
Cinder Library Documentation
Release 0.2.2

Gorka Eguileor

Nov 07, 2018

Contents

1 Cinder Library 3
1.1 Introduction . 3
1.2 Features . 3
1.3 Demo . 4
1.4 Limitations . 4

2 Installation 5
2.1 Stable release . 5
2.2 Latest code . 6

3 Validated drivers 7
3.1 LVM . 7
3.2 Ceph . 8
3.3 XtremIO . 9
3.4 Kaminario . 9
3.5 SolidFire . 10
3.6 VMAX . 10

4 Usage 13
4.1 Initialization . 13
4.2 Backends . 16
4.3 Volumes . 20
4.4 Snapshots . 23
4.5 Connections . 24
4.6 Serialization . 26
4.7 Resource tracking . 29
4.8 Metadata Persistence . 30

5 Contributing 35
5.1 Types of Contributions . 35
5.2 Get Started! . 36
5.3 LVM Backend . 37
5.4 Pull Request Guidelines . 38
5.5 Tips . 38

6 Validating a driver 39
6.1 The environment . 39

i

6.2 The configuration . 40
6.3 The validation . 41
6.4 Reporting results . 42

7 Internals 43

8 Credits 45
8.1 Development Lead . 45
8.2 Contributors . 45

9 TODO 47

10 History 49
10.1 0.2.3 (2018-MM-DD) . 49
10.2 0.2.2 (2018-07-24) . 49
10.3 0.2.1 (2018-06-14) . 50
10.4 0.1.0 (2017-11-03) . 50

11 Indices and tables 51

ii

Cinder Library Documentation, Release 0.2.2

Cinder Library is a Python library that allows using Cinder storage drivers not only outside of OpenStack but also
outside of Cinder, which means there’s no need to run MySQL, RabbitMQ, Cinder API, Scheduler, or Volume services
to be able to manage your storage.

Contents 1

https://pypi.python.org/pypi/cinderlib
https://cinderlib.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/cinderlib
http://www.apache.org/licenses/LICENSE-2.0

Cinder Library Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Cinder Library

1.1 Introduction

Cinder Library is a Python library that allows using storage drivers provided by Cinder outside of OpenStack and
without needing to run the Cinder service, so we don’t need Keystone, MySQL, or RabbitMQ services to control our
storage.

The library is currently in an early development stage and can be considered as a proof of concept and not a finished
product at this moment, so please carefully go over the limitations section to avoid surprises.

Due to the limited access to Cinder backends and time constraints the list of drivers that have been manually tested,
and using the existing limited functional tests, are:

• LVM with LIO

• Dell EMC XtremIO

• Dell EMC VMAX

• Kaminario K2

• Ceph/RBD

• NetApp SolidFire

1.2 Features

• Use a Cinder driver without running a DBMS, Message broker, or Cinder services.

• Using multiple simultaneous drivers on the same program.

• Stateless: Support full serialization of objects and context to JSON or string so the state can be restored.

3

https://pypi.python.org/pypi/cinderlib
https://cinderlib.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/cinderlib
http://www.apache.org/licenses/LICENSE-2.0

Cinder Library Documentation, Release 0.2.2

• Metadata persistence plugin mechanism.

• Basic operations support:

– Create volume

– Delete volume

– Extend volume

– Clone volume

– Create snapshot

– Delete snapshot

– Create volume from snapshot

– Connect volume

– Disconnect volume

– Local attach

– Local detach

– Validate connector

1.3 Demo

1.4 Limitations

Being in its early development stages the library is in no way close to the robustness or feature richness that the Cinder
project provides. Some of the more noticeable limitations one should be aware of are:

• Most methods don’t perform argument validation so it’s a classic GIGO library.

• The logic has been kept to a minimum and higher functioning logic is expected to be handled by the caller.

• There is no CI, or unit tests for that matter, and certainly nothing so fancy as third party vendor CIs, so things
could be broken at any point. We only have some automated, yet limited, functional tests.

• Only a subset of Cinder available operations are supported by the library.

• Access to a small number of storage arrays has limited the number of drivers that have been verified to work
with cinderlib.

Besides cinderlib’s own limitations the library also inherits some from Cinder’s code and will be bound by the same
restrictions and behaviors of the drivers as if they were running under the standard Cinder services. The most notorious
ones are:

• Dependency on the eventlet library.

• Behavior inconsistency on some operations across drivers. For example you can find drivers where cloning is
a cheap operation performed by the storage array whereas other will actually create a new volume, attach the
source and new volume and perform a full copy of the data.

• External dependencies must be handled manually. So we’ll have to take care of any library, package, or CLI
tool that is required by the driver.

• Relies on command execution via sudo for attach/detach operations as well as some CLI tools.

4 Chapter 1. Cinder Library

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

CHAPTER 2

Installation

2.1 Stable release

The Cinder Library is an interfacing library that doesn’t have any storage driver and expects Cinder drivers to be
properly installed in the system to run properly.

2.1.1 Drivers

For Red Hat distributions the recommendation is to use RPMs to install the Cinder drivers instead of using pip. If we
don’t have access to the Red Hat OpenStack Platform packages we can use the RDO community packages.

On CentOS, the Extras repository provides the RPM that enables the OpenStack repository. Extras is enabled by
default on CentOS 7, so you can simply install the RPM to set up the OpenStack repository:

yum install -y centos-release-openstack-queens
yum-config-manager --enable openstack-queens
yum update -y
yum install -y openstack-cinder

On RHEL and Fedora, you’ll need to download and install the RDO repository RPM to set up the OpenStack reposi-
tory:

yum install -y https://repos.fedorapeople.org/repos/openstack/openstack-queens/rdo-
→˓release-queens-1.noarch.rpm
yum-config-manager --enable openstack-queens
sudo yum update -y
yum install -y openstack-cinder

2.1.2 Library

To install Cinder Library we’ll use PyPI, so we’ll make sure to have the pip command available:

5

https://www.redhat.com/en/technologies/linux-platforms/openstack-platform
https://www.rdoproject.org/
https://pip.pypa.io

Cinder Library Documentation, Release 0.2.2

yum install -y python-pip
pip install cinderlib

This is the preferred method to install Cinder Library, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.1.3 Container

There is a docker image, in case you prefer trying the library without any installation.

The image is called akrog/cinderlib:stable, and we can run Python dirrectly with:

$ docker run --name=cinderlib --privileged --net=host -v /etc/iscsi:/etc/iscsi -v /
→˓dev:/dev -it akrog/cinderlib:stable python

2.2 Latest code

2.2.1 Container

A Docker image is automatically built on every commit to the master branch. Running a Python shell with the latest
cinderlib code is as simple as:

$ docker run --name=cinderlib --privileged --net=host -v /etc/iscsi:/etc/iscsi -v /
→˓dev:/dev -it akrog/cinderlib python

2.2.2 Drivers

If we don’t have a packaged version or if we want to use a virtual environment we can install the drivers from source:

$ virtualenv cinder
$ source cinder/bin/activate
$ pip install git+https://github.com/openstack/cinder.git

2.2.3 Library

The sources for Cinder Library can be downloaded from the Github repo to use the latest version of the library.

You can either clone the public repository:

$ git clone git://github.com/akrog/cinderlib

Or download the tarball:

$ curl -OL https://github.com/akrog/cinderlib/tarball/master

Once you have a copy of the source, you can install it with:

python setup.py install

6 Chapter 2. Installation

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/akrog/cinderlib
https://github.com/akrog/cinderlib/tarball/master

CHAPTER 3

Validated drivers

The Cinder project has a large number of storage drivers, and all the drivers have their own CI to validate that they are
working as expected.

For cinderlib this is more complicated, as we don’t have the resources of the Cinder project. We rely on contributors
who have access to the hardware to test if the storage backend works with cinderlib.

Note: If you have access to storage hardware supported by Cinder not present in here and you would like to test if
cinderlib works, please follow the Validating a driver section and report your results.

Currently the following backends have been verified:

• LVM with LIO

• Ceph

• Dell EMC XtremIO

• Dell EMC VMAX

• Kaminario K2

• NetApp SolidFire

3.1 LVM

• Cinderlib version: v0.1.0, v0.2.0

• Cinder release: Pike, Queens, Rocky

• Storage: LVM with LIO

• Connection type: iSCSI

• Requirements: None

7

Cinder Library Documentation, Release 0.2.2

• Tested by: Gorka Eguileor (geguileo/akrog)

Configuration:

logs: false
venv_sudo: true
backends:

- volume_backend_name: lvm
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
target_protocol: iscsi
target_helper: lioadm

3.2 Ceph

• Cinderlib version: v0.2.0

• Cinder release: Pike

• Storage: Ceph/RBD

• Versions: Luminous v12.2.5

• Connection type: RBD

• Requirements:

– ceph-common package

– ceph.conf file

– Ceph keyring file

• Tested by: Gorka Eguileor (geguileo/akrog)

• Notes:

– If we don’t define the keyring configuration parameter (must use an absolute path) in our rbd_ceph_conf
to point to our rbd_keyring_conf file, we’ll need the rbd_keyring_conf to be in /etc/ceph/.

– rbd_keyring_confg must always be present and must follow the naming convention of $clus-
ter.client.$rbd_user.conf.

– Current driver cannot delete a snapshot if there’s a dependent (a volume created from it exists).

Configuration:

logs: false
venv_sudo: true
backends:

- volume_backend_name: ceph
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_user: cinder
rbd_pool: volumes
rbd_ceph_conf: tmp/ceph.conf
rbd_keyring_conf: /etc/ceph/ceph.client.cinder.keyring

8 Chapter 3. Validated drivers

Cinder Library Documentation, Release 0.2.2

3.3 XtremIO

• Cinderlib version: v0.1.0, v0.2.0

• Cinder release: Pike, Queens, Rocky

• Storage: Dell EMC XtremIO

• Versions: v4.0.15-20_hotfix_3

• Connection type: iSCSI, FC

• Requirements: None

• Tested by: Gorka Eguileor (geguileo/akrog)

Configuration for iSCSI:

logs: false
venv_sudo: true
backends:

- volume_backend_name: xtremio
volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
xtremio_cluster_name: CLUSTER_NAME
use_multipath_for_image_xfer: true
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets

Configuration for FC:

logs: false
venv_sudo: false
backends:

- volume_backend_name: xtremio
volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOFCDriver
xtremio_cluster_name: CLUSTER_NAME
use_multipath_for_image_xfer: true
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets

3.4 Kaminario

• Cinderlib version: v0.1.0, v0.2.0

• Cinder release: Pike, Queens, Rocky

• Storage: Kaminario K2

• Versions: VisionOS v6.0.72.10

• Connection type: iSCSI

• Requirements:

– krest Python package from PyPi

• Tested by: Gorka Eguileor (geguileo/akrog)

3.3. XtremIO 9

Cinder Library Documentation, Release 0.2.2

Configuration:

logs: false
venv_sudo: true
backends:

- volume_backend_name: kaminario
volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.

→˓KaminarioISCSIDriver
san_ip: w.x.y.z
san_login: user
san_password: toomanysecrets
use_multipath_for_image_xfer: true

3.5 SolidFire

• Cinderlib version: v0.1.0 with later patch

• Cinder release: Pike

• Storage: NetApp SolidFire

• Versions: Unknown

• Connection type: iSCSI

• Requirements: None

• Tested by: John Griffith (jgriffith/j-griffith)

Configuration:

logs: false
venv_sudo: true
backends:

- volume_backend_name: solidfire
volume_driver: cinder.volume.drivers.solidfire.SolidFireDriver
san_ip: 192.168.1.4
san_login: admin
san_password: admin_password
sf_allow_template_caching = false
image_volume_cache_enabled = True
volume_clear = zero

3.6 VMAX

• Cinderlib version: v0.1.0

• Cinder release: Pike, Queens, Rocky

• Storage: Dell EMC VMAX

• Versions: Unknown

• Connection type: iSCSI

• Requirements:

– On Pike we need file /etc/cinder/cinder_dell_emc_config.xml.

10 Chapter 3. Validated drivers

https://github.com/Akrog/cinderlib/commit/7dde24e6ccdff19de330fe826b5d449831fff2a6

Cinder Library Documentation, Release 0.2.2

• Tested by: Helen Walsh (walshh)

Configuration for Pike:

• Cinderlib functional test configuration:

logs: false
venv_sudo: false
size_precision: 2
backends:

- image_volume_cache_enabled: True
volume_clear: zero
volume_backend_name: VMAX_ISCSI_DIAMOND
volume_driver: cinder.volume.drivers.dell_emc.vmax.iscsi.VMAXISCSIDrive

• Contents of file /etc/cinder/cinder_dell_emc_config.xml:

<?xml version="1.0" encoding="UTF-8"?>
<EMC>
<RestServerIp>w.x.y.z</RestServerIp>
<RestServerPort>8443</RestServerPort>
<RestUserName>username</RestUserName>
<RestPassword>toomanysecrets</RestPassword>
<Array>000197800128</Array>
<PortGroups>

<PortGroup>os-iscsi-pg</PortGroup>
</PortGroups>
<SRP>SRP_1</SRP>
<ServiceLevel>Diamond</ServiceLevel>
<Workload>none</Workload>
<SSLVerify>/opt/stack/localhost.domain.com.pem</SSLVerify>

</EMC>

Configuration for Queens and Rocky:

venv_sudo: false
size_precision: 2
backends:

- image_volume_cache_enabled: True
volume_clear: zero
volume_backend_name: VMAX_ISCSI_DIAMOND
volume_driver: cinder.volume.drivers.dell_emc.vmax.iscsi.VMAXISCSIDriver
san_ip: w.x.y.z
san_rest_port: 8443
san_login: user
san_password: toomanysecrets
vmax_srp: SRP_1
vmax_array: 000197800128
vmax_port_groups: [os-iscsi-pg]

3.6. VMAX 11

Cinder Library Documentation, Release 0.2.2

12 Chapter 3. Validated drivers

CHAPTER 4

Usage

Providing a fully Object Oriented abstraction, instead of a classic method invocation passing the resources to work on,
cinderlib makes it easy to hit the ground running when managing storage resources.

Once Cinder drivers and cinderlib are installed we just have to import the library to start using it:

import cinderlib

Usage documentation is not too long and it is recommended to read it all before using the library to be sure we have at
least a high level view of the different aspects related to managing our storage with cinderlib.

Before going into too much detail there are some aspects we need to clarify to make sure our terminology is in sync
and we understand where each piece fits.

In cinderlib we have Backends, that refer to a storage array’s specific connection configuration so it usually doesn’t
refer to the whole storage. With a backend we’ll usually have access to the configured pool.

Resources managed by cinderlib are Volumes and Snapshots, and a Volume can be created from a Backend, another
Volume, or from a Snapshot, and a Snapshot can only be created from a Volume.

Once we have a volume we can create Connections so it can be accessible from other hosts or we can do a local
Attachment of the volume which will retrieve required local connection information of this host, create a Connection
on the storage to this host, and then do the local Attachment.

Given that Cinder drivers are not stateless, cinderlib cannot be either. That’s why we have a metadata persistence
plugin mechanism to provide different ways to store resource states. Currently we have memory and database plugins.
Users can store the data wherever they want using the JSON serialization mechanism or with a custom metadata
plugin.

For extended information on these topics please refer to their specific sections.

4.1 Initialization

The cinderlib itself doesn’t require an initialization, as it tries to provide sensible settings, but in some cases we may
want to modify these defaults to fit a specific desired behavior and the library provides a mechanism to support this.

13

Cinder Library Documentation, Release 0.2.2

Library initialization should be done before making any other library call, including Backend initialization and loading
serialized data, if we try to do it after other calls the library will raise and Exception.

Provided setup method is cinderlib.Backend.global_setup, but for convenience the library provides a reference to this
class method in cinderlib.setup

The method definition is as follows:

@classmethod
def global_setup(cls, file_locks_path=None, root_helper='sudo',

suppress_requests_ssl_warnings=True, disable_logs=True,
non_uuid_ids=False, output_all_backend_info=False,
project_id=None, user_id=None, persistence_config=None,

**log_params):

The meaning of the library’s configuration options are:

4.1.1 file_locks_path

Cinder is a complex system that can support Active-Active deployments, and each driver and storage backend has
different restrictions, so in order to facilitate mutual exclusion it provides 3 different types of locks depending on the
scope the driver requires:

• Between threads of the same process.

• Between different process on the same host.

• In all the OpenStack deployment.

Cinderlib doesn’t currently support the third type of locks, but that should not be an inconvenience for most cinderlib
usage.

Cinder uses file locks for the between process locking and cinderlib uses that same kind of locking for the third type
of locks, which is also what Cinder uses when not deployed in an Active-Active fashion.

Parameter defaults to None, which will use the current directory to store all file locks required by the drivers.

4.1.2 root_helper

There are some operations in Cinder drivers that require sudo privileges, this could be because they are running Python
code that requires it or because they are running a command with sudo.

Attaching and detaching operations with cinderlib will also require sudo privileges.

This configuration option allows us to define a custom root helper or disabling all sudo operations passing an empty
string when we know we don’t require them and we are running the process with a non passwordless sudo user.

Defaults to sudo.

4.1.3 suppress_requests_ssl_warnings

Controls the suppression of the requests library SSL certificate warnings.

Defaults to True.

14 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

4.1.4 non_uuid_ids

As mentioned in the Volumes section we can provide resource IDs manually at creation time, and some drivers even
support non UUID identificators, but since that’s not a given validation will reject any non UUID value.

This configuration option allows us to disable the validation on the IDs, at the user’s risk.

Defaults to False.

4.1.5 output_all_backend_info

Whether to include the Backend configuration when serializing objects. Detailed information can be found in the
Serialization section.

Defaults to False.

4.1.6 disable_logs

Cinder drivers are meant to be run within a full blown service, so they can be quite verbose in terms of logging, that’s
why cinderlib disables it by default.

Defaults to True.

4.1.7 project_id

Cinder is a multi-tenant service, and when resources are created they belong to a specific tenant/project. With this
parameter we can define, using a string, an identifier for our project that will be assigned to the resources we create.

Defaults to cinderlib.

4.1.8 user_id

Within each project/tenant the Cinder project supports multiple users, so when it creates a resource a reference to the
user that created it is stored in the resource. Using this this parameter we can define, using a string, an identifier for
the user of cinderlib to be recorded in the resources.

Defaults to cinderlib.

4.1.9 persistence_config

Cinderlib operation requires data persistence, which is achieved with a metadata persistence plugin mechanism.

The project includes 2 types of plugins providing 3 different persistence solutions and more can be used via Python
modules and passing custom plugins in this parameter.

Users of the cinderlib library must decide which plugin best fits their needs and pass the appropriate configuration in
a dictionary as the persistence_config parameter.

The parameter is optional, and defaults to the memory plugin, but if it’s passed it must always include the storage key
specifying the plugin to be used. All other key-value pairs must be valid parameters for the specific plugin.

Value for the storage key can be a string identifying a plugin registered using Python entrypoints, an instance of a class
inheriting from PersistenceDriverBase, or a PersistenceDriverBase class.

4.1. Initialization 15

Cinder Library Documentation, Release 0.2.2

Information regarding available plugins, their description and parameters, and different ways to initialize the persis-
tence can be found in the Metadata Persistence section.

4.1.10 fail_on_missing_backend

To facilitate operations on resources, Cinderlib stores a reference to the instance of the backend in most of the in-
memory objects.

When deserializing or retrieving objects from the metadata persistence storage cinderlib tries to properly set this
backend instance based on the backends currently in memory.

Trying to load an object without having instantiated the backend will result in an error, unless we define
fail_on_missing_backend to False on initialization.

This is useful if we are sharing the metadata persistence storage and we want to load a volume that is already connected
to do just the attachment.

4.1.11 other keyword arguments

Any other keyword argument passed to the initialization method will be considered a Cinder configuration option and
passed directly to all the drivers.

This can be useful to set additional logging configuration like debug log level, or many other advanced features.

For a list of the possible configuration options one should look into the Cinder project’s documentation.

4.2 Backends

The Backend class provides the abstraction to access a storage array with an specific configuration, which usually
constraints our ability to operate on the backend to a single pool.

Note: While some drivers have been manually validated most drivers have not, so there’s a good chance that using
any non tested driver will show unexpected behavior.

If you are testing cinderlib with a non verified backend you should use an exclusive pool for the validation so you
don’t have to be so careful when creating resources as you know that everything within that pool is related to cinderlib
and can be deleted using the vendor’s management tool.

If you try the library with another storage array I would love to hear about your results, the library version, and
configuration used (masked IPs, passwords, and users).

4.2.1 Initialization

Before we can have access to an storage array we have to initialize the Backend, which only has one defined parameter
and all other parameters are not defined in the method prototype:

class Backend(object):
def __init__(self, volume_backend_name, **driver_cfg):

There are two arguments that we’ll always have to pass on the initialization, one is the volume_backend_name that is
the unique identifier that cinderlib will use to identify this specific driver initialization, so we’ll need to make sure not

16 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

to repeat the name, and the other one is the volume_driver which refers to the Python namespace that points to the
Cinder driver.

All other Backend configuration options are free-form keyword arguments. Each driver and storage array requires
different information to operate, some require credentials to be passed as parameters, while others use a file, and some
require the control address as well as the data addresses. This behavior is inherited from the Cinder project.

To find what configuration options are available and which ones are compulsory the best is going to the Vendor’s
documentation or to the OpenStack’s Cinder volume driver configuration documentation.

Attention: Some drivers have external dependencies which we must satisfy before initializing the driver or it
may fail either on the initialization or when running specific operations. For example Kaminario requires the krest
Python library, and Pure requires purestorage Python library.

Python library dependencies are usually documented in the driver-requirements.txt file, as for the CLI required
tools, we’ll have to check in the Vendor’s documentation.

Cinder only supports using one driver at a time, as each process only handles one backend, but cinderlib has overcome
this limitation and supports having multiple Backends simultaneously.

Let’s see now initialization examples of some storage backends:

4.2.2 LVM

import cinderlib

lvm = cinderlib.Backend(
volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi',

)

4.2.3 XtremIO

import cinderlib

xtremio = cinderlib.Backend(
volume_driver='cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver',
san_ip='10.10.10.1',
xtremio_cluster_name='xtremio_cluster',
san_login='xtremio_user',
san_password='xtremio_password',
volume_backend_name='xtremio',

)

4.2.4 Kaminario

import cinderlib

kaminario = cl.Backend(

4.2. Backends 17

https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html
https://github.com/openstack/cinder/blob/master/driver-requirements.txt

Cinder Library Documentation, Release 0.2.2

volume_driver='cinder.volume.drivers.kaminario.kaminario_iscsi.
→˓KaminarioISCSIDriver',

san_ip='10.10.10.2',
san_login='kaminario_user',
san_password='kaminario_password',
volume_backend_name='kaminario_iscsi',

)

For more configurations refer to the Validated drivers section.

4.2.5 Available Backends

Usual procedure is to initialize a Backend and store it in a variable at the same time so we can use it to manage our
storage backend, but there are cases where we may have lost the reference or we are in a place in our code where we
don’t have access to the original variable.

For these situations we can use cinderlib’s tracking of Backends through the backends class dictionary where all
created Backends are stored using the volume_backend_name as the key.

for backend in cinderlib.Backend.backends.values():
initialized_msg = '' if backend.initialized else 'not '
print('Backend %s is %sinitialized with configuration: %s' %

(backend.id, initialized_msg, backend.config))

4.2.6 Stats

In Cinder all cinder-volume services periodically report the stats of their backend to the cinder-scheduler services so
they can do informed placing decisions on operations such as volume creation and volume migration.

Some of the keys provided in the stats dictionary include:

• driver_version

• free_capacity_gb

• storage_protocol

• total_capacity_gb

• vendor_name volume_backend_name

Additional information can be found in the Volume Stats section within the Developer’s Documentation.

Gathering stats is a costly operation for many storage backends, so by default the stats method will return cached
values instead of collecting them again. If latest data is required parameter refresh=True should be passed in the stats
method call.

Here’s an example of the output from the LVM Backend with refresh:

>>> from pprint import pprint
>>> pprint(lvm.stats(refresh=True))
{'driver_version': '3.0.0',
'pools': [{'QoS_support': False,

'filter_function': None,
'free_capacity_gb': 20.9,
'goodness_function': None,
'location_info': 'LVMVolumeDriver:router:cinder-volumes:thin:0',
'max_over_subscription_ratio': 20.0,

18 Chapter 4. Usage

https://docs.openstack.org/cinder/queens/contributor/drivers.html#volume-stats

Cinder Library Documentation, Release 0.2.2

'multiattach': False,
'pool_name': 'LVM',
'provisioned_capacity_gb': 0.0,
'reserved_percentage': 0,
'thick_provisioning_support': False,
'thin_provisioning_support': True,
'total_capacity_gb': '20.90',
'total_volumes': 1}],

'sparse_copy_volume': True,
'storage_protocol': 'iSCSI',
'vendor_name': 'Open Source',
'volume_backend_name': 'LVM'}

4.2.7 Available volumes

The Backend class keeps track of all the Backend instances in the backends class attribute, and each Backend instance
has a volumes property that will return a list all the existing volumes in the specific backend. Deleted volumes will no
longer be present.

So assuming that we have an lvm variable holding an initialized Backend instance where we have created volumes we
could list them with:

for vol in lvm.volumes:
print('Volume %s has %s GB' % (vol.id, vol.size))

Attribute volumes is a lazy loadable property that will only update its value on the first access. More information about
lazy loadable properties can be found in the Resource tracking section. For more information on data loading please
refer to the Metadata Persistence section.

Note: The volumes property does not query the storage array for a list of existing volumes. It queries the metadata
storage to see what volumes have been created using cinderlib and return this list. This means that we won’t be able
to manage pre-existing resources from the backend, and we won’t notice when a resource is removed directly on the
backend.

4.2.8 Attributes

The Backend class has no attributes of interest besides the backends mentioned above and the id, config, and JSON
related properties we’ll see later in the Serialization section.

The id property refers to the volume_backend_name, which is also the key used in the backends class attribute.

The config property will return a dictionary with only the volume backend’s name by default to limit unintended
exposure of backend credentials on serialization. If we want it to return all the configuration options we need to pass
output_all_backend_info=True on cinderlib initialization.

If we try to access any non-existent attribute in the Backend, cinderlib will understand we are trying to access a Cinder
driver attribute and will try to retrieve it from the driver’s instance. This is the case with the initialized property we
accessed in the backends listing example.

4.2.9 Other methods

All other methods available in the Backend class will be explained in their relevant sections:

4.2. Backends 19

Cinder Library Documentation, Release 0.2.2

• load and load_backend will be explained together with json, jsons, dump, dumps properties and to_dict method
in the Serialization section.

• create_volume method will be covered in the Volumes section.

• validate_connector will be explained in the Connections section.

• global_setup has been covered in the Initialization section.

4.3 Volumes

The Volume class provides the abstraction layer required to perform all operations on an existing volume, which means
that there will be volume creation operations that will be invoked from other class instances, since the new volume we
want to create doesn’t exist yet and we cannot use the Volume class to manage it.

4.3.1 Create

The base resource in storage is the volume, and to create one the cinderlib provides three different mechanisms, each
one with a different method that will be called on the source of the new volume.

So we have:

• Empty volumes that have no resource source and will have to be created directly on the Backend via the cre-
ate_volume method.

• Cloned volumes that will be created from a source Volume using its clone method.

• Volumes from a snapshot, where the creation is initiated by the create_volume method from the Snapshot in-
stance.

Note: Cinder NFS backends will create an image and not a directory where to store files, which falls in line with
Cinder being a Block Storage provider and not filesystem provider like Manila is.

So assuming that we have an lvm variable holding an initialized Backend instance we could create a new 1GB volume
quite easily:

print('Stats before creating the volume are:')
pprint(lvm.stats())
vol = lvm.create_volume(1)
pprint(lvm.stats())

Now, if we have a volume that already contains data and we want to create a new volume that starts with the same
contents we can use the source volume as the cloning source:

cloned_vol = vol.clone()

Some drivers support cloning to a bigger volume, so we could define the new size in the call and the driver would take
care of extending the volume after cloning it, this is usually tightly linked to the extend operation support by the driver.

Cloning to a greater size would look like this:

new_size = vol.size + 1
cloned_bigger_volume = vol.clone(size=new_size)

20 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

Note: Cloning efficiency is directly linked to the storage backend in use, so it will not have the same performance
in all backends. While some backends like the Ceph/RBD will be extremely efficient others may range from slow to
being actually implemented as a dd operation performed by the driver attaching source and destination volumes.

vol = snap.create_volume()

Note: Just like with the cloning functionality, not all storage backends can efficiently handle creating a volume from
a snapshot.

On volume creation we can pass additional parameters like a name or a description, but these will be irrelevant for the
actual volume creation and will only be useful to us to easily identify our volumes or to store additional information.

Available fields with their types can be found in Cinder’s Volume OVO definition, but most of them are only relevant
within the full Cinder service.

We can access these fields as if they were part of the cinderlib Volume instance, since the class will try to retrieve any
non cinderlib Volume from Cinder’s internal OVO representation.

Some of the fields we could be interested in are:

• id: UUID-4 unique identifier for the volume.

• user_id: String identifier, in Cinder it’s a UUID, but we can choose here.

• project_id: String identifier, in Cinder it’s a UUID, but we can choose here.

• snapshot_id: ID of the source snapshot used to create the volume. This will be filled by cinderlib.

• host: In Cinder used to store the host@backend#pool information, here we can just keep some identification of
the process that wrote this.

• size: Volume size in GBi.

• availability_zone: In case we want to define AZs.

• status: This represents the status of the volume, and the most important statuses are available, error, deleted,
in-use, creating.

• attach_status: This can be attached or detached.

• scheduled_at: Date-time when the volume was scheduled to be created. Currently not being used by cinderlib.

• launched_at: Date-time when the volume creation was completed. Currently not being used by cinderlib.

• deleted: Boolean value indicating whether the volume has already been deleted. It will be filled by cinderlib.

• terminated_at: When the volume delete was sent to the backend.

• deleted_at: When the volume delete was completed.

• display_name: Name identifier, this is passed as name to all cinderlib volume creation methods.

• display_description: Long description of the volume, this is passed as description to all cinderlib volume cre-
ation methods.

• source_volid: ID of the source volume used to create this volume. This will be filled by cinderlib.

• bootable: Not relevant for cinderlib, but maybe useful for the cinderlib user.

• extra_specs: Extra volume configuration used by some drivers to specify additional information, such as com-
pression, deduplication, etc. Key-Value pairs are driver specific.

4.3. Volumes 21

https://github.com/openstack/cinder/blob/stable/queens/cinder/objects/volume.py#L71-L131

Cinder Library Documentation, Release 0.2.2

• qos_specs: Backend QoS configuration. Dictionary with driver specific key-value pares that enforced by the
backend.

Note: Cinderlib automatically generates a UUID for the id if one is not provided at volume creation time, but the
caller can actually provide a specific id.

By default the id is limited to valid UUID and this is the only kind of ID that is guaranteed to work on all drivers.
For drivers that support non UUID IDs we can instruct cinderlib to modify Cinder’s behavior and allow them. This is
done on cinderlib initialization time passing non_uuid_ids=True.

4.3.2 Delete

Once we have created a Volume we can use its delete method to permanently remove it from the storage backend.

In Cinder there are safeguards to prevent a delete operation from completing if it has snapshots (unless the delete
request comes with the cascade option set to true), but here in cinderlib we don’t, so it’s the callers responsibility to
delete the snapshots.

Deleting a volume with snapshots doesn’t have a defined behavior for Cinder drivers, since it’s never meant to happen,
so some storage backends delete the snapshots, other leave them as they were, and others will fail the request.

Example of creating and deleting a volume:

vol = lvm.create_volume(size=1)
vol.delete()

Attention: When deleting a volume that was the source of a cloning operation some backends cannot delete them
(since they have copy-on-write clones) and they just keep them as a silent volume that will be deleted when its
snapshot and clones are deleted.

4.3.3 Extend

Many storage backends and Cinder drivers support extending a volume to have more space and you can do this via the
extend method present in your Volume instance.

If the Cinder driver doesn’t implement the extend operation it will raise a NotImplementedError.

The only parameter received by the extend method is the new size, and this must always be greater than the current
value because cinderlib is not validating this at the moment.

Example of creating, extending, and deleting a volume:

vol = lvm.create_volume(size=1)
print('Vol %s has %s GBi' % (vol.id, vol.size))
vol.extend(2)
print('Extended vol %s has %s GBi' % (vol.id, vol.size))
vol.delete()

4.3.4 Other methods

All other methods available in the Volume class will be explained in their relevant sections:

22 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict method in the
Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property that has already
been loaded. Covered in the Serialization and Resource tracking sections.

• create_snapshot method will be covered in the Snapshots section together with the snapshots attribute.

• attach, detach, connect, and disconnect methods will be explained in the Connections section.

4.4 Snapshots

The Snapshot class provides the abstraction layer required to perform all operations on an existing snapshot, which
means that the snapshot creation operation must be invoked from other class instance, since the new snapshot we want
to create doesn’t exist yet and we cannot use the Snapshot class to manage it.

4.4.1 Create

Once we have a Volume instance we are ready to create snapshots from it, and we can do it for attached as well as
detached volumes.

Note: Some drivers, like the NFS, require assistance from the Compute service for attached volumes, so they is
currently no way of doing this with cinderlib

Creating a snapshot can only be performed by the create_snapshot method from our Volume instance, and once we
have have created a snapshot it will be tracked in the Volume instance’s snapshots set.

Here is a simple code to create a snapshot and use the snapshots set to verify that both, the returned value by the call
as well as the entry added to the snapshots attribute, reference the same object and that the volume attribute in the
Snapshot is referencing the source volume.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert snap is list(vol.snapshots)[0]
assert vol is snap.volume

4.4.2 Delete

Once we have created a Snapshot we can use its delete method to permanently remove it from the storage backend.

Deleting a snapshot will remove its reference from the source Volume’s snapshots set.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert 1 == len(vol.snapshots)
snap.delete()
assert 0 == len(vol.snapshots)

4.4.3 Other methods

All other methods available in the Snapshot class will be explained in their relevant sections:

4.4. Snapshots 23

Cinder Library Documentation, Release 0.2.2

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict method in the
Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property that has already
been loaded. Covered in the Serialization and Resource tracking sections.

• create_volume method has been covered in the Volumes section.

4.5 Connections

When talking about attaching a Cinder volume there are three steps that must happen before the volume is available
in the host:

1. Retrieve connection information from the host where the volume is going to be attached. Here we would be
getting iSCSI initiator name, IP, and similar information.

2. Use the connection information from step 1 and make the volume accessible to it in the storage backend returning
the volume connection information. This step entails exporting the volume and initializing the connection.

3. Attaching the volume to the host using the data retrieved on step 2.

If we are running cinderlib and doing the attach in the same host, then all steps will be done in the same host. But in
many cases you may want to manage the storage backend in one host and attach a volume in another. In such cases,
steps 1 and 3 will happen in the host that needs the attach and step 2 on the node running cinderlib.

Projects in OpenStack use the OS-Brick library to manage the attaching and detaching processes. Same thing happens
in cinderlib. The only difference is that there are some connection types that are handled by the hypervisors in
OpenStack, so we need some alternative code in cinderlib to manage them.

Connection objects’ most interesting attributes are:

• connected: Boolean that reflects if the connection is complete.

• volume: The Volume to which this instance holds the connection information.

• protocol: String with the connection protocol for this volume, ie: iscsi, rbd.

• connector_info: Dictionary with the connection information from the host that is attaching. Such as it’s host-
name, IP address, initiator name, etc.

• conn_info: Dictionary with the connection information the host requires to do the attachment, such as IP address,
target name, credentials, etc.

• device: If we have done a local attachment this will hold a dictionary with all the attachment information, such
as the path, the type, the scsi_wwn, etc.

• path: String with the path of the system device that has been created when the volume was attached.

4.5.1 Local attach

Once we have created a volume with cinderlib doing a local attachment is really simple, we just have to call the attach
method from the Volume and we’ll get the Connection information from the attached volume, and once we are done
we call the detach method on the Volume.

vol = lvm.create_volume(size=1)
attach = vol.attach()
with open(attach.path, 'w') as f:

f.write('*' * 100)
vol.detach()

24 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

This attach method will take care of everything, from gathering our local connection information, to exporting the
volume, initializing the connection, and finally doing the local attachment of the volume to our host.

The detach operation works in a similar way, but performing the exact opposite steps and in reverse. It will detach
the volume from our host, terminate the connection, and if there are no more connections to the volume it will also
remove the export of the volume.

Attention: The Connection instance returned by the Volume attach method also has a detach method, but this one
behaves differently than the one we’ve seen in the Volume, as it will just perform the local detach step and not the
termiante connection or the remove export method.

4.5.2 Remote connection

For a remote connection it’s a little more inconvenient at the moment, since you’ll have to manually use the OS-Brick
library on the host that is going to do the attachment.

Note: THIS SECTION IS INCOMPLETE

First we need to get the connection information on the host that is going to do the attach:

import os_brick

Retrieve the connection information dictionary

Then we have to do the connection

Create the connection
attach = vol.connect(connector_dict)

Return the volume connection information

import os_brick

Do the attachment

4.5.3 Multipath

If we want to use multipathing for local attachments we must let the Backend know when instantiating the driver by
passing the use_multipath_for_image_xfer=True:

import cinderlib

lvm = cinderlib.Backend(
volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi',
use_multipath_for_image_xfer=True,

)

4.5. Connections 25

Cinder Library Documentation, Release 0.2.2

4.5.4 Multi attach

Multi attach support has just been added to Cinder in the Queens cycle, and it’s not currently supported by cinderlib.

4.5.5 Other methods

All other methods available in the Snapshot class will be explained in their relevant sections:

• load will be explained together with json, jsons, dump, and dumps properties, and the to_dict method in the
Serialization section.

• refresh will reload the volume from the metadata storage and reload any lazy loadable property that has already
been loaded. Covered in the Serialization and Resource tracking sections.

4.6 Serialization

A Cinder driver is stateless on itself, but it still requires the right data to work, and that’s why the cinder-volume
service takes care of storing the state in the DB. This means that cinderlib will have to simulate the DB for the drivers,
as some operations actually return additional data that needs to be kept and provided in any future operation.

Originally cinderlib stored all the required metadata in RAM, and passed the responsibility of persisting this informa-
tion to the user of the library.

Library users would create or modify resources using cinderlib, and then would have to serialize the resources and
manage the storage of this information. This allowed referencing those resources after exiting the application and in
case of a crash.

Now we support Metadata Persistence plugins, but there are still cases were we’ll want to serialize the data:

• When logging or debugging resources.

• When using a metadata plugin that stores the data in memory.

• Over the wire transmission of the connection information to attach a volume on a remote nodattach a volume on
a remote node.

We have multiple methods to satisfy these needs, to serialize the data (json, jsons, dump, dumps), to deserialize it
(load), and to convert to a user friendly object (to_dict).

4.6.1 To JSON

We can get a JSON representation of any cinderlib object - Backend, Volume, Snapshot, and Connection - using their
following properties:

• json: Returns a JSON representation of the current object information as a Python dictionary. Lazy loadable
objects that have not been loaded will not be present in the resulting dictionary.

• jsons: Returns a string with the JSON representation. It’s the equivalent of converting to a string the dictionary
from the json property.

• dump: Identical to the json property with the exception that it ensures all lazy loadable attributes have been
loaded. If an attribute had already been loaded its contents will not be refreshed.

• dumps: Returns a string with the JSON representation of the fully loaded object. It’s the equivalent of converting
to a string the dictionary from the dump property.

26 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

Besides these resource specific properties, we also have their equivalent methods at the library level that will operate
on all the Backends present in the application.

Attention: On the objects, these are properties (volume.dumps), but on the library, these are methods (cinder-
lib.dumps()).

Note: We don’t have to worry about circular references, such as a Volume with a Snapshot that has a reference to its
source Volume, since cinderlib is prepared to handle them.

To demonstrate the serialization in cinderlib we can look at an easy way to save all the Backends’ resources information
from an application that uses cinderlib with the metadata stored in memory:

with open('cinderlib.txt', 'w') as f:
f.write(cinderlib.dumps())

In a similar way we can also store a single Backend or a single Volume:

vol = lvm.create_volume(size=1)

with open('lvm.txt', 'w') as f:
f.write(lvm.dumps)

with open('vol.txt', 'w') as f:
f.write(vol.dumps)

We must remember that dump and dumps triggers loading of properties that are not already loaded. Any lazy loadable
property that was already loaded will not be updated. A good way to ensure we are using the latest data is to trigger a
refresh on the backends before doing the dump or dumps.

for backend in cinderlib.Backend.backends:
backend.refresh()

with open('cinderlib.txt', 'w') as f:
f.write(cinderlib.dumps())

4.6.2 From JSON

Just like we had the json, jsons, dump, and dumps methods in all the cinderlib objects to serialize data, we also have
the load method to deserialize this data back and recreate a cinderlib internal representation from JSON, be it stored
in a Python string or a Python dictionary.

The load method is present in Backend, Volume, Snapshot, and Connection classes as well as in the library itself. The
resource specific load class method is the exact counterpart of the serialization methods, and it will deserialize the
specific resource from the class its being called from.

The library’s load method is capable of loading anything we have serialized. Not only can it load the full list of
Backends with their resources, but it can also load individual resources. This makes it the recommended way to
deserialize any data in cinderlib. By default, serialization and the metadata storage are disconnected, so loading
serialized data will not ensure that the data is present in the persistence storage. We can ensure that deserialized data
is present in the persistence storage passing save=True to the loading method.

Considering the files we created in the earlier examples we can easily load our whole configuration with:

4.6. Serialization 27

Cinder Library Documentation, Release 0.2.2

We must have initialized the Backends before reaching this point

with open('cinderlib.txt', 'r') as f:
data = f.read()

backends = cinderlib.load(data, save=True)

And for a specific backend or an individual volume:

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
data = f.read()

lvm = cinderlib.load(data, save=True)

with open('vol.txt', 'r') as f:
data = f.read()

vol = cinderlib.load(data)

This is the preferred way to deserialize objects, but we could also use the specific object’s load method.

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
data = f.read()

lvm = cinderlib.Backend.load(data)

with open('vol.txt', 'r') as f:
data = f.read()

vol = cinderlib.Volume.load(data)

4.6.3 To dict

Serialization properties and methos presented earlier are meant to store all the data and allow reuse of that data when
using drivers of different releases. So it will include all required information to be backward compatible when moving
from release N Cinder drivers to release N+1 drivers.

There will be times when we’ll just want to have a nice dictionary representation of a resource, be it to log it, to
display it while debugging, or to send it from our controller application to the node where we are going to be doing the
attachment. For these specific cases all resources, except the Backend have a to_dict method (not property this time)
that will only return the relevant data from the resources.

4.6.4 Backend configuration

When cinderlib serializes any object it also stores the Backend this object belongs to. For security reasons by default
it only stores the identifier of the backend, which is the volume_backend_name. Since we are only storing a reference
to the Backend, this means that when you are going through the deserialization process you require that the Backend
the object belonged to already present in cinderlib.

This should be OK for most cinderlib usages, since it’s common practice to store you storage backend connection
information (credentials, addresses, etc.) in a different location than your data, but there may be situations (for example
while testing) where we’ll want to store everything in the same file, not only the cinderlib representation of all the
storage resources but also the Backend configuration required to access the storage array.

To enable the serialization of the whole driver configuration we have to specify output_all_backend_info=True on the
cinderlib initialization resulting in a self contained file with all the information required to manage the resources.

28 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

This means that with this configuration option we won’t need to configure the Backends prior to loading the serialized
JSON data, we can just load the data and cinderlib will automatically setup the Backends.

4.7 Resource tracking

Cinderlib users will surely have their own variables to keep track of the Backends, Volumes, Snapshots, and Connec-
tions, but there may be cases where this is not enough, be it because we are in a place in our code where we don’t have
access to the original variables, because we want to iterate all instances, or maybe we are running some manual tests
and we have lost the reference to a resource.

For these cases we can use cinderlib’s various tracking systems to access the resources. These tracking systems are
also used by cinderlib in the serialization process. They all used to be in memory, but some will now reside in the
metadata persistence storage.

Cinderlib keeps track of all:

• Initialized Backends.

• Existing volumes in a Backend.

• Connections to a volume.

• Local attachment to a volume.

• Snapshots for a given volume.

Initialized Backends are stored in a dictionary in Backends.backends using the volume_backend_name as key.

Existing volumes in a Backend are stored in the persistence storage, and can be lazy loaded using the Backend in-
stance’s volumes property.

Existing Snapshots for a Volume are stored in the persistence storage, and can be lazy loaded using the Volume in-
stance’s snapshots property.

Connections to a Volume are stored in the persistence storage, and can be lazy loaded using the Volume instance’s
connections property.

Note: Lazy loadable properties will only load the value the first time we access them. Successive accesses will just
return the cached value. To retrieve latest values for them as well as for the instance we can use the refresh method.

The local attachment Connection of a volume is stored in the Volume instance’s local_attach attribute and is stored in
memory, so unloading the library will lose this information.

We can easily use all these properties to display the status of all the resources we’ve created:

If volumes lazy loadable property was already loaded, refresh it
lvm_backend.refresh()

for vol in lvm_backend.volumes:
print('Volume %s is currently %s' % (vol.id, vol.status)

Refresh volume's snapshots and connections if previously lazy loaded
vol.refresh()

for snap in vol.snapshots:
print('Snapshot %s for volume %s is currently %s' %

(snap.id, snap.volume.id, snap.status))

4.7. Resource tracking 29

Cinder Library Documentation, Release 0.2.2

for conn in vol.connections:
print('Connection from %s with ip %s to volume %s is %s' %

(conn.connector_info['host'], conn.connector_info['ip'],
conn.volume.id, conn.status))

4.8 Metadata Persistence

Cinder drivers are not stateless, and the interface between the Cinder core code and the drivers allows them to return
data that can be stored in the database. Some drivers, that have not been updated, are even accessing the database
directly.

Because cinderlib uses the Cinder drivers as they are, it cannot be stateless either.

Originally cinderlib stored all the required metadata in RAM, and passed the responsibility of persisting this informa-
tion to the user of the library.

Library users would create or modify resources using cinderlib, and then serialize the resources and manage the storage
of this information themselves. This allowed referencing those resources after exiting the application and in case of a
crash.

This solution would result in code duplication across projects, as many library users would end up using the same
storage types for the serialized data. That’s when the metadata persistence plugin was introduced in the code.

With the metadata plugin mechanism we can have plugins for different storages and they can be shared between
different projects.

Cinderlib includes 2 types of plugins providing 3 different persistence solutions:

• Memory (the default)

• Database

• Database in memory

Using the memory mechanisms users can still use the JSON serialization mechanism to store the medatada.

Currently we have memory and database plugins. Users can store the data wherever they want using the JSON
serialization mechanism or with a custom metadata plugin.

Persistence mechanism must be configured before initializing any Backend using the persistence_config parameter in
the setup or global_setup methods.

Note: When deserializing data using the load method on memory based storage we will not be making this data
available using the Backend unless we pass save=True on the load call.

4.8.1 Memory plugin

The memory plugin is the fastest one, but it’s has its drawbacks. It doesn’t provide persistence across application
restarts and it’s more likely to have issues than the database plugin.

Even though it’s more likely to present issues with some untested drivers, it is still the default plugin, because it’s
the plugin that exposes the raw plugin mechanism and will expose any incompatibility issues with external plugins in
Cinder drivers.

This plugin is identified with the name memory, and here we can see a simple example of how to save everything to
the database:

30 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

vol = lvm.create_volume(1)

with open('lvm.txt', 'w') as f:
f.write(lvm.dumps)

And how to load it back:

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

with open('cinderlib.txt', 'r') as f:
data = f.read()

backends = cl.load(data, save=True)
print backends[0].volumes

4.8.2 Database plugin

This metadata plugin is the most likely to be compatible with any Cinder driver, as its built on top of Cinder’s actual
database layer.

This plugin includes 2 storage options: memory and real database. They are identified with the storage identifiers
memory_db and db respectively.

The memory option will store the data as an in memory SQLite database. This option helps debugging issues on
untested drivers. If a driver works with the memory database plugin, but doesn’t with the memory one, then the
issue is most likely caused by the driver accessing the database. Accessing the database could be happening directly
importing the database layer, or indirectly using versioned objects.

The memory database doesn’t require any additional configuration, but when using a real database we must pass the
connection information using SQLAlchemy database URLs format as the value of the connection key.

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',

4.8. Metadata Persistence 31

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Cinder Library Documentation, Release 0.2.2

volume_backend_name='lvm_iscsi')
vol = lvm.create_volume(1)

Using it later is exactly the same:

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

print lvm.volumes

4.8.3 Custom plugins

The plugin mechanism uses Python entrypoints to identify plugins present in the system. So any module exposing the
cinderlib.persistence.storage entrypoint will be recognized as a cinderlib metadata persistence plugin.

As an example, the definition in setup.py of the entrypoints for the plugins included in cinderlib is:

entry_points={
'cinderlib.persistence.storage': [

'memory = cinderlib.persistence.memory:MemoryPersistence',
'db = cinderlib.persistence.dbms:DBPersistence',
'memory_db = cinderlib.persistence.dbms:MemoryDBPersistence',

],
},

But there may be cases were we don’t want to create entry points available system wide, and we want an application
only plugin mechanism. For this purpose cinderlib supports passing a plugin instance or class as the value of the
storage key in the persistence_config parameters.

The instance and class must inherit from the PersistenceDriverBase in cinderlib/persistence/base.py and implement
all the following methods:

• db

• get_volumes

• get_snapshots

• get_connections

• get_key_values

• set_volume

• set_snapshot

• set_connection

• set_key_value

• delete_volume

• delete_snapshot

32 Chapter 4. Usage

Cinder Library Documentation, Release 0.2.2

• delete_connection

• delete_key_value

And the __init__ method is usually needed as well, and it will receive as keyword arguments the parameters provided
in the persistence_config. The storage key-value pair is not included as part of the keyword parameters.

The invocation with a class plugin would look something like this:

import cinderlib as cl
from cinderlib.persistence import base

class MyPlugin(base.PersistenceDriverBase):
def __init__(self, location, user, password):

...

persistence_config = {'storage': MyPlugin, 'location': '127.0.0.1',
'user': 'admin', 'password': 'nomoresecrets'}

cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

4.8.4 Migrating storage

Metadata is crucial for the proper operation of cinderlib, as the Cinder drivers cannot retrieve this information from
the storage backend.

There may be cases where we want to stop using a metadata plugin and start using another one, but we have metadata
on the old plugin, so we need to migrate this information from one backend to another.

To achieve a metadata migration we can use methods refresh, dump, load, and set_persistence.

An example code of how to migrate from SQLite to MySQL could look like this:

import cinderlib as cl

Setup the source persistence plugin
persistence_config = {'storage': 'db',

'connection': 'sqlite:///cinderlib.sqlite'}
cl.setup(persistence_config=persistence_config)

Setup backends we want to migrate
lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',

volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

Get all the data into memory
data = cl.dump()

Setup new persistence plugin
new_config = {

'storage': 'db',
'connection': 'mysql+pymysql://user:password@IP/cinder?charset=utf8'

4.8. Metadata Persistence 33

Cinder Library Documentation, Release 0.2.2

}
cl.Backend.set_persistence(new_config)

Load and save the data into the new plugin
backends = cl.load(data, save=True)

34 Chapter 4. Usage

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/akrog/cinderlib/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Storage backend and configuration used (replacing sensitive information with asterisks).

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues and the TODO file for features. Anything tagged with “enhancement” and “help
wanted” is open to whoever wants to implement it.

35

https://github.com/akrog/cinderlib/issues

Cinder Library Documentation, Release 0.2.2

5.1.4 Write tests

We currently lack decent test coverage, so feel free to look into our existing tests to add missing tests, because any test
that increases our coverage is more than welcome.

5.1.5 Write Documentation

Cinder Library could always use more documentation, whether as part of the official Cinder Library docs, in docstrings,
or even on the web in blog posts, articles, and such.

5.1.6 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/akrog/cinderlib/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up cinderlib for local development.

1. Fork the cinderlib repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:YOUR_NAME_HERE/cinderlib.git

3. Install tox:

$ sudo dnf install python2-tox

4. Generate a virtual environment, for example for Python 2.7:

$ tox --notest -epy27

5. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

6. When you’re done making changes, you can check that your changes pass flake8 and unit tests with:

$ tox -eflake8
$ tox -epy27

Or if you don't want to create a specific environment for flake8 you can run
things directly without tox:

36 Chapter 5. Contributing

https://github.com/akrog/cinderlib/issues

Cinder Library Documentation, Release 0.2.2

$ source .tox/py27/bin/activate
$ flake8 cinderlib tests
$ python setup.py test

7. Run functional tests at least with the default LVM configuration:

$ tox -efunctional

To run the LVM functional tests you'll need to have the expected LVM VG
ready. This can be done using the script we have for this purpose (assuming
we are in the *cinderlib* base directory):

$ mkdir temp
$ cd temp
$ sudo ../tools/lvm-prepare.sh

The default configuration for the functional tests can be found in the
`tests/functional/lvm.yaml` file. For additional information on this file
format and running functional tests please refer to the
:doc:`validating_backends` section.

And preferably with all the backends you have at your disposal:

$ CL_FTESTS_CFG=temp/my-test-config.yaml tox -efunctional

8. Commit your changes making sure the commit message is descriptive enough, covering the patch changes as
well as why the patch might be necessary. The commit message should also conform to the 50/72 rule.

$ git add . $ git commit

9. Push your branch to GitHub:

$ git push origin name-of-your-bugfix-or-feature

10. Submit a pull request through the GitHub website.

5.3 LVM Backend

You may not have a fancy storage array, but that doesn’t mean that you cannot use cinderlib, because you can always
the LVM driver. Here we are going to see how to setup an LVM backend that we can use with cinderlib.

Before doing anything you need to make sure you have the required package, for Fedora, CentOS, and RHEL this will
be the targetcli package, and for Ubuntu the lio-utils package.

$ sudo yum install targetcli

Then we’ll need to create your “storage backend”, which is actually just a file on your normal filesystem. We’ll create
a 22GB file with only 1MB currently allocated (this is worse for performance, but better for space), and then we’ll
mount it as a loopback device and create a PV and VG on the loopback device.

$ dd if=/dev/zero of=temp/cinder-volumes bs=1048576 seek=22527 count=1
$ sudo lodevice=`losetup --show -f ./cinder-volumes`
$ sudo pvcreate $lodevice
$ sudo vgcreate cinder-volumes $lodevice
$ sudo vgscan --cache

5.3. LVM Backend 37

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Cinder Library Documentation, Release 0.2.2

There is a script included in the repository that will do all this for us, so we can just call it from the location where we
want to create the file:

$ sudo tools/lvm-prepare.sh

Now we can use this LVM backend in cinderlib:

import cinderlib as cl
from pprint import pprint as pp

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
volume_group='cinder-volumes',
target_protocol='iscsi',
target_helper='lioadm',
volume_backend_name='lvm_iscsi')

vol = lvm.create_volume(size=1)

attach = vol.attach()
pp('Volume %s attached to %s' % (vol.id, attach.path))
vol.detach()

vol.delete()

5.4 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/akrog/
cinderlib/pull_requests and make sure that the tests pass for all supported Python versions.

5.5 Tips

To run a subset of tests:

$ source .tox/py27/bin/activate
$ python -m unittest tests.test_cinderlib.TestCinderlib.test_lib_setup

38 Chapter 5. Contributing

https://travis-ci.org/akrog/cinderlib/pull_requests
https://travis-ci.org/akrog/cinderlib/pull_requests

CHAPTER 6

Validating a driver

OK, so you have seen the project and would like to check if the Cinder driver for your storage backend will work with
cinderlib or not, but don’t want to spend a lot of time to do it.

In that case the best way to do it is using our functional tests with a custom configuration file that has your driver
configuration.

6.1 The environment

Before we can test anything we’ll need to get our environment ready, which will be comprised of three steps:

• Clone the cinderlib project:

$ git clone git://github.com/akrog/cinderlib

• Create the testing environment which will include the required Cinder code:

$ cd cinderlib
$ tox -efunctional --notest

• Install any specific packages our driver requires. Some Cinder drivers have external dependencies that need to
be manually installed. These dependencies can be Python package or Linux binaries. If it’s the former we will
need to install them in the testing virtual environment we created in the previous step.

For example, for the Kaminario backend we need the krest Python package, so here’s how we would install the
dependency.

$ source .tox/py27/bin/active
(py27) $ pip install krest
(py27) $ deactivate

To see the Python dependencies for each backend we can check the driver-requirements.txt file from the Cinder
project, or in cinderlib’s setup.py file listed in the extras dictionary.

If we have binary dependencies we can copy them in .tox/py27/bin or just install them globally in our system.

39

https://raw.githubusercontent.com/openstack/cinder/stable/queens/driver-requirements.txt

Cinder Library Documentation, Release 0.2.2

6.2 The configuration

Functional test use a YAML configuration file to get the driver configuration as well as some additional parameters for
running the tests, with the default configuration living in the tests/functiona/lvm.yaml file.

The configuration file currently supports 3 key-value pairs, with only one being mandatory.

• logs: Boolean value defining whether we want the Cinder code to log to stdout during the testing. Defaults to
false.

• venv_sudo: Boolean value that instructs the functional tests on whether we want to run with normal sudo or
with a custom command that ensure that the virtual environment’s binaries are also available. This is not usually
necessary, but there are some drivers that use binaries installed by a Python package (like the LVM that requires
the cinder-rtstool from Cinder). This is also necessary if we’ve installed a binary in the .tox/py27/bin directory.

• size_precision: Integer value describing how much precision we must use when comparing volume sizes. Due
to cylinder sizes some storage arrays don’t abide 100% to the requested size of the volume. With this option we
can define how many decimals will be correct when testing sizes. A value of 2 means that the backend could
create a 1.0015869140625GB volume when we request a 1GB volume and the tests wouldn’t fail. Default is
zero, which for us means that it must be perfect or it will fail.

• backends: This is a list of dictionaries each with the configuration parameters that are configured in the cin-
der.conf file in Cinder.

The contents of the default configuration, excluding the comments, are:

logs: false
venv_sudo: true
backends:

- volume_backend_name: lvm
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
target_protocol: iscsi
target_helper: lioadm

But like the name implies, backends can have multiple drivers configured, and the functional tests will run the tests on
them all.

For example a configuration file with LVM, Kaminario, and XtremIO backends would look like this:

logs: false
venv_sudo: true
backends:

- volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
target_protocol: iscsi
target_helper: lioadm
volume_backend_name: lvm

- volume_backend_name: xtremio
volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
use_multipath_for_image_xfer: true
xtremio_cluster_name: CLUSTER
san_ip: x.x.x.x
san_login: user
san_password: password

- volume_backend_name: kaminario
volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.

→˓KaminarioISCSIDriver

40 Chapter 6. Validating a driver

Cinder Library Documentation, Release 0.2.2

use_multipath_for_image_xfer: true
san_ip: x.x.x.y
san_login: user
san_password: password

6.3 The validation

Now it’s time to run the commands, for this we’ll use the tox command passing the location of our configuration file
via environmental variable CL_FTESTS_CFG:

$ CL_FTEST_CFG=temp/tests.yaml tox -efunctional

functional develop-inst-nodeps: /home/geguileo/code/cinderlib
functional installed: You are using pip version 8.1.2, ...
functional runtests: PYTHONHASHSEED='2093635202'
functional runtests: commands[0] | unit2 discover -v -s tests/functional
test_attach_detach_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_kaminario (tests_basic.BackendFunctBasic)
→˓... ok
test_attach_detach_volume_via_attachment_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_xtremio (tests_basic.BackendFunctBasic) ..
→˓. ok
test_attach_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_attach_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_clone_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_clone_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_clone_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_times_on_kaminario (tests_basic.BackendFunctBasic) ..
→˓. ok
test_connect_disconnect_multiple_times_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_times_on_xtremio (tests_basic.BackendFunctBasic) ...
→˓ok
test_connect_disconnect_multiple_volumes_on_kaminario (tests_basic.BackendFunctBasic)
→˓... ok
test_connect_disconnect_multiple_volumes_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_volumes_on_xtremio (tests_basic.BackendFunctBasic) ..
→˓. ok
test_connect_disconnect_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok

6.3. The validation 41

Cinder Library Documentation, Release 0.2.2

test_create_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_extend_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_extend_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_extend_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_stats_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_stats_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_stats_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_xtremio (tests_basic.BackendFunctBasic) ... ok

--
Ran 48 tests in x.ys

OK

As can be seen each test will have a meaningful name ending in the name of the backend we have provided via the
volume_backend_name key in the YAML file.

6.4 Reporting results

Once you have run the tests, it’s time to report the results so they can be included in the Validated drivers section.

To help others use the same backend and help us track how each storage driver was tested please include the following
information in your report:

• Cinderlib version.

• Storage Array: What hardware and firmware version were used.

• Connection type tested: iSCSI, FC, RBD, etc.

• Dependencies/Requirements for the backend: Packages, Python libraries, configuration files. . .

• Contents of the YAML file with usernames, passwords, and IPs appropriately masked.

• Cinder releases: What cinder releases have been tested.

• Additional notes: Limitations or anything worth mentioning.

To report the results of the tests please create an issue on the project with the information mentioned above and include
any errors you encountered if you did encounter any.

42 Chapter 6. Validating a driver

https://github.com/Akrog/cinderlib/issues/new

CHAPTER 7

Internals

Here we’ll go over some of the implementation details within cinderlib as well as explanations of how we’ve resolved
the different issues that arise from accessing the driver’s directly from outside of the cinder-volume service.

Some of the issues cinderlib has had to resolve are:

• Oslo config configuration loading.

• Cinder-volume dynamic configuration loading.

• Privileged helper service.

• DLM configuration.

• Disabling of cinder logging.

• Direct DB access within drivers.

• Oslo Versioned Objects DB access methods such as refresh and save.

• Circular references in Oslo Versioned Objects for serialization.

• Using multiple drivers in the same process.

43

Cinder Library Documentation, Release 0.2.2

44 Chapter 7. Internals

CHAPTER 8

Credits

8.1 Development Lead

• Gorka Eguileor <geguileo@redhat.com>

8.2 Contributors

None yet. Why not be the first?

45

mailto:geguileo@redhat.com

Cinder Library Documentation, Release 0.2.2

46 Chapter 8. Credits

CHAPTER 9

TODO

There are many things that need improvements in cinderlib, this is a simple list to keep track of the most relevant
topics.

• Connect & attach snapshot for drivers that support it.

• Replication and failover support

• QoS

• Support custom features via extra specs

• Unit tests

• Complete functional tests

• Parameter validation

• Support using cinderlib without cinder to just handle the attach/detach

• Add .py examples

• Add support for new Attach/Detach mechanism

• Consistency Groups

• Encryption

• Support name and description attributes in Volume and Snapshot

• Verify multiattach support

• Revert to snapshot support.

• Add documentation to connect remote host. use_multipath_for_image_xfer and the en-
force_multipath_for_image_xfer options.

• Complete internals documentation.

• Document the code.

47

Cinder Library Documentation, Release 0.2.2

48 Chapter 9. TODO

CHAPTER 10

History

10.1 0.2.3 (2018-MM-DD)

• Bug fixes:

– Detach a volume when it’s unavailable.

• Features:

– Provide better message when device is not available.

10.2 0.2.2 (2018-07-24)

• Features:

– Use NOS-Brick to setup OS-Brick for non OpenStack usage.

– Can setup persistence directly to use key-value storage.

– Support loading objects without configured backend.

– Support for Cinder Queens, Rocky, and Master

– Serialization returns a compact string

• Bug fixes:

– Workaround for Python 2 getaddrinfo bug

– Compatibility with requests and requests-kerberos

– Fix key-value support set_key_value.

– Fix get_key_value to return KeyValue.

– Fix loading object without configured backend.

49

Cinder Library Documentation, Release 0.2.2

10.3 0.2.1 (2018-06-14)

• Features:

– Modify fields on connect method.

– Support setting custom root_helper.

– Setting default project_id and user_id.

– Metadata persistence plugin mechanism

– DB persistence plugin

– No longer dependent on Cinder’s attach/detach code

– Add device_attached method to update volume on attaching node

– Support attaching/detaching RBD volumes

– Support changing persistence plugin after initialization

– Add saving and refreshing object’s metadata

– Add dump, dumps methods

• Bug fixes:

– Serialization of non locally attached connections.

– Accept id field set to None on resource creation.

– Disabling of sudo command wasn’t working.

– Fix volume cloning on XtremIO

– Fix iSCSI detach issue related to privsep

– Fix wrong size in volume from snapshot

– Fix name & description inconsistency

– Set created_at field on creation

– Connection fields not being set

– DeviceUnavailable exception

– Multipath settings after persistence retrieval

– Fix PyPi package created tests module

– Fix connector without multipath info

– Always call create_export and remove_export

– iSCSI unlinking on disconnect

10.4 0.1.0 (2017-11-03)

• First release on PyPI.

50 Chapter 10. History

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

51

	Cinder Library
	Introduction
	Features
	Demo
	Limitations

	Installation
	Stable release
	Latest code

	Validated drivers
	LVM
	Ceph
	XtremIO
	Kaminario
	SolidFire
	VMAX

	Usage
	Initialization
	Backends
	Volumes
	Snapshots
	Connections
	Serialization
	Resource tracking
	Metadata Persistence

	Contributing
	Types of Contributions
	Get Started!
	LVM Backend
	Pull Request Guidelines
	Tips

	Validating a driver
	The environment
	The configuration
	The validation
	Reporting results

	Internals
	Credits
	Development Lead
	Contributors

	TODO
	History
	0.2.3 (2018-MM-DD)
	0.2.2 (2018-07-24)
	0.2.1 (2018-06-14)
	0.1.0 (2017-11-03)

	Indices and tables

