

Welcome to the documentation for the Cinfdata Database Client!

Cinfdata Client is a simple Python module for accessing and caching data from the Cinfdata
database. The use of the module could look something like this:

from cinfdata import Cinfdata
from matplotlib import pyplot as plt

Instantiate the database client for a specific setup e.g. stm312
db = Cinfdata('stm312')
Get the data and metadata for a specific id
spectrum = db.get_data(6688)
metadata = db.get_metadata(6688)

plt.plot(spectrum[:,0], spectrum[:, 1])
plt.title(metadata['Comment'])
plt.show()

To get started, please start by reading the first few sections of the
Introduction. Then have a look at the Examples or the Source Code Documentation (API).

Contents

	Introduction
	Behind the scenes

	Dangers of Caching

	Getting Rid of Copied Code

	Getting started
	How to import the cinf_database

	Adding cinf_database to PYTHONPATH

	Using the cinf_database module from outside DTU

	Examples
	Simplest Possible Example

	Simple Example with Plot

	Simple Example Using the Cache

	Source Code Documentation (API)

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This pages provides an introduction to using the Cinfdate Database
Client. Please read the this section and the Dangers of Caching
section before jumping in with the Getting started and the
Examples. The rest of the sections are optional background.

The Cinfdata Database Client has three main goals:

	To provide a easy-to-use interface to the data in the Cinfdata database

	To get rid of lot of copied, nearly identical, code snippets that is present in a
lot of peoples data treatment scrips (see Getting Rid of Copied Code for
details)

	To enable local caching of the data returned by the Cinfdata database, in order to
speed up fetching the data and make it possible to work offline or of poor internet
connections

If you just want to get started, go ahead and jump straight to the
Getting started. Below is some more background.

Behind the scenes

Goals 1 and 2 are achieved mainly by making the maximum number of assumptions possible
about:

	The structure of the database (which should always be correct™)

	The setup of the users data treament enviroment (which is correct most of the time, or can be
adjusted)

It is important to know this, because if your local environment (e.g. the port
number you for the port forward for database access) is not the same as what most people
use, then you will have to change it or provide the client with the information.

Goal 3 is an sought after improvement over the way that most people use the Cinfdata
database today. The local caching functionality will save both data and metadata, that has
previously been retrieved from the database, in files. The next time the same information
is requested, it will be returned from the cache instead. The advantages to this are:

	This will completely elliminate the need to ask the database to collect the correct
data, to transfer it over the network and put in the form of a numpy array (data
case). Therefore, it will provide a significant speed-up1 in the time it
takes to get the data.

	Local caching will also make it possible to work off-line or of a poor internet
connection

There are however also downsides to caching. The most important of these is the risk of
getting out of sync with your data (please read section Dangers of Caching for
details). Of less importance is the space the data will takeup on your local harddrive.

Dangers of Caching

This section is called “Dangers of Caching”, which is a bit of an overstatement. But it is
important to understand how caching works, in order to understand the limitations.

In general, caching of data is essentially the idea of putting a temporary storage in
between the source of the data and the destination. This cache will be closer to the
destination and therefore be quicker.

One big advantage to this idea (besides the speed up) is that the storage is temporary. A
local cache can always be deleted witout worrying about loosing data.

But this idea puts an extra layer of complexity to the structure of getting the data that
has a few side effects that it is important to be aware of.

Important

The cache can get out of date

The most important property of caching, to be aware of, is that it can go out of
date. The cache in the Cinfdata Database Client is based on the ids of the
measurements. This means that the first time the data for a specific id is requested, it
will be fetched from the database and cached, but all subsequent times it is requested,
the cached version will be returned.

This means that if more data is added to the dataset, after the first time it is requested
(this could be the case for long running measurements), the client will not show the
changes but simply keep returning the incomplete ‘old’ version of the data.

This client makes no attempt to try and check whether the data is up-to-date, or to
make it possible to update the cache. If you think that you are seeing incomplete data,
simply delete the cache and start over.

Another problem, more specific to this client, is that the column names of the metadata
table is also cached the first time the client is used. This means that if columns are
added to the metadata table, the new columns will never be shown. Once again, the only
option is to delete the cache and start over.

That is it for the warnings. If you are eager to get started head over to the
Examples. If you want a bit more background, then read on.

Getting Rid of Copied Code

Manually copying and pasting code around is error prone and annoying. Therefore, we should
always strive to get rid of repetition. For data treatment scripts, especially 2 pieces of
code are present in a lot of different script: Database connection code and helper
functions for retrieving data.

The Cinfdate database is only available of the local network, so to access it e.g. from
home, it is necessary to set up a port forward. This means that when the database
connection is made it will be necessary to detect that it fails to make the direct
connetion and try the port forward. This translates roughly into code like this:

try:
 connection = MySQLdb.connect(host='servcinf', user=username,
 passwd=password, db='cinfdata')
except CONNECT_EXCEPTION:
 try:
 connection = MySQLdb.connect('localhost', port=9999, user=username,
 passwd=password, db='cinfdata')
 except CONNECT_EXCEPTION:
 raise Exception('No database connection')

While this works, it is not exactly simple to read and understand, and it is annoying to
have to keep this around the start of all data treatment scripts.

For retriving data, some will probably have written little helper functions like e.g:

def get_data(dataid):
 """Get data from the database"""
 query = 'SELECT x, y FROM xy_values_dummy WHERE measurement=%s'
 cursor.execute(query, [dataid])
 all_rows = cursor.fetchall()
 return np.array(all_rows)

Which may get more complicated to get the metadata.

Both of these common pieces of code is included directly in the Cinfdata Database
Client. The means that getting setup to get data and fetching a single dataset is reduced
to just one line of code each. See the Examples for details on how to use it.

Footnotes

	1

	The exact speed-up is difficuly to quantify, because the databaser server (MySQL)
in itself will also cache frequently requested data. A few simple tests suggests
a >30x speed up, even with frequently requested data. What is however much more
important that the absolute size of the speed-up, is that this (for most data
treatment scripts) should mean that getting the data is no longer a significant
fraction of the total run-time of the script.

Getting started

How to import the cinf_database

The cinf_database module is a single file module. This means that to
be able to use it, can be as simple as dropping the file in the same
folder as your data treatment code files.

Alternatively, the module can also be placed somewhere in your
PYTHONPATH to make it accessible from anywhere, without having to have
copies. More about that in the following section.

Adding cinf_database to PYTHONPATH

TODO

Using the cinf_database module from outside DTU

The cinf_database module should work with the DTU VPN. You can read
more about how to install here [https://wiki.fysik.dtu.dk/it/VPN%20connection%20to%20DTU] and do
the actual download and install from here.

Alternatively, and the way it used to be done, if you cannot make the
DTU VPN work or do not wish to use it, you can set up a port forward
between a local port and the MySQL database. The module will
automatically look for a port forward on port 9999.

Examples

Simplest Possible Example

This examples contains a detailed explanation of the simplest possible
example. Many of the following examples will build of this one.

from cinfdata import Cinfdata
cinfdb = Cinfdata('stm312')
data = cinfdb.get_data(6688)
metadata = cinfdb.get_metadata(6688)

	Line 1 imports the cinfdata module. For this to be possible, it must
be in your Python path (which is the list of folders that Python can
import from). The simplest way to do that is to simple drop the
cinfdata.py file in the same folder as your data treatment script.

	Line 2 makes a Cinfdata database client object,
abbreviated cinfdb1. The only mandatory
argument to the Cinfdata class is the codename
of the setup in this case ‘stm312’.

	Line 3 fetches the data …

array([[1.56250000e-02, 2.09650000e-13],
 [3.12500000e-02, 1.86725000e-13],
 [4.68750000e-02, 1.58958000e-13],
 ...,
 [9.99687500e+01, 7.48633000e-14],
 [9.99843750e+01, 6.37814000e-14],
 [1.00000000e+02, 7.38152000e-14]])

	Line 4 fetches the metadata as a dictionary …

{'Comment': 'Chamber background,P=9.7E-11torr', 'pass_energy': None, 'pre_wait_time': None,
 'timestep': None, 'year': None, 'file_name': None, 'preamp_range': 0, 'project': None,
 'number_of_scans': None, 'mass_label': 'Mass Scan', 'actual_mass': None,
 'SEM_voltage': 2200.0, u'unixtime': 1418807588L,
 'time': datetime.datetime(2014, 12, 17, 10, 13, 8), 'excitation_energy': None, 'type': 4L,
 'id': 6688L, 'name': None}

Simple Example with Plot

Code [https://github.com/CINF/cinf_database/blob/master/examples/simple_with_plot.py]

To make a plot that uses e.g. the comment fielde of the metadata as
the title, Simplest Possible Example can be expanded into:

from cinfdata import Cinfdata
from matplotlib import pyplot as plt

db = Cinfdata('stm312')
spectrum = db.get_data(6688)
metadata = db.get_metadata(6688)

plt.plot(spectrum[:, 0], spectrum[:, 1])
plt.title(metadata['Comment'])
plt.show()

Note

The data comes out the same way in would if it was fetched
directly from the database i.e. with x and y being two
columns in a numpy array, so they are retrieved individually
with the [:, 0] syntax

Simple Example Using the Cache

Code [https://github.com/CINF/cinf_database/blob/master/examples/simple_with_cache.py]

To enable caching of the database results (which is disabled by
default) simply instantiate the Cinfdata object with
use_caching=True:

from cinfdata import Cinfdata

db = Cinfdata('stm312', use_caching=True)
spectrum = db.get_data(6688)
metadata = db.get_metadata(6688)

Except from the instantiation argument, the usage is exactly the
same. If the folder of the cinfdata.py file, there will now be a cache
folder with the following content:

cache
└── stm312
 ├── data
 │ └── 6688.npy
 └── infoitem.pickle

A folder for each of the setups being used (stm312 in this
case). Under that, there is the data folder, that contains one
file (named meaurement_id.npy2) for each data set and
there is the infoitem.pickle ([#pickle]) that contains all the
metadata.

Important

Due to the use of native data saving functionality and
the use of pickle, the cache cannot be used across
different operating systems or Pythons versions. Only
use on one machine and one Python version. If
you need to switch machines or Python version you
shoule reset the cache.

To reset the cache simply delete the cache folder.

Footnotes

	1

	In general, Python users are encouraged to make
descriptive variable names, which often means that
they should be written fully out to make the code
easier to read. However, it is “allowed” to make a
few very short variables, if they are used
extremely often (like it is often done with Numpy as
np, Pyplot as plt etc.). Besides, cinfdb, is close to
readable, ‘db’ is a common abbreaviation for database
and all readers should know what Cinf is.

	2

	npy is numpys own save format for arrays. It it very
efficient because it contains just a small header, that
contains the array dimensions and the data type and then
just the raw bytes that describes the numbers.

	3

	pickle is Python serialization format for serialization
of (almost) arbitrary arguments. The format is not
guarantied to be preserved across Python version, which
is one of the reasons that the cache should not be used
across Python versions.

Source Code Documentation (API)

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to the documentation for the Cinfdata Database Client!

 		
 Introduction

 		
 Behind the scenes

 		
 Dangers of Caching

 		
 Getting Rid of Copied Code

 		
 Getting started

 		
 How to import the cinf_database

 		
 Adding cinf_database to PYTHONPATH

 		
 Using the cinf_database module from outside DTU

 		
 Examples

 		
 Simplest Possible Example

 		
 Simple Example with Plot

 		
 Simple Example Using the Cache

 		
 Source Code Documentation (API)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

