
citools Documentation
Release 0.1

Centrum Holdings

September 20, 2015

Contents

1 On (continuous) versioning 3

2 “Meta” packages 5

3 (Django) web environment 7

4 Build process 9

5 Testing 11

6 Working with databases 13

7 Distribution and Deployment 15

i

ii

citools Documentation, Release 0.1

Ultimate goal of Continuous Integration tools is to provide “integration button”, magic key hit that will do everything
needed for product to build & deploy. While there are some tools available, none of those fullfills our real-world needs.

Basic idea is simple: use setup.py in similar fashion as Makefiles or ant, but take advantage of setuptools plugin system
to provide globally available commands, easily configurable for every project.

We are making some assumptions about project structure and needs. If you need to configure something more, let us
know, or just fork us at github and send us Your pull request.

Licensed under BSD, this library is maintained by Ella team from Centrum Holdings. For feedback, ideas, bug reports
and friends, let us know in mailing list.

Contents 1

http://github.com/ella/citools/tree/master
http://www.opensource.org/licenses/bsd-license.php
http://groups.google.com/group/ella-project

citools Documentation, Release 0.1

2 Contents

CHAPTER 1

On (continuous) versioning

Idea is simple: if you should be able to deploy software any time, every revision must have a release number. Thus,
we have a “stable” version prefix, which we assume to be set by tag. Last digit in version is build number, thus number
of commits since last tag 1. Number of digits in your version is arbitrary, but must be at least three (two for version
prefix, like projectname-1, and one for build number).

Then, version must be replaced in all files needed. We’re now rewriting in following form in following places:

1. VERSION in $project/__init__.py is set to version tuple (not string). We’re assuming layout as in our django-
base-library (which is actually not much about Django).

2. __versionstr__ (if found) in setup.py is replaced to string (not tuple). This is for libraries that must not import
library itself and set version to $library.__versionstr__ dynamically

3. TODO: debian ,)

1 (TODO: Following is actually not yet supported; we’re now assuming only version setting tags) “Last tag” means “last tag that is setting
project version”. We support other tags, so either you must use $projectname-$version tags, or pass version_regexp argument to setuptools.setup in
setup.py, which must be in form TODO

3

http://github.com/ella/django-base-library/blob/84e9c6a07fb1e69b16e386b6bada39eeda1c8dde/djangobaselibrary/__init__.py
http://github.com/ella/django-base-library/blob/84e9c6a07fb1e69b16e386b6bada39eeda1c8dde/djangobaselibrary/__init__.py

citools Documentation, Release 0.1

4 Chapter 1. On (continuous) versioning

CHAPTER 2

“Meta” packages

There may be need for creating “meta” packages, that do not contain any code, but just specifies which packages
should be bundled together (and in which version). Citools supports this behaviour by automatic computation of
metapackage version and specifying exact version (especially for debian).

You must only specify repositories You depend upon in arguments for setuptools.setup (only git supported for now)::

dependency_repositories = [“ssh://server/my/library1”, “http://github.com/myuser/library/”,

]

By running setup.py compute_meta_version_git, library version will be computed as it’s own version +
sum of all versions of all child libraries.

Specification via setup.py argument will be deprecated, you should use command line arguments instead.

5

http://github.com/myuser/library/

citools Documentation, Release 0.1

6 Chapter 2. “Meta” packages

CHAPTER 3

(Django) web environment

7

citools Documentation, Release 0.1

8 Chapter 3. (Django) web environment

CHAPTER 4

Build process

9

citools Documentation, Release 0.1

10 Chapter 4. Build process

CHAPTER 5

Testing

11

citools Documentation, Release 0.1

12 Chapter 5. Testing

CHAPTER 6

Working with databases

Downloading and restoring backup:

[backup]
realm=backuprealm
username=blah
password=xxx
uri=https://my.backup.server.cz/my/dir/backup_archive.tar.gz

tempdir=/if/you/need/bigger/tempdir/to/unpack/archive/

[database]
file=my/database/backup/db.sql
name=dbname
username=buildbot
password=xxx

citools -c /etc/$project/citools.ini db_restore

Supported backup formats are .tar.gz|bz2, .sql.gz|bz2 and plain .sql. When you use tar archive with
more databases, you can restore more databases at once, if you define more sections with prefix database in your
ini config file:

[backup]
realm=myrealm
username=blah
password=xxx
uri=https://my.backup.server.cz/my/dir/backup_archive.tar.gz
tempdir=/if/you/need/bigger/tempdir/to/unpack/archive/

[database_first]
file=path/in/tarfile/database_first.sql
name=database_first
username=firstman
password=""

[database_second]
file=path/in/tarfile/database_second.sql
name=database_second
username=secondman
password=xxx

when run as setup.py db_restore, /etc/$project/citools.ini is the default

13

citools Documentation, Release 0.1

14 Chapter 6. Working with databases

CHAPTER 7

Distribution and Deployment

15

	On (continuous) versioning
	``Meta'' packages
	(Django) web environment
	Build process
	Testing
	Working with databases
	Distribution and Deployment

