

Introduction

CLAM, the Computational Linguistics Application Mediator, allows you to quickly and transparently transform your Natural
Language Processing application into a RESTful webservice, with which automated clients can communicate, but which at
the same time also acts as a modern webapplication with which human end-users can interact. CLAM takes a description of
your system and wraps itself around the system, allowing clients or users to upload input files to your application,
start your application with specific parameters of their choice, and download and view the output of the application.
While the application runs, users can monitor its status.

CLAM is set up in a universal fashion, making it flexible enough to be wrapped around a wide range of applications that
have a command line interface. These applications are treated as a black box, of which only the parameters, input
formats, and output formats need to be described. The applications themselves need not be network-aware in any way, nor
aware of CLAM, and the handling and validation of input can be taken care of by CLAM.

CLAM is entirely written in Python, runs on UNIX-derived systems, and is available as open source under the GNU Public
License (v3). It is set up in a modular fashion, and offers an API, and as such is easily extendable. CLAM communicates
in a transparent XML format, and uses client-side XSL transformation to offer a full modern web-interface for human end users.

The kind of applications that CLAM is originally intended for are Natural Language Processing applications, usually of a
kind that do some processing on a text corpus. This corpus (any text file) can be uploaded by the user, or may be
pre-installed for the webservice. The NLP application is usually expected to produce a certain output, which is
subsequently made available through the webservice for viewing and downloading. CLAM can, however, just as well be used
in fields other than NLP.

The CLAM webservice is a RESTful webservice [Fielding2000], meaning it uses the HTTP verbs GET, POST, PUT and
DELETE to manipulate resources and returns responses using the HTTP response codes and XML. The principal resource in
CLAM is called a project. Various users can maintain various projects, each representing one specific run of the
system, with particular input data, output data, and a set of configured parameters. The projects and all data is stored
on the server.

The webservice responds in the CLAM XML format. An associated XSL stylesheet [XSLT] can directly
transform this to xhtml in the user’s browser, thus providing a standalone web application for human end-users.

The most notable features of CLAM are:

	RESTful webservice – CLAM is a fully RESTful webservice

	Webapplication – CLAM is also provides a generic web user interface for human end-users.

	Extensible – Due to a modular setup, CLAM is quite extensible

	Client and Data API – A rich Python API for writing CLAM Clients
and system wrappers

	Authentication – A user-based authentication mechanism through
HTTP Digest and/or HTTP Basic is provided. Morever, OAuth2 is also
supported for delegating authentication

	Metadata and provenance data – Extensive support for metadata
and provenance data is offered

	Automatic converters – Automatic converters enable conversion
from an auxiliary format into the desired input format, and
conversion from the produced output format into an auxiliary output
format

	Viewers – Viewers enable web-based visualisation for a
particular format. CLAM supports both built-in python-based viewers
as well as external viewers in the form of external (non-CLAM)
webservices.

	Predefined datasets – Service providers may optionally predefine
datasets, such as large corpora

	Batch Processing – CLAM’s default project paradigm is ideally
suited for batch-processing and the processing of large files. The
background process may run for an undefined period

	Actions – CLAM’s action paradigm is a remote-procedure
call-mechanism in which you make available actions (any
script/program or Python function) on specific URLs.

	Constraints and Input Validation – *CLAM has a mechanism to actively validate the files the user inputs, and apply constraints

to them*.

In publication pertaining to research that makes use of this software, a citation should be given of: “Maarten van
Gompel (2014). CLAM: Computational Linguistics Application Mediator. Documentation. LST Technical Report Series 14-03.”.

CLAM is open-source software licensed under the GNU Public License v3, a copy of which can be found along with the
software.

	Fielding2000

	
	
	Fielding (2000). Architectural Styles and the DEsign of Network-based Software Architecture. Doctoral Dissertation. University of California, Irvine. (HTML) [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm]

	XSLT

	
	Clark (1999). XSL Transformations (XSLT) Version 1.0. W3C Recommendation. http://www.w3.org/TR/xslt

Technical details

CLAM is written in Python [python], and is built on
the Flask framework [flask]. It can run stand-alone thanks to the built-in
webserver; no additional webserver is needed to test your service. In
production environments, it is however strongly recommended that CLAM is
integrated into a real webserver. Supported are: Apache, nginx or
lighthttpd, though others may work too.

The software is designed for Unix-based systems (e.g. Linux or BSD)
only. It also has been verified to run on Mac OS X as well. Windows is
not supported.

	python

	Python Software Foundation. Python Language Reference. Available at https://www.python.org

	flask

	http://flask.pocoo.org

Intended Audience

CLAM and this documentation are intended for 1) service providers;
people who want to build a CLAM Webservice around their tool and/or
people wanting to set up existing CLAM services on their server, and
2) webservice users; people who want to write automated clients to
communicate with CLAM webservices.

On the part of these users, a certain level of technical expertise is
required and assumed, such as familiarity with UNIX/Linux systems,
software development (programming) and system administration.

This documentation is split into two parts: a chapter for service
providers, people who want to build a CLAM Webservice around their tool,
and a chapter for service clients, users wanting to write automated
clients to communicate with the aforemented webservice.

This documentation is not intended for end users using only the web
application interface.

Architecture

CLAM has a layered architecture, with at the core the command line
application(s) you want to turn into a webservice. The application
itself can remain untouched and unaware of CLAM. The scheme in
the figure below illustrates the various layers. The
workflow interface layer is not provided nor necessary, but shows a
possible use-case.

[image: The CLAM Architecture]

The CLAM Architecture

CLAM presents two different paradigms for wrapping your script or
application. You may use either or both at the same time.

	Project Paradigm – Users create projects, upload files with
optional parameters to those projects, and subsequently start the
project, optionally passing global parameters to the system. The
system may run for a long time and may do batch-processing on
multiple input files.

	Action Paradigm – This is a more limited and simple remote-procedure call mechanism. Users interact in real-time
with the service on specific URLs, passing parameters, and obtaining a single result. Unlike the project paradigm,
this is not suitable for complex operations on big-data.

A CLAM webservice needs the following three components from the service
developer:

	A Service configuration

	A wrapperscript` for your command line application;

	A command line application (your NLP tool)

The wrapper script is not strictly mandatory if the command line
application can be directly invoked by CLAM. However, for more complex
applications, writing a wrapper script is recommended, as it offers more
flexibility and better integration, and allows you to keep the actual
application unmodified. The wrapper scripts can be seen as the “glue”
between CLAM and your application, taking care of any translation steps.

Note that wrapper scripts in the action paradigm are more constrained,
and there may be multiple wrapper scripts for different actions.

Interface

Though CLAM is a RESTful webserivce, it has a fully client-side interface for human-end users. Some screenshots can be
found below:

[image: the clam project list]
[image: the clam project page during staging]
[image: the clam project page when done]

Table of Contents

	Introduction

	Installation
	Installation

	LaMachine: a meta-distribution with CLAM

	Installation Details

	Usage

	Source Code Repository

	Getting Started
	Starting Your webservice
	Overriding host, port and urlprefix (advanced)

	Service configuration
	General Webservice Metadata

	Server Administration

	User Authentication
	MySQL backend

	External forwarded authentication schemes

	OAuth2

	Command Definition

	Project Paradigm: Metadata, Profiles & Parameters

	Parameter Specification
	Parameters API

	Profile specification
	Control over filenames

	Parameter Conditions

	Converters

	Viewers

	Forwarders

	Input Sources: Working with pre-installed data

	Constraints and Validation

	Multiple profiles, identical input templates

	Customising the web interface

	Actions

	External Configuration Files

	Wrapper script
	Data API
	Program

	Examples

	Data API Reference

	Deployment in production
	Alternative deployment on Apache 2 with mod_wsgi

	Deploying CLAM with other webservers

	Deploying CLAM behind a reverse proxy

	Clients
	Client API Reference

	Troubleshooting

	RESTful API specification
	General Webservice Information

	Project Index

	Project Endpoint

	Input files

	Output Files
	Archive Download

	Temporary Storage

	Actions

	Project entry shortcut

Running a test webservice

If you installed CLAM using the above method, then you can launch a clam test
webservice using the development server as follows:

$ clamservice -H localhost -p 8080 clam.config.textstats

Navigate your browser to http://localhost:8080 and verify everything works

Note: It is important to regularly keep CLAM up to date as fixes and
improvements are implemented on a regular basis. Update CLAM using:

$ pip install -U clam

Installing a particular clam webservice for production use

When installating a particular CLAM webservice on a new server, you typically start with creating a host-specific
external configuration file that specifies all the paths and urls specific to thw new server. Of interest is in
particular the ROOT path, which is where user data will be stored, this directory must exist and be writable by the
webserver.

For production, it is strongly recommended to embed CLAM in Apache or nginx. This is the typically task of a system
administrator, as certain skills are necessary and assumed. All this is explained in detail in the section
Deployment in production.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installation

CLAM is available from the Python Package Index; a standardised
framework and repository for the installation of all kinds of Python
packages. This is the easiest method
of installing CLAM, as it will automatically fetch and install any
dependencies. We recommend to use a virtual environment (virtualenv) if you
want to install CLAM locally as a user, if you insist to install globally,
prepend the following commands with sudo:

CLAM is written for Python 3, which we will use in this documentation. Since version 3.0, backward compatibility with
Python 2.7 has been dropped.

We recommend you first create a Python Virtual Environment.
To create a virtual environment, which we name clamenv here (but you
can choose any name you want), issue the following command:

$ virtualenv --python=python3 clamenv

To enter the virtual environment, type the following (note the period):

$ source clamenv/bin/activate.sh

This will change your prompt by inserting the name of the virtual
environment. Now you can proceed with to install CLAM in the virtual environment:

$ source env/bin/activate

If virtualenv is not yet installed on your system, you can install it as follows (example for Debian/Ubuntu systems):

$ apt-get install virtualenv

Now you can install CLAM as follows:

$ pip install clam

If pip is not yet installed on your system, install it as follows (example for Debian/Ubuntu):

$ apt-get install python3-pip

You can verify the availability of CLAM by opening
an interactive Python interpreter and writing: import clam

LaMachine: a meta-distribution with CLAM

We also offer LaMachine [https://proycon.github.io/LaMachine], an environment with CLAM and various CLAM
webservices pre-installed, along with a lot of other NLP software. It is
available as a Virtual Machine, Docker container, as well as a virtual
environment through a native installation script. It is designed to
facilitate installation of our software.

Installation Details

The following software is required to run CLAM, the installation process
explained above should obtain and install all the mandatory dependencies
automatically, except for Python itself:

	python 3.3 or higher (2.7 is not supported since CLAM v3!)

	flask

	lxml

	requests

	requests-oauthlib

	PyYAML

	mysqlclient (optional, needed only for MySQL support)

	FoLiA-Tools (optional, needed only for FoLiA support)

For development and testing, each CLAM webservice can run stand-alone on
any TCP port of your choice (make sure the port is open in your
firewall) using the built-in webserver. For production environments, it
is strongly recommended that you plug CLAM into a more advanced
webserver (Apache, nginx, lighttpd).

If you look in the directory where CLAM has been installed, the
following files may be of particular interest:

	clamservice.py – The webservice itself; the command to be invoked
to start it.

	clamclient.py – A very generic CLAM client, to be used from the
command-line.

	clamdispatcher.py – The default dispatcher for launching wrapper
scripts.

	config/ – The directory containing service configuration files.
Place you service configuration here.

	config/textstats.py – An example configuration.

	common/ – Common Python modules for CLAM.

	common/parameters.py – Parameter-type definitions.

	common/format.py – Format-type definitions.

	common/data.py – CLAM Data API.

	common/client.py – CLAM Client API.

	static/style.css – The styling for visualisation; you can copy
this to create your own styles.

Usage

Starting the service in stand-alone mode is done by launching clamservice with the name of your service
configuration. This standalone mode is intended primarily for development purposes and not recommended for production
use. The example below shows how to launch the supplied “Text Statistics” demo-service:

$ clamservice clam.config.textstats

Setting up the service to be used with an already existing webserver
requires some additional work. This is explained in later sections for
Apache and nginx.

Source Code Repository

The CLAM source code is hosted on Github [https://github.com/proycon/clam].

If you want to work with the latest development release of CLAM rather than the latest stable version. You can clone this git
repository as follows:

$ git clone git://github.com/proycon/clam.git

This will create a directory clam in your current working directory.
To install CLAM globally or in your local Python virtual environment,
use the included setup.py script:

$ python3 ./setup.py install

Use sudo for global installation, or ensure you are in a virtual
environment for local installation. Cloning from github directly is only
recommended for people who want to contribute to CLAM development
itself.

People migrating from very early versions of CLAM may have adopted a
workflow that uses the clam repository from github directly, without
running setup.py. This is no longer supported and discouraged.

Getting Started

Make sure you have first read the Introduction so you understand what CLAM is and what its architecture is like.

You start a new CLAM webservice project using the clamnewproject tool. The tool
generates all the necessary files, which you have to edit. The tool
takes one argument: an identifier for your system. This identifier is
for internal use, possibly for use in URLs, paths, and filenames. It may not
not contain any spaces or other special characters. Mind that this
ID is case sensitive, so it is strongly recommended to keep it all lower
case. Example:

$ clamnewproject myfirstproject

The tool will create a directory named after the identifier, in which
various template files are created which are similarly named after the
chosen identifier. You are expected to edit the service configuration
file, a Python script, as well as a host-specific configuration file and
one of the two system wrapper scripts (choose Python or Bash, or write
one from scratch in your favourite language). The scripts are heavily
commented to help you along, along with the documentation you are
reading, this should provide you with all knowledge necessary to make a
webservice.

	myfirstproject/myfirstproject.py - Service Configuration File

	myfirstproject/myfirstproject.$HOSTNAME.yml - Host-specific
external configuration file which is automatically included from the
service configuration file if ran on the specified host. This will be
addressed in External Configuration Files.

	myfirstproject/myfirstproject.config.yml - A more generic external configution file which is automatically

included from the service configuration file if a shost specific variant like above is not found. This will be
addressed in External Configuration Files.

	myfirstproject/myfirstproject_wrapper.py - System Wrapper Script
in Python (this is recommended over the bash version as it is suited for more
complex webservices)

	myfirstproject/myfirstproject_wrapper.sh - System Wrapper Script
in Bash (only suggested for simple webservices)

	myfirstproject/myfirstproject.wsgi - WSGI script, you probably
don’t need to edit this

	setup.py - Installation script (edit the metadata in here), run
python setup.py install for installation in production
environments or python setup.py develop for installation during
development. (the start scripts mentioned below do this automatically
for you)

	MANIFEST.in - Lists files to include in installation by setup.py.

	INSTRUCTIONS.rst - Automatically generated instructions

Moreover, some scripts and sample configurations are generated:

	startserver_development.sh - Start your webservice using the
built-in development server

	startserver_production.sh - Start your webservice using the
production server using uwsgi. To use this you will need to configure
your webservice (e.g. Apache or nginx).

	myfirstproject.$HOSTNAME.ini - Uwsgi configuration (for a
specific host), used for production environments

	deployment-examples/ - Sample configuration files for production environments
using a Apache 2 or Nginx webserver. Consult the section on Deployment in production for details.

These template files need to be edited for your particular application.
They are heavily commented to guide you. The INSTRUCTIONS.rst file will
be created in your project directory and provides instructions on what
files to edit and how to start the clam service for your specific
project. Starting your webservice is as easy as running
startserver_development.sh, the script will inform you to what URL
to direct your browser once the webservice is running.

You can choose not to make use of one of the generated system wrapper
scripts and instead either write one from scratch in another language of
your choice, or directly let CLAM invoke your application. Moreover, a
wrapper is intended for the project paradigm, the action paradigm (Actions) does
not make use of it.

Starting Your webservice

You can start your webservice in development mode with the included startserver_development.sh script, but not
before you first read how to construct your webservice. Read the Service configuration documentation, and afterwards the wrapperscript documentation.

The start script simply installs your webservice and runs clamservice to run it, passing the module name of your
webservice configuration. Make sure you first activated your Python virtual environment (if used) when calling the start script.

For production environments, read the documentation on Deployment in production.

Overriding host, port and urlprefix (advanced)

The HOST, PORT and URLPREFIX are configured in the service configuration file or the host-specific external
configuration file it includes, CLAM will attempt to automatically guess them when they are not explicitly set. If you
run behind a reverse proxy (common in production environments), you will need to set USE_FORWARDED_HOST = True so
CLAM can automatically detect where the original request was coming from.

It is possible, however, to override these when
launching or deploying the webserver, without changing the service
configuration itself. If you use the development server, using
clamservice, then you can pass the -u flag with the full URL
CLAM should use. You can also set an environment variable
CLAMFORCEURL, which has the same effect. This latter option also
works when deploying CLAM through WSGI. The use of USE_FORWARDED_HOST is preferred though.

Service configuration

The service configuration consists of a description of your NLP
application, or rather, a description of the system wrapper script that
surrounds it. It specifies what parameters the system can take, and what
input and output formats are expected under what circumstances. The
service configuration is itself a Python script, but knowledge of Python
is not essential for you to be able to make your own service
configurations.

It is strongly recommended, but not mandatory, to separate the parts of the configuration that are host-specific configuration
settings from the parts that are generic. Host-specific configurations is stored in External Configuration Files that are dynamically included from the service configuration script. Doing so facilitates distribution and deployment on different systems late.

It is assumed you are using the clamnewproject tool as explain in Getting Started, which
generates a template service configuration you can edit, including a host-specific external configuration name
recognisable by the yml extension. When reading this section, it may help your understanding to inspect these files
alongside.

One of the first things to configure is the root path (ROOT). All projects created in the webservice will be
confined to the projects/ directory within this root path, each project having its own subdirectory. When your
underlying application or wrapper script is launched, the current working directory will be set to this project
directory.

The ROOT directory will be automatically created upon the first run.

General Webservice Metadata

The following general metadata fields are available, setting them is strongly recommended:

	SYSTEM_ID - The System ID, a short alphanumeric identifier for internal use only (mandatory!)

	SYSTEM_NAME - System name, the way the system is presented to the world

	SYSTEM_DESCRIPTION - An informative description for this system (this should be fairly short, about one paragraph, and may not contain HTML). If you want a more extensive description in the interface, possibly with HTML then see Customising the web interface.

	SYSTEM_VERSION - A version label of the underlying tool and/or this CLAM wrapper.

	SYSTEM_AUTHOR - The author(s) of the underlying tool and/or this CLAM wrapper

	SYSTEM_EMAIL - A single contact e-mail address

	SYSTEM_URL - An assocated website, either for this webservice or the underlying software.

	SYSTEM_PARENT_URL - You can set this to a website URL if this webservice embedded in a larger system? Like part of an institution or particular portal site. A small link back to this site will be generated in the navigation bar of the interface.

	SYSTEM_COVER_URL - The URL of a cover image to prominently display in the header of the interface. You may also want to set INTERFACEOPTIONS="centercover" to center it horizontally.

	SYSTEM_REGISTER_URL - URL to a website where users can register an account for use with this webservice. This
link is only for human end-users, no API endpoint.

Server Administration

The host-specific part of the configuration contains first of all the hostname and the port where the webservice will be
hosted. If not configured, automatic detection is attempted.

When CLAM runs in a production environment (see Deployment in production) using an existing webserver without its
own virtual host, it is often configured at a different URL rather than at the webserver root. In this case, the value
of URLPREFIX should be configured accordingly. If you want your webservice to run at
http://yourhost.com/yourwebservice/ for instance, then the URLPREFIX should be set to yourwebservice.

Note

In rare cases where the URL wrongly
propagates to CLAM (i.e. CLAM tries to interpret your urlprefix as a
project), you need to set INTERNALURLPREFIX to the same value. This
might happen in certain WSGI set-ups, leave it unset in all other
scenarios.

In order to keep server load manageable, three methods are configurable
in the service configuration file. First, you can set the variable
REQUIREMEMORY to the minimum amount of free memory that has to be
available (in megabytes, and not considering swap memory!). If not
enough memory is free, users will not be able to launch new processes,
but will receive an HTTP 500 error instead. Second, there is the
MAXLOADAVG variable; if the 5-minute load average exceeds this
number, new processes will also be rejected. Third, there is
MINDISKSPACE and DISK. This sets a constraint on the minimum
amount of free disk space in megabytes on the specified DISK (for
example: /dev/sda1), which should be the disk holding ROOT. If
any of these values is set to zero, the checks are disabled. Note though
that this makes your system vulnerable to denial-of-service attacks by
possibly malicious users, especially if no user authentication is
configured!

Further constraints on disk space can be placed by setting the following:
* USERQUOTA - Maximum size in MB of all projects for a user. If this is exceeded no new projects can be created or

started.

	PROJECTQUOTA - Maximum size in MB of any single project. Larger projects can not be started.

	MAXCONCURRENTPROJECTSPERUSER - Maximum number of projects that a single user can run concurrently.

Extra resource control is handled by the CLAM Dispatcher; a small
program that launches and monitors your wrapper script. In your service
configuration file you can configure the variable
DISPATCHER_MAXRESMEM and DISPATCHER_MAXTIME. The former is the
maximum memory consumption of your process, in megabytes. The latter is
the maximum run-time of your process in seconds. Programs that exceed
this limit will be automatically aborted. The dispatcher will check with
a certain interval, configured in DISPATCHER_POLLINTERVAL (in
seconds), if the limits have been exceeded it will take the necessary
action.

If for some reason you do not want to make use of the web-based user
interface in CLAM, then you can disable it by setting
ENABLEWEBAPP = False. Note that this is not in any way a security measure!
Everything is technically still as accessible. You can also disable
project listing, in which case projects are only accessible if users
know the exact project name. Set LISTPROJECTS = False.

CLAM offers a limited web-based administrative interface that allows you
to view what users and projects there are, access their files, abort
runs, and delete projects. This interface can be accessed on the
/admin/ URL, but requires that the logged-in user is in the list of
ADMINS in the service configuration file. The administrative
interface itself does not, and will never, offer any means to adjust
service configuration options.

User Authentication

Being a RESTful webservice, user authentication proceeds over HTTP
itself. CLAM implements HTTP Basic Authentication, HTTP Digest
Authentication [Franks1999] and OAuth2
[Hardt2012]. HTTP Digest Authentication, contrary to HTTP
Basic Authentication, computes a hash of the username and password
client-side and transmits that hash, rather than a plaintext password.
User passwords are therefore only available to CLAM in hashed form and
are not transmitted unencrypted, even over a HTTP connection. HTTP Basic
Authentication, conversely, should only be use over SSL (i.e. HTTPS),
and CLAM will by default disallow it if it thinks it’s not running on an
SSL connection.

CLAM itself does not provide SSL on the built-in development server as
this is delegated to your production webserver (Apache or Nginx)
instead. If you are using SSL but CLAM does not detect it, you can set
ASSUMESSL = True. In this case HTTP Basic Authentication will be the
default authentication mechanism since CLAM 2.2, but HTTP Digest
Authentication is accepted too. If you’re not on an SSL connection, CLAM
will default to HTTP Digest Authentication only and disallow HTTP Basic
Authentication. You can tweak the accepted authentication types by setting the booleans BASICAUTH and
DIGESTAUTH, respectively.

User authentication is not mandatory, but for any world-accessible
environment it is most strongly recommended, for obvious security
reasons.

A list of user accounts and passwords can be defined in USERS in the
service configuration file itself. This is a simple method allowing you
to quickly define users, but it is not a very scalable method. The
USERS variable is a dictionary of usernames mapped to an md5 hash
computed on the basis of the username, a string representing the
security realm (by default the system ID), and the password. Projects
will only be accessible and visible to their owners, unless no
authentication is used at all, in which case everybody can see all
projects. An example of a configuration with plain text password,
converted on the fly to hashes, is found below:

USERS = {
 'bob': pwhash('bob', SYSTEM_ID, 'secret'),
 'alice': pwhash('alice', SYSTEM_ID, 'secret2'),
}

However, computing hashes on the fly like in the above example is quite
insecure and not recommended. You should pre-compute the hashes and add
these instead:

USERS = {
 'bob': '6d72b6376858cf3c618c826fab1b0109',
 'alice': 'e445370f57e19a8bfa454404ba3892cc',
}

This pre-computation can be done in an interactive python session,
executed from the CLAM directory. Make sure to change yourconfig in
the example below to your actual service configuration file:

from clam.common.digestauth import pwhash
import clam.config.yourconfig as settings
pwhash('alice', settings.SYSTEM_ID, 'secret')
'e445370f57e19a8bfa454404ba3892cc'

You can mark certain users as being administrators using the ADMINS
list. Administrators can see and modify all projects.

The ability to view and set parameters can be restricted to certain users. You can use the extra parameter options
allowusers= or denyusers= to set this. See the documentation on Parameter Specification. A
common use would be to define one user to be the guest user, for instance the user named “guest”, and set
denyusers=[’guest’] on the parameters you do not want the guest user to use.

In production environments, you will also want to set SECRET_KEY to
a string value that is kept strictly private. It is used for
cryptographically signing session data and preventing CSRF attacks (details [http://flask.pocoo.org/docs/0.10/quickstart/#sessions]).

	Franks1999

	
	Franks, P. Hallam-Baker, J. Hostelter, S. Lawrence, P.Leach, A. Luotonen and L. Stewart (1999). HTTP Authentication: Basic and Digest Access Authentication (RFC2617). The Internet Engineering Task Force (IETF). (HTML) [http://tools.ietf.org/html/rfc2617]

	Hardt2012(1,2)

	
	Hardt (2012) The OAuth 2.0 Authorization Framework (RFC6749). `(Text) <http://www.rfc-editor.org/rfc/rfc6749.txt`_

MySQL backend

Rather than using USERS to define a user database in your service
configuration file, a more sophisticated method is available using
MySQL. The configuration variable USERS_MYSQL can be configured,
instead of USERS, to point to a table in a MySQL database somewhere;
the fields “username” and “password” in this table will subsequently be
used to authenticate against. Custom field names are also possible. This
approach allows you to use existing MySQL-based user databases. The
password field is again a hashed password in the same fashion as in
USERS, so it never contains a plaintext password. USERS_MYSQL is
set as a Python dictionary with the following configurable keys:

USERS_MYSQL = {
 'host': 'localhost', #(default)
 'user': 'mysql_user',
 'password': 'secret_mysql_password',
 'database': 'clamopener',
 'table': 'clamusers_clamusers',
 'userfield': 'username', #(default)
 'passwordfield': 'password', #(default)
}

External forwarded authentication schemes

Authentication may also be provided on a more global webserver level,
rather than in CLAM itself. An external layer takes care of the
authentication and forwards a header to the actual application, i.e.
CLAM. This is a feature for advanced service providers wanting to use
external authentication schemes, such as federated identity solutions.
IN CLAM this is implemented using the PREAUTHHEADER configuration
directive, the value of which is a string containing the name of an HTTP
header which CLAM reads to obtain the authenticated username. This
should be set by an authentication system prior to passing control to
CLAM. An example of such a system is Shibboleth [4]_. Multiple headers
may be specified in PREAUTHHEADER, using space as delimiter,
effectively creating a fallback chain. If the header is not passed
(which should never happen with properly configured middleware), a HTTP
401 reply will be returned.

When such a forwarded authentication scheme is used, proper care has to
be taken, by the middle layer, to ensure that the HTTP headers cannot be
forged by end users themselves!

It is possible that usernames that come from external pre-authentication
methods are different from those in the internal USERS map (if used
at all), an explicit mapping between the two may be specified in the
PREAUTHMAPPING dictionary.

The example below shows an Apache configuration for a proxy server or
entry server that forwards to another server on which a CLAM service
runs, mediated through Shibboleth:

<Location /yourclamservice>
 AuthType shibboleth
 ShibRequireSession On
 ShibUseHeaders On
 require valid-user
 ProxyPass http://realserver/yourclamservice
 ProxyPassReverse http://realserver/yourclamservice
</Location>

	The actual server, if it runs Apache, must always contain the

	directive WSGIPassAuthorization On.

The CLAM service configuration file can in turn be restricted to accept
only Shibboleth authenticated users by setting PREAUTHONLY to
True, as shown here:

PREAUTHHEADER = 'HTTP_EDUPERSONPRINCIPALNAME'
PREAUTHONLY = True

Replace HTTP_EDUPERSONPRINCIPALNAME with the proper HTTP header;
this variable name is just an example in a CLARIN-NL context.

OAuth2

CLAM also implements OAuth2 [Hardt2012], i.e. it acts as
a client in the OAuth2 Authorization framework. An external OAuth2
authorization provider is responsible for authenticating you, using your
user credentials to which CLAM itself will never have access. Many
OAuth2 providers exists; such as Google, Facebook and Github, but you
most likely want to use the OAuth2 provider of your own institution. You
will need to register your webservice with your authentication provider,
and obtain a CLIENT_ID and CLIENT_SECRET, the latter should be
kept strictly private! These go into your service configuration file and
we then enable OAuth as follows:

OAUTH = True
OAUTH_CLIENT_ID = "some_client_id"
OAUTH_CLIENT_SECRET = "donotsharewithanyone"
OAUTH_CLIENT_URL = "https://yourwebservice"

Your authorization provider will also ask your for a redirect URL, use the /login endpoint of your CLAM webservice there
(without trailing slash). OAUTH_CLIENT_URL is the full URL to your webservice as it is also known to the authorization
provider (minus the redirect endpoint).

Note that OAuth2 by definition requires HTTPS, therefore, it can not be
used with the built-in webserver but requires being embedded in a
webserver such as Apache2, with SSL support.

When the user approaches the CLAM webservice, he/she will need to pass a
valid access token. If none is passed, the user is instantly delegated (HTTP 303)
to the OAuth2 authorization provider. The authorization provider
makes available a URL for authentication and for obtaining the final
access token. These are configured as follows in the CLAM service
configuration file:

OAUTH_AUTH_URL = "https://yourprovider/oauth/authenticate"
OAUTH_TOKEN_URL = "https://yourprovider/oauth/token"

The authorization provider in turn redirects the user back to the CLAM
webservice, which in turn returns the access token to the client in its
XML response as follows. Note that there will just be this one tag
without any children.

<clam xmlns:xlink="http://www.w3.org/1999/xlink" version="$version"
id="yourservice"
 name="yourservice" baseurl="https://yourservice.com/"
 oauth_access_token="1234567890">
</clam>

Now any subsequent call to CLAM must pass this access token, otherwise
you’d simply be redirected to authenticate again. The client must thus
explicitly call CLAM again. Passing the access token can be done in two
ways, the recommended way is by sending the following HTTP header in
your request, where the number is replaced with the actual access token:

Authentication: Bearer 1234567890

The alternative way is by passing it along with the HTTP GET/POST
request. This is considered less secure as your browser may log it in
its history, and the server in its access logs. It can still not be
intercepted by anyone in the middle, however, as it is transmitted over
HTTPS.

https://yourservice.com/?oauth_access_token=1234567890

Automated clients can avoid this method, but it is necessarily used by
the web-based interface. To mitigage security concerns, the access token
you receive is encrypted by CLAM and bound to your IP. The passphrase
for token encryption has to be configured through
OAUTH_ENCRYPTIONSECRET in your service configuration file. The web
interface will furthermore explicitly ask users to log out. Logging out
is done by revoking the access token with the authorization provider.
For this to work, your authentication provider must offer a revoke URL,
as described in RFC7009 [https://tools.ietf.org/html/rfc7009], which you configure in your service
configuration file as follows:

OAUTH_REVOKE_URL = "https://yourprovider/oauth/revoke"

If none is set, CLAM’s logout procedure will simply instruct users to
clear their browser history and cache, which is clearly sub-optimal.

The only information CLAM needs from the authorization provider is a
username, or often the email address that acts as a username.
To be able to get the username, a so-called userinfo end-point is required.

OAUTH_USERINFO_URL = "https://yourprovider/oauth/userinfo"

CLAM will make some educated guesses to extract the necessary information and will have a preference for using the
e-mail address as a username. If you want something more customised, you can set OAUTH_USERNAME_FUNCTION and refer it to a (Python)
function that obtains this from your resource provider after you have
been authenticated. It gets a single argument, the oauthsession
instance, and returns the username as a string. The following example
shows how to implement this function for a resource provider that
returns the username in JSON format. This, however, is completely
provider-specific so you always have to write your own function!

def myprovider_username_function(oauthsession):
 r = oauthsession.get(oauthsession.USERINFO_URL)
 d = json.loads(r.content)
 return d['username']

OAUTH_USERNAME_FUNCTION = myprovider_username_function

Various providers require the system to specify scopes, indicating the
permissions the application requests from the resource provider. This
can be done using the OAUTH_SCOPE directive in the service
configuration file, which takes a list of scopes, all of which are
provider-specific. The following example refers to the Google API:

OAUTH_SCOPE = [
 "https://www.googleapis.com/auth/userinfo.email",
 "https://www.googleapis.com/auth/userinfo.profile"
]

If you want to use OpenID Connect, a recommended extension on top of OAuth2, you need specify the following scopes:

OAUTH_SCOPE = [
 "openid",
 "email"
]

One of the problems with OAuth2 for automated clients is the
authentication step that often requires user intervention. CLAM
redirects unauthenticated users to the authorization provider. This is
generally a website where the user enters his username and password, but
the means by which authentication proceeds is not fixed by the OAuth2
specification. After authentication, the site passes a one-time
authorization code back to the user, with which the user goes to CLAM to
obtain the actual access token. This access token may be used for a
longer time, depending on the authorization provider.

This implies that automated clients accessing the CLAM service can not
authenticate in a generic fashion that is equal accross authorization
providers, there is again a provider-specific component here and CLAM
clients need to know how to communicate with the specific authorization
provider.

At the moment, CLAM does not yet implement support for refresh tokens.

The unencrypted access token may be passed to the wrapper script if
needed (has to be explicitly configured), allowing the wrapper script or
underlying system to communicate with a resource provider on behalf of
the user, through CLAM’s client_id.

Command Definition

Central in the configuration file is the command that CLAM will execute.
This command should start the actual NLP application, or preferably a
script wrapped around it. Full shell syntax is supported. In addition
there are some special variables you can use that will be automatically
set by CLAM.

	$INPUTDIRECTORY – The absolute path to the input directory where
all the input files from the user will be stored (possibly in
subdirectories). This input directory is the input/ subdirectory
in the project directory.

	$OUTPUTDIRECTORY – The absolute path to the output directory.
Your system should output all of its files here, as otherwise they
are not accessible through CLAM. This output directory is the
output/ subdirectory in the project directory.

	$TMPDIRECTORY – The absolute path to the a temporary directory.
The contents of the directory will be automatically cleared as soon
as your wrapper script terminates. Your system should output all of
its temporary files here. This temporary directory is the tmp/
subdirectory in the project directory.

	$STATUSFILE – The absolute path to a status file. Your system may
write a short message to this status file, indicating the current
status. This message will be displayed to the user in CLAM’s
interface. The status file contains a full log of all status
messages, thus your system should write to this file in append mode.
Each status message consists of one line terminated by a newline
character. The line may contain three tab delimited elements that
will be automatically detected: a percentage indicating the progress
until completion (two digits with a % sign), a Unix timestamp (a long
number), and the status message itself (a UTF-8 string).

	$PARAMETERS – This variable will contain all parameter flags and
the parameter values that have been selected by the user. It is
recommendedm however, to use $DATAFILE instead of $PARAMETERS.

	$DATAFILE – The absolute path to the data file that CLAM outputs
in the project directory. This data file, in CLAM XML format,
contains all parameters along with their selected values. Furthermore
it contains the inputformats and outputformats, and a listing of
uploaded input files and/or pre-installed corpora. System wrapper
scripts can read this file to obtain all necessary information, and
as such this method is preferred over using $PARAMETERS. If the
system wrapper script is written in Python, the CLAM Data API can be
used to read this file, requiring little effort on the part of the
developer.

	$USERNAME – The username of the logged-in user.

	$PROJECT – The ID of the project

	$OAUTH_ACCESS_TOKEN – The unencrypted OAuth access token [7]_.

Make sure the actual command is an absolute path, or that the executable
is in the $PATH of the user clamservice will run as. Upon
launch, the current working directory will be automatically set to the
specific project directory. Within this directory, there will be an
input/ and output/ directory, but use the full path as stored in
$INPUTDIRECTORY/ and $OUTPUTDIRECTORY/. All uploaded user input
will be in this input directory, and all output that users should be
able to view or download, should be in this output directory. Your
wrapper script and NLP tool are of course free to use any other
locations on the filesystem for whatever other purposes.

Project Paradigm: Metadata, Profiles & Parameters

In order to explain how to build service configuration files for the
tools you want to make into webservices, we first need to clarify the
project paradigm CLAM uses. We shall start with a word about metadata.
Metadata is data about your data, i.e. data about your input and
output files. Take the example of a plain text file: metadata for such a
file can be for example the character encoding the text is in, and the
language the text is written in. Such data is not necessarily encoded
within the file itself, as is also not the case in the example of plain
text files. CLAM therefore builds external metadata files for each input
and output file. These files contain all metadata of the files they
describe. These are stored in the CLAM Metadata XML format, a very
simple and straightforward format. Metadata simply consists of
metadata fields and associated values.

Metadata in CLAM is tied to a particular file format (such as plain text
format, CSV format, etc.). A format defines what kind of metadata it
absolutely needs, but usually still offers a lot of freedom for extra
metadata fields to the service provider, or even to the end user.

When a user or automated client uploads a new input file, metadata is
often not available yet. The user or client is therefore asked to
provide this. In the webapplication a form is presented with all
possible metadata parameters; the system will take care of generating
the metadata files according to the choices made. If the service
provider does not want to make use of any metadata description at all,
then that is of course an option as well, though this may come at the
cost of your service not providing enough information to interact with
others.

In a webservice it is important to define precisely what kind of input
goes in, and what kind of output goes out: this results in a
deterministic and thus predictable webservice. It is also necessary to
define exactly how the output metadata is based on the input metadata,
if that is the case. These definitions are made in so-called profiles.
A profile defines input templates and output templates. The input
templates and output template can be seen as “slots” for certain
filetypes and metadata. An analogy from childhood memory may facilitate
understanding this, as shown and explained in the figure below:

A profile is thus a precise specification of what output files will be
produced given particular input files, and it specifies exactly how the
metadata for the outputfiles can be constructed given the metadata of
the inputfiles. The generation of metadata for output files is fully
handled by CLAM, outside of your wrapper script and NLP application.

Input templates are specified in part as a collection of parameters for
which the user/client is expected to choose a value in the predetermined
range. Output templates are specified as a collection of “metafields”,
which simply assign a value, unassign a value, or copy a value from an
input template or from a global parameter. Through these templates, the
actual metadata can be constructed. Input templates and output templates
always have a label describing their function. Upon input, this provides
the means for the user to recognise and select the desired input
template, and upon output, it allows the user to easily recognise the
type of output file. How all this is specified exactly will be
demonstrated in detail later.

In addition to input files and the associated metadata parameters, there
is another source of data input: global parameters. A webservice may
define a set of parameters that it takes. We will start by explaining
this part in the next section.

Parameter Specification

The global parameters which an NLP application, or rather the wrapper
script, can take, are defined in the service configuration file. These
parameters can be subdivided into parameter groups, but these serve only
presentational purposes.

There are seven parameter types available, though custom types can be
easily added. Each parameter type is a Python class taking the
following mandatory arguments:

	id – An id for internal use only.

	name – The name of this parameter; this will be shown to the
user in the interface.

	description – A description of this parameter, meant for the
end-user.

The seven parameter types are:

	BooleanParameter – A parameter that can only be turned on or
off, represented in the interface by a checkbox. If it is turned on,
the parameter flag is included in $PARAMETERS, if it is turned
off, it is not. If reverse=True is set, it will do the inverse.

	IntegerParameter – A parameter expecting an integer number.
Use minrange=, and maxrange= to restrict the range if
desired.

	FloatParameter – A parameter expecting a float number. Use
minrange=, and maxrange= to restrict the range if desired.

	StringParameter – A parameter taking a string value. Use
maxlength= if you want to restrict the maximum length.

	TextParameter – A parameter taking multiple lines of text.

	
	ChoiceParameter – A multiple-choice parameter. The choices

	must be specified as a list of (ID, label) tuples, in which ID
is the internal value, and label the text the user sees. For
example, suppose a parameter with flag -c is defined.
choices=[(’r’,’red’),(’g’,’green’),(’b’, ’blue)], and the user
selects “green”, then -c g will be added to $PARAMETERS. The default choice can be set with default=,
and then the ID of the choice. If you want the user to be able to
select multiple parameters, you can set the option multi=True.
The IDs will be concatenated together in the parameter value. A
delimiter (a comma by default) can be specified with
delimiter=. If you do not use multi=True, but you do want
all options to be visible in one view, you can set the option
showall=True.

	StaticParameter – A parameter with a fixed immutable value.
This may seem a bit of a contradiction, but it serves a purpose in
forcing a global parameter or metadata parameter to have a specific
non-variable value.

All parameters can take the following extra keyword arguments:

	paramflag – The parameter flag. This flag will be added to
$PARAMETERS when the parameter is set. Consequently, it is
mandatory if you use the $PARAMETERS variable in your COMMAND
definition. It is customary for parameter flags to consist of a
hyphen and a letter or two hyphens and a string. Parameter flags
could for example be formed like: -p ,–pages, –pages=.
There will be a space between the parameter flag and its value,
unless it ends in a = sign or nospace=True is set. Multi-word
string values will automatically be enclosed in quotation marks for
the shell to correctly parse them. Technically, you are also allowed
to specify an empty parameter flag, in which case only the value will
be outputted as if it were an argument.

	default – Set a default value.

	required – Set to True to make this parameter required
rather than optional.

	require – Set this to a list of parameter IDs. If this
parameter is set, so must all others in this list. If not, an error
will be returned.

	forbid – Set this to a list of parameter IDs. If this
parameter is set, none of the others in the list may be set. If not,
an error will be returned.

	allowusers – Allow only the specified lists of usernames to
see and set this parameter. If unset, all users will have access. You
can decide whether to use this option or denyusers, or to allow
access for all.

	denyusers – Disallow the specified lists of usernames to see
and set this parameter. If unset, no users are blocked from having
access. You can decide whether to use this option or allowusers,
or to allow access for all.

	validator – This should be a Python function (or other
callable) taking one argument (the parameter’s value), and returning
either boolean indication whether the value is valid, or a (boolean,
errormsg) tuple.

The following example defines a boolean parameter with a parameter flag:

BooleanParameter(
 id='createlexicon',
 name='Create Lexicon',
 description='Generate a separate overall lexicon?',
 paramflag='-l'
)

Thus, if this parameter is set, the invoked command will have
$PARAMETERS set to -l 1 (plus any additional parameters).

Parameters API

	
class clam.common.parameters.AbstractParameter(id, name, description='', **kwargs)

	This is the base class from which all parameter classes have to be derived.

	
access(user)

	This method checks if the given user has access to see/set this parameter, based on the denyusers and/or allowusers option.

	
allowusers = None

	You can restrict this parameter to only be available to certain users, set the usernames you want to allow here, all others are denied

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
constrainable()

	Should this parameter be used in checking contraints?

	
denyusers = None

	You can restrict this parameter to only be available to certain users, set the usernames you want to deny access here, all others are allowed

	
description = None

	A clear description for this parameter, which the user will see

	
error = None

	If this parameter has any validation errors, this will be set to an error message (by default set to None, meaning no error)

	
static fromxml(node)

	Create a Parameter instance (of any class derived from AbstractParameter!) given its XML description. Node can be a string containing XML or an lxml _Element

	
id = None

	A unique alphanumeric ID

	
name = None

	A representational name for this parameter, which the user will see

	
paramflag = None

	The parameter flag that will be used when this parameter is passed on the commandline (using COMMAND= and $PARAMETERS) (by default set to None)

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
xml(indent='')

	This methods renders an XML representation of this parameter, along with
its selected value, and feedback on validation errors

	
class clam.common.parameters.BooleanParameter(id, name, description='', **kwargs)

	A parameter that takes a Boolean (True/False) value.

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value=True)

	Set the boolean parameter

	
unset()

	

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set(). It typically returns the default None when something is left unset (but that default can be overridden)

	
class clam.common.parameters.ChoiceParameter(id, name, description, **kwargs)

	Choice parameter, users have to choose one of the available values, or multiple values if instantiated with multi=True.

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as -paramflag=value

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(values)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
xml(indent='')

	This methods renders an XML representation of this parameter, along with
its selected value, and feedback on validation errors

	
class clam.common.parameters.FloatParameter(id, name, description='', **kwargs)

	
	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
class clam.common.parameters.IntegerParameter(id, name, description='', **kwargs)

	
	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
class clam.common.parameters.StaticParameter(id, name, description='', **kwargs)

	This is a parameter that can’t be changed (it’s a bit of a contradiction, I admit). But useful for some metadata specifications.

	
class clam.common.parameters.StringParameter(id, name, description='', **kwargs)

	String Parameter, taking a text value, presented as a one line input box

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
validate(value)

	Validate the parameter

	
class clam.common.parameters.TextParameter(id, name, description='', **kwargs)

	Text Parameter, taking a text value, presented as a multiline input box

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

Profile specification

Multiple profiles may be specified, and all profiles are always assumed
to be independent of each other. Dependencies should be together in one
profile, as each profile describes how a certain type of input file is
transformed into a certain type of output file. For each profile, you
need to define input templates and output templates. All matching
profiles are assumed to be delivered as promised. A profile matches if
all input files according to the input templates of that profile are
provided and if it generates output. If no input templates have been
defined at all for a profile, then it will match as well, to allow for
the option of producing output files that are not dependent on input
files. A profile is allowed to mismatch, but if none of the profiles
match, the system will produce an error, as it cannot perform any
actions.

The profile specification skeleton looks as follows. Note that there may
be multiple input templates and/or multiple output templates:

PROFILES = [
 Profile(InputTemplate(...), OutputTemplate(...))
]

The definition for InputTemplate takes three mandatory arguments:

	id – An ID for the InputTemplate. This will be used internally
and by automated clients.

	format – This points to a Format class, indicating the kind of
format that this input template accepts. Formats are defined in
clam/common/formats.py. Custom formats can be added there. Custom
format classes can also be defined in the service configuration
itself, after which you need to add these classes to the
CUSTOM_FORMATS list.

	label – A human readable label for the input template. This is
how it will be known to users in the web application and displayed in
its selection menus.

After the three mandatory arguments, you may specify any of the Parameter types to indicate the accepted/required
metadata for the particular input templates. Use any of the parameter types (see Parameter Specification) . We will come to an
example of this soon.

After specifying any such parameters, there are some possible keyword
arguments:

	unique – Set to True or False; this indicates whether the
input template may be used only once or multiple times.
unique=True is the default if not specified.

	multi – The logical inverse of the above; you can whichever you
prefer. multi=False is the default if not specified.

	filename – Files uploaded through this input template will
receive this filename (regardless of how the original file on the
client is called). If you set multi=True or its alias
unique=False, insert the variable $SEQNR into the filename,
which will be replaced by a number in sequence. After all, we cannot
have multiple files with the same name. As explained in
Control over filenames, you can also use any of
the metadata parameters as variable in the filename.

	extension – Files uploaded through this input template are
expected to have this extension, but can have any filename. Here it
does not matter whether you specify the extension with or without the
prefixing period. Note that in the web application, the extension is
appended automatically regardless of the filename of the source file.
Automated clients do must take care to submit files with the proper
extension right away.

	acceptarchive – This is a boolean which can be set to True if you
want to accept the upload of archives. Uploaded archives will be
automatically unpacked. It is a method to instantly upload multiple
files for the same input template. The file must be in zip, tar.gz
or tar.bz2 format. The files within the archive will be renamed
according to the input template’s specifications if necessary. Using
this option implies that the exact same metadata will be associated
with all uploaded files! This option can only be used in combination
with multi=True. Note that archives can only be uploaded when all
files therein fit the same input template!

Take a look at the following example of an input template for plaintext
documents for an automatic translation system, illustrating of all the
above:

InputTemplate('maininput', PlainTextFormat,
 "Translator input: Plain-text document",
 StaticParameter(
 id='encoding',name='Encoding',
 description='The character encoding of the file',
 value='utf-8'
),
 ChoiceParameter(
 id='language',name='Language',
 description='The language the text is in',
 choices=[('en','English'),('nl','Dutch'),('fr','French')]),
),
 extension='.txt',
 multi=True
)

For OutputTemplate, the syntax is similar. It takes the three
mandatory arguments id, format and label, and it also takes the
four keyword arguments laid out above. If no explicit filename has been
specified for an output template, then it needs to find out what name
the output filename will get from another source. This other source is
the input template that acts as the parent. The output template will
thus inherit the filename from the input template that is its parent. In
this way, the user may upload a particular file, and get that very same
file back with the same name. If you specify extension, it will
append an extra extension to this inherited filename. Prior to appending
an extension, you may often want to remove an existing extension; you
can do that with the removeextension attribute. As there may be
multiple input templates, it is not always clear what input template is
the parent. The system will automatically select the first defined
input template with the same value for unique/multi the output template
has. If this is not what you want, you can explicitly set a parent using
the parent keyword, which takes the value of the input template’s
ID.

Whereas for InputTemplate you can specify various parameter types,
output templates work differently. Output templates define what metadata
fields (metafields for short) they want to set with what values, and
from where to get these values. In some situations the output file is an
extension of the input file, and you want it to inherit the metadata
from the input file. Set copymetadata=True to accomplish this: now
all metadata will be inherited from the parent, but you can still make
modifications.

To set (or unset) particular metadata fields you specify so-called
“metafield actors”. Each metafield actor sets or unsets a particular
metadata attribute. There are four different types of metafield actors:

	SetMetaField (key,value) – Set metafield key to the specified
value.

	
	UnsetMetaField (key[,value]) – If a value is specified: Unset

	this metafield if it has the specified value. If no value is
specified: Unset the metafield regardless of value. This only makes
sense if you set copymetadata=True.

	CopyMetaField (key, inputtemplate.key) – Copy metadata from one of
the input template’s metadata. Here inputtemplate is the ID of one
of the input templates in the profile, and the key part is the
metadata field to copy. This allows you to combine metadata from
multiple input sources into your output metadata.

	ParameterMetaField (key, parameter-id) – Get the value for this
metadata field from a global parameter with the specified ID.

Take a look at the following example for a fictitious automatic
translation system, translating to Esperanto. If an input file x.txt
is uploaded, the output file will be named x.translation.

OutputTemplate('translationoutput', PlainTextFormat,
 "Translator output: Plain-text document",
 CopyMetaField('encoding','maininput.encoding')
 SetMetaField('language','eo'),
 removeextension='.txt',
 extension='.translation',
 multi=True
)

Putting it all together, we obtain the following profile definition
describing a fictitious machine translation system from English, Dutch
or French to Esperanto, where the system accepts and produces UTF-8
encoded plain-text files.

PROFILES = [
 Profile(
 InputTemplate('maininput', PlainTextFormat,
 "Translator input (Plain-text document)",
 StaticParameter(
 id='encoding',name='Encoding',
 description='The character encoding of the file',
 value='utf-8'
),
 ChoiceParameter(
 id='language',name='Language',
 description='The language the text is in',
 choices=[('en','English'),('nl','Dutch'),('fr','French')]
),
 extension='.txt',
 multi=True
),
 OutputTemplate('translationoutput', PlainTextFormat,
 "Esperanto translation (Plain-text document)",
 CopyMetaField('encoding','maininput.encoding')
 SetMetaField('language','eo'),
 removeextension='.txt',
 extension='.translation',
 multi=True
)
)
]

Control over filenames

There are several ways of controlling the way input and output files
within a profile are named. As illustrated in the previous section, each
output template has an input template as its parent, from which it
inherits the filename if no explicit filename is specified. This is a
very important aspect that has to be considered when building your
profiles. By default, if no filename=, extension= or
removeextension= is specified for an output template, it will use
the same filename as the parent input template. If filename= and
extension= are not specified for the Input Template, then the file
the user uploads will simply maintain the very same name as it is
uploaded with. If extension= is specified, the input file is
required to have the specified extension, the web application and CLAM
Client API takes care of this automatically if this is not the case.

In a previous section, we mentioned the use of the variable $SEQNR
that will insert a number in the filename when the input template or
output template is in multi-mode. In addition to this, other variables
can also be used. Here is an overview:

	$SEQNR - The sequence number of the file. Valid only if
unique=True or multi=False.

	$PROJECT - The ID of the project.

	$INPUTFILENAME - The filename of the associated input file. Valid
only in Output Templates.

	$INPUTSTRIPPEDFILENAME - The filename of the associated input
file without any extensions. Valid only in Output Templates.

	$INPUTEXTENSION - The extension of the associated input file
(without the initial period). Valid only in Output Templates.

Other than these pre-defined variables by CLAM, you can use any of the
metadata parameters as variables in the filename, for input templates
only. To this end, use a dollar sign followed by the ID of the parameter
in the filename specification. For Output Templates, you can use
metafield IDs or global parameter IDs (in that order of priority) in the
same way. This syntax is valid in both filename= and extension=.

The following example illustrates a translation system that encodes the
character encoding and language in the filename itself. Note also the
use of the special variable $SEQNR, which assigns a sequence number
as the templates are both in multi mode.

PROFILES = [
 Profile(
 InputTemplate('maininput', PlainTextFormat,
 "Translator input (Plain-text document)",
 StaticParameter(
 id='encoding',name='Encoding',
 description='The character encoding of the file',
 value='utf-8'
),
 ChoiceParameter(
 id='language',name='Language',
 description='The language the text is in',
 choices=[('en','English'),('nl','Dutch'),('fr','French')]
),
 filename='input$SEQNR.$language.$encoding.txt'
 multi=True
),
 OutputTemplate('translationoutput', PlainTextFormat,
 "Esperanto translation (Plain-text document)",
 CopyMetaField('encoding','maininput.encoding')
 SetMetaField('language','eo'),
 filename='output$SEQNR.$language.$encoding.txt'
 multi=True
)
)
]

In addition to variables that refer to global or local parameters. There
are some additional variables set by CLAM which you can use:

	$PROJECT - Is set to the project ID.

	$INPUTFILE - Is set to the project ID.

Parameter Conditions

It is not always possible to define all output templates straight away.
Sometimes output templates are dependent on certain global parameters.
For example, given a global parameter that toggles the generation of a
lexicon, you want to include only the output template that describes
this lexicon, if the parameter is enabled. CLAM offers a solution for
such situations using the ParameterCondition directive.

Assume you have the following global parameter:

BooleanParameter(
 id='createlexicon',name='Create Lexicon',
 description='Create lexicon files',
)

We can then turn an output template into an output template conditional
on this parameter using the following construction:

ParameterCondition(createlexicon=True,
 then=OutputTemplate('lexiconoutput', PlainTextFormat,
 "Lexicon (Plain-text document)",
 unique=True
)
)

The first argument of ParameterCondition is the condition. Here you use
the ID of the parameter and the value you want to check against. The
above example illustrates an equality comparison, but other comparisons
are also possible. We list them all here:

	ID=value – Equality; matches if the global parameter with the
specified ID has the specified value.

	ID_equals=value – Same as above, the above is an alias.

	ID_notequals=value – The reverse of the above, matches if the
value is not equal

	ID_lessthan=number – Matches if the parameter with the specified
ID is less than the specified number

	ID_greaterthan=number – Matches if the parameter with the
specified ID is greater tha then specified number

	ID_lessequalthan=number – Matches if the parameter with the
specified ID is equal or less than the specified number

	ID_greaterequalthan=number – Matches if the parameter with the
specified ID is equal or greater than the specified number

After the condition you specify then= and optionally also else=,
and then you specify an OutputTemplate or yet another
ParameterCondition — they can be nested at will.

Parameter conditions cannot only be used for output templates, but also
for metafield actors, inside the output template specification. In other
words, you can make metadata fields conditional on global parameters.

Parameter conditions cannot be used for input templates, for the simple
reason that in CLAM the parameters are set after the input files are
uploaded. However, input templates can be optional, by setting
optional=True. This means that providing such input files is
optional. This also implies that any output templates that have this
optional input template as a parent are also conditional on the presence
of those input files.

Converters

Users do not always have their files in the format you desire as input,
and asking users to convert their data may be problematic. Similarly,
users may not always like the output format you offer. CLAM therefore
introduces a converter framework that can do two things:

	Convert input files from auxiliary formats to your desired format,
upon upload;

	Convert output files from your output format to auxiliary formats.

A converter, using the above-mentioned class names, can be included in
input templates (for situation 1), and in output templates (for
situation 2). Include them directly after any Parameter fields or
Metafield actors.

It is important to note that the converters convert only the files
themselves and not the associated metadata. This implies that these
converters are intended primarily for end users and not as much for
automated clients.

For most purposes, you will need to write your own converters. These are
to be implemented in clam/common/converters.py and derived off AbstractConverter. Some converters
however will be provided out of the box. Note that the actual conversion
will be performed by 3rd party software in most cases.

	MSWordConverter – Convert MS Word files to plain text. This
converter uses the external tool catdoc [http://www.wagner.pp.ru/~vitus/software/catdoc/] by default and will only
work if installed.

	PDFConverter – Convert PDF to plain text. This converter uses the
external tool pdftohtml [http://pdftohtml.sourceforge.net/] by default and will only work if installed.

	CharEncodingConverter – Convert between plain text files in
different character encodings.

Note that specific converters take specific parameters; consult the API
reference for details.

Viewers

Viewers are intended for human end users, and enable visualisation of a
particular file format. CLAM offers a viewer framework that enables you
to write viewers for your format. Viewers may either be written within
the CLAM framework, using Python, but they can also be external
(non-CLAM) webservices, hosted elsewhere. Several simple viewers for
some formats are provided already; these are defined in viewers.py and derived off AbstractViewer.

Viewers can be included in output templates. Include them directly after any metafield actors. The first viewer you
define will be the default viewer for that particular output template, unless you set allowdefault=False on the viewer.

The below example illustrates the use of the viewer
SimpleTableViewer, capable of showing CSV files:

OutputTemplate('freqlist',CSVFormat,"Frequency list",
 SimpleTableViewer(),
 SetMetaField('encoding','utf-8'),
 extension='.patterns.csv',
)

Another useful viewer is the ForwardViewer. It forwards the viewing request to a remote service and passes a
backlink where the remote service can download the output file without further authentication. Users are taken
directly to the remote service, that is, their browsers/clients are directly redirected to the specified URL. To have
CLAM itself invoke the URL, you have to set indirect=True on the Forwarder, in that case CLAM will invoke the remote
URL itself and the remote service is expected to return a HTTP 302 Redirect response which CLAM will subsequently
invoke.

OutputTemplate('freqlist',CSVFormat,"Frequency list",
 ForwardViewer(
 Forwarder(id="some_remote_service",name="Some Remote Frequency List Viewer"),
 url="https://remote.service.com/?download=$BACKLINK")),
 SetMetaField('encoding','utf-8'),
 extension='.patterns.csv',
)

The $BACKLINK variable will be replaced by CLAM by the actual URL where the resource can be obtained. By default,
this is a one time download link that uses a temporary storage that does not require authentication, circumventing user
delegation problems. This is safe as long as all communication is encrypted, i.e. over HTTPS. If you don’t want this
behaviour, pass tmpstore=False on the Forwarder.

Other variables are also available, such as $MIMETYPE. You can reference any associated parameters using their ID in uppercase, so in this example you would have the variable $ENCODING available as well. All variables will be url encoded by default, if you don’t want this, pass encodeurl=False to the Forwarder.

You can also use forwarders globally to redirect all output as an archive (zip/tar.gz/tar.bz2), see Forwarders.

Viewer API

	
class clam.common.viewers.AbstractViewer(**kwargs)

	
	
id = 'abstractviewer'

	

	
mimetype = 'text/html'

	

	
name = 'Unspecified Viewer'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
xml(indent='')

	

	
class clam.common.viewers.FLATViewer(**kwargs)

	
	
id = 'flatviewer'

	

	
name = 'Open in FLAT'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.FoLiAViewer(**kwargs)

	
	
id = 'foliaviewer'

	

	
name = 'FoLiA Viewer'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.ForwardViewer(id, name, forwarder, **kwargs)

	The ForwardViewer calls a remote service and passes a backlink where the remote service can download an output file and immediately visualise it. An extra level of indirection is also supported if keyword parameter indirect=True is set on the constructor, in that case only CLAM will call the remote service and the remote service is in turn expected to return a HTTP Redirect (302) response. It is implemented as a Forwarder. See Forwarders

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.ShareViewer(**kwargs)

	
	
id = 'shareviewer'

	

	
name = 'Share this file'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.SimpleTableViewer(**kwargs)

	
	
id = 'tableviewer'

	

	
name = 'Table viewer'

	

	
read(file)

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.SoNaRViewer(**kwargs)

	
	
id = 'sonarviewer'

	

	
name = 'SoNaR Viewer'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

	
class clam.common.viewers.XSLTViewer(**kwargs)

	
	
id = 'xsltviewer'

	

	
name = 'XML Viewer'

	

	
view(file, **kwargs)

	Returns the view itself, in xhtml (it’s recommended to use flask’s template system!). file is a CLAMOutputFile instance (or a StringIO object if invoked through an action). By default, if not overriden and a remote service is specified, this issues a GET to the remote service.

In this context kwargs[‘baseurl’] should be available, pointing to the base URL of the webservice (including URL prefix).

Forwarders

To allow users to forward all output from one webservice to another, you can use Forwarders. The forwarder calls a
remote service and passes a backlink where the remote service can download the output file once, without further
authentication (by default). Users are taken directly to the remote service, that is, their browsers/clients are
directly redirected to the specified URL. To have CLAM itself invoke the URL, you have to set indirect=True on the
Forwarder, in that case CLAM will invoke the remote URL itself and the remote service is expected to return a HTTP 302
Redirect response which CLAM will subsequently invoke.

FORWARDERS = [
 Forwarder(id="some_remote_service",name="Some Remote service",type="zip", description="",
 url="https://remote.service.com/?downloadarchive=$BACKLINK"
)
]

The $BACKLINK variable will be replaced by CLAM by the actual URL where the resource can be obtained. By default,
this is a one time download link that uses a temporary storage that does not require authentication, circumventing user
delegation problems. This is safe as long as all communication is encrypted, i.e. over HTTPS. If you don’t want this
behaviour, pass tmpstore=False on the Forwarder. Other variables are also available, such as $MIMETYPE. All
variables will be url encoded by default, if you don’t want this, pass encodeurl=False to the Forwarder.

Note

	Forwarders can also be used as viewers for individual files. See Viewers

	A forwarder does NOT perform any upload, it just passes a download link to a service, the remote.

Input Sources: Working with pre-installed data

Rather than letting users upload files, CLAM also offers the possibility
of pre-installing input data on the server. This feature is ideally
suited for dealing with data for a demo, or for offering a selection of
pre-installed corpora that are too big to transfer over a network.
Furthermore, pre-installed data is also suited in situations where you
want the user to be able to choose from several pre-installed resources,
such as lexicons, grammars, etc., instead of having to upload files they
may not have available.

Pre-installed data sources are called “input sources” in CLAM, not to be
confused with input templates. Input sources can be specified either in
an input template, or more globally.

Take a look at the following example:

InputTemplate('lexicon', PlainTextFormat,"Input Lexicon",
 StaticParameter(id='encoding',name='Encoding',
 description='Character encoding',
 value='utf-8'),
 ChoiceParameter(id='language',name='Language',
 description='The language the text is in',
 choices=[('en','English'),('nl','Dutch'),('fr','French')]),
 InputSource(id='lexiconA', label="Lexicon A",
 path="/path/to/lexiconA.txt",
 metadata=PlainTextFormat(None, encoding='utf-8',language='en')
),
 InputSource(id='lexiconB', label="Lexicon B",
 path="/path/to/lexiconB.txt",
 metadata=PlainTextFormat(None, encoding='utf-8',language='en')
),
 onlyinputsource=False
)

This defines an input template for some kind of lexicon, with two
pre-defined input sources: “lexicon A” and “lexicon B”. The user can
choose between these, or alternatively upload a lexicon of his own. If,
however, onlyinputsource is set to True, then the user is forced
to choose only from the input sources, and cannot upload his own
version.

Metadata can be provided either in the inputsource configuration, or by
simply adding a CLAM metadata file alongside the actual file. For the
file , the metadata file would be (note the initial period; metadata
files are hidden).

Input sources can also be defined globally, and correspond to multiple
files, i.e. they point to a directory containing multiple files instead
of pointing to a single file. Let us take the example of a spelling
correction demo, in which a test set consisting out of many text
documents is the input source:

INPUTSOURCES = [
 InputSource(id='demotexts', label="Demo texts",
 path="/path/to/demotextdir/",
 metadata=PlainTextFormat(None, encoding='utf-8',
 language='en'),
 inputtemplate='maininput',
),
]

In these cases, it is essential to set the inputtemplate= parameter.
All files in the directory must be formatted according to this input
template. Adding input sources for multiple input templates is done by
simply defining multiple input sources.

Constraints and Validation

It is possible to define additional constraints on input templates, because often it is not enough to know the format
but you need more specific information about it that can be extracted from the file itself. Examples of such information
are dimensions and colour depth for images, bitrate and duration for sound clips.

These constaints are evaluated during validation of the input file, and can only be done if there is a validator
implemented in the format class you are using. Aside from validating the validity of the file, the validator therefore
also has the job to extract metadata from the file itself and make it available to CLAM (including it in the metadata
assembled). Only then, constraints begin to play a role, as you can now constrain on inferred metadata rather than
explicitly supplied input parameters.

To actual keys you can use depends on the attributes defined by the format. Consider the following example which accepts
FoLiA documents but requires that they are at least in version 2.0 or above:

InputTemplate('inputdoc', FoLiAXMLFormat,"Input Document",
 RequireMeta(version_greaterthan="2.0"),
 extension=".folia.xml"
)

If you want to add multiple constraints, add multiple RequireMeta or ForbidMeta statements. If you specify
multiple keyword arguments, they are treated as a disjunction, and the constraint will trigger if any of them test
positively.

The keyword arguments for constraints consist may contain one of the following operators, as indicated by their suffix.
They are analogous to the ones used in Parameter Conditions.

	_equals (the default one if there is no operator suffix)

	_notequals

	_greaterthan

	_greaterequalthan

	_lessthan

	_lessequalthan

	_in - Checks if the value is in a list (a list in the pythonic sense)

	_incommalist - Checkes if the value is in a comma separated string

	_inspacelist - Checkes if the value is in a space separated string

If you want to implement a validator for your custom format (a subclass of CLAMMetaData), you need to overload and
implement its validator() method.

Multiple profiles, identical input templates

It is possible and sometimes necessary to define more than one profile.
Recall that each profile defines what output will be generated given
what input, and how the metadata is translated. Multiple profiles come
into the picture as soon as you have a disjunction of possible inputs.
Imagine a spelling check system that can take either plain text as
input, or a kind of XML file. In this situation you have two profiles;
one for the plain-text variant, and one for the XML variant.

Now suppose there is another kind of mandatory input, a lexicon against
which spell checking occurs, that is relevant for both profiles, and
exactly the same for both profiles. In such circumstances, you could
simply respecify the full input template, with the same ID as in the
other profile. The most elegant solution however, is to instantiate the
input template in a variable, prior to the profile definition, and then
use this variable in both profiles.

Although you can specify multiple profiles, only one profile can match per project run, and there should be no
ambiguity.

Customising the web interface

The CLAM web application offers a single uniform interface for all kinds
of services. However, a certain degree of customisation is possible. One
thing you may want is to include more HTML text on the pages, possibly
enriched with images and hyperlinks to external sites. It is an ideal
way to add extra instructions for your users. You may do so using the
following variables in the service configuration file:

	CUSTOMHTML_INDEX - This text will be included in the index view,
the overview of all projects.

	CUSTOMHTML_PROJECTSTART - This text will be included in the
project view where the user can upload files and select parameters.

	CUSTOMHTML_PROJECTDONE - This text will be included in the
project view when the project is done and output is ready to be
viewed/downloaded.

	CUSTOMHTML_PROJECTFAILED - This text will be included in the
project view when an error occurred while running the project

	CUSTOMCSS - This may hold custom CSS styling hat will be applied to the interface.

As the HTML text will be embedded on the fly, take care not to include
any headers. Only tags that go within the HTML body are permitted!
Always use the utf-8 encoding and well-formed xhtml syntax.

The web interface also support a cover image, which is an image at the head of the website. You can specify such an
image in SYSTEM_COVER_URL.

A second kind of customisation is customisation of the style, which can be achieved by creating new CSS themes. CLAM
gets shipped with the default “classic” style (which did receive a significant overhaul in CLAM 0.9 and again with CLAM
3.0). Copy, rename and adapt style/classic.css to create your own style. And set STYLE accordingly in your
service configuration file. The STYLE may also refer to an absolute path of a CSS file to include.

In your service configuration file you can set a variable
INTERFACEOPTIONS; this string is a space-separated list in which you
can use the following directives to customise certain aspects of the
web-interface:

	simpleupload – Use the simple uploader instead of the more
advanced javascript-based. The simple uploader does not support
multiple files but does provide full HTTP Digest Security whereas the
default and more advanced uploader relies on a less sophisticated
security mechanism.

	simplepolling – Uses a simpler polling mechanism in the stage in
which CLAM awaits the completion of a process. This method simply
refreshes the page periodically, while the default method is
asynchronous but relies on a less sophisticated security mechanism.

	secureonly – Equals to simpleupload and simplepolling,
forcing only methods that fully support HTTP Digest Authentication.

	disablefileupload – Disables the file uploader in the interface
(do note that this is merely cosmetic and not a security mechanism,
the RESTful webservice API will continue to support file uploads).

	inputfromweb – Enables downloading an input file from the web (do
note that this is merely cosmetic and not a security mechanism, the
RESTUL webservice API always supports this regardless of visibility
in the interface).

	disableliveinput – Disables adding input through the live
in-browser editor.

	preselectinputtemplate – Pre-select the first defined input
template as default inputtemplate, even if there are multiple input templates.

	centercover - Center the cover image horizontally.

	coverheight64, coverheight100, coverheight128, coverheight192 - Sets the height of the cover imag
(alternatively you can use the CUSTOMCSS setting and do it yourself)

Actions

A simple remote procedure call mechanism is available in addition to the more elaborate project paradigm.

This action paradigm allows you to specify actions, each action allows
you to tie a URL to a script (command) or Python function, and may take a number
of parameters you explicitly specify. Each action is strictly
independent of other actions, and completely separate of the projects,
and by extension also of any files within projects and any profiles.
Unlike projects, which may run over a long time period and are suited
for batch processing, actions are intended for real-time communication.
Typically they should return an answer in at most a couple of seconds.

Actions are specified in the service configuration file in the
ACTIONS list. Consider the following example:

ACTIONS = [
 Action(id='multiply',name="Multiplier",
 description="Multiply two numbers",
 command="/path/to/multiply.sh $PARAMETERS",
 mimetype="text/plain",
 tmpdir=False,
 parameters=[
 IntegerParameter(id='x',name="Value 1"),
 IntegerParameter(id='y',name="Value 2"),
])
]

The ID of the action determines on what URL it listens. In this case the
URL will be /actions/multiply/, relative to the root of your
service. The name and display are for presentational purposes in the
interface.

Actions will show in the web-application interface on the index page.

In this example, we specify two parameters, they will be passed in the order
they are defined to the script. The command to be called is configured
analagous to COMMAND, but only a subset of the variables are supported. The
most prominent is the $PARAMETERS variable. Note that you can set
paramflag on the parameters to pass them with an option flag. String
parameters with spaces will work without problem (be ware that shells do have a
maximum length for all parameters combined). Actions do not have the notion of
the CLAM XML datafile that wrapper scripts in the project paradigm can use, so
passing command-line parameters is the only way here.

It may, however, not even be necessary to invoke an external script.
Actions support calling Python functions directly. Consider the
following trivial Python function for multiplication:

def multiply(a,b):
 return a * b

You can define functions in the service configuration file itself, or
import it from elsewhere. We can now use this as an action directly:

ACTIONS = [
 Action(id='multiply',name="Multiplier",
 description="Multiply two numbers",
 function=multiply,mimetype="text/plain"
 parameters=[
 IntegerParameter(id='x',name="Value 1"),
 IntegerParameter(id='y',name="Value 2"),
])
]

Again, the parameters are passed in the order they are specified,
irregardless of their names. If you want to pass them as keyword arguments instead you can do so by setting
parameterstyle="keywords". A mismatch in parameters will result in an
error as soon as you try to use the action. All parameters will always
be validated prior to calling the script or function.

When an action completes, the standard output of the script or the
return value [13]_ of the function is returned to the user directly (as
HTTP 200) and as-is. It is therefore important to specify what MIME type
the user can expect, the default is text/plain, but for many
applications text/html, text/xml or application/json may be
more appropriate.

Alternatively, you can also associate viewers with an action, just like with output templates. In the interface, a user
may then select one (or none) of those viewers to use for presenting the output.

By default, actions listen to both GET and POST requests. You may
constrain it explicitly by specifying method="GET" or
method="POST".

When a script is called, CLAM looks at its return code to determine
whether execution was successful (\(0\)). If not, CLAM will return
the standard error output in a “HTTP 500 – Internal Server Error” reply.
If you define your own errors and return standard output in an HTTP
403 reply, use return code \(3\); for standard output in an HTTP 404
reply, use return code \(4\). These are just defaults, all return
codes are configurable through the keyword arguments returncodes200,
returncodes403, returncodes404, each being a list of integers.

When using Python functions, exceptions will be caught and returned to
the end-user in a HTTP 500 reply (without traceback). For custom
replies, Python functions may raise any instance of
web.webapi.HTTPError.

If the action invokes a script that outputs temporary files, you may set
tmpdir=True, this will create a temporary directory for the duration
of the action, which will be used as current working directory when the
action runs. It will be automatically removed when the action ends. You
may also explicitly pass this directory to the script you invoke with
command= using the $TMPDIRECTORY variable.

If you enabled an authentication mechanism, as is recommended, it
automatically applies to all actions. It is, however, possible to exempt
certain actions from needing authentication, allowing them to serve any
user anonymously. To do so, add the keyword argument
allowanonymous=True to the configuration of the action.

If you want to use only actions and disable the project paradigm
entirely, set the following in your service configuration file:

COMMAND = None
PROFILES = []
PARAMETERS = []

External Configuration Files

Since CLAM 2.3, you can define part of your webservice configuration in external YAML configuration files. In your
normal service configuration file you then place a call to loadconfig(__name__). This will automatically search for
external configuration files and includes any variables defined therein just as if they were defined directly. The power
of this mechanism lies in the fact that it allows you to load a different external configuration file for hosts,
allowing you to deploy your CLAM service on multiple hosts without changing the core of the service configuration.

The use of external configuration files is recommend and is also the
default if you create new projects with clamnewproject.

The procedure is as follows, CLAM’s loadconfig() function will
attempt to search for a file named as follows, in the following order:

	$CONFIGFILE - If this environment variable is set, the exact file
specified therein will be the file to load. This should be an
absolute path reference rather than just a filename.

	$SYSTEM_ID.$HOSTNAME.yml - Here SYSTEM_ID must have been defined
in the regular service configuration file, prior to calling
loadconfig(), $HOSTNAME is the autodetected hostname of the
system CLAM is running on.

	$SYSTEM_ID.config.yml

	$HOSTNAME.yml

	config.yml - Note that this filename does not contain any
variable components, so it’s a final catch-all solution.

CLAM will look in the following directories:

	The current working directory (so depends on how CLAM was started)

	The directory where the regular service configuration file exists

An example of a simple external configuration file in YAML syntax is:

root: /var/wwwdata/myservice
hostname: myhost
urlprefix: myservice

All field names will be automatically uppercased for CLAM (so
root here becomes ROOT).

A simple form of templating is supported to refer to environment
variables. Enclose the environment variable in double curly braces (no
spaces).

You can define any variable, but the external configuration file is
meant for host-specific configuration only; it can not be used to
specify a full CLAM profile so is never a full substitute for the main
service configuration file.

It is even possible to include other external configuration files from the external configuration itself:

include: /path/to/other.yml

or multiple:

include: ["/path/to/other.yml", "/path/to/other2.yml"]

External configuration files may refer to standard environment variables by refering to them in curly braces:

root: "{{ROOT}}"

If the variable does not exist or is empty, it will not be set alltogether. If you want to force a hard error message
instead, add an exclamation mark:

root: "{{ROOT!}}"

Alternatively, you can specify a default value as follows:

root: "{{ROOT=/tmp/data}}"

It is also possible to typecast variables using the functions int, bool, float or json, this is done using the
pipe character immediately after the variable name (before any of the previously mentioned options):

number: "{{NUMBER|int}}"

Wrapper script

Service providers are encouraged to write a wrapper script that acts as
the glue between CLAM and the NLP Application(s). CLAM will execute the
wrapper script, and the wrapper script will in turn invoke the actual
NLP Application(s). Using a wrapper script offers more flexibility than
letting CLAM directly invoke the NLP Application, and allows the NLP
Application itself to be totally independent of CLAM.

When CLAM starts the wrapper script, it creates a clam.xml file containing the selection of parameters and input
files provided by the user. It call the wrapper script with the arguments as specified in COMMAND in
the serviceconf. There are some important things to take into account:

	All user-provided input has to be read from the specified input
directory. A full listing of this input will be provided in the
clam.xml data file. If you choose not to use this, but use
$PARAMETERS instead, then you must take care that your
application can identify the file formats by filename, extension or
otherwise.

	All user-viewable output must be put in the specified output
directory. Output files must be generated in accordance with the
profiles that describe this generation.

	The wrapper should periodically output a small status message to
$STATUSFILE. While this is not mandatory, it offers valuable
feedback to the user on the state of the system.

	The wrapper script is always started with the current working
directory set to the selected project directory.

	Wrapper scripts often invoke the actual application using some kind
of system() call. Take care never to pass unvalidated user-input
to the shell! This makes you vulnerable for code injection attacks.
The CLAM Data API offers the function
clam.common.data.shellsafe() to help protect you.

The wrapper script can be written in any language. Python developers
will have the big advantage that they can directly tie into the CLAM
Data API, which handles things such as reading the clam.xml data
file, makes all parameters and input files (with metadata) directly
accessible, and offers a function to protect your variables against code
injection when passing them to the shell. Using the Python for your
wrapper is therefore recommended.

If you used clamnewproject to begin your new clam service, two
example wrapper scripts will have been created for you, one in Python
using the CLAM Data API, and one using bash shell script. Choose one.
These generated scripts are heavily commented to guide you in setting
your wrapper script up. This documentation will add some further
insights.

Data API

The key function of CLAM Data API is to parse the CLAM XML Data file
that the clam webservice uses to communicate with clients. This data is
parsed and all its components are made available in an instance of a
CLAMData class.

Suppose your wrapper script is called with the following command
definition:

COMMAND = "/path/to/wrapperscript.py $DATAFILE $STATUSFILE $OUTPUTDIRECTORY"

Your wrapper scripts then typically starts in the following fashion:

import sys
import clam.common.data

datafile = sys.argv[1]
statusfile = sys.argv[2]
outputdir = sys.argv[3]

clamdata = clam.common.data.getclamdata(datafile)

The first statements parse the command line arguments. The last
statement returns a CLAMData` instance, which contains all data your
wrapper might need, representing the state of the project and all user
input. It is highly recommended to read the API reference for CLAMData. A few of the attributes available are:

	clamdata.system_id

	clamdata.project

	clamdata.user

	clamdata.status

	clamdata.parameters

	clamdata.input

	clamdata.program

Any global parameters set by the user are available from the
clamdata instance, by using it like a Python dictionary, where the
keys correspond to the Parameter ID:

parameter = clamdata['parameter_id']

The CLAM API also has facilities to use a status file to relay progress
feedback to the web-interface. Using it is as simple as importing the
library and writing messages at strategic points during your program’s
execution:

import clam.common.status
clam.common.status.write(statusfile, "We are running!")

Progress can also be expressed through an additional completion
parameter, holding a value between \(0\) and \(1\). The
web-application will show a progress bar if such information is
provided:

clam.common.status.write(statusfile,
 "We're half way there! Hang on!", 0.5)

If you have a specific input file you want to grab, you may obtain it
from your clamdata instance with :meth:`CLAMData.inputtemplate:

inputfile = clamdata.inputfile('some-inputtemplate-id')
inputfilepath = str(inputfile)

The variable inputfile in the above example is an instance of CLAMFile, inputfilepath in the above
example will contain the full path to the file that was uploaded by the user for the specified input template.

Once you have a file, you can easily obtain any associated metadata
parameters in a dictionary-like fashion, for instance:

author = inputfile.metadata['author']

When you have multiple input files, you may want to iterate over all of
them. The name of the inputtemplate can be obtained from the metadata:

for inputfile in clamdata.input:
 inputfilepath = str(inputfile)
 inputtemplate = inputfile.metadata.inputtemplate

The core of your wrapper script usually consists of a call to your
external program. In Python this can be done through os.system().
Consider the following fictitious example of a program that translates
an input text to the language specified by a global parameter.

os.system("translate -l " + clamdata['language'] + " " + \
 str(clamdata.inputfile('sourcetext')) + \
 + " > " + outputdir + "/output.txt"))

However, at this point you need to be aware of possible malicious use,
and make sure nobody can perform a code injection attack. The key here
is to never pass unvalidated data obtained from user-input directly to
the shell. CLAM’s various parameters have their own validation options;
the only risk left to mitigate is that of string input. If the global
parameter language would be a free string input field, a user may
insert malicious code that gets passed to the shell. To prevent this,
use the shellsafe() function from the CLAM Data API.

shellsafe = clam.common.data.shellsafe #just a shortcut

os.system("translate -l " + shellsafe(clamdata['language'],"'") + \
 " " + \
 shellsafe(str(clamdata.inputfile('sourcetext')),'"') + \
 " > " + shellsafe(outputdir + "/output.txt")))

Each variable should be wrapped in shellsafe. The second argument to
shellsafe expresses whether to wrap the variable in quotes, and if so,
which quotes. Quotes are mandatory for values containing spaces or other
symbols otherwise forbidden. If no quotes are used, shellsafe does more
stringent checks to prevent code injection. A Python exception is raised
if the variable is not deemed safe, and the shell will not be invoked.
CLAM itself will detect and produce an error log.

Program

A program (programme) describes exactly what output files will be
generated on the basis of what input files. It is the concretisation of
the profiles. Profiles specify how input relates to output in a generic
sense, using input and output templates. The program lists what exact
output files will be generates, with filenames, on the basis of exactly
which input files. The program is a read-only construct generated from
the profiles and the input. It is present in the CLAM XML response, the
clam XML data file, and accessible to your wrapper script.

Keep in mind that this method allows you to iterate over the output
files prior to their actual creation. Because it contains exact
information on output and input files. It is the most elegant method to
set up your wrapper script, avoiding any duplication of file names and
allowing your wrapper to be set up in a filename agnostic way.

In the following example. We obtain all output files and corresponding
output templates using the CLAMData.getoutputfiles(). For each output file,
we can request the input files (and corresponding input templates) using
the CLAMData.getinputfiles().

Consider the following example that simply concatenates all input texts
(input template inputtext) to a single output text (output template
outputtext) using the unix cat tool:

for outputfile, outputtemplate in clamdata.program.getoutputfiles():
 outputfilepath = str(outputfile)
 if outputtemplate == 'outputtext':
 inputfiles_safe = ""
 for inputfile, inputtemplate in clamdata.program.getinputfiles(outputfilename):
 inputfilepath = str(inputfile)
 if inputtemplate == 'inputtext': #check is a bit obsolete in this case
 inputfiles_safe += " " + shellsafe(inputfilepath)
 if inputfiles_safe:
 os.system("cat " + inputfiles_safe + " > " + shellsafe(outputfilepath))

The outputfile and inputfile variables are again instances of CLAMFile.
Their metadata parameters can be accesses through
outputfile.metadata[’parameter_id’] and
inputfile.metadata[’parameter_id’].

Examples

Some example webservice configuration files and wrapper scripts are
included in clam/config and clam/wrappers respectively, often
similarly named.

One notable examples that are heavily commented:

	textstats – A simple text statistics/frequency list example for
CLAM. It is a portable sample that has no external dependencies, the
implementation is pure Python and done entirely in the wrapper
script.

Some real-life CLAM webservice can be found in https://github.com/proycon/clamservices

Data API Reference

	
class clam.common.data.AbstractConverter(id, **kwargs)

	
	
acceptforinput = []

	

	
acceptforoutput = []

	

	
convertforinput(filepath, metadata)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file. ‘filepath’ is both the source and the target file, the source file will be erased and overwritten with the conversion result!

	
convertforoutput(outputfile)

	Convert from one of the source formats into target format. Relevant if converters are used in OutputTemplates. Sourcefile is a CLAMOutputFile instance.

	
label = '(ERROR: label not overriden from AbstractConverter!)'

	

	
class clam.common.data.AbstractMetaField(key, value=None)

	This abstract class is the basis for derived classes representing metadata fields of particular types. A metadata field is in essence a (key, value) pair. These classes are used in output templates (described by the XML tag meta). They are not used by CLAMMetaData

	
static fromxml(node)

	Static method returning an MetaField instance (any subclass of AbstractMetaField) from the given XML description. Node can be a string or an etree._Element.

	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(operator='set', indent='')

	Serialize the metadata field to XML

	
class clam.common.data.Action(*args, **kwargs)

	This action paradigm allows you to specify actions, each action allows
you to tie a URL to a script or Python function, and may take a number
of parameters you explicitly specify. Each action is strictly
independent of other actions, and completely separate of the projects,
and by extension also of any files within projects and any profiles.
Unlike projects, which may run over a long time period and are suited
for batch processing, actions are intended for real-time communication.
Typically they should return an answer in at most a couple of seconds.i

Positional Arguments:

	a Parameter instance or a Viewer instance.

Keyword arguments:

	id - The ID of the action (mandatory)

	name - A human readable name, used in the interface

	description - A human readable description of the action, used in the interface

	command - The command to run, this is analogous to the COMMAND in the service configuration file and may contain parameters (most notably $PARAMETERS)

	function - The python function to call (use either this or command)

	parameters - List of parameter instances. By defailt, they will be passed in the order defined to the command or function.

	parameterstyle - Set to positional (default) or keywords. Changes the way arguments are passed to the function.

	viewers - List of viewer instances.

	mimetype - The mimetype of the output (when no viewers are used).

	method - The HTTP Method to allow, set to string GET, POST or the None value to allow all methods.

	returncodes404 - A list of command exit codes that will be mapped to HTTP 404 Not Found (defaults to: [4])

	returncodes403 - A list of command exit codes that will be mapped to HTTP 403 Permission Denied (defaults to: [3])

	returncodes200 - A list of command exit codes that will be mapped to HTTP 200 Ok (defaults to: [0])

	allowanonymous - Boolean indicating whether this action can be used without any authentication.

	
static fromxml(node)

	Static method returning an Action instance from the given XML description. Node can be a string or an etree._Element.

	
xml(indent='')

	

	
exception clam.common.data.AuthRequired(msg='')

	Raised on HTTP 401 - Authentication Required error. Service requires authentication, pass user credentials in CLAMClient constructor.

	
exception clam.common.data.AuthenticationRequired

	This Exception is raised when authentication is required but has not been provided

	
exception clam.common.data.BadRequest

	Raised on HTTP 400 - Bad Request erors

	
class clam.common.data.CLAMData(xml, client=None, localroot=False, projectpath=None, loadmetadata=True)

	Instances of this class hold all the CLAM Data that is automatically extracted from CLAM
XML responses. Its member variables are:

	baseurl - The base URL to the service (string)

	projecturl - The full URL to the selected project, if any (string)

	status - Can be: clam.common.status.READY (0),``clam.common.status.RUNNING`` (1), or clam.common.status.DONE (2)

	statusmessage - The latest status message (string)

	
	completion - An integer between 0 and 100 indicating

	the percentage towards completion.

	parameters - List of parameters (but use the methods instead)

	profiles - List of profiles ([Profile])

	program - A Program instance (or None). Describes the expected outputfiles given the uploaded inputfiles. This is the concretisation of the matching profiles.

	input - List of input files ([CLAMInputFile]); use inputfiles() instead for easier access

	output - List of output files ([CLAMOutputFile])

	projects - List of project IDs ([string])

	corpora - List of pre-installed corpora

	errors - Boolean indicating whether there are errors in parameter specification

	errormsg - String containing an error message

	oauth_access_token - OAuth2 access token (empty if not used, string)

Note that depending on the current status of the project, not all may be available.

	
baseurl = None

	String containing the base URL of the webserivice

	
commandlineargs()

	Obtain a string of all parameters, using the paramater flags they were defined with, in order to pass to an external command. This is shell-safe by definition.

	
corpora = None

	List of pre-installed corpora

	
errormsg = None

	String containing an error message if an error occured

	
errors = None

	Boolean indicating whether there are errors in parameter specification

	
get(parameter_id, default=None)

	

	
input = None

	List of input files ([CLAMInputFile])

	
inputfile(inputtemplate=None)

	Return the inputfile for the specified inputtemplate, if inputtemplate=None, inputfile is returned regardless of inputtemplate. This function may only return 1 and returns an error when multiple input files can be returned, use inputfiles() instead.

	
inputfiles(inputtemplate=None)

	Generator yielding all inputfiles for the specified inputtemplate, if inputtemplate=None, inputfiles are returned regardless of inputtemplate.

	
inputtemplate(template_id)

	Return the inputtemplate with the specified ID. This is used to resolve a inputtemplate ID to an InputTemplate object instance

	
inputtemplates()

	Return all input templates as a list (of InputTemplate instances)

	
loadmetadata = None

	True)

	Type

	Automatically load metadata for input and output files? (default

	
matchingprofiles()

	Generator yielding all matching profiles

	
output = None

	List of output files ([CLAMOutputFile])

	
outputtemplate(template_id)

	Get an output template by ID

	
parameter(parameter_id)

	Return the specified global parameter (the entire object, not just the value)

	
parametererror()

	Return the first parameter error, or False if there is none

	
parameters = None

	This contains a list of (parametergroup, [parameters]) tuples.

	
parseresponse(xml, localroot=False)

	Parses CLAM XML, there’s usually no need to call this directly

	
passparameters()

	Return all parameters as {id: value} dictionary

	
profiles = None

	List of profiles ([Profile])

	
program = None

	Program instance. Describes the expected outputfiles given the uploaded inputfiles. This is the concretisation of the matching profiles.

	
projects = None

	List of projects ([string])

	
projecturl = None

	String containing the full URL to the project, if a project was indeed selected

	
status = None

	The current status of the service, returns clam.common.status.READY (1), clam.common.status.RUNNING (2), or clam.common.status.DONE (3)

	
statusmessage = None

	The current status of the service in a human readable message

	
class clam.common.data.CLAMFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
attachviewers(profiles)

	Attach viewers and converters to file, automatically scan all profiles for outputtemplate or inputtemplate

	
basedir = ''

	

	
copy(target, timeout=500)

	Copy or download this file to a new local file

	
delete()

	Delete this file

	
exists()

	

	
loadmetadata()

	Load metadata for this file. This is usually called automatically upon instantiation, except if explicitly disabled. Works both locally as well as for clients connecting to a CLAM service.

	
metafilename()

	Returns the filename for the metadata file (not full path). Only used for local files.

	
read()

	Loads all lines in memory

	
readlines()

	Loads all lines in memory

	
store(fileid=None, keep=False)

	Put a file in temporary public storage, returns the ID if the file is local, returns a dictionary with keys ‘id’, ‘filename’ and ‘url’ if the file is remote.

	
validate()

	Validate this file. Returns a boolean.

	
class clam.common.data.CLAMInputFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
basedir = 'input'

	

	
class clam.common.data.CLAMMetaData(file, **kwargs)

	A simple hash structure to hold arbitrary metadata. This is the basis for format classes.

	
allowcustomattributes = True

	

	
attributes = None

	

	
classmethod formatxml(indent='')

	Render an XML representation of the format class

	
static fromxml(node, file=None)

	Read metadata from XML. Static method returning an CLAMMetaData instance (or rather; the appropriate subclass of CLAMMetaData) from the given XML description. Node can be a string or an etree._Element.

	
httpheaders()

	HTTP headers to output for this format. Yields (key,value) tuples. Should be overridden in sub-classes!

	
items()

	Returns all items as (key, value) tuples

	
mimetype = 'text/plain'

	

	
save(filename)

	Save metadata to XML file

	
schema = ''

	

	
validate()

	Validate the metadata. Possibly extracts additional metadata from the actual file into the metadata file. This method calls a format’s custom validator() function which you can override per format, additionally it also validates any constraints that are set. The validatation method implements some caching so your validator() function is never called more than once.

	
validateconstraints()

	Validates the constraints (if any). Called by validate(), no need to invoke directly

	
validator()

	This method can be overriden on derived classes and has no implementation here, should return True or False. Additionaly, if there is metadata IN the actual file, this method should extract it and assign it to this object. Will be automatically called from constructor. Note that the file (CLAMFile) is accessible through self.file, which is guaranteerd to exist when this method is called.

	
xml(indent='')

	Render an XML representation of the metadata

	
class clam.common.data.CLAMOutputFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
basedir = 'output'

	

	
class clam.common.data.CLAMProvenanceData(serviceid, servicename, serviceurl, outputtemplate_id, outputtemplate_label, inputfiles, parameters=None, timestamp=None)

	Holds provenance data

	
static fromxml(node)

	Return a CLAMProvenanceData instance from the given XML description. Node can be a string or an lxml.etree._Element.

	
xml(indent='')

	Serialise provenance data to XML. This is included in CLAM Metadata files

	
exception clam.common.data.ConfigurationError

	This Exception is raised when authentication is required but has not been provided

	
class clam.common.data.Constraint(constrainttype, **kwargs)

	
	
static fromxml(node)

	Static method returns a Constraint instance from the given XML description. Node can be a string or an etree._Element.

	
test(metadata)

	

	
xml(indent='')

	Produce Constraint XML

	
class clam.common.data.CopyMetaField(key, value=None)

	In CopyMetaField, the value is in the form of templateid.keyid, denoting where to copy from. If not keyid but only a templateid is
specified, the keyid of the metafield itself will be assumed.

	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
class clam.common.data.ForbidMeta(**kwargs)

	

	
exception clam.common.data.FormatError(value)

	This Exception is raised when the CLAM response is not in the valid CLAM XML format

	
class clam.common.data.Forwarder(id, name, url, description='', type='zip', tmpstore=True, encodeurl=True)

	

	
exception clam.common.data.HTTPError

	This Exception is raised when certain data (such a metadata), can’t be retrieved over HTTP

	
class clam.common.data.InputSource(**kwargs)

	
	
check()

	Checks if this inputsource is usable in INPUTSOURCES

	
isdir()

	

	
isfile()

	

	
xml(indent='')

	

	
class clam.common.data.InputTemplate(template_id, formatclass, label, *args, **kwargs)

	This class represents an input template. A slot with a certain format and function to which input files can be uploaded

	
static fromxml(node)

	Static method returning an InputTemplate instance from the given XML description. Node can be a string or an etree._Element.

	
generate(file, validatedata=None, inputdata=None, user=None)

	Convert the template into instantiated metadata, validating the data in the process and returning errors otherwise. inputdata is a dictionary-compatible structure, such as the relevant postdata. Return (success, metadata, parameters), error messages can be extracted from parameters[].error. Validatedata is a (errors,parameters) tuple that can be passed if you did validation in a prior stage, if not specified, it will be done automatically.

	
json()

	Produce a JSON representation for the web interface

	
match(metadata, user=None)

	Does the specified metadata match this template? returns (success,metadata,parameters)

	
matchingfiles(projectpath)

	Checks if the input conditions are satisfied, i.e the required input files are present. We use the symbolic links .*.INPUTTEMPLATE.id.seqnr to determine this. Returns a list of matching results (seqnr, filename, inputtemplate).

	
validate(postdata, user=None)

	Validate posted data against the inputtemplate

	
xml(indent='')

	Produce Template XML

	
exception clam.common.data.NoConnection

	Raised when a connection can’t be established

	
exception clam.common.data.NotFound(msg='')

	Raised on HTTP 404 - Not Found Errors

	
class clam.common.data.OutputTemplate(template_id, formatclass, label, *args, **kwargs)

	
	
findparent(inputtemplates)

	Find the most suitable parent, that is: the first matching unique/multi inputtemplate

	
static fromxml(node)

	Static method return an OutputTemplate instance from the given XML description. Node can be a string or an etree._Element.

	
generate(profile, parameters, projectpath, inputfiles, provenancedata=None)

	Yields (inputtemplate, inputfilename, inputmetadata, outputfilename, metadata) tuples

	
generatemetadata(parameters, parentfile, relevantinputfiles, provenancedata=None)

	Generate metadata, given a filename, parameters and a dictionary of inputdata (necessary in case we copy from it)

	
getparent(profile)

	Resolve a parent ID

	
xml(indent='')

	Produce Template XML

	
class clam.common.data.ParameterCondition(**kwargs)

	
	
allpossibilities()

	Returns all possible outputtemplates that may occur (recusrively applied)

	
evaluate(parameters)

	Returns False if there’s no match, or whatever the ParameterCondition evaluates to (recursively applied!)

	
static fromxml(node)

	Static method returning a ParameterCondition instance from the given XML description. Node can be a string or an etree._Element.

	
match(parameters)

	

	
xml(indent='')

	

	
exception clam.common.data.ParameterError(msg='')

	Raised on Parameter Errors, i.e. when a parameter does not validate, is missing, or is otherwise set incorrectly.

	
class clam.common.data.ParameterMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.PermissionDenied(msg='')

	Raised on HTTP 403 - Permission Denied Errors (but only if no CLAM XML response is provided)

	
class clam.common.data.Profile(*args)

	
	
static fromxml(node)

	Return a profile instance from the given XML description. Node can be a string or an etree._Element.

	
generate(projectpath, parameters, serviceid, servicename, serviceurl)

	Generate output metadata on the basis of input files and parameters. Projectpath must be absolute. Returns a Program instance.

	
match(projectpath, parameters)

	Check if the profile matches all inputdata and produces output given the set parameters. Returns a boolean

	
matchingfiles(projectpath)

	Return a list of all inputfiles matching the profile (filenames)

	
out(indent='')

	

	
outputtemplates()

	Returns all outputtemplates, resolving ParameterConditions to all possibilities

	
xml(indent='')

	Produce XML output for the profile

	
class clam.common.data.Program(projectpath, matchedprofiles=None)

	A Program is the concretisation of Profile. It describes the exact output files that will be created on the basis of what input files. This is in essence a dictionary
structured as follows: {outputfilename: (outputtemplate, inputfiles)} in which inputfiles is a dictionary {inputfilename: inputtemplate}

	
add(outputfilename, outputtemplate, inputfilename=None, inputtemplate=None)

	Add a new path to the program

	
getinputfile(outputfile, loadmetadata=True, client=None, requiremetadata=False)

	Grabs one input file for the specified output filename (raises a KeyError exception if there is no such output, StopIteration if there are no input files for it). Shortcut for getinputfiles()

	
getinputfiles(outputfile, loadmetadata=True, client=None, requiremetadata=False)

	Iterates over all input files for the specified outputfile (you may pass a CLAMOutputFile instance or a filename string). Yields (CLAMInputFile,str:inputtemplate_id) tuples. The last three arguments are passed to its constructor.

	
getoutputfile(loadmetadata=True, client=None, requiremetadata=False)

	Grabs one output file (raises a StopIteration exception if there is none). Shortcut for getoutputfiles()

	
getoutputfiles(loadmetadata=True, client=None, requiremetadata=False)

	Iterates over all output files and their output template. Yields (CLAMOutputFile, str:outputtemplate_id) tuples. The last three arguments are passed to its constructor.

	
inputpairs(outputfilename)

	Iterates over all (inputfilename, inputtemplate) pairs for a specific output filename

	
outputpairs()

	Iterates over all (outputfilename, outputtemplate) pairs

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
class clam.common.data.RawXMLProvenanceData(data)

	
	
xml()

	

	
class clam.common.data.RequireMeta(**kwargs)

	

	
exception clam.common.data.ServerError(msg='')

	Raised on HTTP 500 - Internal Server Error. Indicates that something went wrong on the server side.

	
class clam.common.data.SetMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.TimeOut

	Raised when a connection times out

	
class clam.common.data.UnsetMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.UploadError(msg='')

	Raised when something fails during upload

	
clam.common.data.buildarchive(project, path, fmt)

	Build a download archive, returns the full file path

	
clam.common.data.escape(s, quote)

	

	
clam.common.data.escapeshelloperators(s)

	

	
clam.common.data.getclamdata(filename, custom_formats=None, custom_viewers=None)

	This function reads the CLAM Data from an XML file. Use this to read
the clam.xml file from your system wrapper. It returns a CLAMData instance.

If you make use of CUSTOM_FORMATS, you need to pass the CUSTOM_FORMATS list as 2nd argument.

	
clam.common.data.getformats(profiles)

	

	
clam.common.data.loadconfig(callername, required=True)

	This function loads an external configuration file. It is called directly by the service configuration script and complements the configuration specified there. The function in turn automatically searches for an appropriate configuration file (in several paths). Host and system specific configuration files are prioritised over more generic ones.

	callername - A string representing the name of settings module. This is typically set to __name__

Example:

loadconfig(__name__)

	
clam.common.data.loadconfigfile(configfile, settingsmodule)

	This function loads an external configuration file. It is usually not invoked directly but through loadconfig() which handles searching for the right configuration file in the right paths, with fallbacks.

	
clam.common.data.parsexmlstring(node)

	

	
clam.common.data.processhttpcode(code, allowcodes=None)

	Return the success code or raises the appropriate exception when the code repesents an HTTP error code

	
clam.common.data.processparameter(postdata, parameter, user=None)

	

	
clam.common.data.processparameters(postdata, parameters, user=None)

	

	
clam.common.data.profiler(profiles, projectpath, parameters, serviceid, servicename, serviceurl, printdebug=None)

	Given input files and parameters, produce metadata for outputfiles. Returns a list of matched profiles (empty if none match), and a program.

	
clam.common.data.resolveconfigvariables(value, settingsmodule)

	Resolves standard environment variables, encoded in curly braces

	
clam.common.data.resolveinputfilename(filename, parameters, inputtemplate, nextseq=0, project=None)

	

	
clam.common.data.resolveoutputfilename(filename, globalparameters, localparameters, outputtemplate, nextseq, project, inputfilename)

	

	
clam.common.data.sanitizeparameters(parameters)

	Construct a dictionary of parameters, for internal use only

	
clam.common.data.shellsafe(s, quote='', doescape=True)

	Returns the value string, wrapped in the specified quotes (if not empty), but checks and raises an Exception if the string is at risk of causing code injection

	
clam.common.data.unescapeshelloperators(s)

	

Deployment in production

In this section we assume you have your webservice all configured and working fine in development mode.
The next step is to move it into production mode, i.e. the final deployment on a webserver of your choice.

Warning

Running with the built-in development server is not recommended for production as it offers sub-optimal performance,
scalability, and security.

It is assumed you used the clamnewproject tool, as explained in Getting Started, to get
started with your project. It generated various example configurations for production environments you can use.

Amongst the generated scripts is a WSGI script (recognisable by the wsgi extension). WSGI is a calling convention
for web servers to call Python applications and this script provides the initial entry-point, you most likely don’t need
to edit it. Serving the python application is handled by uWSGI, which you can install (within your Python virtual
environment) as follows:

$ pip install uwsgi

Your webservice project contains an ini file that provides the configuration for uwsgi to launch your webservice.
You can read the uWSGI Documentation [https://uwsgi-docs.readthedocs.io/en/latest/] for a full understanding, but the
generated template is commented and should generally be enough to get you going.

The uWSGI configuration is specific to the host you are running on so you will need to edit this ini file according
to your server. It contains the port the uWSGI process should listen on (note that this is by definition a different
port than the HTTP/HTTPS port you use to access your webserver!). The shell script startserver_production.sh in
turn starts the uWSGI process with your webservice.

The next step is to forward requests from your webserver to this uWSGI process. Example configurations for nginx and
Apache have been generated automatically, adapt these and include them in your webserver configuration. There are
example configurations with a URLPREFIX, i.e. when you are not hosting the webservice at the webserver root, and
without. Choose the one appropriate for your environment.

To use uWSGI with Apache, you need to install and enable the WSGI proxy module for Apache 2. On Debian/Ubuntu systems,
this is installed as follows:

$ sudo apt-get install libapache2-mod-proxy-uwsgi

Apache configurations typically go into /etc/apache2/sites-enabled, within a VirtualHost context.

For nginx, uWSGI support should already be compiled in. Configurations are commonly stored in /etc/nginx/conf.d/. We assume the reader has sufficient experience with the webserver of his/her choice, and refer to the respective webserver’s documentation for further details.

Warning

It is always recommended to add some form of authentication or more
restrictive access. You can either let CLAM handle authentication
(HTTP Basic or Digest Authentication or OAuth2), or you can let
your webserver itself handle authentication and not use CLAM’s authentication
mechanism.

You will also need to configure your firewall so the port of the uwsgi process (as configured in the ini file), is NOT
open to the public, and only the HTTP/HTTPS port is.

Alternative deployment on Apache 2 with mod_wsgi

As an alternative to using Apache with uWSGI, you can use the older mod_wsgi module. For this you do not need the
uwsgi configuration (the ini file), nor the startserver_production.sh script.

	Install mod_wsgi for Apache 2, if not already present on the
system. In Debian and Ubuntu this is available as a package named
libapache2-mod-wsgi for Python 2 and libapache2-mod-wsgi-py3
for Python 3. The latter is recommended for CLAM, but you can only
have one installed at the same time.

	Configure Apache to let it know about WSGI and your service. I assume
the reader is acquainted with basic Apache configuration and will
only elaborate on the specifics for CLAM. Adapt and add the following
to any of your sites in /etc/apache2/sites-enabled (or optionally
directly in httpd.conf), within any VirtualHost context. Here
it is assumed you configured your service configuration file with
URLPREFIX set to “yourservice”.

WSGIScriptAlias /yourwebservice \
 /path/to/yourwebservice/yourwebservice.wsgi/
WSGIDaemonProcess yourwebservice user=username group=groupname \
 home=/path/to/yourwebservice threads=15 maximum-requests=10000
WSGIProcessGroup yourservice
WSGIPassAuthorization On
Alias /yourwebservice/static \
 /usr/lib/python3.4/site-packages/clam-2.1-py3.4.egg/clam/static
<Directory /path/to/clam/static/>
 Order deny,allow
 Allow from all
</Directory>

The WSGIScriptAlias and WSGIDaemonProcess directives go on
one line, but were wrapped here for presentational purposes. Needless
to say, all paths need to be adapted according to your setup and the
configuration can be extended further as desired. Make sure to adapt
the static alias to where CLAM is installed and where the directory
is found, this depends on your installation and versions and is
subject to change on an upgrade.

	It is always recommended to add some form of authentication or more
restrictive access. You can either let CLAM handle authentication
(HTTP Basic or Digest Authentication or OAuth2), in which case
you need to set WSGIPassAuthorization On, as by default it is
disabled, or you can let Apache itself handle authentication and not
use CLAM’s authentication mechanism.

	Restart Apache.

Note that we run WSGI in Daemon mode using the WSGIDaemonProcess and
WSGIProcessGroup directives, as opposed to embedded mode. This is
the recommended way of using mod_wsgi, and is even mandatory when using
HTTP Basic/Digest Authentication. Whenever any code changes are made,
simply touch the WSGI file (updating its modification time), and the
changes will be immediately available. Embedded mode would require an
apache restart when modifications are made, and it may also lead to
problems with the HTTP Digest Authentication as authentication keys
(nonces) may not be retainable in memory due to constant reloads. Again
I’d like to emphasise that for authentication the line
WSGIPassAuthorization On is vital, as otherwise user credentials
will never each CLAM.

For the specific options to the WSGIDaemonProcess directive you can
check http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives.
Important settings are the user and group the daemon will run as, the
home directory it will run in. The number of threads, processes, and
maximum-requests can also be configured to optimise performance and
system resources according to your needs.

Deploying CLAM with other webservers

The above configurations with Apache and Nginx are just the
configurations we tested. Other webservers (such as for example
lighttpd), should work too.

See also

For configuration of authentication, see User Authentication.

Deploying CLAM behind a reverse proxy

In production environment, you will often deploy your webservice behind a reverse proxy. If this is the case, then you
will want to set USE_FORWARDED_HOST = True in your service configuration so CLAM can detect the original host and
protocol it was called with. This expects your reverse proxy to set the proper X-Forwarded-Host and
X-Forwarded-Proto headers, and is a security risk if these headers are not set but are forwarded from actual
end-users.

The other alternative is to set FORCEURL to the exact URL where your webservice will run. But this implies that it
won’t work properly when invoked with another URL.

Clients

CLAM is designed as a RESTful webservice. This means a client
communicates with CLAM through the four HTTP verbs (GET/POST/PUT/DELETE)
on pre-defined URLs, effectively manipulating various resources. The
webservice will in turn respond with standard HTTP response codes and,
where applicable, a body in CLAM XML format.

When writing a client for a CLAM webservice, Python users benefit
greatly from the CLAM Client API, which in addition to the CLAM Data API
provides a friendly high-level interface for communication with a CLAM
webservice and the handling of its data. Both are shipped as an integral
part of CLAM by default. Using this API greatly facilitates writing a
client for your webservice in a limited amount of time, so it is an
approach to be recommended. Nevertheless, there are many valid reasons
why one might wish to write a client from scratch, not least as this
allows you to use any programming language of your choice, or better
integrate a CLAM webservice as a part of an existing application.

The RESTful API specification provides the full technical details necessary for an implementation of a
client. Moreover, each CLAM service offers an automatically tailored RESTful specification specific to the service, and
example client code in Python, by pointing your browser to your service on the path /info/.

Users of the CLAM Client API can study the example client provided with
CLAM: clam/clients/textstats.py. This client is heavily commented.

There is also a generic CLAM Client, clamclient, which
offers a command line interface to any CLAM service.
The CLAM Client API enables users to quickly write clients to interact with CLAM webservices of any kind. It is an abstraction layer over all lower-level network communication. Consult also the CLAM Data API, as responses returned by the webservice are almost always instantiated as CLAMData objects in the client.

Client API Reference

	
class clam.common.client.CLAMClient(url, user=None, password=None, oauth=False, oauth_access_token=None, verify=None, loadmetadata=False, basicauth=False)

	
	
abort(project)

	aborts AND deletes a project (alias of delete()):

client.abort(“myprojectname”)

	
action(action_id, **kwargs)

	Query an action, specify the parameters for the action as keyword parameters. An optional keyword parameter method=’GET’ (default) or method=’POST’ can be set. The character set encoding of the response can be configured using the encoding keyword parameter (defaults to utf-8 by default)

	
addinput(project, inputtemplate, contents, **kwargs)

	Add an input file to the CLAM service. Explictly providing the contents as a string. This is not suitable for large files as the contents are kept in memory! Use addinputfile() instead for large files.

project - the ID of the project you want to add the file to.
inputtemplate - The input template you want to use to add this file (InputTemplate instance)
contents - The contents for the file to add (string)

	Keyword Arguments

	
	filename - the filename on the server (*) –

	metadata - A metadata object. (*) –

	metafile - A metadata file (*) –

Any other keyword arguments will be passed as metadata and matched with the input template’s parameters.

Example:

client.addinput("myproject", "someinputtemplate", "This is a test.", filename="test.txt")

With metadata, assuming such metadata parameters are defined:

client.addinput("myproject", "someinputtemplate", "This is a test.", filename="test.txt", parameter1="blah", parameterX=3.5))

	
addinputfile(project, inputtemplate, sourcefile, **kwargs)

	Add/upload an input file to the CLAM service. Supports proper file upload streaming.

project - the ID of the project you want to add the file to.
inputtemplate - The input template you want to use to add this file (InputTemplate instance)
sourcefile - The file you want to add: string containing a filename (or instance of file)

	Keyword arguments (optional but recommended!):

	
	filename - the filename on the server (will be same as sourcefile if not specified)

	metadata - A metadata object.

	metafile - A metadata file (filename)

Any other keyword arguments will be passed as metadata and matched with the input template’s parameters.

Example:

client.addinputfile("myproject", "someinputtemplate", "/path/to/local/file")

With metadata, assuming such metadata parameters are defined:

client.addinputfile("myproject", "someinputtemplate", "/path/to/local/file", parameter1="blah", parameterX=3.5)

	
create(project)

	Create a new project:

client.create(“myprojectname”)

	
delete(project)

	aborts AND deletes a project:

client.delete(“myprojectname”)

	
download(project, filename, targetfilename, loadmetadata=None)

	Download an output file

	
downloadarchive(project, targetfile, archiveformat='zip')

	Download all output files as a single archive:

	targetfile - path for the new local file to be written

	archiveformat - the format of the archive, can be ‘zip’,’gz’,’bz2’

Example:

client.downloadarchive("myproject","allresults.zip","zip")

	
downloadstorage(file_id, targetfile=None, targetdir='./')

	Download a file from public storage. If targetfile is set to None, the name will be automatically determined. Returns the target file name

	
get(project)

	Query the project status. Returns a CLAMData instance or raises an exception according to the returned HTTP Status code

	
getinputfilename(inputtemplate, filename)

	Determine the final filename for an input file given an inputtemplate and a given filename.

Example:

filenameonserver = client.getinputfilename("someinputtemplate","/path/to/local/file")

	
getroot()

	This calls the root of the webservice, providing either the index or the porch, depending whether or not authentication is necessary and credentials are passed.

It it better to explicitly call either index() or porch().

	
index()

	Get index of projects. Returns a CLAMData instance. Use CLAMData.projects for the index of projects.

	
initauth()

	Initialise authentication, for internal use

	
initrequest(data=None)

	

	
porch()

	Get the porch page, basically a stripped-down response that works without authentication.

	
register_custom_formats(custom_formats)

	custom_formats is a list of Python classes holding custom formats the webservice may use. These must be registered with the client before the client can be used.

	
register_custom_viewers(custom_viewers)

	custom_formats is a list of Python classes holding custom viewers the webservice may use. These must be registered with the client before the client can be used.

	
request(url='', method='GET', data=None, parse=True, encoding=None)

	Issue a HTTP request and parse CLAM XML response, this is a low-level function called by all of the higher-level communication methods in this class, use those instead

	
start(project, **parameters)

	Start a run. project is the ID of the project, and parameters are keyword arguments for
the global parameters. Returns a CLAMData object or raises exceptions. Note that no exceptions are raised on parameter errors, you have to check for those manually! (Use startsafe instead if want Exceptions on parameter errors):

response = client.start("myprojectname", parameter1="blah", parameterX=4.2)

	
startsafe(project, **parameters)

	Start a run. project is the ID of the project, and parameters are keyword arguments for
the global parameters. Returns a CLAMData object or raises exceptions. This version, unlike start(), raises Exceptions (ParameterError) on parameter errors.

response = client.startsafe(“myprojectname”, parameter1=”blah”, parameterX=4.2)

	
upload(project, inputtemplate, sourcefile, **kwargs)

	Alias for addinputfile()

	
clam.common.client.donereadingupload(encoder)

	Called when the uploaded file has been read

Troubleshooting

You may possibly encounter one of the following issues when attempting
to access your CLAM service through a browser:

	Apache gives an Internal Server Error (HTTP 500) – Check your
Apache error log to see what happened. For additional debug output by
CLAM, set DEBUG=True in your CLAM service configuration file.

	I get an empty white page – There is probably an error in loading
the XSL stylesheet that renders the web application. Please use
Firefox to verify, instead of Google Chrome or Internet Explorer, as
it provides more detailed error output on XSLT transformations.

	I get “error loading stylesheet” – The XSL stylesheet that
renders the web-application can not be loaded. This is most likely
due to a mismatch in URLs. The URL at which the webservice is
accessed has to correspond exactly with the URL configured in the
service configuration file, alternative hostnames or IPs will not
work. Browsers refuse to load stylesheets from other sources for
security reasons. Check your settings for HOST, PORT, and URLPREFIX,
and whether you accessed the service by the same URL.

	I get an error “No template named response” – Check whether
CLAMDIR is set in your service configuration file and whether it
points to the directory in which CLAM resides (the directory
containing clamservice.py)

	I’m using CLAM through Apache and mod_wsgi, but authentication does
not work and I am always logged in as anonymous – Check that
WSGIPassAuthorization On is set in your Apache configuration, and
USERS, USERS_MYSQL or OAUTH is configured in your service
configuration file.

	I am using ``URLPREFIX`` but CLAM tries to interpret the prefix as
a project name - This might happen in some WSGI setups. If this
happens, set INTERNALURLPREFIX to the same value as
URLPREFIX. Always leave it empty in any other scenario.

Note that we strongly recommend developing your services using the
built-in webserver, and migrating to Apache, nginx or another webserver
when deploying your final service.

If you have a new issue, please use our issue tracker [https://github.com/proycon/clam/issues] to check whether it
has already been reported, and if not, report it yourself.

RESTful API specification

This appendix provides a full specification of the RESTful interface to
CLAM.

Note

Note that for each webservice, an auto-generated and human readable RESTful API specification is available at the /info/
endpoint which provides a more tailored overview. This info page also presents auto-generated example code for
interacting with the webservice.

General Webservice Information

	Endpoint

	/porch/ or /info/ (or / if no authentication credentials are provided)

	Method

	GET

	Request Parameters

	(none)

	Description

	Retrieves the general webservice specification (profiles, formats, etc). This also works without
authentication even on authenticated webservices (unless explicitly disabled). /porch/ and /info/
and almost identical from a webservice perspective, but render very differently in the browser.

	Response

	200 - OK & CLAM XML

Project Index

	Endpoint

	/index/ (or / if proper authentication credentials are provided)

	Method

	GET

	Request Parameters

	(none)

	Description

	Retrieves the project index and general webservice specification

	Response

	200 - OK & CLAM XML, 401 - Unauthorised

Project Endpoint

	Endpoint

	/[project]/

	Method

	GET

	Request Parameters

	(none)

	Response

	200 - OK & CLAM XML, 401 - Unauthorised,
404 - Not Found

	Description

	This returns the current state of the project in
CLAM XML format. Depending on the state this contains a specification
of all accepted parameters, all input files, and all output files.
Note that errors in parameter validation are encoded in the CLAM XML
response; the system will still return a 200 response.

	Method

	PUT

	Request Parameters

	(none)

	Response

	201 - Created, 401 - Unauthorised,
403 - Forbidden (Invalid project ID), 403 - Forbidden (No project name)

	Description

	This is necessary before attempting to upload any
files; it initialises an empty new project.

	Method

	POST

	Request Parameters

	Accepted parameters are defined in the
Service Configuration file (and thus differ per service). The
parameter ID corresponds to the parameter keys in the request
parameters

	Response

	202 - Accepted & CLAM XML, 401 - Unauthorised,
404 - Not Found, 403 - Permission Denied & CLAM XML,
500 - Internal Server Error

	Description

	This starts the running of a project, i.e. starts
the actual background program with the specified service-specific
parameters and provided input files. The parameters are provided in
the query string; the input files are provided in separate POST
requests to /[project]/input/[filename], prior to this query. If
any parameter errors occur or no profiles match the input files and
parameters, a 403 response will be returned with errors marked in the
CLAM XML. If a 500 - Server Error is returned, CLAM most likely is
not able to invoke the underlying application or the server has
insufficient free resources.

	Method

	DELETE

	Request Parameters

	The parameter abortonly can be set to 1
if you only want to abort a running process without deleting the
entire project

	Response

	200 - OK, 401 - Unauthorised,
404 - Not Found

	Description

	Deletes a project. Any running processes will be
aborted.

Input files

	Endpoint

	/[project]/input/[filename]

	Method

	GET

	Request Parameters

	(none)

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Retrieves the specified input file.

	Method

	DELETE

	Request Parameters

	(none)

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Deletes the specified input file.

	Endpoint

	/[project]/input/[filename] or
/[project]/input/[inputtemplate]/[filename]

	Method

	POST

	Request Parameters

	inputtemplate=[inputtemplate_id]
file=[HTTP file]* url=[download-url]*
contents=[text-content]* metafile=[HTTP file]
metadata=[CLAM Metadata XML] Other accepted parameters are defined
in the various Input Templates in the Service Configuration file (and
thus differs per service and input template). The parameter ID
corresponds to the parameter keys in the query string.

	Response

	200 - OK & CLAM-Upload XML, 403 - Permission Denied & CLAM-Upload XML,
401 - Unauthorised, 404 - Not Found

	Description

	This method adds a new input file, which is
transmitted in the multipart/form-data encoding along with request
parameters and metadata parameters. . The response is returned in
CLAM-Upload XML (distinct from CLAM XML!). Two arguments are
mandatory: the input template, which designates what kind of file will
be added and points to one of the InputTemplate IDs the webservice
supports, and one of the query arguments marked with an asterisk.
Adding a file can proceed either by uploading it from the client
machine (file), by downloading it from another URL (url), or
by passing the contents in the POST message itself (contents).
Only one of these can be used at a time. Metadata can be passed in
three different ways: 1) by simply specifying a metadata field as
request parameters, with the same ID as defined in the input template.
2) setting the metafile attribute to an HTTP file, or 3) by
setting metadata to the full XML string of the metadata
specification.

	Endpoint

	/[project]/input/[filename]/metadata

	Method

	GET

	Request Parameters

	(none)

	Response

	200 - OK & CLAM Metadata XML,
401 - Unauthorised, 404 - Not Found

	Description

	Retrieves the metadata for the specified input file.

Output Files

	Endpoint

	/[project]/output/[filename]

	Method

	GET

	Request Parameters

	(none)

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Retrieves the specified output file.

	Method

	DELETE

	Request Parameters

	(none)

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Deletes the specified output file.

	Method

	PUT

	Request Parameters

	(none)

	Response

	200 - OK & JSON reply with field url indicating where the file can be downloaded (one time only) publicly, 401 - Unauthorised,
404 - Not Found

	Description

	Shares the file using unauthenticated temporary storage; returns a JSON response with a URL (key: url). where the file can be downloaded (one time only). The URL contains a random 128-bit ID and is safe as long as it is kept secret (only share over encrypted connections).

	Endpoint

	/[project]/output/[filename]/metadata

	Method

	GET

	Request Parameters

	(none)

	Response

	200 - OK & CLAM Metadata XML,
401 - Unauthorised, 404 - Not Found

	Description

	Retrieves the metadata for the specified output
file.

Archive Download

	Endpoint

	/[project]/output/

	Method

	GET

	Request Parameters

	format=zip|tar.gz|tar.bz2

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Offers a single archive, of the desired format,
including all output files

	Method

	DELETE

	Request Parameters

	(none)

	Response

	200 - OK & File contents, 401 - Unauthorised

	Description

	Deletes all output files and resets the project for
another run.

Temporary Storage

	Endpoint

	/storage/[id]

	Method

	GET

	Request Parameters

	keep (optional) - Set to 1 to preserve the link for another use after download.

	Response

	200 - OK & File contents, 401 - Unauthorised,
404 - Not Found

	Description

	Retrieves the specified output file from unauthenticated temporary storage. Files will need to be explicitly made available for this storage (using a PUT request on /[project]/output/[filename]. The download will only work once unless the parameter keep is set to 1.

Actions

	Endpoint

	/actions/[action_id]/

	Method

	GET and/or POST, may be constrained by the action

	Request Parameters

	Determined by the action

	Response

	200 - OK & Result data determined by the action,
401 - Unauthorised, 404 - Not Found

	Description

	This is a remote procedure call to run the specified
action and obtain the results. The parameters are specific to the
action.

Project entry shortcut

	This is a shortcut method (available since CLAM v0.99.17) that

	combines the steps of project creation, file adding and upload, in one
single GET or POST request. Although more limited than the invididual
calls, and less RESTful, it facilitates the job for simpler callers:

	Endpoint

	/

	Method

	GET or POST

	Request Parameters

	project=[name|new] (mandatory), selects
and if necessary creates the project with the specified name. If the
value is set to new, a random project name will be generated.
{inputtemplate}=[contents] – Pass file contents for the specified
input templateJ (the variable name is the inputtemplate ID), this
corresponds to the contents variable in the non-shortcut method.
{inputtemplate}_url=[url] – Pass a url where to obtain the file
for the specified input templateJ (the variable name contains the
inputtemplate ID), this corresponds to the url variable in the
non-shortcut method. {inputtemplate}_filename=[filename] – Sets
the desired filename for the specified input template, use in
combination with one of the two parameters above. Not needed when the
webservice assigns a fixed filename. start=[0|1] – Set this
parameter to 1 if you want the project to start automatically. The
default is not to start automatically. Other accepted parameters are
defined in the Service Configuration file (and thus differ per
service). For global parameters, the parameter ID corresponds to the
parameter keys in the request parameters, for parameters pertaining to
a specific input template, prepend the ID of the input template and an
underscore to the parameter ID ({inputtemplate}_).

	Response

	200 - OK & CLAM XML, 401 - Unauthorised,
403 - Permission denied

If OAuth authentication is enabled and no access token is passed, almost
all URLs return HTTP 303 - See Other and redirect to the
authentication provider. At this stage, user input may be required,
stopping automated clients. After the user input, or if no user input is
required, the authorization provider should relay the user back to a
special CLAM login page with another HTTP 303. This implies the
client should then redo the request with the proper access token. See
the section on OAuth2 authentication for more details.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 clam	

 	
 	
 clam.common.client	

 	
 	
 clam.common.converters	

 	
 	
 clam.common.data	

 	
 	
 clam.common.formats	

 	
 	
 clam.common.parameters	

 	
 	
 clam.common.viewers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	abort() (clam.common.client.CLAMClient method)

 	AbstractConverter (class in clam.common.data), [1]

 	AbstractMetaField (class in clam.common.data), [1]

 	AbstractParameter (class in clam.common.parameters), [1]

 	AbstractViewer (class in clam.common.viewers)

 	acceptforinput (clam.common.converters.CharEncodingConverter attribute)

 	(clam.common.converters.MSWordConverter attribute)

 	(clam.common.converters.PDFtoHTMLConverter attribute)

 	(clam.common.converters.PDFtoTextConverter attribute)

 	(clam.common.data.AbstractConverter attribute), [1]

 	acceptforoutput (clam.common.converters.CharEncodingConverter attribute)

 	(clam.common.data.AbstractConverter attribute), [1]

 	access() (clam.common.parameters.AbstractParameter method), [1]

 	Action (class in clam.common.data), [1]

 	action() (clam.common.client.CLAMClient method)

 	add() (clam.common.data.Program method), [1]

 	addinput() (clam.common.client.CLAMClient method)

 	addinputfile() (clam.common.client.CLAMClient method)

 	allowcustomattributes (clam.common.data.CLAMMetaData attribute), [1]

 	(clam.common.formats.ExampleFormat attribute)

 	allowusers (clam.common.parameters.AbstractParameter attribute), [1]

 	allpossibilities() (clam.common.data.ParameterCondition method), [1]

 	AlpinoXMLFormat (class in clam.common.formats)

 	attachviewers() (clam.common.data.CLAMFile method), [1]

 	attributes (clam.common.data.CLAMMetaData attribute), [1]

 	(clam.common.formats.AlpinoXMLFormat attribute)

 	(clam.common.formats.BinaryDataFormat attribute)

 	(clam.common.formats.CSVFormat attribute)

 	(clam.common.formats.DCOIFormat attribute)

 	(clam.common.formats.DjVuFormat attribute)

 	(clam.common.formats.ExampleFormat attribute)

 	(clam.common.formats.FoLiAXMLFormat attribute)

 	(clam.common.formats.FrogTSVFormat attribute)

 	(clam.common.formats.GifImageFormat attribute)

 	(clam.common.formats.HTMLFormat attribute)

 	(clam.common.formats.JpegImageFormat attribute)

 	(clam.common.formats.MP3AudioFormat attribute)

 	(clam.common.formats.MSWordFormat attribute)

 	(clam.common.formats.MpegVideoFormat attribute)

 	(clam.common.formats.OggAudioFormat attribute)

 	(clam.common.formats.OggVideoFormat attribute)

 	(clam.common.formats.OpenDocumentTextFormat attribute)

 	(clam.common.formats.PDFFormat attribute)

 	(clam.common.formats.PlainTextFormat attribute)

 	(clam.common.formats.PngImageFormat attribute)

 	(clam.common.formats.TiffImageFormat attribute)

 	(clam.common.formats.WaveAudioFormat attribute)

 	(clam.common.formats.XMLStyleSheet attribute)

 	(clam.common.formats.ZIPFormat attribute)

 	
 	AuthenticationRequired, [1]

 	AuthRequired, [1]

B

 	
 	BadRequest, [1]

 	basedir (clam.common.data.CLAMFile attribute), [1]

 	(clam.common.data.CLAMInputFile attribute), [1]

 	(clam.common.data.CLAMOutputFile attribute), [1]

 	
 	baseurl (clam.common.data.CLAMData attribute), [1]

 	BinaryDataFormat (class in clam.common.formats)

 	BooleanParameter (class in clam.common.parameters), [1]

 	buildarchive() (in module clam.common.data), [1]

C

 	
 	CharEncodingConverter (class in clam.common.converters)

 	check() (clam.common.data.InputSource method), [1]

 	ChoiceParameter (class in clam.common.parameters), [1]

 	clam.common.client (module)

 	clam.common.converters (module)

 	clam.common.data (module), [1]

 	clam.common.formats (module)

 	clam.common.parameters (module), [1]

 	clam.common.viewers (module)

 	CLAMClient (class in clam.common.client)

 	CLAMData (class in clam.common.data), [1]

 	CLAMFile (class in clam.common.data), [1]

 	CLAMInputFile (class in clam.common.data), [1]

 	CLAMMetaData (class in clam.common.data), [1]

 	CLAMOutputFile (class in clam.common.data), [1]

 	CLAMProvenanceData (class in clam.common.data), [1]

 	commandlineargs() (clam.common.data.CLAMData method), [1]

 	compilearg() (clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.BooleanParameter method), [1]

 	(clam.common.parameters.ChoiceParameter method), [1]

 	(clam.common.parameters.StringParameter method), [1]

 	(clam.common.parameters.TextParameter method), [1]

 	
 	ConfigurationError, [1]

 	constrainable() (clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.BooleanParameter method), [1]

 	(clam.common.parameters.FloatParameter method), [1]

 	(clam.common.parameters.IntegerParameter method), [1]

 	Constraint (class in clam.common.data), [1]

 	convertforinput() (clam.common.converters.CharEncodingConverter method)

 	(clam.common.converters.MSWordConverter method)

 	(clam.common.converters.PDFtoHTMLConverter method)

 	(clam.common.converters.PDFtoTextConverter method)

 	(clam.common.data.AbstractConverter method), [1]

 	convertforoutput() (clam.common.converters.CharEncodingConverter method)

 	(clam.common.data.AbstractConverter method), [1]

 	converttool (clam.common.converters.MSWordConverter attribute)

 	(clam.common.converters.PDFtoHTMLConverter attribute)

 	(clam.common.converters.PDFtoTextConverter attribute)

 	copy() (clam.common.data.CLAMFile method), [1]

 	CopyMetaField (class in clam.common.data), [1]

 	corpora (clam.common.data.CLAMData attribute), [1]

 	create() (clam.common.client.CLAMClient method)

 	CSVFormat (class in clam.common.formats)

D

 	
 	DCOIFormat (class in clam.common.formats)

 	delete() (clam.common.client.CLAMClient method)

 	(clam.common.data.CLAMFile method), [1]

 	denyusers (clam.common.parameters.AbstractParameter attribute), [1]

 	description (clam.common.parameters.AbstractParameter attribute), [1]

 	
 	DjVuFormat (class in clam.common.formats)

 	donereadingupload() (in module clam.common.client)

 	download() (clam.common.client.CLAMClient method)

 	downloadarchive() (clam.common.client.CLAMClient method)

 	downloadstorage() (clam.common.client.CLAMClient method)

E

 	
 	error (clam.common.parameters.AbstractParameter attribute), [1]

 	errormsg (clam.common.data.CLAMData attribute), [1]

 	errors (clam.common.data.CLAMData attribute), [1]

 	escape() (in module clam.common.data), [1]

 	
 	escapeshelloperators() (in module clam.common.data), [1]

 	evaluate() (clam.common.data.ParameterCondition method), [1]

 	ExampleFormat (class in clam.common.formats)

 	exists() (clam.common.data.CLAMFile method), [1]

F

 	
 	findparent() (clam.common.data.OutputTemplate method), [1]

 	FLATViewer (class in clam.common.viewers)

 	FloatParameter (class in clam.common.parameters), [1]

 	FoLiAViewer (class in clam.common.viewers)

 	FoLiAXMLFormat (class in clam.common.formats)

 	ForbidMeta (class in clam.common.data), [1]

 	FormatError, [1]

 	formatxml() (clam.common.data.CLAMMetaData class method), [1]

 	Forwarder (class in clam.common.data), [1]

 	ForwardViewer (class in clam.common.viewers)

 	
 	FrogTSVFormat (class in clam.common.formats)

 	fromxml() (clam.common.data.AbstractMetaField static method), [1]

 	(clam.common.data.Action static method), [1]

 	(clam.common.data.CLAMMetaData static method), [1]

 	(clam.common.data.CLAMProvenanceData static method), [1]

 	(clam.common.data.Constraint static method), [1]

 	(clam.common.data.InputTemplate static method), [1]

 	(clam.common.data.OutputTemplate static method), [1]

 	(clam.common.data.ParameterCondition static method), [1]

 	(clam.common.data.Profile static method), [1]

 	(clam.common.parameters.AbstractParameter static method), [1]

G

 	
 	generate() (clam.common.data.InputTemplate method), [1]

 	(clam.common.data.OutputTemplate method), [1]

 	(clam.common.data.Profile method), [1]

 	generatemetadata() (clam.common.data.OutputTemplate method), [1]

 	get() (clam.common.client.CLAMClient method)

 	(clam.common.data.CLAMData method), [1]

 	getclamdata() (in module clam.common.data), [1]

 	getformats() (in module clam.common.data), [1]

 	
 	getinputfile() (clam.common.data.Program method), [1]

 	getinputfilename() (clam.common.client.CLAMClient method)

 	getinputfiles() (clam.common.data.Program method), [1]

 	getoutputfile() (clam.common.data.Program method), [1]

 	getoutputfiles() (clam.common.data.Program method), [1]

 	getparent() (clam.common.data.OutputTemplate method), [1]

 	getroot() (clam.common.client.CLAMClient method)

 	GifImageFormat (class in clam.common.formats)

H

 	
 	HTMLFormat (class in clam.common.formats)

 	HTTPError, [1]

 	httpheaders() (clam.common.data.CLAMMetaData method), [1]

 	(clam.common.formats.ExampleFormat method)

 	(clam.common.formats.HTMLFormat method)

 	(clam.common.formats.PlainTextFormat method)

I

 	
 	id (clam.common.parameters.AbstractParameter attribute), [1]

 	(clam.common.viewers.AbstractViewer attribute)

 	(clam.common.viewers.FLATViewer attribute)

 	(clam.common.viewers.FoLiAViewer attribute)

 	(clam.common.viewers.ShareViewer attribute)

 	(clam.common.viewers.SimpleTableViewer attribute)

 	(clam.common.viewers.SoNaRViewer attribute)

 	(clam.common.viewers.XSLTViewer attribute)

 	index() (clam.common.client.CLAMClient method)

 	initauth() (clam.common.client.CLAMClient method)

 	initrequest() (clam.common.client.CLAMClient method)

 	
 	input (clam.common.data.CLAMData attribute), [1]

 	inputfile() (clam.common.data.CLAMData method), [1]

 	inputfiles() (clam.common.data.CLAMData method), [1]

 	inputpairs() (clam.common.data.Program method), [1]

 	InputSource (class in clam.common.data), [1]

 	InputTemplate (class in clam.common.data), [1]

 	inputtemplate() (clam.common.data.CLAMData method), [1]

 	inputtemplates() (clam.common.data.CLAMData method), [1]

 	IntegerParameter (class in clam.common.parameters), [1]

 	isdir() (clam.common.data.InputSource method), [1]

 	isfile() (clam.common.data.InputSource method), [1]

 	items() (clam.common.data.CLAMMetaData method), [1]

J

 	
 	JpegImageFormat (class in clam.common.formats)

 	
 	json() (clam.common.data.InputTemplate method), [1]

 	JSONFormat (class in clam.common.formats)

K

 	
 	KBXMLFormat (class in clam.common.formats)

L

 	
 	label (clam.common.converters.CharEncodingConverter attribute)

 	(clam.common.data.AbstractConverter attribute), [1]

 	loadconfig() (in module clam.common.data), [1]

 	
 	loadconfigfile() (in module clam.common.data), [1]

 	loadmetadata (clam.common.data.CLAMData attribute), [1]

 	loadmetadata() (clam.common.data.CLAMFile method), [1]

M

 	
 	match() (clam.common.data.InputTemplate method), [1]

 	(clam.common.data.ParameterCondition method), [1]

 	(clam.common.data.Profile method), [1]

 	matchingfiles() (clam.common.data.InputTemplate method), [1]

 	(clam.common.data.Profile method), [1]

 	matchingprofiles() (clam.common.data.CLAMData method), [1]

 	metafilename() (clam.common.data.CLAMFile method), [1]

 	mimetype (clam.common.data.CLAMMetaData attribute), [1]

 	(clam.common.formats.AlpinoXMLFormat attribute)

 	(clam.common.formats.BinaryDataFormat attribute)

 	(clam.common.formats.CSVFormat attribute)

 	(clam.common.formats.DCOIFormat attribute)

 	(clam.common.formats.DjVuFormat attribute)

 	(clam.common.formats.ExampleFormat attribute)

 	(clam.common.formats.FoLiAXMLFormat attribute)

 	(clam.common.formats.FrogTSVFormat attribute)

 	(clam.common.formats.GifImageFormat attribute)

 	(clam.common.formats.HTMLFormat attribute)

 	(clam.common.formats.JSONFormat attribute)

 	(clam.common.formats.JpegImageFormat attribute)

 	(clam.common.formats.KBXMLFormat attribute)

 	(clam.common.formats.MP3AudioFormat attribute)

 	(clam.common.formats.MSWordFormat attribute)

 	(clam.common.formats.MpegVideoFormat attribute)

 	(clam.common.formats.OggAudioFormat attribute)

 	(clam.common.formats.OggVideoFormat attribute)

 	(clam.common.formats.OpenDocumentTextFormat attribute)

 	(clam.common.formats.PDFFormat attribute)

 	(clam.common.formats.PlainTextFormat attribute)

 	(clam.common.formats.PngImageFormat attribute)

 	(clam.common.formats.TICCLShadowOutputXML attribute)

 	(clam.common.formats.TICCLVariantOutputXML attribute)

 	(clam.common.formats.TiffImageFormat attribute)

 	(clam.common.formats.WaveAudioFormat attribute)

 	(clam.common.formats.XMLFormat attribute)

 	(clam.common.formats.XMLStyleSheet attribute)

 	(clam.common.formats.ZIPFormat attribute)

 	(clam.common.viewers.AbstractViewer attribute)

 	
 	MP3AudioFormat (class in clam.common.formats)

 	MpegVideoFormat (class in clam.common.formats)

 	MSWordConverter (class in clam.common.converters)

 	MSWordFormat (class in clam.common.formats)

N

 	
 	name (clam.common.formats.AlpinoXMLFormat attribute)

 	(clam.common.formats.BinaryDataFormat attribute)

 	(clam.common.formats.CSVFormat attribute)

 	(clam.common.formats.DCOIFormat attribute)

 	(clam.common.formats.DjVuFormat attribute)

 	(clam.common.formats.FoLiAXMLFormat attribute)

 	(clam.common.formats.FrogTSVFormat attribute)

 	(clam.common.formats.GifImageFormat attribute)

 	(clam.common.formats.HTMLFormat attribute)

 	(clam.common.formats.JSONFormat attribute)

 	(clam.common.formats.JpegImageFormat attribute)

 	(clam.common.formats.KBXMLFormat attribute)

 	(clam.common.formats.MP3AudioFormat attribute)

 	(clam.common.formats.MSWordFormat attribute)

 	(clam.common.formats.MpegVideoFormat attribute)

 	(clam.common.formats.OggAudioFormat attribute)

 	(clam.common.formats.OggVideoFormat attribute)

 	(clam.common.formats.OpenDocumentTextFormat attribute)

 	(clam.common.formats.PDFFormat attribute)

 	(clam.common.formats.PlainTextFormat attribute)

 	(clam.common.formats.PngImageFormat attribute)

 	(clam.common.formats.TICCLShadowOutputXML attribute)

 	(clam.common.formats.TICCLVariantOutputXML attribute)

 	(clam.common.formats.TiffImageFormat attribute)

 	(clam.common.formats.WaveAudioFormat attribute)

 	(clam.common.formats.XMLFormat attribute)

 	(clam.common.formats.XMLStyleSheet attribute)

 	(clam.common.formats.ZIPFormat attribute)

 	(clam.common.parameters.AbstractParameter attribute), [1]

 	(clam.common.viewers.AbstractViewer attribute)

 	(clam.common.viewers.FLATViewer attribute)

 	(clam.common.viewers.FoLiAViewer attribute)

 	(clam.common.viewers.ShareViewer attribute)

 	(clam.common.viewers.SimpleTableViewer attribute)

 	(clam.common.viewers.SoNaRViewer attribute)

 	(clam.common.viewers.XSLTViewer attribute)

 	
 	NoConnection, [1]

 	NotFound, [1]

O

 	
 	OggAudioFormat (class in clam.common.formats)

 	OggVideoFormat (class in clam.common.formats)

 	OpenDocumentTextFormat (class in clam.common.formats)

 	out() (clam.common.data.Profile method), [1]

 	
 	output (clam.common.data.CLAMData attribute), [1]

 	outputpairs() (clam.common.data.Program method), [1]

 	OutputTemplate (class in clam.common.data), [1]

 	outputtemplate() (clam.common.data.CLAMData method), [1]

 	outputtemplates() (clam.common.data.Profile method), [1]

P

 	
 	parameter() (clam.common.data.CLAMData method), [1]

 	ParameterCondition (class in clam.common.data), [1]

 	ParameterError, [1]

 	parametererror() (clam.common.data.CLAMData method), [1]

 	ParameterMetaField (class in clam.common.data), [1]

 	parameters (clam.common.data.CLAMData attribute), [1]

 	paramflag (clam.common.parameters.AbstractParameter attribute), [1]

 	parseresponse() (clam.common.data.CLAMData method), [1]

 	parsexmlstring() (in module clam.common.data), [1]

 	passparameters() (clam.common.data.CLAMData method), [1]

 	PDFFormat (class in clam.common.formats)

 	PDFtoHTMLConverter (class in clam.common.converters)

 	PDFtoTextConverter (class in clam.common.converters)

 	
 	PermissionDenied, [1]

 	PlainTextFormat (class in clam.common.formats)

 	PngImageFormat (class in clam.common.formats)

 	porch() (clam.common.client.CLAMClient method)

 	processhttpcode() (in module clam.common.data), [1]

 	processparameter() (in module clam.common.data), [1]

 	processparameters() (in module clam.common.data), [1]

 	Profile (class in clam.common.data), [1]

 	profiler() (in module clam.common.data), [1]

 	profiles (clam.common.data.CLAMData attribute), [1]

 	program (clam.common.data.CLAMData attribute), [1]

 	Program (class in clam.common.data), [1]

 	projects (clam.common.data.CLAMData attribute), [1]

 	projecturl (clam.common.data.CLAMData attribute), [1]

R

 	
 	RawXMLProvenanceData (class in clam.common.data), [1]

 	read() (clam.common.data.CLAMFile method), [1]

 	(clam.common.viewers.SimpleTableViewer method)

 	readlines() (clam.common.data.CLAMFile method), [1]

 	register_custom_formats() (clam.common.client.CLAMClient method)

 	register_custom_viewers() (clam.common.client.CLAMClient method)

 	request() (clam.common.client.CLAMClient method)

 	RequireMeta (class in clam.common.data), [1]

 	
 	resolve() (clam.common.data.AbstractMetaField method), [1]

 	(clam.common.data.CopyMetaField method), [1]

 	(clam.common.data.ParameterMetaField method), [1]

 	(clam.common.data.SetMetaField method), [1]

 	(clam.common.data.UnsetMetaField method), [1]

 	resolveconfigvariables() (in module clam.common.data), [1]

 	resolveinputfilename() (in module clam.common.data), [1]

 	resolveoutputfilename() (in module clam.common.data), [1]

S

 	
 	sanitizeparameters() (in module clam.common.data), [1]

 	save() (clam.common.data.CLAMMetaData method), [1]

 	schema (clam.common.data.CLAMMetaData attribute), [1]

 	(clam.common.formats.AlpinoXMLFormat attribute)

 	(clam.common.formats.DCOIFormat attribute)

 	(clam.common.formats.ExampleFormat attribute)

 	(clam.common.formats.FoLiAXMLFormat attribute)

 	(clam.common.formats.KBXMLFormat attribute)

 	(clam.common.formats.MSWordFormat attribute)

 	(clam.common.formats.TICCLShadowOutputXML attribute)

 	(clam.common.formats.TICCLVariantOutputXML attribute)

 	(clam.common.formats.XMLFormat attribute)

 	ServerError, [1]

 	set() (clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.BooleanParameter method), [1]

 	(clam.common.parameters.ChoiceParameter method), [1]

 	(clam.common.parameters.FloatParameter method), [1]

 	(clam.common.parameters.IntegerParameter method), [1]

 	
 	SetMetaField (class in clam.common.data), [1]

 	ShareViewer (class in clam.common.viewers)

 	shellsafe() (in module clam.common.data), [1]

 	SimpleTableViewer (class in clam.common.viewers)

 	SoNaRViewer (class in clam.common.viewers)

 	start() (clam.common.client.CLAMClient method)

 	startsafe() (clam.common.client.CLAMClient method)

 	StaticParameter (class in clam.common.parameters), [1]

 	status (clam.common.data.CLAMData attribute), [1]

 	statusmessage (clam.common.data.CLAMData attribute), [1]

 	store() (clam.common.data.CLAMFile method), [1]

 	StringParameter (class in clam.common.parameters), [1]

T

 	
 	TadpoleFormat (in module clam.common.formats)

 	test() (clam.common.data.Constraint method), [1]

 	TextParameter (class in clam.common.parameters), [1]

 	
 	TICCLShadowOutputXML (class in clam.common.formats)

 	TICCLVariantOutputXML (class in clam.common.formats)

 	TiffImageFormat (class in clam.common.formats)

 	TimeOut, [1]

U

 	
 	UndefinedXMLFormat (in module clam.common.formats)

 	unescapeshelloperators() (in module clam.common.data), [1]

 	unset() (clam.common.parameters.BooleanParameter method), [1]

 	
 	UnsetMetaField (class in clam.common.data), [1]

 	update() (clam.common.data.Program method), [1]

 	upload() (clam.common.client.CLAMClient method)

 	UploadError, [1]

V

 	
 	validate() (clam.common.data.CLAMFile method), [1]

 	(clam.common.data.CLAMMetaData method), [1]

 	(clam.common.data.InputTemplate method), [1]

 	(clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.ChoiceParameter method), [1]

 	(clam.common.parameters.FloatParameter method), [1]

 	(clam.common.parameters.IntegerParameter method), [1]

 	(clam.common.parameters.StringParameter method), [1]

 	validateconstraints() (clam.common.data.CLAMMetaData method), [1]

 	validator() (clam.common.data.CLAMMetaData method), [1]

 	(clam.common.formats.ExampleFormat method)

 	(clam.common.formats.FoLiAXMLFormat method)

 	
 	valuefrompostdata() (clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.BooleanParameter method), [1]

 	(clam.common.parameters.ChoiceParameter method), [1]

 	(clam.common.parameters.FloatParameter method), [1]

 	(clam.common.parameters.IntegerParameter method), [1]

 	view() (clam.common.viewers.AbstractViewer method)

 	(clam.common.viewers.FLATViewer method)

 	(clam.common.viewers.FoLiAViewer method)

 	(clam.common.viewers.ForwardViewer method)

 	(clam.common.viewers.ShareViewer method)

 	(clam.common.viewers.SimpleTableViewer method)

 	(clam.common.viewers.SoNaRViewer method)

 	(clam.common.viewers.XSLTViewer method)

W

 	
 	WaveAudioFormat (class in clam.common.formats)

X

 	
 	xml() (clam.common.data.AbstractMetaField method), [1]

 	(clam.common.data.Action method), [1]

 	(clam.common.data.CLAMMetaData method), [1]

 	(clam.common.data.CLAMProvenanceData method), [1]

 	(clam.common.data.Constraint method), [1]

 	(clam.common.data.CopyMetaField method), [1]

 	(clam.common.data.InputSource method), [1]

 	(clam.common.data.InputTemplate method), [1]

 	(clam.common.data.OutputTemplate method), [1]

 	(clam.common.data.ParameterCondition method), [1]

 	(clam.common.data.ParameterMetaField method), [1]

 	(clam.common.data.Profile method), [1]

 	(clam.common.data.RawXMLProvenanceData method), [1]

 	(clam.common.data.SetMetaField method), [1]

 	(clam.common.data.UnsetMetaField method), [1]

 	(clam.common.parameters.AbstractParameter method), [1]

 	(clam.common.parameters.ChoiceParameter method), [1]

 	(clam.common.viewers.AbstractViewer method)

 	
 	XMLFormat (class in clam.common.formats)

 	XMLStyleSheet (class in clam.common.formats)

 	XSLTViewer (class in clam.common.viewers)

Z

 	
 	ZIPFormat (class in clam.common.formats)

CLAM Formats

	
class clam.common.converters.CharEncodingConverter(id, **kwargs)

	
	
acceptforinput = [<class 'clam.common.formats.PlainTextFormat'>]

	

	
acceptforoutput = [<class 'clam.common.formats.PlainTextFormat'>]

	

	
convertforinput(filepath, metadata=None)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file.

	
convertforoutput(outputfile)

	Convert from one of the source formats into target format. Relevant if converters are used in OutputTemplates. Outputfile is a CLAMOutputFile instance.

	
label = 'CharEncodingConverter'

	

	
class clam.common.converters.MSWordConverter(id, **kwargs)

	
	
acceptforinput = [<class 'clam.common.formats.PlainTextFormat'>]

	

	
convertforinput(filepath, metadata=None)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file. ‘filepath’ is both the source and the target file, the source file will be erased and overwritten with the conversion result!

	
converttool = 'catdoc'

	

	
class clam.common.converters.PDFtoHTMLConverter(id, **kwargs)

	
	
acceptforinput = [<class 'clam.common.formats.HTMLFormat'>]

	

	
convertforinput(filepath, metadata=None)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file. ‘filepath’ is both the source and the target file, the source file will be erased and overwritten with the conversion result!

	
converttool = 'pdftohtml'

	

	
class clam.common.converters.PDFtoTextConverter(id, **kwargs)

	
	
acceptforinput = [<class 'clam.common.formats.PlainTextFormat'>]

	

	
convertforinput(filepath, metadata=None)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file. ‘filepath’ is both the source and the target file, the source file will be erased and overwritten with the conversion result!

	
converttool = 'pdftotext'

	

CLAM Data API

The CLAM Data API is at the heart of CLAM. It contains various data structures CLAM uses, such as the Profiles, Input Templates, Output Templates, Metadata, etc… This API is used by CLAM internally but is also designed to be used in your system wrapper scripts and clients!

	
class clam.common.data.AbstractConverter(id, **kwargs)

	
	
acceptforinput = []

	

	
acceptforoutput = []

	

	
convertforinput(filepath, metadata)

	Convert from target format into one of the source formats. Relevant if converters are used in InputTemplates. Metadata already is metadata for the to-be-generated file. ‘filepath’ is both the source and the target file, the source file will be erased and overwritten with the conversion result!

	
convertforoutput(outputfile)

	Convert from one of the source formats into target format. Relevant if converters are used in OutputTemplates. Sourcefile is a CLAMOutputFile instance.

	
label = '(ERROR: label not overriden from AbstractConverter!)'

	

	
class clam.common.data.AbstractMetaField(key, value=None)

	This abstract class is the basis for derived classes representing metadata fields of particular types. A metadata field is in essence a (key, value) pair. These classes are used in output templates (described by the XML tag meta). They are not used by CLAMMetaData

	
static fromxml(node)

	Static method returning an MetaField instance (any subclass of AbstractMetaField) from the given XML description. Node can be a string or an etree._Element.

	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(operator='set', indent='')

	Serialize the metadata field to XML

	
class clam.common.data.Action(*args, **kwargs)

	This action paradigm allows you to specify actions, each action allows
you to tie a URL to a script or Python function, and may take a number
of parameters you explicitly specify. Each action is strictly
independent of other actions, and completely separate of the projects,
and by extension also of any files within projects and any profiles.
Unlike projects, which may run over a long time period and are suited
for batch processing, actions are intended for real-time communication.
Typically they should return an answer in at most a couple of seconds.i

Positional Arguments:

	a Parameter instance or a Viewer instance.

Keyword arguments:

	id - The ID of the action (mandatory)

	name - A human readable name, used in the interface

	description - A human readable description of the action, used in the interface

	command - The command to run, this is analogous to the COMMAND in the service configuration file and may contain parameters (most notably $PARAMETERS)

	function - The python function to call (use either this or command)

	parameters - List of parameter instances. By defailt, they will be passed in the order defined to the command or function.

	parameterstyle - Set to positional (default) or keywords. Changes the way arguments are passed to the function.

	viewers - List of viewer instances.

	mimetype - The mimetype of the output (when no viewers are used).

	method - The HTTP Method to allow, set to string GET, POST or the None value to allow all methods.

	returncodes404 - A list of command exit codes that will be mapped to HTTP 404 Not Found (defaults to: [4])

	returncodes403 - A list of command exit codes that will be mapped to HTTP 403 Permission Denied (defaults to: [3])

	returncodes200 - A list of command exit codes that will be mapped to HTTP 200 Ok (defaults to: [0])

	allowanonymous - Boolean indicating whether this action can be used without any authentication.

	
static fromxml(node)

	Static method returning an Action instance from the given XML description. Node can be a string or an etree._Element.

	
xml(indent='')

	

	
exception clam.common.data.AuthRequired(msg='')

	Raised on HTTP 401 - Authentication Required error. Service requires authentication, pass user credentials in CLAMClient constructor.

	
exception clam.common.data.AuthenticationRequired

	This Exception is raised when authentication is required but has not been provided

	
exception clam.common.data.BadRequest

	Raised on HTTP 400 - Bad Request erors

	
class clam.common.data.CLAMData(xml, client=None, localroot=False, projectpath=None, loadmetadata=True)

	Instances of this class hold all the CLAM Data that is automatically extracted from CLAM
XML responses. Its member variables are:

	baseurl - The base URL to the service (string)

	projecturl - The full URL to the selected project, if any (string)

	status - Can be: clam.common.status.READY (0),``clam.common.status.RUNNING`` (1), or clam.common.status.DONE (2)

	statusmessage - The latest status message (string)

	
	completion - An integer between 0 and 100 indicating

	the percentage towards completion.

	parameters - List of parameters (but use the methods instead)

	profiles - List of profiles ([Profile])

	program - A Program instance (or None). Describes the expected outputfiles given the uploaded inputfiles. This is the concretisation of the matching profiles.

	input - List of input files ([CLAMInputFile]); use inputfiles() instead for easier access

	output - List of output files ([CLAMOutputFile])

	projects - List of project IDs ([string])

	corpora - List of pre-installed corpora

	errors - Boolean indicating whether there are errors in parameter specification

	errormsg - String containing an error message

	oauth_access_token - OAuth2 access token (empty if not used, string)

Note that depending on the current status of the project, not all may be available.

	
baseurl = None

	String containing the base URL of the webserivice

	
commandlineargs()

	Obtain a string of all parameters, using the paramater flags they were defined with, in order to pass to an external command. This is shell-safe by definition.

	
corpora = None

	List of pre-installed corpora

	
errormsg = None

	String containing an error message if an error occured

	
errors = None

	Boolean indicating whether there are errors in parameter specification

	
get(parameter_id, default=None)

	

	
input = None

	List of input files ([CLAMInputFile])

	
inputfile(inputtemplate=None)

	Return the inputfile for the specified inputtemplate, if inputtemplate=None, inputfile is returned regardless of inputtemplate. This function may only return 1 and returns an error when multiple input files can be returned, use inputfiles() instead.

	
inputfiles(inputtemplate=None)

	Generator yielding all inputfiles for the specified inputtemplate, if inputtemplate=None, inputfiles are returned regardless of inputtemplate.

	
inputtemplate(template_id)

	Return the inputtemplate with the specified ID. This is used to resolve a inputtemplate ID to an InputTemplate object instance

	
inputtemplates()

	Return all input templates as a list (of InputTemplate instances)

	
loadmetadata = None

	True)

	Type

	Automatically load metadata for input and output files? (default

	
matchingprofiles()

	Generator yielding all matching profiles

	
output = None

	List of output files ([CLAMOutputFile])

	
outputtemplate(template_id)

	Get an output template by ID

	
parameter(parameter_id)

	Return the specified global parameter (the entire object, not just the value)

	
parametererror()

	Return the first parameter error, or False if there is none

	
parameters = None

	This contains a list of (parametergroup, [parameters]) tuples.

	
parseresponse(xml, localroot=False)

	Parses CLAM XML, there’s usually no need to call this directly

	
passparameters()

	Return all parameters as {id: value} dictionary

	
profiles = None

	List of profiles ([Profile])

	
program = None

	Program instance. Describes the expected outputfiles given the uploaded inputfiles. This is the concretisation of the matching profiles.

	
projects = None

	List of projects ([string])

	
projecturl = None

	String containing the full URL to the project, if a project was indeed selected

	
status = None

	The current status of the service, returns clam.common.status.READY (1), clam.common.status.RUNNING (2), or clam.common.status.DONE (3)

	
statusmessage = None

	The current status of the service in a human readable message

	
class clam.common.data.CLAMFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
attachviewers(profiles)

	Attach viewers and converters to file, automatically scan all profiles for outputtemplate or inputtemplate

	
basedir = ''

	

	
copy(target, timeout=500)

	Copy or download this file to a new local file

	
delete()

	Delete this file

	
exists()

	

	
loadmetadata()

	Load metadata for this file. This is usually called automatically upon instantiation, except if explicitly disabled. Works both locally as well as for clients connecting to a CLAM service.

	
metafilename()

	Returns the filename for the metadata file (not full path). Only used for local files.

	
read()

	Loads all lines in memory

	
readlines()

	Loads all lines in memory

	
store(fileid=None, keep=False)

	Put a file in temporary public storage, returns the ID if the file is local, returns a dictionary with keys ‘id’, ‘filename’ and ‘url’ if the file is remote.

	
validate()

	Validate this file. Returns a boolean.

	
class clam.common.data.CLAMInputFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
basedir = 'input'

	

	
class clam.common.data.CLAMMetaData(file, **kwargs)

	A simple hash structure to hold arbitrary metadata. This is the basis for format classes.

	
allowcustomattributes = True

	

	
attributes = None

	

	
classmethod formatxml(indent='')

	Render an XML representation of the format class

	
static fromxml(node, file=None)

	Read metadata from XML. Static method returning an CLAMMetaData instance (or rather; the appropriate subclass of CLAMMetaData) from the given XML description. Node can be a string or an etree._Element.

	
httpheaders()

	HTTP headers to output for this format. Yields (key,value) tuples. Should be overridden in sub-classes!

	
items()

	Returns all items as (key, value) tuples

	
mimetype = 'text/plain'

	

	
save(filename)

	Save metadata to XML file

	
schema = ''

	

	
validate()

	Validate the metadata. Possibly extracts additional metadata from the actual file into the metadata file. This method calls a format’s custom validator() function which you can override per format, additionally it also validates any constraints that are set. The validatation method implements some caching so your validator() function is never called more than once.

	
validateconstraints()

	Validates the constraints (if any). Called by validate(), no need to invoke directly

	
validator()

	This method can be overriden on derived classes and has no implementation here, should return True or False. Additionaly, if there is metadata IN the actual file, this method should extract it and assign it to this object. Will be automatically called from constructor. Note that the file (CLAMFile) is accessible through self.file, which is guaranteerd to exist when this method is called.

	
xml(indent='')

	Render an XML representation of the metadata

	
class clam.common.data.CLAMOutputFile(projectpath, filename, loadmetadata=True, client=None, requiremetadata=False)

	
	
basedir = 'output'

	

	
class clam.common.data.CLAMProvenanceData(serviceid, servicename, serviceurl, outputtemplate_id, outputtemplate_label, inputfiles, parameters=None, timestamp=None)

	Holds provenance data

	
static fromxml(node)

	Return a CLAMProvenanceData instance from the given XML description. Node can be a string or an lxml.etree._Element.

	
xml(indent='')

	Serialise provenance data to XML. This is included in CLAM Metadata files

	
exception clam.common.data.ConfigurationError

	This Exception is raised when authentication is required but has not been provided

	
class clam.common.data.Constraint(constrainttype, **kwargs)

	
	
static fromxml(node)

	Static method returns a Constraint instance from the given XML description. Node can be a string or an etree._Element.

	
test(metadata)

	

	
xml(indent='')

	Produce Constraint XML

	
class clam.common.data.CopyMetaField(key, value=None)

	In CopyMetaField, the value is in the form of templateid.keyid, denoting where to copy from. If not keyid but only a templateid is
specified, the keyid of the metafield itself will be assumed.

	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
class clam.common.data.ForbidMeta(**kwargs)

	

	
exception clam.common.data.FormatError(value)

	This Exception is raised when the CLAM response is not in the valid CLAM XML format

	
class clam.common.data.Forwarder(id, name, url, description='', type='zip', tmpstore=True, encodeurl=True)

	

	
exception clam.common.data.HTTPError

	This Exception is raised when certain data (such a metadata), can’t be retrieved over HTTP

	
class clam.common.data.InputSource(**kwargs)

	
	
check()

	Checks if this inputsource is usable in INPUTSOURCES

	
isdir()

	

	
isfile()

	

	
xml(indent='')

	

	
class clam.common.data.InputTemplate(template_id, formatclass, label, *args, **kwargs)

	This class represents an input template. A slot with a certain format and function to which input files can be uploaded

	
static fromxml(node)

	Static method returning an InputTemplate instance from the given XML description. Node can be a string or an etree._Element.

	
generate(file, validatedata=None, inputdata=None, user=None)

	Convert the template into instantiated metadata, validating the data in the process and returning errors otherwise. inputdata is a dictionary-compatible structure, such as the relevant postdata. Return (success, metadata, parameters), error messages can be extracted from parameters[].error. Validatedata is a (errors,parameters) tuple that can be passed if you did validation in a prior stage, if not specified, it will be done automatically.

	
json()

	Produce a JSON representation for the web interface

	
match(metadata, user=None)

	Does the specified metadata match this template? returns (success,metadata,parameters)

	
matchingfiles(projectpath)

	Checks if the input conditions are satisfied, i.e the required input files are present. We use the symbolic links .*.INPUTTEMPLATE.id.seqnr to determine this. Returns a list of matching results (seqnr, filename, inputtemplate).

	
validate(postdata, user=None)

	Validate posted data against the inputtemplate

	
xml(indent='')

	Produce Template XML

	
exception clam.common.data.NoConnection

	Raised when a connection can’t be established

	
exception clam.common.data.NotFound(msg='')

	Raised on HTTP 404 - Not Found Errors

	
class clam.common.data.OutputTemplate(template_id, formatclass, label, *args, **kwargs)

	
	
findparent(inputtemplates)

	Find the most suitable parent, that is: the first matching unique/multi inputtemplate

	
static fromxml(node)

	Static method return an OutputTemplate instance from the given XML description. Node can be a string or an etree._Element.

	
generate(profile, parameters, projectpath, inputfiles, provenancedata=None)

	Yields (inputtemplate, inputfilename, inputmetadata, outputfilename, metadata) tuples

	
generatemetadata(parameters, parentfile, relevantinputfiles, provenancedata=None)

	Generate metadata, given a filename, parameters and a dictionary of inputdata (necessary in case we copy from it)

	
getparent(profile)

	Resolve a parent ID

	
xml(indent='')

	Produce Template XML

	
class clam.common.data.ParameterCondition(**kwargs)

	
	
allpossibilities()

	Returns all possible outputtemplates that may occur (recusrively applied)

	
evaluate(parameters)

	Returns False if there’s no match, or whatever the ParameterCondition evaluates to (recursively applied!)

	
static fromxml(node)

	Static method returning a ParameterCondition instance from the given XML description. Node can be a string or an etree._Element.

	
match(parameters)

	

	
xml(indent='')

	

	
exception clam.common.data.ParameterError(msg='')

	Raised on Parameter Errors, i.e. when a parameter does not validate, is missing, or is otherwise set incorrectly.

	
class clam.common.data.ParameterMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.PermissionDenied(msg='')

	Raised on HTTP 403 - Permission Denied Errors (but only if no CLAM XML response is provided)

	
class clam.common.data.Profile(*args)

	
	
static fromxml(node)

	Return a profile instance from the given XML description. Node can be a string or an etree._Element.

	
generate(projectpath, parameters, serviceid, servicename, serviceurl)

	Generate output metadata on the basis of input files and parameters. Projectpath must be absolute. Returns a Program instance.

	
match(projectpath, parameters)

	Check if the profile matches all inputdata and produces output given the set parameters. Returns a boolean

	
matchingfiles(projectpath)

	Return a list of all inputfiles matching the profile (filenames)

	
out(indent='')

	

	
outputtemplates()

	Returns all outputtemplates, resolving ParameterConditions to all possibilities

	
xml(indent='')

	Produce XML output for the profile

	
class clam.common.data.Program(projectpath, matchedprofiles=None)

	A Program is the concretisation of Profile. It describes the exact output files that will be created on the basis of what input files. This is in essence a dictionary
structured as follows: {outputfilename: (outputtemplate, inputfiles)} in which inputfiles is a dictionary {inputfilename: inputtemplate}

	
add(outputfilename, outputtemplate, inputfilename=None, inputtemplate=None)

	Add a new path to the program

	
getinputfile(outputfile, loadmetadata=True, client=None, requiremetadata=False)

	Grabs one input file for the specified output filename (raises a KeyError exception if there is no such output, StopIteration if there are no input files for it). Shortcut for getinputfiles()

	
getinputfiles(outputfile, loadmetadata=True, client=None, requiremetadata=False)

	Iterates over all input files for the specified outputfile (you may pass a CLAMOutputFile instance or a filename string). Yields (CLAMInputFile,str:inputtemplate_id) tuples. The last three arguments are passed to its constructor.

	
getoutputfile(loadmetadata=True, client=None, requiremetadata=False)

	Grabs one output file (raises a StopIteration exception if there is none). Shortcut for getoutputfiles()

	
getoutputfiles(loadmetadata=True, client=None, requiremetadata=False)

	Iterates over all output files and their output template. Yields (CLAMOutputFile, str:outputtemplate_id) tuples. The last three arguments are passed to its constructor.

	
inputpairs(outputfilename)

	Iterates over all (inputfilename, inputtemplate) pairs for a specific output filename

	
outputpairs()

	Iterates over all (outputfilename, outputtemplate) pairs

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
class clam.common.data.RawXMLProvenanceData(data)

	
	
xml()

	

	
class clam.common.data.RequireMeta(**kwargs)

	

	
exception clam.common.data.ServerError(msg='')

	Raised on HTTP 500 - Internal Server Error. Indicates that something went wrong on the server side.

	
class clam.common.data.SetMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.TimeOut

	Raised when a connection times out

	
class clam.common.data.UnsetMetaField(key, value=None)

	
	
resolve(data, parameters, parentfile, relevantinputfiles)

	

	
xml(indent='')

	Serialize the metadata field to XML

	
exception clam.common.data.UploadError(msg='')

	Raised when something fails during upload

	
clam.common.data.buildarchive(project, path, fmt)

	Build a download archive, returns the full file path

	
clam.common.data.escape(s, quote)

	

	
clam.common.data.escapeshelloperators(s)

	

	
clam.common.data.getclamdata(filename, custom_formats=None, custom_viewers=None)

	This function reads the CLAM Data from an XML file. Use this to read
the clam.xml file from your system wrapper. It returns a CLAMData instance.

If you make use of CUSTOM_FORMATS, you need to pass the CUSTOM_FORMATS list as 2nd argument.

	
clam.common.data.getformats(profiles)

	

	
clam.common.data.loadconfig(callername, required=True)

	This function loads an external configuration file. It is called directly by the service configuration script and complements the configuration specified there. The function in turn automatically searches for an appropriate configuration file (in several paths). Host and system specific configuration files are prioritised over more generic ones.

	callername - A string representing the name of settings module. This is typically set to __name__

Example:

loadconfig(__name__)

	
clam.common.data.loadconfigfile(configfile, settingsmodule)

	This function loads an external configuration file. It is usually not invoked directly but through loadconfig() which handles searching for the right configuration file in the right paths, with fallbacks.

	
clam.common.data.parsexmlstring(node)

	

	
clam.common.data.processhttpcode(code, allowcodes=None)

	Return the success code or raises the appropriate exception when the code repesents an HTTP error code

	
clam.common.data.processparameter(postdata, parameter, user=None)

	

	
clam.common.data.processparameters(postdata, parameters, user=None)

	

	
clam.common.data.profiler(profiles, projectpath, parameters, serviceid, servicename, serviceurl, printdebug=None)

	Given input files and parameters, produce metadata for outputfiles. Returns a list of matched profiles (empty if none match), and a program.

	
clam.common.data.resolveconfigvariables(value, settingsmodule)

	Resolves standard environment variables, encoded in curly braces

	
clam.common.data.resolveinputfilename(filename, parameters, inputtemplate, nextseq=0, project=None)

	

	
clam.common.data.resolveoutputfilename(filename, globalparameters, localparameters, outputtemplate, nextseq, project, inputfilename)

	

	
clam.common.data.sanitizeparameters(parameters)

	Construct a dictionary of parameters, for internal use only

	
clam.common.data.shellsafe(s, quote='', doescape=True)

	Returns the value string, wrapped in the specified quotes (if not empty), but checks and raises an Exception if the string is at risk of causing code injection

	
clam.common.data.unescapeshelloperators(s)

	

CLAM Formats

	
class clam.common.formats.AlpinoXMLFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'text/xml'

	

	
name = 'Alpino XML'

	

	
schema = ''

	

	
class clam.common.formats.BinaryDataFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/octet-stream'

	

	
name = 'Application-specific Binary Data'

	

	
class clam.common.formats.CSVFormat(file, **kwargs)

	
	
attributes = {'encoding': StringParameter encoding, 'language': StringParameter language}

	

	
mimetype = 'text/csv'

	

	
name = 'Comma Separated Values'

	

	
class clam.common.formats.DCOIFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'text/xml'

	

	
name = 'DCOI format'

	

	
schema = ''

	

	
class clam.common.formats.DjVuFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'image/x-djvu'

	

	
name = 'DjVu format'

	

	
class clam.common.formats.ExampleFormat(file, **kwargs)

	This is an Example format, please inspect its source code if you want to create custom formats!

	
allowcustomattributes = True

	

	
attributes = {}

	

	
httpheaders()

	HTTP headers to output for this format. Yields (key,value) tuples.

	
mimetype = 'text/plain'

	

	
schema = None

	

	
validator()

	Implement your validator here, should return True or False. Additionaly, if there is metadata IN the actual file, this method should extract it and assign it to this object. Will be automatically called from constructor. Note that the file (CLAMFile) is accessible through self.file, which is guaranteerd to exist when this method is called.

	
class clam.common.formats.FoLiAXMLFormat(file, **kwargs)

	
	
attributes = {'chunk-annotation': StringParameter chunk-annotation, 'entity-annotation': StringParameter entity-annotation, 'lemma-annotation': StringParameter lemma-annotation, 'paragraph-annotation': StringParameter paragraph-annotation, 'pos-annotation': StringParameter pos-annotation, 'relation-annotation': StringParameter relation-annotation, 'sense-annotation': StringParameter sense-annotation, 'sentence-annotation': StringParameter sentence-annotation, 'syntax-annotation': StringParameter syntax-annotation, 'text-annotation': StringParameter text-annotation, 'token-annotation': StringParameter token-annotation, 'version': StringParameter version}

	

	
mimetype = 'text/xml'

	

	
name = 'FoLiA XML'

	

	
schema = ''

	

	
validator()

	This method can be overriden on derived classes and has no implementation here, should return True or False. Additionaly, if there is metadata IN the actual file, this method should extract it and assign it to this object. Will be automatically called from constructor. Note that the file (CLAMFile) is accessible through self.file, which is guaranteerd to exist when this method is called.

	
class clam.common.formats.FrogTSVFormat(file, **kwargs)

	
	
attributes = {'chunking': ChoiceParameter chunking, 'lemmatisation': ChoiceParameter lemmatisation, 'morphologicalanalysis': ChoiceParameter morphologicalanalysis, 'mwudetection': ChoiceParameter mwudetection, 'namedentities': ChoiceParameter namedentities, 'parsing': ChoiceParameter parsing, 'postagging': ChoiceParameter postagging, 'tokenisation': StaticParameter tokenisation: yes}

	

	
mimetype = 'text/plain'

	

	
name = 'Frog Tab Separated Values'

	

	
class clam.common.formats.GifImageFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'image/gif'

	

	
name = 'Gif Image'

	

	
class clam.common.formats.HTMLFormat(file, **kwargs)

	HTML Format Definition. This format has one required attribute: encoding

	
attributes = {'encoding': StringParameter encoding, 'language': StringParameter language}

	

	
httpheaders()

	HTTP headers to output for this format. Yields (key,value) tuples.

	
mimetype = 'text/html'

	

	
name = 'HTML Format'

	

	
class clam.common.formats.JSONFormat(file, **kwargs)

	
	
mimetype = 'application/json'

	

	
name = 'JSON Format (generic, not further specified)'

	

	
class clam.common.formats.JpegImageFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'image/jpeg'

	

	
name = 'Jpeg Image'

	

	
class clam.common.formats.KBXMLFormat(file, **kwargs)

	
	
mimetype = 'text/xml'

	

	
name = 'Koninklijke Bibliotheek XML-formaat'

	

	
schema = ''

	

	
class clam.common.formats.MP3AudioFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'audio/mpeg'

	

	
name = 'MP3 Audio File'

	

	
class clam.common.formats.MSWordFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/msword'

	

	
name = 'Microsoft Word format'

	

	
schema = ''

	

	
class clam.common.formats.MpegVideoFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'video/mpeg'

	

	
name = 'Mpeg Video'

	

	
class clam.common.formats.OggAudioFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'audio/vorbis'

	

	
name = 'Ogg Vorbis Audio File'

	

	
class clam.common.formats.OggVideoFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'audio/ogg'

	

	
name = 'Ogg Video File'

	

	
class clam.common.formats.OpenDocumentTextFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/vnd.oasis.opendocument.text'

	

	
name = 'Open Document Text Format'

	

	
class clam.common.formats.PDFFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/pdf'

	

	
name = 'PDF'

	

	
class clam.common.formats.PlainTextFormat(file, **kwargs)

	Plain Text Format Definition. This format has one required attribute: encoding

	
attributes = {'encoding': StringParameter encoding, 'language': StringParameter language}

	

	
httpheaders()

	HTTP headers to output for this format. Yields (key,value) tuples.

	
mimetype = 'text/plain'

	

	
name = 'Plain Text Format'

	

	
class clam.common.formats.PngImageFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'image/png'

	

	
name = 'PNG Image'

	

	
class clam.common.formats.TICCLShadowOutputXML(file, **kwargs)

	
	
mimetype = 'text/xml'

	

	
name = 'Ticcl Shadow Output'

	

	
schema = ''

	

	
class clam.common.formats.TICCLVariantOutputXML(file, **kwargs)

	
	
mimetype = 'text/xml'

	

	
name = 'Ticcl Variant Output'

	

	
schema = ''

	

	
clam.common.formats.TadpoleFormat

	alias of clam.common.formats.FrogTSVFormat

	
class clam.common.formats.TiffImageFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'image/tiff'

	

	
name = 'Tiff Image'

	

	
clam.common.formats.UndefinedXMLFormat

	alias of clam.common.formats.XMLFormat

	
class clam.common.formats.WaveAudioFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'audio/vnd.wave'

	

	
name = 'Wave Audio File'

	

	
class clam.common.formats.XMLFormat(file, **kwargs)

	
	
mimetype = 'text/xml'

	

	
name = 'XML Format (generic, not further specified)'

	

	
schema = ''

	

	
class clam.common.formats.XMLStyleSheet(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/xslt+xml'

	

	
name = 'XML Stylesheet'

	

	
class clam.common.formats.ZIPFormat(file, **kwargs)

	
	
attributes = {}

	

	
mimetype = 'application/zip'

	

	
name = 'ZIP Archive'

	

CLAM Parameters

	
class clam.common.parameters.AbstractParameter(id, name, description='', **kwargs)

	This is the base class from which all parameter classes have to be derived.

	
access(user)

	This method checks if the given user has access to see/set this parameter, based on the denyusers and/or allowusers option.

	
allowusers = None

	You can restrict this parameter to only be available to certain users, set the usernames you want to allow here, all others are denied

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
constrainable()

	Should this parameter be used in checking contraints?

	
denyusers = None

	You can restrict this parameter to only be available to certain users, set the usernames you want to deny access here, all others are allowed

	
description = None

	A clear description for this parameter, which the user will see

	
error = None

	If this parameter has any validation errors, this will be set to an error message (by default set to None, meaning no error)

	
static fromxml(node)

	Create a Parameter instance (of any class derived from AbstractParameter!) given its XML description. Node can be a string containing XML or an lxml _Element

	
id = None

	A unique alphanumeric ID

	
name = None

	A representational name for this parameter, which the user will see

	
paramflag = None

	The parameter flag that will be used when this parameter is passed on the commandline (using COMMAND= and $PARAMETERS) (by default set to None)

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
xml(indent='')

	This methods renders an XML representation of this parameter, along with
its selected value, and feedback on validation errors

	
class clam.common.parameters.BooleanParameter(id, name, description='', **kwargs)

	A parameter that takes a Boolean (True/False) value.

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value=True)

	Set the boolean parameter

	
unset()

	

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set(). It typically returns the default None when something is left unset (but that default can be overridden)

	
class clam.common.parameters.ChoiceParameter(id, name, description, **kwargs)

	Choice parameter, users have to choose one of the available values, or multiple values if instantiated with multi=True.

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as -paramflag=value

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(values)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
xml(indent='')

	This methods renders an XML representation of this parameter, along with
its selected value, and feedback on validation errors

	
class clam.common.parameters.FloatParameter(id, name, description='', **kwargs)

	
	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
class clam.common.parameters.IntegerParameter(id, name, description='', **kwargs)

	
	
constrainable()

	Should this parameter be used in checking contraints?

	
set(value)

	This parameter method attempts to set a specific value for this parameter. The value will be validated first, and if it can not be set. An error message will be set in the error property of this parameter

	
validate(value)

	Validate the parameter

	
valuefrompostdata(postdata)

	This parameter method searches the POST data and retrieves the values it needs. It does not set the value yet though, but simply returns it. Needs to be explicitly passed to parameter.set()

	
class clam.common.parameters.StaticParameter(id, name, description='', **kwargs)

	This is a parameter that can’t be changed (it’s a bit of a contradiction, I admit). But useful for some metadata specifications.

	
class clam.common.parameters.StringParameter(id, name, description='', **kwargs)

	String Parameter, taking a text value, presented as a one line input box

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

	
validate(value)

	Validate the parameter

	
class clam.common.parameters.TextParameter(id, name, description='', **kwargs)

	Text Parameter, taking a text value, presented as a multiline input box

	
compilearg()

	This method compiles the parameter into syntax that can be used on the shell, such as for example: –paramflag=value

 _static/up-pressed.png

_static/up.png

_images/screenshot.png
Text Statistics (CLAM Dem 1.8 Projects

This webservice computes several statistics for plaintext files. It is a demo for CLAM.

This is a CLAM demo System Information 7

Author(s): proycon

Centre for Language and Speech
Technology, Radboud University
Website: https://proycon.github.io/clam
License: GNU Public License v3

Contact: proycon@anaproy.nl

Affiliation:

Start a new Project

Aproject is your personal workspace for a specific task; in a project you gather input files, set parameters for the system, monitor the system's
progress and download and visualise your output files. Users can have and run multiple projects simultaneously. You can always come back to a
project, regardless of the state it's in, until you explicitly delete it. To create a new project, enter a short unique identifier below (no spaces or special
characters allowed) and press the button:

Project ID:

Create project

Projects
Show |10 v |entries Search:

Project ID 4 status Size Last changed
test staging 0.0MB 2019-10-28 13:05:56
test2 staging 0.0 MB 2019-10-26 13:03:18 =
N
| Showing 1o 2 of 2 entries First Previous Next Last

Disk size used: 0 MB

Show delete buttons

Text Statistics (CLAM Demo)
by proycon
Centre for Language and Speech Technology, Radboud University

Powered by CLAM v3.0.0 - Computational Linguistics Application Mediator

by Maarten van Gompel - https://proycon.github.io/clan
Centre for Language and Speech Technology, Radboud University Nijmegen

CLAM is funded by CLARIN-NL and its successor CLARIAH.

_images/screenshot2.png
Text Statistics (CLAM Demo)

2. Staging

Status

Accepting new input files and selection of parameters

Cancel and delete project

Input
Input files

Show| 10 ¥ | entries

Input File 4 Template Format

Search:

Actions
input-67881d06505732dd. txt Input text document Plain Text Format [x)
Showing 1 to 1 of 1 entries First Previous Next Last

T Upload a file from disk 4 Grab a file from the web #' Add input directly

:= Parameters

Main
Create Lexicon J
Generate a separate overall lexicon? l

Case Sensitivit,

-) no
Enable case sensitive behaviour?

Limit frequencylist
Limit entries in frequencylist to the top scoring ones. Value of zero (no limit) or higher

Author
Sign output metadata with the specified author name

Start

Text Statistics (CLAM Demo)
by proycon
Centre for Language and Speech Technology, Radboud University

Powered by CLAM v3.0.0 - Computational Linguistics Application Mediator

by Maarten van Gompel - https://proycon.github.io/clam
Centre for Language and Speech Technology, Radboud University Nijmegen

CLAM is funded by CLARIN-NL and its successor CLARIAH.

_images/architecture.png
End-User Automated Client

in webbrowser

CLAM Client API |

HTTR

CLAMLXML + XSL L N
= XHTML cLAMXML

Workflow Interface

LAM Client API §

........‘,f..,d

CLAM Webservice

System wrapper script

NLP Application(s)

Service Configuration

_images/screenshot3.png
Text Statistics (CLAM Demo):: test

4. 4 Results

Status

Done Return to project index

Cancel and delete project
28/0ct/2019 16:06:49 Done

28/0ct/2019 16:06:49
28/0ct/2019 16:06:49

Writing overall statistics...
Processing input-67881d06505732dd.txt...
28/0ct/2019 16:06:49 Startin

Discard output and restart

Show input files

Output files
(Download all as archive: zip | tar.gz | tar.bz2)

Show[10 v|entries

Search:

Output File

A

Template

Format

Viewers

error.log
input-67881d06505732dd. txt. freqlist
input-67881d06505732dd. txt. stats

overall.freglist

Log file with (standard) error output
Document Frequency list
Document Statistics

Overall Frequency List

overall.lexicon

overall.stats

Lexicon

Overall Statistics

Plain Text Format
My Dummy text format
Plain Text Format
My Dummy text format
Plain Text Format

Plain Text Format

Download | Metadata
Table viewer | Download | Metadata
Download | Metadata
Table viewer | Download | Metadata
Download | Metadata

Download | Metadata

Showing 110 6 of 6 entries

Text Statistics (CLAM Demo)

by proycon

First

Centre for Language and Speech Technology, Radboud University

Powered by CLAM v3.0.0 - Computational Linguistics Application Mediator
by Maarten van Gompel - https://proycon.github.io/clam
Centre for Language and Speech Technology, Radboud University Nijmegen

CLAM is funded by CLARIN-NL and its successor CLARIAH.

Previous Next Last

b

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Installation

 		
 LaMachine: a meta-distribution with CLAM

 		
 Installation Details

 		
 Usage

 		
 Source Code Repository

 		
 Getting Started

 		
 Starting Your webservice

 		
 Overriding host, port and urlprefix (advanced)

 		
 Service configuration

 		
 General Webservice Metadata

 		
 Server Administration

 		
 User Authentication

 		
 MySQL backend

 		
 External forwarded authentication schemes

 		
 OAuth2

 		
 Command Definition

 		
 Project Paradigm: Metadata, Profiles & Parameters

 		
 Parameter Specification

 		
 Parameters API

 		
 Profile specification

 		
 Control over filenames

 		
 Parameter Conditions

 		
 Converters

 		
 Viewers

 		
 Forwarders

 		
 Input Sources: Working with pre-installed data

 		
 Constraints and Validation

 		
 Multiple profiles, identical input templates

 		
 Customising the web interface

 		
 Actions

 		
 External Configuration Files

 		
 Wrapper script

 		
 Data API

 		
 Program

 		
 Examples

 		
 Data API Reference

 		
 Deployment in production

 		
 Alternative deployment on Apache 2 with mod_wsgi

 		
 Deploying CLAM with other webservers

 		
 Deploying CLAM behind a reverse proxy

 		
 Clients

 		
 Client API Reference

 		
 Troubleshooting

 		
 RESTful API specification

 		
 General Webservice Information

 		
 Project Index

 		
 Project Endpoint

 		
 Input files

 		
 Output Files

 		
 Archive Download

 		
 Temporary Storage

 		
 Actions

 		
 Project entry shortcut

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

