
CIRCA Documentation
Release 0.9

Linus Witschen

Sep 10, 2019

Contents:

1 About CIRCA 3
1.1 Getting Started with CIRCA . 3

1.1.1 Introduction . 3
1.1.2 Installation . 5
1.1.3 Next Steps . 6
1.1.4 Licensing . 6
1.1.5 Citation . 6

1.2 User Guide . 6
1.2.1 Basic usage . 6
1.2.2 Configuring CIRCA . 7
1.2.3 Built-in component implementations . 10
1.2.4 Example configuration . 20

1.3 Developer Guide . 24
1.3.1 Basics . 24
1.3.2 Important data structures and classes . 26
1.3.3 Exchangeable components . 27
1.3.4 Extensible components . 39
1.3.5 Utils . 41

1.4 External programs and frameworks . 42
1.4.1 ABC . 42
1.4.2 Yosys . 42

1.5 CIRCA Source Code . 42
1.5.1 base package . 42
1.5.2 ext_tools package . 55
1.5.3 runtime package . 69
1.5.4 stages package . 72
1.5.5 utils package . 88

2 Indices and tables 97

3 Contact 99

Python Module Index 101

Index 103

i

ii

CIRCA Documentation, Release 0.9

Note: This is a WIP Beta version. All content is subject to change.

Contents: 1

CIRCA Documentation, Release 0.9

2 Contents:

CHAPTER 1

About CIRCA

CIRCA is a framework for the automatic generation of approximate circuits. CIRCA is designed to be a flexible yet
consistent framework in which the processing tasks in an approximation process are clearly separated from each other.
In this way, CIRCA provides a general and modular design, facilitates the implementation of new functionality, and
fosters comparative studies as well as the evaluation of new techniques against existing ones.

CIRCA comprises of three stages: the input stage, the QUAES stage, and the output stage. The input and the output
stage frame the QUAES stage - the main approximation process - to ensure compatibility to tools invoked before
or after the approximation process. An interface for external tools provides compatibility to other tools during the
approximation process, e.g. Yosys.

The QUAES stage targets search-based approximation processes. Thus, we modeled the approximation process as an
iterative search problem. The QUAES stage, i.e., the approximation process itself, comprises four processing blocks:
Quality Assurance, Approximation, Estimation, and Search Space Exploration. Each block fulfills one specific task
and is communicating with other blocks via well-defined interfaces. The employed functionality of each stage or
block during an approximation process is configured using a configuration file. The configuration file allows the
swift exchange of functionality and enables the comparison of different approximation techniques, search methods,
or validation techniques against each other, encouraging the Approximate Computing community to compare their
approaches fairly against each other.

Note: This is a WIP Beta version. All content is subject to change.

1.1 Getting Started with CIRCA

1.1.1 Introduction1

CIRCA’s architecture is shown in the overview figure. We target search-based approximation approaches with different
approximation techniques, and formal verification as well as testing for circuit validation. The framework is divided

1 From L. Witschen, T. Wiersema, H. Ghasemzadeh Mohammadi, M. Awais and M. Platzner, “CIRCA: Towards a Modular and Extensible
Framework for Approximate Circuit Generation,” Presented at the Third Workshop on Approximate Computing (AxC ‘18) 2018, Bremen, Germany,
2018.

3

http://www.lirmm.fr/axc18/program/paper2_2.pdf
http://www.lirmm.fr/axc18/program/paper2_2.pdf
http://www.lirmm.fr/axc18/program/paper2_2.pdf

CIRCA Documentation, Release 0.9

Fig. 1: Overview of CIRCA’s components and structure

into three stages: the input stage, the QUAES stage, and the output stage. The input stage processes user-provided
information, which in any case comprises a configuration file and a description of the original, exact circuit. The
configuration file defines the employed functionality in the QUAES stage and specifies the target metric as well as the
quality constraints for the approximated circuits. The circuit description may contain annotations, added, for example,
by the user to mark subcircuits amenable to approximations. Since our framework supports also testing as quality
assurance technique, the input can include a test vector set.

The main stage for generating approximate circuits is the QUAES stage. The split of the corresponding function-
ality into the four processing blocks Quality Assurance, Approximation, Estimation and Search Space Exploration
(QUAES) is key to achieving a modular and extensible architecture. We denote the subcircuits in the input Verilog
code subject to approximations as candidates, and the different approximated versions of these candidates as variants.
The overall circuit with instantiated variants for the candidates is called a circuit configuration.

The structure of the search space exploration is kept rather general, and thus, sufficiently flexible to support a wide
range of search algorithms. The search space is iteratively explored by creating and visiting configurations, which
form the nodes of the search space, by applying the three steps Select, Expand, and Evaluate.

The evaluation step takes a set of configurations and determines estimated values for parameters of interest. Typically
these parameters cover metrics related to area, delay, and power but can also include estimates of the error metrics.
The actual estimation functions are encapsulated in the estimation block to clearly separate estimation from the search
space exploration.

The select step receives a set of configurations, each with an annotated vector of estimated parameters, and selects
the next configuration to be further considered, i.e., to be expanded. This selection relies on a search heuristic. The
selected configuration is subsequently validated. To this end the configuration, now called Circuit-under-Test (CUT),
is sent to the quality assurance block. This block either employs formal verification or testing to decide if the CUT
satisfies the quality constraints and passes the check or not. If a CUT fails quality assurance, the select step will,
depending on the configuration file, either abort the search or pick the next best configuration for validation. In the
latter case, the search terminates if there are no more valid configurations.

4 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

If a CUT passes validation, the configuration and thus the search space is expanded by creating a number of new
configurations. For creating new configurations the approximation block applies certain approximation techniques.
Depending on the actual configuration of the framework, one or more candidates of the configuration can be approxi-
mated and one or more approximation techniques can be applied.

The approximation block accesses a library of approximated subcircuits, which is beneficial for two reasons: First,
it is rather likely that one circuit component will be approximated for several times. This happens when the overall
circuit contains identical candidates, e.g., multiple occurrences of an 8-bit unsigned adder. Storing the approximated
versions of such components and retrieving them the next time can greatly save computations. Second, there are
already libraries available of approximated components which can then be leveraged by CIRCA.

During the QUAES stage, all validated configurations are stored. The output stage performs post-processing on these
configurations to return either the best approximated circuit, e.g., a circuit that respects the error constraints and has
minimal area or energy, or a Pareto-filtered set of circuits.

1.1.2 Installation

Prerequisites

• Have Python 3.6.0 or newer installed

• Whatever ABC and Yosys require (see respective website)

• Go to circa base directory

On first installation

• Compile ABC (for troubleshooting see: ABC documentation or ABC GitHub):

cd abc/
make -j 8
cd ..

• Compile Yosys (for troubleshooting see: Yosys website or Yosys GitHub):

cd yosys/
make -j 8
cd ..

Before each terminal session

Source CIRCA settings to set up CIRCA’s environment:

cd circa/
source settings.sh
cd ..

Try out demo

(Not required for installation)

Small sequential circuit with two modules as approximation candidates and a configuration file that sets the approxi-
mation method to precision scaling:

1.1. Getting Started with CIRCA 5

https://people.eecs.berkeley.edu/~alanmi/abc/
https://github.com/berkeley-abc/abc
http://www.clifford.at/yosys/
https://github.com/YosysHQ/yosys

CIRCA Documentation, Release 0.9

cd demo/anno_gradient/
Calling CIRCA: circa <cfg. file> <input design *.v>
circa example.cfg test_seq.v

1.1.3 Next Steps

Now that you have successfully installed and tested CIRCA, you can continue by reading the user guide to learn how
to use CIRCA to generate approximate circuits yourself, or you can go on to the developer guide and learn everything
you need to design and implement your own CIRCA components.

For more information, visit the CIRCA website or git repository.

1.1.4 Licensing

CIRCA is free software licensed under the MIT license.

1.1.5 Citation

Please cite the following reference when publishing results obtained with CIRCA:

L. Witschen, M. Awais, H. Ghasemzadeh Mohammadi, T. Wiersema and M. Platzner, CIRCA: Towards a Modular
and Extensible Framework for Approximate Circuit Generation,” Microelectronics Reliability, (99):277-290, Elsevier,
August 2019.

Note: This is a WIP Beta version. All content is subject to change.

1.2 User Guide

This section will teach you how to use CIRCA for approximate circuit generation from a user’s perspective. You will
learn to configure and run CIRCA’s approximation process in the following sections:

• Basic usage

• Configuring CIRCA

• Built-in component implementations

• Example configuration

1.2.1 Basic usage

Note: Make sure you run source circa/settings.sh before each terminal session.

After installation, you can run the circa command from any directory you like. Simply type

circa your_config_file.cfg your_input_design.v

6 Chapter 1. About CIRCA

https://doi.org/10.1016/j.microrel.2019.04.003
https://doi.org/10.1016/j.microrel.2019.04.003
https://doi.org/10.1016/j.microrel.2019.04.003

CIRCA Documentation, Release 0.9

into the console and the approximation process will start, generating logs and output files along the way. (Note that
the input design’s directory is usually used as a base directory for output generated during CIRCA’s approximation
process.)

The command takes two arguments: the configuration file followed by the input design. The config. file defines the
particular approximation process. In general, the config. file contains information about the input design and specifies
the employed implementation in a stage or processing block, respectively, and its parameter set. To edit the config., it
is generally a good idea to start with a copy of an existing config. file (for example, the file provided in the demo) and
only edit the settings you want to change, leaving the rest of the file unchanged. The following sections will give you
an in-depth overview of what you can configure in the config. file and how it will affect the framework’s behavior. To
learn about the config.’s structure and how to edit the settings, go to the configuration chapter.

In the current implementation, the input design argument is a Verilog description of the circuit you want to approximate
(note that CIRCA is not limited to only Verilog, it is up to now just the format we use). It must have a top-level module
whose name must be specified in the configuration file. In general, the input design must comply to the standard Verilog
syntax. Some FrontEnd implementations, for example, state exceptions to this rule, since they may support or even
require code annotations, violating the Verilog standard. Such exceptions, however, will always be described in the
documentation to make the users aware.

Some implementations also may require certain limitations of the input design regarding language constructs which
cannot be processed (see Standard FrontEnd as an example).

1.2.2 Configuring CIRCA

As mentioned in the Getting Started section, CIRCA distributes the approximation process on several independent and
interchangeable components which form the framework’s three stages input (or FrontEnd), output, and QUAES. While
the input and output stages are each handled by a single component, the QUAES stage comprises of four components,
one for each processing block (Quality Assurance, Approximation, Estimation, and Search).

Using the configuration file, each method employed in these six components can easily be parameterized or exchanged.
In general, each method provides its own set of parameters, which is usually not shared among different methods. The
following sections will describe universally shared parameters and the parameters of the built-in methods.

Approximation candidate settings

The approximation process heavily relies on the detection and processing of approximation candidates, the parts of
the input circuit subject to approximations. The configuration of the processing of the candidates impacts the quality
of the approximated outcome directly. By default, there are two parameters which determine how the approximation
of a candidate is carried out: the approximation method and the quality constraints.

The approximation method specifies the algorithm or technique that is used to perform the approximation in the
Approximation block. For example, one of CIRCA’s standard approximation methods is precision scaling (PS). It
approximates a candidate by replacing bits of the output vector with constant logic 1s or 0s and thereby rendering
all logic behind the replaced bits obsolete. A synthesis tool is then able to optimize the resulting circuit and reduce
its area, delay, power consumption etc. If multiple approximation methods are assigned to a candidate, they will be
handled separately to make the approximation results of different methods comparable.

The quality constraints assigned to a candidate specify a boundary for the approximation methods. We denote quality
constraints assigned to a candidate as local quality constraints - or the reciprocal, local error bounds. These local
quality constraints allow CIRCA to control the quality of a candidate, or more precisely, its particular variant. Being
able to control the quality of a variant, enables CIRCA to expand the search space in a controlled manner. The local
error bounds of a candidate represent the maximal accepted error of a candidate. The local error bounds applied to the
candidate’s variants are in the range of no error (representing the original implementation of the candidate) and the
local error bounds of the candidate. For example, a valid local worst-case error bound for a candidate with an 8-bit

1.2. User Guide 7

CIRCA Documentation, Release 0.9

output (representing unsigned integer values) would be 255 since this expresses the maximal possible output value of
the candidate. Any error bound larger than 255 would be meaningless.

Quality can be measured in several different error metrics. Standard error metrics of CIRCA are, for example, worst-
case and bit-flip errors (WC and BF). The worst-case error of an approximated variant is the maximum numerical
difference between its output and the output of the original variant, which is always used as the point of reference.
The bit-flip error is the maximum Hamming distance between the original and the approximated output vectors. To be
considered valid, an approximated variant must satisfy all quality constraints specified for the candidate.

The approximation process works by gradually increasing the local error bounds, i.e., the error bounds of each candi-
date. The rate at which the error bounds are increased can be specified via a step parameter. The bounds will not be
increased beyond the maximum error value, specified by the bound parameter.

There are many different ways to specify approximation methods and quality constraints for the candidates. They
depend on the used component implementations and may include default settings for all candidates, specific settings
for a candidate provided via annotations in the input design, and global quality constraints assigned to the whole
circuit.

Working with the configuration file

The configuration file is a simple text file which is divided into sections. To parse a config. file, CIRCA employs
Python’s configparser module, which also dictates its structure. Each section has a section header, indicated by square
brackets encapsulating the name of the section [section name]. The section header is followed by a list of options
and their values, which are assigned using a =. The file can be commented by using a # to make the configuration
parser ignore the rest of the line. A simple example for the configuration file syntax would be

[Section1]
Option1 = Value1
Option2 = Value2_1, Value2_2

[Section2]
This section has no options

[Section3 (will be ignored)]

The option values are arbitrary strings, but for most options, only certain values can be interpreted. The set of possible
option values is documented in the component implementation’s documentation or directly in the configuration file.

Configuration sections

CIRCA’s configuration file has seven sections, each having one mandatory option by default.

The section General is used for providing information about the input design that is not specific to one of the
components or cannot be acquired from the input design automatically (yet). The section contains the mandatory
option TopModule to which the name of the input design’s top-level module must be assigned.

The other six sections, named Input, Search, Estimation, QualityAssurance, Approximation, and
Output, each refer to one of the stages or processing blocks. For each of these sections, the parameter Method has
to be defined. The value of this parameter determines the employed method for the corresponding stage or processing
block, respectively. Additional parameters may follow the Method parameter to parameterize the employed method
further. Examples for additional options, their possible values, and their effects can be found in the next section.

8 Chapter 1. About CIRCA

https://en.wikipedia.org/wiki/Hamming_distance
https://docs.python.org/3.6/library/configparser.html

CIRCA Documentation, Release 0.9

Standardized quality constraint syntax

CIRCA defines a standardized syntax for the specification of quality constraints and approximation methods which
is used by the built-in component implementations and recommended to be used for custom implementations as
well. This syntax specification applies to the values of the QualityConstraints options of the sections
[QualityAssurance] and [Approximation] in the configuration file and to the candidate annotations
in the input design if the built-in implementations for the QualityAssurance, Approximation or Input component
AnnotatedCandidates are used.

The general syntax is a simple list of elements separated by ;, like for examle

element1;element2;element3

Whitespace before and after the ; is ignored.

Each element can be a specifier for either an error metric or an approximation method. Error metric specifiers have
the format

<ID>:bound=<bound>,step=<step>

where <ID> is the unique identifier of the error metric, <bound> is the maximum upper bound for this metric and
<step> is the step size, i.e., the amount by which the error bound is increased in one step. Note that both the bound
and step parameters are not always required (e.g. the [QualityAssurance] section does not need a step size)
and can be omitted in such a case. Also, their order can be changed and whitespace around the :, = and , is ignored.
Multiple occurrences of a parameter will at least generate a warning message and may abort the approximation process.

Example error metric specifier:

WC:bound=16,step=2

This expression specifies a worst-case error with a maximum upper bound of 16 and upper bound increment of 2 in
each step.

Approximation method specifiers have the format

AppMethods:<ID1>,<ID2>,<ID3>

where <ID1>, <ID2> and <ID3> are unique identifiers of approximation methods. Approximation method specifiers
are usually only found in candidate annotations.

Example approximation method specifier:

AppMethods:PS,AIG

This expression specifies the approximation methods Precision Scaling and AIG-Rewriting.

Here are a few examples for complete valid quality constraint specification expressions:

Bit-flip error with max. upper bound 4 and default step size,
worst-case error with auto-detected maximum bound and step size 5
and only precision scaling as approximation method
BF:bound=4;WC:step=5;AppMethods:PS

Worst-case error with max. bound 10 and step size 1
and AIG-Rewriting and Precision Scaling as approx. methods
WC:step=1,bound=10;AppMethods:AIG,PS

Approximation method AIG-Rewriting
and error metrics worst-case and bit-flip,

(continues on next page)

1.2. User Guide 9

CIRCA Documentation, Release 0.9

(continued from previous page)

both with default step size and maximum upper bound
AppMethods:AIG;WC;BF

1.2.3 Built-in component implementations

The following list leads to a documentation of CIRCA’s six, method-specific config. sections. For each section, you
can find a brief description of the component’s tasks, the currently implemented methods, and the documentation of
the available parameters for each method.

Input component

• Input component

• Quality assurance component

• Approximation component

• Estimation component

• Search component

• Output

Component description

The input component handles primarily the detection of approximation candidates, initialization of data structures,
and generation of files which are later used by the other stages. It reads the input design and prepares the file for
approximation, for example, by removing FrontEnd-specific annotations.

The standard FrontEnd implementation is called AnnotatedCandidates, which is also the value to assign to the
Input section’s Method option to use this implementation.

AnnotatedCandidates

The AnnotatedCandidates FrontEnd relies on annotations in the Verilog input design, marking Verilog modules
as approximation candidates. To mark a module for approximation, a Key, specified in the config. file, must be inserted
in the input file between the module keyword and the module name. Additional parameters, following the Key``and
framed by ``<<< and >>>, can be used to specify the applied approximation methods and quality constraints for
the particular module or candidate. The additional parameter annotation uses the default CIRCA parameter syntax.

Example module definition with Key = <<<APPROX_CAND>>>:

module <<<APPROX_CAND>>><<<WC:bound=20,step=2;appMethods:PS>>> Adder(in,
→˓cout);
// Module content...
endmodule

Configuration options

Method AnnotatedCandidates

10 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Key The keyword used to mark a module as approximation candidate. Can have any string
value which does not appear anywhere else in the input design file. Recommended value is
<<<APPROX_CAND>>>.

Notes and restrictions

• Candidates are generated from Verilog modules, not instances. Thus, parameters set for specific instances of the
Verilog module are ignored. You may use parameters in the module; however, do not change these parameters
for the instances.

• The size of all primary input and output signals of the top-level module of the circuit and all marked modules
must be an absolute literal integer, i.e., the size must be 1 or specified as [msb:lsb] where msb and lsb are
integer numbers, not parameters, localparams, or expressions which resolve to an integer. Example:

input clk; // size 1, ok
input [3:0] in1; // size 4, ok
input [4-1:0] in2; // expression, not ok
parameter W = 3;
output [W:0] out; // parameter, not ok

Back to the User Guide

Quality assurance component

• Input component

• QualityAssurance component

• Approximation component

• Estimation component

• Search component

• Output

Component description

The QualityAssurance component is responsible for the validation of approximated circuits, i.e., checking if the cir-
cuits resulting from the approximation process satisfy the specified quality constraints. Generally, we distinguish
between testing-based approaches and formal approaches. Testing-based approaches evaluate the quality of a circuit
by applying a set of input vectors (or input sequences for sequential circuits). However, testing-based approaches are
usually not able to adopt all possible input vectors; thus, the error of a circuit (or its quality) can only be estimated.
Formal verification methods, on the other side, are able to provide a mathematical prove to guarantee that the circuit
adheres to the specified error bounds. This guarantee, however, often comes at costs of higher runtimes.

CIRCA supports testing-based approaches as well as formal methods. Currently, however, only formal methods are
provided: abc_dprove, abc_pdr, and yosys_ic3. The three approaches utilize the inductive solvers of the
external programs ABC and Yosys.

1.2. User Guide 11

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.clifford.at/yosys/

CIRCA Documentation, Release 0.9

abc_dprove, abc_pdr, and yosys_ic3

CIRCA’s standard quality assurance implementations proceed in the same way to verify the quality of a circuit: they
generate a so-called sequential quality constraint circuit (SQCC) (see figure below (left)) and apply a formal verifica-
tion method on it, i.e., ABC’s dprove, ABC’s PDR, or Yosys’ IC3.

The SQCC comprises of the original input circuit, the circuit-under-test (CUT), the quality evaluation circuit (QEC),
and three configurable blocks. The QEC compares the output of the original circuit and the CUT (see figure below
(right)). Error bounds encoded in the QEC evaluate the error of the CUT, e.g., worst-case error (WC), and the results
of all evaluations are OR-ed to produce a single output bit, the error’ signal. The error’ signal signals an error
bound violation if at least one error bound is violated. The three configurable blocks (start sequence, Capture block,
and Output block) enable CIRCA to support different circuit types, e.g., streaming or run-to-completion. The Start
sequence block can implement a commonly used startup protocol (a reset signal followed by a start signal) to reduce
the runtime of the verification by reducing the number of possible states and state transitions. The Capture block
ensures that only the valid output signals of the circuits are evaluated by the QEC. The output signal of the QEC is
only made present at the output of the SQCC, if the signal is valid. This is ensured by the Output block.

valid

out

Original
circuit

valid

out
CUT

Capture
block

validCB

outOrig

outCUT

QEC Output
block

Start
sequence

in

in'

error

error' outOrig

outCUT

error'

P0

P1

PN-1

… ≥1

QEC |a-b| >T

WC

Fig. 2: Overview of CIRCA’s sequential quality constraint circuit (SQCC) (left) and a detailed view of the quality
evaluation circuit (QEC).

(Open the PDF here if it is not displayed.)

For more information, please read the paper on CIRCA.

Configuration options

The three implementations use the SQCC, and thus, share the same parameter set.

Medthod abc_dprove, abc_pdr, or yosys_ic3

QualityConstraints The global error bounds and steps which will be applied to the whole circuit.
At least one error metric must be listed and each error metric must have a bound specified. The
step parameter is optional and the error metric’s default step size will be used if it is left out.

The syntax of quality constraint specifications is described in the user guide’s subsection about the
configuration file. All error metrics mentioned there are supported.

CircuitType The circuit type of the input circuit. Supported circuit types are combinational,
run_to_completion and streaming.

OutputSignal The case-sensitive name of the circuit’s primary output signal. Any string that is a
valid signal name in Verilog is permitted.

OutputIsSigned Set to 1 if the circuit’s primary output signal is signed, and to 0 if it is not.

ValidSignal (optional for each CircuitType except run_to_completion) The case-sensitive
name of the circuit’s signal that signals valid data at the output.

12 Chapter 1. About CIRCA

http://www.lirmm.fr/axc18/program/paper2_2.pdf

CIRCA Documentation, Release 0.9

OutputSignalConcat (optional) If the circuit’s output signal is a concatenation of multiple signals,
you can specify a list of msb-lsb pairs. The pairs are separated by , with optional whitespace. A
pair-entry must contain two integer numbers separated by any non-integer character other than ,.

Example:

OutputSignalConcat = [31:16], [15:0]

ResetSignal (optional) The case-sensitive name of the circuit’s reset signal.

ResetSignalIsHighActive (mandatory if ResetSignal is specified) Set to 1 if the circuit’s
reset signal is high-active and to 0 if it is low-active.

StartSignal (optional) The case-sensitive name of the circuit’s start signal.

StartSignalIsHighActive (mandatory if StartSignal is specified) Set to 1 if the circuit’s
start signal is high-active and to 0 if it is low-active.

Notes and restrictions

• The circuit type, the name of the output signal, and the information whether it is signed or not must be supplied
in the configuration file.

• If the circuit type is run_to_completion, the circuit must have a valid signal. This is an unsigned output
signal of size 1 which assumes the logic value 1 as soon as the circuit’s computation is completed. Its name
must be specified in the configuration file.

Back to the User Guide

Approximation component

• Input component

• Quality assurance component

• Approximation component

• Estimation component

• Search component

• Output

Component description

In the configuration file, the user specifies at least one approximation technique, used to approximate the candidates.
CIRCA currently provides two techniques: precision scaling (PS) and approximation-aware AIG rewriting (AIG).
For each specified approximation technique, CIRCA instantiates an approximator and assigns the approximators to
the corresponding candidates. During the approximation process, the Approximation component calls the candidate’s
approximator to generate new variants.

Additionally to the approximation techniques, the user has to specify local quality constraints, i.e., local error metrics
and local error bounds, and may specify the step-size in which the error bounds are increased in the next iteration.

1.2. User Guide 13

CIRCA Documentation, Release 0.9

Precision scaling

The precision scaling approximation method generates approximated variants of a candidate by replacing
bits of the candidate’s output vector with logic 1s or 0s, starting from the LSB. This causes the logic
behind the replaced bits to become obsolete; thus, enabling an external synthesis tool to remove it and
thereby reduce the circuit’s area, delay, power consumption, etc.

Note: Precision scaling is inherently better compatible with the bit-flip error metric than with worst-
case, because the increasing significance of the replaced bits leads to an exponential increase of the
absolute error, making the variant generation for all worst-case error values in-between the exponential
steps effectively unnecessary.

Thus, in order to significantly reduce runtime overhead, it is highly recommended to use BF as local error
metric.

AIG rewriting*0

*

Approximation-aware AIG rewriting operates on the And-Inverter-Graph representation of a circuit. The
technique identifies the critical paths, ranks the nodes on the critical paths by their cut size, and iteratively
substitutes the nodes by logical 0. In this way, the computational delay, the area, as well as the power con-
sumption can be reduced. To check the variant’s compliance with its quality constraints, an approximation
miter formed (a circuit similar to the SQCC) and a SAT solver is employed.

Note: This technique is restricted to combinational candidates.

Configuration options

Method precision_scaling or aig_rewriting or both separated by a c

QualityConstraints The default local quality constraints for each candidate which got no con-
straints assigned in the input stage. The format of the specification is CIRCA’s standard quality
constraint syntax.

Both the bound and the step parameter are optional. The maximum bound can be determined
automatically for each candidate and each error metric has a default step value. At least one
error metric must be specified. All error metrics are supported unless restricted by a candidate’s
approximation method.

Notes and restrictions

• The approximators specified in the config. file are the default approximators. Some front-ends allow the spec-
ification of candidate-specific configurations, including candidate-specific approximators which override the
default settings.

• Approximation method implementations can specify a set of restrictions for the quality constraints of their
candidates. There may be incompatibilities in some configurations of approximation methods and error metrics.

0 Arun Chandrasekharan, Mathias Soeken, Daniel Große, and Rolf Drechsler. 2016. Approximation-aware rewriting of AIGs for error tolerant
applications. In Proceedings of the 35th International Conference on Computer-Aided Design (ICCAD ‘16). ACM, New York, NY, USA, Article
83, 8 pages. DOI: https://doi.org/10.1145/2966986.2967003

14 Chapter 1. About CIRCA

http://www.informatik.uni-bremen.de/agra/doc/konf/2016ICCAD_approximation_aware_rewriting.pdf
http://www.informatik.uni-bremen.de/agra/doc/konf/2016ICCAD_approximation_aware_rewriting.pdf
http://www.informatik.uni-bremen.de/agra/doc/konf/2016ICCAD_approximation_aware_rewriting.pdf
https://doi.org/10.1145/2966986.2967003

CIRCA Documentation, Release 0.9

In such a case, the quality constraints will be adjusted accordingly, if possible, and a warning message will
be generated. If the adjustments lead to an invalid configuration, e.g., no error metrics left, the approximation
process will not be started and CIRCA will terminate with an error message.

Back to the User Guide

Estmation component

• Input component

• Quality assurance component

• Approximation component

• Estimation component

• Search component

• Output

Component description

The Estimation component utilizes synthesis tools to synthesize the approximated circuits, i.e., a particular circuit
configuration. From the synthesis reports, CIRCA extracts the circuit parameters of interest and attaches them to the
circuit under investigation. In the search block, the circuit’s statistics is used to evaluate the approximated circuit, for
example, with a heuristic function. In this way, the different circuits generated throughout the approximation process
can be ranked to find the best-suited circuit for the user. Common target metrics are hardware area, circuit delay, and
power or energy consumption.

abc_if

CIRCA’s standard Estimation implementation is abc_if. The implementation utilizes ABC’s if command to per-
form a technology mapping to FPGA 4-LUTs. The reported circuit statistics are stored in a file in the directory
approx_circuits. From these files CIRCA extracts the statistics of each circuit, i.e., area, delay, and power dissipation
due to switching.

Configuration options

Method abc_if

Note: ABC’s if command provides some configuration parameters. abc_if, however, does not provide these
parameters in the configuration file. If you need to adjust the parameters, e.g., the number of the input of the LUTs,
feel free to modify the code and extend the configuration possibilities.

Back to the User Guide

1.2. User Guide 15

CIRCA Documentation, Release 0.9

Search component

• Input component

• Quality assurance component

• Approximation component

• Estimation component

• Search component

• Output

Component description

The Search component specifies the algorithm which is used to navigate the search space. Its primary functions are se-
lecting the circuit configuration to be validated next, expanding the search space by defining new circuit configurations
to be generated, and evaluating the results of the approximation process by analyzing the circuit statistics generated
by the Estimation component.

CIRCA’s Search implementations are:

• gradient descent (or hill climbing),

• Simulated Annealing,

• Monte Carlo Tree Search, and

• Jump Search.

Gradient Descent Search

Description

The gradient_descent Search implementation uses a circuit configuration’s area value and models it as a func-
tion of the configuration’s current error bounds and approximation method. With this model of the search space in
mind, a modified gradient descent search algorithm is utilized to approach a minimum of that function. The starting
point for the search is the original circuit.

To expand the search space, all neighbors of the current circuit configuration are generated. The neighbors of a
configuration differ from the current configuration in either the approximation method or one error metric with an
increased error bound.

The neighbors are then categorized into three groups by their area values: One group for circuits with lower area than
the current circuit (negative gradient), one group for circuits with the same area (zero-gradient) and one group for
circuits with higher area (positive gradient). The circuits from the first group with the lowest area are appended to a
list of configurations to inspect later. More configurations, also from the other groups, are added to that list according
to an Effort parameter set in the configuration file.

Depending on the configuration, either the best circuit from the list or a random circuit is then used as the new current
circuit configuration for the next iteration. This cycle continues until the list is empty. This is the case if a local area
minimum has been reached or the quality constraints allow no further area improvement.

Notes and restrictions

• This Search implementation considers exclusively the area values of the circuits and thus only leads to reliable
area improvements.

16 Chapter 1. About CIRCA

https://en.wikipedia.org/wiki/Gradient_descent

CIRCA Documentation, Release 0.9

• The Effort parameter can be used to configure how many circuit configurations are inspected. The options vary
from a straight-forward continuous area reduction to an exhaustive brute-force style search. This may lead to
significant differences in runtime between the Effort levels.

Configuration options

Method gradient_descent

Effort The effort level of the search, determines how many circuit configurations will be inspected.
Possible values are integers 0 to 6:

0 Only negative gradients are inspected

1 All negative and 5 randomly chosen 0-gradients are inspected

2 All negative and 20 randomly chosen 0-gradients are inspected

3 All negative and randomly chosen 25% of 0-gradients are inspected

4 All negative and randomly chosen 50% of 0-gradients are inspected

5 All non-positive gradients are inspected

6 Take all gradients into account (pos., neg., and zero)

SelectStrategy (optional) Specifies whether the best (lowest gradient) or a random circuit configu-
ration from the list will be used as starting point for the next iteration. Possible values are

best (default) Take the best configuration

random Take a random configuration

Simulated Annealing

Description

Initially, the simulated_annealing search starts with the original circuit and a temperature of 1.0. During the
search a node, i.e., a circuit, is randomly selected. Depending on the acceptance function, the selected node is
either accepted or rejected. A node which improves the target metric is always accepted. A node which worsens the
target metric may be accepted under the probability of

𝑟𝑎𝑛𝑑𝑜𝑚[0.0, 1.0) < 𝑒−
Δ𝐷
𝑇 .

∆𝐷 represents the change in the target metric and 𝑇 the current temperature. If a node is accepted, its quality is
verified. If the node is valid, the node is expanded, i.e., its neighboring nodes are generated, and its neighbors represent
then the open-list. If the node is being rejected or invalid, another node from the open-list is randomly selected.

For each temperature 𝑇 , the equilibrium has to be reached, i.e., equilibrium number of iterations have to be performed,
before the temperature 𝑇 is lowered by

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 * 𝛼.

After the minimal temperature 𝑇𝑀𝑖𝑛 is reached, the search terminates.

Notes and restrictions

• The search uses an initial temperature of 1.0.

1.2. User Guide 17

CIRCA Documentation, Release 0.9

Configuration options

Method simulated_annealing

TMin The minimal temperature at which the search terminates. Must be ≥ 0.

Alpha Rate at which the temperature is reduced after equilibrium is reached. Must be ≥ 0.

Equlibrium Number of iterations performed at each temperature.

Heuristic Specifies the target metric directly or uses a heuristic to express the merit of the node. The
value is used to compute ∆𝐷 to determine whether a node is accepted or not.

Area (default) The circuit’s hardware area is considered as target metric. For the compu-
tation of ∆𝐷 the relative hardware is used: ∆𝐷 = 𝑎𝑟𝑒𝑎𝑛𝑒𝑤−𝑎𝑟𝑒𝑎𝑜𝑙𝑑

𝑎𝑟𝑒𝑎𝑜𝑙𝑑
.

Monte Carlo Tree Search (MCTS)

Description

Monte Carlo tree search (MCTS) is a stochastic best-first search technique that exploits the generality of random sam-
pling to build an efficient search algorithm. In each iteration, MCTS performs four main steps: selection, expansion,
simulation and update. The selection step always starts from the root node of the search tree and attempts to reach at
a leaf node while using the UCT score of each nodes as a heuristics in the path.

𝑈𝐶𝑇 (𝑛𝑜𝑑𝑒𝑖) =
𝑊𝑖

𝑉𝑖
+ 𝐶

√︃
ln(𝑉𝑁)

𝑉𝑖

where 𝑊𝑖 is the reward value of the 𝑛𝑜𝑑𝑒𝑖, and 𝑉𝑖 is the number of visits of the 𝑛𝑜𝑑𝑒𝑖. Moreover, 𝑉𝑁 shows the number
of visits for the parent of 𝑛𝑜𝑑𝑒𝑖, and 𝐶 represents the exploration constant which trades off between exploration and
exploitation in the search tree.

The expand step adds new children nodes to the search tree. The simulate step then evaluates the node’s statistics and
then calculates the weighted reward for the node based on the following formula:

𝑅𝑒𝑤𝑎𝑟𝑑𝑛𝑜𝑑𝑒 = 𝛼 * 𝑎𝑟𝑒𝑎_𝑠𝑎𝑣𝑖𝑛𝑔𝑠 + 𝛽 * 𝑑𝑒𝑙𝑎𝑦_𝑠𝑎𝑣𝑖𝑛𝑔𝑠 + 𝛾 * 𝑝𝑜𝑤𝑒𝑟_𝑠𝑎𝑣𝑖𝑛𝑔𝑠

This completes one iteration of the MCTS. The search terminates when the allocated search budget to MCTS is
exhausted.

Configuration options

Method mcts

Budget Number of iterations for the search.

Scaler Constant value used in the UCT formula (usually ranges [0-2.5]).

Jump Search (JS)

Description

The Jump Search search method seeks to minimize the runtime of the approximation process by minimizing the
number of expensive synthesis and verification steps. JS operates in two phases:

18 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Phase 1 (path planning): Determine a path through the search space, starting from the original circuit to
the boundaries of the search space. In phase 1, the AxCs found, are being evaluated using the Figure of
Merit (FOM):

𝐹𝑂𝑀(𝐴𝑥𝐶) =
∑︁

𝑐𝑎𝑛𝑑𝑠∈𝐴𝑥𝐶

√︃
𝐸𝑟𝑟(𝑐)

𝑀𝑎𝑥𝐸(𝑐)
× 𝑖𝑓𝐴𝑟𝑒𝑎(𝑐)

|𝑖𝑓𝐸𝑟𝑟(𝑐)| + 1

The FOM takes into account the normalized error of the candidates within the AxC to balance the selec-
tion, as well as two impact factors, iferr and ifarea. The two impact factors of each candidate are being
determined in a pre-processing step. Employing the FOM to evaluate the AxCs makes any invocation
of synthesis or verification obsolete, and thus, significantly reduces the runtime of the approximation
process.

Phase 2: JS makes the assumption that the deeper a node is on the path, the more aggressive are the applied
approximation to that AxC, and thus, the larger are the expected savings. In phase 2, employing synthesis
and verification is inevitable; however, to minimize the number of invoked synthesis and verification steps,
a binary search is utilized, finding the deepest, valid node on the path.

Note: For a more detailed description, please see our paper presented at the 4th AxC workshop at the DATE‘19
conference and our paper presented at the GLSVLSI‘19 conference.

• L. Witschen, H. Ghasemzadeh Mohammadi, M. Artmann, and M. Platzner, “Jump Search: A Fast Technique
for the Synthesis of Approximate Circuits,” Presented at the Fourth Workshop on Approximate Computing
(AxC ‘19) 2019, Florence, Italy, 2019.

• L. Witschen, H. Ghasemzadeh Mohammadi, M. Artmann, and M. Platzner, Jump Search: A Fast Technique
for the Synthesis of Approximate Circuits, In the proceedings of the Great Lakes Symposium on VLSI
2019 (GLSVLSI ‘19), 2019, Tysons Corner, VA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3299874.3317998.

Configuration options

Method jump_search

ImpactFactorsErr Dictionary containing the impact factors iferr of each candidate. Example:

ImpactFactorsErr = {'Cand_Adder_0': 0.16, 'Cand_Mult_0': 0.4, 'Cand_
→˓Adder_1': 0.914}

ImpactFactorsArea Dictionary containing the impact factors ifarea of each candidate. Example:

ImpactFactorsArea = {'Cand_Adder_0': 0.25, 'Cand_Mult_0': 0.412, 'Cand_
→˓Adder_1': 0.09}

Back to the User Guide

Output component

• Input component

• Quality assurance component

1.2. User Guide 19

http://embedded.unina.it/AxC19/
http://embedded.unina.it/AxC19/
https://doi.org/10.1145/3299874.3317998
https://doi.org/10.1145/3299874.3317998

CIRCA Documentation, Release 0.9

• Approximation component

• Estimation component

• Search component

• Output component

Component description

The output component takes care of post-processing and filtering the approximation results. It can also be used to do
cleanup work, i.e. remove directories and files which were used during the approximation process but shall not remain
afterwards.

The standard output implementation of CIRCA is called output_best_area.

Functionality

The output_best_area implementation copies all approximated and validated circuits to the output directory and
prints statistics about the whole process to the console. These include a list of all approximated circuits, the smallest
area, the original circuit’s area and the numbers of validated and valid circuits.

Notes and restrictions

• This output implementation was designed to work best with the gradient_descent_search implemen-
tation, or Search implementations focusing on the circuit’s area in general.

Config options

output_best_area does not require additional configuration.

Back to the User Guide

1.2.4 Example configuration

This is an example walkthrough of the configuration process to give you an idea of the steps required for making
CIRCA work with your own input design.

Let’s assume you have a run-to-completion circuit my_circuit.v with a top-level module called TOP_MOD and
three other modules called MOD_1, MOD_2 and MOD_3, which are instantiated in the top module. The goal is to
generate an approximate version of the circuit with minimal area, but its output must not deviate from the original
circuit’s output by an absolute value of more than 42.

module TOP_MOD (/*portlist...*/);
// Many MOD_1 instances
// One MOD_2 instance
// One MOD_3 instance
// ...
endmodule

// MOD_1, MOD_2 and MOD_3 definitions

20 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

All three modules shall be considered as approximation candidates, but MOD_1 is special in that it has far more
instances than the other two. You decide that it should not be approximated as far as the other modules and may only
have a maximum bit-flip error of 2. However, multiple approximation methods should be used on it, while MOD_2
and MOD_3 should have AIG-rewriting as their only approximation method. They may also have a worst-case error as
high as necessary to achieve a good area.

The circuit is quite large, but you have a powerful system and some time, so you are ready to accept a longer runtime in
exchange for better results. However, since you want to test CIRCA’s accuracy, you decide to choose a medium-effort
search strategy and compare the results to a brute-force search later.

Preparing the circuit

To assign different approximation methods and quality constraints to the modules, you may have to use annotations in
the input design. The AnnotatedCandidates FrontEnd implementation offers exactly the required functionality
and is applicable to the circuit, because all approximation candidates are modules and all primary input and output
signals have a static size.

To mark the modules as candidates, you decide to use the recommended annotation key:

// ...
module <<<APPROX_CAND>>> MOD_1 (/*ports*/);
// MOD_1 content
endmodule
// ...
module <<<APPROX_CAND>>> MOD_2 (/*ports*/);
// MOD_2 content
endmodule
// ...
module <<<APPROX_CAND>>> MOD_3 (/*ports*/);
// MOD_3 content
endmodule

The candidate MOD_1 needs very specific settings, while MOD_2 and MOD_3 can have the same, so their settings can
be specified as default settings in the configuration file. After adding the approximation method and quality constraints
for MOD_1, its definition looks like this:

// ...
module <<<APPROX_CAND>>><<<BF:step=1,bound=2;appMethods:PS,AIG>>> MOD_1 (/
→˓*ports*/);
// MOD_1 content
endmodule
// ...

The circuit is now ready for approximation.

Note: The specification of candidate-specific setting, such as for MOD_1 in the example above, is optional. If no
parameters are specified, the configuration specified in the configuration file is used.

Preparing the configuration file

Because you never used CIRCA before, you make a copy of the supplied example configuration and adjust each
section if necessary:

The General Section must specify the name of the top module, so it looks like this:

1.2. User Guide 21

CIRCA Documentation, Release 0.9

[General]
TopModule = TOP_MOD

Since you decided to use the AnnotatedCandidates FrontEnd implementation, its name must be specified as
value of the Method option. The annotation key must be the same as the one in the input design, which is already the
case:

[Input]
Method = AnnotatedCandidates
Key = <<<APPROX_CAND>>>

As search method with adjustable effort level, gradient_descent is suitable. To get a medium effort, you decide
to use effort level 4. To test CIRCA’s accuracy, the SelectStrategy should be left at the default value best

[Search]
Method = gradient_descent
Effort = 4
SelectStrategy = best

The standard Estimation implementaion abc_if provides a good area estimation, so this section can be left un-
changed:

[Estimation]
Method = abc_if

For the QualityAssurance section, you remember the global quality constraint of a maximum worst-case error
of 42. You don’t know the difference between the standard methods, so you decide to leave it at abc_dprove. You
also have to look up the name of the output signal and specify the circuit type. Since it is run_to_completion,
the name of the valid-signal must be specified aswell. The circuit has no start- or reset-signal, so these options are
omitted:

[QualityAssurance]
Method = abc_dprove
QualityConstraints = WC:bound=42
OutputSignal = out
OutputIsSigned = 0
CircuitType = run_to_completion
ValidSignal = valid

In the Approximation section, you specify the approximation method and quality constraints for the modules
MOD_2 and MOD_3: they were supposed to use AIG-rewriting and have maximum worst-case error if necessary.
Since this makes the bound parameter unnecessary, it can be omitted. However, the step size should be small in order
to get accurate results:

[Approximation]
Method = AIG
QualityConstraints = WC: step = 1

The Output implementation doesn’t really matter for your purpose, so you keep the standard value:

[Output]
Method = output_best_area

Finally, the input files are ready for the approximation process:

my_circuit.v:

22 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

module TOP_MOD (/*ports*/);
// Many MOD_1 instances
// One MOD_2 instance
// One MOD_3 instance
// ...
endmodule
// ...
module <<<APPROX_CAND>>><<<BF:step=1,bound=2;appMethods:PS,AIG>>> MOD_1 (/
→˓*ports*/);
// MOD_1 content
endmodule
// ...
module <<<APPROX_CAND>>> MOD_2 (/*ports*/);
// MOD_2 content
endmodule
// ...
module <<<APPROX_CAND>>> MOD_3 (/*ports*/);
// MOD_3 content
endmodule
// ...

my_config.cfg:

[General]
TopModule = TOP_MOD

[Input]
Method = AnnotatedCandidates
Key = <<<APPROX_CAND>>>

[Search]
Method = gradient_descent
Effort = 4
SelectStrategy = best

[Estimation]
Method = abc_if

[QualityAssurance]
Method = abc_dprove
QualityConstraints = WC:bound=42
OutputSignal = out
OutputIsSigned = 0
CircuitType = run_to_completion
ValidSignal = valid

[Approximation]
Method = AIG
QualityConstraints = WC: step = 1

[Output]
Method = output_best_area

Executing CIRCA

The approximation process can now be started by navigating to the directory with the input design and the configuration
file and typing

1.2. User Guide 23

CIRCA Documentation, Release 0.9

circa my_config.cfg my_circuit.v

Note: This is a WIP Beta version. All content is subject to change.

1.3 Developer Guide

This section will teach you how to develop custom component implementations and integrate them into CIRCA’s
approximation flow. The covered topics are:

• Basics

• Important data structures and classes

• Exchangeable components

• Extensible components

You can find more detailed technical information on the framework’s modules in the module index.

1.3.1 Basics

CIRCA is designed to be:

24 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• General: The framework should not be restricted to certain circuit types, error metrics, approximation and
search techniques, or specific target technologies.

• Modular: The framework architecture should enable the exchange of certain processing steps without affecting
other steps. Modularity is key for the evaluation and the comparison of different techniques under a consistent
experimental setup.

• Compatible: The framework, in particular its inputs and outputs, should connect to other, widely-used academic
and commercial front-end and back-end tools, e.g., tools synthesizing circuits for ASIC or FPGA technology.

• Extensible: The framework should facilitate the swift implementation and evaluation of new techniques.

To achieve this, CIRCA’s approximation flow is handled by independent stages and processing blocks (short: compo-
nents) which communicate using well- defined interfaces. Each component can be extended by custom implementa-
tions and provides a specific piece of functionality which is needed for the approximation process. Integrating your
own component implementations allows you to easily test different search strategies, approximation techniques, and
quality assurance methods.

The framework provides the necessary structure for the components to work independently. CIRCA utilizes data
structures as well as classes which can be accessed and interpreted by all components, enabling them to work together
effectively.

Component implementation

The customizable components of CIRCA are classes, implementing a specific interface. The interfaces are specified
by abstract base classes from which the custom implementations must be derived. They were implemented using
Python’s Abstract Base Classes module, so their subclasses have to implement some methods in order to be instanti-
atable. The concept of abstract base classes ensures that new implementations provide the functions used by CIRCA
in its standard approximation flow.

To create a custom component implementation, simply create a subclass of the abstract base class for that component
and make sure to implement all of the base class’s abstract methods (note that it is possible to derive from an already
existing subclass to minimize implementation effort).

Each abstract base class provides a dictionary SUPPORTED_SUBCLASSES. The key corresponds to the method’s
name used in the configuration file, e.g., AnnotatedCandidates. The value is a lamda expression, calling the constructor
of the corresponding implementation. Once an implementation is finished, i.e., the subclass, add the key-value pair to
the dictionary to make the implementation available.

Component classification

We differentiate between two types of customizable components: exchangeable components and extensible compo-
nents.

• Exchangeable components are the stages and processing blocks Input, QualityAssurance, Estimation, Search,
and Output. Exactly one implementation of each component is used when CIRCA is executed. The used
implementations have a great impact on the approximation process and on the quality of the outcome.

• Extensible components can be seen as functionality which is either used or not used in an approximation process.
Extensible components include approximators from the Approximation block and ErrorMetrics. While the
number of exchangleable components in an approximation process is restrricted to exactly one, the user has no
upper limit on the number of employed extensible components.

1.3. Developer Guide 25

https://docs.python.org/3/library/abc.html

CIRCA Documentation, Release 0.9

1.3.2 Important data structures and classes

In order to implement your custom components, you need to know the data structures, classes, and interfaces you will
be working with. Since most of them are already documented extensively in the code, their implementation details
will be omitted here. Instead, to improve the understanding of the objects, an overview of the scope of the particular
object is given from a high-level perspective.

GeneralInformation

The GeneralInformation class acts as a container for information used by several components and is instantiated
once in the Input stage. After instantiation, it is passed to every other stage when they are created.

The GeneralInformation object’s content includes paths to the configuration and input circuit files, information
on the input circuit, and references to the data structures Candidates, Variants, as well as nodes and circuits.

When creating an Input component implementation, your job is to setup the GeneralInformation instance and
usually also extract PI/PO (primary input/primary output) information, either manually or using the existing method.
The PI/PO information is needed, for example, in the quality assurance step. For the automatic extraction of PI/PO
information from Verilog code, GeneralInformation provides a method.

Candidates

A candidate is a part of the input circuit which can be replaced by an approximate component. Usually, the arithmetic
units in the data path of a circuit are specified as candidates. The selection of candidates in a circuit is crucial since
the selection of candidates directly influences the quality of the approximated outcome.

Candidates are represented by the Candidate class. Each Candidate instance must have a unique name and
specify local quality constraints, i.e., local error metrics with error bounds. The local quality constraints of a candidate
Every candidate has a reference to its original implementation (a circuit file containing only the candidate from the
input circuit). From the candidate’s original implementation, the candidate’s variants are generated and stored in a
candidate-specific directory.

A candidate can represent different parts of a circuit, e.g., a register, a wire, or an entire circuit module. Depending
on the component or part of the circuit represented by the candidate, the candidate may have to be treated differently
and may offer different methods. Thus, the Candidate class is abstract and cannot be instantiated. A specific
implementation of a candidate is described in a subclass, derived from the Candidate class. In this way, CIRCA
does not restrict candidates to a specific parts of a circuit. Furthermore, the candidate’s type can be used to derive a
unique name for the candidates.

All candidates are stored in a CandidateSet, which is a basic data structure containing the Candidate
instances and the path to the directory in which the candidate files are stored. It is accessible through the
GeneralInformation instance. Candidates can be added and removed by all components.

Variants

A variant is an unique instance of a candidate with a certain degree of approximation applied. The relation of a variant
to its candidate can be compared to the relation between an object and its class. The candidate specifies the part of
the input circuit to approximate, at least one approximation method and some quality constraints. The variants are the
resulting circuits, each having only one approximation method and possibly adjusted quality constraints.

Variants do not need a name, since they generate a unique ID value based on their candidate’s name, their approxima-
tion method, and their local quality constraints. Since the ID can become very long, a hash value is generated which
can be used instead. The Variant instances have a reference to their candidate and to their circuit file.

26 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Variant objects can be created in two ways: A Candidate instance can generate its own original variant, which is
basically a copy of the candidate’s part of the input circuit. Each Variant instance can then generate its “neighbor-
ing” variants by either switching the approximation method or increasing one error bound by one step. These variants
are called neigbors or children of the variant generating them. The variants created this way do not have a circuit file
however. They must be chosen for the Approximation stage where these files are created.

All variants are stored in a VariantSet, a data structure similar to the CandidateSet with a slightly different
internal structure. It can also be accessed through the GeneralInformation instance and manipulated by all
stages. Throughout the approximation process, the Approximation stage creates new variants and adds them to the
VariantSet; hence, the set is continuously extended. This can be seen as an on-the-fly generation of an approximate
component library. That is, if an existing approximate component library is loaded into CIRCA, it would either
represent or even replace the VariantSet.

Note that a variant’s ID (or hash) is unique. Thus, each variant is only created once in an approximation process
which improves efficiency.

Nodes and Circuits

In the approximation process, approximated variants of all specified candidates are generated. Then, CIRCA replaces
the original implementation of a candidate with its approximated variants to create an approximated circuit. These
approximated circuits are represented by instances of the Circuit class. An instance holds information about the
circuit file and the result of the verification, i.e., whether the circuit’s quality has been validated by the QualityAssur-
ance stage and whether the circuit has passed the check.

All Circuit instances are stored in an ApproximatedCircuits instance representing the directory in which
the circuit files are stored. A circuit can be stored in Verilog and in BLIF format.

An approximated circuit is uniquely described by the combination of variants used to implement the candidates. We
denote this combination as circuit configuration. Since the search space is modeled as a graph structure, we identify,
in the context of the search, configurations with Nodes. A Node is a representation of a circuit in another con-
text, providing different information and functionality. Once a Node’s circuit has been generated, the corresponding
Circuit instance and the Node are connected by bidirectional references. The Node class specifies the interface
for traversing the search space and working with circuits without having to provide detailed circuit information on this
abstract level. The components use Nodes as input and output of their functions, i.e., as an interface.

A Node has a method for generating its children, similar to the Variant class. The children are those nodes,
providing a circuit configuration with only one candidate implementing a different variant than the parent and this
variant has a local error bound increased by one step compared to the parent’s variant. For example, consider a node
with the configuration {C1, WC1; C2, WC3}, C1, WC1 being a candidate’s variant with an worst-case error bound of 1 and
C2, WC3 a candidate’s variant with a worst-case error bound of 3. Then, the children of this node are: {C1, WC2; C2, WC3}
and {C1, WC1; C2, WC4} (assuming a step-size of 1). Note that this means that a Node instance could generate a child
Node with the same configuration as its parent, by changing a candidate to its previous variant. Avoiding these circles
is part of the Search stage component and can be accomplished using the Node’s id attribute.

There is no central data structure storing all Nodes as this is considered to be the Search component’s task and many
nodes are likely to be never actually used. Make sure to look into the Node documentation if you want to implement
your own stage component.

1.3.3 Exchangeable components

Exchangeable components share many properties which must be considered when developing a custom implementa-
tion. Here you can find the features they have in common and detailed documentation of all five components.

1.3. Developer Guide 27

CIRCA Documentation, Release 0.9

Shared features

All abstract base classes of exchangeable components provide a factory function which is called for component
instantiation. A factory function takes the config. file as an input and uses the Method parameter from the
corresponding config. section to instantiate the correct subclass.

All supported implementations are listed in the base class’s SUPPORTED_SUBCLASSES attribute, a dictionary stor-
ing the names of all available implementations as keys and constructor references as values, using lambda expressions.
The function also extracts all key-value pairs from the component’s config section and passes them to the constructor,
stored in a dictionary as well.

So, when creating a new component implementation, the first step is to add a new entry to the
SUPPORTED_SUBCLASSES dictionary

"MyComponent": lambda s: MyComponent(s)

where MyComponent is the name of your class and MyComponent(s) is the constructor of the class, receiving the
key-value pairs of the config. section. Also make sure that your __init__ method has the correct signature with
only the config. option dictionary as parameter:

class MyComponent(ComponentABC):
def __init__(self, settings_dict):

Note that ComponentABC can be the component’s abstract base class or one of the existing subclasses, if you want
to base your implementation on something more substantial.

The exchangeable components also share an optional setup method. The setup function is called immediately
after instantiation of the component and can be used to prepare the component for the approximation process. The
function takes - at least - the GeneralInformation object as input and is used to perform further setup steps.

Component details

Exchangeable components

• Input component

• QualityAssurance component

• Estimation component

• Search component

• Output component

28 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Input component

The Input (or FrontEnd) component pre-processes the input circuit, e.g., removing code annotations to restore valid
Verilog code, and extracts information from the circuit, e.g, candidates, to initialize required data structures, e.g., the
candidate set. In other words, the Input component’s role in the approximation process is to create a foundation on
which the other components can operate.

Functions

setup(self, cfg_file: String, input_file: String): None

The setup method can be used to initialize the component by storing the configuration and input files
and perhaps do some pre-processing such as validation and compatibility checking of the input circuit.
The default implementation stores the files and only checks if the input circuit file name is not empty.

process(self): GeneralInformation

The process method provides the main functionality of the Input component. It is called exactly once
at the very beginning of the approximation process and must return a GeneralInformation instance

1.3. Developer Guide 29

CIRCA Documentation, Release 0.9

which is fully set up to be used in the QUAES stage. It doesn’t matter how a specific implementation
accomplishes this goal, as long as the following post-conditions are met:

• A GeneralInformation instance was created

• CandidateSet, VariantSet, and ApproximatedCircuits instances were created and
stored in the GeneralInformation instance

• The CandidateSet instance is filled with the complete set of Candidates to be con-
sidered in the approximation process (they don’t need to have quality_constraints or
approx_methods yet. In case of missing information, the default parameter will be filled in
later)

• The CandidateSet and ApproximatedCircuits instances have valid path attributes, i.e.,
valid directory paths

• There is a *.v and a *.blif file storing the original circuit, where * is the original circuit’s name

• Following attributes of the GeneralInformation instance are set correctly:

top_module The name of the original circuit’s top level module

pis and pos Lists of Signal instances representing the original circuit’s primary input
and output signals (can be extracted from Verilog code automatically with the provided
function extractPiPo())

base_directory (Optional, default is the directory containing the input file) The root di-
rectory under which all directories and files of the framework will be stored

output_dir (Optional, default is the directory containing the input file) The directory in
which all output data will be stored

The hardest part of this is probably creating the CandidateSet, since the other tasks can be easily done
once the set has been created. However, extracting the candidates from the original circuit in a particular
manner is the main argument for creating a custom FrontEnd subclass, so this is the part on which you
should focus.

The framework and the classes themselves provide many handy utility functions and sensible default
values, so make sure to have a look at existing FrontEnd implementations and the other classes’ docu-
mentation before you start writing your code.

Back to the Developer Guide

Exchangeable components

• Input component

• QualityAssurance component

• Estimation component

• Search component

• Output component

30 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

QualityAssurance component

The QualityAssurance component (or stage) is responsible for validating the circuits resulting from the approximation
process against global quality constraints. Its main function is simply deciding whether or not an approximated circuit
satisfies all quality constraints. The result can be used in the search process to recognize boundaries in the search
space or eventually terminating the search.

Functions

setup(gen_info: GeneralInformation): None

The setup method can be used to initialize this component by storing the GeneralInformation
instance, parsing the global quality constraints from the configuration file and for creating files
and directories that are needed for the validation process. The default implementation stores the
GeneralInformation instance and creates a directory sqcc_files in the base directory, assuming
that auxiliary circuits will be created for validation.

validateCircuit(node: Node): Boolean

The validateCircuit method validates the circuit of a given Node against the global quality con-
straints and only outputs whether the validation was successful or not. To store the result and make it

1.3. Developer Guide 31

CIRCA Documentation, Release 0.9

interpretable for the other components, the Circuit instance’s validated attribute should be set to
True and its valid attribute set to the result of the validation.

Note that this method works with a Circuit instance, but gets a Node as parameter. This is because
Nodes are the central interface for circuit representations and component interaction. A Node instance
however stores a reference to its respective Circuit instance, which is accessible via node.circuit.
This attribute will always contain a Circuit instance if the Node was put through the approximation
process beforehand.

Since quality assurance techniques are generally very diverse and require a lot of setup and cleanup, this
is typically the start of a toolchain or a series of helper function calls. Feel free to add as many more
functions as you need to compute the result of the validation.

Back to the Developer Guide

Exchangeable components

• Input component

• QualityAssurance component

• Estimation component

• Search component

• Output component

32 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Estimation component

Note: The Estimation component is not customizable yet.

The Estimation component is used by the framework to generate statistics of the circuits generated dur-
ing the approximation process. Statistics of interest are, for example, area, delay, power, energy, and
error. These statistics can either be directly used or incorporated into a heuristic to compare circuits with
each other. This information can then guide the search to improve the target metric. CIRCA currently
invokes ABC’s if command to synthesize a circuit and to obtain estimations about area, delay, and power
dissipation due to switching.

Functions

estimateCircuitStats(nodes: List<Node>): None

This method implements the main functionality of the Estimation stage. It is called each time the approx-
imation stage yields another set of approximated circuits. As for all stages, the circuits are represented by
their Nodes, hence the parameter of the method is a list of Node instances.

Every Node has a parameter called stats which contains a dictionary. Initially, this dictionary is empty,
and it is this method’s task to fill in useful statistics in the form of key-value entries like "statName":
statValue where statName is one of the supported metrics and statValue is its value of type
float, or None if no value for this metric was found.

Back to the Developer Guide

Exchangeable components

• Input component

• QualityAssurance component

• Estimation component

• Search component

• Output component

1.3. Developer Guide 33

CIRCA Documentation, Release 0.9

Search component

The Search component controls how the search space (modeled as a tree-like graph structure) is traversed, i.e., which
nodes to approximate and validate next and when to terminate the approximation process. This also means that the
Search component must manage already visited nodes, soon to be visited nodes, and “anomalies” in the search space,
such as recurring circuit configurations, on its own.

34 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Structure of the search space

C1 C2 C3

C(1)
5 C(2)

1 C(3)
3

C1 C2 C3

C(3)
1 C(3)

2 C(3)
3 C(3)

4

C(2)
1 C(2)

2 C(2)
3

C(1)
1 C(1)

2 C(1)
3 C(1)

4 C(1)
5

Input
circuit/root

Candidate
Set

Circuit
configs./nodes

Variant
Set

Original candidate/implementation

Variant

Candidate

To talk about the concepts of the search space more efficiently, we first define some terms and explain their meaning.
The figure above visualizes the terms.

Candidate A candidate is a part of the input circuit which can be approximated independently
and then inserted back into the input circuit to replace its own original variant, thereby
creating an approximated version of the whole input circuit. The set of candidates of the
input circuit is generated during the Input stage before the approximation process begins.
For each candidate there must be at least one approximation method and at least one error
metric with an upper bound specified.

Variant We denote an approximated version of a candidate as variant. Each variant has a
unique candidate, but candidates generally have multiple variants. The original, non-
approximated version of a candidate is called original variant. Variants are uniquely
identified by the ID of their candidate in conjunction with an error bound for each error
metric and exactly one approximation method.

Circuit configuration Assume the input circuit has the candidates (𝐶1, 𝐶2, . . . , 𝐶𝑛) and each
candidate 𝐶𝑗 can be represented by one of its variants {𝑉 (𝑗)

1 , 𝑉
(𝑗)
2 , . . . , 𝑉

(𝑗)
𝑚 }. We call

the tuple of variants
(︁
𝑉

(1)
𝑥 , 𝑉

(2)
𝑦 , . . . , 𝑉

(𝑛)
𝑧

)︁
the configuration of the circuit in which each

candidate 𝐶𝑗 is replaced by one of its variants 𝑉 (𝑗)
𝑖 . A circuit configuration is unique.

Node A node in the search space represents a single circuit configuration(︁
𝑉

(1)
𝑥 , 𝑉

(2)
𝑦 , . . . , 𝑉

(𝑛)
𝑧

)︁
and is treated as a node (or vertex) in a graph. It is con-

nected to its parent node and to its child nodes (or children) once they are created. The
children of a node represent circuit configurations which differ from the node (their parent

1.3. Developer Guide 35

CIRCA Documentation, Release 0.9

node) in exactly one variant, i.e., one variant 𝑉 (𝑗)
𝑖 is replaced by another variant of that

candidate 𝐶𝑗 and all other variants remain the same. The new variant of that candidate
is not arbitrary, but must have either a different approximation method or a single error
bound increased by one step. Note that nodes representing the same configuration can
be created by different parent nodes, so that some nodes in the search space may have
multiple parent nodes (this is the reason why the search space is not really a tree). The
node representing the circuit configuration with only original variants is called the root
node. It does not have a parent node.

Nodes are represented by Node instances which contain all necessary information about
the circuit configuration represented by the graph node. A Node instance can generate
its children with the generateChildren method. These nodes are freshly generated
each time the method is called and neither do they have any file representations nor are
they stored in any data structure, i.e., at first, they are temporary objects iwth the minimal
required information. The search can then decide whether these nodes are generated by
the approximation stage or simply discarded.

Functions

setup(gen_info: GeneralInformation, root_node: Node): None

The setup method can be used to initialize the component by storing the GeneralInformation
instance and the search space’s root node. The default implementation does exactly these two things. This
is where you should initialize data structures and variables based on the CandidateSet instance in
GeneralInformation, which is complete at this point and defines all possible circuit configurations
that can occur in the search space.

hasTerminated(): Boolean

This is a simple query issued at the start of every iteration. It should return True if and only if the search
has finished and there is nothing left for the component to do. When this happens, the approximation
process stops and the output is generated.

Note: Note that by implementing this method incorrectly you can run into an infinite loop, so make sure
to double check your termination conditions!

popNextNode(): Node

The popNextNode method is called once at the start of every iteration and it will return one Node
instance. The returned instance is validated by the QualityAssurance component. Only if it is validated
successfully, the other methods of the Search component are called in that iteration. With this in mind,
you should implement your Search component in a way that supports multiple consecutive calls of this
function.

In the context of the search space graph, the returned Node marks the current position in the search space.
Note that, if it is validated successfully, you can use this fact to generate new nodes from this position to
explore the search space step by step.

36 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

expandSearchSpace(): List<Node>

The expandSearchSpace method is the first method which is called if a node was successfully vali-
dated. It returns a list of newly generated Node instances which will then be approximated and analyzed,
i.e., they will receive files for their variants and circuits and their stats dictionaries will be filled with
values for the metrics supported by the Estimation component.

To create a better intuition for the purpose of this method, imagine a search space tree with only the
current node in it. The expandSearchSpace method returns a list of all hidden nodes which are
possible candidates for exploration in the next iterations and marks them for the other components so they
can discover them and fill them with information. In many cases, it makes sense to simply return the
children of the current node.

evaluateNodes(): None

The evaluateNodes method is called at the end of each iteration if the current node was validated
successfully. It gives you the chance to process the results of the Approximation and Estimation stage
before popNextNode is called again. The Nodes that were returned by expandSearchSpace have
now been approximated and filled with statistics to evaluate. As a rule of thumb, in this method you should
create a sorted list of all Nodes you want to validate, using the statistics generated by the Estimation
component.

Back to the Developer Guide

Exchangeable components

• Input component

• QualityAssurance component

• Estimation component

• Search component

• Output component

1.3. Developer Guide 37

CIRCA Documentation, Release 0.9

Output component

The Output component is responsible for postprocessing the approximation results to create structured and/or filtered
output artifacts, e.g., proviing the “best” approximated circuit according to a target metric or providing the Pareto
frontier. It can also be used to clean up or remove working directories.

Functions

setup(gen_info: GeneralInformation): None

The setup method can be used to initialize this component by storing the GeneralInformation
instance and creating output files and directories. Note that this method is called during CIRCA’s start-up
phase, and thus, no data structures of the GeneralInformation instance are final at this point.

process(): None

The process method provides the main functionality of the Output component. It is the last component
method that is called before the framework terminates, so none of the other components will be affected
if files or directories are removed or internal data structures are changed.

38 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Back to the Developer Guide

1.3.4 Extensible components

Extensible components have very little in common since they are used for very specialized purposes and not in a
generalized manner like the exchangeable stage components. They are used on the same level as many of the spe-
cialized data structures which cannot be customized (but may be made customizable in the future). You can create
as many custom implementations for these as you like to enrich the framework with new possibilities and use them
independently with built in or custom component implementations. However, it can be useful to create approximation
methods or error metrics that are especially suitable to use in conjunction with a specific custom component.

Extensible components

• Approximators

• ErrorMetrics

Approximators

Approximators (or ApproxMethod instances) are service providers for the Approximation component. Each class
represents a specific approach to generate approximated circuits based on quality constraints, e.g., precision scaling.
Each instance, however, may implement the approach differently based on the configuration options of that approach.

When the CandidateSet is generated, ApproxMethod instances are generated for each approximation method
assigned to it. During the approximation process, the candidate’s variants are created by these instances.

Some approximation methods may be incompatible with certain error metrics or combinations of those. To compen-
sate for this, approximators may adjust a variant’s configuration of error metrics and bounds in a way that it can be
approximated without lowering its error bounds or exceeding their maximum bounds.

Functions

__init__(id: String, settings: Dictionary)

For identification and also representation of approximation methods, each ApproxMethod must have
a unique class-level ID. The ID should not be too long (2-5 characters) for better readability of circuit
configurations and log messages.

The settings dictionary can be used to specify the approximator’s mode of operation more precisely.
You can define the parameters freely and then use the configuration file of the approximation process to
specify the options to be used.

approximateVariant(variant: Variant, gen_info: GeneralInformation): None

The approximateVariant method provides the main functionality of the approximator. It takes a
Variant instance as a parameter, generates its approximated circuit and stores it, e.g., in the Verilog
and/or the Blif format. The file paths are specified in the Variant itself and the circuit from which to
start the approximation is the original variant of the candidate the new variant corresponds to.

A variant is unique, i.e., this method is only called if no variant with the same error metrics and approx-
imation method as variant has been generated before; otherwise, the variant can be loaded from the
variant set.

1.3. Developer Guide 39

CIRCA Documentation, Release 0.9

applyRules(variant: Variant): Boolean

The applyRules method is used to ensure that a Variant’s configuration of error metrics and bounds
is compatible with its approximation method, represented by the ApproxMethod instance on which this
method is called. It is allowed to increase error bounds of the variant, but not to exceed the maximum
bound of an error metric. Error bounds can also be ignored for certain approximation methods, but you
should definitely at least generate warning messages if you do so.

The method should return True if the variant was successfully adjusted to the approximator’s set of rules,
and False otherwise. Typically, a False means that the variant is not considered in the approximation
process.

__repr__(): String

The ApproxMethod class provides a __repr__ method for a human-readable representation of the
approximation method. In most cases, the default implementation (which outputs the class name and the
instance’s settings if present) should suffice.

Back to the Developer Guide

Extensible components

• Approximators

• ErrorMetrics

ErrorMetrics

Error metrics (or ErrorMetric instances) provide a general way to specify quality constraints. Each
ErrorMetric represents a specific way of quantifying the errors produced by an approximated circuit in relation to
the original circuit’s output. Each instance, however, specifies a concrete maximum bound for its metric to serve as
candidate-specific quality constraint.

To create an abstract interface for working with error metrics of arbitrary types, the ErrorMetric class provides
several methods for increasing or comparing error values independently of the respective error metric’s value repre-
sentation.

Functions

__init__(id: String, max_value: Value, step: StepValue)

For identification and representation of different error metrics, each ErrorMetric must have a unique
class-level ID, just like approximators. The max_value parameter specifies the maximum error bound
for this instance. It has the abstract type Value which you can choose freely. The same applies to the
step parameter, which defines the step size of a value increment.

Note: Note that this method must call the superclass’s __init__ method, which takes an additional
argument default_value of type Value. It specifies the initial value of a new ErrorMetric
instance.

40 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

getNextValue(cur_value: Value): Value

This method calculates the next error value as the current value increased by exactly one step. The value
is returned, even if it exceeds the maximum error bound of this instance.

greaterMax(value: Value): Boolean

A simple query method to check whether the given error value value exceeds the maximum error bound
max_value of this instance.

getValueStr(value: Value): String

Returns a string representation of the given error value. This is used for ID generation of variants and
circuit configurations, so different error values should always generate different string representations.
Also make sure to keep the representation as short as possible to avoid overly long IDs.

Back to the Developer Guide

1.3.5 Utils

The CIRCA framework provides some utility modules for working with the configuration file, generating log messages
and accessing the file system and OS functions.

Configuration utils cfg_util

The cfg_util module provides a configuration file parser CfgParser to easily get option values or dictio-
naries of options and their values from a whole section of the config file. It also includes a parser function
parseQualityConstraintSpecifier to parse the values from a quality constraint specification string as de-
fined in the user guide’s subsection about the configuration file

Logging utils logutils

CIRCA comes with a relatively extensive logging functionality that lets you write logging output to files or to the
console with five priority levels. Log messages to the console are also colored based on their level. To include logging
in a custom module, simply include this code in the module:

import logging
from circa.utils.logutils import IndentationAdapter
log = logging.getLogger("circa.base.<your_module_name>")
log = IndentationAdapter(log, offset=7)

Where <your_module_name> is the name you want to appear as source of the log message. You can adjust
the offset parameter of the IndentationAdapter to increase or decrease the amount of indentation that is
prepended to the message. For writing a log message, use one of the following functions:

log.debug("Message of low importance, only for debugging")
log.info("General message for the user, can be ignored safely")
log.warning("Something is not right but the process will continue")
log.error("Something unexpected happened that might lead to a crash")
log.critical("Something very bad happened and the process will be stopped")

1.3. Developer Guide 41

CIRCA Documentation, Release 0.9

Note: This is a WIP Beta version. All content is subject to change.

1.4 External programs and frameworks

1.4.1 ABC

ABC is an open-source synthesis tool developed by Berkeley Logic Synthesis and Verification Group. In CIRCA
approximation techniques are implemented using ABC.

1.4.2 Yosys

Yosys is developed by Clifford Wolf from TU Vienna. In CIRCA it is used for the synthesis of Verilog files to BLIF
netlists.

Note: This is a WIP Beta version. All content is subject to change.

1.5 CIRCA Source Code

1.5.1 base package

base.candidates module

class base.candidates.Candidate(name, variants_path, orig_var, quality_constraints,
app_methods)

Bases: abc.ABC

Abstract Base Class for approximation candidate.

Stores all static information about a candidate in the original circuit that is to be approximated.

Parameters

• name (str) – The Candidate’s name used primarily for identification. Should be human-
readable (e.g. module name if candidate is a module). name and type are used to create a
unique identifier for the Candidate.

• variants_path (str) – Path to the directory in which the Candidate’s variant files will
be stored.

• orig_var (Variant) – The Candidate’s initial instance from the input design.

• quality_constraints (list of ErrorMetric) – A list of ErrorMetrics specifying
the error metrics and bounds to be used when approximating the Candidate.

• app_methods (list of ApproxMethod) – A list of ApproxMethods to execute the ap-
proximation of the Candidate.

Inheriting classes must implement the following methods:

__init__()

42 Chapter 1. About CIRCA

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.clifford.at/yosys/

CIRCA Documentation, Release 0.9

generateOriginalVariant()

Default implementations are provided for

hasApproxMethod()

hasErrorMetric()

getErrorMetric()

__repr__()

__str__()

It is recommended to use the default implementations unless special behavior of these methods is required.

static getTypeStr()
Returns the Candidate type’s unique ID string.

name
The Candidate’s name used primarily for identification.

Type str

id
Unique identifier of the Candidate; is generated from type ID and name attribute automatically.

Type str

variants_path
Path to the directory in which the Candidate’s variant files will be stored.

Type str

orig_var
The Candidate’s initial instance from the input design.

Type Variant

quality_constraints
A list of ErrorMetrics specifying the error metrics and bounds to be used when approximating this Candi-
date.

Type list of ErrorMetric

app_methods
A list of ApproxMethods to execute the approximation of the Candidate.

Type list of ApproxMethod

pis
A list of the Candidate’s primary inputs represented by Signal instances.

Type ‘list’ of Signal

appendPi(pi)
Appends a Signal to the list of primary inputs.

Parameters pi (Signal) – A Signal instance representing a primary input of this Candidate.

pos
A list of the Candidate’s primary outputs represented by Signal instances.

Type ‘list’ of Signal

appendPo(po)
Appends a Signal to the list of primary outputs.

1.5. CIRCA Source Code 43

CIRCA Documentation, Release 0.9

Parameters po (Signal) – A Signal instance representing a primary output of this Candidate.

generateOriginalVariant(gen_info)
Creates and returns the first Variant of this Candidate.

The original Variant’s error bounds will have the default values of this Candidate’s error metrics and its
approximation method will be the first one on this Candidate’s app_methods list.

Note: This is an abstract method which must be implemented by inheriting classes.

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

hasApproxMethod(app_method_id)
Does this Candidate have an ApproxMethod with the specified ID?

Parameters app_method_id (str) – The unique identifier of the ApproxMethod subclass to
look for.

Returns True if an ApproxMethod instance with ID app_method_id is an element of this Can-
didate’s app_methods attribute, otherwise False.

getApproxMethod(app_method_id)
Gets the ApproxMethod instance with the specified ID if it exists.

Parameters app_method_id (str) – The unique identifier of the ApproxMethod subclass to
look for.

Returns The ApproxMethod instance from this Candidate’s app_methods attribute with the
specified ID if one exists, None otherwise.

hasErrorMetric(err_id)
Does this Candidate have an ErrorMetric with the specified ID?

Parameters err_id (str) – The unique identifier of the ErrorMetric subclass to look for.

Returns True if an ErrorMetric instance with ID err_id is an element of this Candidate’s qual-
ity_constraints attribute, otherwise False.

getErrorMetric(err_id)
Gets the ErrorMetric instance with the specified ID if it exists.

Parameters err_id (str) – The unique identifier of the ErrorMetric subclass to look for.

Returns The ErrorMetric instance from this Candidate’s quality_constraints attribute with the
specified ID if one exists, None otherwise.

class base.candidates.ModuleCand(name, variants_path, orig_var, quality_constraints,
app_methods)

Bases: base.candidates.Candidate

Candidate representation of a module.

This Candidate subclass represents approximation candidates specified directly by a module from the input de-
sign. Approximation of ModuleCands results in the replacement of the original modules by their approximated
variants and is therefore especially simple and configurable.

static getTypeStr()
Returns the Candidate type’s unique ID string.

44 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

generateOriginalVariant(gen_info)
Overrides the superclass method.

Both Verilog and BLIF files of the generated Variant are created.

class base.candidates.CandidateSet(cands=None, path=”)
Bases: object

Data structure to store all Candidates.

This class is only instantiated once and serves as universally accessible storage for the approximation candidates.

Parameters

• cands (list of Candidate, optional) – The initial set of Candidates if already available.
The list may be changed later.

• path (str, optional) – The path of the directory in which the

• files are stored. Default value is "". (Candidate) –

candidates
The list in which the Candidate instances are stored.

Type list of Candidate

path
The path of the directory in which the Candidate files are stored.

Type str

append(cand)
Adds a Candidate to the set. Same semantics as list.append().

Parameters cand (Candidate) – A Candidate instance to be added to the set.

extend(cands)
Adds a list of Candidates to the set. Same semantics as list.extend().

Parameters cands (list of Candidate) – A list of Candidate instances to be added to the set.

remove(cand)
Removes a Candidate from the set. Same semantics as list.remove().

Parameters cand (Candidate) – A Candidate instance to be removed from the set.

Raises ValueError – If cand is not part of the CandidateSet.

base.circuits module

class base.circuits.Circuit(node, name, path)
Bases: object

Represents the circuit defined by the configuration of a Node.

Stores file and validity information as well as a reference to the Node representing the circuit.

node
The Node representing this circuit.

Type Node

name
A string identifying the circuit uniquely. It is used to generate the circuit’s internal ID using a hash function.

Type str

1.5. CIRCA Source Code 45

CIRCA Documentation, Release 0.9

hash
Internal unique identification of this Circuit. Calculated as hash(self.name).

Type str

path
The absolute path to the directory in which the circuit files shall be stored.

Type str

file_name
Name of the circuit files without extension. Generated as self.path + "/" + self.hash.

Type str

file_verilog
Name of the circuit’s Verilog file. Generated as self.file_name + ".v".

Type str

file_blif
Name of the circuit’s BLIF file. Generated as self.file_name + ".blif".

Type str

valid
True if and only if this Circuit has been validated sucessfully.

Type boolean

validated
Set to True after validation.

Type boolean

class base.circuits.ApproximatedCircuits(path)
Bases: object

This class holds the throught the approx. process generated approx. circuits. A list of approximated circuits,
ordered by time of generation.

Parameters path (str) – The absolute path to the directory in which the approximated circuit
files are stored.

path

append(circuit)

appendNode(node)
Appends the Circuit represented by a given Node.

base.information module

class base.information.GeneralInformation(cfg_file, orig_design)
Bases: object

Entity class holding all static general information about the circuit and references to CandidateSet, VariantSet
and ApproximatedCircuits to be accessed by all stages.

cfg_file
The content of the used configuration file.

Type str

46 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

cfg_file_path
The absolute path to the configuration file.

Type str

orig_design
The absolute path to the input circuit file without file extension.

Type str

orig_design_path
The absolute path to the input circuit file’s directory.

Type str

orig_design_verilog
The absolute path to the input circuit’s Verilog file.

Type str

orig_design_blif
The absolute path to the input circuit’s Blif file.

Type str

top_module
The name of the input circuit’s top level module.

Type str

pis
A list of the original circuit’s primary input signals.

Type list of Signal

pos
A list of the original circuit’s primary output signals.

Type list of Signal

base_directory
The absolute path to the base working directory in which the input circuit is typically stored.

Type str

output_dir
The absolute path to the directory in which all output files will be stored.

Type str

cand_set
The framework’s global CandidateSet instance in which the Candidates are stored.

Type CandidateSet

cand_set_path
The absolute path to the directory in which candidate files are stored.

Type str

variant_set
The framework’s global VariantSet instance in which all generated Variants are stored.

Type VariantSet

variant_set_path
The absolute path to the directory in which variant files are stored.

1.5. CIRCA Source Code 47

CIRCA Documentation, Release 0.9

Type str

approx_circuits
The framework’s global ApproximatedCircuits instance in which all generated Circuits are stored.

Type ApproximatedCircuits

approx_circuits_path
The absolute path to the directory in which circuit files are stored.

Type str

timing
The framework’s global TimestampManager instance that is used to store the most important events and
runtimes.

Type TimestampManager

extractPiPo()
Gathers information about the input circuit’s primary inputs and outputs and stores it in attributes pis and
pos.

base.metrics package

base.metrics.error_metric module

class base.metrics.error_metric.ErrorMetric(default_value, max_value, step)
Bases: abc.ABC

Abstract Base Class for an error metric. Inheriting classes must implement methods:

__init__ getValueStr getNextValue getPrevValue greaterMax

Parameters

• default_value – The default error value of the new ErrorMetric.

• max_value – The maximum error value of the new ErrorMetric.

• step – The step size, i.e. the rate at which the error value is increased.

Note: All value parameters can have arbitrary types to allow for arbitrary error definitions.

static metricId()
Returns this ErrorMetric’s unique ID string.

id

default_value

max_value

step

getValueStr(value)
Returns a human-readable string representation of the given value.

getNextValues(cur_value)
Returns a list of all possible values resulting from increasing cur_value by one step.

48 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

getPrevValues(cur_value)
Returns a list of all possible values from which cur_value can be reached in one step. The list is empty if
this is not possible.

greaterMax(value)
Returns True if value exceeds max_value, else False.

convertToValue(value)
Converts the given string representation of a value into the correct value type.

base.metrics.error_metric_factory module

class base.metrics.error_metric_factory.ErrorMetricFactory
Bases: object

Factory class for creating ErrorMetric instances.

Provides functionality to create ErrorMetric instances based on their unique class IDs and bound and step
parameters.

SUPPORTED_ERROR_METRICS = {'BF': <function ErrorMetricFactory.<lambda>>, 'BM': <function ErrorMetricFactory.<lambda>>, 'WC': <function ErrorMetricFactory.<lambda>>}

static factory(metric_id, bound, step=0)
Creates an ErrorMetric instance of the type specified by metricId.

The object will be instantiated with the given bound and step parameters or default step value if step is not
specified.

Parameters

• metric_id (str) – The unique ID string of the ErrorMetric subclass to instantiate.

• bound (float) – The upper bound for the new ErrorMetric’s value.

• step (float) – The rate at which the value is increased in each step. Default value is 0.

Returns An instance of the ErrorMetric subclass specified by metric_id.

Return type ErrorMetric

base.metrics.error_wc module

class base.metrics.error_wc.WorstCaseError(max_value, step)
Bases: circa.base.metrics.error_metric.ErrorMetric

static metricId()
Returns this ErrorMetric’s unique ID string.

getNextValues(cur_value)
Returns a list of all possible values resulting from increasing cur_value by one step.

getPrevValues(cur_value)
Returns a list of all possible values from which cur_value can be reached in one step. The list is empty if
this is not possible.

getValueStr(value)
Returns a human-readable string representation of the given value.

greaterMax(value)
Returns True if value exceeds max_value, else False.

1.5. CIRCA Source Code 49

CIRCA Documentation, Release 0.9

convertToValue(value)
Converts the given string representation of a value into the correct value type.

base.metrics.error_bf module

class base.metrics.error_bf.BitFlipError(max_value, step)
Bases: circa.base.metrics.error_metric.ErrorMetric

static metricId()
Returns this ErrorMetric’s unique ID string.

getNextValues(cur_value)
Returns a list of all possible values resulting from increasing cur_value by one step.

getPrevValues(cur_value)
Returns a list of all possible values from which cur_value can be reached in one step. The list is empty if
this is not possible.

getValueStr(value)
Returns a human-readable string representation of the given value.

greaterMax(value)
Returns True if value exceeds max_value, else False.

convertToValue(value)
Converts the given string representation of a value into the correct value type.

base.metrics.error_bm module

class base.metrics.error_bm.BitMaskError(max_value, step)
Bases: circa.base.metrics.error_metric.ErrorMetric

ErrorMetric subclass that represents an error as a number of MSBs and a number of LSBs that together form
a bit mask specifying which bits should be replaced with zeros during approximation. Error values are tuples
(num_msbs, num_lsbs).

static metricId()
Returns this ErrorMetric’s unique ID string.

getNextValues(cur_value)
Returns a list of all possible values resulting from increasing cur_value by one step.

getPrevValues(cur_value)
Returns a list of all possible values from which cur_value can be reached in one step. The list is empty if
this is not possible.

getValueStr(value)
Returns a human-readable string representation of the given value.

greaterMax(value)
Returns True if value exceeds max_value, else False.

convertToValue(value)
Converts the given string representation of a value into the correct value type.

50 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

base.metrics.error_rel module

class base.metrics.error_rel.RelativeError(max_value, step)
Bases: circa.base.metrics.error_metric.ErrorMetric

static metricId()
Returns this ErrorMetric’s unique ID string.

getNextValues(cur_value)
Returns a list of all possible values resulting from increasing cur_value by one step.

getPrevValues(cur_value)
Returns a list of all possible values from which cur_value can be reached in one step. The list is empty if
this is not possible.

getValueStr(value)
Returns a human-readable string representation of the given value.

greaterMax(value)
Returns True if value exceeds max_value, else False.

convertToValue(value)
Converts the given string representation of a value into the correct value type.

base.nodes module

class base.nodes.Node(configuration, parent=None, circuit=None, is_root=False, state=None)
Bases: object

This class represents a node in the search space tree, mainly consisting of a list holding a Variant for each
Candidate in the circuit.

Parameters

• configuration (list of Variant) – A list containing the Variants of all Candidates in
the original circuit. The order of the Variants must be equal to the order of the respective
Candidates in the framework’s CandidateSet.

• parent (Node, optional) – The Node’s parent Node in the search space, i.e. the Node that
creates this new Node. Default value is None.

• circuit (Circuit, optional) – The actual Circuit represented by this Node. Default
value is None.

• is_root (bool, optional) – Flag specifying whether this Node should be treated as
the search space tree’s root node. Default value is False.

• state – Custom attribute in which additional component-specific information about this
Node can be stored, e.g. whether a Node has been visited during search stage.

configuration

parent

id
A string that uniquely identifies this Node by its configuration.

Type str

circuit

is_root

1.5. CIRCA Source Code 51

CIRCA Documentation, Release 0.9

state

stats
A dictionary storing estimated or computed statistical information about this Node.

Type Dictionary

valid
This Node’s Circuit’s valid attribute. Cannot be read if this Node does not have a Circuit.

Type bool

validated
Has this Node’s Circuit been validated? Returns False if this Node does not have a Circuit.

Type bool

getVariantOfCandidate(cand)
Returns the Variant of a given Candidate in the configuration of this Node.

Parameters cand (Candidate) – The Candidate whose Variant to return.

Returns The Variant corresponding to cand if it can be found, otherwise None.

generateChildren()
Returns a list of all child Nodes. Each child differs from its parent in exactly one Variant. The differing
Variants are created using the generateChildren() method of the Variant. The resulting Variants
will generally have higher error values than the Variants of this Node.

generateNeighbors()
Returns a list of all neighboring Nodes. Each neighbor differs from this Node in exactly one Variant. The
differing Variants are created using the generateNeighbors() method of the Variant. The resulting
Variants will have different, but not necessarily higher error values than the Variants of this Node.

generateParents()
Returns a list of all Nodes that could yield this Node as child. Each parent differs from this Node in exactly
one Variant. The differing Variants are created using the generateParents() method of the Variant.
The resulting Variants will generally have lower error values than the Variants of this Node.

static generateNodeFromConfiguration(gen_info, config_dict)
Generates a Node instance where for each Candidate, a predetermined Variant configuration is used. If a
configuration is not or only partially specified, the original Variant’s values will be used.

Parameters

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

• config_dict (Dictionary) – A dictionary containing the Candidates’ names as
keys and specification strings for the corresponding Variants as values.

Returns A Node instance where the Variants are configured as specified by the config_dict,
if their Candidate’s name is included as key, or generated like the Candidate’s original Vari-
ants.

base.signals module

class base.signals.Signal(name=”, size=None, is_signed=0, is_reg=0, high_active=1)
Bases: object

Holds information about a signal of a circuit, mainly for input and output signals.

Parameters

52 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• name (str, optional) – The Signal’s name as specified in the input design file. Default
value is "".

• size (int, optional) – The bit width of the Signal. Default value is None.

• is_signed (int, optional) – Flag specifying whether the Signal is signed (1) or not
(0). Default value is 0.

• is_reg (int, optional) – Flag specifying whether the Signal is a register (1) or not
(0). Default value is 0.

• high_active (int, optional) – Flag specifying whether the Signal is active on high
input (1) or low input (0). Default value is 1.

name

size

is_signed

is_reg

high_active

base.variants module

class base.variants.Variant(candidate, app_method, error_bounds)
Bases: object

This class represents a specific version of an approximated candidate.

Variants are used to synthesize approximated circuits by replacing the Candidates’ original Variants with ap-
proximated Variants.

Parameters

• candidate (Candidate) – The Candidate this Variant belongs to.

• app_method (ApproxMethod) – An ApproxMethod instance that is used to generate
the approximated circuit file specified by this Variant’s quality constraints.

• error_bounds (Dictionary) – A dictionary containing ErrorMetric IDs as keys and
error value bounds as values.

id
A unique string identifying this Variant. It is generated using the Candidate’s ID and this Variant’s quality
constraints.

Type str

candidate

path
The absolute path to the directory in which the Variant files of this Variant’s Candidate are stored, i.e. the
directory in which this Variant’s files are probably stored.

Type str

file_name
The absolute path to this Variant’s circuit file without file extension.

Type str

file_verilog
The absolute path to this Variant’s Verilog circuit file.

1.5. CIRCA Source Code 53

CIRCA Documentation, Release 0.9

Type str

file_blif
The absolute path to this Variant’s Blif circuit file.

Type str

app_method

error_bounds

hasErrorMetric(err_id)
Returns whether an ErrorMetric with the given ID is in this Variant’s error bounds.

Parameters err_id (str) – The ID of the desired ErrorMetric type.

Returns True if an ErrorMetric of the type with the given ID err_id is contained in this
Variant’s error_bounds attribute, otherwise False.

generateChildren()
Returns a list of Variants so that for each approximation method and error metric there is exactly one
Variant where either exactly one error bound is increased by one step or the approximation method is dif-
ferent. The error bounds of the metrics are not increased beyond their maximum value and approximation
methods are chosen from this Variant’s Candidate.

generateParents()
Returns a list of Variants so that for each approximation method and error metric there is exactly one
Variant where either exactly one error bound is decreased by one step or the approximation method is dif-
ferent. The error bounds of the metrics are not decreased beyond their minimum value and approximation
methods are chosen from this Variant’s Candidate.

generateNeighbors()
Returns a list of Variants so that for each approximation method there is exactly one Variant with another
approximation method and for each error metric there are two Variants where the error bound is increased
or decreased by one step. The error bounds are not increased beyond their maximum value and not de-
creased beyond their minimum value. Approximation methods are chosen from this Variant’s Candidate.

static generateVariantFromConfiguration(cand, conf)
Generates a Variant instance of a Candidate based on a configuration string that specifies error metric
values and/or the approximation method. Each non-specified setting will be set as for the Candidate’s
original Variant.

Parameters

• cand (Candidate) – The Candidate instance of which to create a Variant.

• conf (str) – A configuration string specifying the new Variant’s quality constraints
and/or approximation methods. It consists of semicolon separated key=value pairs
where key is either the key word ApproxMethod or the ID of an ErrorMetric and
value is the ID of an ApproxMethod or an error value as upper bound.

Example

ApproxMethod=PS; BF=2

class base.variants.VariantSet(cand_set)
Bases: object

Globally accessible data structure storing all approximated Variants.

Parameters cand_set (CandidateSet) – The framework’s final CandidateSet instance.

54 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

path
The absolute path to the directory in which the Variant files are stored.

Type str

append(variant)
Adds a Variant to the set. Same semantics as list.append().

Parameters variant (Variant) – A Variant instance to be added to the set.

extend(variants)
Adds a list of Variants to the set. Same semantics as list.extend().

Parameters variants (list of Variant) – A list of Variant instances to be added to the set.

findVariant(variant)
Returns True if and only if the given Variant is contained in this VariantSet.

1.5.2 ext_tools package

ext_tools.ext_tools module

class ext_tools.ext_tools.ExtTools(settings)
Bases: object

This class provides an interface for all stages to utilize external tools based on system configuration.

static abc_dprove(file_in)
Uses ABC’s dprove method to validate a circuit.

Parameters file_in (str) – An SQCC file with the CUT already in place in Verilog or
BLIF format. If Verilog format is used, Yosys will be used to convert to BLIF. ABC does not
support vectors and BLIF is a bit format.

Returns True if the circuit does not violate the specified quality constraints, otherwise False.

Raises ValueError – If the input file format is incorrect.

static abc_pdr(file_in)
Uses ABC’s pdr method to validate a circuit.

Parameters file_in (str) – Verilog or BLIF format. If Verilog format is used, Yosys will
be used to convert to BLIF. ABC does not support vectors and BLIF is a bit format.

Returns True if the circuit does not violate the specified quality constraints, otherwise False.

Raises ValueError – If the input file format is incorrect.

static abc_if(file_in, file_out)
Uses ABC’s if method to generate statistics about a circuit.

A stat file is created and stored as file_out.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.
If Verilog format is used, Yosys will be used to convert to BLIF. ABC does not support
vectors and BLIF is a bit format.

• file_out (str) – The absolute path to the stat file in any writable format (use *.stat
by convention).

1.5. CIRCA Source Code 55

CIRCA Documentation, Release 0.9

static precisionScaling(file_in, file_out, mask, tool=’abc’)
Generates an approximated circuit using precision scaling.

The mask parameter specifies the number of output bits to lock and their values. Returns the number of
changes.

Parameters

• file_in (str) – The absolute path to the circuit file to be approximated in Verilog or
BLIF format. If Verilog format is used, Yosys will be used to convert to BLIF. ABC does
not support vectors and BLIF is a bit format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• mask (str) – Specifies number and kind of output bits to lock as a string containing only
1s and 0s. The length of the string must equal the output size of the input circuit.

• tool (str, optional) – Determines which external tool to use (abc or yosys).
Default value is abc.

Note: Right now only ABC is supported for this function.

Returns The number of changes made for approximation as returned by the external tool.

Raises ValueError – If the specified tool is not supported.

static aigRewriting(qc_file, file_in, file_out, effort=2, tool=’abc’)
Generates an approximated circuit using AIG rewriting and returns the number of changes.

Parameters

• qc_file (str) – The absolute path to the circuit file that specifies the quality constraitns
to be used for approximation in Verilog or BLIF format.If Verilog format is used, Yosys
will be used to convert to BLIF. ABC does not support vectors and BLIF is a bit format.

• file_in (str) – The absolute path to the circuit to be approximated in Verilog or BLIF
format. If Verilog format is used, Yosys will be used to convert to BLIF. ABC does not
support vectors and BLIF is a bit format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• effort (int, optional) – Effort parameter supplied to the external tool. For ABC,
it specifies the number of critical paths that are checked: 0: 1 critical path 1: All cricital
paths once 2: All critical paths as long as possible

• tool (str, optional) – Determines which external tool to use (abc or yosys).
Default value is abc.

Note: Right now only ABC is supported for this function.

Returns The number of changes made for approximation as returned by the external tool.

Raises ValueError – If the specified tool is not supported.

static synthesize(file_in, file_out, top_module, f_noattr=1, tool=’yosys’, cmd=’techmap’)
Synthesizes a circuit by mapping it to a specific technology and writes the resulting circuit to another file.

Parameters

56 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• top_module (str) – The name of the input circuit’s top level module.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for Yosys (1) or not (0). Default value is 1.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

• cmd (str, optional) – The command to be used by the used tool. Default value (for
Yosys) is techmap.

Note: Right now only Yosys with techmap command is supported for this function.

Raises ValueError – If the specified tool is not supported.

static extractAndWriteModule(file_in, file_out, top_module, module, f_noattr=1,
tool=’yosys’)

Writes a new circuit file containing a module from the input circuit using the given tool.

Parameters

• file_in (str) – The absolute path to the circuit file from which to extract the module
in Verilog or BLIF format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• top_module (str) – The name of the top level module of the input circuit.

• module (str) – The name of the module to extract.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the result file with Yosys (1) or not (0). Default value is 1.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

Note: Right now only Yosys is supported for this function.

Raises ValueError – If the specified tool is not supported.

static findCandidates(file_in, top_module, file_separated_design, file_solutions, solu-
tion_name, pattern, tool=’yosys’)

Searches for PGSL pattern in the input circuit and extracts all matches to separate files.

Each match is encapsulated in a Verilog module and written to a solutions file. The modified input design
is written to its own file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.

• top_module (str) – The name of the top level module of the input circuit.

• file_separated_design (str) – The absolute path to the file in which the modified
input design will be stored in Verilog format.

1.5. CIRCA Source Code 57

CIRCA Documentation, Release 0.9

• file_solutions (str) – The absolute path to the file in which the found solutions
are stored in Verilog format.

• solution_name (str) – TODO: Add arg description

• pattern (str) – The PGSL pattern used for the search.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

Note: Right now only Yosys is supported for this function.

Note: There is currently no Yosys implementation available.

static flattenDesign(file_in, file_out, top_module, f_techmap=1, f_noattr=1, tool=’yosys’)
Removes hierarchical structures from a circuit design, i.e. removes modules and subcircuits.

Parameters

• file_in (str) – The absolute path to the circuit file to be flattened in Verilog or BLIF
format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• top_module (str) – The name of the input circuit’s top level module.

• f_techmap (int, optional) – Flag specifying whether the techmap command of
Yosys should be executed before flattening (1) or not (0). Default value is 1.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the result circuit when using Yosys (1) or not (0). Default value is 1.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

Note: Right now only Yosys is supported for this function.

Raises ValueError – If the specified tool is not supported.

static listModules(file_in, top_module, select_pattern=”, tool=’yosys’)
Return a list with all module names occurring in a circuit design.

The module names can be selected using a string pattern.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.

• top_module (str) – The name of the input circuit’s top level module.

• select_pattern (str, optional) – Specifies the pattern by which module names
are selected. If not empty, only names matching the pattern will be included in the result.
Default value is "".

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

58 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Note: Right now only Yosys is supported for this function.

Returns A list containing all module names in the given circuit design matching the specified
pattern.

Return type list of str

Raises ValueError – If the specified tool is not supported.

static renameModule(file_in, file_out, module, new_module, f_noattr=1, tool=’yosys’)
Change sthe name of a module in a circuit design and writes the result into another file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• module (str) – The name of the module to be renamed.

• new_module (str) – The new name for the module.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the result circuit when using Yosys (1) or not (0). Default value is 1.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

Note: Right now only Yosys is supported for this function.

Raises ValueError – If the specified tool is not supported.

static replaceModules(file_in, file_out, top_module, files_modules, f_noattr=1, tool=’yosys’)
Deletes modules from a circuit design, replaces them with circuits from other files and writes the resulting
circuit to another file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or BLIF format.

• file_out (str) – The absolute path to the output circuit file in Verilog or BLIF format.

• top_module (str) – The name of the top level module in the input circuit.

• files_modules (list of tuple) – A list containing tuples (file, module) where
module is the name of a module in the input circuit to be replaced and file is the
absolute path to a circut file containing the replacement module.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting circuit when using Yosys (1) or not (0). Default value is 1.

• tool (str) – Determines which external tool to use (yosys or abc). Default value is
yosys.

Note: Right now only Yosys is supported for this function.

Raises ValueError – If the specified tool is not supported.

1.5. CIRCA Source Code 59

CIRCA Documentation, Release 0.9

static readFiles(files, file_out, top_module, tool=’yosys’, f_check_hierarchy=False,
f_flatten=False, f_noattr=True, f_opt=False)

Reads a number of circuits and writes them into a single file.

Parameters

• files (list of str) – List containing absolute paths to the circuit files to read in Verilog or
BLIF format.

• file_out (str) – The absolute path to the result circuit file in Verilog or BLIF format.

• top_module (str) – The name of the result circuit’s top level module. If
f_check_hierarchy is set to True, all input files must have this top module.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

• f_check_hierarchy (bool, optional) – Flag specifying whether each input cir-
cuit should be checked for the correct top level module (True) or not (False). Default
value is False.

• f_flatten (bool, optional) – Flag specifying whether the result circuit should
be flattened (True) or not (False). Default value is False.

• f_noattr (bool, optional) – Flag specifying whether the noattr flag should be
used for writing circuits with Yosys (True) or not (False). Default value is True.

• f_opt (bool, optional) – Flag specifying whether the result circuit should be opti-
mized (True) or not (False). Default value is False.

Note: Right now only Yosys is supported for this function.

Raises ValueError – If the specified tool is not supported.

static verilogToBlif(file_in, file_out, top_module, tool=’yosys’, f_flatten=False)
Converts a Verilog file to BLIF format.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog format.

• file_out (str) – The absolute path to the result circuit file in BLIF format.

• top_module (str) – The name of the top-level module of the input circuit.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

• f_flatten (bool, optional) – Flag specifying whether the result circuit should
be flattened (True) or not (False). Default value is False.

Raises ValueError – If the specified tool is not supported.

static blifToVerilog(file_in, file_out, top_module, tool=’yosys’, f_flatten=False,
f_wideports=True, f_noattr=True)

Converts a BLIF file to Verilog format.

Parameters

• file_in (str) – The absolute path to the input circuit file in BLIF format.

• file_out (str) – The absolute path to the result circuit file in Verilog format.

60 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• top_module (str) – The name of the top-level module of the input circuit.

• tool (str, optional) – Determines which external tool to use (yosys or abc).
Default value is yosys.

• f_flatten (bool, optional) – Flag specifying whether the result circuit should
be flattened (True) or not (False). Default value is False.

• f_wideports (bool, optional) – Flag specifying whether it should be attempted
to restore busses in the result circuit when using Yosys (True) or not (False). Default
value is True.

• f_noattr (bool, optional) – Flag specifying whether the noattr flag should be
used for writing the result circuit using Yosys (True) or not (False). Default value is
True.

Raises ValueError – If the input or output file format is incorrect or the specified tool is
not supported.

static ic3(file_in, top_module, name_q, f_seq)
Performs circuit validation using Yosys’ sat command.

Parameters

• file_in (str) – The absolute path to the input circuit file containing an SQCC in
Verilog or BLIF format.

• top_module (str) – The name of the input circuit’s top level module.

• name_q (str) – The parameter to be added after the -prove flag of the sat command.
TODO: Add proper description here

• f_seq (bool) – Flag specifying whether the input circuit is sequential (True) or not
(False).

Returns True if the validation was successful, False otherwise.

Return type bool

static compileVerilog(source_files, compiled_file, top_module=”)
Compiles a list of Verilog files to an executable simulation file.

The files must be in Verilog format and include all modules that are instantiated. The name of the root
module can be specified. It must be specified if the design hierarchy does not have a unique top level
module.

Parameters

• source_files (list of str) – A list containing the absolute paths to all Verilog source
files.

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises

• ValueError – If no source files are specified.

• RuntimeError – If the iverilog command exits with an error.

static compileVerilogFileList(source_list_file, compiled_file, top_module=”)
Compiles a list of Verilog files specified in a separate file to an executable simulation file.

1.5. CIRCA Source Code 61

CIRCA Documentation, Release 0.9

The files must be in Verilog format and include all modules that are instantiated. The name of the root
module can be specified. It must be specified if the design hierarchy does not have a unique top level
module.

Parameters

• source_list_file (str) – The absolute path to the file in which the Verilog source
files are listed. This file must be a readable text file that specifies one source file per line
and ends with a blank line (!).

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises RuntimeError – If the iverilog command exits with an error.

static compileVerilogMixed(source_files, source_list_file, compiled_file, top_module=”)
Compiles a list of Verilog files specified explicitly or in a separate file to an executable simulation file.

Source file names can be specified explicitly or by a file containing one source file name per line. The files
must be in Verilog format and include all modules that are instantiated. The name of the root module can
be specified. It must be specified if the design hierarchy does not have a unique top level module.

Parameters

• source_files (list of str) – A list containing the absolute paths to Verilog source files.

• source_list_file (str) – The absolute path to the file in which other Verilog source
files are listed. This file must be a readable text file that specifies one source file per line
and ends with a blank line (!).

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises RuntimeError – If the iverilog command exits with an error.

static runCompiledVerilog(compiled_file, remove_file=False)
Runs a compiled Verilog simulation file.

Parameters

• compiled_file (str) – The absolute path to the compiled simulation file. By con-
vention, simulation files have the format *.vvp.

• remove_file (bool) – Flag specifying whether the compiled file should be removed
after the simulation was executed. Default value is False.

Raises RuntimeError – If the vvp command exits with an error.

ext_tools.abc_interface module

ext_tools.abc_interface.generateStat(file_in, file_out)
Invokes ABC and generates statistics about a circuit using the command print_stats -lmpg.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output file in any writable format.

62 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

ext_tools.abc_interface.opt(file_in, file_out)
Invokes ABC and optimizes a given circuit design.

Parameters

• file_in (str) – The absolute path to the circuit file to optimize.

• file_out (str) – The absolute path to the output file to which the optimized circuit will
be written.

Note: If a hierarchy is found in the design it will be flattened, i.e., only the top module remains. This is
important if, in later steps, modules should be replaced.

ext_tools.abc_interface.aigRewriting(qc_file, file_in, file_out, effort=2)
Invokes ABC and performs AIG-Rewriting on a given circuit and conforming to given quality constraints.

Parameters

• qc_file (str) – The absolute path to the file specifying the quality constraints. Passed
to the aig_rewrite command as first parameter.

• file_in (str) – The absolute path to the input circuit file. Passed to the aig_rewrite
command as second parameter.

• file_out (str) – The absolute path to the output file to which the resulting circuit will
be written.

• effort (int, optional) – Integer in [0..2] specifying the effort level to be used
for approximation. Is passed to the aig_rewrite command as -E parameter. Default
value is 2.

Returns The number of changes as returned by the aig_rewrite command.

Raises IOError – If ABC does not behave as expected.

ext_tools.abc_interface.precisionScaling(file_in, file_out, mask)
Invokes ABC and performs precision scaling on a given circuit design.

Parameters

• file_in (str) – The absolute path to the input circuit file.

• file_out (str) – The absolute path to the output file to which the resulting circuit will
be written.

• mask (str) – A string representing the bit mask to be used for precision scaling. It is passed
to the precision_scaling command as the only parameter and must be formatted
correctly for this purpose. Ideally, the string contains only 0s and 1s and its length equals
the number of primary outputs of the input circuit.

Returns

The number of changes computed as n_start - n_end from the numbers of starting
and ending nodes returned by the precision_scaling command.

Raises IOError – If ABC does not behave as expected.

ext_tools.abc_interface.dprove(file_in)
Invokes ABC and performs temporal induction to prove sequential equivalence using the dprove command.

Parameters file_in (str) – The absolute path to the input circuit containing an SQCC in Verilog
or Blif format.

1.5. CIRCA Source Code 63

CIRCA Documentation, Release 0.9

Returns 1 if the proof was successful, 0 otherwise.

ext_tools.abc_interface.pdr(file_in)
Invokes ABC and performs temporal induction to prove sequential equivalence using the pdr command.

Parameters file_in (str) – The absolute path to the input circuit containing an SQCC in Verilog
or Blif format.

Returns 1 if the proof was successful, 0 otherwise.

ext_tools.abc_interface.runCmd(cmd)
Invokes ACB and runs a command using subprocess. The command’s return code is returned.

ext_tools.abc_interface.runScript(file)
Invokes ABC and runs a script file using subprocess. The script’s return code is returned.

ext_tools.iverilog_interface module

ext_tools.iverilog_interface.compileVerilog(source_files, compiled_file, top_module=”)
Compiles a list of Verilog files to a file that is executable by the vvp command.

The files must be in Verilog format and include all modules that are instantiated. The name of the root module
can be specified. It must be specified if the design hierarchy does not have a unique top level module.

Parameters

• source_files (list of str) – A list containing the absolute paths to all Verilog source
files.

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises

• ValueError – If no source files are specified.

• RuntimeError – If the iverilog command exits with an error.

ext_tools.iverilog_interface.compileVerilogFileList(source_list_file, compiled_file,
top_module=”)

Compiles a list of Verilog files specified in a separate file to a simulation file that is executable by the vvp
command.

The files must be in Verilog format and include all modules that are instantiated. The name of the root module
can be specified. It must be specified if the design hierarchy does not have a unique top level module.

Parameters

• source_list_file (str) – The absolute path to the file in which the Verilog source
files are listed. This file must be a readable text file that specifies one source file per line and
ends with a blank line (!).

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises RuntimeError – If the iverilog command exits with an error.

64 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

ext_tools.iverilog_interface.compileVerilogMixed(source_files, source_list_file, com-
piled_file, top_module=”)

Compiles a list of Verilog files to a file that is executable by the vvp command.

Source file names can be specified explicitly or by a file containing one source file name per line. The files must
be in Verilog format and include all modules that are instantiated. The name of the root module can be specified.
It must be specified if the design hierarchy does not have a unique top level module.

Parameters

• source_files (list of str) – A list containing the absolute paths to Verilog source files.

• source_list_file (str) – The absolute path to the file in which other Verilog source
files are listed. This file must be a readable text file that specifies one source file per line and
ends with a blank line (!).

• compiled_file (str) – The absolute path to the compiled and executable simulation
file. Standard format is *.vvp.

• top_module (str, optional) – The name of the module to use as root module to
execute. Only this module will be simulated when running the compiled simulation file.

Raises RuntimeError – If the iverilog command exits with an error.

ext_tools.iverilog_interface.runCompiledVerilog(compiled_file, remove_file=False)
Runs a compiled Verilog simulation file using the vvp command.

Parameters

• compiled_file (str) – The absolute path to the compiled simulation file. By conven-
tion, simulation files have the format *.vvp.

• remove_file (bool) – Flag specifying whether the compiled file should be removed
after the simulation was executed. Default value is False.

Raises RuntimeError – If the vvp command exits with an error.

ext_tools.yosys_interface module

ext_tools.yosys_interface.ic3(file_in, flags, top_module, f_call_and_remove=1)
Creates a Yosys script that invokes Yosys and performs circuit validation using the sat command.

Parameters

• file_in (str) – The absolute path to the input circuit file containing an SQCC in Verilog
or Blif format.

• flags (str) – String containing flag parameters for the sat command.

• top_module (str) – The name of the input circuit’s top level module.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be executed and then removed (1) or not (0). This also has an effect on the return value.
Default value is 1.

Returns The exit code of the script execution if f_call_and_remove is set to 1, otherwise the
absolute path to the script file. The script is not executed in this case.

ext_tools.yosys_interface.readFiles(files, file_out, top_module, f_call_and_remove=1,
f_check_hierarchy=1, f_flatten=1, f_opt=1, f_noattr=1)

Creates a Yosys script that reads a set of files into Yosys, performs a number of optional checks and optimizations
and writes the resulting circuit into another file.

1.5. CIRCA Source Code 65

CIRCA Documentation, Release 0.9

Parameters

• files (list of str) – A list of absolute file paths for circuit files in Verilog of Blif format to
read.

• file_out (str) – The absolute path to the output file to which the resulting circuit is
written in Verilog or Blif format.

• top_module (str) – The name of the top level module of the resulting circuit.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be executed and then removed (1) or not (0). Default value is 1.

• f_check_hierarchy (int, optional) – Flag specifying whether a hierarchy check
verifying that top_module is the top level module should be executed (1) or not (0).
Default value is (1).

• f_flatten (int, optional) – Flag specifying whether the resulting circuit’s hierar-
chy should be flattened (1) or not. Default value is 1.

• f_opt (int, optional) – Flag specifying whether the resulting circuit should be opti-
mized (1) or not (0). Default value is 1.

• f_noattr (int, optional) – Flag specifying whether the -noattr flag should be
used for writing the resulting circuit to a Verilog file (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if
f_call_and_remove is set to 1.

ext_tools.yosys_interface.verilogToBlif(file_in, file_out, top_module=None,
f_call_and_remove=True, f_flatten=False)

Creates a Yosys script that converts a Verilog circuit file to Blif format.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog format.

• file_out (str) – The absolute path to the output circuit file in Blif format.

• top_module (str, optional) – The name of the top level module to write to the Blif
file. If set to None, the auto-top flag will be used to determine the top module name.
Default value is None.

• f_call_and_remove (bool, optional) – Flag specifying whether the script
should be executed and then removed (True) or not (False). Default value is True.

• f_flatten (bool, optional) – Flag specifying whether the resulting circuit in Blif
format should be flattened (True) or not (False). Default value is False.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to True.

ext_tools.yosys_interface.blifToVerilog(file_in, file_out, top_module, f_wideports=True,
f_noattr=True, f_call_and_remove=True,
f_flatten=False)

Creates a Yosys script that converts a Blif circuit file to Verilog format.

Parameters

• file_in (str) – The absolute path to the input circuit file in Blif format.

• file_out (str) – The absolute path to the output circuit file in Verilog format.

66 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• top_module (str) – The name of the top level module of the input circuit. Will be used
for hierarchy check.

• f_wideports (bool, optional) – Flag specifying whether the wideports flag
should be used for reading the Blif file (True) or not (False). Default value is True.

• f_noattr (bool, optional) – Flag specifying whether the noattr flag should be
used for writing the Verilog file (True) or not (False). Default value is True.

• f_call_and_remove (bool, optional) – Flag specifying whether the script
should be executed and then removed (True) or not (False). Default value is True.

• f_flatten (bool, optional) – Flag specifying whether the resulting circuit in Ver-
ilog format should be flattened (True) or not (False). Default value is False.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to True.

ext_tools.yosys_interface.extractAndWriteModule(file_in, file_out, top_module, module,
f_noattr=1, f_call_and_remove=1)

Creates a Yosys script that reads a Verilog circuit file and writes a single module from that file into another
Verilog file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog format.

• file_out (str) – The absolute path to the output circuit file in Verilog format.

• top_module (str) – The name of the input circuit’s top level module.

• module (str) – The name of the module to extract from the input circuit.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting Verilog file (1) or not (0). Default value is 1.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be executed and then removed (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.replaceModules(file_in, file_out, top_module, files_modules,
f_noattr=1, f_call_and_remove=1)

Creates a Yosys script that reads a circuit file into Yosys, replaces a number of modules from that circuit with
modules read from other circuit files and writes the result to another file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output circuit file in Verilog or Blif format.

• top_module (str) – The name of the top level module in the input circuit.

• files_modules (list of tuple) – A list containing tuples (file, module) where
module is the name of a module in the input circuit to be replaced and file is the absolute
path to a circut file containing the replacement module.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting circuit (1) or not (0). Default value is 1.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

1.5. CIRCA Source Code 67

CIRCA Documentation, Release 0.9

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.flattenDesign(file_in, file_out, top_module, f_techmap=1,
f_noattr=1, f_call_and_remove=1)

Creates a Yosys script that flattens the design hierarchy, i.e. removes modules and subcircuits, of a circuit design.

This may be needed as a design pre-processing step for ABC.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output circuit file in Verilog or Blif format.

• top_module (str) – The name of the top level module of the input circuit.

• f_techmap (int, optional) – Flag specifying whether the techmap command
should be executed before flattening (1) or not (0). Default value is 1.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting circuit file (1) or not (0). Default value is 1.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.techmap(file_in, file_out, top_module, f_noattr=1,
f_call_and_remove=1)

Creates a Yosys script that synthesizes a circuit using the techmap command.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output circuit file in Verilog or Blif format.

• top_module (str) – The name of the top level module of the input circuit.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting circuit file (1) or not (0). Default value is 1.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.renameModule(file_in, file_out, module, new_module, f_noattr=1,
f_call_and_remove=1)

Creates a Yosys script that renames a module in a circuit and writes the resulting circuit to a file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output circuit file in Verilog or Blif format.

• module (str) – The name of the module to rename.

• new_module (str) – The new name for the module.

• f_noattr (int, optional) – Flag specifying whether the noattr flag should be
used for writing the resulting circuit file (1) or not (0). Default value is 1.

68 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.generateStat(file_in, file_out, f_call_and_remove=1)
Creates a Yosys script that reads a circuit and writes statistics to another file.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output circuit file in any writable format.

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

Returns The absolute path of the generated script file. Note that the file will be removed if the
f_call_and_remove flag is set to 1.

ext_tools.yosys_interface.listModules(file_in, top_module, select_pattern=”,
f_call_and_remove=1)

Creates a Yosys script that reads a circuit design file and lists all modules in the circuit.

The module names are stored in a list and can be filtered by a pattern passed to the select command.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog format.

• top_module (str) – The name of the top level module of the input circuit.

• select_pattern (str, optional) – The pattern by which to filter the module
names. If not empty, the pattern is passed to the select command. Default value is
"".

• f_call_and_remove (int, optional) – Flag specifying whether the script should
be called and then removed (1) or not (0). Default value is 1.

Returns A list containing all module names in the input circuit matching the select_pattern.

Return type list of str

ext_tools.yosys_interface.runScript(file, f_run_quiet=1, f_call_and_remove=0)
Invokes Yosys and runs a script file using a subprocess call.

Parameters

• file (str) – The absolute path to the script file to execute.

• f_run_quiet (int, optional) – Flag specifying whether the script shall be executed
in quiet mode (i.e. with flag -qq) (1) or print all messages (i.e. with flag -QT) (0). Default
value is 1.

• f_call_and_remove (int, optional) – Flag specifying whether the script file
shall be removed after execution (1) or not (0). Default value is 0.

Returns The exit code of the subprocess call.

1.5.3 runtime package

runtime.circa module

1.5. CIRCA Source Code 69

CIRCA Documentation, Release 0.9

runtime.contstants module

class runtime.constants.DIRS
Bases: object

Constant global directory names.

CIRCA_REPO = ''
Root directory of the CIRCA framework. Is set dynamically on start.

TEMPLATES = ''
Directory containing template circuits for QualityAssurance. Is set dynamically on start.

APPROX_CIRCUITS = '/approx_circuits'
Name of the directory in which the approximated circuit files will be stored.

CANDIDATES = '/candidates'
Name of the parent directory for the candidates’ own directories.

OUTPUT = '/output'
Name of the output directory.

class runtime.constants.LOG
Bases: object

Constant default log file names.

APPROX_FILE = 'approx_circuits_log.log'
Name of the log file containing only the most important log entries of each loop iteration.

LOG_FILE = 'log.log'
Name of the log file in which all log entries are stored.

class runtime.constants.QC
Bases: object

Global constants for quality constraints.

WORST_CASE = 'WC'
Unique ID of the Worst-Case error metric.

BIT_FLIP = 'BF'
Unique ID of the Bit-Flip error metric.

RELATIVE = 'REL'
Unique ID of the Relative error metric.

BIT_MASK = 'BM'
Unique ID of the Bit-Mask error metric.

SUPPORTED_QCS = ['WC', 'BF', 'REL', 'BM']
List of all error metric IDs.

class runtime.constants.APPROX
Bases: object

Global constants for approximation methods.

PRECISION_SCALING = 'PS'
Unique ID of the Precision Scaling approximation technique.

AIG_REWRITING = 'AIG'
Unique ID of the AIG-Rewriting approximation technique.

70 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

SUPPORTED_AMS = ['PS', 'AIG']
List of all approximation technique IDs.

METHODS_KEYWORD = 'AppMethods'
Keyword for specifying approximation methods in candidate annotations.

OPTIONS_KEYWORD = 'AMOptions'
Keyword for specifying additional approximation options in candidate annotations.

class runtime.constants.CFG
Bases: object

Configuration file section names and keywords.

SECTION_GENERAL = 'General'

SECTION_INPUT = 'Input'

SECTION_SEARCH = 'Search'

SECTION_ESTIMATION = 'Estimation'

SECTION_QA = 'QualityAssurance'

SECTION_APPROX = 'Approximation'

SECTION_OUTPUT = 'Output'

GENERAL_TOP_MODULE = 'TopModule'

INPUT_METHOD = 'Method'

INPUT_KEY = 'Key'

SEARCH_METHOD = 'Method'

ESTIMATION_METHOD = 'Method'

QA_METHOD = 'Method'

QA_QCS = 'QualityConstraints'

QA_CIRCUIT_TYPE = 'CircuitType'

QA_OUTPUT_SIGNAL = 'OutputSignal'

QA_OUTPUT_SIGNED = 'OutputIsSigned'

QA_OUTPUT_CONCAT = 'OutputSignalConcat'

QA_VALID_SIGNAL = 'ValidSignal'

QA_RESET_SIGNAL = 'ResetSignal'

QA_RESET_HIGH_ACTIVE = 'ResetSignalIsHighActive'

QA_START_SIGNAL = 'StartSignal'

QA_START_HIGH_ACTIVE = 'StartSignalIsHighActive'

APPROX_METHOD = 'Method'

APPROX_QCS = 'QualityConstraints'

APPROX_QCS_BOUND = 'bound'

APPROX_QCS_STEP = 'step'

OUTPUT_METHOD = 'Method'

1.5. CIRCA Source Code 71

CIRCA Documentation, Release 0.9

class runtime.constants.CIRCUIT_TYPE
Bases: object

Possible values of the CircuitType config option.

COMBINATIONAL = 'combinational'

RUN_TO_COMPLETION = 'run_to_completion'

STREAMING = 'streaming'

class runtime.constants.SQCC
Bases: object

TOP_MODULE = 'sqcc'

NAME_VALID = 'valid_sqcc'

NAME_Q = 'q_sqcc'

1.5.4 stages package

front_end package

front_end.front_end module

class front_end.front_end.FrontEnd(settings)
Bases: abc.ABC

Abstract Base Class for FrontEnd stage. The FrontEnd stage parses the input design and configuration file and
initializes data structures for the next stages.

Inheriting classes must implement methods: __init__ setup process

Parameters settings (dict) – A dictionary using options from the config as keys and strings of
their values as values.

__init__(settings)
Instantiates a subclass instance using the options from the configuration file.

setup(cfg_file, input_file)
Sets up the FrontEnd instance using config and input files. Provides default implementation.

Parameters

• cfg_file (str) – The absolute path to the configuration file in *.cfg format.

• input_file (str) – The absolute path to the input circuit file in Verilog format.

Raises ValueError – If cfg_file or input_file is invalid, i.e. None or empty.

process()
Returns a GeneralInformation instance: Must generate a CandidateSet, VariantSet and ApproximatedCir-
cuits, set paths and create directories. Must also create Verilog and Blif format files of the original circuit.

Parameters to set in GeneralInformation object: top_module pis pos cand_set variant_set ap-
prox_circuits base_directory (optional, default is input file path) output_dir (optional, default is input
file path)

72 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

front_end.front_end_factory module

class front_end.front_end_factory.FrontEndFactory
Bases: object

Factory class for creating FrontEnd instances.

Add an entry "MyFrontEnd": lambda s: MyFrontEnd(s) in SUPPORTED_SUBCLASSES for
the factory to recognize your own implementation.

SUPPORTED_SUBCLASSES = {'AnnotatedCandidates': <function FrontEndFactory.<lambda>>}

static factory(cfg_file)
Parses the Method parameter from the configuration file and returns the corresponding subclass instance if
supported.

Parameters cfg_file (str) – The absolute path to the configuration file in *.cfg format.

Returns An instance of the FrontEnd subclass specified by the Method parameter in the config-
uration file’s FrontEnd section.

Return type FrontEnd

Raises NotImplementedError – If the subclass ID from the configuration file cannot be
recognized.

front_end.front_end_anno_cand module

class front_end.front_end_anno_cand.AnnotatedCandidates(settings)
Bases: circa.stages.front_end.front_end.FrontEnd

FrontEnd subclass that reads candidate information from annotations in the original design file.

Candidates in the Verilog design are annotated with a key word and optional approximation settings that are
placed between the module keyword and the module name. The annotation keyword can be set in the configu-
ration file. Default is ANNOTATION_KEYWORD = r'<<<APPROX_CAND>>>'.

Raises ValueError – If there is no Key keyword in the settings dict, i.e. in the configuration
file.

class ANNOTATION_REGEX_GROUP
Bases: object

Regex group names used to find and parse annotations.

ENTIRE_MATCH = 'gEntireMatch'

APPROX_KEY = 'gApproxKey'

APPROX_PARAMETERS = 'gApproxParameters'

MODULE_NAME = 'gModuleName'

MODULE_PORTS = 'gModulePorts'

setup(cfg_file, input_file)
Sets up the FrontEnd instance using config and input files. Provides default implementation.

Parameters

• cfg_file (str) – The absolute path to the configuration file in *.cfg format.

• input_file (str) – The absolute path to the input circuit file in Verilog format.

1.5. CIRCA Source Code 73

CIRCA Documentation, Release 0.9

Raises ValueError – If cfg_file or input_file is invalid, i.e. None or empty.

process()
Returns a GeneralInformation instance: Must generate a CandidateSet, VariantSet and ApproximatedCir-
cuits, set paths and create directories. Must also create Verilog and Blif format files of the original circuit.

Parameters to set in GeneralInformation object: top_module pis pos cand_set variant_set ap-
prox_circuits base_directory (optional, default is input file path) output_dir (optional, default is input
file path)

_extractAnnotationsAndCleanDesign()
Parses the input file and searches for annotations in the code. Puts every annotation found into comments
and stores the cleaned design. A key word is used to recognize annotations. The key is set in the config.

Returns A list containing a dictionary for each annotation found in the input design file. Every
dictionary has all keys specified in ANNOTATION_REGEX_GROUP.

Return type list of dict

Raises RuntimeError – If no annotations were found in the input circuit file.

_generateCandidates(cand_set)
Uses annotations to extract candidate information, instantiates Candidate objects and stores them in the
CandidateSet.

Parameters cand_set (CandidateSet) – CandidateSet instance in which the Candidates
are stored.

quality_assurance package

quality_assurance.quality_assurance module

class quality_assurance.quality_assurance.QualityAssurance(settings)
Bases: abc.ABC

Abstract Base Class for QualityAssurance stage. The QualityAssurance stage validates approximated circuits to
ensure that their quality constraints are not violated.

Inheriting classes must implement methods: __init__ setup validateCircuit

Parameters settings (dict) – A dictionary using options from the config as keys and strings of
their values as values.

setup(gen_info)
Sets up the QualityAssurance instance using a GeneralInformation instance. Provides default implemen-
tation

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

validateCircuit(node)
Validates the circuit represented by a Node by trying to verify that the circuit meets all its quality con-
straints.

Parameters node (Node) – The Node to validate.

Returns True if the circuit of the given Node is valid, otherwise False.

Return type bool

74 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

quality_assurance.quality_assurance_factory module

quality_assurance.quality_assurance_abc_dprove module

class quality_assurance.quality_assurance_abc_dprove.ABCDprove(settings)
Bases: circa.stages.quality_assurance.quality_assurance.QualityAssurance

QualityAssurance subclass using the dprove command of ABC for circuit validation.

SUPPORTED_CIRCUIT_TYPES = ['combinational', 'run_to_completion', 'streaming']

SUPPORTED_ERROR_METRICS = ['BF', 'WC']

C_SQCC_TOP_MODULE = 'sqcc'

top_module
The name of the input circuit’s top level module.

Type str

setup(gen_info)
Sets up the QualityAssurance instance using a GeneralInformation instance. Provides default implemen-
tation

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

validateCircuit(node)
Validates the circuit represented by a Node by trying to verify that the circuit meets all its quality con-
straints.

Parameters node (Node) – The Node to validate.

Returns True if the circuit of the given Node is valid, otherwise False.

Return type bool

_addCutToSqcc(node, test_design)
Adds the circuit to be validated to the SQCC and writes it into a file.

Parameters

• node (Node) – The Node instance representing the circuit to validate.

• test_design (str) – The absolute path to the circuit file in which the SQCC will be
stored in Verilog or Blif format.

_setupSQCC()
Creates and writes the SQCC file implementing a QEC with the global quality constraints specified in the
config. The input circuit is flattened and inserted as reference circuit.

Returns The absolute path to the SQCC circuit file in Verilog format.

Return type str

_writeSqcc()
Writes the SQCC file template into which the input circuit and the QEC will be inserted and returns its file
name. Modules have to be loaded afterwards.

Returns The absolute path to the SQCC circuit file in Verilog format.

Return type str

1.5. CIRCA Source Code 75

CIRCA Documentation, Release 0.9

_setupQec()
Writes a quality evaluation circuit implementing the global quality constraints specified in the config to a
file and returns its file name.

Returns The absolute path to the QEC circuit file in Verilog format.

Return type str

Raises ValueError – If relative error is used in the quality constraints (Relative error is not
supported yet).

_prepareQecWrapper()
Exchanges regexes with information gathered from the original circuit.

Returns Content of the modified QEC file as a string.

Return type str

_prepareWcQc(msb_0, lsb_1, msb_1, error_wc, is_signed, mod_suffix=”)
Loads template for worst-case QC and parses regexes.

Returns Content of the modified QC file as a string.

Return type str

_prepareRelErrQc(msb_0, lsb_1, msb_1, lower_bound, upper_bound, mod_suffix=”)
Loads template for relative error QC and parses regexes.

Returns Content of the modified QC file as a string.

Return type str

_prepareBitFlipErrQc(msb_0, lsb_1, msb_1, max_bit_flip, mod_suffix=”)
Loads template for bit flip error QC and parses regexes.

Returns Content of the modified QC file as a string.

Return type str

static _findAndReplace(file, repl_pairs)
Replaces all occurrences of key with repl for every (key, repl) pair in repl_pairs in each line of
the given file and returns the lines of the file as a string.

Parameters

• file (File) – File handle for the file to read from.

• repl_pairs (list of (tuple of str)) – A list containing the (key, repl) pairs as tuples
of strings.

Returns The content of the input file with all specified pairs replaced as a string.

Return type str

quality_assurance.quality_assurance_abc_pdr module

class quality_assurance.quality_assurance_abc_pdr.ABCPdr(settings)
Bases: circa.stages.quality_assurance.quality_assurance_abc_dprove.ABCDprove

QualityAssurance subclass using the pdr command of ABC for circuit validation.

validateCircuit(node)
Validates the circuit represented by a Node by trying to verify that the circuit meets all its quality con-
straints.

76 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Parameters node (Node) – The Node to validate.

Returns True if the circuit of the given Node is valid, otherwise False.

Return type bool

quality_assurance.quality_assurance_ic3 module

class quality_assurance.quality_assurance_ic3.IC3(settings)
Bases: circa.stages.quality_assurance.quality_assurance_abc_dprove.ABCDprove

QualityAssurance subclass using the sat command of Yosys for circuit validation.

validateCircuit(node)
Validates the circuit represented by a Node by trying to verify that the circuit meets all its quality con-
straints.

Parameters node (Node) – The Node to validate.

Returns True if the circuit of the given Node is valid, otherwise False.

Return type bool

quality_assurance.quality_assurance_testing module

approximation package

approximation.approximation module

class approximation.approximation.Approximation(cfg_file)
Bases: object

Singleton class for finishing creation and ensuring validity of the CandidateSet. Provides functionality to dele-
gate approximation tasks to specific approximators.

Parameters cfg_file (str) – The absolute path to the configuration file, ending on .cfg.

Raises ValueError – If no default approximation methods or quality constraints are specified in
the configuration file.

SUPPORTED_ERROR_METRICS = ['WC', 'BF', 'BM']

__init__(cfg_file)
Parses app_methods and quality constraints from config file.

static _parseApproxMethods(cfg_file)
Parses default approximation methods from the config file and returns a list containing an ApproxMethod
instance for each specified approximation method without redundancies.

Parameters cfg_file (str) – The absolute path to the configuration file, ending on .cfg.

Returns A list containing an ApproxMethod instance for each approximation method ID found
in the Method option of the configuration file’s Approximation section. At most one Approx-
Method instance of each type is included.

Return type list of ApproxMethod

static _parseQualityConstraints(cfg_file)
Parses default quality constraints from the config file and returns a list containing an ErrorMetric instance
for each specified quality constraint without redundancies.

1.5. CIRCA Source Code 77

CIRCA Documentation, Release 0.9

Parameters cfg_file (str) – The absolute path to the configuration file, ending on .cfg.

Returns A list containing an ErrorMetric instance for each error metric ID found in the Qual-
ityConstraints option of the configuration file’s Approximation section. At most one Error-
Metric instance of each type is included.

Return type list of ErrorMetric

setup(gen_info)
Sets up Approximation instance using a GeneralInformation instance. Sets default app_methods and de-
fault quality_constraints attributes on each Candidate in cand_set if attribute is empty and returns the root
node.

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

Returns The root node of the search space tree.

Return type Node

Raises ValueError – If a candidate is left without approximation methods or quality con-
straitns after incompatibilities were removed.

performApproximations(nodes)
Generates approximated versions of all Variants in all Nodes in a given list and synthesizes the resulting
circuits.

Parameters nodes (list of Node) – A list of Node instances whose circuits will be approxi-
mated.

_getRootNode()
Creates and returns the root node of the search space tree and adds its Variants to the VariantSet.

Returns The root node of the search space tree.

Return type Node

static _autoDetectBoundaries(cand)
Automatically detects quality boundaries for a Candidate. PO information about the Candidate is required.

Parameters cand (Candidate) – The Candidate to check for boundaries.

approximation.approx_method module

class approximation.approx_method.ApproxMethod(settings=None)
Bases: abc.ABC

Abstract Base Class for Approximation Methods.

Inheriting classes must implement methods: methodId __init__ approximateVariant applyRules

static methodId()
Returns this ApproxMethod’s unique ID string.

id

settings

path_template

approximateVariant(variant, gen_info)
Generates approximated variant and stores it in a file.

Parameters

78 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• variant (Variant) – The Variant instance to be approximated.

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

applyRules(variant)
Checks if the given Variant’s error bounds are consistent with this ApproxMethod’s set of rules and adjusts
them accordingly if not. Error bounds must not be decreased in order to avoid infinite loops and redundant
steps in Variant generation.

Parameters variant (Variant) – The Variant to apply the rules to.

Returns True if the rules have been applied correctly and the Variant has a valid configuration
afterwards, False if the rules could not be applied.

Return type bool

approximation.approximator_factory module

class approximation.approximator_factory.ApproximatorFactory
Bases: object

Factory class for creating ApproxMethod instances.

Provides functionality to create ApproxMethod instances based on their unique class IDs and settings dictionar-
ies.

SUPPORTED_APP_METHODS = {'AIG': <function ApproximatorFactory.<lambda>>, 'PS': <function ApproximatorFactory.<lambda>>}

static factory(method_id, settings=None)
Creates an ApproxMethod instance of the type specified by methodId.

The settings attribute of the ApproxMethod can be set as well. If no ApproxMethod of the given methodId
is known, a NotImplementedError will be raised.

Parameters

• method_id (str) – The unique ID string of the ApproxMethod subclass to instantiate.

• settings (Dictionary) – A dictionary containing arbitrary settings for the new Ap-
proxMethod.

Returns An instance of the ApproxMethod subclass specified by method_id.

Return type ApproxMethod

Raises NotImplementedError – If method_id matches none of the supported Approx-
Method subclasses.

approximation.approx_method_ps module

class approximation.approx_method_ps.ApproximatorPS(settings=None)
Bases: circa.stages.approximation.approx_method.ApproxMethod

static methodId()
Returns this ApproxMethod’s unique ID string.

approximateVariant(variant, gen_info)
Generates approximated variant and stores it in a file.

Parameters

1.5. CIRCA Source Code 79

CIRCA Documentation, Release 0.9

• variant (Variant) – The Variant instance to be approximated.

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

applyRules(variant)
Ensures that error bounds of metrics BitFlip and WorstCase will not create bit masks of different sizes by
increasing the lower value until it matches the larger. This way, each increment of any of the two error
bounds will increase the bit mask by one and therefore no bit mask will be applied twice for approximation.
Variants which do not have both of these error metrics will not be changed.

If the options ‘PSPowerTwoSteps’ and PSPreciseMask are set to ‘True’, only WC error will be adjusted to
fill the resulting bit mask with ones. Note that the resulting increase of the WC value may not be a multiple
of the step attribute of the WC error metric.

_generateMask(cand, variant)
Generates a bit-mask for precision scaling and returns it as string.

Parameters

• cand (Candidate) – The Candidate for which to create the bit mask.

• variant (Variant) – The Variant specifying the quality constraints.

Returns The bit mask as a string (LSB. . . MSB) containing only 1s and 0s and of length equal
to the Candidate’s output size.

Return type str

approximation.approx_method_aig module

class approximation.approx_method_aig.ApproximatorAIG(settings=None)
Bases: circa.stages.approximation.approx_method.ApproxMethod

static methodId()
Returns this ApproxMethod’s unique ID string.

approximateVariant(variant, gen_info)
Generates approximated variant and stores it in a file.

Parameters

• variant (Variant) – The Variant instance to be approximated.

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

applyRules(variant)
Checks if the given Variant’s error bounds are consistent with this ApproxMethod’s set of rules and adjusts
them accordingly if not. Error bounds must not be decreased in order to avoid infinite loops and redundant
steps in Variant generation.

Parameters variant (Variant) – The Variant to apply the rules to.

Returns True if the rules have been applied correctly and the Variant has a valid configuration
afterwards, False if the rules could not be applied.

Return type bool

_prepareQcWrapper(candidate)
Exchanges regexes by information gathered from candidate.

80 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

_prepareWcQc(msb_0, lsb_1, msb_1, error_wc, is_signed, mod_suffix=”)
Loads template for worst-case QC and parses regexes.

_prepareRelErrQc(msb_0, lsb_1, msb_1, lower_bound, upper_bound, mod_suffix=”)
Loads template for relative error QC and parses regexes.

_prepareBitFlipErrQc(msb_0, lsb_1, msb_1, max_bit_flip, mod_suffix=”)
Loads template for bit flip error QC and parses regexes.

_findAndReplace(file, repl_pairs)
Replaces all occurrences of key with repl for every (key, repl) pair in repl_pairs in each line of the given
file and returns lines as string.

Parameters

• file (file handle) – The file in which to find and replace the

• pairs of strings. (given) –

• repl_pairs (list of tuple (str, str)) – A list of string tuples

• replace) specifying which strings ((find,) –

• which other strings (with) –

Returns A string containing the content of the given file after all replacements.

Return type str

estimation package

estimation.estimation module

class estimation.estimation.Estimation(gen_info)
Bases: object

This class provides functions for generating and parsing estimated statistics of approximated circuit configura-
tions.

estimateCircuitStats(nodes)
Adds a dictionary {"area", "delay", "power", "error"} created using external tools and
parsing stat files to each node.

Parameters

• nodes (list of Node) – A list of Node instances the stats

• which will be estimated. (of) –

Raises RuntimeError – If this Estimation instance’s method is unknown.

_abc_if(file_in, file_out, keys=None)
Generates a stat file for file_in using external tools and parses the keys from the file. Returns a Dictionary
with keys as keys and values converted to floats.

Parameters

• file_in (str) – The absolute path to the input circuit file in Verilog or Blif format.

• file_out (str) – The absolute path to the output file in any writable format (use *.
stat by convention).

• keys (list of str) – List of keywords to parse. Default value is ["area", "delay",
"power", "error"].

1.5. CIRCA Source Code 81

CIRCA Documentation, Release 0.9

search package

search.search module

class search.search.Search(settings)
Bases: abc.ABC

Abstract Base Class for Search stage. The Search stage defines which method will be used to traverse the search
space tree and when the search has finished.

Inheriting classes must implement methods: __init__ setup hasTerminated popNextNode expand-
SearchSpace evaluateNodes

Parameters settings (dict) – A dictionary using options from the config as keys and strings of
their values as values.

setup(gen_info, root_node)
Sets up the Search instance using a GeneralInformation instance. Provides a default implementation.

Parameters

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

• root_node (Node) – A Node instance which is the search space tree’s root.

hasTerminated()
Returns whether the search is finished or not.

popNextNode()
Returns the Node that is to be validated next. Can return None if no more nodes exist.

Returns

The next Node to be validated or None if no such Node exists.

Return type Node

expandSearchSpace()
Expands the search space tree and returns a list of all new Nodes to be approximated.

Returns

A list containing all Nodes that need to be approximated.

Return type list of Node

evaluateNodes()
Uses search-specific heuristics and circuit stats to evaluate nodes for popNextNode.

search.search_factory module

search.search_gradient_descent module

class search.search_gradient_descent.GradientDescent(settings)
Bases: circa.stages.search.search.Search

Search subclass implementing a gradient descent search where the gradients are computed as the area change of
a Node with respect to its parent Node.

82 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

class SEL_STRATEGY
Bases: object

Identifiers for selection strategies.

BEST = 'best'

RND = 'random'

DEFAULT = 'best'

SUPPORTED = ['best', 'random']

class CFG
Bases: object

Parser settings for the configuration file options.

EFFORT = {'mandatory': True, 'parameter': 'Effort'}

SEL_STRATEGY = {'mandatory': False, 'parameter': 'SelectStrategy'}

__init__(settings)
Extends __init__ of Search.

Raises RuntimeError – If a configuration option is missing or its value cannot be parsed or
is not supported.

setup(gen_info, root_node)
Sets up the Search instance using a GeneralInformation instance. Provides a default implementation.

Parameters

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

• root_node (Node) – A Node instance which is the search space tree’s root.

hasTerminated()
Returns whether the search is finished or not.

popNextNode()
Returns the Node that is to be validated next. Can return None if no more nodes exist.

Returns

The next Node to be validated or None if no such Node exists.

Return type Node

expandSearchSpace()
Expands the search space tree and returns a list of all new Nodes to be approximated.

Returns

A list containing all Nodes that need to be approximated.

Return type list of Node

evaluateNodes()
Overrides evaluateNodes of abstract super class Search.

Raises RuntimeError – If an invalid effort level is set.

1.5. CIRCA Source Code 83

CIRCA Documentation, Release 0.9

search.search_simulated_annealing module

class search.search_simulated_annealing.SimulatedAnnealing(settings)
Bases: circa.stages.search.search.Search

class HEURISTIC
Bases: object

Heuristic IDs.

AREA = 'area'

DEFAULT = 'area'

SUPPORTED = ['area']

class CFG
Bases: object

Parser settings for the configuration file options.

T_MIN = {'mandatory': True, 'parameter': 'TMin'}

ALPHA = {'mandatory': True, 'parameter': 'Alpha'}

EQUILIBRIUM = {'mandatory': True, 'parameter': 'Equilibrium'}

HEURISTIC = {'mandatory': False, 'parameter': 'Heuristic'}

__init__(settings)
Extends __init__ of Search.

Raises RuntimeError – If a configuration option is missing or its value cannot be parsed or
is not supported.

setup(gen_info, root_node)
Sets up the Search instance using a GeneralInformation instance. Provides a default implementation.

Parameters

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

• root_node (Node) – A Node instance which is the search space tree’s root.

hasTerminated()
Returns whether the search is finished or not.

acceptanceProbability(node_new, node_old)

popNextNode()
Returns the Node that is to be validated next. Can return None if no more nodes exist.

Returns

The next Node to be validated or None if no such Node exists.

Return type Node

expandSearchSpace()
Expands the search space tree and returns a list of all new Nodes to be approximated.

Returns

A list containing all Nodes that need to be approximated.

Return type list of Node

84 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

evaluateNodes()
Uses search-specific heuristics and circuit stats to evaluate nodes for popNextNode.

search.search_mcts module

class search.search_mcts.MCTS(settings)
Bases: circa.stages.search.search.Search

class CFG
Bases: object

SCALER = {'mandatory': True, 'parameter': 'Scaler'}

BUDGET = {'mandatory': True, 'parameter': 'Budget'}

__init__(settings)
Extends __init__ of Search.

Raises RuntimeError – If a configuration option is missing or its value cannot be parsed or
is not supported.

setup(gen_info, root_node)
Sets up the Search instance using a GeneralInformation instance. Provides a default implementation.

Parameters

• gen_info (GeneralInformation) – The framework’s GeneralInformation in-
stance.

• root_node (Node) – A Node instance which is the search space tree’s root.

hasTerminated()
Returns whether the search is finished or not.

utcSelect(list_of_nodes)

hasOpenList(node)

hasCloseList(node)

hasActiveChildren(node)

getMaxRewardChildren(node)

popNextNode()
Returns the Node that is to be validated next. Can return None if no more nodes exist.

Returns

The next Node to be validated or None if no such Node exists.

Return type Node

expandSearchSpace()
Expands the search space tree and returns a list of all new Nodes to be approximated.

Returns

A list containing all Nodes that need to be approximated.

Return type list of Node

backPropagate(node, value)

1.5. CIRCA Source Code 85

CIRCA Documentation, Release 0.9

evaluateNodes()
Uses search-specific heuristics and circuit stats to evaluate nodes for popNextNode.

search.search_jump_search module

search.search_initial_var_dfs module

class search.search_initial_var_dfs.InitialVariantDFS(settings)
Bases: circa.stages.search.search.Search

Search implementation that accepts parameters to specify the starting node of a depth-first search. An optional
budget can also be specified to limit the number of visited nodes.

class CFG
Bases: object

Configuration options.

INITIAL_VAR_PARAM = 'InitialVariants'

BUDGET_PARAM = 'Budget'

setup(gen_info, root_node)
Creates DFS starting node by applying initial variant parameters.

hasTerminated()
Returns whether the search is finished or not.

popNextNode()
Returns the Node that is to be validated next. Can return None if no more nodes exist.

Returns

The next Node to be validated or None if no such Node exists.

Return type Node

expandSearchSpace()
Expands the search space tree and returns a list of all new Nodes to be approximated.

Returns

A list containing all Nodes that need to be approximated.

Return type list of Node

evaluateNodes()
Uses search-specific heuristics and circuit stats to evaluate nodes for popNextNode.

output package

output.output module

class output.output.Output(settings)
Bases: abc.ABC

Abstract Base Class for Output stage. The Output stage returns the approximation results and finishes the
program flow.

Inheriting classes must implement methods: __init__ setup process

86 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Parameters settings (dict) – A dictionary using options from the config as keys and strings of
their values as values.

setup(gen_info)
Sets up the Output instance using a GeneralInformation instance. Provides a default implementation.

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

process()
Outputs formatted results using information stored in gen_info.

output.output_factory module

class output.output_factory.OutputFactory
Bases: object

Factory class for creating Output instances.

Add an entry "MyOutput": lambda s: MyOutput(s) in SUPPORTED_SUBCLASSES for the fac-
tory to recognize your own implementation.

SUPPORTED_SUBCLASSES = {'DummyOutput': <function OutputFactory.<lambda>>, 'output_best_area': <function OutputFactory.<lambda>>}

static factory(cfg_file)
Parses the Method parameter from the configuration file and returns the corresponding subclass instance if
supported.

Parameters cfg_file (str) – The absolute path to the configuration file in *.cfg format.

Returns An instance of the Output subclass specified by the Method parameter in the configu-
ration file’s Output section.

Return type Output

Raises NotImplementedError – If the subclass ID from the configuration file cannot be
recognized.

output.output_best_area module

class output.output_best_area.OutputBestArea(settings)
Bases: circa.stages.output.output.Output

Output subclass that prints a table containing all valid approximated circuits sorted by area.

setup(gen_info)
Sets up the Output instance using a GeneralInformation instance. Provides a default implementation.

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

process()
Outputs formatted results using information stored in gen_info.

output.output_dummy module

class output.output_dummy.DummyOutput(settings)
Bases: circa.stages.output.output.Output

1.5. CIRCA Source Code 87

CIRCA Documentation, Release 0.9

Basic Output subclass demonstrating how the Output stage can be used.

setup(gen_info)
Sets up the Output instance using a GeneralInformation instance. Provides a default implementation.

Parameters gen_info (GeneralInformation) – The framework’s GeneralInformation
instance.

process()
Outputs formatted results using information stored in gen_info.

stages.quaes module

1.5.5 utils package

utils.cfg_util module

class utils.cfg_util.CfgParser
Bases: object

parsers = {}

static getConfigParser(cfg_file)
Tries to open the configuration file and return a RawConfigParser. Prints error message and raises ex-
ception if config file is not found. A RawConfigParser is created once for each config file for which any
CfgParser function is called.

Parameters cfg_file (str) – The absolute path to the configuration file in *.cfg format.

Returns A static RawConfigParser instance that is assigned to the specified configuration file.

Return type RawConfigParser

Raises ValueError – If no configuration file for cfg_file is found.

static parseOption(cfg_file, section, option, is_optional=False)
Tries to open the config file and parse for the given section and option. Prints error message and raises
exception if config file, section or option is not found.

Parameters

• cfg_file (str) – The absolute path to the configuration file in *.cfg format.

• section (str) – The name of the section to parse from the config file.

• option (str) – The name of the option to parse and return from the section.

• is_optional (bool, optional) – Is the option to parse optional?

Returns The value of the configuration’s option with the specified name in the specified section.

Return type str

Raises ValueError – If the specified section or option is not found.

static getOptionsDict(cfg_file, section)
Tries to open the config file, parse the given section and return its options as a dictionary. Prints error
message and raises exception if config file or section is not found.

Parameters

• cfg_file (str) – The absolute path to the configuration file in *.cfg format.

• section (str) – The name of the section to parse from the config file.

88 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

Returns A dictionary containing all option-value pairs from the specified configuration section.

Return type dict

Raises ValueError – If the specified section is not found.

utils.cfg_util.parseQualityConstraintSpecifier(spec)
Reads a quality constraint specifier expression and returns a dictionary containing error metric names or the
approx. methods keyword as keys and dictionaries with bound and step values or a list of approx. method IDs
as values. The dictionary may also contain an AMOptions key with a dictionary of arbitrary content as value.

Error messages will be logged if there are parsing errors. Each error metric or approximation method will only
appear once in the result.

Example specifier expression: BF:bound=4;WC:step=5;AppMethods:PS

Parameters spec (str) – The quality constraint specifier expression to parse.

Returns A dictionary containing all information from the specifier string in a format that is easy to
access.

Return type dict

utils.logutils module

class utils.logutils.IndentationAdapter(logger, extra=None, padding=’t’, offset=6)
Bases: logging.LoggerAdapter

Custom LoggerAdapter adding indentation to log messages depending on the nesting depth of the calling func-
tion.

Parameters

• logger (Logger) – The Logger instance to use as a base for the adapter.

• extra (dict, optional) – Special argument for LoggerAdapter, is not used here.
Default value is {}.

• padding (str, optional) – The string to be used as padding. Default value is " ".

• offset (int, optional) – Indentation is reduced by offset levels. Default value is 6.

_indent()
Returns the indentation level using the current size of the stack and the specified offset. Minimum inden-
tation is 0.

process(msg, kwargs)
Inserts indentation into message string.

class utils.logutils.ColoredFormatter(fmt, datefmt=None, style=’%’, use_color=True)
Bases: logging.Formatter

Custom Formatter adding color to log messages depending on the level of the message. DEBUG – dark white
INFO – white WARNING – yellow ERROR – red CRITICAL – red

format(record)
Adds color escapes before passing the record to the default format method. Messages with level higher
than INFO are printed bold.

1.5. CIRCA Source Code 89

CIRCA Documentation, Release 0.9

utils.shutil2 module

utils.shutil2.environ(var)

utils.shutil2.chdir(path)

utils.shutil2.getcwd()

utils.shutil2.rename(src, dst)

utils.shutil2.join(path, *paths)

utils.shutil2.isdir(path)

utils.shutil2.isfile(path)

utils.shutil2.islink(path)

utils.shutil2.exists(path)

utils.shutil2.basename(path)

utils.shutil2.dirname(path)

utils.shutil2.trimext(path)

utils.shutil2.getext(path)

utils.shutil2.mkdir(path)

utils.shutil2.listdirs(path, rec=False)

utils.shutil2.listfiles(path, rec=False, ext=None, rel=True)

utils.shutil2.abspath(path)

utils.shutil2.relpath(path, rel)

utils.shutil2.symlink(src, dst, rel=True)

utils.shutil2.walk(path, ffunc, dfunc=None, ext=None, followlinks=False)

utils.shutil2.remove(path)

utils.shutil2.rmtree(path)

utils.shutil2.copytree(src, dst, followlinks=False)

utils.shutil2.linktree(src, dst)

utils.timing_util module

class utils.timing_util.TimestampManager
Bases: object

Service class that collects and manages timestamps and time measurements for several clients.

Clients are identified by IDs. A client can set timestamps and start or stop time measurements. Each timestamp
or measurement can store a message string containing information about its purpose.

The class also provides functionality for formatted output of the collected data or computing basic statistics.

timestamp(client_id, msg=”, set_duration=False)
Creates and stores a new timestamp for a client with a given ID.

If no client with the provided ID exists, a new collector is created for the ID. All timestamps and measure-
ments with this ID will thereafter be collected by that collector.

90 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

The timestamp can optionally contain a duration value, which will be computed as the time difference to
the most previous timestamp. This will not work if there is no previous timestamp.

Parameters

• client_id (str) – The ID of the client.

• msg (str, optional) – The message to be stored in the timestamp. Default value is
“”.

• set_duration (bool, optional) – Set duration of timestamp to the time differ-
ence to the previous timestamp. Default is False.

tic(client_id, msg=None)
Creates a new single-use time measurement starting point for a client with the given ID.

Single-use measurement points will be stacked to allow for nested time measurements. The first point ever
created for a client will persist however and behave much like a permanent measurement point without an
ID.

Example

The indentation levels in this scheme mark the measurement point associations:

tic()
tic()
...
toc()

toc()
toc()

If no collector for the given client_id exists, a new collector will be assigned to the ID. A message string
can be specified to simultaneously create a new timestamp for the client.

Parameters

• client_id (str) – The ID of the client.

• msg (str, optional) – The message text of the optional timestamp. If no message is
specified, no timestamp will be created. Default value is None.

toc(client_id, msg=”)
Creates a new timestamp representing a measurement corresponding to the last single-use measurement
point.

If this measurement point is not the very first of the client’s collector, it is removed from the stack. The
duration of the timestamp will be set to None if there is no single-use measurement point.

Parameters

• client_id (str) – The ID of the client.

• msg (str, optional) – The message text of the timestamp. Default value is “”.

Raises KeyError – If no collector for the specified client_id exists.

clearTics(client_id)
Removes all single-use time measurement points from the collector of the client with the given ID.

Parameters client_id (str) – The ID of the client.

Raises KeyError – If no collector for the specified client_id exists

1.5. CIRCA Source Code 91

CIRCA Documentation, Release 0.9

setTimerStart(client_id, measurement_id=None, msg=None)
Creates a permanent time measurement point for the client with the given ID.

Each time measurement point has a unique ID. If the specified measurement_id is already present in the
client’s collector, it will be replaced by a new one.

If the optional msg parameter is set, a timestamp will be created aswell. If no collector for the given
client_id exists, a new collector will be assigned to the ID.

Parameters

• client_id (str) – The ID of the client.

• measurement_id (str, optional) – Unique identifier for the measurement point.
Default value is None.

• msg (str, optional) – The message text of the optional timestamp. If no message is
specified, no timestamp will be created. Default value is None.

measureTime(client_id, measurement_id=None, msg=”)
Creates a new timestamp for the client with the given client_id that represents a time measurement.

Parameters

• client_id (str) – The ID of the client.

• measurement_id (str, optional) – The ID of the measurement point. Default
value is None.

• msg (str, optional) – The message text of the timestamp. Default value is “”.

Raises KeyError – If there is no collector for the client with the given client_id or the collector
has no permanent measurement point with the given measurement_id.

getTimestamps(client_id, pattern=”)
Returns a list of all timestamps belonging to the given client with messages that match the given pattern.
The pattern can be left empty to include all timestamps.

Parameters

• client_id (str) – The ID of the client.

• pattern (str, optional) – Pattern to match in timestamp messages. Is not used if
empty. Default value is "".

Returns A list of Timestamps with messages matching pattern.

Return type list of Timestamp

Raises

• KeyError – If ther is no collector for the client with the given

• client_id.

class utils.timing_util.TimestampCollector(client_id)
Bases: object

Container class for timestamps of a single client.

Parameters client_id (str) – ID of the client associated to this TimestampCollector.

timestamp(t, msg, set_duration)
Creates and collects a new timestamp.

Parameters

92 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• t (float) – The time for which to create the timestamp.

• msg (str) – The message to store in the timestamp.

• set_duration (bool) – Try to set duration to time difference to previous timestamp
if True, otherwise set duration to None.

tic(t)
Pushes a new time measurement point on the tic stack.

Parameters t (float) – The time of the measurement point.

toc(t, msg)
Creates a new time measurement timestamp using the tic stack as measurement point provider.

The top measurement point of the stack will be used as reference point and deleted if it is not the only
element on the stack.

Parameters

• t (float) – The second time of the time measurement.

• msg (str) – The message to store in the timestamp.

clearTics()
Resets the tic stack.

setTimerStart(t, client_id)
Sets the permanent time measurement point with the given client_id to the given time t.

measureTime(t, client_id, msg)
Creates a new timestamp representing a time measurement starting at a permanent measurement point.

The duration attribute of the timestamp is computed as the difference between the current time t and the
time of the measurement point with the specified client_id.

Parameters

• t (float) – The current time.

• client_id (str) – The ID of the time measurement point.

• msg (str) – The message to store in the timestamp.

Raises KeyError – If there is no permanent time measurement point with the specified
client_id.

timestamps

utils.verilog_utils module

utils.verilog_utils.separateModules(input_design, output_dir, f_files_in_dir=False, mod-
ules=None)

Extracts modules from a Verilog file and writes each in its own file.

The design file may contain annotations as specified by the AnnotatedCandidates FrontEnd implementation.

Parameters

• input_design (str) – The absolute path to the input circuit file in Verilog format.

• output_dir (str) – The absolute path to the directory in which to store the module
circuit files.

1.5. CIRCA Source Code 93

CIRCA Documentation, Release 0.9

• f_files_in_dir (bool, optional) – Specifies whether each output file is placed
in a folder with the module’s name (True) or directly in the output directory (False).
Default value is False.

• modules (list of str, optional) – A list specifying the names of the modules to extract. If
the list is empty or None, all modules are extracted. Otherwise, only the modules on the list
are extracted. Default value is None.

utils.verilog_utils.addModules(input_design, output_design, modules)
Adds modules to a Verilog file. The file may contain annotations as specified by the AnnotatedCandidates
FrontEnd implementation.

Parameters

• input_design (str) – The absolute path to the input circuit file in Verilog format.

• output_design (str) – The absolute path to the output circuit file.

• modules (list of str) – A list specifying the modules to add by specifying the absolute path
to the circuit file which should be appended to the input circuit as a new module.

utils.verilog_utils.removeModules(input_design, output_design, modules)
Removes modules from a Verilog file. The file may contain annotations as specified by the AnnotatedCandidates
FrontEnd implementation.

Parameters

• input_design (str) – The absolute path to the input circuit file in Verilog format.

• output_design (str) – The absolute path to the output circuit file.

• modules (list of str) – A list specifying the names of the modules to be removed.

utils.verilog_utils.extractPisPos(input_design, module, cand=None)
Extracts information about primary inputs and primary outputs from a Candidate’s Verilog file.

Parameters

• input_design (str) – The absolute path to the input circuit file in Verilog format.

• module (str) – The name of the module from which to extract the information.

• cand (Candidate, optional) – A Candidate instance can be specified to write the PI/PO
information directly into the Candidate’s pis and pos attributes.

Returns A list containing two lists of Signals, one for PIs and one for POs, if cand is None. Other-
wise None.

Return type (list of (list of Signal))

Raises ValueError – If the specified module was not found.

utils.verilog_utils.undoBitBlasting(file_out, module, wrapper, pis, pos)
Wraps a module in a Verilog circuit file in a new module. The new module has restored busses. This might
come in handy since bit-blasting might have lead to split up busses/vectors, e.g., when file has been converted
to BLIF and back to Verilog.

Parameters

• file_out (str) – The absolute path to the output circuit file in Verilog format.

• module (str) – The name of the module to wrap.

• wrapper (str) – The name of the new wrapper module.

• pis (list of Signal) – A list containing the primary input Signals of the wrapped module.

94 Chapter 1. About CIRCA

CIRCA Documentation, Release 0.9

• pos (list of Signal) – A list containing the primary output Signals of the wrapped module.

1.5. CIRCA Source Code 95

CIRCA Documentation, Release 0.9

96 Chapter 1. About CIRCA

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

97

CIRCA Documentation, Release 0.9

98 Chapter 2. Indices and tables

CHAPTER 3

Contact

Please, find the contact information on our website or open an issue on GitLab.

99

https://groups.uni-paderborn.de/agce/circa/
https://git.uni-paderborn.de/circa/public/circa

CIRCA Documentation, Release 0.9

100 Chapter 3. Contact

Python Module Index

a
approximation.approx_method, 78
approximation.approx_method_aig, 80
approximation.approx_method_ps, 79
approximation.approximation, 77
approximation.approximator_factory, 79

b
base.circuits, 45
base.information, 46
base.metrics.error_bf, 50
base.metrics.error_bm, 50
base.metrics.error_metric, 48
base.metrics.error_metric_factory, 49
base.metrics.error_rel, 51
base.metrics.error_wc, 49
base.nodes, 51
base.signals, 52
base.variants, 53

e
estimation.estimation, 81
ext_tools.abc_interface, 62
ext_tools.ext_tools, 55
ext_tools.iverilog_interface, 64
ext_tools.yosys_interface, 65

f
front_end.front_end, 72
front_end.front_end_anno_cand, 73
front_end.front_end_factory, 73

o
output.output, 86
output.output_best_area, 87
output.output_dummy, 87
output.output_factory, 87

q
quality_assurance.quality_assurance, 74

quality_assurance.quality_assurance_abc_dprove,
75

quality_assurance.quality_assurance_abc_pdr,
76

quality_assurance.quality_assurance_ic3,
77

r
runtime.constants, 70

s
search.search, 82
search.search_gradient_descent, 82
search.search_initial_var_dfs, 86
search.search_mcts, 85
search.search_simulated_annealing, 84

u
utils.cfg_util, 88
utils.logutils, 89
utils.shutil2, 90
utils.timing_util, 90
utils.verilog_utils, 93

101

CIRCA Documentation, Release 0.9

102 Python Module Index

Index

Symbols
__init__() (approxima-

tion.approximation.Approximation method),
77

__init__() (base.candidates.Candidate method), 42
__init__() (front_end.front_end.FrontEnd method),

72
__init__() (search.search_gradient_descent.GradientDescent

method), 83
__init__() (search.search_mcts.MCTS method), 85
__init__() (search.search_simulated_annealing.SimulatedAnnealing

method), 84
__repr__() (base.candidates.Candidate method), 43
__str__() (base.candidates.Candidate method), 43
_abc_if() (estimation.estimation.Estimation method),

81
_addCutToSqcc() (qual-

ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 75

_autoDetectBoundaries() (approxima-
tion.approximation.Approximation static
method), 78

_extractAnnotationsAndCleanDesign()
(front_end.front_end_anno_cand.AnnotatedCandidates
method), 74

_findAndReplace() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 81

_findAndReplace() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
static method), 76

_generateCandidates()
(front_end.front_end_anno_cand.AnnotatedCandidates
method), 74

_generateMask() (approxima-
tion.approx_method_ps.ApproximatorPS
method), 80

_getRootNode() (approxima-
tion.approximation.Approximation method),

78
_indent() (utils.logutils.IndentationAdapter method),

89
_parseApproxMethods() (approxima-

tion.approximation.Approximation static
method), 77

_parseQualityConstraints() (approxima-
tion.approximation.Approximation static
method), 77

_prepareBitFlipErrQc() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 81

_prepareBitFlipErrQc() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 76

_prepareQcWrapper() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 80

_prepareQecWrapper() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 76

_prepareRelErrQc() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 81

_prepareRelErrQc() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 76

_prepareWcQc() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 80

_prepareWcQc() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 76

_setupQec() (quality_assurance.quality_assurance_abc_dprove.ABCDprove
method), 75

_setupSQCC() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 75

_writeSqcc() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove

103

CIRCA Documentation, Release 0.9

method), 75

A
abc_dprove() (ext_tools.ext_tools.ExtTools static

method), 55
abc_if() (ext_tools.ext_tools.ExtTools static method),

55
abc_pdr() (ext_tools.ext_tools.ExtTools static

method), 55
ABCDprove (class in qual-

ity_assurance.quality_assurance_abc_dprove),
75

ABCPdr (class in qual-
ity_assurance.quality_assurance_abc_pdr),
76

abspath() (in module utils.shutil2), 90
acceptanceProbability()

(search.search_simulated_annealing.SimulatedAnnealing
method), 84

addModules() (in module utils.verilog_utils), 94
AIG_REWRITING (runtime.constants.APPROX at-

tribute), 70
aigRewriting() (ext_tools.ext_tools.ExtTools static

method), 56
aigRewriting() (in module ext_tools.abc_interface),

63
ALPHA (search.search_simulated_annealing.SimulatedAnnealing.CFG

attribute), 84
AnnotatedCandidates (class in

front_end.front_end_anno_cand), 73
AnnotatedCandidates.ANNOTATION_REGEX_GROUP

(class in front_end.front_end_anno_cand), 73
app_method (base.variants.Variant attribute), 54
app_methods (base.candidates.Candidate attribute),

43
append() (base.candidates.CandidateSet method), 45
append() (base.circuits.ApproximatedCircuits

method), 46
append() (base.variants.VariantSet method), 55
appendNode() (base.circuits.ApproximatedCircuits

method), 46
appendPi() (base.candidates.Candidate method), 43
appendPo() (base.candidates.Candidate method), 43
applyRules() (approxima-

tion.approx_method.ApproxMethod method),
79

applyRules() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 80

applyRules() (approxima-
tion.approx_method_ps.ApproximatorPS
method), 80

APPROX (class in runtime.constants), 70

approx_circuits (base.information.GeneralInformation
attribute), 48

APPROX_CIRCUITS (runtime.constants.DIRS at-
tribute), 70

approx_circuits_path
(base.information.GeneralInformation at-
tribute), 48

APPROX_FILE (runtime.constants.LOG attribute), 70
APPROX_KEY (front_end.front_end_anno_cand.AnnotatedCandidates.ANNOTATION_REGEX_GROUP

attribute), 73
APPROX_METHOD (runtime.constants.CFG attribute),

71
APPROX_PARAMETERS

(front_end.front_end_anno_cand.AnnotatedCandidates.ANNOTATION_REGEX_GROUP
attribute), 73

APPROX_QCS (runtime.constants.CFG attribute), 71
APPROX_QCS_BOUND (runtime.constants.CFG at-

tribute), 71
APPROX_QCS_STEP (runtime.constants.CFG at-

tribute), 71
ApproximatedCircuits (class in base.circuits), 46
approximateVariant() (approxima-

tion.approx_method.ApproxMethod method),
78

approximateVariant() (approxima-
tion.approx_method_aig.ApproximatorAIG
method), 80

approximateVariant() (approxima-
tion.approx_method_ps.ApproximatorPS
method), 79

Approximation (class in approxima-
tion.approximation), 77

approximation.approx_method (module), 78
approximation.approx_method_aig (module),

80
approximation.approx_method_ps (module),

79
approximation.approximation (module), 77
approximation.approximator_factory (mod-

ule), 79
ApproximatorAIG (class in approxima-

tion.approx_method_aig), 80
ApproximatorFactory (class in approxima-

tion.approximator_factory), 79
ApproximatorPS (class in approxima-

tion.approx_method_ps), 79
ApproxMethod (class in approxima-

tion.approx_method), 78
AREA (search.search_simulated_annealing.SimulatedAnnealing.HEURISTIC

attribute), 84

B
backPropagate() (search.search_mcts.MCTS

method), 85

104 Index

CIRCA Documentation, Release 0.9

base.circuits (module), 45
base.information (module), 46
base.metrics.error_bf (module), 50
base.metrics.error_bm (module), 50
base.metrics.error_metric (module), 48
base.metrics.error_metric_factory (mod-

ule), 49
base.metrics.error_rel (module), 51
base.metrics.error_wc (module), 49
base.nodes (module), 51
base.signals (module), 52
base.variants (module), 53
base_directory (base.information.GeneralInformation

attribute), 47
basename() (in module utils.shutil2), 90
BEST (search.search_gradient_descent.GradientDescent.SEL_STRATEGY

attribute), 83
BIT_FLIP (runtime.constants.QC attribute), 70
BIT_MASK (runtime.constants.QC attribute), 70
BitFlipError (class in base.metrics.error_bf), 50
BitMaskError (class in base.metrics.error_bm), 50
blifToVerilog() (ext_tools.ext_tools.ExtTools

static method), 60
blifToVerilog() (in module

ext_tools.yosys_interface), 66
BUDGET (search.search_mcts.MCTS.CFG attribute), 85
BUDGET_PARAM (search.search_initial_var_dfs.InitialVariantDFS.CFG

attribute), 86

C
C_SQCC_TOP_MODULE (qual-

ity_assurance.quality_assurance_abc_dprove.ABCDprove
attribute), 75

cand_set (base.information.GeneralInformation at-
tribute), 47

cand_set_path (base.information.GeneralInformation
attribute), 47

candidate (base.variants.Variant attribute), 53
Candidate (class in base.candidates), 42
candidates (base.candidates.CandidateSet attribute),

45
CANDIDATES (runtime.constants.DIRS attribute), 70
CandidateSet (class in base.candidates), 45
CFG (class in runtime.constants), 71
cfg_file (base.information.GeneralInformation at-

tribute), 46
cfg_file_path (base.information.GeneralInformation

attribute), 46
CfgParser (class in utils.cfg_util), 88
chdir() (in module utils.shutil2), 90
CIRCA_REPO (runtime.constants.DIRS attribute), 70
circuit (base.nodes.Node attribute), 51
Circuit (class in base.circuits), 45
CIRCUIT_TYPE (class in runtime.constants), 71

clearTics() (utils.timing_util.TimestampCollector
method), 93

clearTics() (utils.timing_util.TimestampManager
method), 91

ColoredFormatter (class in utils.logutils), 89
COMBINATIONAL (runtime.constants.CIRCUIT_TYPE

attribute), 72
compileVerilog() (ext_tools.ext_tools.ExtTools

static method), 61
compileVerilog() (in module

ext_tools.iverilog_interface), 64
compileVerilogFileList()

(ext_tools.ext_tools.ExtTools static method), 61
compileVerilogFileList() (in module

ext_tools.iverilog_interface), 64
compileVerilogMixed()

(ext_tools.ext_tools.ExtTools static method), 62
compileVerilogMixed() (in module

ext_tools.iverilog_interface), 64
configuration (base.nodes.Node attribute), 51
convertToValue() (base.metrics.error_bf.BitFlipError

method), 50
convertToValue() (base.metrics.error_bm.BitMaskError

method), 50
convertToValue() (base.metrics.error_metric.ErrorMetric

method), 49
convertToValue() (base.metrics.error_rel.RelativeError

method), 51
convertToValue() (base.metrics.error_wc.WorstCaseError

method), 49
copytree() (in module utils.shutil2), 90

D
DEFAULT (search.search_gradient_descent.GradientDescent.SEL_STRATEGY

attribute), 83
DEFAULT (search.search_simulated_annealing.SimulatedAnnealing.HEURISTIC

attribute), 84
default_value (base.metrics.error_metric.ErrorMetric

attribute), 48
dirname() (in module utils.shutil2), 90
DIRS (class in runtime.constants), 70
dprove() (in module ext_tools.abc_interface), 63
DummyOutput (class in output.output_dummy), 87

E
EFFORT (search.search_gradient_descent.GradientDescent.CFG

attribute), 83
ENTIRE_MATCH (front_end.front_end_anno_cand.AnnotatedCandidates.ANNOTATION_REGEX_GROUP

attribute), 73
environ() (in module utils.shutil2), 90
EQUILIBRIUM (search.search_simulated_annealing.SimulatedAnnealing.CFG

attribute), 84
error_bounds (base.variants.Variant attribute), 54
ErrorMetric (class in base.metrics.error_metric), 48

Index 105

CIRCA Documentation, Release 0.9

ErrorMetricFactory (class in
base.metrics.error_metric_factory), 49

estimateCircuitStats() (estima-
tion.estimation.Estimation method), 81

Estimation (class in estimation.estimation), 81
estimation.estimation (module), 81
ESTIMATION_METHOD (runtime.constants.CFG

attribute), 71
evaluateNodes() (search.search.Search method), 82
evaluateNodes() (search.search_gradient_descent.GradientDescent

method), 83
evaluateNodes() (search.search_initial_var_dfs.InitialVariantDFS

method), 86
evaluateNodes() (search.search_mcts.MCTS

method), 85
evaluateNodes() (search.search_simulated_annealing.SimulatedAnnealing

method), 84
exists() (in module utils.shutil2), 90
expandSearchSpace() (search.search.Search

method), 82
expandSearchSpace()

(search.search_gradient_descent.GradientDescent
method), 83

expandSearchSpace()
(search.search_initial_var_dfs.InitialVariantDFS
method), 86

expandSearchSpace() (search.search_mcts.MCTS
method), 85

expandSearchSpace()
(search.search_simulated_annealing.SimulatedAnnealing
method), 84

ext_tools.abc_interface (module), 62
ext_tools.ext_tools (module), 55
ext_tools.iverilog_interface (module), 64
ext_tools.yosys_interface (module), 65
extend() (base.candidates.CandidateSet method), 45
extend() (base.variants.VariantSet method), 55
extractAndWriteModule()

(ext_tools.ext_tools.ExtTools static method), 57
extractAndWriteModule() (in module

ext_tools.yosys_interface), 67
extractPiPo() (base.information.GeneralInformation

method), 48
extractPisPos() (in module utils.verilog_utils), 94
ExtTools (class in ext_tools.ext_tools), 55

F
factory() (approxima-

tion.approximator_factory.ApproximatorFactory
static method), 79

factory() (base.metrics.error_metric_factory.ErrorMetricFactory
static method), 49

factory() (front_end.front_end_factory.FrontEndFactory
static method), 73

factory() (output.output_factory.OutputFactory
static method), 87

file_blif (base.circuits.Circuit attribute), 46
file_blif (base.variants.Variant attribute), 54
file_name (base.circuits.Circuit attribute), 46
file_name (base.variants.Variant attribute), 53
file_verilog (base.circuits.Circuit attribute), 46
file_verilog (base.variants.Variant attribute), 53
findCandidates() (ext_tools.ext_tools.ExtTools

static method), 57
findVariant() (base.variants.VariantSet method),

55
flattenDesign() (ext_tools.ext_tools.ExtTools

static method), 58
flattenDesign() (in module

ext_tools.yosys_interface), 68
format() (utils.logutils.ColoredFormatter method), 89
front_end.front_end (module), 72
front_end.front_end_anno_cand (module), 73
front_end.front_end_factory (module), 73
FrontEnd (class in front_end.front_end), 72
FrontEndFactory (class in

front_end.front_end_factory), 73

G
GENERAL_TOP_MODULE (runtime.constants.CFG at-

tribute), 71
GeneralInformation (class in base.information),

46
generateChildren() (base.nodes.Node method),

52
generateChildren() (base.variants.Variant

method), 54
generateNeighbors() (base.nodes.Node method),

52
generateNeighbors() (base.variants.Variant

method), 54
generateNodeFromConfiguration()

(base.nodes.Node static method), 52
generateOriginalVariant()

(base.candidates.Candidate method), 42,
44

generateOriginalVariant()
(base.candidates.ModuleCand method),
44

generateParents() (base.nodes.Node method), 52
generateParents() (base.variants.Variant

method), 54
generateStat() (in module ext_tools.abc_interface),

62
generateStat() (in module

ext_tools.yosys_interface), 69
generateVariantFromConfiguration()

(base.variants.Variant static method), 54

106 Index

CIRCA Documentation, Release 0.9

getApproxMethod() (base.candidates.Candidate
method), 44

getConfigParser() (utils.cfg_util.CfgParser static
method), 88

getcwd() (in module utils.shutil2), 90
getErrorMetric() (base.candidates.Candidate

method), 43, 44
getext() (in module utils.shutil2), 90
getMaxRewardChildren()

(search.search_mcts.MCTS method), 85
getNextValues() (base.metrics.error_bf.BitFlipError

method), 50
getNextValues() (base.metrics.error_bm.BitMaskError

method), 50
getNextValues() (base.metrics.error_metric.ErrorMetric

method), 48
getNextValues() (base.metrics.error_rel.RelativeError

method), 51
getNextValues() (base.metrics.error_wc.WorstCaseError

method), 49
getOptionsDict() (utils.cfg_util.CfgParser static

method), 88
getPrevValues() (base.metrics.error_bf.BitFlipError

method), 50
getPrevValues() (base.metrics.error_bm.BitMaskError

method), 50
getPrevValues() (base.metrics.error_metric.ErrorMetric

method), 48
getPrevValues() (base.metrics.error_rel.RelativeError

method), 51
getPrevValues() (base.metrics.error_wc.WorstCaseError

method), 49
getTimestamps() (utils.timing_util.TimestampManager

method), 92
getTypeStr() (base.candidates.Candidate static

method), 43
getTypeStr() (base.candidates.ModuleCand static

method), 44
getValueStr() (base.metrics.error_bf.BitFlipError

method), 50
getValueStr() (base.metrics.error_bm.BitMaskError

method), 50
getValueStr() (base.metrics.error_metric.ErrorMetric

method), 48
getValueStr() (base.metrics.error_rel.RelativeError

method), 51
getValueStr() (base.metrics.error_wc.WorstCaseError

method), 49
getVariantOfCandidate() (base.nodes.Node

method), 52
GradientDescent (class in

search.search_gradient_descent), 82
GradientDescent.CFG (class in

search.search_gradient_descent), 83

GradientDescent.SEL_STRATEGY (class in
search.search_gradient_descent), 82

greaterMax() (base.metrics.error_bf.BitFlipError
method), 50

greaterMax() (base.metrics.error_bm.BitMaskError
method), 50

greaterMax() (base.metrics.error_metric.ErrorMetric
method), 49

greaterMax() (base.metrics.error_rel.RelativeError
method), 51

greaterMax() (base.metrics.error_wc.WorstCaseError
method), 49

H
hasActiveChildren() (search.search_mcts.MCTS

method), 85
hasApproxMethod() (base.candidates.Candidate

method), 43, 44
hasCloseList() (search.search_mcts.MCTS

method), 85
hasErrorMetric() (base.candidates.Candidate

method), 43, 44
hasErrorMetric() (base.variants.Variant method),

54
hash (base.circuits.Circuit attribute), 45
hasOpenList() (search.search_mcts.MCTS method),

85
hasTerminated() (search.search.Search method), 82
hasTerminated() (search.search_gradient_descent.GradientDescent

method), 83
hasTerminated() (search.search_initial_var_dfs.InitialVariantDFS

method), 86
hasTerminated() (search.search_mcts.MCTS

method), 85
hasTerminated() (search.search_simulated_annealing.SimulatedAnnealing

method), 84
HEURISTIC (search.search_simulated_annealing.SimulatedAnnealing.CFG

attribute), 84
high_active (base.signals.Signal attribute), 53

I
IC3 (class in quality_assurance.quality_assurance_ic3),

77
ic3() (ext_tools.ext_tools.ExtTools static method), 61
ic3() (in module ext_tools.yosys_interface), 65
id (approximation.approx_method.ApproxMethod

attribute), 78
id (base.candidates.Candidate attribute), 43
id (base.metrics.error_metric.ErrorMetric attribute), 48
id (base.nodes.Node attribute), 51
id (base.variants.Variant attribute), 53
IndentationAdapter (class in utils.logutils), 89
INITIAL_VAR_PARAM

(search.search_initial_var_dfs.InitialVariantDFS.CFG

Index 107

CIRCA Documentation, Release 0.9

attribute), 86
InitialVariantDFS (class in

search.search_initial_var_dfs), 86
InitialVariantDFS.CFG (class in

search.search_initial_var_dfs), 86
INPUT_KEY (runtime.constants.CFG attribute), 71
INPUT_METHOD (runtime.constants.CFG attribute), 71
is_reg (base.signals.Signal attribute), 53
is_root (base.nodes.Node attribute), 51
is_signed (base.signals.Signal attribute), 53
isdir() (in module utils.shutil2), 90
isfile() (in module utils.shutil2), 90
islink() (in module utils.shutil2), 90

J
join() (in module utils.shutil2), 90

L
linktree() (in module utils.shutil2), 90
listdirs() (in module utils.shutil2), 90
listfiles() (in module utils.shutil2), 90
listModules() (ext_tools.ext_tools.ExtTools static

method), 58
listModules() (in module

ext_tools.yosys_interface), 69
LOG (class in runtime.constants), 70
LOG_FILE (runtime.constants.LOG attribute), 70

M
max_value (base.metrics.error_metric.ErrorMetric at-

tribute), 48
MCTS (class in search.search_mcts), 85
MCTS.CFG (class in search.search_mcts), 85
measureTime() (utils.timing_util.TimestampCollector

method), 93
measureTime() (utils.timing_util.TimestampManager

method), 92
methodId() (approxima-

tion.approx_method.ApproxMethod static
method), 78

methodId() (approxima-
tion.approx_method_aig.ApproximatorAIG
static method), 80

methodId() (approxima-
tion.approx_method_ps.ApproximatorPS
static method), 79

METHODS_KEYWORD (runtime.constants.APPROX at-
tribute), 71

metricId() (base.metrics.error_bf.BitFlipError static
method), 50

metricId() (base.metrics.error_bm.BitMaskError
static method), 50

metricId() (base.metrics.error_metric.ErrorMetric
static method), 48

metricId() (base.metrics.error_rel.RelativeError
static method), 51

metricId() (base.metrics.error_wc.WorstCaseError
static method), 49

mkdir() (in module utils.shutil2), 90
MODULE_NAME (front_end.front_end_anno_cand.AnnotatedCandidates.ANNOTATION_REGEX_GROUP

attribute), 73
MODULE_PORTS (front_end.front_end_anno_cand.AnnotatedCandidates.ANNOTATION_REGEX_GROUP

attribute), 73
ModuleCand (class in base.candidates), 44

N
name (base.candidates.Candidate attribute), 43
name (base.circuits.Circuit attribute), 45
name (base.signals.Signal attribute), 53
NAME_Q (runtime.constants.SQCC attribute), 72
NAME_VALID (runtime.constants.SQCC attribute), 72
node (base.circuits.Circuit attribute), 45
Node (class in base.nodes), 51

O
opt() (in module ext_tools.abc_interface), 63
OPTIONS_KEYWORD (runtime.constants.APPROX at-

tribute), 71
orig_design (base.information.GeneralInformation

attribute), 47
orig_design_blif (base.information.GeneralInformation

attribute), 47
orig_design_path (base.information.GeneralInformation

attribute), 47
orig_design_verilog

(base.information.GeneralInformation at-
tribute), 47

orig_var (base.candidates.Candidate attribute), 43
Output (class in output.output), 86
OUTPUT (runtime.constants.DIRS attribute), 70
output.output (module), 86
output.output_best_area (module), 87
output.output_dummy (module), 87
output.output_factory (module), 87
output_dir (base.information.GeneralInformation at-

tribute), 47
OUTPUT_METHOD (runtime.constants.CFG attribute),

71
OutputBestArea (class in output.output_best_area),

87
OutputFactory (class in output.output_factory), 87

P
parent (base.nodes.Node attribute), 51
parseOption() (utils.cfg_util.CfgParser static

method), 88
parseQualityConstraintSpecifier() (in

module utils.cfg_util), 89

108 Index

CIRCA Documentation, Release 0.9

parsers (utils.cfg_util.CfgParser attribute), 88
path (base.candidates.CandidateSet attribute), 45
path (base.circuits.ApproximatedCircuits attribute), 46
path (base.circuits.Circuit attribute), 46
path (base.variants.Variant attribute), 53
path (base.variants.VariantSet attribute), 54
path_template (approxima-

tion.approx_method.ApproxMethod attribute),
78

pdr() (in module ext_tools.abc_interface), 64
performApproximations() (approxima-

tion.approximation.Approximation method),
78

pis (base.candidates.Candidate attribute), 43
pis (base.information.GeneralInformation attribute), 47
popNextNode() (search.search.Search method), 82
popNextNode() (search.search_gradient_descent.GradientDescent

method), 83
popNextNode() (search.search_initial_var_dfs.InitialVariantDFS

method), 86
popNextNode() (search.search_mcts.MCTS method),

85
popNextNode() (search.search_simulated_annealing.SimulatedAnnealing

method), 84
pos (base.candidates.Candidate attribute), 43
pos (base.information.GeneralInformation attribute), 47
PRECISION_SCALING (runtime.constants.APPROX

attribute), 70
precisionScaling() (ext_tools.ext_tools.ExtTools

static method), 55
precisionScaling() (in module

ext_tools.abc_interface), 63
process() (front_end.front_end.FrontEnd method), 72
process() (front_end.front_end_anno_cand.AnnotatedCandidates

method), 74
process() (output.output.Output method), 87
process() (output.output_best_area.OutputBestArea

method), 87
process() (output.output_dummy.DummyOutput

method), 88
process() (utils.logutils.IndentationAdapter method),

89

Q
QA_CIRCUIT_TYPE (runtime.constants.CFG at-

tribute), 71
QA_METHOD (runtime.constants.CFG attribute), 71
QA_OUTPUT_CONCAT (runtime.constants.CFG at-

tribute), 71
QA_OUTPUT_SIGNAL (runtime.constants.CFG at-

tribute), 71
QA_OUTPUT_SIGNED (runtime.constants.CFG at-

tribute), 71
QA_QCS (runtime.constants.CFG attribute), 71

QA_RESET_HIGH_ACTIVE (runtime.constants.CFG
attribute), 71

QA_RESET_SIGNAL (runtime.constants.CFG at-
tribute), 71

QA_START_HIGH_ACTIVE (runtime.constants.CFG
attribute), 71

QA_START_SIGNAL (runtime.constants.CFG at-
tribute), 71

QA_VALID_SIGNAL (runtime.constants.CFG at-
tribute), 71

QC (class in runtime.constants), 70
quality_assurance.quality_assurance

(module), 74
quality_assurance.quality_assurance_abc_dprove

(module), 75
quality_assurance.quality_assurance_abc_pdr

(module), 76
quality_assurance.quality_assurance_ic3

(module), 77
quality_constraints (base.candidates.Candidate

attribute), 43
QualityAssurance (class in qual-

ity_assurance.quality_assurance), 74

R
readFiles() (ext_tools.ext_tools.ExtTools static

method), 60
readFiles() (in module ext_tools.yosys_interface),

65
RELATIVE (runtime.constants.QC attribute), 70
RelativeError (class in base.metrics.error_rel), 51
relpath() (in module utils.shutil2), 90
remove() (base.candidates.CandidateSet method), 45
remove() (in module utils.shutil2), 90
removeModules() (in module utils.verilog_utils), 94
rename() (in module utils.shutil2), 90
renameModule() (ext_tools.ext_tools.ExtTools static

method), 59
renameModule() (in module

ext_tools.yosys_interface), 68
replaceModules() (ext_tools.ext_tools.ExtTools

static method), 59
replaceModules() (in module

ext_tools.yosys_interface), 67
rmtree() (in module utils.shutil2), 90
RND (search.search_gradient_descent.GradientDescent.SEL_STRATEGY

attribute), 83
RUN_TO_COMPLETION (run-

time.constants.CIRCUIT_TYPE attribute),
72

runCmd() (in module ext_tools.abc_interface), 64
runCompiledVerilog()

(ext_tools.ext_tools.ExtTools static method), 62

Index 109

CIRCA Documentation, Release 0.9

runCompiledVerilog() (in module
ext_tools.iverilog_interface), 65

runScript() (in module ext_tools.abc_interface), 64
runScript() (in module ext_tools.yosys_interface),

69
runtime.constants (module), 70

S
SCALER (search.search_mcts.MCTS.CFG attribute), 85
Search (class in search.search), 82
search.search (module), 82
search.search_gradient_descent (module),

82
search.search_initial_var_dfs (module), 86
search.search_mcts (module), 85
search.search_simulated_annealing (mod-

ule), 84
SEARCH_METHOD (runtime.constants.CFG attribute),

71
SECTION_APPROX (runtime.constants.CFG attribute),

71
SECTION_ESTIMATION (runtime.constants.CFG at-

tribute), 71
SECTION_GENERAL (runtime.constants.CFG at-

tribute), 71
SECTION_INPUT (runtime.constants.CFG attribute),

71
SECTION_OUTPUT (runtime.constants.CFG attribute),

71
SECTION_QA (runtime.constants.CFG attribute), 71
SECTION_SEARCH (runtime.constants.CFG attribute),

71
SEL_STRATEGY (search.search_gradient_descent.GradientDescent.CFG

attribute), 83
separateModules() (in module utils.verilog_utils),

93
setTimerStart() (utils.timing_util.TimestampCollector

method), 93
setTimerStart() (utils.timing_util.TimestampManager

method), 91
settings (approxima-

tion.approx_method.ApproxMethod attribute),
78

setup() (approximation.approximation.Approximation
method), 78

setup() (front_end.front_end.FrontEnd method), 72
setup() (front_end.front_end_anno_cand.AnnotatedCandidates

method), 73
setup() (output.output.Output method), 87
setup() (output.output_best_area.OutputBestArea

method), 87
setup() (output.output_dummy.DummyOutput

method), 88

setup() (quality_assurance.quality_assurance.QualityAssurance
method), 74

setup() (quality_assurance.quality_assurance_abc_dprove.ABCDprove
method), 75

setup() (search.search.Search method), 82
setup() (search.search_gradient_descent.GradientDescent

method), 83
setup() (search.search_initial_var_dfs.InitialVariantDFS

method), 86
setup() (search.search_mcts.MCTS method), 85
setup() (search.search_simulated_annealing.SimulatedAnnealing

method), 84
Signal (class in base.signals), 52
SimulatedAnnealing (class in

search.search_simulated_annealing), 84
SimulatedAnnealing.CFG (class in

search.search_simulated_annealing), 84
SimulatedAnnealing.HEURISTIC (class in

search.search_simulated_annealing), 84
size (base.signals.Signal attribute), 53
SQCC (class in runtime.constants), 72
state (base.nodes.Node attribute), 51
stats (base.nodes.Node attribute), 52
step (base.metrics.error_metric.ErrorMetric attribute),

48
STREAMING (runtime.constants.CIRCUIT_TYPE

attribute), 72
SUPPORTED (search.search_gradient_descent.GradientDescent.SEL_STRATEGY

attribute), 83
SUPPORTED (search.search_simulated_annealing.SimulatedAnnealing.HEURISTIC

attribute), 84
SUPPORTED_AMS (runtime.constants.APPROX at-

tribute), 70
SUPPORTED_APP_METHODS (approxima-

tion.approximator_factory.ApproximatorFactory
attribute), 79

SUPPORTED_CIRCUIT_TYPES (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
attribute), 75

SUPPORTED_ERROR_METRICS (approxima-
tion.approximation.Approximation attribute),
77

SUPPORTED_ERROR_METRICS
(base.metrics.error_metric_factory.ErrorMetricFactory
attribute), 49

SUPPORTED_ERROR_METRICS (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
attribute), 75

SUPPORTED_QCS (runtime.constants.QC attribute), 70
SUPPORTED_SUBCLASSES

(front_end.front_end_factory.FrontEndFactory
attribute), 73

SUPPORTED_SUBCLASSES (out-
put.output_factory.OutputFactory attribute),

110 Index

CIRCA Documentation, Release 0.9

87
symlink() (in module utils.shutil2), 90
synthesize() (ext_tools.ext_tools.ExtTools static

method), 56

T
T_MIN (search.search_simulated_annealing.SimulatedAnnealing.CFG

attribute), 84
techmap() (in module ext_tools.yosys_interface), 68
TEMPLATES (runtime.constants.DIRS attribute), 70
tic() (utils.timing_util.TimestampCollector method),

93
tic() (utils.timing_util.TimestampManager method),

91
timestamp() (utils.timing_util.TimestampCollector

method), 92
timestamp() (utils.timing_util.TimestampManager

method), 90
TimestampCollector (class in utils.timing_util), 92
TimestampManager (class in utils.timing_util), 90
timestamps (utils.timing_util.TimestampCollector at-

tribute), 93
timing (base.information.GeneralInformation at-

tribute), 48
toc() (utils.timing_util.TimestampCollector method),

93
toc() (utils.timing_util.TimestampManager method),

91
top_module (base.information.GeneralInformation at-

tribute), 47
top_module (quality_assurance.quality_assurance_abc_dprove.ABCDprove

attribute), 75
TOP_MODULE (runtime.constants.SQCC attribute), 72
trimext() (in module utils.shutil2), 90

U
undoBitBlasting() (in module utils.verilog_utils),

94
utcSelect() (search.search_mcts.MCTS method), 85
utils.cfg_util (module), 88
utils.logutils (module), 89
utils.shutil2 (module), 90
utils.timing_util (module), 90
utils.verilog_utils (module), 93

V
valid (base.circuits.Circuit attribute), 46
valid (base.nodes.Node attribute), 52
validateCircuit() (qual-

ity_assurance.quality_assurance.QualityAssurance
method), 74

validateCircuit() (qual-
ity_assurance.quality_assurance_abc_dprove.ABCDprove
method), 75

validateCircuit() (qual-
ity_assurance.quality_assurance_abc_pdr.ABCPdr
method), 76

validateCircuit() (qual-
ity_assurance.quality_assurance_ic3.IC3
method), 77

validated (base.circuits.Circuit attribute), 46
validated (base.nodes.Node attribute), 52
Variant (class in base.variants), 53
variant_set (base.information.GeneralInformation

attribute), 47
variant_set_path (base.information.GeneralInformation

attribute), 47
variants_path (base.candidates.Candidate at-

tribute), 43
VariantSet (class in base.variants), 54
verilogToBlif() (ext_tools.ext_tools.ExtTools

static method), 60
verilogToBlif() (in module

ext_tools.yosys_interface), 66

W
walk() (in module utils.shutil2), 90
WORST_CASE (runtime.constants.QC attribute), 70
WorstCaseError (class in base.metrics.error_wc), 49

Index 111

	About CIRCA
	Getting Started with CIRCA
	Introduction
	Installation
	Next Steps
	Licensing
	Citation

	User Guide
	Basic usage
	Configuring CIRCA
	Built-in component implementations
	Example configuration

	Developer Guide
	Basics
	Important data structures and classes
	Exchangeable components
	Extensible components
	Utils

	External programs and frameworks
	ABC
	Yosys

	CIRCA Source Code
	base package
	ext_tools package
	runtime package
	stages package
	utils package

	Indices and tables
	Contact
	Python Module Index
	Index

