base Forms
clad clad (to cover with material), clothe (to cover with clothes)
cleft cleave (to split), cleft (to separate important parts of a clause)
fell fell (to make something fall), fall (to take a tumble)
lay lay (to set down), lie (to rest on a surface)

The only way to unambiguously recover the base form from an arbitrary inflection is to supply additional information
such as meaning, pronounciation, or usage.

Lemmatizers attempt to solve this problem, but with decidedly mixed results. Neither the NLTK WordNet lemmatizer
nor the Spacy lemmatizer worked reliably enough on this module’s test data to allow users to input verbs in arbitrary
inflections. Lemmatization is still an area of active NLP research, so these results are not necessarily surprising.

Therefore, for all of these reasons, the ClarityNLP verb inflector requires the input verb to be provided in base
form.

Source Code

The source code for the verb inflector is located in nlp/algorithms/vocabulary/verb_inflector.py.
Supporting files in the same directory are inflection_truth_data.txt, irregular_verbs.py, and the
files in the verb_scraper directory. The purpose of the supporting files and software will be described below.

Inputs

The entry point to the verb inflector is the get_inflections function, which takes a single string as input. The
string is a verb in base form as described above.

Outputs

The get_inflections function returns all inflections for the verb whose base form is given. The inflections are
returned as a five-element list, interpreted as follows:
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Element Interpretation
0 [string] the base form of the verb
1 [list] third-person singular present forms
2 [list] present participle forms
3 [list] simple past tense (preterite) forms
4 [list] past participle forms

The lists returned in components 1-4 are all lists of strings. Even if only a single variant exists for one of these
components, it is still returned as a single-element list, for consistency.

Example

1 inflections = verb_inflector.get_inflections('outdo')
2 # returns ['outdo',['outdoes'],['outdoing'],['outdid'],['outdone']]
3

4 inflections = verb_inflector.get_inflections('be')
5 # returns ['be',['is'],['being'],['was','were'],['been']]

Algorithms

The verb inflector uses different algorithms for the various inflections. A high-level overview of each algorithm will
be presented next. The verb inflector uses a list of 558 irregular verb preterite and past participle forms scraped from
Wikipedia and Wiktionary to support its operations.

It should be stated that the rules below have been gleaned from various grammar sources scattered about the Internet.
Some grammar sites present subsets of these rules; others present some rules without mentioning any exceptions; and
other sites simply present incorrect information. We developed these algorithms iteratively, over a period of time,
adjusting for exceptions and violations as we found them. This is still a work in progress.

Algorithm for the Third-Person Singular Present

The third-person singular present can be formed for most verbs, either regular or irregular, by simply adding an s
character to the end. Some highly irregular verbs such as be and a few others are stored in a list of exceptions. If the
base form of the verb appears in the exception list, the verb inflector performs a simple lookup and returns the result.

If the base form is not in the exception list, the verb inflector checks to see if it ends in a consonant followed by y.
If so, the terminating y is changed to an i and an es is added, such as for the verb try, which has the third-person
singular present form tries.

If the base form instead ends in a consonant followed by o, an es is appended to form the result. An example of such
a verb would be echo, for which the desired inflection is echoes.

If the base form has neither of these endings, the verb inflector checks to see if it ends in a sibilant sound. The sibilant
sounds affect the spelling of the third-person singular inflection in the presence of a silent-e ending2. The CMU
pronouncing dictionary3 is used to detect the presence of sibilant sounds. The phonemes for these sounds are based
on the ARPAbet4 phonetic transcription codes and appear in the next table:

2 https://en.wikipedia.org/wiki/English_verbs
3 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
4 https://en.wikipedia.org/wiki/ARPABET
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Sibilant Sound Phoneme
voiceless alveolar sibilant S
voiced alveolar sibilant Z
voiceless postalveolar fricative SH
voiced postalveolar fricitave ZH
voiceless postalveolar affricate CH
voiced postalveolar affricate JH

If the base form ends in a sibilant sound and has no silent-e ending, an es is appended to form the desired inflection.
Otherwise, an s is appended to of the base form and returned as the result.

Algorithm for the Present Participle

The verb inflector keeps a dictionary of known exceptions to the rules for forming the present participle. Most of these
exceptional verbs are either not found in the CMU pronouncing dictionary, or are modal verbs, auxiliaries, or other
irregular forms. Some verbs also have multiple accepted spellings for the present participle, so the verb inflector keeps
a list of these as well. If the base form of the given verb appears as an exception, a simple lookup is performed to
generate the result.

If the base form of the verb is not a known exception, the verb inflector determines whether the base form ends in ie.
If it does, the ie is changed to ying and appended to the base form to generate the result. An example of such a verb
is tie, which has the form tying as the present participle.

Next the verb inflector checks the base form for an ee, oe, or ye ending. If one of these endings is present, the final
e is retained, and ing is appended to the base form and returned as the result.

If the base form ends in vowel-l, British spelling tends to double the final l before appending ing, but American
spelling does not. For many verbs both the British and American spellings are common, so the verb inflector generates
both forms and returns them as the result. There appears to be one exception to this rule, though. If the vowel
preceding the final l is an i, the rule does not seem to apply (such as for the verb sail, whose present participle
form is sailing, not sailling).

If none of these tests succeed, the verb inflector checks for pronounciation- dependent spellings using the CMU
pronouncing dictionary. If the base form has a silent-e ending, the final e is dropped and ing is appended to the base
verb to form the result, unless the base form is a known exception to this rule, in which case the final e is retained.

The verb inflector next checks for a pronunciation-dependent spelling caused by consonant doubling. The rules for
consonant doubling are presented in the next section. The verb inflector doubles the final consonant if necessary,
appends ing, and returns that as the result.

If none of the tests succeeds, the verb inflector appends ing to the base form and returns that as the result.

Algorithm for Consonant Doubling

If the base form of the verb ends in c, a k should generally be appended prior to the inflection ending. There are a few
exceptions to this rule that the verb inflector checks for.

If the base form of the verb ends in two vowels followed by a consonant, the rule is generally to not double the final
consonant. One exception to this rule is if the first vowel is a u preceded by q. In this case the u is pronounced like
a w, so the qu acts as if it were actually qw. This gives the word an effective consonant-vowel-consonant ending, in
which case the final consonant is doubled. An example of this would be the verb equip, which requires a doubled p
for inflection (equipping, equipped, etc.).
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If the base form of the verb has a vowel-consonant ending, and if the consonant is not a silent-t, then the final consonant
is doubled for single syllable verbs. If the final syllable is stressed, the final consonant is also doubled. Otherwise the
final consonant is not doubled prior to inflection.

Algorithm for the Simple Past Tense

If the verb is irregular, its past tense inflection cannot be predicted, so the verb inflector simply looks up the past tense
form in a dict and returns the result. A lookup is also performed for a small list of regular verbs that are either known
exceptions to the rules, or which have multiple accepted spellings for the past tense forms.

If the verb is regular and not in the list of exceptions, the verb inflector checks the base form for an e ending. If the
verb ends in e, a d is appended and returned as the result.

If the base form instead ends in a consonant followed by y, the y is changed to i and ed is appended and returned as
the result.

If the base form ends in a vowel followed by l, both the American and British spellings are returned, as described
above for the present participle. The British spelling appends led to the base form, while the American spelling only
appends ed.

If the final consonant requires doubling, the verb inflector appends the proper consonant followed by ed and returns
that as the result.

Otherwise, ed is appended to the base form and returned as the result.

Algorithm for the Past Participle

The past participle for irregular verbs is obtained by simple lookup. The past participle for a small number of regular
verbs with multiple accepted spellings is also obained via lookup. Otherwise, the past participle for regular verbs is
equivalent to the simple past tense form.

Testing the Verb Inflector

The file verb_inflector.py includes 114 test cases that can be run via the --selftest command line option.
A more extensive set of 1364 verbs and all inflected forms can be found in the file inflection_truth_data.
txt. This list consists of the unique verbs found in two sets: the set of irregular English verbs scraped from
Wikipedia5, and the set of the 1000 most common English verbs scraped from poetrysoup.com6. The verb_inflector
will read the file, compute all inflections for each verb, and compare with the data taken from the file using this
command:

python3 ./verb_inflector.py -f inflection_truth_data.txt

The code for scraping the verbs and generating the truth data file can be found in the verb_scraper folder.

To generate the truth data file, change directories to the verb_scraper folder and run this command:

python3 ./scrape_verbs.py

Two output files will be generated:

• verb_list.txt, a list of the unique verbs found

• irregular_verbs.py, data structures imported by the verb inflector

5 https://en.wikipedia.org/wiki/List_of_English_irregular_verbs
6 https://www.poetrysoup.com/common_words/common_verbs.aspx
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In addition to scraping verb data, this code also corrects for some inconsistencies found between Wikipedia and the
Wiktionary entries for each verb.

Copy irregular_verbs.py to the folder that contains verb_inflector.py, which should be the parent of
the verb_scraper folder.

Next, scrape the inflection truth data from Wiktionary for each verb in verb_list.txt:

python3 ./scrape_inflection_data.py

This code loads the verb list, constructs the Wiktionary URL for each verb in the list, scrapes the inflection data,
corrects further inconsistencies, and writes the output file raw_inflection_data.txt. Progress updates appear
on the screen as the run progresses.

Finally, generate the truth data file with this command:

python3 ./process_scraped_inflection_data.py

References

Sentence Tokenization

Overview

Sentence tokenization is the process of splitting text into individual sentences. For literature, journalism, and formal
documents the tokenization algorithms built in to spaCy perform well, since the tokenizer is trained on a corpus of
formal English text. The sentence tokenizer performs less well for electronic health records featuring abbreviations,
medical terms, spatial measurements, and other forms not found in standard written English.

ClarityNLP attempts to improve the results of the sentence tokenizer for electronic health records. It does this by
looking for the types of textual constructs that confuse the tokenizer and replacing them with single words. The
sentence tokenizer will not split an individual word, so the offending text, in replacement form, is preserved intact
during the tokenization process. After generating the individual sentences, the reverse substitutions are made, which
restores original text in a set of improved sentences. ClarityNLP also performs additional fixups of the sentences to
further improve the results. This document will describe the process and illustrate with an example.

Source Code

The source code for the sentence tokenizer is located in nlp/algorithms/segmentation/segmentation.
py, with supporting code in nlp/algorithms/segmentation/segmentation_helper.py.

Inputs

The entry point to the sentence tokenizer is the parse_sentences method of the Segmentation class. This
function takes a single argument, the text string to be split into sentences.

Outputs

The parse_sentences method returns a list of strings, which are the individual sentences.

1.3. Developer Guide 61



ClarityNLP Documentation

Example

1 seg_obj = Segmentation()
2 sentence_list = seg_obj.parse_sentences(my_text)

Algorithm

The improvement process proceeds through several stages, which are:

1. Perform cleanup operations on the report text.

2. Perform textual substitutions.

3. Run the spaCy sentence tokenizer on the cleaned, substituted text.

4. Find and split two consecutive sentences with no space after the period.

5. Undo the substitutions.

6. Perform additional sentence fixups for some easily-detectable errors.

7. Place all-caps section headers in their own sentence.

8. Scan the resulting sentences and delete any remaining errors.

Additional explanations for some of these items are provided below.

Text Cleanup

The text cleanup process first searches the report text for cut-and-paste section headers found between (Over) and
(Cont) tokens. These headers are often inserted directly into a sentence, producing a confusing result. Here is an
example:

“There are two subcentimeter right renal hypodensities, 1 in\n (Over)\n\n [**2728-6-8**] 5:24 PM\n CT CHEST
W/CONTRAST; CT ABD & PELVIS W & W/O CONTRAST, ADDL SECTIONSClip # [**Telephone/Fax (1)
103840**]\n Reason: Evaluate for metastasis/lymphadenopathy related to ? GI [**Country **]\n Admitting
Diagnosis: UPPER GI BLEED\n Contrast: OMNIPAQUE Amt: 130\n
______________________________________________________________________________\n FINAL
REPORT\n (Cont)\n the upper pole and 1 in the lower pole, both of which are too small to\n characterize.”

By looking at this text closely, you can see how the (Over)..(Cont) section has been pasted into this sentence:

“There are two subcentimeter right renal hypodensities, 1 in the upper pole and 1 in the lower pole, both of
which are too small to\n characterize.”

The meaning of this passage is not obvious to a human observer on first inspection, and it completely confuses a
sentence tokenizer trained on standard English text.

ClarityNLP finds these pasted report headers and removes them.

The next step in the cleanup process is the identification of numbered lists. The numbers are removed and the narrative
descriptions following the numbers are retained.

As is visible in the pasted section header example above, electronic health records often contain long runs of dashes,
asterisks, or other symbols. These strings are used to delimit sections in the report, but they are of no use for machine
interpretation, so ClarityNLP searches for and removes such strings.
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Finally, ClarityNLP locates any instances of repeated whitespace (which includes spaces, newlines, and tabs) and
replaces them with a single space.

Textual Substitutions

ClarityNLP performs several different types of textual substitution prior to sentence tokenization. All of these con-
structs can potentially cause problems:

Construct Example
Abbreviations .H/O, Sust. Rel., w/
Vital Signs VS T97.3 P84 BP120/56 RR16 O2Sat98 2LNC
Capitalized Header INDICATION:
Anonymizations [**2728-6-8**], [**Telephone/Fax (1) 103840**]
Contrast Agents Conrast: OMNIPAQUE Amt: 130
Field of View Field of view: 40
Size Measurement 3.1 x 4.2 mm
Dispensing Info Protonix 40 mg p.o. q. day.
Gender Sex: M

ClarityNLP uses regular expressions to find instances of these constructs. Wherever they occur they are replaced with
single-word tokens such as “ANON000”, “ABBREV001”, “MEAS002”, etc. Replacements of each type are numbered
sequentially. The sentence tokenizer sees these replacements as single words, and it preserves them unchanged through
the tokenization process. These replacements can be easily searched for and replaced in the resulting sentences.

Split Consecutive Sentences

The punctuation in electronic health records does not always follow standard forms. Sometimes consecutive sentences
in a report have a missing space after the period of the first sentence, which can cause the sentence tokenizer to treat
both sentences together as a single run-on sentence. ClarityNLP detects these occurrences and separates the sentences.
It also avoids separating valid abbreviations such as C.Diff., G.Jones, etc.

Perform Additional Sentence Fixups

Sometimes the sentence tokenizer generates sentences that begin with a punctuation character such as : or ,. Clari-
tyNLP looks for such occurrences and moves the punctuation to the end of the preceding sentence.

Delete Remaining Errors

ClarityNLP scans the resulting set of sentences and takes these actions:

• deletes any remaining list numbering

• deletes any sentences consisting only of list numbering

• removes any sentences that consist only of ‘#1’, ‘#2’, etc.

• removes any sentences consisting entirely of nonalphanumeric symbols

• concatenates sentences that incorrectly split an age in years

• concatenates sentences that split the subject of a measurement from the measurement
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Example

Here is a before and after example illustrating several of the tokenization problems discussed above. The data is taken
from one of the reports in the MIMIC data set.

BEFORE: Each numbered string below is a sentence that emerges from the sentence tokenizer without ClarityNLP’s
additional processing. Note that the anonymized date and name tokens [** ... **] are broken apart, as are
numbered lists, drug dispensing information, vital signs, etc. You can see how the sentence tokenizer performs better
for the narrative sections, but the abbreviations and other nonstandard forms confuse it and cause errors:

[ 0] Admission Date: [
[ 1] **3104-4-26
[ 2] **] Discharge Date: [**3104-4-28
[ 3] **]

Service: CARDIAC CA

CHIEF COMPLAINT: Dyspnea on exertion.

HISTORY OF PRESENT ILLNESS:
[ 4] This is a 78 year old male with
hypertension and hyperlipidemia who was in his usual state of health until two weeks
→˓prior to admission when he noted increasing shortness of breath on exertion,
→˓especially with stairs.
[ 5] Since that time, the patient reports decreased exercise tolerance but
→˓denied any orthopnea, paroxysmal nocturnal dyspnea, or lower extremity swelling.
[ 6] He denies any dizziness or lightheadedness.
[ 7] He was seen in Dr.
[ 8] [**Last Name (STitle) 23973*
[ 9] *]
[ 10] [**Name (STitle) 23974
[ 11] *
[ 12] *]
[ 13] Clinic the day of admission and was found to have
high grade infra-nodal heart block and was sent to the Emergency Room.
[ 14] A central line was placed with temporary
pacing wire placed overnight.
[ 15] PAST MEDICAL HISTORY:
1. Hypertension.
[ 16] 2.
[ 17] Hyperlipidemia.
[ 18] 3.
[ 19] Exercise thallium stress test in [**3100*
[ 20] *] showed a small
basal inferior fixed defect.
[ 21] 4.
[ 22] Mild asthma.
[ 23] 5.
[ 24] Hemorrhoids.
[ 25] 6.
[ 26] Colonic polyps.
[ 27] 7.
[ 28] Left bundle branch block since [
[ 29] **3098-10-8**].
8.
[ 30] Bilateral hernia repairs.

(continues on next page)
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(continued from previous page)

[ 31] ALLERGIES:
[ 32] He has no known drug allergies.
[ 33] MEDICATIONS:
[ 34] 1. Hydrochlorothiazide 12.5 mg
[ 35] p.o.
[ 36] q. day.
[ 37] 2.
[ 38] Lipitor 40 mg
[ 39] p.o.
[ 40] q.
[ 41] h.s.
[ 42] 3.
[ 43] Enalapril 20
[ 44] mg p.o. twice a day.
[ 45] 4.
[ 46] Cardizem 180 mg p.o.
[ 47] q. day.
[ 48] 5.
[ 49] Aspirin 81 mg
[ 50] p.o.
[ 51] q. day.
[ 52] SOCIAL HISTORY:
[ 53] He has a remote tobacco history; quit over
25 years ago.
[ 54] He has a remote alcohol history; quit over 17
years ago.
[ 55] FAMILY HISTORY: Family history of stroke but denies any
family history of coronary artery disease or malignancy.
[ 56] PHYSICAL EXAMINATION: Temperature
[ 57] is 98.0 F.; heart rate 35
to 45; blood pressure 161/32; respiratory rate 19; 98% on room air.
[ 58] In no acute distress.
[ 59] Pupils were reactive to light; the left was 3 millimeters to 2
→˓millimeters; on the right it was 2 millimeters to 1 millimeters.
[ 60] Extraocular movements intact.
[ 61] Mucous membranes were moist.
[ 62] Jugular venous pressure at about 7 centimeters.
[ 63] Lungs were clear to auscultation bilaterally.
[ 64] He is bradycardic with normal S1 and S2 with I/VI systolic murmur at the
→˓apex.
[ 65] His abdomen was soft, nontender, nondistended, with normoactive bowel
→˓sounds.
[ 66] No edema.
[ 67] In his extremities he had two plus dorsalis pedis bilaterally.
[ 68] LABORATORY:
[ 69] EKG showed sinus with atrial rate of 70, 2:1
heart block with ventricular rate of 35 and an old left bundle branch block.
[ 70] White blood cell count 11.3, hematocrit 34.6, platelets 298.
[ 71] Sodium 140, potassium 4.1, chloride 102, bicarbonate 25, BUN
26, creatinine 1.3, glucose 129.
[ 72] CK 96.
[ 73] Troponin less than
0.3.

Echocardiogram in [
[ 74] **3103-2-6
[ 75] **] showed a large left atrium,

(continues on next page)
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(continued from previous page)

ejection fraction 60 to 65% with mild symmetric left ventricular hypertrophy, trace
→˓aortic regurgitation, mild mitral regurgitation.
[ 76] INR was 1.2, PTT 22.7.
[ 77] Total cholesterol in [**3104-2-6**]
showed total cholesterol of 161, LDL 89, HDL of 35, triglycerides of 184.
[ 78] Urinalysis was negative.
[ 79] Chest x-ray was negative.
[ 80] HOSPITAL COURSE:
[ 81] The patient remained stable in the
hospital.
[ 82] He underwent electrophysiology study and pacemaker placement.
[ 83] He remained stable and asymptomatic.
[ 84] He was then discharged home.
[ 85] DISCHARGE
[ 86] INSTRUCTIONS:
[ 87] 1.
[ 88] Not to lift anything heavier than ten pounds for two
weeks with the left arm.
[ 89] 2.
[ 90] He was asked to call his cardiologist with any fatigue or
shortness of breath.
[ 91] 3.
[ 92] He was to follow-up in Device Clinic in one week.
[ 93] 4.
[ 94] He was to follow-up with his cardiologist in two to three
weeks.
[ 95] DISCHARGE DIAGNOSES:
[ 96] 1.
[ 97] Complete heart block.
[ 98] MAJOR
[ 99] INTERVENTIONS:
[100] 1.
[101] Transvenous pacer wire placement on [**4-26
[102] **].
[103] 2.
[104] Pacemaker placement on [
[105] **4-27
[106] **].
[107] CONDITION ON DISCHARGE: Stable.

DISCHARGE
[108] MEDICATIONS:
[109] 1.
[110] Enalapril 20
[111] mg p.o. twice a day.
[112] 2.
[113] Hydrochlorothiazide 12.5 mg p.o.
[114] q. day.
[115] 3.
[116] Lipitor 40 mg
[117] p.o.
[118] q.
[119] h.s.
[120] 4.
[121] Percocet p.r.n.
5.
[122] Keflex 500 mg p.o.

(continues on next page)
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[123] q. six hours for three days.
[124] 6.
[125] Ativan 1 mg p.o.
[126] q.
[127] h.s.
[128] as needed.
[129] 7.
[130] Diltiazem 180 mg p.o.
[131] q. day.
[132] [**First Name8 (NamePattern2)
[133] *
[134] *]
[135] [
[136] **First Name8 (NamePattern2) 1682
[137] *
[138] *]
[139] [**Name8 (MD)
[140] *
[141] *], M.D. [**MD Number(1) 1683
[142] **]

Dictated By:[**Name8 (MD) 5378
[143] **]

MEDQUIST36

D:
[144] [**3104-4-29
[145] **] 11:19
T: [
[146] *
[147] *3104-5-2**] 21:56
JOB#: [
[148] **Job Number 23975**]

AFTER: Here is the same report after ClarityNLP does the cleanup, substitutions, and additional processing described
above:

[ 0] Admission Date: [**3104-4-26**] Discharge Date: [**3104-4-28**] Service:
[ 1] CARDIAC CA CHIEF COMPLAINT:
[ 2] Dyspnea on exertion.
[ 3] HISTORY OF PRESENT ILLNESS:
[ 4] This is a 78 year old male with hypertension and hyperlipidemia who was
→˓in his usual state of health until two weeks prior to admission when he noted
→˓increasing shortness of breath on exertion, especially with stairs.
[ 5] Since that time, the patient reports decreased exercise tolerance but
→˓denied any orthopnea, paroxysmal nocturnal dyspnea, or lower extremity swelling.
[ 6] He denies any dizziness or lightheadedness.
[ 7] He was seen in Dr. [**Last Name (STitle) 23973**] [**Name (STitle)
→˓23974**] Clinic the day of admission and was found to have high grade infra-nodal
→˓heart block and was sent to the Emergency Room.
[ 8] A central line was placed with temporary pacing wire placed overnight.
[ 9] PAST MEDICAL HISTORY:
[ 10] Hypertension.
[ 11] Hyperlipidemia.
[ 12] Exercise thallium stress test in [**3100**] showed a small basal
→˓inferior fixed defect.

(continues on next page)

1.3. Developer Guide 67



ClarityNLP Documentation

(continued from previous page)

[ 13] Mild asthma.
[ 14] Hemorrhoids.
[ 15] Colonic polyps.
[ 16] Left bundle branch block since [**3098-10-8**].
[ 17] Bilateral hernia repairs.
[ 18] ALLERGIES:
[ 19] He has no known drug allergies.
[ 20] MEDICATIONS:
[ 21] Hydrochlorothiazide 12.5 mg p.o. q. day.
[ 22] Lipitor 40 mg p.o. q. h.s.
[ 23] Enalapril 20 mg p.o. twice a day.
[ 24] Cardizem 180 mg p.o. q. day.
[ 25] Aspirin 81 mg p.o. q. day.
[ 26] SOCIAL HISTORY:
[ 27] He has a remote tobacco history; quit over 25 years ago.
[ 28] He has a remote alcohol history; quit over 17 years ago.
[ 29] FAMILY HISTORY:
[ 30] Family history of stroke but denies any family history of coronary
→˓artery disease or malignancy.
[ 31] PHYSICAL EXAMINATION:
[ 32] Temperature is 98.0 F.; heart rate 35 to 45; blood pressure 161/32;
→˓respiratory rate 19; 98% on room air.
[ 33] In no acute distress.
[ 34] Pupils were reactive to light; the left was 3 millimeters to 2
→˓millimeters; on the right it was 2 millimeters to 1 millimeters.
[ 35] Extraocular movements intact.
[ 36] Mucous membranes were moist.
[ 37] Jugular venous pressure at about 7 centimeters.
[ 38] Lungs were clear to auscultation bilaterally.
[ 39] He is bradycardic with normal S1 and S2 with I/VI systolic murmur at the
→˓apex.
[ 40] His abdomen was soft, nontender, nondistended, with normoactive bowel
→˓sounds.
[ 41] No edema.
[ 42] In his extremities he had two plus dorsalis pedis bilaterally.
[ 43] LABORATORY:
[ 44] EKG showed sinus with atrial rate of 70, 2:1 heart block with
→˓ventricular rate of 35 and an old left bundle branch block.
[ 45] White blood cell count 11.3, hematocrit 34.6, platelets Sodium 140,
→˓potassium 4.1, chloride 102, bicarbonate 25, BUN 26, creatinine 1.3, glucose 129.
[ 46] CK Troponin less than 0.
[ 47] Echocardiogram in [**3103-2-6**] showed a large left atrium, ejection
→˓fraction 60 to 65% with mild symmetric left ventricular hypertrophy, trace aortic
→˓regurgitation, mild mitral regurgitation.
[ 48] INR was 1.2, PTT 22.
[ 49] Total cholesterol in [**3104-2-6**] showed total cholesterol of 161, LDL
→˓89, HDL of 35, triglycerides of Urinalysis was negative.
[ 50] Chest x-ray was negative.
[ 51] HOSPITAL COURSE:
[ 52] The patient remained stable in the hospital.
[ 53] He underwent electrophysiology study and pacemaker placement.
[ 54] He remained stable and asymptomatic.
[ 55] He was then discharged home.
[ 56] DISCHARGE INSTRUCTIONS:
[ 57] Not to lift anything heavier than ten pounds for two weeks with the left
→˓arm.
[ 58] He was asked to call his cardiologist with any fatigue or shortness of
→˓breath. (continues on next page)
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[ 59] He was to follow-up in Device Clinic in one week.
[ 60] He was to follow-up with his cardiologist in two to three weeks.
[ 61] DISCHARGE DIAGNOSES:
[ 62] Complete heart block.
[ 63] MAJOR INTERVENTIONS:
[ 64] Transvenous pacer wire placement on [**4-26**].
[ 65] Pacemaker placement on [**4-27**].
[ 66] CONDITION ON DISCHARGE:
[ 67] Stable.
[ 68] DISCHARGE MEDICATIONS:
[ 69] Enalapril 20 mg p.o. twice a day.
[ 70] Hydrochlorothiazide 12.5 mg p.o. q. day.
[ 71] Lipitor 40 mg p.o. q. h.s.
[ 72] Percocet p.r.n.
[ 73] Keflex 500 mg p.o. q. six hours for three days.
[ 74] Ativan 1 mg p.o. q. h.s. as needed.
[ 75] Diltiazem 180 mg p.o. q. day.
[ 76] [**First Name8 (NamePattern2) **]
[ 77] [**First Name8 (NamePattern2) 1682**]
[ 78] [**Name8 (MD) **], M.D.
[ 79] [**MD Number(1) 1683**] Dictated By:[**Name8 (MD) 5378**] MEDQUIST36
[ 80] D:
[ 81] [**3104-4-29**] 11:19
[ 82] T:
[ 83] [**3104-5-2**]
[ 84] 21:56
[ 85] JOB#:
[ 86] [**Job Number 23975**]

Note that there are fewer sentences overall, and that each sentence has a much more standard form than those in the
‘before’ panel above. The drug dispensing instructions have been been corrected, the list numbering has been removed,
and the patient temperature that was split across sentences 56 and 57 has been restored (new sentence 32).

Command Line Interface

The sentence tokenizer has a command line interface that can be used for inspecting the generated sentences. The
input data must be a JSON-formatted file with the proper ClarityNLP fields. This file can be produced by querying
SOLR for the reports of interest and dumping the results as a JSON-formatted file. The sentence tokenization module
will read the input file, split the text into sentences as described above, and write the results to stdout. Help for the
command line interface can be obtained by running this command from the nlp/algorithms/segmentation
folder:

python3 ./segmentation.py --help

Some examples:

To tokenize all reports in myreports.json and print each sentence to stdout:

python3 ./segmentation.py --file /path/to/myreports.json

To tokenize only the first 10 reports (indices begin with 0):

python3 ./segmentation.py --file myreports.json --end 9``

To tokenize reports 115 through 134 inclusive, and to also show the report text after cleanup and token substitution
(i.e. the actual input to the spaCy sentence tokenizer):
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python3 ./segmentation.py --file myreports.json --start 115 --end 134 --debug

Term-Frequency Matrix Preprocessor

Overview

Term-frequency matrices feature prominently in text processing and topic modeling algorithms. In these problems one
typically starts with a set of documents and a list of words (the dictionary). A term-frequency matrix is constructed
from the dictionary and the document set by counting the number of occurrences of each dictionary word in each
document. If the rows of the matrix index the words and the columns index the documents, the matrix element at
coordinates (r, c) represents the number of occurrences of dictionary word r in document c. Thus each entry of the
matrix is either zero or a positive integer.

Construction of such a matrix is conceptually simple, but problems can arise if the matrix contains duplicate rows or
columns. The presence of duplicate columns means that the documents at those indices are identical with respect to
the given dictionary. The linear algebra algorithms underlying many text processing and information retrieval tasks
can exhibit instability or extremely slow convergence if duplicates are present. Mathematically, a term-frequency
matrix with duplicate columns has a rank that is numerically less than the column count. Under such conditions it is
advantageous to remove the duplicated columns (and/or rows) and work with a smaller, fuller-rank matrix.

The ClarityNLP matrix preprocessor is a command-line tool that scans a term-frequency matrix looking for duplicate
rows and columns. If it finds any duplicates it prunes them and keeps only one row or column from each set of
duplicates. After pruning it scans the matrix again, since removal of rows or columns could create further duplicates.
This process of scanning and checking for duplicates proceeds iteratively until either a stable matrix is achieved or
nothing is left (a rare occurrence, mainly for ill-posed problems). The resulting matrix is written to disk, along with
the surviving row and column index lists.

Source Code

The source code for the matrix preprocessor is located in nlp/algorithms/matrix_preprocessor. The
code is written in C++ with a python driver preprocess.py.

Building the Code

A C++ compiler is required to build the matrix preprocessor.

On Linux systems, use your package manager to install the build-essential package, which should contain the
Gnu C++ compiler and other tools needed to build C++ code. After installation, run the command g++ --version,
which should print out the version string for the Gnu C++ compiler. If this command produces a command not
found error, then use your package manager to explicitly install the g++ package.

On MacOSX, install the xcode command-line tools with this command: xcode-select --install. After
installation run the command clang++ --version, which should generate a version string for the clang C++
compiler.

After verifying that the C++ compiler works, build the matrix preprocessor code with these commands:

cd nlp/algorithms/matrix_preprocessor
make

The build process should run to completion with no errors, after which these binaries should be present in the build/
bin folder: libpreprocess.a, preprocessor, and test_preprocessor.
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Inputs

The matrix preprocessor requires a single input file. The input file must be in MatrixMarket format, a popular and
efficient format for sparse matrices.

Python supports the MatrixMarket format via the scipy module and the functions scipy.io.mmwrite and
scipy.io.mmread.

Input Options

The matrix preprocessor supports the following set of command line options. All are optional except for --infile,
which specifies the file containing the term-frequency matrix to be processed:

Option Argu-
ment

Explanation

-i, --infile string path to input file, MatrixMarket format
-r,
--min_docs_per_term

integer min number of docs per dictionary term, default 3

-c,
--min_terms_per_doc

integer min number of dictionary terms per doc, default 5

-p, --precision integer precision of values in output file, default 4 digits (valid only if --weights
flag is present)

-w, --weights none if present, generate TF-IDF weights for entries and output a floating point
term-document matrix

-b, --boolean none if present, enable boolean mode, in which nonzero values in the input ma-
trix are set to 1

-h, --help none print user help to stdout
-v, --version none print version information to stdout

The --min_docs_per_term option is the cutoff value for pruning rows. Any dictionary term that appears in fewer
than this many documents will be pruned. In other words, a row of the input matrix will be pruned if its row sum is
less than this value.

Similarly, the --min_terms_per_doc option is the cutoff value for pruning columns. Any document that contains
fewer than this many dictionary words will be pruned. In other words, a column of the input matrix will be pruned if
its column sum is less than this value.

Outputs

The matrix preprocessor generates three output files.

One file, reduced_dictionary_indices.txt, is a list of row indices from the original matrix that survived the
pruning process. Another file, reduced_document_indices.txt, contains a list of original document indices
that survived the pruning process.

The third file, in MatrixMarket format, is the pruned matrix. The contents and name of this file depend on whether the
--weights flag was used for the run.

If the --weights flag was absent, the output is another term-frequency matrix in MatrixMarket format. The output
file name is reduced_matrix_tf.mtx and it contains nonnegative integer entries.

If the --weights flag was present, the output is a term-document matrix containing TF_IDF weights for the entries.
In this case the output file name is reduced_matrix.mtx and it contains floating point entries. The precision of
each entry is set by the --precision flag.
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All output files are written to the current directory.

Examples

1. Prune duplicate rows/columns from the input term-frequency matrix. Write pruned matrix to
reduced_matrix_tf.mtx; generate the two index files as well:

python3 ./preprocess.py --infile /path/to/mymatrix.mtx

2. Same as in example 1, but generate an output term-document matrix containing TF-IDF weights. Write result
matrix to reduced_matrix.mtx; generate the two index files also:

python3 ./preprocess.py --infile /path/to/mymatrix.mtx --weights

3. Same as 2, but require a mininim row sum of 6 and a mininum column sum of 8 in the pruned term-frequency
matrix. Compute TF-IDF weights and output a floating point term-document matrix.

python ./preprocess.py -i /path/to/mymatrix.mtx -r 6 -c 8 -w

Important Note

The matrix preprocessor was designed for sparse matrices. The term-frequency matrices that occur in typical text
processing problems are extremely sparse, with occupancies of only a few percent. Dense matrices should be handled
with different techniques.

Task Algorithms

Term Finder

The most basic algorithm, which uses regular expressions to identify terms. In addition, the algorithm will return
section, negation, experiencer and temporality. Runs the ConText and section tagging algorithms.

Provider Assertion

An extension of Term Finder, which uses regular expressions to identify terms. In addition, the algorithm will return
section, negation, experiencer and temporality from ConText, but will filter them such that the follow conditions are
met:

• Negation: Affirmed

• Experiencer: Patient

• Temporality: Historical OR Recent

Finding Date Expressions

Overview

ClarityNLP includes a module that locates date expressions in clinical text. By ‘date expression’ we mean a string
such as July 20, 1969, 7.20.69, or something similar. The DateFinder module scans sentences for date
expressions, extracts them, and generates output in JSON format.
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Source Code

The source code for the date finder module is located in nlp/algorithms/finder/date_finder.py.

Inputs

A single string, the sentence to be scanned for date expressions.

Outputs

A JSON array containing these fields for each date expression found:

Field Name Explanation
text string, text of the complete date expression
start integer, offset of the first character in the matching text
end integer, offset of the final character in the matching text plus 1
year integer year
month integer month (Jan=1, Feb=2, . . . , Dec=12)
day integer day of the month [1, 31]

All JSON results contain an identical number of fields. Any fields that are not valid for a given date expression will
have a value of EMPTY_FIELD and should be ignored.

Algorithm

ClarityNLP uses a set of regular expressions to recognize date expressions. The date_finder module scans a sentence
with each date-finding regex and keeps track of any matches. If any matches overlap, an overlap resolution process is
used to select a winniner. Each winning match is converted to a DateValue namedtuple. This object is defined at
the top of the source code module and can be imported by other Python code. Each namedtuple is appended to a list
as the sentence is scanned. After scanning completes, the list of DateValue namedtuples is converted to JSON and
returned to the caller.

Date Expression Formats

Using notation similar to that used by the PHP date reference, we define the following quantities:

Shorthand Meaning
dd one or two-digit day of the month with optional suffix (7th, 22nd, etc.)
DD two-digit day of the month
m textual name of the month
M textual month abbreviation
mm one or two-digit numerical month
MM two-digit month
y two or four-digit year
yy two-digit year
YYYY four-digit year
? optional
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With these definitions, the date expression formats that ClarityNLP recognizes are (using the date of the first Moon
landing for illustration):

Date Expression Format Examples
YYYYMMDD 19690720
[-+]?YYYY-MM-DD +1969-07-20
YYYY/MM/DD 1969/07/20
YY-MM-DD 69-07-20
YYYY-MM-DDTHH:MM:SS(.ffffff)?
(here MM:SS means minutes and seconds)
mm/dd/YYYY 07/20/1969
YYYY/mm/dd 1969/7/20, 1969/07/20
dd-mm-YYYY, dd.mm.YYYY 20-07-1969, 20.7.1969
y-mm-dd 1969-7-20, 1969-07-20, 69-7-20
dd.mm.yy 20.7.69, 20.07.69
dd-m-y, ddmy, dd m y 20-JULY-69, 20JULY69, 20 July 1969
m-dd-y, m.dd.y, mddy, m dd, y 20-July 1969, 20JULY1969, 20 July, 1969
M-DD-y Jul-20-1969, Jul-20-69
y-M-DD 69-Jul-20, 1969-Jul-20
mm/dd 7/20, 07/20
m-dd, m.dd, m dd July 20, July 20th, July-20
dd-m, dd.m, dd m 20-July, 20.July, 20 July
YYYY-mm 1969-07, 1969-7
m-YYYY, m.YYYY, m YYYY July-1969, July.1969, July 1969
YYYY-m, YYYY.m, YYYY m 1969-July, 1969.July, 1969 July
YYYY 1969
m July

Finding Time Expressions

Overview

ClarityNLP includes a module that locates time expressions in clinical text. By ‘time expression’ we mean a string
such as 9:41 AM, 05:12:24.12345, or something similar. The TimeFinder module scans sentences for time
expressions, extracts them, and generates output in JSON format.

Source Code

The source code for the time finder module is located in nlp/algorithms/finder/time_finder.py.

Inputs

A single string, the sentence to be scanned for time expressions.

Outputs

A JSON array containing these fields for each time expression found:
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Field Name Explanation
text string, text of the complete time expression
start integer, offset of the first character in the matching text
end integer, offset of the final character in the matching text plus 1
hours integer hours
minutes integer minutes
seconds integer seconds
fractional_seconds string, contains digits after decimal point, including any leading zeros
am_pm string, either STR_AM or STR_PM (see values below)
timezone string, timezone code
gmt_delta_sign sign of the UTC offset, either ‘+’ or ‘-’
gmt_delta_hours integer, UTC hour offset
gmt_delta_minutes integer, UTC minute offset

All JSON results contain an identical number of fields. Any fields that are not valid for a given time expression will
have a value of EMPTY_FIELD and should be ignored.

Algorithm

ClarityNLP uses a set of regular expressions to recognize time expressions. The time_finder module scans a sentence
with each time-finding regex and keeps track of any matches. If any matches overlap, an overlap resolution process is
used to select a winniner. Each winning match is converted to a TimeValue namedtuple. This object is defined at
the top of the source code module and can be imported by other Python code. Each namedtuple is appended to a list
as the sentence is scanned. After scanning completes, the list of TimeValue namedtuples is converted to JSON and
returned to the caller.

Time Expression Formats

Using notation similar to that used by the PHP time reference, as well as the Wikipedia article on ISO 8601 formats,
we define the following quantities:

Short-
hand

Meaning

h hour digit, 0-9
h12 12 hr. clock, hours only, 0-9
h24 24 hr. clock, hours only, zero-padded, 00-24
m minutes digit, 0-9
mm minutes, zero-padded, 00-59
ss seconds, zero-padded 00-60 (60 means leap second)
am_pm am or pm designator, can be am or pm, either lower or upper case, with each letter optionally followed

by a . symbol
t either t or T
f fractional seconds digit
? optional
utc_time hh, hh:mm, hhmm, hh:mm:ss, hhmmss, hh:mm:ss.ffffff, hhmmss.ffffff

With these definitions, the time expression formats that ClarityNLP recognizes are:
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Time Expression Format Examples
utc-timeZ 10:14:03Z
utc_time+-hh:mm 10:14:03+01:30, 10:14:03-01:30
utc_time+-hhmm 10:14:03+0130, 10:14:03-0130
utc_time+-hh 10:14:03+01, 10:14:03-01
YYYY-MM-DDTHH:MM:SS(.ffffff)? 1969-07-20T10:14:03.123456
(here MM:SS means minutes and seconds)
h12 am_pm 4 am, 5PM, 10a.m., 9 pm.
h12m am_pm 5:09 am, 9:41 P.M., 10:02 AM.
h12ms am_pm 06:10:37 am, 10:19:36P.M., 1:02:03AM
h12msf 7:11:39:012345 am, 11:41:22.22334 p.m.
h12m 4:08, 10:14, and 11:59
t?h24m 14:12, 01:27, 10:27, T23:43
t?h24ms 01:03:24, T14:15:16
t?h24msf 04:08:37.81412, 19:20:21.532453, 08:11:40:123456
t?hhmm 0613, t0613
t?hhmmss 232120, 120000
t?h24ms with timezone abbreviation 040837CEST, 112345 PST, T093000 Z
t?h24ms with GMT offset T192021-0700, 14:45:15+03:30

A list of world time zone abbreviations can be found here. ClarityNLP supports this list as well as Z, meaning “Zulu”
or UTC time.

Finding Size Measurements

Overview

Size measurements are common in electronic health records, especially in radiology and other diagnostic reports. By
‘size measurement’ we mean a 1D, 2D, or 3D expression involving lengths, such as:

Example Meaning
3mm 1D measurement
1.2 cm x 3.6 cm 2D measurement
3 by 4 by 5 cm 3D measurement
1.5 cm2 area measurement
4.3 mm3 volume measurement
2.3 - 4.5 cm range of lengths
1.1, 2.3, 8.5, and 12.6 cm list of lengths
1.5cm craniocaudal x 2.2cm transverse measurement with views

ClarityNLP scans sentences for size measurements, extracts the numeric values for each dimension, normalizes each
to a common set of units (performing unit conversions if necessary), and provides output in JSON format to other
pipeline components.

Source Code

The source code for the size measurement finder module is located in nlp/algorithms/finder/
size_measurement_finder.py.
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Inputs

A single string, the sentence to be scanned for size measurements.

Outputs

A JSON array containing these fields for each size measurement found:

Field Name Explanation
text text of the complete measurement
start offset of the first character in the matching text
end offset of the final character in the matching text plus 1
temporality CURRENT or PREVIOUS, indicating when the measurement occurred
units either mm, mm2, or mm3
condition either ‘RANGE’ for numeric ranges, or ‘EQUAL’ for all others
x numeric value of first number
y numeric value of second number
z numeric value of third number
values for lists, a JSON array of all values in the list
xView view specification for the first axis
yView view specification for the second axis
zView view specification for the third axis
minValue either min([x, y, z]) or min(values)
maxValue either max([x, y, z]) or max(values)

All JSON measurement results contain an identical number of fields. Any fields that are not valid for a given measure-
ment will have a value of EMPTY_FIELD and should be ignored.

All string operations of the size measurement finder are case-insensitive.

Algorithm

ClarityNLP uses a set of regular expressions to recognize size measurements. It scans a sentence with each regex,
keeps track of any matches, and finds the longest match among the matching set. The longest matching text string is
then tokenized, values are extracted, units are converted, and a python namedtuple representing the measurement is
generated. This process is repeated until no more measurements are found, at which point the array of measurement
namedtuples is converted to JSON and returned to the caller.

Measurement Formats

ClarityNLP is able to recognize size measurements in a number of different formats. Using notation similar to that
of1, we define the following quantities:

1

M. Sevenster, J. Buurman, P. Liu, J.F. Peters, P.J. Chang
Natural Language Processing Techniques for Extracting and Categorizing
Finding Measurements in Narrative Radiology Reports
Appl. Clin. Inform., 6(3) 600-610, 2015.
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Shorthand Meaning
x y z Any numeric value, either floating point or integer
cm Units for the preceding numeric value
by Either the word ‘by’ or the symbol ‘x’
to Either the word ‘to’ or the symbol ‘-’
vol Dimensional modifier, either ‘square’, ‘cubic’, ‘sq’, ‘sq.’, ‘cu’, ‘cu.’, ‘cc’
view View specification, any word will match

With these definitions, the measurement formats that ClarityNLP recognizes are:

Regex Form Examples
x cm 3 mm, 5cm, 10.2 inches
x vol cm 5 square mm, 3.2cm2
x to y cm 3-5 cm, 3 to 5cm
x cm to y cm 3 cm to 5 cm, 3cm - 5 cm
x by y cm 3 x 5 inches, 3x5 cm
x cm by y cm 3 mm by 5 mm
x cm view by y cm view 3 cm craniocaudal x 5 cm transverse
x by y by z cm 3 x 5 x 7 mm
x by y cm by z cm 3 x 5mm x 7 mm
x cm by y cm by z cm 3 mm x 5 mm x 7 mm
x cm view by y cm view by z cm view 3 cm craniocaudal by 5cm transverse by 7 cm anterior

ClarityNLP can also find size measurements with nonuniform spacing between the various components, as several of
the examples above demonstrate. Newlines can also be present within a measurement. Inconsistent spacing such as
this appears frequently in electronic health records.

Details

These medically-relevant measurement units are supported:

Units Textual Forms
millimeters mm, millimeter, millimeters
centimeters cm, centimeter, centimeters
inches in, inch, inches

ClarityNLP tries to distinguish uses of the word ‘in’ as a preposition vs. its use as a unit of length. It cannot correctly
identify all such instances. Hence the word ‘in’ preceded by a numeric value may sometimes generate false positive
results.

Numeric values can be integers (sequence of digits) or floating point values. The digit before the decimal point is
optional. Some examples:

• 3, 42

• 12.4887

• .314, 0.314

References
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Extracting Tumor Stage Information

Overview

The Union for International Cancer Control (UICC) has developed a system for classifying malignant tumors called
the TNM staging system. Each tumor is assigned an alphanumeric code (the TNM code) that describes the extent of
the tumor, lymph node involvement, whether it has metastasized, and several other descriptive factors. The code also
includes staging information. ClarityNLP can locate these codes in medical reports and decode them. This document
describes the TNM system and the information that ClarityNLP provides for each TNM code that it recognizes.

Information on the TNM system was taken from the reference document1 and the explanatory supplement2. Informa-
tion on serum marker values was taken from the Wikipedia article on the TNM staging system3.

Source Code

The source code for the TNM stage module is located in nlp/algorithms/value_extraction/
tnm_stage_extractor.py.

Inputs

A single string representing the sentence to be searched for TNM codes.

Outputs

A JSON array containing these fields for each code found:

1

J. Brierly, M. Gospodarowicz, C. Wittekind, eds.
TNM Classification of Malignant Tumors, Eighth Edition
Union for International Cancer Control (UICC)
Wiley Blackwell, 2017
https://www.uicc.org/resources/tnm

2

C. Wittekind, C. Compton, J. Brierly, L. Sobin, eds.
TNM Supplement: A Commentary on Uniform Use
Union for International Cancer Control (UICC)
Wiley Blackwell, 2012

3

https://en.wikipedia.org/wiki/TNM_staging_system
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Field Name Explanation
text text of the complete code
start offset of first char in the matching text
end offset of final char in the matching text + 1
t_prefix see prefix code table below
t_code extent of primary tumor
t_certainty primary tumor certainty factor
t_suffixes see T suffix table below
t_multiplicity tumor multiplicity value
n_prefix see prefix code table below
n_code regional lymph node involvement
n_certainty certainty factor for lymph node involvement
n_suffixes see N suffix table below
n_regional_nodes_examined number of regional lymph nodes examined
n_regional_nodes_involved number of regional lymph nodes involved
m_prefix see prefix code table below
m_code distant metastasis
m_certainty certainty factor for distant metastasis
m_suffixes see M suffix table below
l_code lymphatic invasion code
g_code histopathological grading code
v_code venous invasion code
pn_code perineural invasion code
serum_code serum tumor marker code
r_codes residual metastases code
r_suffixes see R suffix table below
r_locations string array indicating location(s) of metastases
stage_prefix see prefix table below
stage_number integer value of numeric stage
stage_letter supplementary staging information

All JSON measurement results contain an indentical number of fields. Any fields that are not valid for a given mea-
surement will have a value of EMPTY_FIELD and should be ignored.

Algorithm

ClarityNLP uses a set of regular expressions to recognize TNM codes as a whole and to decode the individual sub-
groups. A TNM code consists of mandatory T, N, and M groups, as well as optional G, L, R, Pn, S, and V groups. A
staging designation may also be present.

Prefixes

The set of prefixes used for the groups is found in the next table:
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Prefix Letter Meaning
c clinical classification
p pathological classification
yc clinical classification performed during multimodal therapy
yp pathological classification performed during multimodal therapy
r recurrent tumor
rp recurrence after a disease-free interval, designated at autopsy
a classification determined at autopsy

Certainty Factor

The T, N, and M groups can have an optional certainty factor, which indicates the degree of confidence in the designa-
tion. This certainty factor was present in the 4th through 7th editions of the TNM guide, but it has been removed from
the 8th edition1.

Certainty Factor Meaning
C1 evidence from standard diagnostic means (inspection, palpitation)
C2 evidence from special diagnostic means (CT, MRI, ultrasound)
C3 evidence from surgical exploration, including biopsy and cytology
C4 evidence from definitive surgery and pathological examination
C5 evidence from autopsy

T Group

The T group describes the extent of the primary tumor:

T Code Meaning
TX primary tumor cannot be assessed
T0 no evidence of primary tumor
Tis carcinoma in situ
T1, T2, T3, T4 increasing size and/or local extent of primary tumor

For multiple tumors, the multiplicity appears in parentheses after the T group code, e.g. T1(m) or T1(3). Anatomical
subsites are denoted with suffixes a, b, c, or d, e.g. T2a. Recurrence in the area of a primary tumor is denoted with
the + suffix.

N Group

The N group describes the extent of regional lymph node involvement:

N Code Meaning
NX reginal lymph node involvement cannot be assessed
N0 no regional lymph node metastasis
N1, N2, N3 increasing involvement of regional lymph nodes

Anatomical subsites are denoted with suffixes a, b, c, or d, e.g. N1b. With only micrometastasis (smaller than 0.2
cm), the suffix (mi) should be used, e.g. pN1(mi).
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Suffix (sn) indicates sentinal lymph node involvement.

Examination for isolated tumor cells (ITC) is indicated with the suffixes in parentheses (e.g. pN0(i-)):

ITC Suffix Meaning
(i-) no histologic regional node matastasis, negative morphological findings for ITC
(i+) no histologic regional node metastasis, positive morphological findings for ITC
(mol-) no histologic regional node metastasis, negative non-morphological findings for ITC
(mol+) no histologic regional node metastasis, positive non-morphological findings for ITC

Examination for ITC in sentinel lymph nodes uses these suffixes:

ITC(sn) Suffix Meaning
(i-)(sn) no histologic sentinel node matastasis, negative morphological findings for ITC
(i+)(sn) no histologic sentinel node metastasis, positive morphological findings for ITC
(mol-)(sn) no histologic sentinel node metastasis, negative non-morphological findings for ITC
(mol+)(sn) no histologic sentinel node metastasis, positive non-morphological findings for ITC

The TNM supplement2 chapter 1, p. 8 recommends adding the number of involved and examined regional lymph
nodes to the pN classification (pathological classification), e.g. pN1b(2/11). This example says that 11 regional
lymph nodes were examined and two were found to be involved.

M Group

The M group describes the extent of distant metastasis:

M
Code

Meaning

MX metastasis cannot be assessed; considered inappropriate if metastasis can be evaluated based on physical
exam alone; see1 p. 24,2 pp. 10-11.

M0 no distant metastasis
M1 distant metastasis
pMX invalid category (2, p. 10)
pM0 only to be used after autopsy (2, p. 10)
pM1 distant metastasis microscopically confirmed

The M1 and pM1 subcategories may be extended by these optional suffixes, indicating the location of the distant
metastasis:

Location Suffix Meaning
PUL pulmonary
OSS osseous
HEP hepatic
BRA brain
LYM lymph nodes
MAR bone marrow
PLE pleura
PER peritoneum
ADR adrenals
SKI skin
OTH other
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Anatomical subsites are denoted with suffixes a, b, c, and d. The suffix (cy+) is valid for M1 codes under certain
conditions (see2 p. 11).

For isolated tumor cells (ITC) found in bone marrow (2 p. 11), these suffixes can be used:

Suffix Meaning
(i+) positive morphological findings for ITC
(mol+) positive non-morphological findings for ITC

R Group

The R group describes the extent of residual metastases:

R Code Meaning
RX presence of residual tumor cannot be assessed
R0 (location) residual tumor cannot be detected by any diagnostic means
R1 (location) microscopic residual tumor at indicated location
R2 (location) macroscopic residual tumor at indicated location

The TNM supplement (2, p. 14) recommends annotating R with the location in parentheses, e.g. R1 (liver).
There can also be multiple R designations if residual tumors exist in more than one location.

The presence of noninvasive carcinoma at the resection margin should be indicated by the suffix (is) (see2, p. 15).

The suffix (cy+) for R1 is valid under certain conditions (2, p. 16).

G Group

The G group discribes the histopathological grading score and has these values:

G Code Meaning
GX grade of differentiation cannot be assessed
G1 well differentiated
G2 moderately differentiated
G3 poorly differentiated
G4 undifferentiated

G1 and G2 may be grouped together as G1-2 (2, p. 23).
G3 and G4 may be grouped together as G3-4 (2, p. 23).

L Group

The L group indicates whether lymphatic invasion has occurred:

L Code Meaning
LX lymphatic invasion cannot be assessed
L0 no lymphatic invasion
L1 lymphatic invasion
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V Group

The V group indicates whether venous invasion has occurred:

V Code Meaning
VX venous invasion cannot be assessed
V0 no venous invasion
V1 microscopic venous invasion
V2 macroscopic venous invasion

Pn Group

The Pn group indicates whether perineural invasion has occurred:

Pn Code Meaning
PnX perineural invasion cannot be assessed
Pn0 no perinerual invasion
Pn1 perineural invasion

Serum Group

The S group indicates the status of serum tumor markers:

S Code Meaning
SX marker studies not available or not performed
S0 marker study levels within normal limits
S1 markers are slightly raised
S2 markers are moderately raised
S3 markers are very high

Staging

The staging value indicates the severity of the tumor. A staging assignment depends on the tumor type and is indicated
either with digits or roman numerals, and optionally with subscript a, b, c, or d. The stage designation can also have
a y or yp prefix as well (2, p. 18).

References

General Value Extraction

Overview

Value extraction is the process of scanning text for query terms and finding numeric values associated with those terms.
For example, consider the sentence:

The patient's heart rate was 60 beats per minute.
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It is clear that the value 60 is associated with heart rate. A value extractor using this sentence as input should
therefore return 60 as the result for the query heart rate.

Values can occur either before or after the query terms, since both variants are acceptable forms of English expression:

A 98.6F temperature was measured during the exam. (before)
A temperature of 98.6F was measured during the exam. (after)

The value-follows-query form is dominant in the text of medical records. To constrain the scope of the problem and to
reduce the chances of error:

ClarityNLP assumes that the value FOLLOWS the query terms.

This assumption does not imply anything about the distance between the query and the value. Sometimes the value
immediately follows the term, as in terse lists of vital signs:

Vitals: Temp 100.2 HR 72 BP 184/56 RR 16 sats 96% on RA

Other times, in narrative text, one or more words fill the space between query term and value:

The temperature recorded for the patient at the exam was 98.6F.

ClarityNLP tries to understand these situations and correctly associate the value 98.6 with “temperature”.

We should emphasize that this is a generic value extractor. Our design goal is to achieve good performance across
a wide variety of value extraction problems. It has not been specialized for any particular type of problem, such
as for extracting temperatures or blood pressures. It instead uses an empirically-determined set of rules and regular
expressions to find values (either numeric or textual - see below) that are likely to be associated with the query terms.
These regexes and rules are under continual refinement and testing as the development of ClarityNLP continues.

You can get a clearer picture of what the value extractor does and the results that it finds by examining our compre-
hensive suite of value extractor tests.

Value Types

The value extractor can recognize several different value types:

Value Type Example
Nonnegative Integer 0, 3, 42
Nonnegative Floating Point 3.1415, .27, 0.27
Numeric Range 2-5, 2.3 - 4.6, 2.3 to 4.6
Numeric Range with Matching Units 15 ml to 20 ml
Fraction 120/80, 120 / 80, 120 /80
Fraction Range 110/70 - 120/80

Fractions can have arbitrary whitespace on either side of the forward slash, as some of these examples illustrate. For
floating point numbers, the digit before the decimal point is optional.

Value Relationships

The value extractor can associate queries and values expressed in many different formats:
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Format Example
No space T98.6
Whitespace T 98.6, T 98.6
Dash T-98.6, T- 98.6
Colon T:98.6, T :98.6
Equality T=98.6, T = 98.6, T =98.6, T is 98.6
Approximations T ~ 98.6, T approx. 98.6, T is ~98.6
Greater Than or Less Than T > 98.6, T<=98.6, T .lt. 98.6, T gt 98.6
Narrative T was greater than 98.6

These are just a few of the many different variants that the value extractor supports. In general, the amount of whites-
pace between query and value is arbitrary.

Result Filters

Numerical results can be filtered by user-specified min and max values. Any results that fall outside of the interval
[min, max] are discarded. Any numeric value is accepted if these limits are omitted in the NLPQL statement.

For fractions, the value extractor returns the numerator value by default. The denominator can be returned instead by
using the is_denom_only argument (see below).

Hypotheticals

The value extractor attempts to identify hypothetical phrases and to ignore any values found therein. It uses a simplified
version of the ConText algorithm of1 to recognize hypothetical phrases. The “trigger” terms that denote the start of a
hypothetical phrase are: in case, call for, should, will consider, and if when not preceded by know
and not followed by negative.

Source Code

The source code for the value extractor module is located in nlp/algorithms/value_extraction/
value_extractor.py.

Inputs

The entry point to the value extractor is the run function:

1 def run(term_string, # string, comma-separated list of query terms
2 sentence, # string, the sentence to be processed
3 str_minval=None, # minimum numeric value
4 str_maxval=None, # maximum numeric value
5 str_enumlist=None, # comma-separated string of terms (see below)

(continues on next page)

1

H. Harkema, J. Dowling, T. Thornblade, W. Chapman
ConText: an Algorithm for Determining Negation, Experiencer,
and Temporal Status from Clinical Reports
J. Biomed. Inform., 42(5) 839-851, 2009.
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(continued from previous page)

6 is_case_sensitive=False, # set to True to preserve case
7 is_denom_only=False) # set to True to return denoms

If the str_minval and str_maxval arguments are omitted, ClarityNLP accepts any numeric value that it finds
for a given query. The str_enumlist argument will be explained below. The other arguments should be self-
explanatory.

Outputs

A JSON array containing these fields for each value found:

Field Name Explanation
sentence the sentence from which values were extracted
terms comma-separated list of query terms
querySuccess “true” if a value was found, “false” if not
measurementCount the number of values found
measurements array of results

Each result in the measurements array contains these fields:

Field
Name

Explanation

text matching text containing query and value
start offset of the first character in the matching text
end offset of the final character in the matching text plus 1
condi-
tion

a string expressing the relation between query and value: APPROX, LESS_THAN,
LESS_THAN_OR_EQUAL, GREATER_THAN, GREATER_THAN_OR_EQUAL, EQUAL, RANGE,
FRACTION_RANGE

match-
ingTerm

the query term associated with this value

x matching value
y matching value (only for ranges)
min-
Value

minimum value of x and y

max-
Value

maximum value of x and y

All JSON results will have an identical number of fields. Any fields that are not valid for a given result will have a
value of EMPTY_FIELD and should be ignored.

Text Mode and the Enumeration List

The value extractor supports a mode of operation (“text mode”) in which it extracts text strings instead of numeric
values. Text mode can be enabled by supplying a comma-separated string of terms to the enum_list parameter in your
NLPQL statement. The enumlist acts like a term filter for the results. Only those terms appearing in the enumlist are
returned in the value field of the JSON result.

To illustrate how text mode works, suppose you have the task of searching medical records for the presence of hepatitis
B or C infections. You want to use ClarityNLP to scan the data and report any lab results that mention HBV or HCV.
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The presence or absence of HBV or HCV is typically reported as either “positive” or “negative”, or sometimes as just
“+” or “-“.

You would start by constructing an enumlist with the terms and symbols that you want, such as "positive,
negative, +, -". This string would be supplied as the value for the NLPQL enum_list. Your termset would
include the strings "HBV" and "HCV".

Next suppose that, during a run, ClarityNLP were to encounter the sentence She was HCV negative, HBV +,
IgM Titer-1:80, IgG positive. The value extractor would process this sentence, noticing the presence of
the enumlist, and therefore put itself into text mode. When processing completes the value extractor would return
two results. The first JSON result would have these values for the matching “term” and “value” fields (other fields
omitted):

{
"term":"HCV",
"value":"negative"

}

The second JSON result would have these values:

{
"term":"HBV",
"value":"+"

}

In this manner the value extractor supports the extraction of textual “values” in addition to numeric values.

Algorithm

The value extractor does its work in four stages. The first stage consists of preprocessing operations; the second stage
extracts candidate values; the third stage performs overlap resolution to choose a winner from among the candidates;
and the fourth stage removes hypotheticals. All results that remain are converted to JSON format and returned to the
caller.

Preprocessing

In the preprocessing stage, a few nonessential characters (such as parentheses and brackets) are removed from the
sentence. Removal of these characters helps to simplify the regular expressions at the core of the value extractor.
Conversion to lowercase follows for the default case-insensitive mode of operation. Identical preprocessing operations
are applied to the list of query terms.

The sentence is then scanned for date expressions, size measurements, and time expressions. The value extractor erases
any that it finds, subject to these restrictions:

1. Date expressions are not erased if they consist entirely of simple digits. For instance, the date finder will identify
the string “1995” as the year 1995, but “1995” could potentially be a volume measurement or another value in
a different context.

2. All size measurements are erased unless the units are cubic centimeters or inches. Measurements in inches are
kept since “in” as an abbreviation for “inches” can be easily confused with “in” as a preposition. ClarityNLP
makes an attempt at disambiguation, but at present it does not have a technique that works reliably in all in-
stances. Part of speech tagging is generally not helpful either. Tagging algorithms trained on formal Engish text
(such as journalism or Wikipedia articles) exhibit lackluster performance on medical text, in our experience.

3. Time measurements require additional processing. Any time measurements that consist entirely of integers on
both sides of a - sign are not erased, since these are likely to be numeric ranges instead of time expressions.
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ISO time formats such as hh, hhmm, hhmmss that are not preceded by at or @ are not erased, since these
are likely to be values and not time expressions.

Time durations such as 2 hrs are identified and erased.

To illustrate the erasure process, consider this somewhat contrived example:

Her BP at 3:27 on3/27 from her12 cm. x9cm x6 cm. heart was110/70.

Here we see a sentence containing the time expression 3:27, a date expression 3/27, and a size measurement 12
cm. x9cm x6 cm.. The sentence exhibits irregular spacing, as is often the case with clinical text.

Suppose that the query term is BP, meaning “blood pressure”. When the value extractor processes this sentence, it
converts the sentence to lowercase, then scans for dates, measurements, and times. The date and time expressions
satisfy the criteria for erasure specified above. The resulting sentence after preprocessing is:

her bp at on from her heart was110/70.

This is the text that the value extractor uses for subsequent stages. Observe that the erasure process preserves character
offsets.

Candidate Selection

After preprocessing, the value extractor constructs a regular expression for a query involving each search term. Simple
term matching is not sufficient. To understand why, consider a temperature query involving the term t. Term
matching would result in a match for every letter t in the text.

The query regex enforces the constraint that the search term can only be found at a word boundary and not as a
substring of another word. The query regex accomodates variable amounts of whitespace, separators, and fill words.

The query regex is incorporated into a list of additional regular expressions. These regexes each scan the sentence and
attempt to recognize various contexts from which to extract values. These contexts are, with examples:

1. A range involving two fractions connected by “between/and” or “from/to”:

BP varied from 110/70 to 120/80.

2. A range involving two fractions:

BP range: 105/75 - 120/70

3. A fraction:

BP lt. or eq 112/70

4. A range with explicit unit specifiers:

Platelets between 25k and 38k

5. A numeric range involving “between/and” or “from/to”:

Respiration rate between 22 and 32

6. A numeric range:

Respiration rate 22-32

7. A query of the general form <query_term> <operator> <value>:
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The patient's pulse was frequently >= 60 bpm.

8. A query of the general form <query_term> <words> <value>:

Overall LVEF is severely depressed (20%).

Multiple regexes typically match a given query, so an overlap resolution process is required to select the final result.

Overlap Resolution

If the value extractor finds more than one candidate for a given query, the overlap resolution process prunes the
candidates and selects a winner. The rules for pruning candidates have been developed through many rounds of
iterated testing. More rules may be discovered in the future. The situations requiring pruning and the rules for doing
so are as follows:

1. If two candidate results overlap exactly, return the result with the longest matching term.

Example:

sentence:T=98 BP= 122/58 HR= 7 RR= 20 O2 sat= 100% 2L NC

termset:O2, O2 sat

Candiates:

{"term":"O2", "value":100, "text":"O2 sat= 100"}

{"term":"O2 sat", "value":100, "text":"O2 sat= 100"}

In this example, both “O2” and “O2 sat” match the value 100, and both matches have identical start/end values.
The value extractor returns the candidate for “O2 sat” as the winner since it is the longer of the two query terms
and completely encompasses the other candidate.

2. If two results partially overlap, discard the first match if the extracted value is contained within the search
term for the second.

Example:

sentence:BP 120/80 HR 60-80s RR SaO2 96% 6L NC.

termset:RR, SaO2

Candidates:

{"term":"RR", "value":2, "text":"RR SaO2 96"}

{"term":"SaO2", "value":96, "text":"SaO2 96"}

Note that the search term RR has no matching value in the sentence, so the value extractor keeps scanning and
finds the 2 in “SaO2”. The 2 is part of a search term, not an independent value, so that candidate result is
discarded.

3. (text mode only) Whenever two results overlap and one result is a terminating substring of the other,
discard the candidate with the contained substring.

Example:

sentence:no enteric gram negative rods found

termset:gram negative, negative

enumlist:rods

Candidates:
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{"term":"gram negative", "value":"rods", "text":"gram negative
rods"}

{"term":"negative", "value":"rods", "text":"negative rods"}

The second candidate is a terminating substring of the first and is discarded. Note that this is a different
situation from no. 1 above, since the matching text for the candidates have different starting offsets.

4. If two candidates have overlapping matching terms, keep the candidate with the longest matching term.

Example:

sentence:BLOOD PT-10.8 PTT-32.6 INR(PT)-1.0

termset:pt, ptt, inr(pt)

Candidates:

{"term":"pt", "value":10.8, "text":"PT-10.8"}

{"term":"pt", "value":1.0, "text":"PT)-1.0"}

{"term":"ptt", "value":32.6, "text":"PTT-32.6"}

{"term":INR(PT)", "value":1.0, "text":"INR(PT)-1.0"}

The second and fourth candidates have overlapping matching query terms. The longest matching
term is INR(PT), so candidate four is retained and candidate two is discarded. This is a different
situation from no. 3 above, which only applies in text mode.

5. (text mode only) Keep both candidates if their matching terms are connected by “and” or “or”.

Example:

sentence:which grew gram positive and negative rods

termset:gram positive, negative

enumlist:rods

Candidates:

{"term":"gram positive", "value":"rods", "text":"gram positive
and negative rods"}

{"term":"negative", "value":"rods", "text":"negative rods"}

The matching texts for each candidate consts of query terms connected by the word “and”, so both
results are kept.

6. If two candidates have overlapping matching text but nonoverlapping query terms, keep the candidate
with query term closest to the value.

Example:

sentence:received one bag of platelets dure to platelet count of
71k

termset:platelets, platelet, platelet count

Candidates:

{"term":"platelets", "value":71000, "text":"platelets due to
platelet count of 71k"}

{"term":"platelet count", "value":71000, "text":"platelet count
of 71k"}

These candidates have overlapping matching texts with nonoverlapping query terms. Keep the can-
didate with query term “platelet count” since it is closest to the value of 71000.
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After these pruning operations, any remaining candidates that express hypothetical conditions (see above) are dis-
carded. The survivor(s) are converted to JSON and returned as the result(s).

In general, users can expect the value extractor to return the first valid numeric result following a query term.

References

Measurement-Subject Resolution

Overview

Measurement-subject resolution is the process of associating size measurements in a sentence with the object(s) pos-
sessing those measurements. For instance, in the sentence

The spleen measures 7.5 cm.

the measurement 7.5 cm is associated with spleen. The word spleen is said to be the subject of the measurement
7.5 cm. In this example the subject of the measurement also happens to be the subject of the sentence. This is not
always the case, as the next sentence illustrates:

The liver is normal in architecture and echogenicity, and is seen to contain
numerous small cysts ranging in size from a few millimeters to approximately
1.2 cm in diameter.

Here the subject of the sentence is liver, but the subject of the 1.2 cm measurement is cysts.

In this document we describe how ClarityNLP analyzes sentences and attempts to resolve subjects and measurements.

Source Code

The source code for the measurement subject finder is located in nlp/algorithms/finder/
subject_finder.py.

Inputs

The entry point to the subject finder is the run function:

1 def run(term_string, # string, comma-separated list of query terms
2 sentence, # string, the sentence to be processed
3 nosub=False, # set to True to disable ngram substitutions
4 use_displacy=False) # set to True to display a dependency parse

The term_string argument is a comma-separated list of query terms. The nosub argument can be used to disable
ngram substitution, described below. The use_displacy argument generates an html page displaying a dependency
parse of the sentence. This visualization capability should only be used for debugging and development.

Outputs

A JSON array containing these fields for each size measurement found:
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Field Name Explanation
sentence the sentence from which size measurements were extracted
terms comma-separated list of query terms
querySuccess “true” if at least one query term matched a measurement subject
measurementCount the number of size measurements found
measurements array of individual size measurements

Each result in the measurements array contains these fields:

Field
Name

Explanation

text text of the complete size measurement
start offset of the first character in the matching text
end offset of the final character in the matching text plus 1
temporality indicartion of when measurement occurred values are ‘CURRENT’ and ‘PREVIOUS’
units units of the x, y, and z fields values are ‘MILLIMETERS’, ‘SQUARE_MILLIMETERS’, and ‘CU-

BIC_MILLIMETERS’
condition numeric ranges will have this field set to ‘RANGE’ all other measurements will set this field to

‘EQUAL’
match-
ingTerm

an array of all matching query terms for this measurement

subject an array of strings, the possible measurement subjects
location a string representing the anatomic location of the object
x numeric value of first measurement dimension
y numeric value of second measurement dimension
z numeric value of third measurement dimension
values JSON array of all numeric values in a size list
xView view specification for x value
yView view specification for y value
zView view specification for z value
minValue minimum value of x, y, and z
maxValue maximum value of x, y, and z

All JSON results will have an identical number of fields. Any fields that are not valid for a given measurement will
have a value of EMPTY_FIELD and should be ignored.

Dependencies

The measurement subject finder has a dependency on ClarityNLP’s size measurement finder module, whose documen-
tation can be found here: Finding Size Measurements.

There is also a dependency on spaCy, a python library for natural language processing. The spaCy library was chosen
for this project because it is fast and produces consistently good results. We will have much more to say about spaCy
below.

NGram Generator

The subject finder module has the option of peforming ngram substitutions with medical ngrams taken from a list
(clarity_ngrams.txt) that accompanies the source code. This file contains ngrams spanning lengths from 1 to
14 words. The ngrams are stored by length in the file and sorted in decreasing order of length.
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The code that generates this file is found in ngram_gen.py, also in the same folder. The ngram generator code in-
gests two source lists of medical terms found in the files anatomic_sites.txt and medra_terms.txt. These
files are parsed, some cleanup is performed, and the lists are sorted and written out as ngrams to clarity_ngrams.
txt.

The ngrams in clarity_ngrams.txt are medical terms that are relatively uncommon in standard English text,
such as the text corpora that spaCy’s English models were trained on. By replacing uncommon domain-specific terms
with more common nouns from everyday English discourse, we have found that we can get substantial improvement
in spaCy’s ability to analyze medical texts. Several examples below illustrate this substitution process.

The spaCy Dependency Parse

The ClarityNLP subject finder module uses spaCy to generate a dependency parse of each input sentence. A depen-
dency parse provides part of speech tags for each word as well as dependency information encoded in tree form. To
illustrate, here is a diagram of a dependency parse of the sentence The girl has a flower in her hair.

This diagram was generated with spaCy’s display tool displacy. The part of speech tags appear underneath each word.
In addition to NOUN, VERB, and ADJ, we also see DET (determiner) and ADP (preposition). Documentation on
spaCy’s annotation scheme can be found here.

The arrows represent a child-parent relationship, with the child being at the “arrow” or “head” end and the the parent
at the tail end. The word at the arrow end modifies the word at the tail end. Thus the word The modifies girl, since
the first arrow starts at the word girl and points to the word The. The label on the arrow indicates the nature of
the parent-child relationship. For the “girl-The” arrow, the det label on the arrow indicates that the word The is a
determiner that modifies girl.

The subject of the verb has is the word girl, as indicated by the nsubj (nominal subject) label on the second
arrow. The direct object of the verb is the noun flower, as the arrow labeled dobj shows. The direct object has a
DET modifer a, similarly to the DET modifier for the word girl.

A prepositional phrase in her hair follows the direct object, as the two arrows labeled prep (prepositional
modifier) and pobj (object of preposition) indicate. The object of the preposition in is the noun hair, which has a
possession modifier her.

Thus a dependency parse allows one to determine the nature of the relationships between the various components of
a sentence. ClarityNLP uses the dependency parse information, along with a set of custom rules and heuristics, to
determine the subjects of each size measurement.

Dependency Parse Errors

Sometimes spaCy generates an incorrect dependency parse. This happens often in sentences that contain medical
terminology, especially when medical terms are used in different contexts from those of the training corpora. For
instance, the simple sentence

The spleen measures 7.5 cm.

has this dependency parse:
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Here we see that the verb measures was tagged as a noun, in the sense of “weights and measures”. The word
spleen was also tagged as an adjective. This is obviously incorrect. The problem, though, lies with the word
spleen instead of measures. Observe what happens to the dependency parse if spleen is replaced by the
common noun car:

This is the correct result: car is tagged as a noun, measures is tagged a verb, and the nominal subject of the
sentence is car.

One can imagine the extent to which obscure medical jargon could completely confuse spaCy. In the absence of a
version of spaCy trained on medical texts, ClarityNLP attempts to overcome such problems by replacing medical
ngrams with common English nouns. The resulting sentence does not have to “make sense”. All it needs to do is
help spaCy produce the correct dependency parse of the sentence and correctly resolve the relationships between the
various phrases. The substitution process is not foolproof either, but we observe consistently better results on medical
texts with the ngram substitutions than without them.

To further help spaCy’s decision processes, spaCy provides a mechanism for introducing special case tokenization
rules. ClarityNLP takes advantage of this by introducing four special case rules for measure and related verbs. The
next code block shows how ClarityNLP accomplishes this:

1 # 'measures' is a 3rd person singular present verb
2 special_case = [{ORTH: u'measures', LEMMA: u'measure', TAG: u'VBZ', POS: u'VERB'}]
3 nlp.tokenizer.add_special_case(u'measures', special_case)
4

5 # 'measure' is a non 3rd person singular present verb
6 special_case = [{ORTH: u'measure', LEMMA: u'measure', TAG: u'VBP', POS: u'VERB'}]
7 nlp.tokenizer.add_special_case(u'measure', special_case)
8

9 # 'measured' is a verb, past participle
10 special_case = [{ORTH: u'measured', LEMMA: u'measure', TAG: u'VBN', POS: u'VERB'}]
11 nlp.tokenizer.add_special_case(u'measured', special_case)
12

(continues on next page)
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(continued from previous page)

13 # 'measuring' is a verb form, either a gerund or present participle
14 special_case = [{ORTH: u'measuring', LEMMA: u'measure', TAG: u'VBG', POS: u'VERB'}]
15 nlp.tokenizer.add_special_case(u'measuring', special_case)

Here ORTH refers to orthography, the actual sequence of letters appearing in the text. LEMMA is the canonical or
“dictionary” form of the verb, identical in all cases. The TAG entry refers to the part of speech tag using Penn
Treebank Notation. The POS entry is spaCy’s notation for the same part of speech tag.

These rules guarantee that spaCy will interpret the words measures, measure, measured, and measuring as
verbs.

The words that ClarityNLP substitutes for medical ngrams are:

car, city, year, news, math, hall, poet, fact,
idea, oven, poem, dirt, tale, world, hotel

These are all common English words that only occur as nouns.

One additional illustration can help to make this process clearer. Consider this sentence:

There is a fusiform infrarenal abdominal aortic aneurysm measuring M.

The dependency parse for this sentence, using the special tokenization rules, is:

The most obvious problem here is that the word aneurysm, which is a noun, has been tagged with ADP, indicating
either a conjunction or preposition. The adjective fusiform was also not deduced to be a modifier of aneurysm.

Since the ngram abdominal aortic aneurysm is in the ClarityNLP ngram list, substituting car for
abdominal aortic aneurysm produces this sentence:

There is a fusiform infrarenal car measuring M.

The dependency parse for this new sentence is:

Here we see that the word car, a very common English word, has been correctly tagged as a noun. The adjective
fusiform now modifies car, as it should. The ngram substitution has thus helped spaCy produce a correct de-
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pendency parse. Even though the sentence doesn’t make sense, the purpose of the substitutions is not to preserve
the meaning of the sentence. Substitutions help spaCy generate a correct dependency parse, allowing the proper
relationships among the various sentence components to be determined.

Algorithm

ClarityNLP uses several stages of processing in its attempt to resolve the subject of each size measurement. These
processing stages are:

• Sentence cleanup and ngram substitution

• Sentence template determination

• Dependency parse analysis and selection of candidate subjects

• Subject resolution and location determination

• Ngram replacement and JSON conversion

Sentence Cleanup and NGram Substitution

The cleanup stage attempts to simplify the sentence as much as possible. A shorter sentence is more likely to be parsed
correctly than a needlessly verbose sentence. Thus ClarityNLP removes all extraneous text from the sentence that has
no bearing on the measurement-subject resolution problem. Thse removals include:

• Removing image annotations, such as (image 302:33), (782b:49)

• Removing anything in square or curly brackets, such as anonymized dates

• Removing excess verbosity, such as “for example”, “in addition”, “no evidence of”, etc.

• Replacing verbose forms with less verbose forms, such as:

– “measuring upwards of” => “measuring”

– “is seen to contain” => “contains”

– “is seen in” => “in”

– etc.

• Replacing roman numerals with decimal numbers

• Replacing semicolons with whitespace (misplaced semicolons can have a deleterious effect on the dependency
parse)

• Substituting simple nouns for medical ngrams

• Collapsing repeated whitespace into a single space

• Finding size measurements and replacing the measurement text with M

This last item deserves some explanation. The sentence

The spleen measures 7.5 cm.

is transformed by the measurement replacement operation to this:

The spleen measures M.
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The reason for the M-replacement is to facilitate the recognition of sentence patterns in the text. We call these sentence
patterns “sentence templates”. Sentences that fit a common template pattern provide clues about the sentence structure
and can be analyzed in identical ways. For instance, size measurements in medical texts are often reported as

{Something} measures {size_measurement}.

Some examples:

The spleen is unremarkable measuring 8.6 cm.
The cyst in the upper pole of the kidney measures 1.2 cm.
The duct tapers smoothly to the head of the pancreas,
where it measures approximately 5 mm.

After M-replacement, these sentences become:

The spleen is unremarkable measuring M.
The cyst in the upper pole of the kidney measures M.
The duct tapers smoothly to the head of the pancreas,
where it measures approximately M.

A regular expression designed to find a capital M preceded by a measurement verb could easily identify all of these
sentences as belonging to the same underlying template. Custom rules for each matching sentence could be applied to
resolve the object having measurement M. ClarityNLP uses this approach for this template and the others described
below.

Sentence Template Determination

ClarityNLP uses a set of sentence patterns or templates to help it resolve measurements and their subjects. These
templates were determined by examining a large number of electronic health records and noting common forms of
expression. A set of regular expressions was developed for classifying sentences into the various patterns. This set of
regexes and sentence patterns will likely expand as ClarityNLP evolves.

For the discussion below, it is helpful to define a few items, using a notation similar to that for regular expressions:

Abbreviation Examples
MEAS “measure”, “measures”, “measured”, “measuring”
WORD a word or number, with optional punctuation and spaces
|| string concatenation
* zero or more of the previous item
+ one or more of the previous item
*?, +? nongreedy version of * or +
M size measurement
Q measurement qualifiers: “all”, “approximately”, “currently”, “mainly”, etc.
DET determiners: “a”, “an”, “the”
TERMINATOR “a”, “an”, or MEAS

The templates used by ClarityNLP are:

1. Subject Measures M

This template, illustrated above, recognizes sentences or sentence fragments containing an explicit measurement verb.
The subject of the measurement M is generally in the set of words preceding MEAS.

Pattern:
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WORD+ || MEAS || WORD* || M

2. DET Words M

This template recognizes sentences or sentence fragments that omit an explicit measurement verb. For instance:

“An unchanged 2cm hyperechoic focus. . . ”
“. . . and has a simple 1.2 x 2.9 x 2.9 cm cyst. . . ”

Greedy and nongreedy patterns:

DET || WORD+ || Q* || M || WORD+
DET || WORD+ || Q* || M || WORD+? || TERMINATOR

3. DET M Words

Same as #2, but with the words in a different order. Examples:

“A 3cm node in the right low paratracheal station. . . ”
“The approximately 1 cm cyst in the upper pole of the left kidney. . . ”

Greedy and nongreedy patterns:

DET || Q* || M || WORD+
DET || Q* || M || WORD+? || TERMINATOR

4. Ranging in Size

The phrase “ranging in size” occurs frequently in diagnostic medical reports. ClarityNLP substitutes the verb “mea-
suring” for “ranging in size” and then applies the Subject Measures M template to the sentence. An example:

“Distended gallbladder with multiple stones ranging in size from a few millimeters to 1 cm in diameter.”

5. Now vs. Then

This template recognizes sentences comparing measurements taken on different dates. For instance:

“The lesion currently measures 1.3 cm and previously measured 1.2 cm.”
“A left adrenal nodule measures 1.2 cm as compared to 1.0 cm previously.”

ClarityNLP uses a set of seven regexes in its attempts to find such sentences. The first regex is used to match the first
measurement of the pair, and the others are used to match the second measurement.

6. Before and After
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This template recognizes sentences and sentence fragments with measurement subjects occurring before and after each
measurement. For example:

“The left kidney measures 8.5 cm and contains an 8 mm x 8 mm anechoic rounded focus along the lateral edge, which
is most likely a simple renal cyst.”

Pattern:

DET || WORDS+ | MEAS || Q* || M || WORD* || DET || M || WORDS+

ClarityNLP searches for measurement subjects in each WORDS+ group captured by the associated regex.

7. M and M

This template recognizes sentences comparing two similar objects, two views of an object, or an object and features
inside it. For instance:

“The lower trachea measures 14 x 8 mm on expiratory imaging and 16 x 17 mm on inspiratory imaging.”

“The largest porta hepatis lymph node measures 1.6 cm in short axis and 2.6 cm in long axis.”

Pattern 1:

WORD* || MEAS || Q* || M || WORD* || and || WORD*

Pattern 2:

WORD+ || MEAS || Q* || M || WORD* || and || WORD+ || to || Q* || M || WORD+

8. Carina

This is a special case template for sentences involving endotracheal tubes and distances relative to the carina. An
example sentence:

“Endotracheal tube is in standard position about 5 cm above the carina.”

Template Matching

ClarityNLP counts the number of M’s in the sentence after the cleanup phase and attempts template matching on
fragments containing either one or two M’s. Sentences or fragments matching a template are sent to the next stage of
processing, dependency parse analysis, described below. If no templates match, ClarityNLP attempts a dependency
parse analysis without having the benefit of knowing the sentence structure via a template match. ClarityNLP will
attempt measurement-subject resolution on sentences containing as many as three measurements.

Dependency Parse Analysis

After the template matching phase completes, ClarityNLP uses spaCy to generate a dependency parse of the sentence
or fragment that matched the template. ClarityNLP uses the dependency parse information and a set of custom rules to
navigate the parse tree looking for the measurement subject. This is typically the noun modified by the measurement
itself. For simple sentences this noun is relatively easy to find, since it is often the subject of the sentence. For more
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complex sentences, ClarityNLP must navigate the (sometimes incorrect) parse tree using a set of heuristics, custom
rules, and corrective actions in an attempt to find the subject. The actual algorithm itself is complex and involves
handling of many specal cases, many of which were developed to correct errors in the parse tree. The full algorithm
can be found in the function get_meas_subject in the file nlp/finder/subject_finder.py.

Finding the Starting Token

ClarityNLP begins its examination of the parse tree by searching for the token with text “M” (which has replaced the
measurement(s)). If this token is not its own parent, meaning that it is a child node of another token, Clarity starts
its processing with the parent of the M node. If the M node is its own parent, ClarityNLP looks for the verb token
nearest the M token as its starting point. If a verb cannot be found, ClarityNLP looks for a dependency of nsubj or
compound and takes whichever it can find. If none of these can be found, ClarityNLP gives up on finding a starting
token and returns an empty subject.

Navigating the Parse Tree

After finding a starting token, ClarityNLP then begins to navigate the parse tree, searching for a measurement subject.
Both the part of speech tag and the dependency relationship contribute to ClarityNLP’s decision at each node.

The first determination ClarityNLP makes is whether it has arrived at the root node or not. If it happens to be at the
root node, it can go no further in the tree, so it looks for a measurement subject (noun) amongst the children of the
root node, if any.

If a verb is encountered when navigating the parse tree, a check is made on the dependency for the verb token. If
it is “nsubj”, meaning the nominal subject of the sentence, experimentation suggests that the part of speech tag was
probably incorrectly set to VERB instead of NOUN. The token is saved and used as a candidate subject. If the verb is
a measurement verb, the parent token is selected as a candidate subject.

If a noun is encountered, ClarityNLP’s decision depends on the dependency label for the token. Some dependency
relationships are ignorable, which means that the parent node linked to a child with an ignorable dependency cannot
be the measurement subject. These ignorable dependency relationships are:

Dependency Meaning
acomp adjectival complement
attr attribute
conj conjunct
dobj direct object
pcomp complement of preposition
pobj object of preposition
prep preposition

Any noun token linked to its parent via an ignorable dependency is skipped, and ClarityNLP moves up one level in the
tree to the parent node.

ClarityNLP applies several other empirically determined rules for handling special cases, such as when it encounters
the preposition “with”. Normally prepositions are ignored during tree navigation by continuing on to their parent
node. The word “with” deserves special handling, because sometimes it is used as a conjunction to link two clauses
that could have been independent sentences. To illustrate, consider these sentences:

“There is extensive, pronounced cervical lymphadenopathy throughout levels II through IV, with lymph nodes mea-
suring up to 2 cm.”

“. . . as well as a more confluent plaque-like mass with a broad base along the tentorial surface measuring approximately
2 cm in greatest dimension.”
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In the first example, the preposition “with” separates two independent clauses and is used as a conjuction. The subject
of the 2 cm measurement is “lymph nodes”, which happens to be the object of the preposition “with”. In this case the
objects of the preposition “with” cannot be ignored.

In the second example, the preposition “with” has an object that can be ignored. The subject of the 2 cm measurement,
“mass”, is not part of the prepositional phrase associated with the word “with”.

ClarityNLP is not always able to resolve these two usages of “with” in all instances. So whenever it encounters the
preposition “with”, it saves the object of that preposition as a candidate measurement subject and continues navigating
the tree.

Subject Resolution and Location Determination

The preceding phase of processing results in a list of candidate subjects. If the list is empty, ClarityNLP was unable
to find a subject. If the list is nonempty, any duplicates are removed. If only one subject remains it is chosen as the
subject.

If multiple candidate subjects remain, the noun chunks obtained from spaCy’s analysis of the sentence helps to select
the best candidate. The chunks containing each candidate subject are found, and the distance (in words) from the
measurement verb (if any) and the associated measurement are computed. ClarityNLP then chooses the candidate that
is either within the same noun chunk as the measurement, or which is the closest candidate to that particular chunk.

ClarityNLP also attempts to find the anatomical location for each measurement subject. To do so, it uses information
from the template match to identify the most likely sentence fragment that could contain the location. A set of location-
finding regexes then attempts to match the fragment and identify the location. Various special-case rules are applied to
any matches found, to remove any matches that happen to not actually be locations, and to remove extraneous words.
Any remaining text then becomes the location for the measurement.

If location matching fails for all sentence fragments, or if the sentence failed to match a template altogether, Clari-
tyNLP makes one final attempt to determine a location on the sentence as a whole, using the location-finding regexes
and the process described above.

Ngram replacement and JSON conversion

The final stage of processing adds additional modifiers to the chosen subject. ClarityNLP performs a recursive depth-
first search through the parse tree to capture all modifiers of the subject, any modifiers of the modifiers, etc. A
depth-first search is needed to keep the modifiers in the proper word order as they are discovered.

After all modifiers of the subject have been found, the ngram substitution process is reversed, restoring the original
words of the sentence. The list of measurements, along with their subjects and locations, is converted to JSON and
returned as the result.

NLPQL Expression Evaluation Algorithms

NLPQL Expression Evaluation

Overview

In this section we describe the mechanisms that ClarityNLP uses to evaluate NLPQL expressions. NLPQL expressions
are found in define statments such as:
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define hasFever:
where Temperature.value >= 100.4;

define hasSymptoms:
where hasFever AND (hasDyspnea OR hasTachycardia);

The expressions in each statement consist of everything between the where keyword and the semicolon:

Temperature.value >= 100.4

hasFever AND (hasDyspnea OR hasTachycardia)

NLPQL expressions can either be mathematical or logical in nature, as these examples illustrate.

Recall that the processing stages for a ClarityNLP job proceed roughly as follows:

1. Parse the NLPQL file and determine which NLP tasks to run.

2. Formulate a Solr query to find relevant source documents, partition the source documents into batches, and
assign batches to computational tasks.

3. Run the tasks in parallel and write individual task results to MongoDB. Each individual result from an NLP task
comprises a task result document in the Mongo database. The term document is used here in the MongoDB
sense, meaning an object containing key-value pairs. The MongoDB ‘documents’ should not be confused with
the Solr source documents, which are electronic health records.

4. Evaluate NLPQL expressions using the task result documents as the source data. Write expression evaluation
results to MongoDB as separate result documents.

Thus ClarityNLP evaluates expressions after all tasks have finished running and have written their individual results
to MongoDB. The expression evaluator consumes the task results inside MongoDB and uses them to generate new
results from the expression statements.

We now turn our attention to a description of how the expression evaluator works.

The expression evaluator is built upon the MongoDB aggregation framework. Why use MongoDB aggregation to
evaluate NLPQL expressions? The basic reason is that ClarityNLP writes results from each run to a MongoDB
collection, and it is more efficient to evaluate expressions using MongoDB facilities than to use something else. Use
of a non-Mongo evaluator would require ClarityNLP to:

• Run a set of queries to extract the data from MongoDB

• Transmit the query results across a network (if the Mongo instance is hosted remotely)

• Ingest the query results into another evaluation engine

• Evaluate the NLPQL expressions and generate results

• Transmit the results back to the Mongo host (if the Mongo instance is hosted remotely)

• Insert the results into MongoDB.

Evaluation via the MongoDB aggregation framework is more efficient than this process, since all data resides inside
MongoDB.

NLPQL Expression Types

In the descriptions below we refer to NLPQL variables, which have the form nlpql_feature.field_name.
The NLPQL feature is a label introduced in a define statement. The field_name is the name of an output field
generated by the task associated with the NLPQL feature.
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The output field names from ClarityNLP tasks can be found in the NLPQL Reference.

1. Simple Mathematical Expressions

A simple mathematical expression is a string containing NLPQL variables, operators, parentheses, or numeric literals.
Some examples:

Temperature.value >= 100.4
(Meas.dimension_X > 5) AND (Meas.dimension_X < 20)
(0 == Temperature.value % 20) OR (1 == Temperature.value % 20)

The variables in a simple mathematical expression all refer to a single NLPQL feature.

Simple mathematical expressions produce a result from data contained in a single task result document. The result of
the expression evaluation is written to a new MongoDB result document.

2. Simple Logic Expressions

A simple logic expression is a string containing NLPQL features, parentheses, and the logic operators AND, OR, and
NOT. For instance:

hasRigors OR hasDyspnea
hasFever AND (hasDyspnea OR hasTachycardia)
(hasShock OR hasDyspnea) AND (hasTachycardia OR hasNausea)
(hasFever AND hasNausea) NOT (hasRigors OR hasDyspnea)

Logic expressions operate on high-level NLPQL features, not on numeric literals or NLPQL variables. The presence
of a numeric literal or NLPQL variable indicates that the expression is either a mathematical expression or possibly
invalid.

Simple logic expressions produce a result from data contained in one or more task result documents. In other words,
logic expressions operate on sets of result documents. The result from the logical expression evaluation is written to
one or more new MongoDB result documents (the details will be explained below).

The NOT operator requires additional commentary. ClarityNLP supports the use of NOT as a synonym for “set dif-
ference”. Thus A NOT B means all elements of set A that are NOT also elements of set B. The use of NOT to mean
“set complement” is not supported. Hence expressions such as NOT A, NOT hasRigors, etc., are invalid NLPQL
statements. The NOT operator must appear between two other expressions.

3. Mixed Expressions

A mixed expression is a string containing either:

• A mathematical expression and a logic expression

• A mathematical expression using variables involving two or more NLPQL features

For instance:

// both math and logic
(Temperature.value >= 100.4) AND (hasDyspnea OR hasTachycardia)

// two NLPQL features: LesionMeasurement and Temperature
(LesionMeasurement.dimension_X >= 10) OR (Temperature.value >= 100.4)

(continues on next page)
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(continued from previous page)

// math, logic, and multiple NLPQL features
Temperature.value >= 100.4 AND (hasRigors OR hasNausea) AND (LesionMeasurement.
→˓dimension_X >= 15)

The evaluation mechanisms used for mathematical, logic, and mixed expressions are quite different. To fully un-
derstand the issues involved, it is helpful to first understand the meaning of the ‘intermediate’ and ‘final’ phenotype
results.

Phenotype Result CSV Files

Upon submission of a new job, ClarityNLP prints information to stdout that looks similar to this:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 1024
Access-Control-Allow-Origin: *
Server: Werkzeug/0.14.1 Python/3.6.4
Date: Fri, 23 Nov 2018 18:40:38 GMT
{

"job_id": "11108",
"phenotype_id": "11020",
"phenotype_config": "http://localhost:5000/phenotype_id/11020",
"pipeline_ids": [

12529,
12530,
12531,
12532,
12533,
12534,
12535

],
"pipeline_configs": [

"http://localhost:5000/pipeline_id/12529",
"http://localhost:5000/pipeline_id/12530",
"http://localhost:5000/pipeline_id/12531",
"http://localhost:5000/pipeline_id/12532",
"http://localhost:5000/pipeline_id/12533",
"http://localhost:5000/pipeline_id/12534",
"http://localhost:5000/pipeline_id/12535"

],
"status_endpoint": "http://localhost:5000/status/11108",
"results_viewer": "?job=11108",
"luigi_task_monitoring": "http://localhost:8082/static/visualiser/index.html

→˓#search__search=job=11108",
"intermediate_results_csv": "http://localhost:5000/job_results/11108/phenotype_

→˓intermediate",
"main_results_csv": "http://localhost:5000/job_results/11108/phenotype"

}

Here we see various items relevant to the job submission. Each submission receives a job_id, which is a unique
numerical identifier for the run. ClarityNLP writes all task results from all jobs to the phenotype_results
collection in a Mongo database named nlp. The job_id is needed to distinguish the data belonging to each run.
Results can be extracted directly from the database by issuing MongoDB queries.

We also see URLs for ‘intermediate’ and ‘main’ phenotype results. These are convenience APIs that export the results
to CSV files. The data in the intermediate result CSV file contains the output from each NLPQL task not marked as
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final. The main result CSV contains the results from any final tasks or final expression evaluations. The CSV file
can be viewed in Excel or in another spreadsheet application.

Each NLP task generates a result document distinguished by a particular value of the nlpql_feature field. The
define statement

define hasFever:
where Temperature.value >= 100.4;

generates a set of rows in the intermediate CSV file with the nlpql_feature field set to hasFever. The NLP tasks

// nlpql_feature 'hasRigors'
define hasRigors:

Clarity.ProviderAssertion({
termset: [RigorsTerms],
documentset: [ProviderNotes]

});

// nlpql_feature 'hasDyspnea
define hasDyspnea:

Clarity.ProviderAssertion({
termset: [DyspneaTerms],
documentset: [ProviderNotes]

});

generate two blocks of rows in the CSV file, the first block having the nlpql_feature field set to hasRigors and the
next block having it set to hasDyspnea. The different nlpql_feature blocks appear in order as listed in the source
NLPQL file. The presence of these nlpql_feature blocks makes locating the results of each NLP task a relatively
simple matter.

Expression Evaluation Algorithms

ClarityNLP evaluates expressions via a multi-step procedure. In this section we describe the different processing
stages.

Expression Tokenization and Parsing

The NLPQL front end parses the NLPQL file and sends the raw expression text to the evaluator (nlp/
data_access/expr_eval.py). The evaluator module parses the expression text and converts it to a fully-
parenthesized token string. The tokens are separated by whitespace and all operators are replaced by string mnemonics
(such as GE for the operator >=, LT for the operator <, etc.).

If the expression includes any subexpressions involving numeric literals, they are evaluated at this stage and the literal
subexpression replaced with the result.

Validity Checks

The evaluator then runs validity checks on each token. If it finds a token that it does not recognize, it tries to resolve it
into a series of known NLPQL features separated by logic operators. For instance, if the evaluator were to encounter
the token hasRigorsANDhasDyspnea under circumstances in which only hasRigors and hasDyspnea were
valid NLPQL features, it would replace this single token with the string hasRigors AND hasDyspnea. If it
cannot perform the separation (such as with the token hasRigorsA3NDhasDyspnea) it reports an error and writes
error information into the log file.
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If the validity checks pass, the evaluator next determines the expression type. The valid types are EXPR_TYPE_MATH,
EXPR_TYPE_LOGIC, and EXPR_TYPE_MIXED. If the expression type cannot be determined, the evaluator reports
an error and writes error information into the log file.

Subexpression Substitution

If the expression is of mixed type, the evaluator locates all simple math subexpressions contained within and replaces
them with temporary NLPQL feature names, thereby converting math subexpressions to logic subexpressions. The
substitution process continues until all mathematical subexpressions have been replaced with substitute NLPQL fea-
tures, at which point the expression type becomes EXPR_TYPE_LOGIC.

To illustrate the substitution process, consider one of the examples from above:

Temperature.value >= 100.4 AND (hasRigors OR hasNausea) AND (LesionMeasurement.
→˓dimension_X >= 15)

This expression is of mixed type, since it contains the mathematical subexpression Temperature.value
>= 100.4, the logic subexpression (hasRigors OR hasNausea), and the mathematical subexpres-
sion (LesionMeasurement.dimension_X >= 15). The NLPQL features in each math subexpression,
Temperature and LesionMeasurement, also differ.

The evaluator identifies the Temperature subexpression and replaces it with a substitute NLPQL feature, m0 (for
instance). This transforms the original expression into:

(m0) AND (hasRigors OR hasNausea) AND (LesionMeasurement.dimension_X >= 15)

Now only one mathematical subexpression remains.

The evaluator again makes a substitution m1 for the remaining mathematical subexpression, which converts the original
into

(m0) AND (hasRigors OR hasNausea) AND (m1)

This is now a pure logic expression.

Thus the substitution process transforms the original mixed-type expression into three subexpressions, each of which
is of simple math or simple logic type:

subexpression 1 (m0): 'Temperature.value >= 100.4'
subexpression 2 (m1): 'LesionMeasurement.dimension_X >= 15'
subexpression 3: '(m0) AND (hasRigors OR hasNausea) AND (m1)'

By evaluating each subexpression in order, the result of evaluating the original mixed-type expression can be obtained.

Evaluation of Mathematical Expressions

Removal of Unnecessary Parentheses

The evaluator next removes all unnecessary pairs of parentheses from the mathematical expression. A pair of paren-
theses is unnecessary if it can be removed without affecting the result. The evaluator detects changes in the result by
converting the expression with a pair of parentheses removed to postfix, then comparing the postfix form with that of
the original. If the postfix expressions match, that pair of parentheses was non-essential and can be discarded. The
postfix form of the expression has no parentheses, as described below.
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Conversion to Explicit Form

After removal of nonessential parentheses, the evaluator rewrites the expression so that the tokens match what’s actu-
ally stored in the database. This involves an explicit comparison for the NLPQL feature and the unadorned use of the
field name for variables. To illustrate, consider the hasFever example above:

define hasFever:
where Temperature.value >= 100.4;

The expression portion of this define statement is Temperature.value >= 100.4. The evaluator rewrites this
as:

(nlpql_feature == Temperature) AND (value >= 100.4)

In this form the tokens match the fields actually stored in the task result documents in MongoDB.

Conversion to Postfix

Direct evaluation of an infix expression is complicated by parenthesization and operator precedence issues. The
evaluation process can be greatly simplified by first converting the infix expression to postfix form. Postfix expressions
require no parentheses, and a simple stack-based evaluator can be used to evaluate them directly.

Accordingly, a conversion to postifx form takes place next. This conversion process requires an operator precedence
table. The NLPQL operator precedence levels match those of Python and are listed here for reference. Lower numbers
imply lower precedence, so or has a lower precedence than and, which has a lower precedence than +, etc.

Operator Precedence Value
( 0
) 0
or 1
and 2
not 3
< 4
<= 4
> 4
>= 4
!= 4
== 4
+ 9
- 9
* 10
/ 10
% 10
^ 12

Conversion from infix to postfix is unambiguous if operator precedence and associativity are known. Operator prece-
dence is given by the table above. All NLPQL operators are left-associative except for exponentiation, which is
right-associative. The infix-to-postfix conversion algorithm is the standard one and can be found in the function
_infix_to_postfix in the file nlp/data_access/expr_eval.py.

After conversion to postfix, the hasFever expression becomes:
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'nlpql_feature', 'Temperature', '==', 'value', '100.4', '>=', 'and'

Generation of the Aggregation Pipeline

The next task for the evaluator is to convert the expression into a sequence of MongoDB aggregation pipeline stages.
This process involves the generation of an initial $match query to filter out everything but the data for the current
job. The match query also checks for the existence of all entries in the field list and that they have non-null values.
A simple existence check is not sufficient, since a null field actually exists but has a value that cannot be used for
computation. Hence checks for existence and a non-null value are both necessary.

For the hasFever example, the initial match query generates a pipeline filter stage that looks like this, assuming a
job_id of 12345:

{
"$match": {

"job_id": 12345,
"nlpql_feature": {"$exists":True, "$ne":None},
"value" : {"$exists":True, "$ne":None}

}
}

This match pipeline stage runs first and performs coarse filtering on the data in the result database. It finds only those
task result documents matching the specified job_id, and it further restricts consideration to those documents having
valid entries for the expression’s fields.

Subsequent Pipeline Stages

After generation of the initial match filter stage, the postfix expression is then ‘evaluated’ by a stack-based mechanism.
The result of the evaluation process is not the actual expression value, but instead a set of MongoDB aggregation com-
mands that tell MongoDB how to compute the result. The evaluation process essentially generates Python dictionaries
that obey the aggregation syntax rules. More information about the aggregation pipeline can be found here.

The pipeline actually does a $project operation and creates a new document with a Boolean field called value. This
field has a value of True or False according to whether the source document satisfied the mathematical expression.
The _id field of the projected document matches that of the original, so that a simple query on these _id fields can
be used to recover the desired documents.

The final aggregation pipeline for our example becomes:

// (nlpql_feature == Temperature) and (value >= 100.4)
{

"$match": {
"job_id":12345
"nlpql_feature": {"$exists":True, "$ne":None},
"value" : {"$exists":True, "$ne":None}

}
},
{

"$project" : {
"value" : {

"$and" : [
{"$eq" : ["$nlpql_feature", "Temperature"]},
{"$gte" : ["$value", 100.4]}

]

(continues on next page)
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(continued from previous page)

}
}

}

The completed aggregation pipeline gets sent to MongoDB for evaluation. Mongo performs the initial filtering oper-
ation, applies the subsequent pipeline stages to all surviving documents, and sets the “value” Boolean result. A final
query extracts the matching documents and writes new result documents with an nlpql_feature field equal to the
label from the define statement, which for this example would be hasFever.

Evaluation of Logic Expressions

The initial stages of the evaluation process for logic expressions proceed similarly to those for mathematical expres-
sions. Unnecessary parentheses are removed and the expression is converted to postfix.

Detection of n-ary AND and OR

After the postfix conversion, a pattern matcher looks for instances of n-ary AND and/or OR in the set of postfix tokens.
An n-ary OR would look like this, for n == 4:

// infix
hasRigors OR hasDyspnea OR hasTachycardia OR hasNausea

// postfix
hasRigors hasDyspnea OR hasTachycardia OR hasNausea OR

The n-value refers to the number of operands. All such n-ary instances are replaced with a variant form of the operator
that includes the count. The reason for this is that n-ary AND and OR can be handled easily by the aggregation pipeline,
and their use simplifies the pipeline construction process. For this example, the rewritten postfix form would become:

hasRigors hasDyspnea hasTachycardia hasNausea OR4

Generation of the Aggregation Pipeline

As with mathematical expressions, the logic expression aggregation pipeline begins with an initial stage that filters
on the job_id and checks that the nlpql_feature field exists and is non-null. No explicit field checks are needed
since logic expressions do not use NLPQL variables. For a job_id of 12345, this inital filter stage is:

{
"$match": {

"job_id":12345
"nlpql_feature": {"$exists":True, "$ne":None}

}
}

Following this is another filter stage that removes all docs not having the desired NLPQL features. For the original
logic expression example above:

hasFever AND (hasDyspnea OR hasTachycardia)

this second filter stage would look like this:
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{
"$match": {

"nlpql_feature": {"$in": ['hasFever', 'hasDyspnea', 'hasTachycardia']}
}

}

Grouping by Value of the Context Variable

The next stage in the logic pipeline is to group documents by the value of the context field. Recall that NLPQL files
specify a context of either ‘document’ or ‘patient’, meaning that a document-centric or patient-centric view of the
results is desired. In a document context, ClarityNLP needs to examine all data pertaining to a given document. In a
patient context, it needs to examine all data pertaining to a given patient.

The grouping operation collects all such data (the ClarityNLP task result documents) that pertain to a given document
or a given patient. Documents are distinguished by their report_id field, and patients are distinguished by their
patient IDs, which are stored in the subject field. You can think of these groups as being the ‘evidence’ for a
given document or for a given patient. If the patient has the conditions expressed in the NLPQL file, the evidence
for it will reside in the group for that patient.

As part of the grouping operation ClarityNLP also generates a set of NLPQL features for each group. This set is called
the feature_set and it will be used to evaluate the expression logic for the group as a whole.

The grouping pipeline stage looks like this:

{
"$group": {

"_id": "${0}".format(context_field),

# save only these four fields from each doc; more efficient
# than saving entire doc, uses less memory
"ntuple": {

"$push": {
"_id": "$_id",
"nlpql_feature": "$nlpql_feature",
"subject": "$subject",
"report_id": "$report_id"

}
},
"feature_set": {"$addToSet": "$nlpql_feature"}

}
}

Here we see the $group operator grouping the documents on the value of the context field. An ntuple array is generated
for each different value of the context variable. This is the ‘evidence’ as discussed above. Only the essential fields for
each document are used, which reduces memory consumption and improves efficiency. We also see the generation of
the feature set for each group, in which each NLPQL feature for the group’s documents is added to the set.

At the conclusion of this pipeline stage, each group has two fields: an ntuple array that contains the relevant data
for each document in the group, and a feature_set field that contains the distinct features for the group.

Logic Operation Stage

After the grouping operation, the logic operations of the expression are applied to the elements of the feature set. If
a particular patient satisfies the hasFever condition, then at least one document in that patient’s group will have an
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NLPQL feature field with the value of hasFever. Since all the distinct values of the NLPQL features for the group
are stored in the feature set, the feature set must also have an element equal to hasFever.

A check for set membership using aggregation syntax is expressed as:

{"$in": ["hasFever", "$feature_set"]}

This construct means to use the $in operator to test whether feature_set contains the element hasFever. The
$in operator returns a Boolean result.

A successful test for feature set membership means that the patient has the stated feature.

The evaluator implements the expression logic by translating it into a series of set membership tests. For our example
above, the logic operation pipeline stage becomes:

{
'$match': {

'$expr': {
'$and': [

{'$in': ['hasFever', '$feature_set']},
{

'$or': [
{'$in': ['hasDyspnea', '$feature_set']},
{'$in': ['hasTachycardia', '$feature_set']}

]
}

]
}

}
}

Once again we have a match operation to filter the documents. Only those documents satisfying the expression
logic will survive the filter. The $expr operator allows the use of aggregation syntax in contexts where the standard
MongoDB query syntax would be required.

Following that we see a series of logic operations for our expression hasFever AND (hasDyspnea OR
hasTachycardia). The inner $or operation tests the feature set for membership of hasDyspnea and
hasTachycardia. If either or both are present, the $or operator returns True. The result of the $or is then
used in an $and operation which tests the feature set for the presence of hasFever. If it is also present, the $and
operator returns True as well, and the document in question survives the filter operation.

To summarize the evaluation process so far: ClarityNLP converts infix logic expressions to postfix form and groups
the documents by value of the context variable. It uses a stack-based postfix evaluation mechanism to generate the
aggregation statements for the expression logic. Each logic operation is converted to a test for the presence of an
NLPQL feature in the feature set.

Final Aggregation Pipeline

With these operations the pipeline is complete. The full pipeline for our example is:

// aggregation pipeline for hasFever AND (hasDyspnea OR hasTachycardia)

// filter documents on job_id and check validity of the nlpql_feature field
{

"$match": {
"job_id":12345
"nlpql_feature": {"$exists":True, "$ne":None}

(continues on next page)
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(continued from previous page)

}
},

// filter docs on the desired NLPQL feature values
{

"$match": {
"nlpql_feature": {"$in": ['hasFever', 'hasDyspnea', 'hasTachycardia']}

}
},

// group docs by value of context variable and create feature set
{

"$group": {
"_id": "${0}".format(context_field),
"ntuple": {

"$push": {
"_id": "$_id",
"nlpql_feature": "$nlpql_feature",
"subject": "$subject",
"report_id": "$report_id"

}
},
"feature_set": {"$addToSet": "$nlpql_feature"}

}
},

// perform expression logic on the feature set
{

'$match': {
'$expr': {

'$and': [
{'$in': ['hasFever', '$feature_set']},
{

'$or': [
{'$in': ['hasDyspnea', '$feature_set']},
{'$in': ['hasTachycardia', '$feature_set']}

]
}

]
}

}
}

Result Generation

After constructing a math or logic aggregation pipeline, the evaluator runs the pipeline and receives the results from
MongoDB. The result set is either a list of document ObjectID values (_id) for a math expression or an ObjectId
list with group info for logic expressions. For math expressions, the documents whose _id values appear in the list
are queried and written out as the result set. These documents have their nlpql_feature field set to that of the
define statement that contained the expression.

For logic expressions the process is more complex. To help explain what the evaluator does we present here
a representation of the grouped documents after running the pipeline above, for the expression hasFever AND
(hasDyspnea OR hasTachycardia):
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ObjectId (_id) nlpql_feature subject report_id
5c2e9e3431ab5b05db3430e1 hasDyspnea 19054 798209
5c2e9e3431ab5b05db3430e2 hasDyspnea 19054 798209
5c2e9e3431ab5b05db3430e3 hasDyspnea 19054 798209
5c2e9e3431ab5b05db3430e4 hasDyspnea 19054 798209
5c2e9ec931ab5b05db343efa hasDyspnea 19054 1303796
5c2ea2bd31ab5b05db34868c hasTachycardia 19054 1699977
5c2ea2bd31ab5b05db34868d hasTachycardia 19054 1699977
5c2ea35a31ab5b05db348f19 hasTachycardia 19054 1802359
5c2ea3a531ab5b05db3492f6 hasTachycardia 19054 1905337
5c2ea42431ab5b05db34998c hasTachycardia 19054 1802375
5c2ea42431ab5b05db34998d hasTachycardia 19054 1802375
5c2eb55831ab5b05db35097b hasFever 19054 [‘1264178’]
5c2eb55831ab5b05db350d45 hasFever 19054 [‘1699944’]
5c2eb55831ab5b05db350d46 hasFever 19054 [‘1699944’]

Here we see a representation of the document group for patient 19054. This group of documents can be considered
to be the “evidence” for this patient. In the ObjectID column are the MongoDB ObjectID values for each task result
document or mathematical result document. The nlpql_feature column shows which NLPQL feature ClarityNLP
found for that document. The subject column shows that all documents in the group belong to patient 19054, and
the report_id column shows the document identifier.

We see that patient 19054 has five instances of hasDyspnea, six instances of hasTachycardia, and three in-
stances of hasFever. You can consider this group as being composed of three subgroups with five, six, and three
elements each.

ClarityNLP presents result documents in a “flattened” format. For each NLPQL label introduced in a “define” state-
ment, ClarityNLP generates a set of result documents containing that label in the nlpql_feature field. Each result
document also contains a record of the source documents that were used as evidence for that label.

Flattening of the Result Group

To flatten these results and generate a set of output documents labeled by the hasSymptoms NLPQL feature (from
the original “define” statement), ClarityNLP essentially has two options:

• generate all possible ways to derive hasSymptoms from this data

• generate the minimum number of ways to derive hasSymptoms from this data (while not ignoring any data)

The maximal result set can be generated by the following reasoning. First, in how many ways can patient 19054 satisfy
the condition hasDyspnea OR hasTachycardia? From the data in the table, there are five ways to satisfy the
hasDyspnea condition and six ways to satisfy the hasTachycardia condition, for a total of 5 + 6 = 11 ways.
Then, for each of these ways, there are three ways for the patient to satisfy the condition hasFever. Thus there are a
total of 3 * (5 + 6) = 3 * 11 = 33 ways for this patient to satisfy the condition hasFever AND (hasDyspnea OR
hasTachycardia), which would result in the generation of 33 output documents under a maximal representation.

The minimal result set can be generated by the following reasoning. We have seen that there are 11 ways for
this patient to satisfy the condition hasDyspnea OR hasTachycardia. Each of these must be paired with a
hasFever, from the logical AND operator in the expression. By repeating each of the hasFever entries, we can
“tile” the output and pair a hasFever with one of the 11 others. This procedure generates a result set containing
only 11 entries instead of 33. It uses all of the output data, and it minimizes data redundancy.

In general, the cardinalities of the sets of NLPQL features connected by logical OR are added together to compute the
number of possible results. For features connected by logical AND, the cardinalities are multiplied to get the total num-
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ber of possiblilities under a maximal representation (this is the Cartesian product). Under a minimal representation,
the cardinality of the result is equal to the maximum cardinality of the constitutent subsets.

So which output representation does ClarityNLP use?

ClarityNLP uses the minimal representation of the output data.

Here is what the result set looks like using a minimal representation. Each of the 11 elements contains a pair of
documents, one with the feature hasFever and the other having either hasDyspnea or hasTachycardia, as
required by the expression. We show only the last four hex digits of the ObjectID for clarity:

// expression: hasFever AND (hasDyspnea OR hasTachycardia)

('097b', 'hasFever'), ('30e1', 'hasDyspnea')
('0d45', 'hasFever'), ('30e2', 'hasDyspnea')
('0d46', 'hasFever'), ('30e3', 'hasDyspnea')
('097b', 'hasFever'), ('30e4', 'hasDyspnea')
('0d45', 'hasFever'), ('3efa', 'hasDyspnea')
('0d46', 'hasFever'), ('868c', 'hasTachycardia')
('097b', 'hasFever'), ('868d', 'hasTachycardia')
('0d45', 'hasFever'), ('8f19', 'hasTachycardia')
('0d46', 'hasFever'), ('92f6', 'hasTachycardia')
('097b', 'hasFever'), ('998c', 'hasTachycardia')
('0d45', 'hasFever'), ('998d', 'hasTachycardia')

Note that the three hasFever entries repeat three times, followed by another repeat of the first two entries to make a
total of 11. Each of these is paired with one of the five hasDyspnea entries or one of the six hasTachycardia
entries. No data for this patient has been lost, and the result is 11 documents in a flattened format satisfying the logic
of the original expression.

Testing the Expression Evaluator

There is a comprehensive test program for the expression evaluator in the file nlp/data/access/
expr_tester.py. The test program requires a running instance of MongoDB. We strongly recommend running
Mongo on the same machine as the test program to minimize data transfer delays.

The test program loads a data file into MongoDB and evaluates a suite of expressions using the data. The expression
logic is separately evaluated with Python set operations. The results from the two evaluations are compared and the
tests pass only if both evaluations produce identical sets of patients.

The test program can be run from the command line. For usage info, run with the --help option:

python3 ./expr_tester.py --help

The test program assumes that the user has permission create a database without authentication.

To run the test suite with the default options, first launch MongoDB on your local system. Information about how to
do that can be found in our native setup guide.

After MongoDB initializes, run the test program with this command, assuming the default Mongo port of 27017:

python3 ./expr_tester.py

If your MongoDB instance is hosted elsewhere or uses a non-default port number, provide the connection parameters
explicitly:

python3 ./expr_tester.py --mongohost <ip_address> --mongoport <port_number>

The test program takes several minutes to run. Upon completion it should report that all tests passed.
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Building Custom Task Algorithms

Custom Task Algorithms

Building custom task algorithms in ClarityNLP is a way to create custom algorithms and include external libraries that
are callable from NLPQL. To begin creating custom task algorithms, you need a few things to get started.

Create a Python Class

In nlp/custom_tasks, create a new Python class that extends BaseTask. BaseTask is a class that sets up the
data, context and connections needed to read and write data in ClarityNLP. See the source code for BaseTask at
nlp/tasks/task_utilities.py. You can start with the sample below and copy and paste the basic structure
that you need for a custom task.

from tasks.task_utilities import BaseTask
from pymongo import MongoClient

class SampleTask(BaseTask):
task_name = "MyCustomTask"

def run_custom_task(self, temp_file, mongo_client: MongoClient):
for doc in self.docs:

# you can get sentences and text through these utility methods
text = self.get_document_text(doc)
sentences = self.get_document_sentences(doc)

# put your custom algorithm here, save your output to a dictionary, and
→˓write results below

obj = {
'foo': 'bar',
'sentence_one': sentences[0]

}

# writing results
self.write_result_data(temp_file, mongo_client, doc, obj)

# writing to log (optional)
self.write_log_data("DONE", "done writing sample data")

Task Name

task_name is important to include in your SampleTask if you want a user-friendly name to be called from NLPQL.
In this example, the task name is MyCustomTask, but if a custom task wasn’t specified, the task name would be
SampleTask. Also, it’s important to be aware with naming that you can overwrite other custom tasks and even core
ClarityNLP tasks (which may be the desired outcome). So in most cases, you’ll want to provide a unique name.

Running a Custom Task

The ClarityNLP engine will automatically create a distributed job and assign a set of documents to each worker
task. Knowing that, there are just a few things to do to create custom tasks. You’ll need to implement the
run_custom_task function in your task. That will give you access to the self parameter which has attributes
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from the job and the set of documents your algorithm will run on. You don’t need to worry about them too much, but
know they are accessible in your custom task.

You also have access to a temp_file which is provided by Luigi. It’s not necessarily used by ClarityNLP, but
you may wish to use it for some logging purpose (logging will be discussed more below). In addition, you have a
mongo_client connection that is opened and closed for you, however you’ll need access to this object when you’re
writing output for your ClarityNLP NLPQL.

Iterating over Documents

Since you are responsible for a set of documents, you need to get the list of documents which has been assigned to this
worker. This is callable by using self.docs and should be iterable in Python.

Per document (or doc), there are few helper functions available for you.

• self.get_document_text(doc) - gets the text of document as a string

• self.get_document_sentences(doc) - gets a list of the sentences in a document, parsed with the
default ClarityNLP sentence segmentor

Accessing Custom Variables

If you have custom parameters in your NLPQL, you can access them via the custom_arguments dictionary in
your pipeline config.

my_value = self.pipeline_config.custom_arguments['my_value']

Saving Results

All data that ClarityNLP uses in NLPQL needs to eventually end up in MongoDB. BaseTask provides two types of
hooks, depending on whether you have a single object or a list of objects. Both return the new unique id (or ids) from
MongoDB.

• self.write_result_data(temp_file, mongo_client, doc, obj) - saves results where obj
is a Python dict

• self.write_multiple_result_data(temp_file, mongo_client, doc, obj_list) -
saves results where obj_list is a Python list or set (implies multiple results per document)

Logging and Debugging

ClarityNLP provides two means for logging and debugging your custom tasks. Most commonly you will use the first
method, where you pass in a status and description text. This is written to the Postgres database, and accessible when
users call the status function on their NLPQL jobs.

self.write_log_data("DONE!", "done writing sample data")

The second is less common, but may be desirable in certain cases, which is writing to the temp_file used by Luigi,
e.g.:

temp_file.write("Some pretty long message that maybe I don't want to show to users")

This is written to the file system and generally not accessible to users via APIs.
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Using Custom Collectors

Collectors in ClarityNLP are similar to the reduce step in map-reduce jobs. They can be implemented similar to
custom tasks, except their purpose is generally to summarize across all the data generated in the parallelized Luigi
tasks. To utilize the collector, extend the BaseCollector class, and make sure your collector_name in that
class is the same as your task_name in your custom task.

class MyCustomCollector(BaseCollector):
collector_name = 'cool_custom_stuff'

def custom_cleanup(self, pipeline_id, job, owner, pipeline_type, pipeline_config,
→˓client, db):

print('custom cleanup (optional)')

def run_custom_task(self, pipeline_id, job, owner, pipeline_type, pipeline_config,
→˓ client, db):

print('run custom task collector')
# TODO write out some summary stats to mongodb

class MyCustomTask(BaseTask):
task_name = 'cool_custom_stuff'

def run_custom_task(self, temp_file, mongo_client: MongoClient):
print('run custom task')

for doc in self.docs:
# TODO write out some data to mongodb about these docs

Collectors often are not needed, but may be necessary for certain algorithm implementations.

Setting up the Python Package

ClarityNLP automatically discovers any classes in the custom_task package. However, besides saving your Python
file in custom_tasks, you just need to make sure it’s included in the custom_tasks package by adding it to
nlp/custom_tasks/__init__.py, following the example:

from .SampleTask import SampleTask

Calling Custom Algorithms from NLPQL

To run your custom algorithm in NLPQL, you just need to call it by name as a function like the example below, and
make sure to pass in any variables needed for the config and Solr query.

define sampleTask:
Clarity.MyCustomTask({
documentset: [ProviderNotes],
"my_custom_argument": 42

});
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Custom Algorithm or External Library?

There aren’t too many limitations on what you build inside of custom tasks and collectors, given that it’s a something
that can input text, and output a Python object. This is a powerful feature that will allow you to integrate many types
of capabilities into ClarityNLP!

Other Conventions

While the previous sections contain the main items you need to create custom task algorithms in ClarityNLP, here’s
some other information that might be useful.

• Default Value: Or using value as the default field. In NLPQL, when no field name is specified, it will default
to value. This means that you may want to provide a value field in your resulting object that gets saved to
MongoDB, so that there’s a default value

• Sentences: While there’s no requirement to parse or run your algorithm at the sentence level, it is useful for
scoping and user validation. Therefore, in most of the core ClarityNLP algorithms, output sentence is part
of the result, and you may wish to follow this paradigm

• Metadata: All the metadata from the job is automatically saved for you, however you may have additional
metadata you want to save from your algorithm or source data

Testing

Testing NLP Algorithms

This application uses pytest.

Running Pytest from the nlp directory

From the command line:

python3 -m pytest tests/

1.3.2 For App Developers

ClarityNLP Architecture

This library uses Python 3.6+. The source code is hosted here.

Here’s an overview of ClarityNLP’s architecture.
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Third-Party App Integration

Third Party App Integration

The information below will help you configure a third-party application for ClarityNLP.

By “third-party”, we are referring to applications not developed by the core ClarityNLP team. The third-party app
would like access to your ClarityNLP’s resources.

The third-party application must be a registered OAuth2 Client with ClarityNLP’s Identity Provider in order to com-
plete an OAuth2 Flow and be issued an access token.

If you need a refresher on OAuth2 in order to determine the ideal Grant Type for the third-party application, here is a
review.

Once you have determined the appropriate Grand Type, refer to /identity-provider/Config.cs to see ex-
amples of how to configure your client.

An exhaustive list of Client properties can be found here.

FHIR Integration

FHIR Integration

1.4 NLPQL Reference

1.4.1 NLPQL Helpers

documentset

ClarityNLP modules in NLPQL that defines how documents are to be queried in Solr.

Functions

Clarity.createReportTagList

Uses the ClarityNLP document ontology. Mapped using the Report Type Mapper.
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documentset RadiologyNotes:
Clarity.createReportTagList(["Radiology"]);

Clarity.createDocumentSet

Uses arguments to build a custom Solr query to retrieve document set. All arguments are optional, but at least one
must be present.

Name Type Notes
report_types List[str] List of report types. Corresponds to report_types in Solr.
report_tags List[str] List of report tags. Report tags mapped to document ontology.
source str OR List[str] List of sources to map to. Use array of strings or string, separated by commas.
filter_query str Use single quote (’) to quote. Corresponds to Solr fq parameter. See here.*
query str Use single quote (’) to quote. Corresponds to Solr q parameter. See here.*

* See more about the ClarityNLP Solr fields here.

documentset AmoxDischargeNotes:
Clarity.createDocumentSet({

"report_types":["Discharge summary"],
"report_tags": [],
"filter_query": "",
"source": ["MIMIC","FDA Drug Labels"],
"query":"report_text:amoxicillin"});

Clarity.createReportTypeList

Uses an explicit report type list of string to match from the report_type field.

documentset ChestXRDocs:
Clarity.createReportTypeList(["CHEST XR", "CHEST X-RAY"]);

cohort

Limits Solr query patients by ones matching the cohort.

Functions

OHDSI.getCohort(cohortId)

Returns a list of patients matching the OHDSI cohort id. Will limit patients in the Solr query.
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cohort SocialSupportPatients:OHDSI.getCohort(100);

cohort can then be passed as an argument in tasks. For example:

define Widowed:
Clarity.ProviderAssertion({

cohort:SocialSupportPatients,
termset:[WidowedTerms]

});

Clarity.getJobResults

Returns a list of patients or documents, matching the job_id and parameters. Will limit patients or documents in the
Solr query.

Example:

cohort OpiodPatients:
Clarity.getJobResults({

"context":"patient",
"job_id": 406,
"nlpql_feature":"tookOpioids"

});

Arguments:

Name Type Re-
quired

Notes

context str Yes “patient” or “document”
job_id int No The job_id. Not strictly required, but desirable to select the correct

phenotype.
nlpql_feature str No The feature name used in the NLPQL define
report_type str No
pipeline_type str No The NLPQL pipeline feature type (e.g. “ValueExtractor”)
pipeline_id int No
subject str No
phenotype_final bool No Whether the results were tagged as final or not
<any_generated_feature><type> No Any feature you wish to filter or that was generated by ClarityNLP.

termset

ClarityNLP modules in NLPQL that define sets of terms.

Example:

termset EjectionFractionTerms: [
"ejection fraction",
"LVEF",
"EF",

];
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termset can now be passed as an argument to tasks. For example:

define EjectionFractionFunction:
Clarity.ValueExtraction({

termset:[EjectionFractionTerms],
documentset: [ProviderNotes],
});

Note that termset is required in certain tasks such as Clarity.ProviderAssertion and Clarity.TermFinder.

Lexical Variants

As an optional step, NLPQL can be pre-processed with lexical variants. Learn more about how to use lexical variants
here.

context

Optional field. Required if doing logical operations. Should logical joins occur internally within a document (Docu-
ment), or across all documents for a patient/subject (Patient). The default value is Patient.

context Patient;

Termset Expansion Macros

NLPQL supports a set of macros for termset generation. The macros provide a compact syntax for representing lists of
synonyms and lexical variants (plurals and verb inflections). The macros also support the concept of a “namespace”,
so that terms can be generated from different sources.

The use of termset expansion macros is optional. They are provided purely for convenience, as a means to generate
and suggest additional synonyms.

Syntax

The macro syntax is namespace.function(args), where the namespace is either Clarity or OHDSI. The
argument is either a single term in double quotes or a comma-separated list of terms surrounded by brackets:

namespace.function("term")
namespace.function(["term1", "term2", ..., "termN"])

If the namespace is omitted it defaults to Clarity. The supported macros are:

Macro Meaning
Clarity.Synonyms Generate a list of synonyms from WordNet
Clarity.Plurals Generate a list of plural forms
Clarity.VerbInflections Generate inflections for the verb in base form
OHDSI.Synonyms Generate a list of OHDSI synonyms for the concept
OHDSI.Ancestors Generate all OHDSI ancestor concepts
OHDSI.Descendants Generate all OHDSI descendant concepts
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The synonym finder examines the macro argument(s) and attempts to find the nouns, adjectives, and adverbs. It
generates synonyms for each that it finds, returning the cartesian product1 of all possibilities. This process can cause
a combinatorial explosion in the number of results. To illustrate, consider this example:

The human walks the pet.

If the synonyms for human are man, woman, boy, girl and the synonyms for pet are dog, cat, then 4*2
= 8 results will be generated, in addition to the original:

The human walks the pet.
The man walks the dog.
The woman walks the dog.
The boy walks the dog.
The girl walks the dog.
The man walks the cat.
The woman walks the cat.
The boy walks the cat.
The girl walks the cat.

Hundreds or perhaps thousands of result strings could be generated by expansion of terms with many synonyms. So
we recommend caution with synonym generation, limiting its use to single terms or short strings.

Both single and multiword terms can be included in a macro, and the macro can operate only on selected terms in a
list:

Synonyms(["heart", "heart attack", "heart disease"])
"heart", Synonyms("heart attack"), "heart disease",

IMPORTANT NOTE: the VerbInflections macro requires that the verb be given in base form (also called “raw
infinitive” form, “dictionary” form, or “bare” form). The reason for this is because it is not possible to unambiguously
determine the base form of a verb from an arbitrary inflection, and the ClarityNLP verb inflector requires the base
form as input. See the documentation for the verb inflector for more on this topic.

Macro Nesting

Macros can also be nested:

Clarity.LexicalVariants(OHDSI.Synonyms(["myocardial infarction"]))
Plurals(Synonyms("neoplasm"))

The nesting depth is limited to two, as these examples illustrate.

API

The API endpoint nlpql_expander allows users to view the results of macro expansion. For instance, to expand
macros in the NLPQL file macros.nlpql, HTTP POST the file to the nlpql_expander API endpoint with this
cURL2 command:

curl -i -X POST http://localhost:5000/nlpql_expander -H "Content-Type: text/plain" --
→˓data-binary "@macros.nlpql"

Another HTTP client, such as Postman3, could also be used to POST the file.
1 https://en.wikipedia.org/wiki/Cartesian_product
2 https://curl.haxx.se/
3 https://www.getpostman.com/

124 Chapter 1. Documentation

https://en.wikipedia.org/wiki/Cartesian_product
https://curl.haxx.se/
https://www.getpostman.com/


ClarityNLP Documentation

Examples

Here is an example that illustrates the use of the NLPQL macros.

Consider this termset for symptoms related to influenza:

termset FluTermset: [
"coughing",
OHDSI.Synonyms("fever"),
Synonyms("body ache"),
VerbInflections("have fever"),
];

After macro expansion, the termset becomes:

termset FluTermset: [
"coughing",
"febrile", "fever", "fever (finding)", "pyrexia", "pyrexial",
"body ache", "body aching", ... "torso aching", "trunk ache", "trunk aching",
"had fever", "has fever", "have fever", "having fever",
];

Some synonyms for “body ache” have been omitted. The result will obviously require editing and removal of irrelevant
synonyms. One could use the macros as part of an iterative development process for termsets, using the macros to
generate initial lists of terms which would then be pruned and refined.

References

1.4.2 NLPQL Tasks

All tasks (or data entities) are prefixed in NLPQL as define, with the optional final flag. The final flag writes each
result as part of the finalized result set in MongoDB.

Core Tasks

Clarity.MeasurementFinder

Description

Task for extracting size measurements from text, based on the given termset. Read more about MeasurementFinder
here.

Example

define ProstateVolumeMeasurement:
Clarity.MeasurementFinder({

documentset: [RadiologyReports],
termset: [ProstateTerms]

});
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Extends

BaseTask

Arguments

Name Type Required Notes
termset termset Yes
documentset documentset No
cohort cohort No
sections List[str] No Limit terms to specific sections

Results

Name Type Notes
sentence str Sentence where measurement is found
text str text of the complete measurement
start int offset of the first character in the matching text
end int offset of the final character in the matching text plus 1
value str numeric value of first number (same as dimension_X)
term str term from termset that matched a measurement
meas_object List[str] the object being measured; if ClarityNLP cannot decide, a list of possible objects
dimension_X int numeric value of first number
dimension_Y int numeric value of second number
dimension_Z int numeric value of third number
units str either mm, mm2, or mm3
location List[str] location of measurement, if detected
condition str either ‘RANGE’ for numeric ranges, or ‘EQUAL’ for all others
temporality str CURRENT or PREVIOUS, indicating when the measurement occurred
min_value int either min([x, y, z]) or min(values)
max_value int either max([x, y, z]) or max(values)

Collector

No

Clarity.NamedEntityRecognition

Description

Simple task that runs spaCy’s NER model.
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Example

Clarity.NamedEntityRecognition({
documentset: [FDANotes]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No
sections List[str] No Limit terms to specific sections

Results

Name Type Notes
term str The original entity text.
text str Same as term
start int Index of start of entity
end int Index of end of entity
label str Label of the entity, e.g. PERSON, MONEY, DATE. See here for more
description str Description of the entity

Collector

No

Clarity.ngram

Description

Task that aggregates n-grams across the selected document set. Uses textacy. There’s no need to specify final on this
task. Any n-gram that occurs at at least the minimum frequency will show up in the final result.

Example
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define demographicsNgram:
Clarity.ngram({
termset:[DemographicTerms],
"n": "3",
"filter_nums": false,
"filter_stops": false,
"filter_punct": true,
"min_freq": 2,
"lemmas": true,
"limit_to_termset": true
});

Extends

BaseTask

Arguments

Name Type Re-
quired

Notes

termset termset No
documentset docu-

mentset
No

cohort cohort No
n int No Default = 2
filter_nums bool No Default = false; Exclude numbers from n-grams
filter_stops bool No Default = true; Exclude stop words
filter_punct bool No Default = true; Exclude punctuation
lemmas bool No Default = true; Converts work tokens to lemmas
limit_to_termset bool No Default = false; Only include n-grams that contain at least one term

from termset
min_freq bool No Default = 1; Minimum frequency for n-gram to return in final result

Results

Name Type Notes
text str The n-gram detected
count int The number of occurrences of the n-gram

Collector

BaseCollector

Clarity.POSTagger
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Description

Simple task that runs spaCy’s Part of Speech Tagger. Should not be ran on large data sets, as will result in a lot of data
generation.

Example

Clarity.POSTagger({
documentset: [FDANotes]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No

Results

Name Type Notes
sentence str
term str Token being evaluated
text str Same as term
lemma str Lemma of term
pos str POS tag. See list here.
tag str extended part-of-speech tag
dep str dependency label
shape str Token shape
is_alpha bool Is token all alphabetic
is_stop bool Is token a stop word
description str Tag description

Collector

No

Clarity.ProviderAssertion
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Description

Simple task for identifying positive terms that are not hypothethical and related to the subject. Read more here.

Example

Clarity.ProviderAssertion({
cohort:RBCTransfusionPatients,
termset: [PRBCTerms],
documentset: [ProviderNotes]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset Yes
excluded_termset termset No Matches that should be excluded if these terms are found
documentset documentset No
cohort cohort No
sections List[str] No Limit terms to specific sections
include_synonyms bool No
include_descendants bool No
include_ancestors bool No
vocabulary str No Default: ‘MIMIC’

Results

Name Type Notes
sentence str Sentence where the term was found.
section str Section where the term was found.
term str Term identified
start str Start position of term in sentence.
end str End position of term in sentence.
negation str Negation identified by ConText.
temporality str Temporality identified by ConText.
experiencer str Experiencer identified by ConText.

Collector

No
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Clarity.TermProximityTask

Description

This is a custom task for performing a term proximity search. It takes two lists of search terms and a maximum
word distance. If terms from lists 1 and 2 both appear in the sentence and are within the specified distance, the search
succeeds and both terms appear in the results. A boolean parameter can also be provided that either enforces or ignores
the order of the terms.

Example

define final TermProximityFunction:
Clarity.TermProximityTask({

documentset: [Docs],
"termset1": [ProstateTerms],
"termset2": "cancer, Gleason, Gleason's, Gleasons",
"word_distance": 5,
"any_order": "False"

});

Extends

BaseTask

Arguments

Name Type Required Notes
documentset documentset No
cohort cohort No
termset1 termset or str Yes termset or comma-separated list of terms to search for
termset2 termset or str Yes termset or comma-separated list of terms to search for
word_distance int Yes max distance between search terms
any_order bool No Default = false; Should terms in set1 come before terms in set1?

Results

Name Type Notes
sentence str
start int Start of entire matched phrase
end int End of entire matched phrase
value str Comma separated list of matched terms
word1 str First term matched
word2 str Second term matched
start1 int Start of first term
start2 int End of second term
end1 int Start of first term
end2 int End of second term
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Collector

No

Clarity.TermFinder

Description

Simple task for identifying terms with their sections, negation, temporality and experiencer. Read more here.

Example

Clarity.TermFinder({
cohort:RBCTransfusionPatients,
termset: [PRBCTerms],
documentset: [ProviderNotes]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset Yes
excluded_termset termset No Matches that should be excluded if these terms are found
documentset documentset No
cohort cohort No
sections List[str] No Limit terms to specific sections
include_synonyms bool No
include_descendants bool No
include_ancestors bool No
vocabulary str No Default: ‘MIMIC’

Results

Name Type Notes
sentence str Sentence where the term was found.
section str Section where the term was found.
term str Term identified
start str Start position of term in sentence.
end str End position of term in sentence.
negation str Negation identified by ConText.
temporality str Temporality identified by ConText.
experiencer str Experiencer identified by ConText.
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Collector

No

Clarity.ValueExtraction

Description

Extract values from text, related to terms. Read more here.

Examples

define NYHAClass:
Clarity.ValueExtraction({
termset: [NYHATerms],
enum_list: ["ii","iii","iv"];
});

define Temperature:
Clarity.ValueExtraction({
cohort:PlateletTransfusionPatients,
termset: [TempTerms],
minimum_value: "96",
maximum_value: "106"
});

Extends

BaseTask

Arguments

Name Type Re-
quired

Notes

termset termset Yes List of possible terms to find, e.g. ‘NYHA’
documentset docu-

mentset
No

cohort cohort No
enum_list List[str] No List of possible strings associated with the query terms
mini-
mum_value

int No Minimum allowable value; any extracted values less than this are ig-
nored

maxi-
mum_value

int No Maximum allowable value; any extracted values greater than this are
ignored

case_sensitive bool No Default = false; whether to do a case-sensitive term match
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Custom String Arguments

For these arguments, surround the string on each side of the ‘:’ character with quotes.

For example:

define systolic_blood_pressure:
Clarity.ValueExtraction({

termset: [blood_pressure_terms],
documentset: [my_docs]

});

define diastolic_blood_pressure:
Clarity.ValueExtraction({

termset: [blood_pressure_terms],
documentset: [my_docs],
"denom_only":"True"

});

Name Type Re-
quired

Notes

de-
nom_only

str No Default = “False”; if “True”, return denominators of fractions instead of numerators

val-
ues_before_terms

str No (for enumlist only) Default = “False”; if “True”, look for enum_list strings preceding
the query terms. Otherwise look for enumlist strings following the query terms.

Results

Name Type Notes
sen-
tence

str sentence where term and value are found

text str substring of sentence containing term and value
start int offset of the first character in the matching text
end int offset of the final character in the matching text plus 1
term str term from termset that was found to have an associated value
con-
di-
tion

str relation of query term to value: ‘APPROX’, ‘LESS_THAN’, ‘LESS_THAN_OR_EQUAL’,
‘GREATER_THAN’, ‘GREATER_THAN_OR_EQUAL’, ‘EQUAL’, ‘RANGE’, FRAC-
TION_RANGE’

value str the numeric value that was extracted
value1 str either identical to value or the first number of a range
value2 str either the empty string or the second number of a range
min_valueint either identical to value or min(value1, value2) if both exist
max_valueint either identical to value or max(value1, value2) if both exist

Collector

No

Custom Tasks

134 Chapter 1. Documentation



ClarityNLP Documentation

Clarity.CQLExecutionTask

Description

This is a custom task that allows ClarityNLP to execute CQL (Clinical Quality Language) queries embedded in NLPQL
files. ClarityNLP directs CQL code to a running instance of the CQL Engine, which processes the CQL and translates
it into requests for a FHIR (Fast Healthcare Interoperability Resources) server. The FHIR server runs the query and
retrieves structured data for a single patient. The data returned from the CQL query appears in the results for the job
associated with the NLPQL file.

The CQL query requires several FHIR-related parameters, such as the patient ID, the URL of the FHIR server, and
several others to be described below. These parameters can either be specified in the NLPQL file itself or supplied by
ClarityNLP as a Service.

Documentsets for Unstructured and Structured Data

ClarityNLP was originally designed to process unstructured text documents. In a typical workflow the user specifies
a documentset in an NLPQL file, along with the tasks and NLPQL expressions needed to process the documents.
ClarityNLP issues a Solr query to retrieve the matching documents, which it divides into batches. ClarityNLP launches
a separate task per batch to process the documents in parallel. The number of tasks spawned by the Luigi scheduler
depends on the number of unstructured documents returned by the Solr query. In general, the results obtained include
data from multiple patients.

ClarityNLP can also support single-patient structured CQL queries with a few simple modifications to the documentset.
For CQL queries the documentset must be specified in the NLPQL file so that it limits the unstructured documents to
those for a single patient only. FHIR is essentially a single-patient readonly data retrieval standard. Each patient with
data stored on a FHIR server has a unique patient ID. This ID must be used in the documentset statement and in the
Clarity.CQLExecutionTask body itself, as illustrated below. The documentset specifies the unstructured data
for the patient, and the CQL query specifies the structured data for the patient.

Relevant FHIR Parameters

These parameters are needed to connect to the CQL Engine and the FHIR server, evaluate the CQL statements, and
retrieve the results. They can be provided directly as parameters in the CQLExecutionTask statement (see below),
or indirectly via ClarityNLPaaS:

Parameter Meaning
fhir_version Either DSTU2 or DSTU3
cql_eval_url URL of the FHIR server’s CQL Execution Service
patient_id Unique ID of patient whose data will be accessed
fhir_data_service_uri FHIR server base URL
cql CQL code surrounded by “”” (triple quotes)

Time Filtering

This task supports a time filtering capability for the CQL query results. Two optional parameters, time_start and
time_end, can be used to specify a time window. Any results whose timestamps lie outside of this window will be
discarded. If the time window parameters are omitted, all results from the CQL query will be kept.

The time_start and time_end parameters must be quoted strings with syntax as follows:
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DATETIME(YYYY, MM, DD, HH, mm, ss)
DATE(YYYY, MM, DD)
EARLIEST()
LATEST()

An optional offset in days can be added or subtracted to these:

LATEST() - 7d
DATE(2010, 7, 15) + 20d

The offset consists of digits followed by a d character, indicating days.

Both ‘‘time_start‘‘ and ‘‘time_end‘‘ are assumed to be expressed in Universal Coordinated Time (UTC).

Here are some time window examples:

1. Discard any results not occurring in March, 2016:

"time_start":"DATE(2016, 03, 01)",
"time_end":"DATE(2016, 03, 31)"

2. Keep all results within one week of the most recent result:

"time_start":"LATEST() - 7d",
"time_end":"LATEST()"

3. Keep all results within a window of 20 days beginning July 4, 2018, at 3 PM:

"time_start":"DATETIME(2018, 7, 4, 15, 0, 0)",
"time_end":"DATETIME(2018, 7, 4, 15, 0, 0) + 20d"

Note that the strings to the left and right of the colon must be surrounded by quotes.

Example

Here is an example of how to use the CQLExecutionTask directly, without using ClarityNLPaaS. In the text
box below there is a documentset creation statement followed by an invocation of the CQLExecutionTask. The
documentset consists of all indexed documents for patient 99999 with a source field equal to MYDOCS. These
documents are specified explicitly in the CQLExecutionTask invocation that follows, to limit the source documents
to those for patient 99999 only.

The task_index parameter is used in an interprocess communication scheme for controlling task execution. Clar-
ityNLP’s Luigi scheduler creates worker task clones in proportion to the number of unstructured documents in the
documentset. Only a single task from among the clones should actually connect to the FHIR server, run the CQL
query, and retrieve the structured data.

ClarityNLP uses the task_index parameter to identify the single task that should execute the CQL query. Any
NLPQL file can contain multiple invocations of Clarity.CQLExecutionTask. Each of these should have a
task_index parameter, and they should be numbered sequentially starting with 0. In other words, each define
statement containing an invocation of Clarity.CQLExecutionTask should have a unique value for the zero-
based task_index. If you limit your CQL use to a single query per NLPQL file, the value of task_index should
always be set to 0.

The patient_id parameter identifies the patient whose data will be accessed by the CQL query. This ID should
match that specified in the documentset creation statement.

The remaining parameters from the table above are set to values appropriate for GA Tech’s FHIR infrastructure. You
should change them to match your FHIR installation.
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The cql parameter is a triple-quoted string containing the CQL query. the triple quotes can be comprised of either
single or double quotes. This CQL code is assumed to be syntactically correct and is passed to the FHIR server’s CQL
evaluation service unaltered. All CQL code should be checked for syntax errors and other problems prior to its use in
an NLPQL file.

This example omits the optional time window parameters.

documentset PatientDocs:
Clarity.createDocumentSet({

"filter_query":"source:MYDOCS AND subject:99999"
});

define WBC:
Clarity.CQLExecutionTask({

documentset: [PatientDocs],
"task_index": 0,
"fhir_version":"DSTU2",
"patient_id":"99999",
"cql_eval_url":"https://gt-apps.hdap.gatech.edu/cql/evaluate",
"fhir_data_service_uri":"https://apps.hdap.gatech.edu/gt-fhir/fhir/",
cql: """

library Retrieve2 version '1.0'

using FHIR version '3.0.0'

include FHIRHelpers version '3.0.0' called FHIRHelpers

codesystem "LOINC": 'http://loinc.org'

define "WBC": Concept {
Code '26464-8' from "LOINC",
Code '804-5' from "LOINC",
Code '6690-2' from "LOINC",
Code '49498-9' from "LOINC"

}

context Patient

define "result":
[Observation: Code in "WBC"]

"""
});

context Patient;

Extends

BaseTask
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Arguments

Name Type Re-
quired

Notes

documentset documentset Yes Documents for a SINGLE patient only.
task_index int Yes Each CQLExecutionTask statement must have a unique value of

this index.
fhir_version str No Either “DSTU2” (default) or “STU3”
patient_id str Yes CQL query executed on FHIR server for this patient.
cql_eval_url str Yes See table above.
fhir_data_service_uristr Yes See table above.
cql triple-quoted

str
Yes Properly-formatted CQL query, sent verbatim to FHIR server.

time_start str No Optional, discard results with timestamp < time_start
time_end str No Optional, discard results with timestamp > time_end

Results

The specific fields returned by the CQL query are dependent on the type of FHIR resource that contains the data.
ClarityNLP can process the FHIR resources in the next table:

FHIR Resource Type
Patient
Procedure
Condition
Observation
MedicationOrder
MedicationRequest
MedicationStatement
MedicationAdministration

ClarityNLP returns a flattened version of the JSON representation of each resource, the meaning of which is explained
here. Essentially, the key for a flattened JSON object contains underscores for each nested object boundary (delimited
by the { character), and a numeric index for each array boundary (delimited by the [ character).

To illustrate, consider this JSON object:

{
"field1":"value1",
"field2":{"field3":"value3"},
"field4":[{"field5":"value5", "field6":"value6"}],
"field7":[{"field8":[{"field9":"value9", "field10":"value10"}]}]

}

The flattened version is:

{
"field1":"value1",
"field2_field3":"value3",
"field4_0_field5":"value5",
"field4_1_field6":"value6",
"field7_0_field8_0_field9":"value9",

(continues on next page)
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(continued from previous page)

"field7_0_field8_1_field10":"value10"
}

The FHIR resource data structures can be represented as nested JSON objects. The DSTU2 resources can be found
here and the DSTU3 resources can be found here.

For a specific FHIR example, consider the DSTU2 general condition example:

{
"resourceType": "Condition",
"id": "example",
"text":
{

"status": "generated",
"div": "<div>Severe burn of left ear (Date: 24-May 2012)</div>"

},
"patient":
{

"reference": "Patient/example"
},
"code":
{

"coding":
[

{
"system": "http://snomed.info/sct",
"code": "39065001",
"display": "Burn of ear"

}
],
"text": "Burnt Ear"

},
"category":
{

"coding":
[

{
"system": "http://hl7.org/fhir/condition-category",
"code": "diagnosis",
"display": "Diagnosis"

},
{

"fhir_comments":
[

" and also a SNOMED CT coding "
],
"system": "http://snomed.info/sct",
"code": "439401001",
"display": "Diagnosis"

}
]

},
"verificationStatus": "confirmed",
"severity":
{

"coding":
[

(continues on next page)
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(continued from previous page)

{
"system": "http://snomed.info/sct",
"code": "24484000",
"display": "Severe"

}
]

},
"onsetDateTime": "2012-05-24",
"bodySite":
[

{
"coding":
[

{
"system": "http://snomed.info/sct",
"code": "49521004",
"display": "Left external ear structure"

}
],
"text": "Left Ear"

}
]

}

The flattened version of this example, with quotes removed for clarity, is:

resourceType: Condition
id: example
text_status: generated
text_div: <div xmlns="http://www.w3.org/1999/xhtml">Severe burn of left ear (Date: 24-
→˓May 2012)</div>
clinicalStatus: active
verificationStatus: confirmed
category_0_coding_0_system: http://hl7.org/fhir/condition-category
category_0_coding_0_code: encounter-diagnosis
category_0_coding_0_display: Encounter Diagnosis
category_0_coding_1_system: http://snomed.info/sct
category_0_coding_1_code: 439401001
category_0_coding_1_display: Diagnosis
severity_coding_0_system: http://snomed.info/sct
severity_coding_0_code: 24484000
severity_coding_0_display: Severe
code_coding_0_system: http://snomed.info/sct
code_coding_0_code: 39065001
code_coding_0_display: Burn of ear
code_text: Burnt Ear
bodySite_0_coding_0_system: http://snomed.info/sct
bodySite_0_coding_0_code: 49521004
bodySite_0_coding_0_display: Left external ear structure
bodySite_0_text: Left Ear
subject_reference: Patient/example
onsetDateTime: 2012-05-24 00:00:00
date_time: 2012-05-24 00:00:00
len_code_coding: 1
len_severity_coding: 1
len_bodySite: 1
len_bodySite_0_coding: 1

(continues on next page)
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(continued from previous page)

len_category: 1
len_category_0_coding: 2
value_name: Burn of ear

Note the additional fields at the end, such as date_time and the fields prefixed with len_. ClarityNLP adds the
date_time field to enable time sorting on the results (see above). The len_ prefixed fields provide the lengths
of all lists in the flattened data. These are convenience fields, inserted so that consumers of the data will not have to
separately determine the presence and size of the embedded lists.

The exact set of fields returned for the different FHIR resources depends on the nature and complexity of the FHIR
server’s data. The documentation for the DSTU2 and DSTU3 resources can be used to interpret the results.

Collector

No

Clarity.EcogCriteriaTask

Description

This is a custom task for finding Eastern Cooperative Oncology Group (ECOG) performance status scores in clinical
trial inclusion and exclusion criteria.

An ECOG score provides a measure of the health and physical capabilities of a patient. The scores range from 0 to 5,
with higher scores indicating greater degrees of physical disability. A score of 0 means perfect health and a score of 5
means death.

These scores are typically used in oncology to assess a patient’s suitability for various treatments.

Example

define final EcogCriteriaFunction:
Clarity.EcogCriteriaTask({

documentset: [Docs]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No Termsets are not used by this task.
documentset documentset No
cohort cohort No
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Results

Name Type Notes
sentence str
start int
end int
criteria_type str Either ‘Inclusion’ or ‘Exclusion’
score_0 int 1 if ECOG score 0 was found, 0 if not
score_1 int 1 if ECOG score 1 was found, 0 if not
score_2 int 1 if ECOG score 2 was found, 0 if not
score_3 int 1 if ECOG score 3 was found, 0 if not
score_4 int 1 if ECOG score 4 was found, 0 if not
score_5 int 1 if ECOG score 5 was found, 0 if not
score_lo int value of the minimum ECOG score
score_hi int value of the maximum ECOG score

Collector

No

Clarity.GleasonScoreTask

Description

This is a custom task for extracting a patients Gleason score, which is relevant to prostate cancer diagnosis and staging.

Example

define final GleasonFinderFunction:
Clarity.GleasonScoreTask({

documentset: [Docs]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No
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Results

Name Type Notes
sentence str
start int
end int
value int Gleason score
value_first int First number in Gleason score
value_second int Second number in Gleason score

Collector

No

Clarity.O2SaturationTask

Description

This is a custom task for extracting Oxygen saturation information from clinical text. The O2SaturationTask
processes sentences and looks for information about Oxygen saturation levels and the use of supplemental Oxygen
devices. For instance, the sentence:

Vitals were T 98 BP 163/64 HR 73 O2 95% on 55% venti mask

contains O2 95% on 55% venti mask, meaning that the patient’s blood Oxygen saturation level (probably mea-
sured by a pulse oximeter) is 95%, while receiving supplemental Oxygen via a Venturi mask. The flow rate through
the mask is sufficient to produce a 55% Oxygen concentration in the air that the patient breathes.

The O2SaturationTask captures the Oxygen saturation level and other data relevant to Oxygen delivery, flow
rates, partial pressures, etc. If sufficient clues are provided in the sentence, standard conversions are used to estimate
related quantities not explicitly stated. The complete set of output fields and estimated quantities is listed in the
Results section below. Estimated values have field names with the suffix _est, to distinguish them from values
extracted directly from the text.

Conversions

The partial pressure of Oxygen in arterial blood can be estimated from a pulse oximeter reading. From the supplemen-
tal data provided with reference1:

1

Vlaar A, Toy P, Fung M, et. al.
A Consensus Redefinition of Transfusion-Related Acute Lung Injury
Transfusion (59) 2465-2476, 2019.
https://www.ncbi.nlm.nih.gov/pubmed/30993745
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SpO2 (%) PaO2 (mmHg)
80 44
81 45
82 46
83 47
84 49
85 50
86 52
87 53
88 55
89 57
90 60
91 62
92 65
93 69
94 73
95 79
96 86
97 96
98 112
99 145

The fraction of inspired Oxygen FiO2 can be estimated from knowledge of the Oxygen delivery device and the O2
flow rate. For normal breathing in the Earth’s atmosphere the O2 concentration is approximately 21%. Hence the
FiO2 for these conditions is 21%, or 0.21.

For a nasal cannula, each L/min of O2 adds approximately 4% to the FiO2 value1. (The data in1 covers the range of 1-6
L/min, but the 4%/L rule seems to be the standard approximation in the respiratory therapy literature for moderately
higher flow nasal cannulas).

Nasal Cannula Flow Rate (L/min) FiO2 (%)
1 24
2 28
3 32
4 36
5 40
6 44
7 48
8 52
9 56
10 60

For a nasopharyngeal catheter1:
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Nasopharyngeal Catheter Flow Rate (L/min) FiO2 (%)
1 24
2 28
3 32
4 36
5 40
6 44
7 48
8 52
9 56
10 60

For a simple fask mask with no reservoir:

Face Mask Flow Rate (L/min) FiO2 (%)
5 35
6 39
7 43
8 47
9 51
10 55

For a face mask with reservoir (non-rebreather)1:

Face Mask With Reservoir Flow Rate (L/min) FiO2 (%)
6 60
7 70
8 80
9 90
10 95

For a Venturi mask:

Venturi Mask Flow Rate (L/min) FiO2 (%)
2 24
4 28
6 31
8 35
10 40
15 60

The O2SaturationTask uses the data in these tables to linearly interpolate FiO2 values for the stated devices and
flow rates.

Example

define final O2Data:
Clarity.O2SaturationTask({

documentset: [Docs]
});
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Extends

BaseTask

Arguments

Name Type Required Notes
documentset documentset No
cohort cohort No

Results

Name Type Notes
sen-
tence

str The input sentence after textual cleanup operations have been performed.

text str That portion of sentence containing an O2 saturation statement.
start int Offset into sentence of the first character of the O2 saturation statement.
end int One character past the end of the O2 saturation statement.
device str The Oxygen delivery device, if any.
flow_rate float Device Oxygen flow rate in liters/min.
condi-
tion

str Relation of the O2 saturation to the stated value: ‘APPROX’, ‘LESS_THAN’,
‘LESS_THAN_OR_EQUAL’, ‘GREATER_THAN’, ‘GREATER_THAN_OR_EQUAL’,
‘EQUAL’, ‘RANGE’

value float Oxygen saturation percentage
value2 float Oxygen saturation percentage, only valid for ranges
pao2 int Oxygen partial pressure in mmHg, if any
pao2_est int Oxygen partial pressure estimated from clues in sentence
fio2 int Fraction of inspired Oxygen, expressed as a percentage
fio2_est int Fraction of inspired Oxygen estimated from clues in sentence
p_to_f_ratioint PaO2/FiO2 extracted from sentence, if any
p_to_f_ratio_estint P/F ratio estimated from clues in sentence, if any

Collector

No

References

Clarity.PFTFinder

Description

Custom module for extracting pulmonary function test (PFT) values.
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Examples

termset Terms:
["FEV1", "FEV", "PFT", "pulmonary function test"];

define final PFTTestPatients:
Clarity.PFTFinder({
termset:[Terms]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset Yes List of possible terms to find, e.g. ‘NYHA’
documentset documentset No
cohort cohort No

Results

Name Type Notes
sentence str Sentence where measurement is found
start int offset of the first character in the matching text
end int offset of the final character in the matching text plus 1
fev1_condition str
fev1_units str
fev1_value floats
fev1_text str
fev1_count int
fev1_fvc_ratio_count int
fev1_fvc_condition str
fev1_fvc_units str
fev1_fvc_value float
fev1_fvc_text str
fvc_count int
fvc_condition str
fvc_units str
fvc_value float
fvc_text str

Collector

No
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Clarity.PregnancyTask

Description

This is a custom task for estimating pregnancy-related dates from pregnancy duration statements in clinical text. For
example, the phrase 30 y/o 24wks pregnant in a clinical report dated July 1, 2019 implies that conception
occured 24 weeks prior, on approximately Jan. 14th. For a normal 40 week pregnancy, the estimated delivery date
would be 40 - 24 == 16 weeks into the future, or sometime around Oct. 21. The complete set of pregnancy-related
dates and times is listed below.

The relevant dates can be computed from a wide variety of duration statements. Some examples:

approx. 28 weeks pregnant
she is 2.5 months pregnant
pregnant at 26wks
approx. 10-12 weeks pregnant
patient is a 23 year G4P2 @ 27
patient is a 29 yo G1 @ 5.3wks
37 year old woman at 29 weeks
etc.

Example

define final PregnancyFunction:
Clarity.PregnancyTask({

documentset: [Docs]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No Termsets are not used by this task.
documentset documentset No
cohort cohort No
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Results

Name Type Notes
sentence str
start int
end int
weeks_pregnant int or float
weeks_remaining int or float
trimester int 1 if <=13 wks; 2 if [14, 26] wks; 3 otherwise
date_conception str YYYY-MM-DD format
date_delivery str YYYY-MM-DD format

Collector

No

Clarity.RaceFinderTask

Description

This is a custom task for extracting a patient’s race (i.e. asian, african american, caucasian, etc.).

Example

define RaceFinderFunction:
Clarity.RaceFinderTask({

documentset: [DischargeSummaries]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No
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Results

Name Type Notes
sentence str
start int
end int
value str Race mentioned in note
value_normalized str Normalized value, e.g. caucasian -> white

Collector

No

Clarity.TextStats

Description

Task that uses textacy to get aggregate statistics about the text.

Example

Clarity.TextStats({
documentset: [ProviderNotes]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No
group_by str No Default = report_type, the field that statistics be grouped on.
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Results

Name Type Notes
avg_word_cnt float Average word count
avg_grade_level float Average Flesch Kincaid grade level
avg_sentences float Average number of sentences
avg_long_words float Average number of long words
avg_polysyllable_words float Average number of polysyllabic words

Collector

BaseCollector

Clarity.TNMStager

Description

Extract tumor stages from text. Read more here.

Example

define final TNMStage:
Clarity.TNMStager ({

cohort:PSAPatients,
documentset: [Docs]

});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No

Results

See the ‘Outputs’ table here.
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Collector

No

Clarity.TransfusionNursingNotesParser

Description

Task that parses Nursing notes (specifically formatted for Columbia University Medical Center) for transfusion infor-
mation.

Example

phenotype "TNN" version "2";

include ClarityCore version "1.0" called Clarity;

documentset TransfusionNotes:
Clarity.createDocumentSet({

"report_types":["Transfusion Flowsheet"]});

define TransfusionOutput:
Clarity.TransfusionNursingNotesParser({

documentset: [TransfusionNotes]
});

Extends

BaseTask

Arguments

Name Type Required Notes
termset termset No
documentset documentset No
cohort cohort No
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Results

Name Type Notes
reaction str yes or no
elapsedMinutes int
transfusionStart str YYYY-MM-DD HH:MM:SS (ISO format)
transfusionEnd str YYYY-MM-DD HH:MM:SS (ISO format)
bloodProduc-
tOrdered

str

dateTime str YYYY-MM-DD HH:MM:SS (ISO format) at which these measurements were
taken

timeDeltaMinutes int elapsed time in minutes since transfusionStart
dryWeightKg float
heightCm int
tempF float
tempC float
heartRate int units of beats/min
respRateMachine int units of breaths/min
respRatePatient int units of breaths/min
nibpSystolic int
nibpDiastolic int
nibpMean int
arterialSystolic int
arterialDiastolic int
arterialMean int
bloodGlucose int units of mg/dl
cvp int units mmHg
spO2 int percentage
oxygenFlow int units of Lpm
endTidalCO2 int units of mm Hg
fiO2 int percentage

Collector

No

Base Classes

Also see the following classes, which are the base classes for the NLPQL tasks:

BaseTask

The base class for most ClarityNLP tasks. Provides most of the wiring needed to run individual algorithms.
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Arguments

Name Type Required Notes
termset termset See imple-

mentation
ex-
cluded_termset

termset No If terms are present, feature should be excluded from results (depends
on task implementation)

documentset docu-
mentset

No

cohort cohort No

Results

Name Type Notes
pipeline_type str Pipeline type internal to ClarityNLP.
pipeline_id int Pipeline ID internal to ClarityNLP.
job_id int Job ID
batch int Batch number of documents
owner str Job owner
nlpql_feature str Feature used in NLPQL define
inserted_date date Date result written to data store
concept_code int Code specified by user to assign to OMOP concept id.
phenotype_final bool final flag designated in NLPQL; displays in final results
report_id str Document report ID, if document level result
subject str Document subject/patient, if document level result
report_date str Document report date, if document level result
report_type str Document report type, if document level result
source str Document source, if document level result
solr_id str Document Solr id field, if document level result

Functions

run()

Main function that sets up documents and runs the task execution.

output()

Gets Luigi file, used for job communication or temp output.

set_name(name)

Sets name of task.
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write_result_data(temp_file: File, mongo_client: MongoClient, doc: dict, data: dict, prefix: str=”,
phenotype_final: bool=False)

Writes results to MongoDB.

write_multiple_result_data(temp_file: File, mongo_client: MongoClient, doc: dict, data: list, prefix:
str=”)

Writes results to MongoDB as a list.

write_log_data(job_status: str, status_message: str)

Writes log message to the job_status table.

run_custom_task(temp_file: File, mongo_client: MongoClient)

The primary function for tasks to implement to run tasks.

get_document_text(doc: dict, clean=True)

Returns a string containing the text of a given Solr document.

get_boolean(key: str, default=False)

Looks up custom argument with matching key of type bool.

get_integer(key: str, default=-1)

Looks up custom argument with matching key of type int.

get_string(key: str, default=”)

Looks up custom argument with matching key of type str.
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get_document_sentences(doc)

Returns a collection of sentences for the given Solr document.

BaseCollector

The base class for ClarityNLP aggregate tasks. Only gets called after all the other tasks of its related type are complete.

Functions

run(pipeline_id, job, owner, pipeline_type, pipeline_config)

Main function that runs the collector.

run_custom_task(pipeline_id, job, owner, pipeline_type, pipeline_config, client, db)

Primary function where custom implementation of the collector is written.

custom_cleanup(pipeline_id, job, owner, pipeline_type, pipeline_config, client, db)

Run custom custom cleanup after collector has run.

cleanup(pipeline_id, job, owner, pipeline_type, pipeline_config)

Main cleanup task that marks job as complete and runs custom cleanup tasks after collector is completed.

1.4.3 NLPQL Operations

All operations are prefixed in NLPQL as define, with the optional final flag. The final flag writes each result as part of
the finalized result set in MongoDB.

Data Operations

1.5 API Reference

1.5.1 NLP Web APIs

NLP endpoints provided by ClarityNLP.
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/kill_job/<int:job_id>

GET pids of NLPQL tasks. Attemps to kill running Luigi workers. Will only work when NLP API and Luigi are
deployed on the same instance.

/measurement_finder

POST JSON to extract measurements. Sample input JSON here.

/named_entity_recognition

POST JSON to run spaCy’s NER. Sample input JSON here.

/nlpql

POST NLPQL plain text file to run phenotype against data in Solr. Returns links to view job status and results. Learn
more about NLPQL here and see samples of NLPQL here.

/nlpql_tester

POST NLPQL text file to test if parses successfully. Either returns phenotype JSON or errors, if any. Learn more
about NLPQL here and see samples of NLPQL here.

/nlpql_expander

POST to expand NLPQL termset macros. Read more here.

/nlpql_samples

GET a list of NLPQL samples.

/nlpql_text/<string:name>

GET NLPQL sample by name.

/phenotype

POST Phenotype JSON to run phenotype against data in Solr. Same as posting to /nlpql, but with the finalized JSON
structured instead of raw NLPQL. Using /nlpql will be preferred for most users. See sample here.

/phenotype_feature_results/<int:job_id>/<string:feature>/<string:subject>

GET phenotype results for a given feature, job and patient/subject.

/phenotype_id/<int:phenotype_id>

GET a pipeline JSON based on the phenotype_id.
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/phenotype_job_by_id/<string:id>

GET a phenotype jobs JSON by id.

/phenotype_jobs/<string:status_string>

GET a phenotype job list JSON based on the job status.

/phenotype_paged_results/<int:job_id>/<string:phenotype_final_str>

GET paged phenotype results.

/phenotype_result_by_id/<string:id>

GET phenotype result for a given mongo identifier.

/phenotype_results_by_id/<string:ids>

GET phenotype results for a comma-separated list of ids.

/phenotype_structure/<int:id>

GET phenotype structure parsed out.

/phenotype_subject_results/<int:job_id>/<string:phenotype_final_str>/<string:subject>

GET phenotype results for a given subject.

/phenotype_subjects/<int:job_id>/<string:phenotype_final_str>

GET phenotype_subjects.

/pipeline

POST a pipeline job (JSON) to run on the Luigi pipeline. Most users will use /nlpql. Read more about pipelines here.
See sample JSON here.

/pipeline_id/<int:pipeline_id>

GET a pipeline JSON based on the pipeline_id.

/pipeline_types

GET a list of valid pipeline types.
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/pos_tagger

POST JSON to run spaCy’s POS Tagger. (Only recommended on smaller text documents.) Sample input JSON here.

/report_type_mappings

GET a dictionary of report type mappings.

/sections

GET source file for sections and synonyms.

/status/<int:job_id>

GET status for a given job.

/term_finder

POST JSON to extract terms, context, negex, sections from text. Sample input JSON here.

/tnm_stage

POST JSON to extract TNM staging from text. Sample input JSON here.

/value_extractor

POST JSON to extract values such as BP, LVEF, Vital Signs etc. Sample input JSON here.

/vocabExpansion?type=<TYPE>&concept=<CONCEPT>&vocab=<VOCAB>

About:

This API is responsible for vocabulary explosion for a given concept. API accepts a _type_ which can be synonyms,
ancestors or descendants. The API has to accept the _concept_ name which is supposed be exploded. The vocabulary
_vocab_ can also be passed as an optional parameter.

Parameters:

• Type: mandatory - 1: synonyms - 2: ancestors - 3: descendants

• Concept: mandatory

• Vocab: optional

Example usage:

‘‘‘ http://nlp-api:5000/vocabExpansion?type=1&concept=Inactive

http://nlp-api:5000/vocabExpansion?type=1&concept=Inactive&vocab=SNOMED ‘‘‘
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/ngram_cohort

GET

About:

Generating n-grams of the Report Text for a particular Cohort. API has to accept the Cohort ID, the _n_ in n-gram, and
frequency (the minimum occurrence of a particular n-gram). The API also accepts a keyword. If given the keyword,
only n-grams which contain that keyword are returned.

Parameters:

• Cohort ID : mandatory

• Keyword : optional

• n : mandatory

• frequency : mandatory

Example usage:

~/ngram_cohort?cohort_id=6&n=15&frequency=10

~/ngram_cohort?cohort_id=6&keyword=cancer&n=15&frequency=10

OHDSI WebAPI Utilities

/ohdsi_create_cohort?file=<FILENAME>

• Description: - Creating cohorts using OHDSI web API. - API requires a JSON file which contains cohort
creation details. - JSON file must be placed in /ohdsi/data/ - test_cohort.json is an example file which depicts
the JSON structure which needs to be strictly followed.

• Method: GET

• Parameters: - JSON file name

• Usage: ` http://nlp-api:5000/ohdsi_create_cohort?file=<FILENAME> `

/ohdsi_get_cohort?cohort_id=<COHORT_ID>

• Description: Get cohort details from OHDSI.

• Method: GET

• Parameters: - cohort_id

• Usage: ` http://nlp-api:5000/ohdsi_get_cohort?cohort_id=<COHORT_ID> `

/ohdsi_get_cohort_by_name?cohort_name=<COHORT_NAME>

• Description: Get Cohort details by name

• Method: GET

• Parameters: - cohort_name
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• Usage: ` http://nlp-api:5000/ohdsi_get_cohort_by_name?
cohort_name=<COHORT_NAME> `

/ohdsi_get_conceptset?file=<FILENAME>

• Description: - Getting concept set info using OHDSI web API. - API requires a JSON file which contains
concept set details. - JSON file must be placed in /ohdsi/data/ - test_concept.json is an example file which
depicts the JSON structure which needs to be strictly followed.

• Method: GET

• Parameters: - JSON file name

• Usage: ` http://nlp-api:5000/ohdsi_get_conceptset?file=<FILENAME> `

/ohdsi_cohort_status?cohort_id=<COHORT_ID>

• Description: Get the status of the triggered cohort creation job.

• Method: GET

• Parameters: - cohort_id

• Usage: ` http://nlp-api:5000/ohdsi_cohort_status?cohort_id=<COHORT_ID> `

1.6 Frequently Asked Questions (FAQ)

1. How can I check the syntax of my NLPQL file without actually running it?

Send your NLPQL file via HTTP POST to the nlpql_tester API endpoint. ClarityNLP will return a a JSON
representation of your file if the syntax is correct. If a syntax error is present, ClarityNLP will print an error
message and no JSON will be returned.

2. If I’m using the Docker version of ClarityNLP, how do I verify that all the supporting Docker containers
are up and running?

Open a terminal and run the command docker ps. The status of each container will be printed to stdout.
Each container should report a status message of Up n seconds, where n is an integer, if the container is
fully initialized and running.

1.7 About

1.7.1 Team

The team works from the Information and Communications Laboratory (ICL) at the Georgia Tech Research Institute
(GTRI).

The team is closely associated with the Georgia Tech Center for Health Analytics and Informatics (CHAI).
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Members

• Jon Duke

• Charity Hilton

• Richard Boyd

• Trey Schneider

• Christine Herlihy

• Caleb Sides

Current Students

Former Students

• Chirag Jamadagni

• Prathamesh Prabhudesai

1.7.2 Partners

We’re currently collaborating with Celgene and the FDA.

1.7.3 Projects
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Contact Us

Feel free to connect with us on Slack.
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CHAPTER 3

License

This project is licensed under Mozilla Public License 2.0.
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