
CinemaScience Documentation
Release 0.0.1

Terry Turton

Jun 18, 2021





Contents:

1 What is Cinema? 3
1.1 Cinema Citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Getting Started 5
2.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 CinemaScience Specifications 7
3.1 Spec D specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Cinema Image Set Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Deprecated Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 CinemaScience Viewers 11
4.1 Cinema:View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Cinema:Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Cinema:Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Other Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Cinemasci Python Toolkit 15
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Cinemasci submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 CinemaScience Algorithms, Libraries, and Tools 17
6.1 cinema_lib Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 cinema_components Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 cinema_movie Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Tutorial: Cinemasci 29

8 Tutorial: Cinema Workflows 33
8.1 Custom Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Post-Processing via ParaView 5.9 Export Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Post-Processing via ParaView 5.7 Export Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4 Post-Processing via ParaView 5.6 Cinema Export Scene . . . . . . . . . . . . . . . . . . . . . . . . 39
8.5 In Situ via ParaView Catalyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.6 Post-Processing via VisIt Cinema Export Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.7 In Situ via VisIt LimSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



8.8 In Situ via ALPINE Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Tutorial: Cinema Viewers 45
9.1 Viewing Cinema Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Cinema:View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 Cinema:Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.4 Cinema:Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10 Tutorial: Other Useful information 57
10.1 Converting Spec A to Spec D databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2 A Note on Browser Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11 Cinema Publications 59

12 Indices and tables 61

ii



CinemaScience Documentation, Release 0.0.1

CinemaScience is an ecosystem for large scale data analysis, exploration, and visualization.

Contents: 1



CinemaScience Documentation, Release 0.0.1

2 Contents:



CHAPTER 1

What is Cinema?

Cinema is an innovative way of capturing, storing, and exploring extreme scale scientific data – either simulation
data or experimental data. It is a highly interactive approach to data analysis and visualization that promotes flexible
investigation of large scientific datasets. The Cinema ecosystem consists of database specifications, writers, viewers,
and algorithms. Cinema databases consist of data abstracts that are accessed via Cinema viewers in a browser-based
approach. While earlier versions of Cinema focussed on images, the current version of Cinema expands the concept
of data abstracts to include images, variables, parameters, metadata, mesh files, and csv files.

Cinema enables a multitude of analysis approaches. At the simplest level, a Cinema viewer can be used to visualize a
Cinema database, exploring the data through pre-rendered images as if one were using the original 3D representation
– but rendering the visualization much faster than possible on a full 3D simulation. Beyond exploring the data,
sophisticated analysis algorithms can be applied to the saved raw data variables. The results of that analysis could be
a new visualization or it could be a single measurement abstracted from the data at each time step. Computer vision
techniques can be used on the raw data to detect, measure, and track features in the data, revealing the scientifically
meaningful temporal or spatial evolution of those features. Image processing techniques can be applied to clean up
noisy experimental images. Sampling or change detection techniques can be used to identify interesting time steps
or spatial regions of a simulation. Cinema can also be used to curate parameters from experimental or simulation
runs. Used in conjunction with analysis approaches, the scientist can explore and identify run parameters of particular
interest, potentially saving time spent on experimental runs or driving the next round of simulation runs.

Cinema writers are available through common visualization applications. A Cinema database export wizard leverag-
ing the Cinemasci Python Toolkit is accessible interactively in ParaView. VisIt has Cinema export capabilities. Or a
Cinema database can be produced through ParaView’s Catalyst or VisIt’s LibSim in situ libraries. The Ascent infras-
tructure can also be used to export Cinema databases. A Cinema python library, cinema_lib, a command line tool is
also available. Lastly, application-specific writers to create Cinema databases are also straightforward to implement in
Python or other scripting languages.

The bounds of data exploration with Cinema are limited only by one’s imagination. Details of the Cinema database
specifications are in CinemaScience Specifications and basic viewers are described in CinemaScience Viewers.

Cinema is developed by the Data Science at Scale Team at Los Alamos National Laboratory.

All of our software is open source, and is available at the CinemaScience GitHub page. We invite the community to
contribute code, documentation, examples, bug fixes, etc. Simply issue a pull request.

3

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit
https://alpine-dav.github.io/ascent/
https://dsscale.org
https://www.lanl.gov
https://github.com/cinemascience


CinemaScience Documentation, Release 0.0.1

1.1 Cinema Citation

If using Cinema in your analysis, please cite the original publication introducing Cinema:

• James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and Mark Petersen. An
image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ‘14). IEEE Press, Piscat-
away, NJ, USA, 424-434, 2014. DOI 10.1109/SC.2014.40

4 Chapter 1. What is Cinema?

https://ieeexplore.ieee.org/document/7013022


CHAPTER 2

Getting Started

Cinema is an application-neutral approach to large data analysis, visualization and exploration. The foundation of
Cinema is a database specification that provides a way for common data to be written and read by any application.
We provide reference implementations of exporters and viewers, but these are by no means intended to be the only
applications within the Cinema community.

A good way to get started is to read the Supercomputing Paper that first described Cinema’s approach. From there,
you can move on to reading the specifications, creating databases with our tools, or including Cinema-compliant
components in your own workflows.

Video examples, sample data, and viewer downloads are available on the CinemaScience website.

2.1 Tutorial

The most recent interactive tutorial can be downloaded from the CinemaScience GitHub page.

• 2020 Supercomputing Tutorial

5

https://datascience.lanl.gov/data/papers/SC14.pdf
https://cinemascience.github.io/
https://github.com/cinemascience
https://github.com/cinemascience/cinema_tutorial_2020-SC


CinemaScience Documentation, Release 0.0.1

6 Chapter 2. Getting Started



CHAPTER 3

CinemaScience Specifications

A Cinema database is a collection of data extracts that can be accessed for visualization or interactive data exploration
via a viewer application.

• Spec D : With Cinema release v1.3 and later, Cinema converged on a specification, Spec D specification, that in-
corporates the flexibility and functionality of previous releases while expanding the Cinema data specifications.
Official Release Notes are available on the CinemaScience GitHub page. This specification includes multiple
files per database entry and arbitrary data. It has a suite of flexible viewers and view components for a wide
range of analysis approaches.

• CIS : A second specification is the new Composable Image Set specification, Cinema Image Set Specification,
that supports advanced and flexible post hoc colormapping.

3.1 Spec D specification

The early Cinema specifications focussed on an image-based approach. The philosophy of Spec D embraces a wide
range of data abstracts to leverage and promote data analysis in addition to visualization. This is a brief overview of
the Spec D specifications and we encourage the reader to consult the full document: Dietrich (Spec D).

Spec D is based on a Comma Separated Values (CSV) database file. A Cinema database is a directory with a name of
the form database_name.cdb that contains a data.csv file:

The database_name.cdb directory may optionally contain other data files references by data.csv or may contain
optional directories. An image/ directory is a common subdirectory to contain rendered images.

$ ls -l sphere.cdb
... image # a directory for images
... data.csv

The first row of the data.csv file is a required row of unique non-empty strings that are the column headers for each
column. Each column is a data abstract – a variable, parameter, (optional) image file, or (optional) data file such as
a vti file, or a csv file. All data values must be floats, integers, strings, or empty (missing) values and must have the
same values for all rows of that column (except when empty).

7

https://github.com/cinemascience/cinema/blob/master/specs/dietrich/01/cinema_specD_v012.pdf
https://github.com/cinemascience/cinema/blob/master/doc/release/1.3/notes.md
https://github.com/cinemascience
https://github.com/cinemascience/design
https://github.com/cinemascience/cinema/blob/master/specs/dietrich/01/cinema_specD_v012.pdf


CinemaScience Documentation, Release 0.0.1

The last header values may either be FILE or start with FILE (e.g., FILE,FILE1,FILE2). No other non-FILE
columns may be placed after the first FILE column (FILE columns are always last).

Each row after the header is a data row. At least one data row must exist. The first non-empty value in each column
establishes the data type. The database can be extended simply by appending the data.csv file.

A data value representing a file path must be a string containing either a) a POSIX file path, or b) a URL. Files can be
of any type, as indicated by MIME name extension, e.g., .png, .vti, .txt, etc.

3.1.1 Example: Nyx Cosmology Simulation

This example shows the header row and first few rows of the data.csv file for a Nyx Cosmology simulation. The
images show dark matter density for 31 time steps, 6 phi values, 8 theta values and 5 density isosurfaces. The columns
include variables that define the image: time, phi, theta, and iso, along with data derived from the simulation or from
the images themselves: entropy, sample number, Hu moments and a Canny edge calculation. The last column (FILE)
points to the image described by that row.

phi,theta,iso,time,sample,entropy,canny,hu0,hu1,hu2,hu3,hu4,hu5,hu6,FILE
-180,-67.5,1,10,2486,0.008196755,420,0.485110902,1.28E-07,1.04E-07,3.82E-09,-7.62E-17,
→˓1.37E-12,-9.95E-19,image/10/-67.5/-180/1.png
-135,-67.5,1,10,7054,0.008344357,464,0.485084112,1.48E-07,1.14E-07,7.26E-09,-2.09E-16
→˓2.80E-12,-7.60E-18,image/10/-67.5/-135/1.png
-90,-67.5,1,10,238,0.008164505,385,0.485064888,1.08E-07,7.63E-08,9.75E-09,-2.66E-16,3.
→˓20E-12,-1.43E-18,image/10/-67.5/-90/1.png
-45,-67.5,1,10,4928,0.007957556,449,0.485064602,1.05E-07,7.44E-08,9.67E-0,-2.59E-16,3.
→˓13E-12,-2.23E-18,image/10/-67.5/-45/1.png

The file structure for the images is thus arranged by time step then phi
then theta and finally has the images for each of the five density isosurfaces:

Fig. 3.1: An example of the file system organization for a large Cinema image database (from left to right): top
.cdb directory, time steps, phi, theta and isosurfaces.

The
Cin-
ema:View
and
Cin-
ema:Explorer
view-
ers
are
the
ba-
sic
view-
ers
used
with
Cin-
ema
databases,
Cin-
e-
ma-
Science
View-
ers:.

8 Chapter 3. CinemaScience Specifications



CinemaScience Documentation, Release 0.0.1

The
view-
ers
are

based on Spec D and provide the user with different approaches to viewing and exploring the data. The user is free
to develop other viewers and analysis approaches specific to their data. The CinemaScience Github contains several
repositories to support users in developing their own Cinema viewers. An example using the Cinema:Explorer viewer
is shown in Cinema:Explorer.

3.2 Cinema Image Set Specification

The Cinema Image Set (CIS) specification extends the Spec D specification to enable explorable image functionality.
A CIS database is a logical collection of related images or elements. A single CIS image is generated by coloring
and compositing a set of elements within the CIS database file. The results of the coloring and compositing steps are
dependent upon the information contained in the CIS file, choices by the user, and the capabilities of the consumer
application (e.g., a Cinema viewer).

Fig. 3.2 illustrates how multiple layers of a CIS file can be composited into different final images.

A full description for the CIS Specification can be found in the CinemaScience
GitHub. Please see the CIS specification for up-to-date information and examples.

Fig. 3.2: Diagram of layers and possible composited images. Layers can be combined together in many ways,
depending upon the information that is included, as well as the capabilities of the consumer of the data.

3.3 Deprecated
Spec-
i-
fi-
ca-
tions

These
spec-
i-
fi-
ca-
tions
are
no
longer
sup-
ported.

•
Astaire
(Spec
A)
:
This
was
a

3.2. Cinema Image Set Specification 9

https://github.com/cinemascience
https://github.com/cinemascience
https://github.com/cinemascience
https://github.com/cinemascience/cinema/blob/master/specs/dietrich/01/extensions/cis/1.0/cis_specification_v1-0.md
https://github.com/cinemascience/cinema/tree/master/specs/dietrich/01/extensions/cis/1.0/examples


CinemaScience Documentation, Release 0.0.1

basic embodiment of the original Cinema image-based approach. It includes both static and spherical cameras,
and includes the capability to turn elements on and off as detailed in the SC paper. The resulting Spec A
database is a colormapped visualization that can be viewed interactively with a standalone application viewer.

•
Chaplin
(Spec
C)
:
This
spec-
i-
fi-
ca-
tion
in-
cluded
mo-
bile
cam-
eras,
float-
ing
point
im-
ages,
and
data
ab-
stracts,
and
the
abil-
ity
to
change
and
ap-
ply
col-
ormaps.

10 Chapter 3. CinemaScience Specifications



CHAPTER 4

CinemaScience Viewers

CinemaScience provides reference viewers and flexible components for users to build application specific viewers.
The basic viewers are introduced here. A full viewer tutorial is available at Tutorial: Cinema Viewers.

4.1 Cinema:View

Note: Cinema:View is the new version of Cinema:Compare – a now deprecated viewer.

Note: To use browser based viewers, you need to allow local file access. See A Note on Browser Security for more
information.

Cinema:View is an interactive visualization approach to exploring Cinema databases. It can be used with
single databases to rotate around a visualization as with the MPAS-Ocean simulation shown in Fig. 4.1.

Fig. 4.1: An example using Cinema:View to view a single Cinema database. This MPAS-Ocean database can
be explored via sliders that range across the available parameter values. The choice of database(s) can be changed
by selecting from a drop-down menu (above sliders) defined by a JSON file.

Cinema:View
can
also
be
used
to
com-
pare
mul-
ti-
ple
databases
as
with

11



CinemaScience Documentation, Release 0.0.1

the
Warp
plasma
ac-
cel-
er-
a-
tor
vi-
su-
al-
iza-
tion,
Fig.
4.2
that
com-
pares
dif-
fer-

ent approaches to finding isocontours in the simulation.

Fig.
4.2:
A
com-
par-
i-
son
of
two
Warp
plasma
ac-
cel-
er-
a-
tor
sim-
u-
la-
tions.
In
the
one
on
the
left,
a
data-
driven
topo-
log-
i-
cal
anal-
y-
sis
se-
lects
im-
por-
tant
iso-
con-
tours.
On
the
right,
reg-
u-
larly
space
iso-
con-
tours
are
used.
The
time/phi/theta
slid-
ers
can
be
used
to
ex-
plore
the
dif-
fer-
ences
spa-
tially
and
tem-
po-
rally.

The list of databases available in the viewer is controlled via a databases.json file in the cinema_view/data/ di-
rectory. The sets of single or multiple databases are defined in the databases.json file and appear as a list in the
dropdown menu above the control sliders. Titles can also be specified for the each Cinema database in the com-
parison view. Cinema:View can be found at cinema_view and its tutorial is at Cinema:View.

4.2 Cinema:Explorer

Cinema:Explorer is a browser based viewer for Spec D databases. It includes a parallel coordinates plot and a
scatterplot view. The columns are the data artifacts or derived quantities that are defined in the data.csv file for the
Spec D database. Fig. 4.3 shows the baryon density from a Nyx cosmological simulation. Note how one can choose
a subset of the images to view by selecting a region along one of the variable axes. The parallel coordinates view
supports linking and brushing allowing the user to query a subset of the data and view the resultant set of images.

Cinema:Explorer uses a similar databases.json approach to define a list of available databases which can be ex-
plored. databases.json is located within the cinema_explorer/cinema/explorer/1.9 directory. Cinema:Explorer
can be found at cinema_explorer and its tutorial is at Cinema:Explorer.

4.3 Cinema:Scope

Cinema:Scope is a prototype cross-platform viewer application that allows the user to interactively explore
a Cinema database of images, through both sliders and mouse controls. Cinema:Scope is compatible with the
CSV specification of Cinema databases. In Fig. 4.4, a Sedov blast wave is viewed with Cinema:Scope. The
parameters linked to the mouse controls can be changed by the user. For databases with multiple artifacts, the
image artifact can be changed by the user to change the view to a different set of images.

12 Chapter 4. CinemaScience Viewers

https://github.com/cinemascience/cinema_view
https://github.com/cinemascience/cinema_explorer


CinemaScience Documentation, Release 0.0.1

Fig. 4.3: A large Nyx cosmological simulation is viewed within Cinema:Explorer. The database has had
a series of computer vision algorithms applied to extend the database (see cinema_lib Library).

Fig. 4.4: A Sedov blast wave is viewed within Cinema:Scope. The database can be explored either through
slider control or through intuitive mouse controls.

CinemaScope
can
be
found
at
cin-
ema_scope
and
its
tu-
to-
rial
is
at
Cin-
ema:Scope.

4.4 Other
View-
ers

The
Cin-
e-
ma-
Science
GitHub
page

4.4. Other Viewers 13

https://github.com/cinemascience/cinema_scope
https://github.com/cinemascience/cinema_scope
https://github.com/cinemascience
https://github.com/cinemascience
https://github.com/cinemascience
https://github.com/cinemascience
https://github.com/cinemascience


CinemaScience Documentation, Release 0.0.1

con-
tains
other
Cin-
ema

viewers and modules that provide useful examples for developers. In particular, cinema_components provides a
javascript library of components that can be used to extend CinemaExplorer or individually assembled to create an
application-specific viewer (see cinema_components Library).

The Cinema viewer projects include:

• cinema_components A javascript library containing prebuilt components for viewing and querying Cinema
CSV-based databases.

• cinema_newsfeed A pipeline approach to present analysis results to the user.

• cinema_quest An interactive visual tool for querying Cinema Database ensembles.

• cinema_bandit A multi-view application for analysis and visualization of experimental data.

• cinema_debye_scherrer An interactive web-based tool to visualize multiple datasets.

• cinema_simpleviewers A set of simple viewers to be used as examples to create custom Cinema viewers.

• cinema_unityviewer An experimental viewer based on the Unity game engine.

• cinema_jnc A prototype Jupyter notebook-based viewer.

14 Chapter 4. CinemaScience Viewers

https://github.com/cinemascience/cinema_components
https://github.com/cinemascience/cinema_components
https://github.com/cinemascience/cinema_newsfeed
https://github.com/cinemascience/cinema_quest
https://github.com/cinemascience/cinema_bandit
https://github.com/cinemascience/cinema_debye_scherrer
https://github.com/cinemascience/cinema_simpleviewers
https://github.com/cinemascience/cinema_unityviewer
https://github.com/cinemascience/cinema_jnc


CHAPTER 5

Cinemasci Python Toolkit

cinemasci is a set of python tools for reading, writing and viewing Cinema databases

5.1 Requirements

Minimum Requirements are:

• Python 3.7 or above

This project uses coding standards spelled out in PEP8.

5.2 Installation

The cinemasci module is available on the CinemaScience GitHub: at cinemasci. It can be installed in multiple ways.

Clone the repository:

$ git clone --recurse-submodules https://github.com/cinemascience/cinemasci.git

or

$ git clone https://github.com/cinemascience/cinemasci.git
$ cd cinemasci
$ git submodule init
$ git submodule update

Alternately, the latest release of this module is available on pypi.org, and can be installed with pip:

$ pip install cinemasci

Or it can be installed locally from source using the setup.py file.

15

https://www.python.org/dev/peps/pep-0008/
https://github.com/cinemascience
https://github.com/cinemascience/cinemasci


CinemaScience Documentation, Release 0.0.1

5.3 Cinemasci submodules

The cinemasci submodules are used for common Cinema tasks:

• cdb: Tools for reading, writing and manipulating a cinema database.

• cis: Tools for reading, writing and manipulating composable image sets.

• pynb: A Jupyter notebook viewer for simple databases.

• server: A simple server to help view databases, using the viewers submodule.

• viewers: Viewers (submodule)

Please see the cinemasci tutorial, Tutorial: Cinemasci, for examples of using Cinemasci functionality.

16 Chapter 5. Cinemasci Python Toolkit



CHAPTER 6

CinemaScience Algorithms, Libraries, and Tools

CinemaScience includes algorithms, code libraries, and tools to facilitate analysis in situ and postprocessing, available
on the CinemaScience GitHub page. The Cinema algorithm, library, and tool projects include:

• cinema_change_detection A R command line tool that takes as input a Cinema database and produces a new
Cinema database with change detection results using Myers et al. This tool also produces a change detection
png image and json file to be used with Cinema:Newsfeed.

• cinema_asqlpy An apsw/SQLite virtual table interface to Cinema Spec A databases.

• cvlib A Cinema Viewer library which provides a JavaScript API to Spec A Cinema databases for visualization
in the browser.

• cvlibd A Javascript framework to facilitate development of viewer applications for Spec D Cinema databases in
the browser.

• cinema_lib Python 3.6 library and command line tool for Cinema specifications A and D.

• cinema_components A javascript library containing prebuilt components for viewing and querying Cinema
SpecD databases.

6.1 cinema_lib Library

Cinema_lib is a set of tools and a library for interacting with Spec A and Spec D Cinema databases (CDBs) through
Python and the command line tool, cinema.

6.1.1 Requirements

Minimum Requirements are:

• Python 3.6

Optional requirements are:

• numpy >=1.13 - image capabilities - OpenCV capabilities

17

https://github.com/cinemascience
https://github.com/cinemascience/cinema_change_detection
https://github.com/cinemascience/cinema_asqlpy
https://github.com/cinemascience/cvlib
https://github.com/cinemascience/cvlibd
https://github.com/cinemascience/cinema_lib
https://github.com/cinemascience/cinema_components


CinemaScience Documentation, Release 0.0.1

• scikit-image >=0.13.1 (newer versions may cause regression tests to fail due to changing numerics and
implementations of algorithms) - image capabilities

• opencv-python >=3.4 (newer versions may cause regression tests to fail due to changing numerics) -
OpenCV capabilities

6.1.2 Installation

To run the command line tool directly from the repository, first clone from the CinemaScience GitHub:

$ git clone https://github.com/cinemascience/cinema_lib.git
$ cd cinema_lib
$ ./cinema

Or install with pip:

$ git clone https://github.com/cinemascience/cinema_lib.git
$ cd cinema_lib
$ pip install .
$ cinema

6.1.3 Commands

cinema_lib provides database manipulation commands, image manipulation commands and computer vision tech-
niques. Many of these actions result in a the generation of a modified or a new CDB.

Help Command

• List all of the currently implemented commands. The abbreviated help header is shown:

$ cinema --help

usage: cinema [-h] [--version] [-v] [-q] [-a DB] [-d DB] [-l STR] [-t] [-i]
[--a2d] [--d2s] [--s2d DB] [--image-grey N] [--image-mean N]
[--image-stddev N] [--image-unique N] [--image-entropy N]
[--image-joint N] [--image-canny N] [--image-firstq N]
[--image-secondq N] [--image-thirdq N] [--image-90th N]
[--image-95th N] [--image-99th N] [--cv-grey N]
[--cv-box-blur N] [--cv-gaussian-blur N] [--cv-median-blur N]
[--cv-bilateral-filter N] [--cv-canny N]
[--cv-contour-threshold N] [--cv-fast-draw N] [--cv-sift-draw N]
[--cv-surf-draw N]

Examples: Database Manipulation

• Validate a Spec A/D database:

Spec A:
$ cinema -t -a path_to_database/database_name.cdb

Spec D:
$ cinema -t -d path_to_database/database_name.cdb

18 Chapter 6. CinemaScience Algorithms, Libraries, and Tools

https://github.com/cinemascience


CinemaScience Documentation, Release 0.0.1

• Return the header (column labels) for a Spec D database:

$ cinema -i -d path_to_database/database_name.cdb

• Validate a Spec D database quickly (without validating the row data), reporting the header verbosely:

$ cinema -itvq -d path_to_database/database_name.cdb

• Validate a Spec A and then convert it to a Spec D database (this will result in the generation of the required
data.csv file):

$ cinema -t --a2d -a path_to_database/database_name.cdb

Image Color Conversion and Statistics

• Convert RGB images in a Spec D database to greyscale images:

$ cinema -d path_to_database/database_name.cdb --image-grey 2

Using Cinema:View, one can see that the original Viridis colormap has been converted to greyscale:

Let’s look at a sample workflow using an MPAS-Ocean static (no rotation) CDB with 173 time steps to perform some
image-based analysis. The workflow starts with validating the database and checking the location of the image FILE
column:

$ cinema -itv -d mpas_static.cdb
INFO: Checking database "mpas_static.cdb" as Spec D.
INFO: Opening CSV file "data.csv".
INFO: Header is ('time', 'FILE').
INFO: Number of columns are 2.
INFO: First data row is ('0.00E+00', 'image/0.000000e+00.png').
INFO: Data types are ('FLOAT', 'STRING').
INFO: FILE column indices are [1].
INFO: Number of data rows are 173.
INFO: 173 files validated to be present.
INFO: Check succeeded.
0: time
1: FILE

6.1. cinema_lib Library 19



CinemaScience Documentation, Release 0.0.1

Note that the FILE column is N=1. Let’s convert the original Viridis colormap to greyscale:

$ cinema -d mpas_static.cdb --image-grey 1

and do a quick validation to verify the new image FILE column:

$ cinema -itvq -d mpas_static.cdb
INFO: Checking database "mpas_static.cdb" as Spec D.
INFO: Opening CSV file "data.csv".
INFO: Header is ('time', 'FILE', 'FILEimage greyscale').
INFO: Number of columns are 3.
INFO: First data row is ('0.00E+00', 'image/0.000000e+00.png', 'image/0.000000e+00_
→˓image_grey.png').
INFO: Data types are ('FLOAT', 'STRING', 'STRING').
INFO: FILE column indices are [1, 2].
INFO: Doing a quick check. Not checking row data.
INFO: Check succeeded.
0: time
1: FILE
2: FILEimage greyscale

Choose the new FILEimage greyscale image column and calculate the mean image data:

$ cinema -d mpas_static.cdb --image-mean 2

Note that each image action may result in one or more columns of output data being added to the data.csv file so
validation is a useful step to keep in mind.

The full list of image operations is:

--image-grey N COMMAND: convert and write image data to greyscale PNG
in column number N, using scikit-image color.rgb2grey.
New image files are named
"<old_base_filename>_image_grey.png"

--image-mean N COMMAND: add image mean data calculated from images in
column number N

--image-stddev N COMMAND: add image standard deviation data calculated
from images in column number N

--image-unique N COMMAND: add unique pixel count data calculated from
images in column number N

--image-entropy N COMMAND: add image Shannon entropy data calculated
from images in column number N, using a histogram with
131072 bins

--image-joint N COMMAND: add the joint entropy (multi-dimensional
Shannon entropy) data calculated from images in column
number N, using 1024 discretization levels per
dimension

--image-canny N COMMAND: add Canny edge pixel count data calculated
from images in column number N

--image-firstq N COMMAND: add the first quartile data calculated from
images in column number N

--image-secondq N COMMAND: add the second quartile data calculated from
images in column number N

--image-thirdq N COMMAND: add the third quartile data calculated from
images in column number N

--image-90th N COMMAND: add the 90th percentile data calculated from
images in column number N

--image-95th N COMMAND: add the 95th percentile data calculated from
(continues on next page)

20 Chapter 6. CinemaScience Algorithms, Libraries, and Tools



CinemaScience Documentation, Release 0.0.1

(continued from previous page)

images in column number N
--image-99th N COMMAND: add the 99th percentile data calculated from

images in column number N

Computer Vision Commands

In addition to standard image operations and statistics, cinema_lib includes a set of Computer Vision commands. As
an example, one can find features identified by a FAST algorithm. Let’s start with the original MPAS images:

$ cinema -itv -d mpas_static.cdb
INFO: Checking database "mpas_static.cdb" as Spec D.
INFO: Opening CSV file "data.csv".
INFO: Header is ('time', 'FILE').
INFO: Number of columns are 2.
INFO: First data row is ('0.00E+00', 'image/0.000000e+00.png').
INFO: Data types are ('FLOAT', 'STRING').
INFO: FILE column indices are [1].
INFO: Number of data rows are 173.
INFO: 173 files validated to be present.
INFO: Check succeeded.
0: time
1: FILE

First use a cinema_lib function to convert the Viridis colormap to greyscale and then run the cinema cv-fast-draw
option:

$ cinema -d mpas_static.cdb --cv-grey 1
$ cinema -d mpas_static.cdb --cv-fast-draw 2 --label FAST

Once again, using Cinema:View, one can see the original Viridis colormap, its greyscale counterpart, and the FAST
features added from the Computer Vision suite of functionality. The FAST algorithm finds the eddies, land masses,
and ocean currents:

The full list of computer vision operations is:

--cv-grey N COMMAND: convert and write image data to greyscale PNG
in column number N, using OpenCV cvtColor. new files
are named "<old_base_filename>_cv_grey.png"

--cv-box-blur N COMMAND: apply box blur to image data in column number
N. new files are named
"<old_base_filename>_cv_box_blur.png"

--cv-gaussian-blur N COMMAND: apply Gaussian blur to image data in column
(continues on next page)

6.1. cinema_lib Library 21



CinemaScience Documentation, Release 0.0.1

(continued from previous page)

number N. new files are named
"<old_base_filename>_cv_gaussian_blur.png"

--cv-median-blur N COMMAND: apply median blur to image data in column
number N. new files are named
"<old_base_filename>_cv_median_blur.png"

--cv-bilateral-filter N
COMMAND: apply bilateral filter to image data in
column number N. new files are named
"<old_base_filename>_cv_bilateral_filter.png"

--cv-canny N COMMAND: apply Canny edge detector to image data in
column number N. new files are named
"<old_base_filename>_cv_canny.png"

--cv-contour-threshold N
COMMAND: draw contours around image thresholds on
image data in column number N. new files are named
"<old_base_filename>_cv_contour_threshold.png"

--cv-fast-draw N COMMAND: draw FAST features on image data in column
number N. new files are named
"<old_base_filename>_cv_fast_draw.png"

--cv-sift-draw N COMMAND: draw SIFT features on image data in column
number N. new files are named
"<old_base_filename>_cv_sift_draw.png"

--cv-surf-draw N COMMAND: draw SURF features on image data in column
number N. new files are named
"<old_base_filename>_cv_surf_draw.png"

6.2 cinema_components Library

CinemaScience includes a library of viewer components that can be added by the user to create analysis and data
specific viewers. These components include:

• PcoordSVG – A component for viewing and browsing a database on a Parallel Coordinates Chart (rendered
with SVG).

• PcoordCanvas – A component for viewing and browsing a database on a Parallel Coordinates Chart (ren-
dered with Canvas).

22 Chapter 6. CinemaScience Algorithms, Libraries, and Tools



CinemaScience Documentation, Release 0.0.1

• Glyph – A component for viewing data on a Glyph Chart.

6.2. cinema_components Library 23



CinemaScience Documentation, Release 0.0.1

• ImageSpread – A component for viewing image data for a set of data points.

• Query – A component that provides an interface for defining a custom data point and querying the database for
similar points.

24 Chapter 6. CinemaScience Algorithms, Libraries, and Tools



CinemaScience Documentation, Release 0.0.1

• ScatterPlotSVG – A component for viewing data on a Scatter plot (rendered with SVG).

• ScatterPlotCanvas – A component for viewing data on a Scatter plot (rendered with Canvas).

6.2.1 Example Use Case

Cinema viewers are JavaScript/HTML/CSS based and use D3 to link data and user actions. Below is a simple example
of a browser page that uses a pcoordSVG component to control the display of an ImageSpread component for a
database name mydata.cdb located in the same directory:

<html>
<head>

<!--Import D3-->
<script src="lib/d3.min.js"></script>

<!--Import Cinema Components Library-->
<script src="CinemaComponents.js"></script>

<!--Include Component's CSS-->
<link rel='stylesheet' href='css/CinemaComponents.min.css'>

</head>
<body>

<!--The component will be placed inside container-->
<div id="pcoord_container" style="width:500px;height:400px;"></div>
<div id="spread_container" style="width:100%;height:400px;"></div>
<script>

var chart, spread;
//First create a database
var database = new CINEMA_COMPONENTS.Database('mydata.cdb',

→˓function() {
//This callback function is called when the database has

→˓finished loading (continues on next page)

6.2. cinema_components Library 25



CinemaScience Documentation, Release 0.0.1

(continued from previous page)

//Use it to create your components
chart = new CINEMA_COMPONENTS.PcoordSVG(document.

→˓getElementByID('pcoord_container'), database);
spread = new CINEMA_COMPONENTS.ImageSpread(document.

→˓getElementByID('spread_container'),database);

//Using dispatch events, components can communicate with each
→˓other

chart.dispatch.on('selectionchange',function(selection) {
spread.setSelection(selection);

});
});

</script>
</body>

</html>

Full details on the use of cinema_components is on the cinema_components GitHub page.

6.3 cinema_movie Tool

cinema_movie is a tool to create a movie from a Cinema database (CDB). This is a new functionality currently under
development. Updates on this documentation page may not completely reflect current capabilities. For the latest
information on cinema_movie, please check out the README the cinema_movie GitHub page.

6.3.1 Requirements

Minimum Requirements are:

• Python 3.7

• pandas, numpy, opencv-python

6.3.2 Files

cinema_movie - main program
cmovie - movie production module

The cinema_movie script takes in a Cinema database (CDB) and creates a movie based on the set of frames
described in the frames.csv control file. The cmovie module contains the functions needed to create the movie.

6.3.3 Command Line Control Parameters

A series of command line arguments can be used to modify the functionality of cinema_movie:

cdb: Set input path and Cinema database name (default: ./data/example_data.cdb)
frames: Set input csv file name to choose views in the movie; assumes path is cdb
→˓(default: ./data/example_data.cdb/frames.csv)
FILE: Set the image column used from the CDB (default: FILE)
fps: Set the frame rate for the movie (default: 5 fps)
opath: Set/creates path to output movie (default: ./)
movie: Set output movie name (default: cinema.mp4)

26 Chapter 6. CinemaScience Algorithms, Libraries, and Tools

https://github.com/cinemascience/cinema_components
https://github.com/cinemascience/cinema_movie


CinemaScience Documentation, Release 0.0.1

There are error checks on the path and database name and to verify the database columns that will be used in the
movie. If there are no images found that satisfy the requested movie parameters, a warning message will print.

6.3.4 Usage

Make a movie by running the script with any modified arguments. Examples of usage

$ ./cinema_movie
$ ./cinema_movie --cdb ./tmp/my_cdb.cdb --fps 10 --movie mymovie.mp4

6.3. cinema_movie Tool 27



CinemaScience Documentation, Release 0.0.1

28 Chapter 6. CinemaScience Algorithms, Libraries, and Tools



CHAPTER 7

Tutorial: Cinemasci

This tutorial uses the Supercomputng Cinema tutorial.

The jupyter notebook workflow needs the following installed:

• Python 3.7 or above

• pandas, numpy

• os, shutil

• cinemasci v1.4

• openCV 4.4 (opencv-python)

• skimage (scikit-image)

• notebook, jupyterLab

Start by cloning the full tutorial repository and navigating to the pngviewer subdirectory:

$ git clone https://github.com/cinemascience/cinema_tutorial_2020-SC
$ cd cinema_tutorial_2020-SC/cinema_jnc/pngviewer
$ jupyter notebook

In the jupyter notebook, open cinema_tutorial.ipynb. The first cell, Fig. 7.1 uses cinemasci to load a vol-
ume Cinema database from the Nyx cosmology simulation show the formation of dark matter halos in the universe
over time. The sliders can be used to select the phi and theta view angles and to explore the database over time.

Fig. 7.1: The first cell in the jupyter notebook workflow creates a Cinema viewer object and loads a Nyx volume
database.

The
sec-
ond
cell
loads
a
Cin-
ema
database

29

https://github.com/cinemascience/cinema_tutorial_2020-SC
https://iopscience.iop.org/article/10.1088/0004-637X/765/1/39


CinemaScience Documentation, Release 0.0.1

with
two
slices
of
the
Nyx
sim-
u-
la-
tion
(de-
noted
7
and
12)
over
18
time
steps,
Fig.
7.2.

The
next
cell,

Fig. 7.3, runs an image-based analysis using the Python libraries, OpenCV and skimage. The Cinema database CSV
file is loaded into a pandas dataframe for easy manipulation. The image statistics and output image names are saved
into new lists.

30 Chapter 7. Tutorial: Cinemasci



CinemaScience Documentation, Release 0.0.1

Fig.
7.2:
The
sec-
ond
cell
in
the
jupyter
note-
book
work-
flow
cre-
ates
a
Cin-
ema
viewer
ob-
ject
and
loads
a
Nyx
database
with
two
slices
of
the
Nyx
sim-
u-
la-
tion.

Fig. 7.3: An example analysis cell that calculates image statistics and finds contours in the Nyx image database.

Finally,
Fig.
7.4,
the
im-
age
statis-
tics
and
out-
put
im-
ages
names
are
added

31



CinemaScience Documentation, Release 0.0.1

to
the
orig-
i-
nal
dataframe
and
re-
ordered
per
Cin-
e-
ma-
Science
Spec-
i-
fi-
ca-
tions
to
cre-
ate
the
new
Cin-
ema
database.
The
work-
flow
fin-
ishes
by

launching a HTML file in the browser to view the databases in the workflow.

Fig.
7.4:
The
new
dataframe
is
writ-
ten
to
a
CSV
file
to
cre-
ate
the
up-
dated
Cin-
ema
database.

Note:
To
use
browser
based
view-
ers,
you
need
to
al-
low
lo-
cal
file
ac-
cess.
See
A
Note
on
Browser
Se-
cu-
rity
for
more
in-
for-
ma-
tion.

The CinemaScience GitHub page and the CinemaScience website are useful sources for more information and ideas.

32 Chapter 7. Tutorial: Cinemasci

https://github.com/cinemascience
https://cinemascience.github.io


CHAPTER 8

Tutorial: Cinema Workflows

This tutorial will help the user explore the CinemaScience ecosystem and give examples for possible workflows,
including how to generate or export Cinema databases (CDBs).

The CinemaScience GitHub page and the CinemaScience website are useful sources for more information and ideas.

8.1 Custom Script

A basic approach is a custom script that generates a database according to the Cinema Specifications, CinemaScience
Specifications. This approach may be appropriate for both simulation and experimental data, run statistics, or other
already extant datasets. Taking in one CDB, performing analysis and outputting an updated CDB is a common work-
flow.

Any programming language can be used but here we demonstrate a pandas dataframe approach. In this pseudo-script,
an input CSV file is read in, manipulated, has a final image FILE column added and then is written out to a CDB.
Along the way, the necessary directories are created and the images are moved over from an input directory to the
data/image directory.

#! /usr/bin/env python
# Psuedo code to generate a custom Cinema Database

import sys, os
import pandas as pd

###############################################
# writes the data frame to the CDB data.csv file
################################################
def write_data(fname, df):

sys.stderr.write ("Writing Cinema database data.csv...\n")

with open(fname, "w") as output:
df.to_csv(fname, mode='w', sep=',' , index=False)

################################################

(continues on next page)

33

https://github.com/cinemascience
https://cinemascience.github.io


CinemaScience Documentation, Release 0.0.1

(continued from previous page)

# get database parameters from sys.argv
runParams = [180101, 00] # Default run params
if len(sys.argv) == 3:

runParams[0] = int( float(sys.argv[1]) )
runParams[1] = int( float(sys.argv[2]) )

else:
sys.stderr.write ( ("Warning, no run information, using defaults: {};{}\n").

→˓format(runParams[0],runParams[1]) )

# Setup CDB directory structure and default image for file
sys.stderr.write ( 'Run Params: {}_{}\n'.format(runParams[0],runParams[1]))
sys.stderr.write ( 'Creating Cinema Database directory structure ...\n' )
inputDir = 'input/'
dataDir = 'data/run_{}_{}.cdb'.format(runParams[0],runParams[1] )
imageDir = dataDir+'/image'
defaultFILEimg = 'cinemaNoFILE.png'

# check for dataDir; copy default File img to image directory
os.makedirs(dataDir, exist_ok=True)
os.system('/bin/cp ' + defaultFILEimg +' '+ imageDir+'/.')

# Read in the already-existing dataset
sys.stderr.write ("Reading in datafile file...\n")
inputFile = inputDir + 'run_{}_{}.csv'.format(runParams[0],runParams[1] )
dfRun = pd.read_csv(inputFile, sep=',')

# manipulate the dfRun dataframe:
sys.stderr.write ("Analysis and Image File Code Block...\n")
dfRun['newVar'] = dfRun['var1']/dfRun['var2'] # perform some analysis
if 'uselessProperty' in dfRun.columns: # delete a column

dfRun = dfRun.drop(['uselessProperty'], axis =1)
# ...etc...
dfRun['FILE'] = defaultFILEimg # add the final FILE column for
→˓images
for index, row in dfRun.iterrows(): # select an image to show for that
→˓row

thisValue = row['newVar']
thisImage = inputDir + 'run_{}_{}_{}.png'.format(thisValue, runParams[0],

→˓runParams[1])
if os.path.isfile(thisImage): # check if it exists and if so

row['FILE'] = imageDir + thisImage # set the FILE variable to that image
os.system('/bin/mv ' + inputDir+thisImage +' '+ imageDir+'/.') # and move

→˓it to the image directory

# Write out the dataframe to a Cinema database data.csv
datafilename = dataDir+'/data.csv'
write_data( datafilename, dfRun)

Alternately, one can use a text editor or spreadsheet program to generate the necessary CSV files.

8.2 Post-Processing via ParaView 5.9 Export Inspector

ParaView provides extract functionality for Cinema databases. This can be used in a post-processing workflow to
create Cinema databases from any dataset that can be loaded into ParaView. In ParaView 5.9 (currently in a release

34 Chapter 8. Tutorial: Cinema Workflows



CinemaScience Documentation, Release 0.0.1

candidate version), the Cinema export has been moved into an updated Extractor scheme.

This can be demonstrated with one of the sources available within ParaView. Open ParaView 5.9 (currently
RC2). From the ParaView menu, select Sources -> Alphabetical -> Time Source. We want to
see time-varying behavior so under the Properties tab, change the X Amplitude to 1 and click on the Grow-
ing checkbox (see red box on left). Under Coloring, choose Point X and a Surface Representation.
Make sure the visualization object is sufficiently small so that when you run the time animation (see red
box on the top), you can see the time source expand and contract. The image below illustrates this setup.

The
Cin-
ema
database
ex-
port
func-
tion-
al-
ity
is
ac-
cessed
via
the
Extractor
menu.
Click
on
Extractors
-
>
Image
-
>
PNG
(or

JPG). This will add a PNG (or JPG) element to the Pipeline Browser. Within the Properties, select the Camera Mode,
either Static or Phi-Theta. Phi-Theta will produce images with the camera rotated at regularly spaced phi, theta
intervals.

8.2. Post-Processing via ParaView 5.9 Export Inspector 35



CinemaScience Documentation, Release 0.0.1

To export the Cinema database:

• Create an appropriate output directory, e.g.: /<path_to_dir>/my_cinema_database.cdb

• From the File menu, select Save Extracts

• In the Save Extracts Options dialog box (shown below), enter the path to the extracts output directory
created above or use the browse menu (three dots) to navigate to the directory.

• Click on the Generate Cinema Specification box to generate the data.csv file

36 Chapter 8. Tutorial: Cinema Workflows



CinemaScience Documentation, Release 0.0.1

After generating the Cinema database, you can view it in one of the Cinema viewers CinemaScience Viewers

Note: for users not familiar with ParaView, we refer you to the ParaView Tutorial to get started.

8.3 Post-Processing via ParaView 5.7 Export Inspector

ParaView provides Cinema database export functionality which can be used in a post-processing workflow to create
Cinema databases from any dataset that can be loaded into ParaView. This can be demonstrated with one of the sources
available within ParaView. Open ParaView 5.7.0. From the ParaView menu, select Sources -> Time Source.
We want to see time-varying behavior so under the Properties tab, change the X Amplitude to 1 and click on the
Growing checkbox. Under Coloring, choose Point X and a Surface Representation. Make sure the visualization object
is sufficiently small so that when you run the time animation (play button on the animation menu), you can see the
time source expand and contract. The image below illustrates this setup.

8.3. Post-Processing via ParaView 5.7 Export Inspector 37

https://www.paraview.org/Wiki/The_ParaView_Tutorial


CinemaScience Documentation, Release 0.0.1

The Cinema export functionality can be found on the Export Inspector view which is available as one of the
default tabs when ParaView is opened (see above image) or the Export Inspector can be opened from the ParaView
View menu. Click on the Export Inspector tab where you will see a set of default options. To export a Cinema
Database:

• Under Image Extracts, make sure the correct view is selected. The default RenderView1 will usually be
the right one.

• In the dropdown menu on the right, select Cinema image database (*.cdb) and click the checkbox
to the right to establish that option.

• Open the ellipses menu to the right of the checkbox to get the Save Screenshot option menu. When Cinema
image database is chosen, it shows the Cinema options. To get multiple camera angles, choose Phi-Theta
from the Camera Model dropdown menu.

• Under Root Directory, add the complete path and output database name: /<path-to-cdb>/test.cdb.

• Under File, select Export Now to start the Cinema database export.

After generating the Cinema database, you can view it in one of the Cinema viewers CinemaScience Viewers

38 Chapter 8. Tutorial: Cinema Workflows



CinemaScience Documentation, Release 0.0.1

Note: for users not familiar with ParaView, we refer you to the ParaView Tutorial to get started.

8.4 Post-Processing via ParaView 5.6 Cinema Export Scene

The current ParaView release v5.6 (in Release Candidate status as of this writing) has a Cinema Export Wizard that
outputs Cinema Spec A databases. These can be converted to Cinema Spec D databases through the cinema_lib
command line interface. The Cinema Spec D export wizard will be included in an upcoming ParaView release. This
tutorial will be updated when that change takes place. The basic functionality will be similar to the following.

A Cinema database can be exported directly from ParaView. This can be demonstrated with a wavelet source. Open
ParaView, select Sources -> Data Objects –> Wavelet. Click on Apply to load a basic wavelet.

Select RTData as the variable of interest and choose a Volume representation (answer Yes when it asks if you want
to change the representation type):

8.4. Post-Processing via ParaView 5.6 Cinema Export Scene 39

https://www.paraview.org/Wiki/The_ParaView_Tutorial


CinemaScience Documentation, Release 0.0.1

File, open Export Scene. This will bring up the export dialog to input the CDB name and location. The Cinema Export
Wizard will pop up. On the left is the default export dialog. A typical set of answers to generate a CDB placing
cameras around the globe is given on the right. The Cinema export will automatically cycle through all time steps
present in the data.

This Spec A data can be converted to a Spec D CDB using the cinema_lib tools. Please see Converting Spec A to Spec
D databases for details. Once converted, the Spec D database is available for viewing in one of the Cinema Viewers
as explained in the Viewer tutorial, Tutorial: Cinema Viewers.

8.5 In Situ via ParaView Catalyst

ParaView’s in situ Catalyst library can be used to output Cinema Spec D databases. Within ParaView, load the data
and create the visualization you wish to generate in situ.

If the Export Inspector view is not already opened, it can be opened from either the View menu by selecting
Export Inspector or from the Catalyst menu by selecting Define Exports. Set up the Cinema database
export as described in the post-processing Cinema ParaView workflow, Post-Processing via ParaView 5.7 Export
Inspector

• Under Image Extracts, make sure the correct view is selected.

• Select Cinema image database (*.cdb) and click the checkbox to the right to establish that option.

• Open the ellipses menu to the right of the checkbox to select the Cinema database options via the Save Screen-
shot menu.

• Under Root Directory, add the complete path and output database name: /<path-to-cdb>/test.
cdb.

40 Chapter 8. Tutorial: Cinema Workflows



CinemaScience Documentation, Release 0.0.1

• From the ParaView Catalyst menu, select Export Catalyst Script and enter a location and name
for the exported python script. The exported script can be edited to fine-tune as needed. This script can then be
integrated into an in situ pipeline.

The ParaView Python Documentation is an excellent source of information on how to create a Catalyst pipeline.

8.6 Post-Processing via VisIt Cinema Export Wizard

A Cinema Export Wizard is available in VisIt v3.0.2 to directly export a Cinema database from VisIt. This can be
demonstrated with sample data that can be downloaded from the VisIt tutorial page. Start by clicking on Open to
bring up the VisIt File open dialog box. Navigate to the correct directory, select the data you wish to visualize and
click OK:

Click Add, select Pseudocolor and choose an appropriate variable such as pressure. On the control bar, click
File –> Save To Cinema to bring up the VisIt Cinema database dialog:

8.6. Post-Processing via VisIt Cinema Export Wizard 41

https://kitware.github.io/paraview-docs/latest/python/quick-start.html
https://wci.llnl.gov/simulation/computer-codes/visit/manuals


CinemaScience Documentation, Release 0.0.1

In the Cinema wizard, change the database name and path as needed, select Spec D for the current Cinema specification
and choose Use screen capture to select the entire VisIt viewing window. The Camera type can be either
static (no rotation, only time evolution of the currently rendered view) or phi-theta for the default rotations.
Modify the number of phi and theta camera locations as desired. Click Next. On the next window, choose the number
of frames (time steps) to include and click Finish.

42 Chapter 8. Tutorial: Cinema Workflows



CinemaScience Documentation, Release 0.0.1

VisIt may request permission to access a terminal window which provides verbose output on CDB export progress.

Note: for users not familiar with VisiT, we refer you to the VisIt Documentation to get started.

8.7 In Situ via VisIt LimSim

Not currently available.

8.7. In Situ via VisIt LimSim 43

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/gui_manual/index.html


CinemaScience Documentation, Release 0.0.1

8.8 In Situ via ALPINE Ascent

Ascent is a many-core capable lightweight in-situ visualization and analysis infrastructure for multi-physics HPC
simulations. Ascent is under development as part of the Exascale Computing Project’s ALPINE project. For simulation
codes instrumented with the ALPINE Ascent infrastructure, Cinema databases can be exported as one of the available
scenes. Currently Ascent only outputs Spec A (the deprecated json-based specification). Spec A can be converted
to Spec D databases (see Converting Spec A to Spec D databases). There are plans to update this to Spec D.

44 Chapter 8. Tutorial: Cinema Workflows

https://alpine-dav.github.io/ascent/


CHAPTER 9

Tutorial: Cinema Viewers

This tutorial will help the user explore the CinemaScience ecosystem. It will discuss how to view Cinema databases
(CDBs) with the standard Cinema Viewers.

The CinemaScience GitHub page and the CinemaScience website are useful sources for more information and ideas.

Note: To use browser based viewers, you need to allow local file access. See A Note on Browser Security for more
information.

9.1 Viewing Cinema Databases

The basic Cinema viewers operate on the Cinema Spec D specification. In each case, CDBs are assumed to reside in
a data/ directory. Each CDB consists of a default data.csv file with columns of data abstracts following Spec D
requirements (see CinemaScience Specifications), and any subdirectories needed for the data abstracts such as images,
vti files, or additional csv files. The database viewers are described below.

9.2 Cinema:View

Cinema:View is designed to access the images within one or more CDBs, providing sliders spanning the values in the
databases in order to select a specific image or set of comparison images. Cinema:View can be downloaded from the
cinema_view GitHub page. This download will result in several directories and a cinema_view.html:

$ ls -l
cinema
data
doc
cinema_view.html

The data/ directory includes a databases.json file and a test CDB, sphere.cdb with its required data.
csv, and an image/ subdirectory with the images arranged into subfolders by the phi variable.

45

https://github.com/cinemascience
https://cinemascience.github.io
https://github.com/cinemascience/cinema_view


CinemaScience Documentation, Release 0.0.1

cinema_view/data/sphere.cdb/data.csv
cinema_view/data/sphere.cdb/image/-18/0.png

In the default sphere example, there are 20 phi values and 1 theta value saved in the data.csv:

theta,phi,FILE
0,-180,image/-180/0.png
0,-162,image/-162/0.png
0,-144,image/-144/0.png
0,-126,image/-126/0.png
0,-108,image/-108/0.png
0,-90,image/-90/0.png
0,-72,image/-72/0.png
0,-54,image/-54/0.png
0,-36,image/-36/0.png
0,-18,image/-18/0.png
0,0,image/0/0.png
0,18,image/18/0.png
0,36,image/36/0.png
0,54,image/54/0.png
0,72,image/72/0.png
0,90,image/90/0.png
0,108,image/108/0.png
0,126,image/126/0.png
0,144,image/144/0.png
0,162,image/162/0.png

The cinema_view.html file defines the set of databases to display in the dataSets variable.

Opening cinema_view.html in Firefox:

$ open cinema_view.html -a Firefox

will bring up the Cinema:View viewer, shown in Fig. 9.1. The sliders allow you to change the image size and the orien-
tation.

Fig. 9.1: Using Cinema:View to explore a single Cinema database, a sphere.

This
ba-
sic
viewer
al-
lows
the
user
to
view
a
sin-
gle
database
or
a
set
of
databases,
e.g.,

46 Chapter 9. Tutorial: Cinema Viewers



CinemaScience Documentation, Release 0.0.1

Fig.
9.2,
cre-
ated
with
the
same
pa-
ram-
e-

ter set.

Fig.
9.2:
Using
Cin-
ema:View
to
ex-
plore
a
mul-
ti-
ple
Cin-
ema
databases,
three
vi-
su-
al-
iza-
tions
of
a
Se-
dov
blast
wave.

The set of databases can be changed by editing the data/databases.json file (example below). The dropdown
menu allows the user to select the database or set of databases to view. If viewing a set of databases, the sliders
control all three databases in common.

[
{

"database_
→˓name-comment" : "The name of the dataset. It will appear in the dropdown.",

"database_name": "sphere test",

→˓"databases-comment" : "JSON array containing list of datasets to compare",
"datasets":
[

{
"name-

→˓comment": "Each dataset must have a name that will appear at the top of the image",
"name": "sphere",

"location-comment
→˓" : "Location of the cinema database relative to cinema root or absolute paths",

"location": "data/sphere.cdb"
}

]
},

{
"database_name": "sedov test",
"datasets":
[

{
"name": "sedov 1",
"location": "data/sedov1.cdb"

},

{
"name": "sedov 2",
"location": "data/sedov2.cdb"

},

{
"name": "sedov 3",
"location": "data/sedov3.cdb"

}
]

(continues on next page)

9.2. Cinema:View 47



CinemaScience Documentation, Release 0.0.1

(continued from previous page)

}
]

Note: Mistyping a database name or forgetting the data/ directory part will result in a TypeError. Open the
console window if nothing appears and check for the error. If so, check the data/databases.json file for errors.

TypeError: results is undefined

9.3 Cinema:Explorer

CinemaExplorer is a parallel coordinates approach to selecting and viewing data in a Cinema database. CinemaEx-
plorer can be downloaded from the cinema_explorer GitHub page. This download will result in several directories
and an cinema_explorer.html:

$ ls -l
cinema
data
doc
cinema_explorer.html

The default data/ directory contains subdirectories with example CDBs to illustrate the range of functionality of
CinemaExplorer. Again, each CDB consists of a data.csv file and any needed subdirectories for its data artifacts.
An image/ directory is common and the file_types.cdb includes a wavelet/ subdirectory with vti files
that can be viewed with CinemaExplorer.

bogus/
big_bogus_1.cdb/
big_bogus_2.cdb/
big_bogus_3.cdb/
big_bogus_4.cdb/
bogus_1.cdb/
bogus_2.cdb/
bogus_3.cdb/
bogus_4.cdb/

file_types.cdb/
image/
wavelet/*.vti

sphere_multi-image.cdb/
sphere.cdb/

The set of databases for CinemaExplorer is defined in a databases.json file found in:

cinema_explorer/cinema/explorer/1.9/databases.json

databases.json follows JSON syntax rules. Each database entry minimally requires a name and a directory.

[
{

"name" : "sphere",
"directory" : "data/sphere.cdb"

},

(continues on next page)

48 Chapter 9. Tutorial: Cinema Viewers

https://github.com/cinemascience/cinema_explorer


CinemaScience Documentation, Release 0.0.1

(continued from previous page)

{
"name" : "Many File Types",
"directory" : "data/file_types.cdb"

}
]

Opening the cinema_explorer/cinema_explorer.html file in Firefox

$ open cinema_explorer.html -a Firefox

will bring up Cinema:Explorer in a browser window. The default view has a parallel coordinates display of the
data.csv columns. Each column corresponds to an axis. Fig. 9.3 shows a simple sphere in Cinema:Explorer.

By default, the first database listed in databases.json will initially load. All databases in databases.json
will appear in a dropdown, Fig. 9.4 (left), menu under Select Database: in the CinemaExplorer browser
window. After selecting a CDB, click on the Load, Fig. 9.4 (right), button to switch to that CDB.

Fig. 9.3: A simple sphere database in a Cinema:Explorer window

Fig. 9.4: A dropdown menu displays databases listed in the databases.json control file. Don’t forget to
press the Load button to load a new database.

Under
the
par-
al-
lel
co-
or-
di-

9.3. Cinema:Explorer 49



CinemaScience Documentation, Release 0.0.1

nates,
the
de-
fault
tab
is
the
Image

Spread component. The image spread includes controls to change the image size, the results per
page, and the sort variable and order. Let’s switch to the Big Bogus 2 database, Fig. 9.5. It has
several additional axes of (bogus) variables and more images than can fit in a single page. Note that
CinemaExplorer switches between Canvas and SVG versions to accommodate the size of the database.

Fig.
9.5:
This
database
il-
lus-
trates
the
abil-
ity
to
have
many
pa-
ram-
e-
ters
or
vari-
ables
in
a
large
database
link-
ing
to
spe-
cific
im-
ages.
The
page
nav-
i-
ga-
tion
wid-
get
at
the
bot-
tom
of
the
Image
Spread
al-
lows
the
user
to
cy-
cle
through
all
the
im-
ages.

The second tab, on the right, is a ScatterPlot component. Each axis variable can be cho-
sen from a dropdown menu of all axes so each variable can be plotted against any other variable.

The parallel component view provides a standard set of flexible actions to select and highlight data. Hovering
over a specific data point or image in the CDB highlights its trace in the parallel coordinates plot and brings up
a card with the detailed information from that database row, Fig. 9.7.

Fig. 9.6: The scatter plot tab is part of the default Cinema:Explorer capability. Dropdown menus for each axis
allows the user to select a specific variable for that axis.

Fig. 9.7: Parallel coordinates support linked views – highlighting an entry in one linked plot will highlight the same
entry in the scatterplot or in the image spread.

Another
use-
ful

50 Chapter 9. Tutorial: Cinema Viewers



CinemaScience Documentation, Release 0.0.1

fea-
ture
is
a
modal
view.
Click-
ing
on
a
sin-
gle
im-
age
will
bring

up that image for closer inspection. Clicking anywhere in the main screen will
dismiss the modal image. In Fig. 9.8, we select the image highlighted above.

Fig.
9.8:
Modal
view
is
used
to
show
a
closeup
of
a
sin-
gle
im-
age.

A subset of the data can be selected via the parallel component axes. Left-mouse-click-hold-and-drag to
select a range on an axis. A subset of six of the original 20 images is now visible in Fig. 9.9. That
range can be shifted by hovering over the selected range then left-mouse-click and hold-and-drag. Or
it can be modified by selecting one edge and dragging just that edge to increase or decrease the selec-
tion range. In Fig. 9.10, the range has been decreased to only select four of the database rows/images:

Fig. 9.9: Selecting a range on the phi axis shows only those images linked to the phi values in that range.

Fig. 9.10: The range has been decreased to only include four images.

The
se-
lec-
tion
can
be
can-
celled
by
click-
ing
on

9.3. Cinema:Explorer 51



CinemaScience Documentation, Release 0.0.1

the
pre-
vi-
ously
se-
lected

axis (in an unselected area). Defining and selecting ranges on the axes is a particularly useful feature to, e.g., identify
and explore outliers in the data.

9.3.1 Optional Control Fields for databases.json

There are three optional control fields that can be implemented within the database.json file to control the data
viewed on the parallel coordinates axes.

• filter is a JSON regular expression which removes the specified axes (columns) whose header matches the
regex. Note that adding filter will override the default filtering for any FILE columns so those will need
to be explicitly removed. This example with the Bogus 1 data removes the Float_6 axis and all axes that begin
with FILE:

{
"name" : "Bogus 1",
"directory" : "data/bogus/bogus_1.cdb",
"filter" : "(^Float_6)|(^FILE)"

}

• query queries the database and only displays those rows that match the criterion for the columns queried.
This example with the Bogus 1 data displays only those rows where Float_6 is within the range [20-70] and
Interger_2 is within the range [40, 60]:

{
"name" : "Bogus 1",
"directory" : "data/bogus/bogus_1.cdb",
"query": {
"Float_6" : [20, 70],
"Integer_2": [40, 60]

}
}

• selection applies an axis selection when the database is loaded but loads all database rows. This example
with the Bogus 1 data brings up the database with the selection on Integer_3 already in place, Fig. ??.

{
"name" : "Bogus 1",
"directory" : "data/bogus/bogus_1.cdb",
"selection": {

"Integer_3": [20, 50]
}

}

9.4 Cinema:Scope

Cinema:Scope
is
a

52 Chapter 9. Tutorial: Cinema Viewers



CinemaScience Documentation, Release 0.0.1

pro-
to-
type
cross
plat-

form application viewer to interactively explore images in a Cinema database. Cinema:Scope can be
found on the cinema_scope GitHub page. Under the readme, click on buildpassing to bring up
the list of builds. Currently, builds are available for Linux, Windows, MacOS, and MacOS/Xcode.

Fig. 9.12: Cinema:Scope uses GitHub’s Travis CI. The dashboard shows current builds.

Download
the
rel-
e-
vant
build
and
in-
stall.
Test
databases
are
avail-
able
in
https:
//
github.
com/
cinemascience/
cinema_
scope/
tree/
master/

docs/data/test_cylinder.cdb.zip.

Open CinemaScope after it has installed. Click on File -> Open to open the direc-
tory and select the data set by highlighting test_cylinder.cdb (do not click into
the directory) and clicking Open, Fig. 9.13. A test cylinder is viewed in Fig. 9.14.

Fig. 9.13: Left: click on File -> Open and navigate to the location of the <filename>.cdb database that you want
to open. Select but do not click into the cdb directory.

The
mouse
wheel
can
be
used
to
in-
crease/decrease
im-
age
size.
Each
pa-
ram-

9.4. Cinema:Scope 53

https://github.com/cinemascience/cinema_scope
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip
https://github.com/cinemascience/cinema_scope/tree/master/docs/data/test_cylinder.cdb.zip


CinemaScience Documentation, Release 0.0.1

e-
ter
in
the
CDB
data.csv
will
cor-
re-
spond
to

a slider. The sliders can be used to control the parameter values. In this case, changing phi and theta rotate the
cylinder, Fig. ??.

Fig.
9.14:
A
test
cylin-
der
is
view
in
Cin-
ema:Scope.

Mouse
drag
can
also
be
used
to
scroll
through
the
im-
ages.
Up/down
is
linked
by
de-
fault
to
theta
while
left/right
is
linked
to
phi.
The
linked

54 Chapter 9. Tutorial: Cinema Viewers



CinemaScience Documentation, Release 0.0.1

parameters can be modified using the Map Parameters Dialog shown in Fig. 9.15. Click Edit
–> Edit Parameters to open the dialog and select the parameters from each dropdown menu. For
CDBs with multiple artifacts, the Artifact dropdown menu will allow you to access each set of images.

Fig.
9.15:
The
Map
Paramters
Di-
a-
log
box
can
be
used
to
map
the
in-
tu-
itive
mouse
con-
trols
to
spe-
cific
pa-
ram-
e-
ters
in
the
Cin-
ema
database
that
is
be-
ing
viewed
in
Cin-
ema:Scope.

An optional csettings.json file, which must be located in the *.cdb directory, can be used to limit the number
of parameters actually linked to a slider or reorder a list of parameter columns. The colorder (“column order”)
variable contains the list of actively linked parameters.

{
"colorder" : ["phi", "theta", "xValue", "yValue", "zValue", "FILE", "FILE_2"]

}

9.4.1 Other Cinema viewers

Additionally, there are other application-specific Cinema viewers that provide useful examples and inspiration for
Cinema users and developers. We invite you to explore the CinemaScience GitHub for an up-to-date listing of
example viewers. Cinema Viewers, in particular CinemaScope, are in active development. We invite users to join
the Cinema community and contribute to the Cinema project.

9.4. Cinema:Scope 55

https://github.com/cinemascience


CinemaScience Documentation, Release 0.0.1

56 Chapter 9. Tutorial: Cinema Viewers



CHAPTER 10

Tutorial: Other Useful information

10.1 Converting Spec A to Spec D databases

It is necessary at times to convert a Spec A to a Spec D Cinema database (CDB). Spec A CDBs are available from
ParaView v5.6 and earlier, from VisIt, from Ascent or you may have an older CDB that needs to be updated.

The cinema_lib library can be used to upgrade a Spec A CDB. Follow the instructions for downloading
and installing from the cinema_lib Github page or see cinema_lib Library. Included in that download is a
upgrade_cinema_database script:

cinema_lib/cinema_lib/upgrade_cinema_database

Simply run the upgrade_cinema_database script giving the path to your Spec A database. This will result in
the generation of a Spec D compliant data.csv file. Once converted, the Spec D CDB can be viewed with your
favorite Cinema viewer, CinemaScience Viewers.

$ upgrade_cinema_database /path_to_database/database_name.cdb

10.2 A Note on Browser Security

To use the browser-based viewers, you MUST allow local file access. Do this in the following way, but be sure to reset
these options when you are done as this allows loading of a file from any folder.

• Firefox (preferred)

– In the brower search bar, enter about:config

– Set privacy.file_unique_origin to false

– Set security.fileuri.strict_origin_policy to false

• Safari

– Safari->Preferences->Advanced->Show Develop menu in menu bar

57

https://github.com/cinemascience/cinema_lib


CinemaScience Documentation, Release 0.0.1

– Safari->Develop->Disable Local File Restrictions (on)

• Chrome

– open chrome with the option --disable-web-security

– Mac example: open -na “Google Chrome” cinema_view.html –args –user-data-
dir=”<path/to/repo>” –disable-web-security

The CinemaScience GitHub page and the CinemaScience website are useful sources for more information and ideas.

58 Chapter 10. Tutorial: Other Useful information

https://github.com/cinemascience
https://cinemascience.github.io


CHAPTER 11

Cinema Publications

If using Cinema in your work, please cite the original publication introducing Cinema.

James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and Mark Petersen.
An image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis (SC ‘14).
IEEE Press, Piscataway, NJ, USA, 424-434, 2014. DOI:10.1109/SC.2014.40

If using Cinema:Debye-Scherrer in your work, please cite the following publication introducing Cinema:Debye-
Scherrer.

Sven C. Vogel, Chris M. Biwer, David H. Rogers, James P. Ahrens, Robert E. Hackenberg, Drew Onken
and Jianzhong Zhang. Interactive visualization of multi-dataset Rietveld analyses using Cinema:Debye-
Scherrer. J. Appl. Crystallogr. Vol. 51, 2018. DOI:10.1107/S1600576718003989

Other publications leveraging Cinema databases or using Cinema-based analysis and visualization approaches:

Pascal Grosset, Christopher Biwer, Jesus Pulido, Arvind Mohan, Ayan Biswas, John Patchett, Terece
Turton, David Rogers, Daniel Livescu, James Ahrens. Foresight: Analysis That Matters for Data
Reduction. 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV) (2020).
DOI:10.1109/SC41405.2020.00087

Petar Hristov, Gunther Weber, Hamish Carr, Oliver Rübel, James Ahrens. Data Parallel Hypersweeps
for In Situ Topological Analysis. 2020 IEEE 10th Symposium on Large Data Analysis and Visualization
(LDAV) (2020). DOI:10.1109/LDAV51489.2020.00008

Jonas Lukasczyk, Christoph Garth, Matthew Larsen, Wito Engelke, Ingrid Hotz, David Rogers, James
Ahrens, Ross Maciejewski. Cinema Darkroom: A Deferred Rendering Framework for Large-Scale
Datasets. 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV) (2020).
DOI:10.1109/LDAV51489.2020.00011

Daniel Orban, Divya Banesh, Cameron Tauxe, Christopher M. Biwer, Ayan Biswas, Ramon Saavedra,
Christine Sweeney, Richard L. Sandberg, C. A. Bolme, James Ahrens and David Rogers. CinemaBan-
dit: a visualization application for beamline science demonstrated on XFEL shock physics experiments.
Journal of Synchrotron Radiation (2020) 27, 1-10. DOI:10.1107/S1600577519014322

Terece L. Turton, Divya Banesh, Trinity Overmyer, Benjamin H. Sims, David H. Rogers. Enabling

59

https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1107/S1600576718003989
https://doi.org/10.1109/SC41405.2020.00087
https://doi.ieeecomputersociety.org/10.1109/LDAV51489.2020.00008
https://doi.org/10.1109/LDAV51489.2020.00011
https://doi.org/10.1107/S1600577519014322


CinemaScience Documentation, Release 0.0.1

Domain Expertise in Scientific Visualization With CinemaScience. IEEE Computer Graphics and Appli-
cations (2020) 40:1 90-98. DOI:10.1109/MCG.2019.2954171

Daniel Orban, Ayan Biswas, James Ahrens and David Rogers. Drag and Track: A Direct Manipulation In-
terface for Contextualizing Data Instances within a Continuous Parameter Space. IEEE Trans Vis Comput
Graph. (2019) 25:1, 256-266. DOI:10.1109/TVCG.2018.2865051

Robin G. C. Maack, David H. Rogers, Hans Hagen, Christina Gillmann. Exploring Cinema Databases
using multi-dimensional Image Measures. Leipzig Symposium on Visualization in Application. (2019)

Divya Banesh, Mark Petersen, Joanne Wendelberger, James Ahrens, and Bernd Hamann. Comparison
of piecewise linear change point detection with traditional analytical methods for ocean and climate data.
Environ Earth Sci (2019) 78: 623. DOI:10.1007/s12665-019-8636-y

Jonas Lukasczyk, Eric Kinner, James Ahrens, Heike Leitte, and Christoph Garth. VOIDGA: A View-
Approximation Oriented Image Database Generation Approach. Leipzig Symposium on Visualization In
Applications (LEVIA). Leipzig, Germany, 2018. DOI:10.1109/LDAV.2018.8739204

Divya Banesh, Joanne Wendelberger, Mark Petersen, James P. Ahrens, and Bernd Hamann. Change
Point Detection for Ocean Eddy Analysis. Workshop on Visualisation in Environmental Sciences (En-
virVis), K. Rink, D. Zeckzer, R. Bujack and S. Janicke, eds., The Eurographics Association, 2018.
DOI:10.2312/envirvis.20181134

Roxana Bujack, David H. Rogers, and James Paul Ahrens. Reducing Occlusion in Cinema Databases
through Feature-Centric Visualizations. 2018 IEEE 8th Symposium on Large Data Analysis and Visual-
ization (LDAV) Berlin, Germany, 2018.

Vignesh Adhinarayanan, Wu-Chun Feng, David H. Rogers, James P. Ahrens, and Scott Pakin. Char-
acterizing and Modeling Power and Energy for Extreme-Scale In-Situ Visualization. 2017 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS) Orlando, FL, 2017, pp. 978-987.
DOI:10.1109/IPDPS.2017.113

Divya Banesh, Joseph A. Schoonover, James P. Ahrens, Bernd Hamann. Extracting, Visualizing and
Tracking Mesoscale Ocean Eddies in Two-dimensional Image Sequences Using Contours and Moments.
In Workshop on Visualisation in Environmental Sciences (EnvirVis), K. Rink, A. Middel, D. Zeckzer, and
R. Bujack, eds., The Eurographics Association, 2017. DOI:10.2312/envirvis.20171103

Jonathan Woodring, James P. Ahrens, John Patchett, Cameron Tauxe, and David H. Rogers. High-
dimensional Scientific Data Exploration via Cinema. 2017 IEEE Workshop on Data Systems for In-
teractive Analysis (DSIA). pp. 1-5, 2017. DOI:10.1109/DSIA.2017.8339086

Anne S. Berres, Terece L. Turton, Mark Petersen, David H. Rogers, James P. Ahrens. Video Compres-
sion for Ocean Simulation Image Databases. In Workshop on Visualisation in Environmental Sciences
(EnvirVis), K. Rink, A. Middel, D. Zeckzer, and R. Bujack, eds., The Eurographics Association, 2017.
DOI:10.2312/envirvis.20171104

Patrick O’Leary, James Ahrens, Sébastien Jourdain, Scott Wittenburg, David H. Rogers, and Mark Pe-
tersen. Cinema image-based in situ analysis and visualization of MPAS-ocean simulations. Parallel Com-
put. ,55, C, p 43-48, 2016. DOI:10.1016/j.parco.2015.10.005

Vignesh Adhinarayanan, Wu-Chun Feng, Jonathan Woodring, David H. Rogers and James P. Ahrens.
On the Greenness of In-Situ and Post-Processing Visualization Pipelines. 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshop Hyderabad, 2015, pp. 880-887.
DOI:10.1109/IPDPSW.2015.132

60 Chapter 11. Cinema Publications

https://doi.org/10.1109/MCG.2019.2954171
https://doi.org/10.1109/TVCG.2018.2865051
https://doi.org/10.1007/s12665-019-8636-y
https://ieeexplore.ieee.org/document/8739204
http://dx.doi.org/10.2312/envirvis.20181134
https://ieeexplore.ieee.org/document/7967188/
http://dx.doi.org/10.2312/envirvis.20171103
https://ieeexplore.ieee.org/document/8339086/
http://dx.doi.org/10.2312/envirvis.20171104
https://doi.org/10.1016/j.parco.2015.10.005
https://ieeexplore.ieee.org/document/7284404/


CHAPTER 12

Indices and tables

• genindex

• modindex

• search

61


	What is Cinema?
	Cinema Citation

	Getting Started
	Tutorial

	CinemaScience Specifications
	Spec D specification
	Cinema Image Set Specification
	Deprecated Specifications

	CinemaScience Viewers
	Cinema:View
	Cinema:Explorer
	Cinema:Scope
	Other Viewers

	Cinemasci Python Toolkit
	Requirements
	Installation
	Cinemasci submodules

	CinemaScience Algorithms, Libraries, and Tools
	cinema_lib Library
	cinema_components Library
	cinema_movie Tool

	Tutorial: Cinemasci
	Tutorial: Cinema Workflows
	Custom Script
	Post-Processing via ParaView 5.9 Export Inspector
	Post-Processing via ParaView 5.7 Export Inspector
	Post-Processing via ParaView 5.6 Cinema Export Scene
	In Situ via ParaView Catalyst
	Post-Processing via VisIt Cinema Export Wizard
	In Situ via VisIt LimSim
	In Situ via ALPINE Ascent

	Tutorial: Cinema Viewers
	Viewing Cinema Databases
	Cinema:View
	Cinema:Explorer
	Cinema:Scope

	Tutorial: Other Useful information
	Converting Spec A to Spec D databases
	A Note on Browser Security

	Cinema Publications
	Indices and tables

