
MicroPython Documentation
Release 0.0.0

Damien P. George, Paul Sokolovsky, and contributors

May 07, 2018

API and Usage

1 Adafruit CircuitPython 3
1.1 Status . 3
1.2 Supported Boards . 3

1.2.1 Designed for CircuitPython . 3
1.2.2 Other . 3

1.3 Download . 4
1.4 Documentation . 4
1.5 Contributing . 4
1.6 Differences from MicroPython . 4

1.6.1 Behavior . 4
1.6.2 API . 5
1.6.3 Modules . 5
1.6.4 atmel-samd21 features . 5

1.7 Project Structure . 5
1.7.1 Core . 5
1.7.2 Ports . 6

1.8 Full Table of Contents . 6
1.8.1 Core Modules . 6
1.8.2 Supported Ports . 37
1.8.3 Troubleshooting . 43
1.8.4 Additional Adafruit Libraries and Drivers on GitHub . 44
1.8.5 Design Guide . 46
1.8.6 Adding *io support to other ports . 52
1.8.7 MicroPython libraries . 54
1.8.8 Adafruit CircuitPython . 91
1.8.9 Contributing . 94
1.8.10 Contributor Covenant Code of Conduct . 95
1.8.11 MicroPython & CircuitPython license information . 96

2 Indices and tables 97

Python Module Index 99

i

ii

MicroPython Documentation, Release 0.0.0

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level API reference docs
which may link out to separate “getting started” guides. Adafruit has many excellent tutorials available through the
Adafruit Learning System.

API and Usage 1

https://adafruit.com
https://learn.adafruit.com/

MicroPython Documentation, Release 0.0.0

2 API and Usage

CHAPTER 1

Adafruit CircuitPython

Status | Supported Boards | Download | Documentation | Contributing | Differences from Micropython | Project Struc-
ture

CircuitPython is an education friendly open source derivative of MicroPython. CircuitPython supports use on educa-
tional development boards designed and sold by Adafruit. Adafruit CircuitPython features unified Python core APIs
and a growing list of Adafruit libraries and drivers of that work with it.

1.1 Status

This project is stable. Most APIs should be stable going forward. Those that change will change on major version
numbers such as 2.0.0 and 3.0.0.

1.2 Supported Boards

1.2.1 Designed for CircuitPython

• Adafruit CircuitPlayground Express

• Adafruit Feather M0 Express

• Adafruit Metro M0 Express

• Adafruit Gemma M0

1.2.2 Other

• Adafruit Feather HUZZAH

• Adafruit Feather M0 Basic

3

https://travis-ci.org/adafruit/circuitpython
https://discord.gg/nBQh6qu
https://micropython.org
https://adafruit.com
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3501
https://www.adafruit.com/products/2821
https://www.adafruit.com/products/2772

MicroPython Documentation, Release 0.0.0

• Adafruit Feather M0 Bluefruit LE (uses M0 Basic binaries)

• Adafruit Feather M0 Adalogger (MicroSD card supported using the Adafruit CircuitPython SD library)

• Arduino Zero

1.3 Download

Official binaries are available through the latest GitHub releases. Continuous (one per commit) builds are available
here and includes experimental hardware support.

1.4 Documentation

Guides and videos are available through the Adafruit Learning System under the CircuitPython category and MicroPy-
thon category. An API reference is also available on Read the Docs.

1.5 Contributing

See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing
to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they
will be promptly reviewed by project admins. Please join the Gitter chat or Discord too.

1.6 Differences from MicroPython

CircuitPython:

• includes a port for Atmel SAMD21 (Commonly known as M0 in Adafruit product names.)

• supports only Atmel SAMD21 and ESP8266 ports.

• tracks MicroPython’s releases (not master).

1.6.1 Behavior

• The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role
of each file and make each file independent from each other.

• boot.py (or settings.py) runs only once on start up before USB is initialized. This lays the ground
work for configuring USB at startup rather than it being fixed. Since serial is not available, output is written to
boot_out.txt.

• code.py (or main.py) is run after every reload until it finishes or is interrupted. After it is done running, the
vm and hardware is reinitialized. This means you cannot read state from ‘‘code.py‘‘ in the REPL anymore.
CircuitPython’s goal for this change includes reduce confusion about pins and memory being used.

• After code.py the REPL can be entered by pressing any key. It no longer shares state with code.py so it is
a fresh vm.

• Autoreload state will be maintained across reload.

4 Chapter 1. Adafruit CircuitPython

https://www.adafruit.com/products/2995
https://www.adafruit.com/product/2796
https://github.com/adafruit/Adafruit_CircuitPython_SD
https://www.arduino.cc/en/Main/ArduinoBoardZero
https://github.com/adafruit/circuitpython/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin
https://learn.adafruit.com/
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/category/micropython
https://learn.adafruit.com/category/micropython
http://circuitpython.readthedocs.io/en/latest/?
https://github.com/adafruit/circuitpython/blob/master/CONTRIBUTING.md
https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md
https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md
https://gitter.im/adafruit/circuitpython
https://discord.gg/nBQh6qu

MicroPython Documentation, Release 0.0.0

• Adds a safe mode that does not run user code after a hard crash or brown out. The hope is that this will make it
easier to fix code that causes nasty crashes by making it available through mass storage after the crash. A reset
(the button) is needed after its fixed to get back into normal mode.

1.6.2 API

• Unified hardware APIs: audioio, analogio, busio, digitalio, pulseio, touchio, microcontroller, board, bitbangio

• No machine API on Atmel SAMD21 port.

1.6.3 Modules

• No module aliasing. (uos and utime are not available as os and time respectively.) Instead os, time, and
random are CPython compatible.

• New storage module which manages file system mounts. (Functionality from uos in MicroPython.)

• Modules with a CPython counterpart, such as time, os and random, are strict subsets of their CPython
version. Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.

• tick count is available as time.monotonic()

1.6.4 atmel-samd21 features

• RGB status LED

• Auto-reload after file write over mass storage. (Disable with samd.disable_autoreload())

• Wait state after boot and main run, before REPL.

• Main is one of these: code.txt, code.py, main.py, main.txt

• Boot is one of these: settings.txt, settings.py, boot.py, boot.txt

1.7 Project Structure

Here is an overview of the top-level source code directories.

1.7.1 Core

The core code of MicroPython is shared amongst ports including CircuitPython:

• docs High level user documentation in Sphinx reStructuredText format.

• drivers External device drivers written in Python.

• examples A few example Python scripts.

• extmod Shared C code used in multiple ports’ modules.

• lib Shared core C code including externally developed libraries such as FATFS.

• logo The MicroPython logo.

1.7. Project Structure 5

https://circuitpython.readthedocs.io/en/latest/shared-bindings/audioio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/analogio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/pulseio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/touchio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic
https://github.com/micropython/micropython

MicroPython Documentation, Release 0.0.0

• mpy-cross A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful
for reducing library size.

• py Core Python implementation, including compiler, runtime, and core library.

• shared-bindings Shared definition of Python modules, their docs and backing C APIs. Ports must imple-
ment the C API to support the corresponding module.

• shared-module Shared implementation of Python modules that may be based on common-hal.

• tests Test framework and test scripts.

• tools Various tools, including the pyboard.py module.

1.7.2 Ports

Ports include the code unique to a microcontroller line and also variations based on the board.

• atmel-samd Support for SAMD21 based boards such as Arduino Zero, Adafruit Feather M0 Basic, and
Adafruit Feather M0 Bluefruit LE.

• bare-arm A bare minimum version of MicroPython for ARM MCUs.

• cc3200 Support for boards based CC3200 from TI such as the WiPy 1.0.

• esp8266 Support for boards based on ESP8266 WiFi modules such as the Adafruit Feather HUZZAH.

• minimal A minimal MicroPython port. Start with this if you want to port MicroPython to another microcon-
troller.

• pic16bit Support for 16-bit PIC microcontrollers.

• qemu-arm Support for ARM emulation through QEMU.

• stmhal Support for boards based on STM32 microcontrollers including the MicroPython flagship PyBoard.

• teensy Support for the Teensy line of boards such as the Teensy 3.1.

• unix Support for UNIX.

• windows Support for Windows.

• zephyr Support for Zephyr, a real-time operating system by the Linux Foundation.

CircuitPython only maintains the atmel-samd and esp8266 ports. The rest are here to maintain compatibility
with the MicroPython parent project.

back to top

1.8 Full Table of Contents

1.8.1 Core Modules

These core modules are intended on being consistent across ports. Currently they are only implemented in the
SAMD21 and ESP8266 ports. A module may not exist in a port if no underlying hardware support is present or
if flash space is limited. For example, a microcontroller without analog features will not have analogio.

6 Chapter 1. Adafruit CircuitPython

https://www.arduino.cc/en/Main/ArduinoBoardZero
https://www.adafruit.com/products/2772
https://www.adafruit.com/products/2995
http://www.ti.com/product/CC3200
https://www.pycom.io/solutions/py-boards/wipy1/
https://www.adafruit.com/products/2821
https://qemu.org
https://store.micropython.org/store/#/products/PYBv1_1
https://www.pjrc.com/teensy/teensy31.html
https://www.microsoft.com/en-us/windows/
https://www.zephyrproject.org/
https://github.com/micropython/micropython

MicroPython Documentation, Release 0.0.0

Support Matrix

Module / Port SAMD21 SAMD21 Express ESP8266
analogio Yes Yes Yes
audioio No Yes No
bitbangio No Yes Yes
board Yes Yes Yes
busio Yes Yes Yes
digitalio Yes Yes Yes
gamepad No Yes No
microcontroller Yes Yes Yes
multiterminal No No Yes
neopixel_write Yes Yes Yes
nvm No Yes No
os Yes Yes Yes
pulseio Yes Yes No
random Yes Yes Yes
storage Yes Yes Yes
time Yes Yes Yes
touchio Yes Yes No
uheap Debug Debug Debug
usb_hid Yes Yes No

Modules

_stage — C-level helpers for animation of sprites on a stage

The _stage module contains native code to speed-up the `stage Library <https://github.com/python-ugame/
circuitpython-stage>‘_. Libraries

Layer – Keep information about a single layer of graphics

class _stage.Layer(width, height, graphic, palette[, grid])
Keep internal information about a layer of graphics (either a Grid or a Sprite) in a format suitable for fast
rendering with the render() function.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• graphic (bytearray) – The graphic data of the tiles.

• palette (bytearray) – The color palette to be used.

• grid (bytearray) – The contents of the grid map.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x, y)

Set the offset of the layer to the specified values.

frame(frame, rotation)

1.8. Full Table of Contents 7

https://github.com/python-ugame/circuitpython-stage
https://github.com/python-ugame/circuitpython-stage

MicroPython Documentation, Release 0.0.0

Set the animation frame of the sprite, and optionally rotation its graphic.

Text – Keep information about a single text of text

class _stage.Text(width, height, font, palette, chars)
Keep internal information about a text of text in a format suitable for fast rendering with the render() func-
tion.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• font (bytearray) – The font data of the characters.

• palette (bytearray) – The color palette to be used.

• chars (bytearray) – The contents of the character grid.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x, y)

Set the offset of the text to the specified values.

_stage.render(x0, y0, x1, y1, layers, buffer, spi)
Render and send to the display a fragment of the screen.

Parameters

• x0 (int) – Left edge of the fragment.

• y0 (int) – Top edge of the fragment.

• x1 (int) – Right edge of the fragment.

• y1 (int) – Bottom edge of the fragment.

• layers (list) – A list of the Layer objects.

• buffer (bytearray) – A buffer to use for rendering.

• spi (SPI) – The SPI bus to use.

Note that this function only sends the raw pixel data. Setting up the display for receiving it and handling the
chip-select and data-command pins has to be done outside of it. There are also no sanity checks, outside of the
basic overflow checking. The caller is responsible for making the passed parameters valid.

This function is intended for internal use in the stage library and all the necessary checks are performed there.

analogio — Analog hardware support

The analogio module contains classes to provide access to analog IO typically implemented with digital-to-analog
(DAC) and analog-to-digital (ADC) converters.

Libraries

8 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

AnalogIn – read analog voltage

Usage:

import analogio
from board import *

adc = analogio.AnalogIn(A1)
val = adc.value

class analogio.AnalogIn(pin)
Use the AnalogIn on the given pin. The reference voltage varies by platform so use reference_voltage to
read the configured setting.

Parameters pin (Pin) – the pin to read from

deinit()
Turn off the AnalogIn and release the pin for other use.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

value
Read the value on the analog pin and return it. The returned value will be between 0 and 65535 inclusive
(16-bit). Even if the underlying analog to digital converter (ADC) is lower resolution, the result will be
scaled to be 16-bit.

Returns the data read

Return type int

reference_voltage
The maximum voltage measurable. Also known as the reference voltage.

Returns the reference voltage

Return type float

AnalogOut – output analog voltage

The AnalogOut is used to output analog values (a specific voltage).

Example usage:

import analogio
from microcontroller import pin

dac = analogio.AnalogOut(pin.PA02) # output on pin PA02
dac.value = 32768 # makes PA02 1.65V

class analogio.AnalogOut(pin)
Use the AnalogOut on the given pin.

Parameters pin (Pin) – the pin to output to

1.8. Full Table of Contents 9

MicroPython Documentation, Release 0.0.0

deinit()
Turn off the AnalogOut and release the pin for other use.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

value
The value on the analog pin. The value must be between 0 and 65535 inclusive (16-bit). Even if the
underlying digital to analog converter is lower resolution, the input must be scaled to be 16-bit.

Returns the last value written

Return type int

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import analogio
from board import *

pin = analogio.AnalogIn(A0)
print(pin.value)
pin.deinit()

This example will initialize the the device, read value and then deinit() the hardware. The last step is optional
because CircuitPython will do it automatically after the program finishes.

audiobusio — Support for audio input and output over digital bus

The audiobusio module contains classes to provide access to audio IO over digital buses. These protocols are
used to communicate audio to other chips in the same circuit. It doesn’t include audio interconnect protocols such as
S/PDIF.

Libraries

PDMIn – Record an input PDM audio stream

PDMIn can be used to record an input audio signal on a given set of pins.

class audiobusio.PDMIn(clock_pin, data_pin, *, frequency=16000, bit_depth=8, mono=True, over-
sample=64, startup_delay=0.11)

Create a PDMIn object associated with the given pins. This allows you to record audio signals from the given
pins. Individual ports may put further restrictions on the recording parameters.

Parameters

• clock_pin (Pin) – The pin to output the clock to

• data_pin (Pin) – The pin to read the data from

• frequency (int) – Target frequency of the resulting samples. Check frequency for
actual value. Minimum frequency is about 16000 Hz.

10 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

• bit_depth (int) – Final number of bits per sample. Must be divisible by 8

• mono (bool) – True when capturing a single channel of audio, captures two channels
otherwise

• oversample (int) – Number of single bit samples to decimate into a final sample. Must
be divisible by 8

• startup_delay (float) – seconds to wait after starting microphone clock to allow
microphone to turn on. Most require only 0.01s; some require 0.1s. Longer is safer. Must
be in range 0.0-1.0 seconds.

Record 8-bit unsigned samples to buffer:

import audiobusio
import board

Prep a buffer to record into
b = bytearray(200)
with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA) as mic:

mic.record(b, len(b))

Record 16-bit unsigned samples to buffer:

import audiobusio
import board

Prep a buffer to record into. The array interface doesn't allow for
constructing with a set size so we append to it until we have the size
we want.
b = array.array("H")
for i in range(200):

b.append(0)
with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, bit_
→˓depth=16) as mic:

mic.record(b, len(b))

deinit()
Deinitialises the PWMOut and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context.

record(destination, destination_length)
Records destination_length bytes of samples to destination. This is blocking.

An IOError may be raised when the destination is too slow to record the audio at the given rate. For internal
flash, writing all 1s to the file before recording is recommended to speed up writes.

Returns The number of samples recorded. If this is less than destination_length, some
samples were missed due to processing time.

frequency
The actual frequency of the recording. This may not match the constructed frequency due to internal clock
limitations.

All libraries change hardware state and should be deinitialized when they are no longer needed. To do so, either call
deinit() or use a context manager.

1.8. Full Table of Contents 11

MicroPython Documentation, Release 0.0.0

audioio — Support for audio input and output

The audioio module contains classes to provide access to audio IO.

Libraries

AudioOut – Output an analog audio signal

AudioOut can be used to output an analog audio signal on a given pin.

class audioio.AudioOut(pin, sample_source)
Create a AudioOut object associated with the given pin. This allows you to play audio signals out on the given
pin. Sample_source must be a bytes-like object.

The sample itself should consist of 16 bit samples and be mono. Microcontrollers with a lower output resolution
will use the highest order bits to output. For example, the SAMD21 has a 10 bit DAC that ignores the lowest 6
bits when playing 16 bit samples.

Parameters

• pin (Pin) – The pin to output to

• sample_source (bytes-like) – The source of the sample

Simple 8ksps 440 Hz sin wave:

import audioio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / 18) * (2 ** 15) + 2 ** 15)

sample = audioio.AudioOut(board.SPEAKER, sine_wave)
sample.play(loop=True)
time.sleep(1)
sample.stop()

Playing a wave file from flash:

import board
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

f = open("cplay-5.1-16bit-16khz.wav", "rb")
a = audioio.AudioOut(board.A0, f)

print("playing")
a.play()
while a.playing:

12 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/glossary.html#term-bytes-like-object

MicroPython Documentation, Release 0.0.0

pass
print("stopped")

deinit()
Deinitialises the PWMOut and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(loop=False)
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use
playing to block.

stop()
Stops playback of this sample. If another sample is playing instead, it won’t be stopped.

playing
True when the audio sample is being output.

frequency
32 bit value that dictates how quickly samples are loaded into the DAC in Hertz (cycles per second). When
the sample is looped, this can change the pitch output without changing the underlying sample.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

bitbangio — Digital protocols implemented by the CPU

The bitbangio module contains classes to provide digital bus protocol support regardless of whether the underlying
hardware exists to use the protocol.

First try to use busio module instead which may utilize peripheral hardware to implement the protocols. Native
implementations will be faster than bitbanged versions and have more capabilities.

Libraries

I2C — Two wire serial protocol

class bitbangio.I2C(scl, sda, *, frequency=400000)
I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency of the bus

deinit()
Releases control of the underlying hardware so other classes can use it.

1.8. Full Table of Contents 13

MicroPython Documentation, Release 0.0.0

__enter__()
No-op used in Context Managers.

__exit__()
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more
info.

scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device
responds if it pulls the SDA line low after its address (including a read bit) is sent on the bus.

try_lock()
Attempts to grab the I2C lock. Returns True on success.

unlock()
Releases the I2C lock.

readfrom_into(address, buffer, *, start=0, end=len(buffer))
Read into buffer from the slave specified by address. The number of bytes read will be the length of
buffer. At least one byte must be read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not
cause an allocation like buf[start:end] will so it saves memory.

Parameters

• address (int) – 7-bit device address

• buffer (bytearray) – buffer to write into

• start (int) – Index to start writing at

• end (int) – Index to write up to but not include

writeto(address, buffer, *, start=0, end=len(buffer), stop=True)
Write the bytes from buffer to the slave specified by address. Transmits a stop bit if stop is set.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not
cause an allocation like buffer[start:end] will so it saves memory.

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (bytearray) – buffer containing the bytes to write

• start (int) – Index to start writing from

• end (int) – Index to read up to but not include

• stop (bool) – If true, output an I2C stop condition after the buffer is written

OneWire – Lowest-level of the Maxim OneWire protocol

OneWire implements the timing-sensitive foundation of the Maxim (formerly Dallas Semi) OneWire protocol.

Protocol definition is here: https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

class bitbangio.OneWire(pin)
Create a OneWire object associated with the given pin. The object implements the lowest level timing-sensitive
bits of the protocol.

14 Chapter 1. Adafruit CircuitPython

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

MicroPython Documentation, Release 0.0.0

Parameters pin (Pin) – Pin to read pulses from.

Read a short series of pulses:

import bitbangio
import board

onewire = bitbangio.OneWire(board.D7)
onewire.reset()
onewire.write_bit(True)
onewire.write_bit(False)
print(onewire.read_bit())

deinit()
Deinitialize the OneWire bus and release any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

reset()
Reset the OneWire bus

read_bit()
Read in a bit

Returns bit state read

Return type bool

write_bit(value)
Write out a bit based on value.

SPI – a 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the master. It is typically faster than I2C because
a separate pin is used to control the active slave rather than a transmitted address. This class only manages three of the
four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate slave select line. (This is common
because multiple slaves can share the clock, MOSI and MISO lines and therefore the hardware.)

class bitbangio.SPI(clock, MOSI=None, MISO=None)

Construct an SPI object on the given pins.

Parameters

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Master Out Slave In pin.

• MISO (Pin) – the Master In Slave Out pin.

deinit()
Turn off the SPI bus.

__enter__()
No-op used by Context Managers.

1.8. Full Table of Contents 15

MicroPython Documentation, Release 0.0.0

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

configure(*, baudrate=100000, polarity=0, phase=0, bits=8)
Configures the SPI bus. Only valid when locked.

Parameters

• baudrate (int) – the clock rate in Hertz

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

try_lock()
Attempts to grab the SPI lock. Returns True on success.

Returns True when lock has been grabbed

Return type bool

unlock()
Releases the SPI lock.

write(buf)
Write the data contained in buf. Requires the SPI being locked. If the buffer is empty, nothing happens.

readinto(buf)
Read into the buffer specified by buf while writing zeroes. Requires the SPI being locked. If the number
of bytes to read is 0, nothing happens.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import bitbangio
from board import *

i2c = bitbangio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()

This example will initialize the the device, run scan() and then deinit() the hardware. The last step is optional
because CircuitPython automatically resets hardware after a program finishes.

board — Board specific pin names

Common container for board base pin names. These will vary from board to board so don’t expect portability when
using this module.

busio — Hardware accelerated behavior

The busio module contains classes to support a variety of serial protocols.

16 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

When the microcontroller does not support the behavior in a hardware accelerated fashion it may internally use a
bitbang routine. However, if hardware support is available on a subset of pins but not those provided, then a Run-
timeError will be raised. Use the bitbangio module to explicitly bitbang a serial protocol on any general purpose
pins.

Libraries

I2C — Two wire serial protocol

class busio.I2C(scl, sda, *, frequency=400000)
I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

See also:

Using this class directly requires careful lock management. Instead, use I2CDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency in Hertz

deinit()
Releases control of the underlying hardware so other classes can use it.

__enter__()
No-op used in Context Managers.

__exit__()
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more
info.

scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond.

Returns List of device ids on the I2C bus

Return type list

try_lock()
Attempts to grab the I2C lock. Returns True on success.

Returns True when lock has been grabbed

Return type bool

unlock()
Releases the I2C lock.

readfrom_into(address, buffer, *, start=0, end=len(buffer))
Read into buffer from the slave specified by address. The number of bytes read will be the length of
buffer. At least one byte must be read.

1.8. Full Table of Contents 17

https://circuitpython.readthedocs.io/projects/busdevice/en/latest/adafruit_bus_device/index.html#adafruit_bus_device.i2c_device.I2CDevice
https://circuitpython.readthedocs.io/projects/register/en/latest/api.html#register-module-reference

MicroPython Documentation, Release 0.0.0

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not
cause an allocation like buf[start:end] will so it saves memory.

Parameters

• address (int) – 7-bit device address

• buffer (bytearray) – buffer to write into

• start (int) – Index to start writing at

• end (int) – Index to write up to but not include

writeto(address, buffer, *, start=0, end=len(buffer), stop=True)
Write the bytes from buffer to the slave specified by address. Transmits a stop bit if stop is set.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not
cause an allocation like buffer[start:end] will so it saves memory.

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (bytearray) – buffer containing the bytes to write

• start (int) – Index to start writing from

• end (int) – Index to read up to but not include

• stop (bool) – If true, output an I2C stop condition after the buffer is written

OneWire – Lowest-level of the Maxim OneWire protocol

OneWire implements the timing-sensitive foundation of the Maxim (formerly Dallas Semi) OneWire protocol.

Protocol definition is here: https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

class busio.OneWire(pin)
Create a OneWire object associated with the given pin. The object implements the lowest level timing-sensitive
bits of the protocol.

Parameters pin (Pin) – Pin connected to the OneWire bus

Read a short series of pulses:

import busio
import board

onewire = busio.OneWire(board.D7)
onewire.reset()
onewire.write_bit(True)
onewire.write_bit(False)
print(onewire.read_bit())

deinit()
Deinitialize the OneWire bus and release any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

18 Chapter 1. Adafruit CircuitPython

https://www.maximintegrated.com/en/app-notes/index.mvp/id/126

MicroPython Documentation, Release 0.0.0

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

reset()
Reset the OneWire bus and read presence

Returns False when at least one device is present

Return type bool

read_bit()
Read in a bit

Returns bit state read

Return type bool

write_bit(value)
Write out a bit based on value.

SPI – a 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the master. It is typically faster than I2C because
a separate pin is used to control the active slave rather than a transitted address. This class only manages three of the
four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate slave select line. (This is common
because multiple slaves can share the clock, MOSI and MISO lines and therefore the hardware.)

class busio.SPI(clock, MOSI=None, MISO=None)

Construct an SPI object on the given pins.

See also:

Using this class directly requires careful lock management. Instead, use SPIDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Master Out Slave In pin.

• MISO (Pin) – the Master In Slave Out pin.

deinit()
Turn off the SPI bus.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

configure(*, baudrate=100000, polarity=0, phase=0, bits=8)
Configures the SPI bus. Only valid when locked.

Parameters

1.8. Full Table of Contents 19

https://circuitpython.readthedocs.io/projects/busdevice/en/latest/adafruit_bus_device/index.html#adafruit_bus_device.spi_device.SPIDevice
https://circuitpython.readthedocs.io/projects/register/en/latest/api.html#register-module-reference

MicroPython Documentation, Release 0.0.0

• baudrate (int) – the clock rate in Hertz

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

try_lock()
Attempts to grab the SPI lock. Returns True on success.

Returns True when lock has been grabbed

Return type bool

unlock()
Releases the SPI lock.

write(buffer, *, start=0, end=len(buffer))
Write the data contained in buffer. The SPI object must be locked. If the buffer is empty, nothing
happens.

Parameters

• buffer (bytearray) – Write out the data in this buffer

• start (int) – Start of the slice of buffer to write out: buffer[start:end]

• end (int) – End of the slice; this index is not included

readinto(buffer, *, start=0, end=len(buffer), write_value=0)
Read into buffer while writing write_value for each byte read. The SPI object must be locked. If
the number of bytes to read is 0, nothing happens.

Parameters

• buffer (bytearray) – Read data into this buffer

• start (int) – Start of the slice of buffer to read into: buffer[start:end]

• end (int) – End of the slice; this index is not included

• write_value (int) – Value to write while reading. (Usually ignored.)

write_readinto(buffer_out, buffer_in, *, out_start=0, out_end=len(buffer_out), in_start=0,
in_end=len(buffer_in))

Write out the data in buffer_out while simultaneously reading data into buffer_in. The SPI ob-
ject must be locked. The lengths of the slices defined by buffer_out[out_start:out_end] and
buffer_in[in_start:in_end] must be equal. If buffer slice lengths are both 0, nothing happens.

Parameters

• buffer_out (bytearray) – Write out the data in this buffer

• buffer_in (bytearray) – Read data into this buffer

• out_start (int) – Start of the slice of buffer_out to write out:
buffer_out[out_start:out_end]

• out_end (int) – End of the slice; this index is not included

• in_start (int) – Start of the slice of buffer_in to read into:
buffer_in[in_start:in_end]

• in_end (int) – End of the slice; this index is not included

20 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

UART – a bidirectional serial protocol

class busio.UART(tx, rx, *, baudrate=9600, bits=8, parity=None, stop=1, timeout=1000, re-
ceiver_buffer_size=64)

A common bidirectional serial protocol that uses an an agreed upon speed rather than a shared clock line.

Parameters

• tx (Pin) – the pin to transmit with

• rx (Pin) – the pin to receive on

• baudrate (int) – the transmit and receive speed

deinit()
Deinitialises the UART and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

read(nbytes=None)
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns Data read

Return type bytes or None

readinto(buf, nbytes=None)
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes.

Returns number of bytes read and stored into buf

Return type bytes or None

readline()
Read a line, ending in a newline character.

Returns the line read

Return type int or None

write(buf)
Write the buffer of bytes to the bus.

Returns the number of bytes written

Return type int or None

class busio.UART.Parity
Enum-like class to define the parity used to verify correct data transfer.

ODD
Total number of ones should be odd.

EVEN
Total number of ones should be even.

1.8. Full Table of Contents 21

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

MicroPython Documentation, Release 0.0.0

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import busio
from board import *

i2c = busio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()

This example will initialize the the device, run scan() and then deinit() the hardware. The last step is optional
because CircuitPython automatically resets hardware after a program finishes.

digitalio — Basic digital pin support

The digitalio module contains classes to provide access to basic digital IO.

Libraries

DigitalInOut – digital input and output

A DigitalInOut is used to digitally control I/O pins. For analog control of a pin, see the AnalogIn and AnalogOut
classes.

class digitalio.DigitalInOut(pin)
Create a new DigitalInOut object associated with the pin. Defaults to input with no pull. Use
switch_to_input() and switch_to_output() to change the direction.

Parameters pin (Pin) – The pin to control

deinit()
Turn off the DigitalInOut and release the pin for other use.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

switch_to_output(value=False, drive_mode=digitalio.DriveMode.PUSH_PULL)
Set the drive mode and value and then switch to writing out digital values.

Parameters

• value (bool) – default value to set upon switching

• drive_mode (DriveMode) – drive mode for the output

switch_to_input(pull=None)
Set the pull and then switch to read in digital values.

Parameters pull (Pull) – pull configuration for the input

Example usage:

22 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

import digitalio
import board

switch = digitalio.DigitalInOut(board.SLIDE_SWITCH)
switch.switch_to_input(pull=digitalio.Pull.UP)
Or, after switch_to_input
switch.pull = digitalio.Pull.UP
print(switch.value)

direction
The direction of the pin.

Setting this will use the defaults from the corresponding switch_to_input() or
switch_to_output() method. If you want to set pull, value or drive mode prior to switching,
then use those methods instead.

value
The digital logic level of the pin.

drive_mode
Get or set the pin drive mode.

pull
Get or set the pin pull. Values may be digitalio.Pull.UP, digitalio.Pull.DOWN or None.

Raises AttributeError – if the direction is ~‘digitalio.Direction.OUTPUT‘.

Direction – defines the direction of a digital pin

class digitalio.DigitalInOut.Direction
Enum-like class to define which direction the digital values are going.

INPUT
Read digital data in

OUTPUT
Write digital data out

DriveMode – defines the drive mode of a digital pin

class digitalio.DriveMode
Enum-like class to define the drive mode used when outputting digital values.

PUSH_PULL
Output both high and low digital values

OPEN_DRAIN
Output low digital values but go into high z for digital high. This is useful for i2c and other protocols that
share a digital line.

Pull – defines the pull of a digital input pin

class digitalio.Pull
Enum-like class to define the pull value, if any, used while reading digital values in.

1.8. Full Table of Contents 23

MicroPython Documentation, Release 0.0.0

UP
When the input line isn’t being driven the pull up can pull the state of the line high so it reads as true.

DOWN
When the input line isn’t being driven the pull down can pull the state of the line low so it reads as false.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import digitalio
from board import *

pin = digitalio.DigitalInOut(D13)
print(pin.value)

This example will initialize the the device, read value and then deinit() the hardware.

Here is blinky:

import digitalio
from board import *
import time

led = digitalio.DigitalInOut(D13)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

gamepad — Button handling

GamePad – Scan buttons for presses

Usage:

import board
import digitalio
import gamepad
import time

B_UP = 1 << 0
B_DOWN = 1 << 1

pad = gamepad.GamePad(
digitalio.DigitalInOut(board.D10),
digitalio.DigitalInOut(board.D11),

)

y = 0
while True:

buttons = pad.get_pressed()

24 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

if buttons & B_UP:
y -= 1
print(y)

elif buttons & B_DOWN:
y += 1
print(y)

time.sleep(0.1)
while buttons:

Wait for all buttons to be released.
buttons = pad.get_pressed()
time.sleep(0.1)

class gamepad.GamePad([b1[, b2[, b3[, b4[, b5[, b6[, b7[, b8]]]]]]]])
Initializes button scanning routines.

The b1-b8 parameters are DigitalInOut objects, which immediately get switched to input with a pull-
up, and then scanned regularly for button presses. The order is the same as the order of bits returned by the
get_pressed function. You can re-initialize it with different keys, then the new object will replace the
previous one.

The basic feature required here is the ability to poll the keys at regular intervals (so that de-bouncing is consis-
tent) and fast enough (so that we don’t miss short button presses) while at the same time letting the user code
run normally, call blocking functions and wait on delays.

They button presses are accumulated, until the get_pressed method is called, at which point the button state
is cleared, and the new button presses start to be recorded.

get_pressed()
Get the status of buttons pressed since the last call and clear it.

Returns an 8-bit number, with bits that correspond to buttons, which have been pressed (or held down)
since the last call to this function set to 1, and the remaining bits set to 0. Then it clears the button state, so
that new button presses (or buttons that are held down) can be recorded for the next call.

deinit()
Disable button scanning.

microcontroller — Pin references and cpu functionality

The microcontroller module defines the pins from the perspective of the microcontroller. See board for board-
specific pin mappings.

Libraries

Pin — Pin reference

Identifies an IO pin on the microcontroller.

class microcontroller.Pin
Identifies an IO pin on the microcontroller. They are fixed by the hardware so they cannot be constructed on
demand. Instead, use board or microcontroller.pin to reference the desired pin.

Processor — Microcontroller CPU information and control

Get information about the microcontroller CPU and control it.

1.8. Full Table of Contents 25

MicroPython Documentation, Release 0.0.0

Usage:

import microcontroller
print(microcontroller.cpu.frequency)
print(microcontroller.cpu.temperature)

class microcontroller.Processor

You cannot create an instance of microcontroller.Processor. Use microcontroller.cpu to access the
sole instance available.

microcontroller.frequency
Return the CPU operating frequency as an int, in Hz.

microcontroller.temperature
Return the on-chip temperature, in Celsius, as a float. If the temperature is not available, return None.

RunMode – run state of the microcontroller

class microcontroller.RunMode
Enum-like class to define the run mode of the microcontroller and CircuitPython.

NORMAL
Run CircuitPython as normal.

SAFE_MODE
Run CircuitPython in safe mode. User code will not be run and the file system will be writeable over USB.

BOOTLOADER
Run the bootloader.

microcontroller.cpu
CPU information and control, such as cpu.temperature and cpu.frequency (clock frequency). This
object is the sole instance of microcontroller.Processor.

microcontroller.delay_us(delay)
Dedicated delay method used for very short delays. Do not do long delays because it will stall any concurrent
code.

microcontroller.disable_interrupts()
Disable all interrupts. Be very careful, this can stall everything.

microcontroller.enable_interrupts()
Enable the interrupts that were enabled at the last disable.

microcontroller.on_next_reset(run_mode)
Configure the run mode used the next time the microcontroller is reset but not powered down.

Parameters run_mode (RunMode) – The next run mode

microcontroller.reset()
Reset the microcontroller. After reset, the microcontroller will enter the run mode last set by on_next_reset.

Warning: This may result in file system corruption when connected to a host computer. Be very careful
when calling this! Make sure the device "Safely removed" on Windows or "ejected" on Mac OSX and Linux.

microcontroller.nvm
Available non-volatile memory. This object is the sole instance of nvm.ByteArray when available or None
otherwise.

26 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/constants.html#None

MicroPython Documentation, Release 0.0.0

microcontroller.pin — Microcontroller pin names

References to pins as named by the microcontroller

multiterminal — Manage additional terminal sources

The multiterminal module allows you to configure an additional serial terminal source. Incoming characters are
accepted from both the internal serial connection and the optional secondary connection.

multiterminal.get_secondary_terminal()
Returns the current secondary terminal.

multiterminal.set_secondary_terminal(stream)
Read additional input from the given stream and write out back to it. This doesn’t replace the core
stream (usually UART or native USB) but is mixed in instead.

Parameters stream (stream) – secondary stream

multiterminal.clear_secondary_terminal()
Clears the secondary terminal.

multiterminal.schedule_secondary_terminal_read(socket)
In cases where the underlying OS is doing task scheduling, this notifies the OS when more data is
available on the socket to read. This is useful as a callback for lwip sockets.

neopixel_write — Low-level neopixel implementation

The neopixel_write module contains a helper method to write out bytes in the 800khz neopixel protocol.

For example, to turn off a single neopixel (like the status pixel on Express boards.)

import board
import neopixel_write
import digitalio

pin = digitalio.DigitalInOut(board.NEOPIXEL)
pin.direction = digitalio.Direction.OUTPUT
pixel_off = bytearray([0, 0, 0])
neopixel_write.neopixel_write(pin, pixel_off)

neopixel_write.neopixel_write(digitalinout, buf)
Write buf out on the given DigitalInOut.

Parameters

• gpio (DigitalInOut) – the DigitalInOut to output with

• buf (bytearray) – The bytes to clock out. No assumption is made about color order

nvm — Non-volatile memory

The nvm module allows you to store whatever raw bytes you wish in a reserved section non-volatile memory.

Libraries

1.8. Full Table of Contents 27

MicroPython Documentation, Release 0.0.0

ByteArray – Presents a stretch of non-volatile memory as a bytearray.

Non-volatile memory is available as a byte array that persists over reloads and power cycles.

Usage:

import microcontroller
microcontroller.nvm[0] = 0xcc

class nvm.ByteArray
Not currently dynamically supported. Access the sole instance through microcontroller.nvm.

__len__()
Return the length. This is used by (len)

os — functions that an OS normally provides

The os module is a strict subset of the CPython os module. So, code written in CircuitPython will work in CPython
but not necessarily the other way around.

os.uname()
Returns a named tuple of operating specific and CircuitPython port specific information.

os.chdir(path)
Change current directory.

os.getcwd()
Get the current directory.

os.listdir([dir])
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir(path)
Create a new directory.

os.remove(path)
Remove a file.

os.rmdir(path)
Remove a directory.

os.rename(old_path, new_path)
Rename a file.

os.stat(path)
Get the status of a file or directory.

os.statvfs(path)
Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size

• f_frsize – fragment size

• f_blocks – size of fs in f_frsize units

• f_bfree – number of free blocks

• f_bavail – number of free blocks for unpriviliged users

28 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/os.html#module-os

MicroPython Documentation, Release 0.0.0

• f_files – number of inodes

• f_ffree – number of free inodes

• f_favail – number of free inodes for unpriviliged users

• f_flag – mount flags

• f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0 as
they can be unavailable in a port-specific implementation.

os.sync()
Sync all filesystems.

os.urandom(size)
Returns a string of size random bytes based on a hardware True Random Number Generator. When not available,
it will raise a NotImplementedError.

os.sep
Separator used to delineate path components such as folder and file names.

pulseio — Support for pulse based protocols

The pulseio module contains classes to provide access to basic pulse IO.

Libraries

PulseIn – Read a series of pulse durations

PulseIn is used to measure a series of active and idle pulses. This is commonly used in infrared receivers and low cost
temperature sensors (DHT). The pulsed signal consists of timed active and idle periods. Unlike PWM, there is no set
duration for active and idle pairs.

class pulseio.PulseIn(pin, maxlen=2, *, idle_state=False)
Create a PulseIn object associated with the given pin. The object acts as a read-only sequence of pulse lengths
with a given max length. When it is active, new pulse lengths are added to the end of the list. When there is no
more room (len() == maxlen) the oldest pulse length is removed to make room.

Parameters

• pin (Pin) – Pin to read pulses from.

• maxlen (int) – Maximum number of pulse durations to store at once

• idle_state (bool) – Idle state of the pin. At start and after resume the first recorded
pulse will the opposite state from idle.

Read a short series of pulses:

import pulseio
import board

pulses = pulseio.PulseIn(board.D7)

Wait for an active pulse
while len(pulses) == 0:

pass
Pause while we do something with the pulses

1.8. Full Table of Contents 29

MicroPython Documentation, Release 0.0.0

pulses.pause()

Print the pulses. pulses[0] is an active pulse unless the length
reached max length and idle pulses are recorded.
print(pulses)

Clear the rest
pulses.clear()

Resume with an 80 microsecond active pulse
pulses.resume(80)

deinit()
Deinitialises the PulseIn and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

pause()
Pause pulse capture

resume(trigger_duration=0)
Resumes pulse capture after an optional trigger pulse.

Warning: Using trigger pulse with a device that drives both high and low signals risks a short. Make
sure your device is open drain (only drives low) when using a trigger pulse. You most likely added a
"pull-up" resistor to your circuit to do this.

Parameters trigger_duration (int) – trigger pulse duration in microseconds

clear()
Clears all captured pulses

popleft()
Removes and returns the oldest read pulse.

maxlen
Returns the maximum length of the PulseIn. When len() is equal to maxlen, it is unclear which pulses are
active and which are idle.

__len__()
Returns the current pulse length

This allows you to:

pulses = pulseio.PulseIn(pin)
print(len(pulses))

__get__(index)
Returns the value at the given index or values in slice.

This allows you to:

30 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

pulses = pulseio.PulseIn(pin)
print(pulses[0])

PulseOut – Output a pulse train

PulseOut is used to pulse PWM "carrier" output on and off. This is commonly used in infrared remotes. The pulsed
signal consists of timed on and off periods. Unlike PWM, there is no set duration for on and off pairs.

class pulseio.PulseOut(carrier)
Create a PulseOut object associated with the given PWM out experience.

Parameters carrier (PWMOut) – PWMOut that is set to output on the desired pin.

Send a short series of pulses:

import array
import pulseio
import board

pwm = pulseio.PWMOut(board.D13, duty_cycle=2 ** 15)
pulse = pulseio.PulseOut(pwm)
on off on off on
pulses = array.array('H', [65000, 1000, 65000, 65000, 1000])
pulse.send(pulses)

Modify the array of pulses.
pulses[0] = 200
pulse.send(pulses)

deinit()
Deinitialises the PulseOut and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

send(pulses)
Pulse alternating on and off durations in microseconds starting with on. pulses must be an array.
array with data type ’H’ for unsigned halfword (two bytes).

This method waits until the whole array of pulses has been sent and ensures the signal is off afterwards.

Parameters pulses (array.array) – pulse durations in microseconds

PWMOut – Output a Pulse Width Modulated signal

PWMOut can be used to output a PWM signal on a given pin.

class pulseio.PWMOut(pin, *, duty_cycle=0, frequency=500, variable_frequency=False)
Create a PWM object associated with the given pin. This allows you to write PWM signals out on the given pin.
Frequency is fixed after init unless variable_frequency is True.

1.8. Full Table of Contents 31

MicroPython Documentation, Release 0.0.0

Note: When variable_frequency is True, further PWM outputs may be limited because it may take
more internal resources to be flexible. So, when outputting both fixed and flexible frequency signals construct
the fixed outputs first.

Parameters

• pin (Pin) – The pin to output to

• duty_cycle (int) – The fraction of each pulse which is high. 16-bit

• frequency (int) – The target frequency in Hertz (32-bit)

• variable_frequency (bool) – True if the frequency will change over time

Simple LED fade:

import pulseio
import board

pwm = pulseio.PWMOut(board.D13) # output on D13
pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of
→˓2 ** 16) at the default 500hz

PWM at specific frequency (servos and motors):

import pulseio
import board

pwm = pulseio.PWMOut(board.D13, frequency=50)
pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle
→˓(half of 2 ** 16) at 50hz

Variable frequency (usually tones):

import pulseio
import board
import time

pwm = pulseio.PWMOut(board.D13, duty_cycle=2 ** 15, frequency=440, variable_
→˓frequency=True)
time.sleep(0.2)
pwm.frequency = 880
time.sleep(0.1)

deinit()
Deinitialises the PWMOut and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

duty_cycle
16 bit value that dictates how much of one cycle is high (1) versus low (0). 0xffff will always be high, 0
will always be low and 0x7fff will be half high and then half low.

32 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

frequency
32 bit value that dictates the PWM frequency in Hertz (cycles per second). Only writeable when con-
structed with variable_frequency=True.

Warning: This module is not available in some SAMD21 builds. See the Support Matrix for more info.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import pulseio
import time
from board import *

pwm = pulseio.PWMOut(D13)
pwm.duty_cycle = 2 ** 15
time.sleep(0.1)

This example will initialize the the device, set duty_cycle, and then sleep 0.1 seconds. CircuitPython will automat-
ically turn off the PWM when it resets all hardware after program completion. Use deinit() or a with statement
to do it yourself.

random — psuedo-random numbers and choices

The random module is a strict subset of the CPython random module. So, code written in CircuitPython will work
in CPython but not necessarily the other way around.

Like its CPython cousin, CircuitPython’s random seeds itself on first use with a true random from os.urandom() when
available or the uptime otherwise. Once seeded, it will be deterministic, which is why its bad for cryptography.

Warning: Numbers from this module are not cryptographically strong! Use bytes from os.urandom directly
for true randomness.

random.seed(seed)
Sets the starting seed of the random number generation. Further calls to random will return deterministic
results afterwards.

random.getrandbits(k)
Returns an integer with k random bits.

random.randrange(stop)
random.randrange(start, stop, step=1)

Returns a randomly selected integer from range(start, stop, step).

random.randint(a, b)
Returns a randomly selected integer between a and b inclusive. Equivalent to randrange(a, b + 1, 1)

random.choice(seq)
Returns a randomly selected element from the given sequence. Raises IndexError when the sequence is empty.

random.random()
Returns a random float between 0 and 1.0.

1.8. Full Table of Contents 33

https://docs.python.org/3/library/random.html#module-random

MicroPython Documentation, Release 0.0.0

random.uniform(a, b)
Returns a random float between a and b. It may or may not be inclusive depending on float rounding.

storage — storage management

The storage provides storage management functionality such as mounting and unmounting which is typically han-
dled by the operating system hosting Python. CircuitPython does not have an OS, so this module provides this func-
tionality directly.

storage.mount(filesystem, mount_path, *, readonly=False)
Mounts the given filesystem object at the given path.

This is the CircuitPython analog to the UNIX mount command.

storage.umount(mount)
Unmounts the given filesystem object or if mount is a path, then unmount the filesystem mounted at that location.

This is the CircuitPython analog to the UNIX umount command.

storage.remount(mount_path, readonly)
Remounts the given path with new parameters.

storage.erase_filesystem()
Erase and re-create the CIRCUITPY filesystem. Then call microcontroller.reset() to restart Circuit-
Python and have the host computer remount CIRCUITPY.

This function can be called from the REPL when CIRCUITPY has become corrupted.

Warning: All the data on CIRCUITPY will be lost, and CircuitPython will restart.

class storage.VfsFat(block_device)
Create a new VfsFat filesystem around the given block device.

Parameters block_device – Block device the the filesystem lives on

time — time and timing related functions

The time module is a strict subset of the CPython time module. So, code written in MicroPython will work in
CPython but not necessarily the other way around.

time.monotonic()
Returns an always increasing value of time with an unknown reference point. Only use it to compare against
other values from monotonic.

Returns the current monotonic time

Return type float

time.sleep(seconds)
Sleep for a given number of seconds.

Parameters seconds (float) – the time to sleep in fractional seconds

class time.struct_time((tm_year, tm_mon, tm_mday, tm_hour, tm_min, tm_sec, tm_wday, tm_yday,
tm_isdst))

Structure used to capture a date and time. Note that it takes a tuple!

Parameters

34 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/time.html#module-time

MicroPython Documentation, Release 0.0.0

• tm_year (int) – the year, 2017 for example

• tm_mon (int) – the month, range [1, 12]

• tm_mday (int) – the day of the month, range [1, 31]

• tm_hour (int) – the hour, range [0, 23]

• tm_min (int) – the minute, range [0, 59]

• tm_sec (int) – the second, range [0, 61]

• tm_wday (int) – the day of the week, range [0, 6], Monday is 0

• tm_yday (int) – the day of the year, range [1, 366], -1 indicates not known

• tm_isdst (int) – 1 when in daylight savings, 0 when not, -1 if unknown.

touchio — Touch related IO

The touchiomodule contains classes to provide access to touch IO typically accelerated by hardware on the onboard
microcontroller.

Libraries

TouchIn – Read the state of a capacitive touch sensor

Usage:

import touchio
from board import *

touch = touchio.TouchIn(A1)
while True:

if touch.value:
print("touched!")

class touchio.TouchIn(pin)
Use the TouchIn on the given pin.

Parameters pin (Pin) – the pin to read from

deinit()
Deinitialises the TouchIn and releases any hardware resources for reuse.

__enter__()
No-op used by Context Managers.

__exit__()
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

value
Whether the touch pad is being touched or not. True if raw_value > threshold.

Returns True when touched, False otherwise.

Return type bool

raw_value
The raw touch measurement. Not settable.

1.8. Full Table of Contents 35

MicroPython Documentation, Release 0.0.0

Returns an integer >= 0

Return type int

threshold
value will return True if raw_value is greater than than this threshold. When the TouchIn object is
created, an initial raw_value is read from the pin, and then threshold is set to be 100 + that value.

You can set the threshold to a different value to make the pin more or less sensitive.

Returns an integer >= 0

Return type int

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more
info.

For example:

import touchio
from board import *

touch_pin = touchio.TouchIn(D6)
print(touch_pin.value)

This example will initialize the the device, and print the value.

uheap — Heap size analysis

uheap.info(object)
Prints memory debugging info for the given object and returns the estimated size.

usb_hid — USB Human Interface Device

The usb_hid module allows you to output data as a HID device.

usb_hid.devices
Tuple of all active HID device interfaces.

Libraries

Device – HID Device

Usage:

import usb_hid

mouse = usb_hid.devices[0]

mouse.send_report()

class usb_hid.Device
Not currently dynamically supported.

send_report(buf)
Send a HID report.

36 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

usage_page
The usage page of the device. Can be thought of a category.

Returns the device’s usage page

Return type int

usage
The functionality of the device. For example Keyboard is 0x06 within the generic desktop usage page
0x01. Mouse is 0x02 within the same usage page.

Returns the usage within the usage page

Return type int

ustack — Stack information and analysis

ustack.max_stack_usage()
Return the maximum excursion of the stack so far.

ustack.stack_size()
Return the size of the entire stack. Same as in micropython.mem_info(), but returns a value instead of just
printing it.

ustack.stack_usage()
Return how much stack is currently in use. Same as micropython.stack_use(); duplicated here for convenience.

help() - Built-in method to provide helpful information

help(object=None)
Prints a help method about the given object. When object is none, prints general port information.

1.8.2 Supported Ports

Adafruit’s CircuitPython currently has limited support with a focus on supporting the Atmel SAMD and ESP8266.

SAMD21x18

This port brings MicroPython to SAMD21x18 based development boards under the name CircuitPython. Supported
boards include the Adafruit CircuitPlayground Express, Adafruit Feather M0 Express, Adafruit Metro M0 Express,
Arduino Zero, Adafruit Feather M0 Basic and Adafruit M0 Bluefruit LE.

Pinout

All of the boards share the same core pin functionality but call pins by different names. The table below matches the
pin order in the datasheet and omits the pins only available on the largest package because all supported boards use
smaller version.

microcontroller.pin board
Datasheet arduino_zero circuitplayground_express feather_m0_adalogger feather_m0_basic feather_m0_express gemma_m0 metro_m0_express trinket_m0
PA00 ACCELEROMETER_SDA APA102_MOSI APA102_MOSI

Continued on next page

1.8. Full Table of Contents 37

http://ww1.microchip.com/downloads/en/DeviceDoc/40001882A.pdf

MicroPython Documentation, Release 0.0.0

Table 1.1 – continued from previous page
microcontroller.pin board
Datasheet arduino_zero circuitplayground_express feather_m0_adalogger feather_m0_basic feather_m0_express gemma_m0 metro_m0_express trinket_m0
PA01 ACCELEROMETER_SCL APA102_SCK APA102_SCK
PA02 A0 A0 / SPEAKER A0 A0 A0 A0 / D1 A0 D1 / A0
PA03
PB08 A1 A7 / TX A1 A1 A1 A1
PB09 A2 A6 / RX A2 A2 A2 A2
PA04 A3 IR_PROXIMITY A3 A3 A3 D0 / TX / SDA A3
PA05 A4 A1 A4 A4 A4 D2 / RX / SCL A4
PA06 D8 A2 D8 / GREEN_LED NEOPIXEL D8 D4 / TX
PA07 D9 A3 D9 D9 D9 D9 D3 / RX
PA08 D4 MICROPHONE_DO D4 / SD_CS D4 D0 / SDA
PA09 D3 TEMPERATURE / A9 D3 D2 / SCL
PA10 D1 / TX MICROPHONE_SCK D1 / TX D1 / TX D1 / TX D1 / TX D13
PA11 D0 / RX LIGHT / A8 D0 / RX D0 / RX D0 / RX D0 / RX
PB10 MOSI MOSI MOSI MOSI MOSI
PB11 SCK SCK SCK SCK SCK
PA12 MISO REMOTEIN / IR_RX MISO MISO MISO MISO
PA13 ACCELEROMETER_INTERRUPT FLASH_CS
PA14 D2 BUTTON_B / D5 D2
PA15 D5 SLIDE_SWITCH / D7 D5 D5 D5 D5
PA16 D11 MISO D11 D11 D11 D11
PA17 D13 D13 D13 / RED_LED D13 D13 D13
PA18 D10 D10 D10 D10 D10
PA19 D12 D12 D12 D12 D12
PA20 D6 MOSI D6 D6 D6 D6
PA21 D7 SCK D7 / SD_CD D7
PA22 SDA SDA SDA SDA SDA
PA23 SCL REMOTEOUT / IR_TX SCL SCL SCL L / D13 SCL
PA24
PA25
PB22 FLASH_CS
PB23 NEOPIXEL / D8
PA27
PA28 BUTTON_A / D4
PA29
PA30 SPEAKER_ENABLE NEOPIXEL
PA31
PB02 A5 A5 / SDA A5 A5 A5 A5
PB03 A4 / SCL

Here is a table about which pins can do what in CircuitPython terms. However, just because something is listed,
doesn’t mean it will always work. Existing use of other pins and functionality will impact your ability to use a pin for
your desired purpose. For example, only certain combinations of SPI pins will work because they use shared hardware
internally.

microcontroller.pin analogio audioio bitbangio busio digitalio pulseio touchio
Datasheet AnalogIn AnalogOut AudioOut I2C OneWire SPI I2C - SDA I2C - SCL OneWire SPI - MISO SPI - MOSI SPI - SCK UART - RX UART - TX DigitalInOut PulseIn PWMOut TouchIn
PA00 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA01 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Continued on next page

38 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

Table 1.2 – continued from previous page
microcontroller.pin analogio audioio bitbangio busio digitalio pulseio touchio
Datasheet AnalogIn AnalogOut AudioOut I2C OneWire SPI I2C - SDA I2C - SCL OneWire SPI - MISO SPI - MOSI SPI - SCK UART - RX UART - TX DigitalInOut PulseIn PWMOut TouchIn
PA02 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA03 Yes Yes Yes Yes Yes Yes Yes Yes
PB08 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB09 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA04 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA05 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA06 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA07 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA08 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA09 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA16 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA20 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA22 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA24
PA25
PB22 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA27 Yes Yes Yes Yes Yes Yes
PA28 Yes Yes Yes Yes Yes Yes
PA29 Yes Yes Yes Yes Yes Yes
PA30 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PA31 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB02 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
PB03 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Setup

Install required compiler packages:

sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
sudo apt-get install gcc-arm-embedded

1.8. Full Table of Contents 39

MicroPython Documentation, Release 0.0.0

Building

To build for the Arduino Zero:

make

To build for other boards you must change it by setting BOARD. For example:

make BOARD=feather_m0_basic

Board names are the directory names in the boards folder.

Deploying

Arduino Bootloader

If your board has an existing Arduino bootloader on it then you can use bossac to flash MicroPython. First, activate
the bootloader. On Adafruit Feathers you can double click the reset button and the #13 will fade in and out. Finally,
run bossac:

tools/bossac_osx -e -w -v -b -R build-feather_m0_basic/firmware.bin

No Bootloader via GDB

This method works for loading MicroPython onto the Arduino Zero via the programming port rather than the native
USB port.

Note: These instructions are tested on Mac OSX and will vary for different platforms.

openocd -f ~/Library/Arduino15/packages/arduino/hardware/samd/1.6.6/variants/arduino_zero/openocd_scripts/arduino_zero.cfg

In another terminal from micropython/atmel-samd:

arm-none-eabi-gdb build-arduino_zero/firmware.elf (gdb) tar ext :3333 . . . (gdb) load . . . (gdb) monitor
reset init . . . (gdb) continue

Connecting

Serial

All boards are currently configured to work over USB rather than UART. To connect to it from OSX do something like
this:

screen /dev/tty.usbmodem142422 115200

You may not see a prompt immediately because it doesn’t know you connected. To get one either hit enter to get >>>
or do CTRL-B to get the full header.

Mass storage

All boards will also show up as a mass storage device. Make sure to eject it before resetting or disconnecting the
board.

40 Chapter 1. Adafruit CircuitPython

https://github.com/adafruit/circuitpython/tree/master/atmel-samd/boards
https://docs.python.org/3/glossary.html#term

MicroPython Documentation, Release 0.0.0

Port Specific modules

samd — SAMD implementation settings

samd.enable_autoreload()
Enable autoreload based on USB file write activity.

samd.disable_autoreload()
Disable autoreload based on USB file write activity until enable_autoreload is called.

samd.set_rgb_status_brightness()
Set brightness of status neopixel from 0-255 set_rgb_status_brightness is called.

MicroPython port to ESP8266

This is an experimental port of MicroPython for the WiFi modules based on Espressif ESP8266 chip.

WARNING: The port is experimental and many APIs are subject to change.

Supported features include:

• REPL (Python prompt) over UART0.

• Garbage collector, exceptions.

• Unicode support.

• Builtin modules: gc, array, collections, io, struct, sys, esp, network, many more.

• Arbitrary-precision long integers and 30-bit precision floats.

• WiFi support.

• Sockets using modlwip.

• GPIO and bit-banging I2C, SPI support.

• 1-Wire and WS2812 (aka Neopixel) protocols support.

• Internal filesystem using the flash.

• WebREPL over WiFi from a browser (clients at https://github.com/micropython/webrepl).

• Modules for HTTP, MQTT, many other formats and protocols via https://github.com/micropython/micropython-
lib .

Work-in-progress documentation is available at http://docs.micropython.org/en/latest/esp8266/ .

Build instructions

The tool chain required for the build is the OpenSource ESP SDK, which can be found at https://github.com/pfalcon/
esp-open-sdk. Clone this repository and run make in its directory to build and install the SDK locally. Make sure
to add toolchain bin directory to your PATH. Read esp-open-sdk’s README for additional important information on
toolchain setup.

Add the external dependencies to the MicroPython repository checkout:

$ git submodule update --init

1.8. Full Table of Contents 41

https://github.com/pfalcon/esp-open-sdk
https://github.com/pfalcon/esp-open-sdk

MicroPython Documentation, Release 0.0.0

See the README in the repository root for more information about external dependencies.

The MicroPython cross-compiler must be built to pre-compile some of the built-in scripts to bytecode. This can be
done using:

$ make -C mpy-cross

Then, to build MicroPython for the ESP8266, just run:

$ cd esp8266
$ make axtls
$ make

This will produce binary images in the build/ subdirectory. If you install MicroPython to your module for the first
time, or after installing any other firmware, you should erase flash completely:

esptool.py --port /dev/ttyXXX erase_flash

Erase flash also as a troubleshooting measure, if a module doesn’t behave as expected.

To flash MicroPython image to your ESP8266, use:

$ make deploy

This will use the esptool.py script to download the images. You must have your ESP module in the bootloader
mode, and connected to a serial port on your PC. The default serial port is /dev/ttyACM0, flash mode is qio
and flash size is detect (auto-detect based on Flash ID). To specify other values, use, eg (note that flash size is in
megabits):

$ make PORT=/dev/ttyUSB0 FLASH_MODE=qio FLASH_SIZE=32m deploy

The image produced is build/firmware-combined.bin, to be flashed at 0x00000.

512KB FlashROM version

The normal build described above requires modules with at least 1MB of FlashROM onboard. There’s a special
configuration for 512KB modules, which can be built with make 512k. This configuration is highly limited, lacks
filesystem support, WebREPL, and has many other features disabled. It’s mostly suitable for advanced users who are
interested to fine-tune options to achieve a required setup. If you are an end user, please consider using a module with
at least 1MB of FlashROM.

First start

Serial prompt

You can access the REPL (Python prompt) over UART (the same as used for programming).

• Baudrate: 115200

WiFi

Initially, the device configures itself as a WiFi access point (AP).

• ESSID: MicroPython-xxxxxx (x’s are replaced with part of the MAC address).

• Password: micropythoN (note the upper-case N).

• IP address of the board: 192.168.4.1.

• DHCP-server is activated.

42 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

WebREPL

Python prompt over WiFi, connecting through a browser.

• Hosted at http://micropython.org/webrepl.

• GitHub repository https://github.com/micropython/webrepl.

Please follow the instructions there.

Documentation

More detailed documentation and instructions can be found at http://docs.micropython.org/en/latest/esp8266/ , which
includes Quick Reference, Tutorial, General Information related to ESP8266 port, and to MicroPython in general.

Troubleshooting

While the port is in beta, it’s known to be generally stable. If you experience strange bootloops, crashes, lockups,
here’s a list to check against:

• You didn’t erase flash before programming MicroPython firmware.

• Firmware can be occasionally flashed incorrectly. Just retry. Recent esptool.py versions have –verify option.

• Power supply you use doesn’t provide enough power for ESP8266 or isn’t stable enough.

• A module/flash may be defective (not unheard of for cheap modules).

Please consult dedicated ESP8266 forums/resources for hardware-related problems.

Additional information may be available by the documentation links above.

1.8.3 Troubleshooting

From time to time, an error occurs when working with CircuitPython. Here are a variety of errors that can happen,
what they mean and how to fix them.

File system issues

If your host computer starts complaining that your CIRCUITPY drive is corrupted or files cannot be overwritten
or deleted, then you will have to erase it completely. When CircuitPython restarts it will create a fresh empty
CIRCUITPY filesystem.

This often happens on Windows when the CIRCUITPY disk is not safely ejected before being reset by the button or
being disconnected from USB. This can also happen on Linux and Mac OSX but its less likely.

Caution: To erase and re-create CIRCUITPY (for example, to correct a corrupted filesystem), follow one of the
procedures below. It’s important to note that any files stored on the CIRCUITPY drive will be erased.

For boards with CIRCUITPY stored on a separate SPI flash chip, such as Feather M0 Express, Metro M0
Express and Circuit Playground Express:

1. Download the appropriate flash .erase uf2 from the Adafruit_SPIFlash repo.

2. Double-click the reset button.

1.8. Full Table of Contents 43

https://github.com/adafruit/Adafruit_SPIFlash/tree/master/examples/flash_erase_express

MicroPython Documentation, Release 0.0.0

3. Copy the appropriate .uf2 to the xxxBOOT drive.

4. The on-board NeoPixel will turn blue, indicating the erase has started.

5. After about 15 seconds, the NexoPixel will start flashing green. If it flashes red, the erase failed.

6. Double-click again and load the appropriate CircuitPython .uf2.

For boards without SPI flash, such as Feather M0 Proto, Gemma M0 and, Trinket M0:

1. Download the appropriate erase .uf2 from the Learn repo.

2. Double-click the reset button.

3. Copy the appropriate .uf2 to the xxxBOOT drive.

4. The boot LED will start pulsing again, and the xxxBOOT drive will appear again.

5. Load the appropriate CircuitPython .uf2.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file (rather than a py text file) that was
generated by a different version of CircuitPython than the one its being loaded into. Most versions are compatible but,
rarely they aren’t. In particular, the mpy binary format changed between CircuitPython versions 1.x and 2.x, and will
change again between 2.x and 3.x.

So, for instance, if you just upgraded to CircuitPython 2.x from 1.x you’ll need to download a newer version of the
library that triggered the error on import. They are all available in the Adafruit bundle and the Community bundle.
Make sure to download a version with 2.0.0 or higher in the filename.

1.8.4 Additional Adafruit Libraries and Drivers on GitHub

These are libraries and drivers available in separate GitHub repos. They are designed for use with CircuitPython and
may or may not work with MicroPython.

Bundle

We provide a bundle of all our libraries to ease installation of drivers and their dependencies. The bundle is primarily
geared to the Adafruit Express line of boards which feature a relatively large external flash. With Express boards, its
easy to copy them all onto the filesystem. However, if you don’t have enough space simply copy things over as they
are needed.

The bundles are available on GitHub.

To install them:

1. Download and unzip the latest zip that’s not a source zip.

2. Copy the lib folder to the CIRCUITPY or MICROPYTHON.

Foundational

These libraries provide critical functionality to many of the drivers below. It is recommended to always have them
installed onto the CircuitPython file system in the lib/ directory. Some drivers may not work without them.

44 Chapter 1. Adafruit CircuitPython

https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/uf2_flash_erasers
https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest
https://micropython.org
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

MicroPython Documentation, Release 0.0.0

Board-specific Helpers

These libraries tie lower-level libraries together to provide an easy, out-of-box experience for specific boards.

Helper Libraries

These libraries build on top of the low level APIs to simplify common tasks.

Blinky

Multi-color led drivers.

Displays

Drivers used to display information. Either pixel or segment based.

Real-time clocks

Chips that keep current calendar time with a backup battery. The current date and time is available through datetime.

Motion Sensors

Motion relating sensing including acceleration, magnetic, gyro, and orientation.

Environmental Sensors

Sense attributes of the environment including temperature, relative_humidity, pressure, equivalent
carbon dioxide (eco2 / eCO2), and total volatile organic compounds (tvoc / TVOC).

Light Sensors

These sensors detect light related attributes such as color, light (unit-less), and lux (light in SI lux).

Distance Sensors

These sensors measure the distance to another object and may also measure light level (light and lux).

Radio

These chips communicate to other’s over radio.

IO Expansion

These provide functionality similar to analogio, digitalio, pulseio, and touchio.

1.8. Full Table of Contents 45

MicroPython Documentation, Release 0.0.0

Miscellaneous

1.8.5 Design Guide

MicroPython has created a great foundation to build upon and to make it even better for beginners we’ve created
CircuitPython. This guide covers a number of ways the core and libraries are geared towards beginners.

Start libraries with the cookiecutter

Cookiecutter is a cool tool that lets you bootstrap a new repo based on another repo. We’ve made one here for
CircuitPython libraries that include configs for Travis CI and ReadTheDocs along with a setup.py, license, code of
conduct and readme.

Module Naming

Adafruit funded libraries should be under the adafruit organization and have the format
Adafruit_CircuitPython_<name> and have a corresponding adafruit_<name> directory (aka package)
or adafruit_<name>.py file (aka module).

Community created libraries should have the format CircuitPython_<name> and not have the adafruit_
module or package prefix.

Both should have the CircuitPython repository topic on GitHub.

Lifetime and ContextManagers

A driver should be initialized and ready to use after construction. If the device requires deinitialization, then provide
it through deinit() and also provide __enter__ and __exit__ to create a context manager usable with with.

For example, a user can then use deinit()`:

import digitalio
import board

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

led.deinit()

This will deinit the underlying hardware at the end of the program as long as no exceptions occur.

Alternatively, using a with statement ensures that the hardware is deinitialized:

import digitalio
import board

with digitalio.DigitalInOut(board.D13) as led:
led.direction = digitalio.Direction.OUTPUT

46 Chapter 1. Adafruit CircuitPython

https://github.com/adafruit/cookiecutter-adafruit-circuitpython
https://github.com/adafruit

MicroPython Documentation, Release 0.0.0

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

Python’s with statement ensures that the deinit code is run regardless of whether the code within the with statement
executes without exceptions.

For small programs like the examples this isn’t a major concern because all user usable hardware is reset after programs
are run or the REPL is run. However, for more complex programs that may use hardware intermittently and may also
handle exceptions on their own, deinitializing the hardware using a with statement will ensure hardware isn’t enabled
longer than needed.

Verify your device

Whenever possible, make sure device you are talking to is the device you expect. If not, raise a ValueError. Beware
that I2C addresses can be identical on different devices so read registers you know to make sure they match your
expectation. Validating this upfront will help catch mistakes.

Getters/Setters

When designing a driver for a device, use properties for device state and use methods for sequences of abstract actions
that the device performs. State is a property of the device as a whole that exists regardless of what the code is doing.
This includes things like temperature, time, sound, light and the state of a switch. For a more complete list see the
sensor properties bullet below.

Another way to separate state from actions is that state is usually something the user can sense themselves by sight or
feel for example. Actions are something the user can watch. The device does this and then this.

Making this separation clear to the user will help beginners understand when to use what.

Here is more info on properties from Python.

Design for compatibility with CPython

CircuitPython is aimed to be one’s first experience with code. It will be the first step into the world of hardware and
software. To ease one’s exploration out from this first step, make sure that functionality shared with CPython shares
the same API. It doesn’t need to be the full API it can be a subset. However, do not add non-CPython APIs to the same
modules. Instead, use separate non-CPython modules to add extra functionality. By distinguishing API boundaries at
modules you increase the likelihood that incorrect expectations are found on import and not randomly during runtime.

Example

When adding extra functionality to CircuitPython to mimic what a normal operating system would do, either copy an
existing CPython API (for example file writing) or create a separate module to achieve what you want. For example,
mounting and unmount drives is not a part of CPython so it should be done in a module, such as a new storage
module, that is only available in CircuitPython. That way when someone moves the code to CPython they know what
parts need to be adapted.

1.8. Full Table of Contents 47

https://docs.python.org/3/library/functions.html#property

MicroPython Documentation, Release 0.0.0

Document inline

Whenever possible, document your code right next to the code that implements it. This makes it more likely to stay
up to date with the implementation itself. Use Sphinx’s automodule to format these all nicely in ReadTheDocs. The
cookiecutter helps set these up.

Use Sphinx flavor rST for markup.

Lots of documentation is a good thing but it can take a lot of space. To minimize the space used on disk and on load,
distribute the library as both .py and .mpy, MicroPython and CircuitPython’s bytecode format that omits comments.

Module description

After the license comment:

"""
`<module name>` - <Short description>
===
<Longer description.>
"""

Class description

Documenting what the object does:

class DS3231:
"""Interface to the DS3231 RTC."""

Renders as:

class DS3231
Interface to the DS3231 RTC.

Data descriptor description

Comment is after even though its weird:

lost_power = i2c_bit.RWBit(0x0f, 7)
"""True if the device has lost power since the time was set."""

Renders as:

lost_power
True if the device has lost power since the time was set.

Method description

First line after the method definition:

def turn_right(self, degrees):
"""Turns the bot ``degrees`` right.

48 Chapter 1. Adafruit CircuitPython

http://www.sphinx-doc.org/en/stable/rest.html

MicroPython Documentation, Release 0.0.0

:param float degrees: Degrees to turn right
"""

Renders as:

turn_right(degrees)
Turns the bot degrees right.

Parameters degrees (float) – Degrees to turn right

Property description

Comment comes from the getter:

@property
def datetime(self):

"""The current date and time"""
return self.datetime_register

@datetime.setter
def datetime(self, value):

pass

Renders as:

datetime
The current date and time

Use BusDevice

[BusDevice](https://github.com/adafruit/Adafruit_CircuitPython_BusDevice) is an awesome foundational library that
manages talking on a shared I2C or SPI device for you. The devices manage locking which ensures that a transfer is
done as a single unit despite CircuitPython internals and, in the future, other Python threads. For I2C, the device also
manages the device address. The SPI device, manages baudrate settings, chip select line and extra post-transaction
clock cycles.

I2C Example

from adafruit_bus_device import i2c_device

class Widget:
"""A generic widget."""

def __init__(self, i2c):
Always on address 0x40.
self.i2c_device = i2c_device.I2CDevice(i2c, 0x40)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.i2c_device as i2c:

i2c.writeto(b'0x00')

1.8. Full Table of Contents 49

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

MicroPython Documentation, Release 0.0.0

i2c.readfrom_into(self.buf)
return self.buf[0]

SPI Example

from adafruit_bus_device import spi_device

class SPIWidget:
"""A generic widget with a weird baudrate."""

def __init__(self, spi, chip_select):
chip_select is a pin reference such as board.D10.
self.spi_device = spi_device.SPIDevice(spi, chip_select, baudrate=12345)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.spi_device as spi:

spi.write(b'0x00')
i2c.readinto(self.buf)

return self.buf[0]

Use composition

When writing a driver, take in objects that provide the functionality you need rather than taking their arguments and
constructing them yourself or subclassing a parent class with functionality. This technique is known as composition
and leads to code that is more flexible and testable than traditional inheritance.

See also:

Wikipedia has more information on “dependency inversion”.

For example, if you are writing a driver for an I2C device, then take in an I2C object instead of the pins themselves.
This allows the calling code to provide any object with the appropriate methods such as an I2C expansion board.

Another example is to expect a DigitalInOut for a pin to toggle instead of a Pin from board. Taking in the Pin
object alone would limit the driver to pins on the actual microcontroller instead of pins provided by another driver
such as an IO expander.

Lots of small modules

CircuitPython boards tend to have a small amount of internal flash and a small amount of ram but large amounts of
external flash for the file system. So, create many small libraries that can be loaded as needed instead of one large file
that does everything.

Speed second

Speed isn’t as important as API clarity and code size. So, prefer simple APIs like properties for state even if it sacrifices
a bit of speed.

50 Chapter 1. Adafruit CircuitPython

https://en.wikipedia.org/wiki/Dependency_inversion_principle

MicroPython Documentation, Release 0.0.0

Avoid allocations in drivers

Although Python doesn’t require managing memory, its still a good practice for library writers to think about memory
allocations. Avoid them in drivers if you can because you never know how much something will be called. Fewer allo-
cations means less time spent cleaning up. So, where you can, prefer bytearray buffers that are created in __init__
and used throughout the object with methods that read or write into the buffer instead of creating new objects. Unified
hardware API classes such as busio.SPI are design to read and write to subsections of buffers.

Its ok to allocate an object to return to the user. Just beware of causing more than one allocation per call due to internal
logic.

However, this is a memory tradeoff so do not do it for large or rarely used buffers.

Examples

ustruct.pack

Use ustruct.pack_into instead of ustruct.pack.

Sensor properties and units

The Adafruit Unified Sensor Driver Arduino library has a great list of measurements and their units. Use the same ones
including the property name itself so that drivers can be used interchangeably when they have the same properties.

Property name Python type Units
acceleration (float, float,

float)
x, y, z meter per second per second

magnetic (float, float,
float)

micro-Tesla (uT)

orientation (float, float,
float)

x, y, z degrees

gyro (float, float,
float)

x, y, z radians per second

temperature float degrees centigrade
distance float centimeters
light float SI lux
pressure float hectopascal (hPa)
relative_humidity float percent
current float milliamps (mA)
voltage float volts (V)
color int RGB, eight bits per channel (0xff0000 is red)
alarm (time.struct, str) Sample alarm time and string to characterize frequency such as

“hourly”
datetime time.struct date and time

Common APIs

Outside of sensors, having common methods amongst drivers for similar devices such as devices can be really useful.
Its early days however. For now, try to adhere to guidelines in this document. Once a design is settled on, add it as a
subsection to this one.

1.8. Full Table of Contents 51

https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver/introduction
https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver?view=all#standardised-si-units-for-sensor-data

MicroPython Documentation, Release 0.0.0

Adding native modules

The Python API for a new module should be defined and documented in shared-bindings and define an under-
lying C API. If the implementation is port-agnostic or relies on underlying APIs of another module, the code should
live in shared-module. If it is port specific then it should live in common-hal within the port’s folder. In either
case, the file and folder structure should mimic the structure in shared-bindings.

MicroPython compatibility

Keeping compatibility with MicroPython isn’t a high priority. It should be done when its not in conflict with any of
the above goals.

1.8.6 Adding *io support to other ports

digitalio provides a well-defined, cross-port hardware abstraction layer built to support different devices and their
drivers. It’s backed by the Common HAL, a C api suitable for supporting different hardware in a similar manner. By
sharing this C api, developers can support new hardware easily and cross-port functionality to the new hardware.

These instructions also apply to analogio, busio, pulseio and touchio. Most drivers depend on analogio,
digitalio and busio so start with those.

File layout

Common HAL related files are found in these locations:

• shared-bindings Shared home for the Python <-> C bindings which includes inline RST documentation
for the created interfaces. The common hal functions are defined in the .h files of the corresponding C files.

• shared-modules Shared home for C code built on the Common HAL and used by all ports. This code only
uses common_hal methods defined in shared-bindings.

• <port>/common-hal Port-specific implementation of the Common HAL.

Each folder has the substructure of / and they should match 1:1. __init__.c is used for module globals that are not
classes (similar to __init__.py).

Adding support

Modifying the build

The first step is to hook the shared-bindings into your build for the modules you wish to support. Here’s an
example of this step for the atmel-samd/Makefile:

SRC_BINDINGS = \
board/__init__.c \
microcontroller/__init__.c \
microcontroller/Pin.c \
analogio/__init__.c \
analogio/AnalogIn.c \
analogio/AnalogOut.c \
digitalio/__init__.c \
digitalio/DigitalInOut.c \
pulseio/__init__.c \
pulseio/PulseIn.c \

52 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

pulseio/PulseOut.c \
pulseio/PWMOut.c \
busio/__init__.c \
busio/I2C.c \
busio/SPI.c \
busio/UART.c \
neopixel_write/__init__.c \
time/__init__.c \
usb_hid/__init__.c \
usb_hid/Device.c

SRC_BINDINGS_EXPANDED = $(addprefix shared-bindings/, $(SRC_BINDINGS)) \
$(addprefix common-hal/, $(SRC_BINDINGS))

Add the resulting objects to the full list
OBJ += $(addprefix $(BUILD)/, $(SRC_BINDINGS_EXPANDED:.c=.o))
Add the sources for QSTR generation
SRC_QSTR += $(SRC_C) $(SRC_BINDINGS_EXPANDED) $(STM_SRC_C)

The Makefile defines the modules to build and adds the sources to include the shared-bindings version and
the common-hal version within the port specific directory. You may comment out certain subfolders to reduce the
number of modules to add but don’t comment out individual classes. It won’t compile then.

Hooking the modules in

Built in modules are typically defined in mpconfigport.h. To add support you should have something like:

extern const struct _mp_obj_module_t microcontroller_module;
extern const struct _mp_obj_module_t analogio_module;
extern const struct _mp_obj_module_t digitalio_module;
extern const struct _mp_obj_module_t pulseio_module;
extern const struct _mp_obj_module_t busio_module;
extern const struct _mp_obj_module_t board_module;
extern const struct _mp_obj_module_t time_module;
extern const struct _mp_obj_module_t neopixel_write_module;

#define MICROPY_PORT_BUILTIN_MODULES \
{ MP_OBJ_NEW_QSTR(MP_QSTR_microcontroller), (mp_obj_t)µcontroller_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_analogio), (mp_obj_t)&analogio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_digitalio), (mp_obj_t)&digitalio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulseio), (mp_obj_t)&pulseio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_busio), (mp_obj_t)&busio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&board_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_neopixel_write),(mp_obj_t)&neopixel_write_module } \

Implementing the Common HAL

At this point in the port, nothing will compile yet, because there’s still work to be done to fix missing sources, compile
issues, and link issues. I suggest start with a common-hal directory from another port that implements it such as
atmel-samd or esp8266, deleting the function contents and stubbing out any return statements. Once that is done,
you should be able to compile cleanly and import the modules, but nothing will work (though you are getting closer).

The last step is actually implementing each function in a port specific way. I can’t help you with this. :-) If you have
any questions how a Common HAL function should work then see the corresponding .h file in shared-bindings.

1.8. Full Table of Contents 53

MicroPython Documentation, Release 0.0.0

Testing

Woohoo! You are almost done. After you implement everything, lots of drivers and sample code should just work.
There are a number of drivers and examples written for Adafruit’s Feather ecosystem. Here are places to start:

• Adafruit repos with CircuitPython topic

• Adafruit driver bundle

1.8.7 MicroPython libraries

Warning: These modules are inherited from MicroPython and may not work in CircuitPython as documented or
at all! If they do work, they may change at any time.

Python standard libraries and micro-libraries

Builtin functions and exceptions

Warning: These builtins are inherited from MicroPython and may not work in CircuitPython as documented or
at all! If work differently from CPython, then their behavior may change.

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

class bytes
See CPython documentation: bytes.

callable()

chr()

classmethod()

compile()

class complex

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class dict

54 Chapter 1. Adafruit CircuitPython

https://github.com/search?q=topic%3Acircuitpython+org%3Aadafruit+fork%3Atrue
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

MicroPython Documentation, Release 0.0.0

dir()

divmod()

enumerate()

eval()

exec()

filter()

class float

class frozenset

getattr()

globals()

hasattr()

hash()

hex()

id()

input()

class int

classmethod from_bytes(bytes, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview

min()

next()

class object

oct()

open()

ord()

pow()

1.8. Full Table of Contents 55

MicroPython Documentation, Release 0.0.0

print()

property()

range()

repr()

reversed()

round()

class set

setattr()

class slice
The slice builtin is the type that slice objects have.

sorted()

staticmethod()

class str

sum()

super()

class tuple

type()

zip()

Exceptions

exception AssertionError

exception AttributeError

exception Exception

exception ImportError

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception MemoryError

exception NameError

exception NotImplementedError

exception OSError
See CPython documentation: OSError. MicroPython doesn’t implement errno attribute, instead use the
standard way to access exception arguments: exc.args[0].

exception RuntimeError

exception StopIteration

exception SyntaxError

56 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

exception SystemExit
See CPython documentation: python:SystemExit.

exception TypeError
See CPython documentation: python:TypeError.

exception ValueError

exception ZeroDivisionError

array – arrays of numeric data

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by an iterable. If it is not
provided, an empty array is created.

append(val)
Append new element to the end of array, growing it.

extend(iterable)
Append new elements as contained in an iterable to the end of array, growing it.

gc – control the garbage collector

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

1.8. Full Table of Contents 57

https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/gc.html#module-gc

MicroPython Documentation, Release 0.0.0

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the pre-
vious time such an amount of bytes have been allocated). amount is usually specified as less than the full heap
size, with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope
that an early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of
which will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

math – mathematical functions

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required for this module.

58 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/math.html#module-math

MicroPython Documentation, Release 0.0.0

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

math.cos(x)
Return the cosine of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation
0.5 <= abs(m) < 1 holds.

1.8. Full Table of Contents 59

MicroPython Documentation, Release 0.0.0

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as x.

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

60 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

sys – system specific functions

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

Functions

sys.exit(retval=0)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

sys.print_exception(exc, file=sys.stdout)
Print exception with a traceback to a file-like object file (or sys.stdout by default).

Difference to CPython

This is simplified version of a function which appears in the traceback module in CPython. Unlike
traceback.print_exception(), this function takes just exception value instead of exception type, ex-
ception value, and traceback object; file argument should be positional; further arguments are not supported.

Constants

sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("little" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

• name - string “micropython”

• version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Mi-
croPython.

sys.maxsize
Maximum value which a native integer type can hold on the current platform, or maximum value representable
by MicroPython integer type, if it’s smaller than platform max value (that is the case for MicroPython ports
without long int support).

1.8. Full Table of Contents 61

https://docs.python.org/3/library/sys.html#module-sys

MicroPython Documentation, Release 0.0.0

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
64-bit (or more) platform
...

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

sys.modules
Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path
A mutable list of directories to search for imported modules.

sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys.implementation instead.

sys.stderr
Standard error stream.

sys.stdin
Standard input stream.

sys.stdout
Standard output stream.

sys.version
Python language version that this implementation conforms to, as a string.

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints.

ubinascii – binary/ASCII conversions

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

62 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/binascii.html#module-binascii

MicroPython Documentation, Release 0.0.0

Functions

ubinascii.hexlify(data[, sep])
Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator between hexadecimal values.

ubinascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

ubinascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

ubinascii.b2a_base64(data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

ucollections – collection and container types

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

Classes

ucollections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility
with CPython it can also be a a string with space-separated field named (but this is less efficient). Example of
use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

ucollections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

1.8. Full Table of Contents 63

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3/library/collections.html#module-collections

MicroPython Documentation, Release 0.0.0

from ucollections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2
w 5
b 3

uerrno – system error codes

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception.

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. Errors are usually accessible as
exc.args[0] where exc is an instance of OSError. Usage example:

try:
os.mkdir("my_dir")

except OSError as exc:
if exc.args[0] == uerrno.EEXIST:

print("Directory already exists")

uerrno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST

64 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/errno.html#module-errno

MicroPython Documentation, Release 0.0.0

uhashlib – hashing algorithms

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a
board. Among the algorithms which may be implemented:

• SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes. Included in the MicroPython core and any board is recommended to provide
this, unless it has particular code size constraints.

• SHA1 - A previous generation algorithm. Not recommended for new usages, but SHA1 is a part of number
of Internet standards and existing applications, so boards targeting network connectivity and interoperatiability
will try to provide this.

• MD5 - A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting interoper-
atibility with legacy applications, will offer this.

Constructors

class uhashlib.sha256([data])
Create an SHA256 hasher object and optionally feed data into it.

class uhashlib.sha1([data])
Create an SHA1 hasher object and optionally feed data into it.

class uhashlib.md5([data])
Create an MD5 hasher object and optionally feed data into it.

Methods

hash.update(data)
Feed more binary data into hash.

hash.digest()
Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest()
This method is NOT implemented. Use ubinascii.hexlify(hash.digest()) to achieve a similar
effect.

uheapq – heap queue algorithm

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

1.8. Full Table of Contents 65

https://docs.python.org/3/library/hashlib.html#module-hashlib

MicroPython Documentation, Release 0.0.0

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapq.

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

uheapq.heappush(heap, item)
Push the item onto the heap.

uheapq.heappop(heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

uio – input/output streams

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat”) and takes
precious memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering
support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In
CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favor no-short-operations behavior for the reasons stated above. For example,

66 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/heapq.html#module-heapq
https://docs.python.org/3/library/io.html#module-io

MicroPython Documentation, Release 0.0.0

MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking behavior
being another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either
to arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly,
this conflicts with “no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops)
streams is convoluted in CPython - in some places, such combination is prohibited, in some it’s undefined or just not
documented, in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking
stream are important for efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So,
while blocking streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of
file is reached, or in case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text
streams are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may
introduce buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and
it’s not possible to implement, or subclass, a stream class in pure Python.

Functions

uio.open(name, mode=’r’, **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file system)
are required to support mode parameter, but support for other arguments vary by port.

Classes

class uio.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this
class directly.

class uio.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class uio.StringIO([string])
class uio.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file
opened with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with “b”
modifier). Initial contents of file-like objects can be specified with string parameter (should be normal string
for StringIO or bytes object for BytesIO). All the usual file methods like read(), write(), seek(),
flush(), close() are available on these objects, and additionally, a following method:

getvalue()
Get the current contents of the underlying buffer which holds data.

1.8. Full Table of Contents 67

https://docs.python.org/3/library/string.html#module-string

MicroPython Documentation, Release 0.0.0

ujson – JSON encoding and decoding

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

ure – simple regular expressions

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators are:

'.' Match any character.

'[]' Match set of characters. Individual characters and ranges are supported.

'^'

'$'

'?'

'*'

'+'

'??'

'*?'

'+?'

'()' Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).

Counted repetitions ({m,n}), more advanced assertions, named groups, etc. are not supported.

68 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/re.html#module-re

MicroPython Documentation, Release 0.0.0

Functions

ure.compile(regex_str)
Compile regular expression, return regex object.

ure.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

ure.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position which
matches regex (which still may be 0 if regex is anchored).

ure.DEBUG
Flag value, display debug information about compiled expression.

Regex objects

Compiled regular expression. Instances of this class are created using ure.compile().

regex.match(string)
regex.search(string)

Similar to the module-level functions match() and search(). Using methods is (much) more efficient if
the same regex is applied to multiple strings.

regex.split(string, max_split=-1)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods.

match.group([index])
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

uselect – wait for events on a set of streams

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple streams (select streams which are ready for
operations).

Functions

uselect.poll()
Create an instance of the Poll class.

1.8. Full Table of Contents 69

https://docs.python.org/3/library/select.html#module-select

MicroPython Documentation, Release 0.0.0

uselect.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask])
Register obj for polling. eventmask is logical OR of:

• select.POLLIN - data available for reading

• select.POLLOUT - more data can be written

• select.POLLERR - error occurred

• select.POLLHUP - end of stream/connection termination detected

eventmask defaults to select.POLLIN | select.POLLOUT.

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj.

poll.poll([timeout])
Wait for at least one of the registered objects to become ready. Returns list of (obj, event, . . .) tuples, event
element specifies which events happened with a stream and is a combination of select.POLL* constants
described above. There may be other elements in tuple, depending on a platform and version, so don’t assume
that its size is 2. In case of timeout, an empty list is returned.

Timeout is in milliseconds.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll([timeout])
Like poll.poll(), but instead returns an iterator which yields callee-owned tuples. This function provides
efficient, allocation-free way to poll on streams.

Difference to CPython

This function is a MicroPython extension.

usocket – socket module

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

70 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: socket.

This module provides access to the BSD socket interface.

Difference to CPython

For efficiency and consistency, socket objects in MicroPython implement a stream (file-like) interface directly. In
CPython, you need to convert a socket to a file-like object using makefile() method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it.

Socket address format(s)

The native socket address format of the usocket module is an opaque data type returned by getaddrinfo func-
tion, which must be used to resolve textual address (including numeric addresses):

sockaddr = usocket.getaddrinfo('www.micropython.org', 80)[0][-1]
You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1', 80)[0][-1]
Now you can use that address
sock.connect(addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way to work
with addresses.

However, socket module (note the difference with native MicroPython usocket module described here) provides
CPython-compatible way to specify addresses using tuples, as described below.

Summing up:

• Always use getaddrinfo when writing portable applications.

• Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port
supports them.

Tuple address format for socket module:

• IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address, e.g. "8.8.
8.8", and port is and integer port number in the range 1-65535. Note the domain names are not accepted as
ipv4_address, they should be resolved first using usocket.getaddrinfo().

• IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation numeric IPv6
address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535. flowinfo must be
0. scopeid is the interface scope identifier for link-local addresses. Note the domain names are not accepted as
ipv6_address, they should be resolved first using usocket.getaddrinfo().

Functions

usocket.socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP)
Create a new socket using the given address family, socket type and protocol number.

usocket.getaddrinfo(host, port)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. The list of 5-tuples has following structure:

1.8. Full Table of Contents 71

https://docs.python.org/3/library/socket.html#module-socket

MicroPython Documentation, Release 0.0.0

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = socket.socket()
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function.
MicroPython doesn’t have socket.gaierror and raises OSError directly. Note that error numbers of
getaddrinfo() form a separate namespace and may not match error numbers from uerrno module. To
distinguish getaddrinfo() errors, they are represented by negative numbers, whereas standard system er-
rors are positive numbers (error numbers are accessible using e.args[0] property from an exception object).
The use of negative values is a provisional detail which may change in the future.

Constants

usocket.AF_INET
usocket.AF_INET6

Address family types. Availability depends on a particular board.

usocket.SOCK_STREAM
usocket.SOCK_DGRAM

Socket types.

usocket.IPPROTO_UDP
usocket.IPPROTO_TCP

IP protocol numbers.

usocket.SOL_*
Socket option levels (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

usocket.SO_*
Socket options (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:

usocket.IPPROTO_SEC
Special protocol value to create SSL-compatible socket.

class socket

Methods

socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket object
will fail. The remote end will receive EOF indication if supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them
explicitly as soon you finished working with them.

socket.bind(address)
Bind the socket to address. The socket must not already be bound.

72 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it’s lower, it will be set to 0);
and specifies the number of unaccepted connections that the system will allow before refusing new connections.
If not specified, a default reasonable value is chosen.

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

socket.connect(address)
Connect to a remote socket at address.

socket.send(bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which
may be smaller than the length of data (“short write”).

socket.sendall(bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send(), this method will
try to send all of data, by sending data chunk by chunk consecutively.

The behavior of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it’s recom-
mended to use write() method instead, which has the same “no short writes” policy for blocking sockets, and
will return number of bytes sent on non-blocking sockets.

socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address.

socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing
the data received and address is the address of the socket sending the data.

socket.setsockopt(level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_*
etc.). The value can be an integer or a bytes-like object representing a buffer.

socket.settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an OSError
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket
is put in non-blocking mode. If None is given, the socket is put in blocking mode.

Difference to CPython

CPython raises a socket.timeout exception in case of timeout, which is an OSError subclass. MicroPy-
thon raises an OSError directly instead. If you use except OSError: to catch the exception, your code will
work both in MicroPython and CPython.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to
blocking mode.

This method is a shorthand for certain settimeout() calls:

1.8. Full Table of Contents 73

MicroPython Documentation, Release 0.0.0

• sock.setblocking(True) is equivalent to sock.settimeout(None)

• sock.setblocking(False) is equivalent to sock.settimeout(0)

socket.makefile(mode=’rb’, buffering=0)
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s arguments: encoding,
errors and newline are not supported.

Difference to CPython

As MicroPython doesn’t support buffered streams, values of buffering parameter is ignored and treated as if it
was 0 (unbuffered).

Difference to CPython

Closing the file object returned by makefile() WILL close the original socket as well.

socket.read([size])
Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data available from
the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as
much data as requested (no “short reads”). This may be not possible with non-blocking socket though, and then
less data will be returned.

socket.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most len(buf)
bytes. Just as read(), this method follows “no short reads” policy.

Return value: number of bytes read and stored into buf.

socket.readline()
Read a line, ending in a newline character.

Return value: the line read.

socket.write(buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short writes”).
This may be not possible with a non-blocking socket though, and returned value will be less than the length of
buf.

Return value: number of bytes written.

exception socket.error
MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket.error exception which is now deprecated, and is an alias of OSError. In
MicroPython, use OSError directly.

74 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

ussl – SSL/TLS module

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: ssl.

This module provides access to Transport Layer Security (previously and widely known as “Secure Sockets Layer”)
encryption and peer authentication facilities for network sockets, both client-side and server-side.

Functions

ssl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE,
ca_certs=None)

Takes a stream sock (usually usocket.socket instance of SOCK_STREAM type), and returns an instance of
ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the usual stream
interface methods like read(), write(), etc. In MicroPython, the returned object does not expose socket
interface and methods like recv(), send(). In particular, a server-side SSL socket should be created from a
normal socket returned from accept() on a non-SSL listening server socket.

Depending on the underlying module implementation for a particular board, some or all keyword arguments
above may be not supported.

Warning: Some implementations of ssl module do NOT validate server certificates, which makes an SSL
connection established prone to man-in-the-middle attacks.

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ssl.CERT_NONE
ssl.CERT_OPTIONAL
ssl.CERT_REQUIRED

Supported values for cert_reqs parameter.

ustruct – pack and unpack primitive data types

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: struct.

1.8. Full Table of Contents 75

https://docs.python.org/3/library/ssl.html#module-ssl
https://docs.python.org/3/library/struct.html#module-struct

MicroPython Documentation, Release 0.0.0

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, s, P, f, d (the latter 2 depending on the floating-point support).

Functions

ustruct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

ustruct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, . . . according to the format string fmt. The return value is a bytes object encoding the
values.

ustruct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, . . . according to the format string fmt into a buffer starting at offset. offset may be
negative to count from the end of buffer.

ustruct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked values.

ustruct.unpack_from(fmt, data, offset=0)
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values.

uzlib – zlib decompression

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: zlib.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library
and gzip archiver). Compression is not yet implemented.

Functions

uzlib.decompress(data, wbits=0, bufsize=0)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-
15, the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be
zlib stream (with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream. bufsize
parameter is for compatibility with CPython and is ignored.

class uzlib.DecompIO(stream, wbits=0)
Create a stream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described
in decompress(), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. It’s included on provisional basis and may be changed considerably or
removed in later versions.

76 Chapter 1. Adafruit CircuitPython

https://docs.python.org/3/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE

MicroPython Documentation, Release 0.0.0

MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

btree – simple BTree database

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

The btree module implements a simple key-value database using external storage (disk files, or in general case, a
random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a key value, a database
also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the application
interface side, BTree database work as close a possible to a way standard dict type works, one notable difference is
that both keys and values must be bytes objects (so, if you want to store objects of other types, you need to serialize
them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

First, we need to open a stream which holds a database
This is usually a file, but can be in-memory database
using uio.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:

f = open("mydb", "r+b")
except OSError:

f = open("mydb", "w+b")

Now open a database itself
db = btree.open(f)

The keys you add will be sorted internally in the database
db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"2"] = b"two"

Assume that any changes are cached in memory unless
explicitly flushed (or database closed). Flush database
at the end of each "transaction".
db.flush()

Prints b'two'
print(db[b"2"])

Iterate over sorted keys in the database, starting from b"2"
until the end of the database, returning only values.
Mind that arguments passed to values() method are *key* values.
Prints:
b'two'
b'three'

1.8. Full Table of Contents 77

MicroPython Documentation, Release 0.0.0

for word in db.values(b"2"):
print(word)

del db[b"2"]

No longer true, prints False
print(b"2" in db)

Prints:
b"1"
b"3"
for key in db:

print(key)

db.close()

Don't forget to close the underlying stream!
f.close()

Functions

btree.open(stream, *, flags=0, cachesize=0, pagesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional and
keyword-only, and allow to tweak advanced parameters of the database operation (most users will not need
them):

• flags - Currently unused.

• cachesize - Suggested maximum memory cache size in bytes. For a board with enough memory using
larger values may improve performance. The value is only a recommendation, the module may use more
memory if values set too low.

• pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, underlying I/O
block size will be used (the best compromise between memory usage and performance).

• minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()
Close the database. It’s mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should
be closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying
storage).

btree.flush()
Flush any data in cache to the underlying stream.

btree.__getitem__(key)
btree.get(key, default=None)
btree.__setitem__(key, val)
btree.__detitem__(key)

78 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

btree.__contains__(key)
Standard dictionary methods.

btree.__iter__()
A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.keys([start_key[, end_key[, flags]]])
btree.values([start_key[, end_key[, flags]]])
btree.items([start_key[, end_key[, flags]]])

These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values() method will iterate over values corresponding to they key range
given. None values for start_key means “from the first key”, no end_key or its value of None means “until the
end of database”. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key
in iteration by passing flags of btree.INCL. You can iterate in descending key direction by passing flags of
btree.DESC. The flags values can be ORed together.

Constants

btree.INCL
A flag for keys(), values(), items() methods to specify that scanning should be inclusive of the end
key.

btree.DESC
A flag for keys(), values(), items() methods to specify that scanning should be in descending direction
of keys.

framebuf — Frame buffer manipulation

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text and even
other FrameBuffer’s. It is useful when generating output for displays.

For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = FrameBuffer(bytearray(10 * 100 * 2), 10, 100, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 10, 96, 0xffff)

1.8. Full Table of Contents 79

MicroPython Documentation, Release 0.0.0

Constructors

class framebuf.FrameBuffer(buffer, width, height, format, stride=width)
Construct a FrameBuffer object. The parameters are:

• buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

• width is the width of the FrameBuffer in pixels

• height is the height of the FrameBuffer in pixels

• format specifies the type of pixel used in the FrameBuffer; valid values are framebuf.MVLSB,
framebuf.RGB565 and framebuf.GS4_HMSB. MVLSB is monochrome 1-bit color, RGB565 is
RGB 16-bit color, and GS4_HMSB is grayscale 4-bit color. Where a color value c is passed to a method,
c is a small integer with an encoding that is dependent on the format of the FrameBuffer.

• stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults to
width but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or
screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.fill(c)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel(x, y[, c])
If c is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the given color.

FrameBuffer.hline(x, y, w, c)

FrameBuffer.vline(x, y, h, c)

FrameBuffer.line(x1, y1, x2, y2, c)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The line method draws
the line up to a second set of coordinates whereas the hline and vline methods draw horizontal and vertical
lines respectively up to a given length.

FrameBuffer.rect(x, y, w, h, c)

FrameBuffer.fill_rect(x, y, w, h, c)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline whereas
the fill_rect method draws both the outline and interior.

Drawing text

FrameBuffer.text(s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.

80 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

Other methods

FrameBuffer.scroll(xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in
the FrameBuffer.

FrameBuffer.blit(fbuf, x, y[, key])
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should
be a color integer and the corresponding color will be considered transparent: all pixels with that color value
will not be drawn.

This method works between FrameBuffer’s utilising different formats, but the resulting colors may be unex-
pected due to the mismatch in color formats.

Constants

framebuf.MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with
bit 0 being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes
appear at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at
locations starting at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 0 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS4_HMSB
Grayscale (4-bit) color format

micropython – access and control MicroPython internals

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this function
should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

1.8. Full Table of Contents 81

MicroPython Documentation, Release 0.0.0

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPy-
thon, by following the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.

micropython.alloc_emergency_exception_buf(size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py) and then
the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose‘ argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and
heap used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned
strings and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.heap_lock()

micropython.heap_unlock()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth
will increase, and then heap_unlock() must be called the same number of times to make the heap available
again.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its single
argument. “Very soon” means that the MicroPython runtime will do its best to execute the function at the
earliest possible time, given that it is also trying to be efficient, and that the following conditions hold:

• A scheduled function will never preempt another scheduled function.

82 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

• Scheduled functions are always executed “between opcodes” which means that all fundamental Python
operations (such as appending to a list) are guaranteed to be atomic.

• A given port may define “critical regions” within which scheduled functions will never be executed. Func-
tions may be scheduled within a critical region but they will not be executed until that region is exited. An
example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the
code that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift
those restrictions.

There is a finite stack to hold the scheduled functions and schedule will raise a RuntimeError if the stack
is full.

network — network configuration

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module provides network drivers and routing configuration. To use this module, a MicroPython variant/build
with network capabilities must be installed. Network drivers for specific hardware are available within this module
and are used to configure hardware network interface(s). Network services provided by configured interfaces are then
available for use via the socket module.

For example:

connect/ show IP config a specific network interface
see below for examples of specific drivers
import network
import utime
nic = network.Driver(...)
if not nic.isconnected():

nic.connect()
print("Waiting for connection...")
while not nic.isconnected():

utime.sleep(1)
print(nic.ifconfig())

now use usocket as usual
import usocket as socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()

Common network adapter interface

This section describes an (implied) abstract base class for all network interface classes implemented by different ports
of MicroPython for different hardware. This means that MicroPython does not actually provide AbstractNIC class,
but any actual NIC class, as described in the following sections, implements methods as described here.

class network.AbstractNIC(id=None, ...)

1.8. Full Table of Contents 83

https://docs.python.org/3/library/socket.html#module-socket

MicroPython Documentation, Release 0.0.0

Instantiate a network interface object. Parameters are network interface dependent. If there are more than one interface
of the same type, the first parameter should be id.

network.active([is_active])
Activate (“up”) or deactivate (“down”) the network interface, if a boolean argument is passed. Other-
wise, query current state if no argument is provided. Most other methods require an active interface
(behavior of calling them on inactive interface is undefined).

network.connect([service_id, key=None, *, ...])
Connect the interface to a network. This method is optional, and available only for interfaces which
are not “always connected”. If no parameters are given, connect to the default (or the only) ser-
vice. If a single parameter is given, it is the primary identifier of a service to connect to. It may
be accompanied by a key (password) required to access said service. There can be further arbi-
trary keyword-only parameters, depending on the networking medium type and/or particular device.
Parameters can be used to: a) specify alternative service identifer types; b) provide additional con-
nection parameters. For various medium types, there are different sets of predefined/recommended
parameters, among them:

• WiFi: bssid keyword to connect by BSSID (MAC address) instead of access point name

network.disconnect()
Disconnect from network.

network.isconnected()
Returns True if connected to network, otherwise returns False.

network.scan(*, ...)
Scan for the available network services/connections. Returns a list of tuples with discovered service
parameters. For various network media, there are different variants of predefined/ recommended
tuple formats, among them:

• WiFi: (ssid, bssid, channel, RSSI, authmode, hidden). There may be further fields, specific to a
particular device.

The function may accept additional keyword arguments to filter scan results (e.g. scan for a particu-
lar service, on a particular channel, for services of a particular set, etc.), and to affect scan duration
and other parameters. Where possible, parameter names should match those in connect().

network.status()
Return detailed status of the interface, values are dependent on the network medium/technology.

network.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server.
When called with no arguments, this method returns a 4-tuple with the above information. To set
the above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

network.config(’param’)
network.config(param=value, ...)

Get or set general network interface parameters. These methods allow to work with additional
parameters beyond standard IP configuration (as dealt with by ifconfig()). These include
network-specific and hardware-specific parameters and status values. For setting parameters, the
keyword argument syntax should be used, and multiple parameters can be set at once. For querying,
a parameter name should be quoted as a string, and only one parameter can be queried at a time:

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
Query params one by one

84 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

print(ap.config('essid'))
print(ap.config('channel'))
Extended status information also available this way
print(sta.config('rssi'))

Functions

network.phy_mode([mode])
Get or set the PHY mode.

If the mode parameter is provided, sets the mode to its value. If the function is called without parameters, returns
the current mode.

The possible modes are defined as constants:

• MODE_11B – IEEE 802.11b,

• MODE_11G – IEEE 802.11g,

• MODE_11N – IEEE 802.11n.

class WLAN

This class provides a driver for WiFi network processor in the ESP8266. Example usage:

import network
enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)
nic.active(True)
nic.connect('your-ssid', 'your-password')
now use sockets as usual

Constructors

class network.WLAN(interface_id)

Create a WLAN network interface object. Supported interfaces are network.STA_IF (station aka client, connects
to upstream WiFi access points) and network.AP_IF (access point, allows other WiFi clients to connect). Avail-
ability of the methods below depends on interface type. For example, only STA interface may connect() to an
access point.

Methods

wlan.active([is_active])
Activate (“up”) or deactivate (“down”) network interface, if boolean argument is passed. Otherwise, query
current state if no argument is provided. Most other methods require active interface.

wlan.connect(ssid, password)
Connect to the specified wireless network, using the specified password.

wlan.disconnect()
Disconnect from the currently connected wireless network.

1.8. Full Table of Contents 85

MicroPython Documentation, Release 0.0.0

wlan.scan()
Scan for the available wireless networks.

Scanning is only possible on STA interface. Returns list of tuples with the information about WiFi access points:

(ssid, bssid, channel, RSSI, authmode, hidden)

bssid is hardware address of an access point, in binary form, returned as bytes object. You can use ubinascii.
hexlify() to convert it to ASCII form.

There are five values for authmode:

• 0 – open

• 1 – WEP

• 2 – WPA-PSK

• 3 – WPA2-PSK

• 4 – WPA/WPA2-PSK

and two for hidden:

• 0 – visible

• 1 – hidden

wlan.status()
Return the current status of the wireless connection.

The possible statuses are defined as constants:

• STAT_IDLE – no connection and no activity,

• STAT_CONNECTING – connecting in progress,

• STAT_WRONG_PASSWORD – failed due to incorrect password,

• STAT_NO_AP_FOUND – failed because no access point replied,

• STAT_CONNECT_FAIL – failed due to other problems,

• STAT_GOT_IP – connection successful.

wlan.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In AP mode
returns True when a station is connected. Returns False otherwise.

wlan.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server. When called
with no arguments, this method returns a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

wlan.config(’param’)

wlan.config(param=value, ...)
Get or set general network interface parameters. These methods allow to work with additional parameters
beyond standard IP configuration (as dealt with by wlan.ifconfig()). These include network-specific
and hardware-specific parameters. For setting parameters, keyword argument syntax should be used, multiple
parameters can be set at once. For querying, parameters name should be quoted as a string, and only one
parameter can be queries at time:

86 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))

Following are commonly supported parameters (availability of a specific parameter depends on network tech-
nology type, driver, and MicroPython port).

Parameter Description
mac MAC address (bytes)
essid WiFi access point name (string)
channel WiFi channel (integer)
hidden Whether ESSID is hidden (boolean)
authmode Authentication mode supported (enumeration, see module constants)
password Access password (string)

uctypes – access binary data in a structured way

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is
to define data structure layout with about the same power as the C language allows, and the access it using familiar
dot-syntax to reference sub-fields.

See also:

Module struct Standard Python way to access binary data structures (doesn’t scale well to large and complex
structures).

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other
properties required to access them as associated values. Currently, uctypes requires explicit specification of offsets for
each field. Offset are given in bytes from a structure start.

Following are encoding examples for various field types:

• Scalar types:

"field_name": uctypes.UINT32 | 0

in other words, value is scalar type identifier ORed with field offset (in bytes) from the start of the structure.

• Recursive structures:

"sub": (2, {
"b0": uctypes.UINT8 | 0,
"b1": uctypes.UINT8 | 1,

})

1.8. Full Table of Contents 87

https://docs.python.org/3/library/struct.html#module-struct

MicroPython Documentation, Release 0.0.0

i.e. value is a 2-tuple, first element of which is offset, and second is a structure descriptor dictionary (note:
offsets in recursive descriptors are relative to a structure it defines).

• Arrays of primitive types:

"arr": (uctypes.ARRAY | 0, uctypes.UINT8 | 2),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in array.

• Arrays of aggregate types:

"arr2": (uctypes.ARRAY | 0, 2, {"b": uctypes.UINT8 | 0}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements
in array, and third is descriptor of element type.

• Pointer to a primitive type:

"ptr": (uctypes.PTR | 0, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is scalar element type.

• Pointer to an aggregate type:

"ptr2": (uctypes.PTR | 0, {"b": uctypes.UINT8 | 0}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is descriptor of type pointed
to.

• Bitfields:

"bitf0": uctypes.BFUINT16 | 0 | 0 << uctypes.BF_POS | 8 << uctypes.BF_LEN,

i.e. value is type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes with
“BF”), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit offset and
bit length of the bitfield within scalar value, shifted by BF_POS and BF_LEN positions, respectively. Bitfield
position is counted from the least significant bit, and is the number of right-most bit of a field (in other words,
it’s a number of bits a scalar needs to be shifted right to extra the bitfield).

In the example above, first UINT16 value will be extracted at offset 0 (this detail may be important when
accessing hardware registers, where particular access size and alignment are required), and then bitfield whose
rightmost bit is least-significant bit of this UINT16, and length is 8 bits, will be extracted - effectively, this will
access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant
bit being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses
normalized numbering described above.

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a
dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN
Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes
as defined in the descriptor, i.e. the alignment is 1).

88 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

uctypes.BIG_ENDIAN
Layout type for a big-endian packed structure.

uctypes.NATIVE
Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct)
Return size of data structure in bytes. Argument can be either structure class or specific instantiated structure
object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol
(and address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory
is captured by reference, so it can be both written too, and you will access current value at the given memory
address.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in
datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access some
data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.
field1. If a field is of scalar type, getting it will produce a primitive value (Python integer or float) corresponding
to the value contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are supported too, with the same semantics as in C.

Summing up, accessing structure fields generally follows C syntax, except for pointer dereference, when you need to
use [0] operator instead of *.

Limitations

Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special care
should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from an
interrupt). The recommendations are:

1.8. Full Table of Contents 89

MicroPython Documentation, Release 0.0.0

• Avoid nested structures. For example, instead of mcu_registers.peripheral_a.register1, define
separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1.

• Avoid other non-scalar data, like array. For example, instead of peripheral_a.register[0] use
peripheral_a.register0.

Note that these recommendations will lead to decreased readability and conciseness of layouts, so they should be used
only if the need to access structure fields without allocation is anticipated (it’s even possible to define 2 parallel layouts
- one for normal usage, and a restricted one to use when memory allocation is prohibited).

Libraries specific to the ESP8266

The following libraries are specific to the ESP8266.

esp — functions related to the ESP8266

Warning: This module is inherited from MicroPython and may not work in CircuitPython as documented or at
all! If they do work, they may change at any time. It is unsupported.

The esp module contains specific functions related to the ESP8266 module.

Functions

esp.sleep_type([sleep_type])
Get or set the sleep type.

If the sleep_type parameter is provided, sets the sleep type to its value. If the function is called without parame-
ters, returns the current sleep type.

The possible sleep types are defined as constants:

• SLEEP_NONE – all functions enabled,

• SLEEP_MODEM – modem sleep, shuts down the WiFi Modem circuit.

• SLEEP_LIGHT – light sleep, shuts down the WiFi Modem circuit and suspends the processor periodically.

The system enters the set sleep mode automatically when possible.

esp.deepsleep(time=0)
Enter deep sleep.

The whole module powers down, except for the RTC clock circuit, which can be used to restart the module after
the specified time if the pin 16 is connected to the reset pin. Otherwise the module will sleep until manually
reset.

esp.flash_id()
Read the device ID of the flash memory.

esp.flash_read(byte_offset, length_or_buffer)

esp.flash_write(byte_offset, bytes)

esp.flash_erase(sector_no)

90 Chapter 1. Adafruit CircuitPython

MicroPython Documentation, Release 0.0.0

esp.set_native_code_location(start, length)
Set the location that native code will be placed for execution after it is compiled. Native code is emitted when
the @micropython.native, @micropython.viper and @micropython.asm_xtensa decorators
are applied to a function. The ESP8266 must execute code from either iRAM or the lower 1MByte of flash
(which is memory mapped), and this function controls the location.

If start and length are both None then the native code location is set to the unused portion of memory at the
end of the iRAM1 region. The size of this unused portion depends on the firmware and is typically quite small
(around 500 bytes), and is enough to store a few very small functions. The advantage of using this iRAM1
region is that it does not get worn out by writing to it.

If neither start nor length are None then they should be integers. start should specify the byte offset from the
beginning of the flash at which native code should be stored. length specifies how many bytes of flash from start
can be used to store native code. start and length should be multiples of the sector size (being 4096 bytes). The
flash will be automatically erased before writing to it so be sure to use a region of flash that is not otherwise
used, for example by the firmware or the filesystem.

When using the flash to store native code start+length must be less than or equal to 1MByte. Note that the flash
can be worn out if repeated erasures (and writes) are made so use this feature sparingly. In particular, native
code needs to be recompiled and rewritten to flash on each boot (including wake from deepsleep).

In both cases above, using iRAM1 or flash, if there is no more room left in the specified region then the use of
a native decorator on a function will lead to MemoryError exception being raised during compilation of that
function.

1.8.8 Adafruit CircuitPython

Status | Supported Boards | Download | Documentation | Contributing | Differences from Micropython | Project Struc-
ture

CircuitPython is an education friendly open source derivative of MicroPython. CircuitPython supports use on educa-
tional development boards designed and sold by Adafruit. Adafruit CircuitPython features unified Python core APIs
and a growing list of Adafruit libraries and drivers of that work with it.

Status

This project is stable. Most APIs should be stable going forward. Those that change will change on major version
numbers such as 2.0.0 and 3.0.0.

Supported Boards

Designed for CircuitPython

• Adafruit CircuitPlayground Express

• Adafruit Feather M0 Express

• Adafruit Metro M0 Express

• Adafruit Gemma M0

1.8. Full Table of Contents 91

https://travis-ci.org/adafruit/circuitpython
https://discord.gg/nBQh6qu
https://micropython.org
https://adafruit.com
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3501

MicroPython Documentation, Release 0.0.0

Other

• Adafruit Feather HUZZAH

• Adafruit Feather M0 Basic

• Adafruit Feather M0 Bluefruit LE (uses M0 Basic binaries)

• Adafruit Feather M0 Adalogger (MicroSD card supported using the Adafruit CircuitPython SD library)

• Arduino Zero

Download

Official binaries are available through the latest GitHub releases. Continuous (one per commit) builds are available
here and includes experimental hardware support.

Documentation

Guides and videos are available through the Adafruit Learning System under the CircuitPython category and MicroPy-
thon category. An API reference is also available on Read the Docs.

Contributing

See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing
to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they
will be promptly reviewed by project admins. Please join the Gitter chat or Discord too.

Differences from MicroPython

CircuitPython:

• includes a port for Atmel SAMD21 (Commonly known as M0 in Adafruit product names.)

• supports only Atmel SAMD21 and ESP8266 ports.

• tracks MicroPython’s releases (not master).

Behavior

• The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role
of each file and make each file independent from each other.

• boot.py (or settings.py) runs only once on start up before USB is initialized. This lays the ground
work for configuring USB at startup rather than it being fixed. Since serial is not available, output is written to
boot_out.txt.

• code.py (or main.py) is run after every reload until it finishes or is interrupted. After it is done running, the
vm and hardware is reinitialized. This means you cannot read state from ‘‘code.py‘‘ in the REPL anymore.
CircuitPython’s goal for this change includes reduce confusion about pins and memory being used.

• After code.py the REPL can be entered by pressing any key. It no longer shares state with code.py so it is
a fresh vm.

92 Chapter 1. Adafruit CircuitPython

https://www.adafruit.com/products/2821
https://www.adafruit.com/products/2772
https://www.adafruit.com/products/2995
https://www.adafruit.com/product/2796
https://github.com/adafruit/Adafruit_CircuitPython_SD
https://www.arduino.cc/en/Main/ArduinoBoardZero
https://github.com/adafruit/circuitpython/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin
https://learn.adafruit.com/
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/category/micropython
https://learn.adafruit.com/category/micropython
http://circuitpython.readthedocs.io/en/latest/?
https://github.com/adafruit/circuitpython/blob/master/CONTRIBUTING.md
https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md
https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md
https://gitter.im/adafruit/circuitpython
https://discord.gg/nBQh6qu

MicroPython Documentation, Release 0.0.0

• Autoreload state will be maintained across reload.

• Adds a safe mode that does not run user code after a hard crash or brown out. The hope is that this will make it
easier to fix code that causes nasty crashes by making it available through mass storage after the crash. A reset
(the button) is needed after its fixed to get back into normal mode.

API

• Unified hardware APIs: audioio, analogio, busio, digitalio, pulseio, touchio, microcontroller, board, bitbangio

• No machine API on Atmel SAMD21 port.

Modules

• No module aliasing. (uos and utime are not available as os and time respectively.) Instead os, time, and
random are CPython compatible.

• New storage module which manages file system mounts. (Functionality from uos in MicroPython.)

• Modules with a CPython counterpart, such as time, os and random, are strict subsets of their CPython
version. Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.

• tick count is available as time.monotonic()

atmel-samd21 features

• RGB status LED

• Auto-reload after file write over mass storage. (Disable with samd.disable_autoreload())

• Wait state after boot and main run, before REPL.

• Main is one of these: code.txt, code.py, main.py, main.txt

• Boot is one of these: settings.txt, settings.py, boot.py, boot.txt

Project Structure

Here is an overview of the top-level source code directories.

Core

The core code of MicroPython is shared amongst ports including CircuitPython:

• docs High level user documentation in Sphinx reStructuredText format.

• drivers External device drivers written in Python.

• examples A few example Python scripts.

• extmod Shared C code used in multiple ports’ modules.

• lib Shared core C code including externally developed libraries such as FATFS.

• logo The MicroPython logo.

1.8. Full Table of Contents 93

https://circuitpython.readthedocs.io/en/latest/shared-bindings/audioio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/analogio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/pulseio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/touchio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic
https://github.com/micropython/micropython

MicroPython Documentation, Release 0.0.0

• mpy-cross A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful
for reducing library size.

• py Core Python implementation, including compiler, runtime, and core library.

• shared-bindings Shared definition of Python modules, their docs and backing C APIs. Ports must imple-
ment the C API to support the corresponding module.

• shared-module Shared implementation of Python modules that may be based on common-hal.

• tests Test framework and test scripts.

• tools Various tools, including the pyboard.py module.

Ports

Ports include the code unique to a microcontroller line and also variations based on the board.

• atmel-samd Support for SAMD21 based boards such as Arduino Zero, Adafruit Feather M0 Basic, and
Adafruit Feather M0 Bluefruit LE.

• bare-arm A bare minimum version of MicroPython for ARM MCUs.

• cc3200 Support for boards based CC3200 from TI such as the WiPy 1.0.

• esp8266 Support for boards based on ESP8266 WiFi modules such as the Adafruit Feather HUZZAH.

• minimal A minimal MicroPython port. Start with this if you want to port MicroPython to another microcon-
troller.

• pic16bit Support for 16-bit PIC microcontrollers.

• qemu-arm Support for ARM emulation through QEMU.

• stmhal Support for boards based on STM32 microcontrollers including the MicroPython flagship PyBoard.

• teensy Support for the Teensy line of boards such as the Teensy 3.1.

• unix Support for UNIX.

• windows Support for Windows.

• zephyr Support for Zephyr, a real-time operating system by the Linux Foundation.

CircuitPython only maintains the atmel-samd and esp8266 ports. The rest are here to maintain compatibility
with the MicroPython parent project.

back to top

1.8.9 Contributing

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms. Participation covers any forum used to converse about CircuitPython including unofficial and
official spaces. Failure to do so will result in corrective actions such as time out or ban from the project.

Developer contact

@tannewt is the main developer of CircuitPython and is sponsored by Adafruit Industries LLC. He is reachable on
Discord as tannewt and Gitter as tannewt during US West Coast working hours. He also checks GitHub issues and the
Adafruit support forum.

94 Chapter 1. Adafruit CircuitPython

https://www.arduino.cc/en/Main/ArduinoBoardZero
https://www.adafruit.com/products/2772
https://www.adafruit.com/products/2995
http://www.ti.com/product/CC3200
https://www.pycom.io/solutions/py-boards/wipy1/
https://www.adafruit.com/products/2821
https://qemu.org
https://store.micropython.org/store/#/products/PYBv1_1
https://www.pjrc.com/teensy/teensy31.html
https://www.microsoft.com/en-us/windows/
https://www.zephyrproject.org/
https://github.com/micropython/micropython
https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md
https://github.com/tannewt
https://adafruit.com
https://adafru.it/discord
https://forums.adafruit.com/viewforum.php?f=60

MicroPython Documentation, Release 0.0.0

Licensing

By contributing to this repository you are certifying that you have all necessary permissions to license the code under
an MIT License. You still retain the copyright but are granting many permissions under the MIT License.

If you have an employment contract with your employer please make sure that they don’t automatically own your work
product. Make sure to get any necessary approvals before contributing. Another term for this contribution off-hours is
moonlighting.

Code guidelines

We aim to keep our code and commit style compatible with MicroPython upstream. Please review their code conven-
tions to do so. Familiarity with their design philosophy is also useful though not always applicable to CircuitPython.

Furthermore, CircuitPython has a design guide that covers a variety of different topics. Please read it as well.

1.8.10 Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

1.8. Full Table of Contents 95

https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/wiki/ContributorGuidelines
https://circuitpython.readthedocs.io/en/latest/docs/design_guide.html

MicroPython Documentation, Release 0.0.0

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
support@adafruit.com. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-
covenant.org/version/1/4

1.8.11 MicroPython & CircuitPython license information

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

96 Chapter 1. Adafruit CircuitPython

http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

97

MicroPython Documentation, Release 0.0.0

98 Chapter 2. Indices and tables

Python Module Index

_
_stage (SAMD21), 7

a
analogio (SAMD21, ESP8266), 8
array, 57
audiobusio (SAMD21), 10
audioio (SAMD21), 12

b
bitbangio (SAMD21, ESP8266), 13
board (SAMD21), 16
btree, 77
busio (SAMD21), 16

d
digitalio (SAMD21, ESP8266), 22

e
esp, 90

f
framebuf, 79

g
gamepad (SAMD21), 24
gc, 57

m
math, 58
microcontroller (SAMD21, ESP8266), 25
microcontroller.pin (SAMD21), 27
micropython, 81
multiterminal (ESP8266), 27

n
neopixel_write (SAMD21), 27
network, 83
nvm (SAMD21), 27

o
os (SAMD21), 28

p
pulseio (SAMD21, ESP8266), 29

r
random (SAMD21, ESP8266), 33

s
samd (SAMD21), 41
storage (SAMD21), 34
sys, 61

t
time (SAMD21), 34
touchio (SAMD21), 35

u
ubinascii, 62
ucollections, 63
uctypes, 87
uerrno, 64
uhashlib, 65
uheap, 36
uheapq, 66
uio, 66
ujson, 68
ure, 68
usb_hid (SAMD21), 36
uselect, 69
usocket, 71
ussl, 75
ustack, 37
ustruct, 75
uzlib, 76

99

MicroPython Documentation, Release 0.0.0

100 Python Module Index

Index

Symbols
__contains__() (btree.btree method), 78
__detitem__() (btree.btree method), 78
__enter__() (analogio.AnalogIn method), 9
__enter__() (analogio.AnalogOut method), 10
__enter__() (audiobusio.PDMIn method), 11
__enter__() (audioio.AudioOut method), 13
__enter__() (bitbangio.I2C method), 13
__enter__() (bitbangio.OneWire method), 15
__enter__() (bitbangio.SPI method), 15
__enter__() (busio.I2C method), 17
__enter__() (busio.OneWire method), 18
__enter__() (busio.SPI method), 19
__enter__() (busio.UART method), 21
__enter__() (digitalio.DigitalInOut method), 22
__enter__() (pulseio.PWMOut method), 32
__enter__() (pulseio.PulseIn method), 30
__enter__() (pulseio.PulseOut method), 31
__enter__() (touchio.TouchIn method), 35
__exit__() (analogio.AnalogIn method), 9
__exit__() (analogio.AnalogOut method), 10
__exit__() (audiobusio.PDMIn method), 11
__exit__() (audioio.AudioOut method), 13
__exit__() (bitbangio.I2C method), 14
__exit__() (bitbangio.OneWire method), 15
__exit__() (bitbangio.SPI method), 15
__exit__() (busio.I2C method), 17
__exit__() (busio.OneWire method), 18
__exit__() (busio.SPI method), 19
__exit__() (busio.UART method), 21
__exit__() (digitalio.DigitalInOut method), 22
__exit__() (pulseio.PWMOut method), 32
__exit__() (pulseio.PulseIn method), 30
__exit__() (pulseio.PulseOut method), 31
__exit__() (touchio.TouchIn method), 35
__get__() (pulseio.PulseIn method), 30
__getitem__() (btree.btree method), 78
__iter__() (btree.btree method), 79
__len__() (nvm.ByteArray method), 28

__len__() (pulseio.PulseIn method), 30
__setitem__() (btree.btree method), 78
_stage (module), 7

A
a2b_base64() (in module ubinascii), 63
abs() (built-in function), 54
AbstractNIC (class in network), 83
accept() (usocket.socket method), 73
acos() (in module math), 59
acosh() (in module math), 59
active() (in module network), 84
active() (network.wlan method), 85
addressof() (in module uctypes), 89
AF_INET (in module usocket), 72
AF_INET6 (in module usocket), 72
all() (built-in function), 54
alloc_emergency_exception_buf() (in module micropy-

thon), 82
AnalogIn (class in analogio), 9
analogio (module), 8
AnalogOut (class in analogio), 9
any() (built-in function), 54
append() (array.array.array method), 57
argv (in module sys), 61
array (module), 57
array.array (class in array), 57
asin() (in module math), 59
asinh() (in module math), 59
AssertionError, 56
atan() (in module math), 59
atan2() (in module math), 59
atanh() (in module math), 59
AttributeError, 56
audiobusio (module), 10
audioio (module), 12
AudioOut (class in audioio), 12

B
b2a_base64() (in module ubinascii), 63

101

MicroPython Documentation, Release 0.0.0

BIG_ENDIAN (in module uctypes), 89
bin() (built-in function), 54
bind() (usocket.socket method), 72
bitbangio (module), 13
blit() (framebuf.FrameBuffer method), 81
board (module), 16
bool (built-in class), 54
btree (module), 77
busio (module), 16
busio.UART.Parity (class in busio), 21
busio.UART.Parity.EVEN (in module busio), 21
busio.UART.Parity.ODD (in module busio), 21
bytearray (built-in class), 54
ByteArray (class in nvm), 28
bytearray_at() (in module uctypes), 89
byteorder (in module sys), 61
bytes (built-in class), 54
bytes_at() (in module uctypes), 89
BytesIO (class in uio), 67

C
calcsize() (in module ustruct), 76
callable() (built-in function), 54
ceil() (in module math), 59
chdir() (in module os), 28
choice() (in module random), 33
chr() (built-in function), 54
classmethod() (built-in function), 54
clear() (pulseio.PulseIn method), 30
clear_secondary_terminal() (in module multiterminal), 27
close() (btree.btree method), 78
close() (usocket.socket method), 72
collect() (in module gc), 57
compile() (built-in function), 54
compile() (in module ure), 69
complex (built-in class), 54
config() (in module network), 84
config() (network.wlan method), 86
configure() (bitbangio.SPI method), 16
configure() (busio.SPI method), 19
connect() (in module network), 84
connect() (network.wlan method), 85
connect() (usocket.socket method), 73
const() (in module micropython), 81
copysign() (in module math), 59
cos() (in module math), 59
cosh() (in module math), 59
cpu (in module microcontroller), 26

D
DEBUG (in module ure), 69
DecompIO (class in uzlib), 76
decompress() (in module uzlib), 76
deepsleep() (in module esp), 90

degrees() (in module math), 59
deinit() (analogio.AnalogIn method), 9
deinit() (analogio.AnalogOut method), 9
deinit() (audiobusio.PDMIn method), 11
deinit() (audioio.AudioOut method), 13
deinit() (bitbangio.I2C method), 13
deinit() (bitbangio.OneWire method), 15
deinit() (bitbangio.SPI method), 15
deinit() (busio.I2C method), 17
deinit() (busio.OneWire method), 18
deinit() (busio.SPI method), 19
deinit() (busio.UART method), 21
deinit() (digitalio.DigitalInOut method), 22
deinit() (gamepad.GamePad method), 25
deinit() (pulseio.PulseIn method), 30
deinit() (pulseio.PulseOut method), 31
deinit() (pulseio.PWMOut method), 32
deinit() (touchio.TouchIn method), 35
delattr() (built-in function), 54
delay_us() (in module microcontroller), 26
DESC (in module btree), 79
Device (class in usb_hid), 36
devices (usb_hid.usb_hid attribute), 36
dict (built-in class), 54
digest() (uhashlib.hash method), 65
DigitalInOut (class in digitalio), 22
digitalio (module), 22
digitalio.DigitalInOut.Direction (class in digitalio), 23
digitalio.DigitalInOut.Direction.INPUT (in module digi-

talio), 23
digitalio.DigitalInOut.Direction.OUTPUT (in module

digitalio), 23
digitalio.DriveMode (class in digitalio), 23
digitalio.DriveMode.OPEN_DRAIN (in module digi-

talio), 23
digitalio.DriveMode.PUSH_PULL (in module digitalio),

23
digitalio.Pull (class in digitalio), 23
digitalio.Pull.DOWN (in module digitalio), 24
digitalio.Pull.UP (in module digitalio), 23
dir() (built-in function), 54
direction (digitalio.DigitalInOut attribute), 23
disable() (in module gc), 57
disable_autoreload() (in module samd), 41
disable_interrupts() (in module microcontroller), 26
disconnect() (in module network), 84
disconnect() (network.wlan method), 85
divmod() (built-in function), 55
drive_mode (digitalio.DigitalInOut attribute), 23
dumps() (in module ujson), 68
duty_cycle (pulseio.PWMOut attribute), 32

E
e (in module math), 60

102 Index

MicroPython Documentation, Release 0.0.0

enable() (in module gc), 57
enable_autoreload() (in module samd), 41
enable_interrupts() (in module microcontroller), 26
enumerate() (built-in function), 55
erase_filesystem() (in module storage), 34
erf() (in module math), 59
erfc() (in module math), 59
errorcode (in module uerrno), 64
esp (module), 90
eval() (built-in function), 55
Exception, 56
exec() (built-in function), 55
exit() (in module sys), 61
exp() (in module math), 59
expm1() (in module math), 59
extend() (array.array.array method), 57

F
fabs() (in module math), 59
FileIO (class in uio), 67
fill() (framebuf.FrameBuffer method), 80
fill_rect() (framebuf.FrameBuffer method), 80
filter() (built-in function), 55
flash_erase() (in module esp), 90
flash_id() (in module esp), 90
flash_read() (in module esp), 90
flash_write() (in module esp), 90
float (built-in class), 55
floor() (in module math), 59
flush() (btree.btree method), 78
fmod() (in module math), 59
frame() (_stage.Layer method), 7
framebuf (module), 79
framebuf.GS4_HMSB (in module framebuf), 81
framebuf.MONO_HLSB (in module framebuf), 81
framebuf.MONO_HMSB (in module framebuf), 81
framebuf.MONO_VLSB (in module framebuf), 81
framebuf.RGB565 (in module framebuf), 81
FrameBuffer (class in framebuf), 80
frequency (audiobusio.PDMIn attribute), 11
frequency (audioio.AudioOut attribute), 13
frequency (in module microcontroller), 26
frequency (pulseio.PWMOut attribute), 32
frexp() (in module math), 59
from_bytes() (int class method), 55
frozenset (built-in class), 55

G
GamePad (class in gamepad), 25
gamepad (module), 24
gamma() (in module math), 59
gc (module), 57
get() (btree.btree method), 78
get_pressed() (gamepad.GamePad method), 25

get_secondary_terminal() (in module multiterminal), 27
getaddrinfo() (in module usocket), 71
getattr() (built-in function), 55
getcwd() (in module os), 28
getrandbits() (in module random), 33
getvalue() (uio.BytesIO method), 67
globals() (built-in function), 55
group() (ure.match method), 69

H
hasattr() (built-in function), 55
hash() (built-in function), 55
heap_lock() (in module micropython), 82
heap_unlock() (in module micropython), 82
heapify() (in module uheapq), 66
heappop() (in module uheapq), 66
heappush() (in module uheapq), 66
help(), 37
hex() (built-in function), 55
hexdigest() (uhashlib.hash method), 65
hexlify() (in module ubinascii), 63
hline() (framebuf.FrameBuffer method), 80

I
I2C (class in bitbangio), 13
I2C (class in busio), 17
id() (built-in function), 55
ifconfig() (in module network), 84
ifconfig() (network.wlan method), 86
implementation (in module sys), 61
ImportError, 56
INCL (in module btree), 79
IndexError, 56
info() (in module uheap), 36
input() (built-in function), 55
int (built-in class), 55
ipoll() (uselect.poll method), 70
IPPROTO_SEC (in module usocket), 72
IPPROTO_TCP (in module usocket), 72
IPPROTO_UDP (in module usocket), 72
isconnected() (in module network), 84
isconnected() (network.wlan method), 86
isfinite() (in module math), 60
isinf() (in module math), 60
isinstance() (built-in function), 55
isnan() (in module math), 60
issubclass() (built-in function), 55
items() (btree.btree method), 79
iter() (built-in function), 55

K
kbd_intr() (in module micropython), 82
KeyboardInterrupt, 56
KeyError, 56

Index 103

MicroPython Documentation, Release 0.0.0

keys() (btree.btree method), 79

L
Layer (class in _stage), 7
ldexp() (in module math), 60
len() (built-in function), 55
lgamma() (in module math), 60
line() (framebuf.FrameBuffer method), 80
list (built-in class), 55
listdir() (in module os), 28
listen() (usocket.socket method), 72
LITTLE_ENDIAN (in module uctypes), 88
loads() (in module ujson), 68
locals() (built-in function), 55
log() (in module math), 60
log10() (in module math), 60
log2() (in module math), 60

M
makefile() (usocket.socket method), 74
map() (built-in function), 55
match() (in module ure), 69
match() (ure.regex method), 69
math (module), 58
max() (built-in function), 55
max_stack_usage() (in module ustack), 37
maxlen (pulseio.PulseIn attribute), 30
maxsize (in module sys), 61
mem_alloc() (in module gc), 58
mem_free() (in module gc), 58
mem_info() (in module micropython), 82
MemoryError, 56
memoryview (built-in class), 55
microcontroller (module), 25
microcontroller.pin (module), 27
microcontroller.RunMode (class in microcontroller), 26
microcontroller.RunMode.BOOTLOADER (in module

microcontroller), 26
microcontroller.RunMode.NORMAL (in module micro-

controller), 26
microcontroller.RunMode.SAFE_MODE (in module mi-

crocontroller), 26
micropython (module), 81
min() (built-in function), 55
mkdir() (in module os), 28
modf() (in module math), 60
modify() (uselect.poll method), 70
modules (in module sys), 62
monotonic() (in module time), 34
mount() (in module storage), 34
move() (_stage.Layer method), 7
move() (_stage.Text method), 8
multiterminal (module), 27

N
namedtuple() (in module ucollections), 63
NameError, 56
NATIVE (in module uctypes), 89
neopixel_write (module), 27
neopixel_write() (neopixel_write.neopixel_write

method), 27
network (module), 83
next() (built-in function), 55
NotImplementedError, 56
nvm (in module microcontroller), 26
nvm (module), 27

O
object (built-in class), 55
oct() (built-in function), 55
on_next_reset() (in module microcontroller), 26
OneWire (class in bitbangio), 14
OneWire (class in busio), 18
open() (built-in function), 55
open() (in module btree), 78
open() (in module uio), 67
opt_level() (in module micropython), 82
ord() (built-in function), 55
OrderedDict() (in module ucollections), 63
os (module), 28
OSError, 56

P
pack() (in module ustruct), 76
pack_into() (in module ustruct), 76
path (in module sys), 62
pause() (pulseio.PulseIn method), 30
PDMIn (class in audiobusio), 10
phy_mode() (in module network), 85
pi (in module math), 60
Pin (class in microcontroller), 25
pixel() (framebuf.FrameBuffer method), 80
platform (in module sys), 62
play() (audioio.AudioOut method), 13
playing (audioio.AudioOut attribute), 13
poll() (in module uselect), 69
poll() (uselect.poll method), 70
popleft() (pulseio.PulseIn method), 30
pow() (built-in function), 55
pow() (in module math), 60
print() (built-in function), 55
print_exception() (in module sys), 61
Processor (class in microcontroller), 26
property() (built-in function), 56
pull (digitalio.DigitalInOut attribute), 23
PulseIn (class in pulseio), 29
pulseio (module), 29
PulseOut (class in pulseio), 31

104 Index

MicroPython Documentation, Release 0.0.0

PWMOut (class in pulseio), 31

Q
qstr_info() (in module micropython), 82

R
radians() (in module math), 60
randint() (in module random), 33
random (module), 33
random() (in module random), 33
randrange() (in module random), 33
range() (built-in function), 56
raw_value (touchio.TouchIn attribute), 35
read() (busio.UART method), 21
read() (usocket.socket method), 74
read_bit() (bitbangio.OneWire method), 15
read_bit() (busio.OneWire method), 19
readfrom_into() (bitbangio.I2C method), 14
readfrom_into() (busio.I2C method), 17
readinto() (bitbangio.SPI method), 16
readinto() (busio.SPI method), 20
readinto() (busio.UART method), 21
readinto() (usocket.socket method), 74
readline() (busio.UART method), 21
readline() (usocket.socket method), 74
record() (audiobusio.PDMIn method), 11
rect() (framebuf.FrameBuffer method), 80
recv() (usocket.socket method), 73
recvfrom() (usocket.socket method), 73
reference_voltage (analogio.AnalogIn attribute), 9
register() (uselect.poll method), 70
remount() (in module storage), 34
remove() (in module os), 28
rename() (in module os), 28
render() (in module _stage), 8
repr() (built-in function), 56
reset() (bitbangio.OneWire method), 15
reset() (busio.OneWire method), 19
reset() (in module microcontroller), 26
resume() (pulseio.PulseIn method), 30
reversed() (built-in function), 56
rmdir() (in module os), 28
round() (built-in function), 56
RuntimeError, 56

S
samd (module), 41
scan() (bitbangio.I2C method), 14
scan() (busio.I2C method), 17
scan() (in module network), 84
scan() (network.wlan method), 85
schedule() (in module micropython), 82
schedule_secondary_terminal_read() (in module multiter-

minal), 27

scroll() (framebuf.FrameBuffer method), 81
search() (in module ure), 69
search() (ure.regex method), 69
seed() (in module random), 33
select() (in module uselect), 69
send() (pulseio.PulseOut method), 31
send() (usocket.socket method), 73
send_report() (usb_hid.Device method), 36
sendall() (usocket.socket method), 73
sendto() (usocket.socket method), 73
sep (in module os), 29
set (built-in class), 56
set_native_code_location() (in module esp), 90
set_rgb_status_brightness() (in module samd), 41
set_secondary_terminal() (in module multiterminal), 27
setattr() (built-in function), 56
setblocking() (usocket.socket method), 73
setsockopt() (usocket.socket method), 73
settimeout() (usocket.socket method), 73
sin() (in module math), 60
sinh() (in module math), 60
sizeof() (in module uctypes), 89
sleep() (in module time), 34
sleep_type() (in module esp), 90
slice (built-in class), 56
SOCK_DGRAM (in module usocket), 72
SOCK_STREAM (in module usocket), 72
socket() (in module usocket), 71
socket.error, 74
sorted() (built-in function), 56
SPI (class in bitbangio), 15
SPI (class in busio), 19
split() (ure.regex method), 69
sqrt() (in module math), 60
ssl.CERT_NONE (in module ussl), 75
ssl.CERT_OPTIONAL (in module ussl), 75
ssl.CERT_REQUIRED (in module ussl), 75
ssl.SSLError (in module ussl), 75
ssl.wrap_socket() (in module ussl), 75
stack_size() (in module ustack), 37
stack_usage() (in module ustack), 37
stack_use() (in module micropython), 82
stat() (in module os), 28
staticmethod() (built-in function), 56
status() (in module network), 84
status() (network.wlan method), 86
statvfs() (in module os), 28
stderr (in module sys), 62
stdin (in module sys), 62
stdout (in module sys), 62
stop() (audioio.AudioOut method), 13
StopIteration, 56
storage (module), 34
str (built-in class), 56

Index 105

MicroPython Documentation, Release 0.0.0

StringIO (class in uio), 67
struct (class in uctypes), 88
struct_time (class in time), 34
sum() (built-in function), 56
super() (built-in function), 56
switch_to_input() (digitalio.DigitalInOut method), 22
switch_to_output() (digitalio.DigitalInOut method), 22
sync() (in module os), 29
SyntaxError, 56
sys (module), 61
SystemExit, 56

T
tan() (in module math), 60
tanh() (in module math), 60
temperature (in module microcontroller), 26
Text (class in _stage), 8
text() (framebuf.FrameBuffer method), 80
TextIOWrapper (class in uio), 67
threshold (touchio.TouchIn attribute), 36
threshold() (in module gc), 58
time (module), 34
to_bytes() (int method), 55
TouchIn (class in touchio), 35
touchio (module), 35
trunc() (in module math), 60
try_lock() (bitbangio.I2C method), 14
try_lock() (bitbangio.SPI method), 16
try_lock() (busio.I2C method), 17
try_lock() (busio.SPI method), 20
tuple (built-in class), 56
type() (built-in function), 56
TypeError, 57

U
UART (class in busio), 21
ubinascii (module), 62
ucollections (module), 63
uctypes (module), 87
uerrno (module), 64
uhashlib (module), 65
uhashlib.md5 (class in uhashlib), 65
uhashlib.sha1 (class in uhashlib), 65
uhashlib.sha256 (class in uhashlib), 65
uheap (module), 36
uheapq (module), 66
uio (module), 66
ujson (module), 68
umount() (in module storage), 34
uname() (in module os), 28
unhexlify() (in module ubinascii), 63
uniform() (in module random), 33
unlock() (bitbangio.I2C method), 14
unlock() (bitbangio.SPI method), 16

unlock() (busio.I2C method), 17
unlock() (busio.SPI method), 20
unpack() (in module ustruct), 76
unpack_from() (in module ustruct), 76
unregister() (uselect.poll method), 70
update() (uhashlib.hash method), 65
urandom() (in module os), 29
ure (module), 68
usage (usb_hid.Device attribute), 37
usage_page (usb_hid.Device attribute), 36
usb_hid (module), 36
uselect (module), 69
usocket (module), 71
ussl (module), 75
ustack (module), 37
ustruct (module), 75
uzlib (module), 76

V
value (analogio.AnalogIn attribute), 9
value (analogio.AnalogOut attribute), 10
value (digitalio.DigitalInOut attribute), 23
value (touchio.TouchIn attribute), 35
ValueError, 57
values() (btree.btree method), 79
version (in module sys), 62
version_info (in module sys), 62
VfsFat (class in storage), 34
vline() (framebuf.FrameBuffer method), 80

W
WLAN (class in network), 85
write() (bitbangio.SPI method), 16
write() (busio.SPI method), 20
write() (busio.UART method), 21
write() (usocket.socket method), 74
write_bit() (bitbangio.OneWire method), 15
write_bit() (busio.OneWire method), 19
write_readinto() (busio.SPI method), 20
writeto() (bitbangio.I2C method), 14
writeto() (busio.I2C method), 18

Z
ZeroDivisionError, 57
zip() (built-in function), 56

106 Index

	Adafruit CircuitPython
	Status
	Supported Boards
	Designed for CircuitPython
	Other

	Download
	Documentation
	Contributing
	Differences from MicroPython
	Behavior
	API
	Modules
	atmel-samd21 features

	Project Structure
	Core
	Ports

	Full Table of Contents
	Core Modules
	Supported Ports
	Troubleshooting
	Additional Adafruit Libraries and Drivers on GitHub
	Design Guide
	Adding *io support to other ports
	MicroPython libraries
	Adafruit CircuitPython
	Contributing
	Contributor Covenant Code of Conduct
	MicroPython & CircuitPython license information

	Indices and tables
	Python Module Index

