

Welcome to Cilium’s documentation!

The documentation is divided into the following sections:

	Getting Started Guides: Provides a simple tutorial for running a small Cilium
setup on your laptop. Intended as an easy way to get your hands dirty
applying Cilium security policies between containers.

	Concepts: Describes the components of Cilium,
and the different models for deploying Cilium. Provides the high-level
understanding required to run a full Cilium deployment and understand its
behavior.

	Architecture: Describes the components of the Cilium architecture and
how these components integrate with existing architectures, such as Kubernetes.

	Installation : Details instructions for installing, configuring, and
troubleshooting Cilium in different deployment modes.

	Policy Enforcement Modes : Detailed walkthrough of the policy language structure
and the supported formats.

	Monitoring & Metrics : Instructions for configuring metrics collection from Cilium.

	Troubleshooting : Describes how to troubleshoot Cilium in different
deployment modes.

	BPF and XDP Reference Guide : Provides a technical deep dive of BPF and XDP technology,
primarily focused at developers.

	API Reference : Details the Cilium agent API for interacting with a local
Cilium instance.

	Developer / Contributor Guide : Gives background to those looking to develop and contribute
modifications to the Cilium code or documentation.

Getting Started

	Introduction to Cilium
	What is Cilium?

	Why Cilium?

	Functionality Overview

	Getting Started Guides
	Installation

	Security Tutorials

	Advanced Networking

	Operations

	Istio

	Other Orchestrators

	Concepts
	Component Overview

	Terminology

	Address Management

	Multi Host Networking

	Security

	Datapath

	Failure Behavior

	Architecture
	Datapath

	Scale

	Kubernetes Integration

	Getting Help
	FAQ

	Slack

	GitHub

	Security Bugs

Integrations

	Kubernetes
	Introduction

	Concepts

	Requirements

	Configuration

	Network Policy

	Endpoint CRD

	Kubernetes Compatibility

	Troubleshooting

	Istio
	Getting Started Using Istio

	Docker
	Cilium with Docker & libnetwork

	Mesos
	Cilium with Mesos/Marathon

	Envoy
	Envoy Go Extensions

Administration

	System Requirements
	Summary

	Linux Distribution Compatibility Matrix

	Linux Kernel

	Advanced Features and Required Kernel Version

	Key-Value store

	clang+LLVM

	iproute2

	Firewall Rules

	Privileges

	Upgrade Guide
	Running pre-flight check (Required)

	Upgrading Micro Versions

	Upgrading Minor Versions

	Step 3: Rolling Back

	Version Specific Notes

	Advanced

Configuration

	Network Policy
	Policy Enforcement Modes

	Rule Basics

	Layer 3 Examples

	Layer 4 Examples

	Layer 7 Examples

	Kubernetes

	Endpoint Lifecycle

	Troubleshooting

	Monitoring & Metrics
	Installation

	cilium-agent

	cilium-operator

	Troubleshooting
	Component & Cluster Health

	Connectivity Problems

	Policy Troubleshooting

	Symptom Library

	Useful Scripts

	Reporting a problem

Community

	Special Interest Groups
	All SIGs

	How to create a SIG

	Slack
	Slack channels

For Developers

	Developer / Contributor Guide
	Setting up the development environment

	Development process

	End-To-End Testing Framework

	How to contribute

	Pull request review process

	Building Container Images

	Documentation

	Developer’s Certificate of Origin

	Release Management
	Release Cadence

	Stable releases

	LTS

	Generic Release Process

	GitHub template process

	Reference steps for the template

	Minor Release Process

	Backporting process

	CI / Jenkins
	Jobs Overview

	Triggering Pull-Request Builds With Jenkins

	Using Jenkins for testing

	CI Failure Triage

	Infrastructure details

	BPF and XDP Reference Guide
	BPF Architecture

	Toolchain

	Program Types

	Further Reading

	API Reference
	Introduction

	How to access the API

	Compatibility Guarantees

	API Reference

Reference

	Command Cheatsheet
	Command utilities:

	Command examples:

	Kubernetes examples:

	Command Reference
	cilium-agent

	cilium

	cilium-health

	cilium-operator

	Key-Value Store

	Key-Value Store
	Layout

	Leases

	Debugging

	Further Reading
	Related Material

	Presentations

	Podcasts

	Community blog posts

	Glossary

Introduction to Cilium

What is Cilium?

Cilium is open source software for transparently securing the network
connectivity between application services deployed using Linux container
management platforms like Docker and Kubernetes.

At the foundation of Cilium is a new Linux kernel technology called BPF, which
enables the dynamic insertion of powerful security visibility and control logic
within Linux itself. Because BPF runs inside the Linux kernel, Cilium
security policies can be applied and updated without any changes to the
application code or container configuration.

Why Cilium?

The development of modern datacenter applications has shifted to a
service-oriented architecture often referred to as microservices, wherein a
large application is split into small independent services that communicate
with each other via APIs using lightweight protocols like HTTP. Microservices
applications tend to be highly dynamic, with individual containers getting
started or destroyed as the application scales out / in to adapt to load changes
and during rolling updates that are deployed as part of continuous delivery.

This shift toward highly dynamic microservices presents both a challenge and an
opportunity in terms of securing connectivity between microservices.
Traditional Linux network security approaches (e.g., iptables) filter on IP
address and TCP/UDP ports, but IP addresses frequently churn in dynamic
microservices environments. The highly volatile life cycle of containers causes
these approaches to struggle to scale side by side with the application as load
balancing tables and access control lists carrying hundreds of thousands of
rules that need to be updated with a continuously growing frequency. Protocol
ports (e.g. TCP port 80 for HTTP traffic) can no longer be used to
differentiate between application traffic for security purposes as the port is
utilized for a wide range of messages across services.

An additional challenge is the ability to provide accurate visibility as
traditional systems are using IP addresses as primary identification vehicle
which may have a drastically reduced lifetime of just a few seconds in
microservices architectures.

By leveraging Linux BPF, Cilium retains the ability to transparently insert
security visibility + enforcement, but does so in a way that is based on
service / pod / container identity (in contrast to IP address identification in
traditional systems) and can filter on application-layer (e.g. HTTP). As a
result, Cilium not only makes it simple to apply security policies in a highly
dynamic environment by decoupling security from addressing, but can also
provide stronger security isolation by operating at the HTTP-layer in addition
to providing traditional Layer 3 and Layer 4 segmentation.

The use of BPF enables Cilium to achieve all of this in a way that is highly
scalable even for large-scale environments.

Functionality Overview

Protect and secure APIs transparently

Ability to secure modern application protocols such as REST/HTTP, gRPC and
Kafka. Traditional firewalls operates at Layer 3 and 4. A protocol running on a
particular port is either completely trusted or blocked entirely. Cilium
provides the ability to filter on individual application protocol requests such
as:

	Allow all HTTP requests with method GET and path /public/.*. Deny all
other requests.

	Allow service1 to produce on Kafka topic topic1 and service2 to
consume on topic1. Reject all other Kafka messages.

	Require the HTTP header X-Token: [0-9]+ to be present in all REST calls.

See the section Layer 7 Policy [http://docs.cilium.io/en/stable/policy/#layer-7] in our documentation for the latest list of
supported protocols and examples on how to use it.

Secure service to service communication based on identities

Modern distributed applications rely on technologies such as application
containers to facilitate agility in deployment and scale out on demand. This
results in a large number of application containers to be started in a short
period of time. Typical container firewalls secure workloads by filtering on
source IP addresses and destination ports. This concept requires the firewalls
on all servers to be manipulated whenever a container is started anywhere in
the cluster.

In order to avoid this situation which limits scale, Cilium assigns a security
identity to groups of application containers which share identical security
policies. The identity is then associated with all network packets emitted by
the application containers, allowing to validate the identity at the receiving
node. Security identity management is performed using a key-value store.

Secure access to and from external services

Label based security is the tool of choice for cluster internal access control.
In order to secure access to and from external services, traditional CIDR based
security policies for both ingress and egress are supported. This allows to
limit access to and from application containers to particular IP ranges.

Simple Networking

A simple flat Layer 3 network with the ability to span multiple clusters
connects all application containers. IP allocation is kept simple by using host
scope allocators. This means that each host can allocate IPs without any
coordination between hosts.

The following multi node networking models are supported:

	Overlay: Encapsulation-based virtual network spanning all hosts.
Currently VXLAN and Geneve are baked in but all encapsulation formats
supported by Linux can be enabled.

When to use this mode: This mode has minimal infrastructure and integration
requirements. It works on almost any network infrastructure as the only
requirement is IP connectivity between hosts which is typically already
given.

	Native Routing: Use of the regular routing table of the Linux host.
The network is required to be capable to route the IP addresses of the
application containers.

When to use this mode: This mode is for advanced users and requires some
awareness of the underlying networking infrastructure. This mode works well
with:

	Native IPv6 networks

	In conjunction with cloud network routers

	If you are already running routing daemons

Load balancing

Distributed load balancing for traffic between application containers and to
external services. The loadbalancing is implemented using BPF using efficient
hashtables allowing for almost unlimited scale and supports direct server
return (DSR) if the loadbalancing operation is not performed on the source
host.
Note: load balancing requires connection tracking to be enabled. This is the
default.

Monitoring and Troubleshooting

The ability to gain visibility and to troubleshoot issues is fundamental to the
operation of any distributed system. While we learned to love tools like
tcpdump and ping and while they will always find a special place in our
hearts, we strive to provide better tooling for troubleshooting. This includes
tooling to provide:

	Event monitoring with metadata: When a packet is dropped, the tool doesn’t
just report the source and destination IP of the packet, the tool provides
the full label information of both the sender and receiver among a lot of
other information.

	Policy decision tracing: Why is a packet being dropped or a request rejected.
The policy tracing framework allows to trace the policy decision process for
both, running workloads and based on arbitrary label definitions.

	Metrics export via Prometheus: Key metrics are exported via Prometheus for
integration with your existing dashboards.

Integrations

	Network plugin integrations: CNI [https://github.com/containernetworking/cni], libnetwork [https://github.com/docker/libnetwork]

	Container runtime events: containerd [https://github.com/containerd/containerd]

	Kubernetes: NetworkPolicy [https://kubernetes.io/docs/concepts/services-networking/network-policies/], Labels [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/], Ingress [https://kubernetes.io/docs/concepts/services-networking/ingress/], Service [https://kubernetes.io/docs/concepts/services-networking/service/]

Getting Started Guides

The following is a list of guides that help you get started with Cilium. The
guides cover the installation and then dive into more detailed topics such as
securing clusters, connecting multiple clusters, monitoring, and
troubleshooting. If you are new to Cilium it is recommended to read the
Introduction to Cilium section first to learn about the basic concepts and motivation.

Installation

	Creating a Sandbox environment

	Self-Managed Kubernetes

	Managed Kubernetes

	Installer Integrations

	CNI Chaining

Security Tutorials

	HTTP/REST API call authorization

	Locking down external access with DNS-based policies

	Securing a Kafka cluster

	How to secure gRPC

	Getting Started Securing Elasticsearch

	How to Secure a Cassandra Database

	Getting Started Securing Memcached

	Locking down external access using AWS metadata

Advanced Networking

	Setting up Cilium in AWS ENI mode

	Using kube-router to run BGP

	Setting up Cluster Mesh

	Cilium integration with Flannel (beta)

	IPVLAN based Networking (beta)

	Transparent Encryption (beta)

	Host-Reachable Services (beta)

	Kubernetes NodePort (beta)

	Kubernetes without kube-proxy (beta)

	Kata with Cilium on Google GCE

	Configuring IPAM modes

Operations

	Running Prometheus & Grafana

	Limiting Identity-Relevant Labels

Istio

	Getting Started Using Istio

Other Orchestrators

	Cilium with Docker & libnetwork

	Cilium with Mesos/Marathon

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Creating a Sandbox environment

	Getting Started Using Minikube

	Getting Started Using MicroK8s

Getting Started Using Minikube

This guide uses minikube [https://kubernetes.io/docs/getting-started-guides/minikube/]
to demonstrate deployment and operation of Cilium in a single-node Kubernetes cluster.
The minikube VM requires approximately 5GB of RAM and supports hypervisors like VirtualBox
that run on Linux, macOS, and Windows.

Install kubectl & minikube

	Install kubectl version >= v1.10.0 as described in the Kubernetes Docs [https://kubernetes.io/docs/tasks/tools/install-kubectl/].

	Install minikube >= v1.3.1 as per minikube documentation: Install Minikube [https://kubernetes.io/docs/tasks/tools/install-minikube/].

Note

It is important to validate that you have minikube v1.3.1 installed. Older
versions of minikube are shipping a kernel configuration that is not
compatible with the TPROXY requirements of Cilium >= 1.6.0.

minikube version
minikube version: v1.3.1
commit: ca60a424ce69a4d79f502650199ca2b52f29e631

	Create a minikube cluster:

minikube start --network-plugin=cni --memory=4096

	Mount the BPF filesystem

minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf

Note

In case of installing Cilium for a specific Kubernetes version, the
--kubernetes-version vx.y.z parameter can be appended to the minikube
start command for bootstrapping the local cluster. By default, minikube
will install the most recent version of Kubernetes.

Install Cilium

Install Cilium as DaemonSet [https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/] into
your new Kubernetes cluster. The DaemonSet will automatically install itself as
Kubernetes CNI plugin.

kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Next steps

Now that you have a Kubernetes cluster with Cilium up and running, you can take
a couple of next steps to explore various capabilities:

	HTTP/REST API call authorization

	Locking down external access with DNS-based policies

	How to Secure a Cassandra Database

	Securing a Kafka cluster

Getting Started Using MicroK8s

This guide uses microk8s [https://microk8s.io/] to demonstrate deployment
and operation of Cilium in a single-node Kubernetes cluster. To run Cilium
inside microk8s, a GNU/Linux distribution with kernel 4.9 or later is
required (per the System Requirements).

Install microk8s

	Install microk8s >= 1.15 as per microk8s documentation: MicroK8s User
guide [https://microk8s.io/docs/].

	Enable the microk8s Cilium service

microk8s.enable cilium

	Cilium is now configured! The cilium CLI is provided as microk8s.cilium.

Next steps

Now that you have a Kubernetes cluster with Cilium up and running, you can take
a couple of next steps to explore various capabilities:

	HTTP/REST API call authorization

	Locking down external access with DNS-based policies

	How to Secure a Cassandra Database

	Securing a Kafka cluster

Self-Managed Kubernetes

The following guides are available for installation of self-managed Kubernetes
clusters. This section provides guides for installing Cilium with and without
use of a kvstore (etcd). Please refer to the section Installation with external etcd
for details on when etcd is required.

	Quick Installation

	Installation with managed etcd

	Installation with external etcd

Quick Installation

This guides takes you through the quick installation procedure. The default
settings will store all required state using Kubernetes custom resource
definitions (CRDs). This is the simplest installation method as it only depends
on Kubernetes and does not require additional external dependencies. It is a
good option for environments up to about 250 nodes. For bigger environments or
for environments which want to leverage the clustermesh functionality, a
kvstore set up is required which can be set up using an
Installation with external etcd or using the Installation with managed etcd.

Should you encounter any issues during the installation, please refer to the
Troubleshooting section and / or seek help on the Slack channel.

Please consult the Kubernetes Requirements for information on how
you need to configure your Kubernetes cluster to operate with Cilium.

Install Cilium

kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Installation with managed etcd

The standard Quick Installation guide will set up Cilium to use
Kubernetes CRDs to store and propagate state between agents. Use of CRDs can
impose scale limitations depending on the size of your environment. Use of etcd
optimizes the propagation of state between agents. This guide explains the
steps required to set up Cilium with a managed etcd where etcd is managed by an
operator which maintains an etcd cluster as part of the Kubernetes cluster.

The identity allocation remains to be CRD-based which means that etcd remains
an optional component to improve scalability. Failures in providing etcd will
not be critical to the availability of Cilium but will reduce the efficacy of
state propagation. This allows the managed etcd to recover while depending on
Cilium itself to provide connectivity and security.

Should you encounter any issues during the installation, please refer to the
Troubleshooting section and / or seek help on the Slack channel.

Requirements

Make sure your Kubernetes environment is meeting the requirements:

	Kubernetes >= 1.9

	Linux kernel >= 4.9

	Kubernetes in CNI mode

	Mounted BPF filesystem mounted on all worker nodes

	Recommended: Enable PodCIDR allocation (--allocate-node-cidrs) in the kube-controller-manager (recommended)

Refer to the section Requirements for detailed instruction on how to
prepare your Kubernetes environment.

Deploy Cilium + cilium-etcd-operator

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.etcd.enabled=true \
 --set global.etcd.managed=true \
 > cilium.yaml
kubectl create -f cilium.yaml

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-etcd-operator-6ffbd46df9-pn6cf 1/1 Running 0 7s
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for the etcd-operator to bring up the necessary
number of etcd pods to achieve quorum. Once it reaches quorum, all components
should be healthy and ready:

cilium-etcd-8d95ggpjmw 1/1 Running 0 78s
cilium-etcd-operator-6ffbd46df9-pn6cf 1/1 Running 0 4m12s
cilium-etcd-t695lgxf4x 1/1 Running 0 118s
cilium-etcd-zw285m6t9g 1/1 Running 0 2m41s
cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m
etcd-operator-5cf67779fd-hd9j7 1/1 Running 0 2m42s

Troubleshooting

	Make sure that kube-dns or coredns is running and healthy in the
kube-system namespace. A functioning Kubernetes DNS is strictly required
in order for Cilium to resolve the ClusterIP of the etcd cluster. If either
kube-dns or coredns were already running before Cilium was deployed,
the pods may be managed by a former CNI plugin. cilium-operator will
automatically restart the pods to ensure that they are being managed by the
Cilium CNI plugin. You can manually restart the pods as well if required and
validate that Cilium is managing kube-dns or coredns by running:

kubectl -n kube-system get cep

You should see kube-dns-xxx or coredns-xxx pods.

	In order for the entire system to come up, the following components have to
be running at the same time:

	kube-dns or coredns

	cilium-xxx

	cilium-etcd-operator

	etcd-operator

	etcd-xxx

All timeouts are configured that this will typically work out smoothly even
if some of the pods restart once or twice. In case any of the above pods get
into a long CrashLoopBackoff, bootstrapping can be expedited by
restarting the pods to reset the CrashLoopBackoff time.

CoreDNS: Enable reverse lookups

In order for the TLS certificates between etcd peers to work correctly, a DNS
reverse lookup on a pod IP must map back to pod name. If you are using CoreDNS,
check the CoreDNS ConfigMap and validate that in-addr.arpa and ip6.arpa
are listed as wildcards for the kubernetes block like this:

kubectl -n kube-system edit cm coredns
[...]
apiVersion: v1
data:
 Corefile: |
 .:53 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 proxy . /etc/resolv.conf
 cache 30
 }

The contents can look different than the above. The specific configuration that
matters is to make sure that in-addr.arpa and ip6.arpa are listed as
wildcards next to cluster.local.

You can validate this by looking up a pod IP with the host utility from any
pod:

host 10.60.20.86
86.20.60.10.in-addr.arpa domain name pointer cilium-etcd-972nprv9dp.cilium-etcd.kube-system.svc.cluster.local.

What is the cilium-etcd-operator?

The cilium-etcd-operator uses and extends the etcd-operator to guarantee quorum,
auto-create certificates, and manage compaction:

	Automatic re-creation of the etcd cluster when the cluster loses quorum. The
standard etcd-operator will refuse to bring up new etcd nodes and the etcd
cluster becomes unusable.

	Automatic creation of certificates and keys. This simplifies the
installation of the operator and makes the certificates and keys required to
access the etcd cluster available to Cilium using a well known Kubernetes
secret name.

	Compaction is automatically handled.

Limitations

Use of the cilium-etcd-operator offers a lot of advantages including simplicity
of installation, automatic management of the etcd cluster including compaction,
restart on quorum loss, and automatic use of TLS. There are several
disadvantages which can become of relevance as you scale up your clusters:

	etcd nodes operated by the etcd-operator will not use persistent storage.
Once the etcd cluster looses quorum, the etcd cluster is automatically
re-created by the cilium-etcd-operator. Cilium will automatically recover and
re-create all state in etcd. This operation can take can couple of seconds
and may cause minor disruptions as ongoing distributed locks are invalidated
and security identities have to be re-allocated.

	etcd is very sensitive to disk IO latency and requires fast disk access at a
certain scale. The cilium-etcd-operator will not take any measures to provide
fast disk access and performance will depend whatever is provided to the pods
in your Kubernetes cluster. See etcd Hardware recommendations [https://coreos.com/etcd/docs/latest/op-guide/hardware.html] for more details.

Installation with external etcd

This guide walks you through the steps required to set up Cilium on Kubernetes
using an external etcd. Use of an external etcd provides better performance and
is suitable for larger environments. If you are looking for a simple
installation method to get started, refer to the section
Installation with managed etcd.

Should you encounter any issues during the installation, please refer to the
Troubleshooting section and / or seek help on Slack.

When do I need to use a kvstore?

Unlike the section Quick Installation, this guide explains how to
configure Cilium to use an external kvstore such as etcd. If you are unsure
whether you need to use a kvstore at all, the following is a list of reasons
when to use a kvstore:

	If you want to use the Cluster Mesh functionality.

	If you are running in an environment with more than 250 nodes, 5k pods, or
if you observe a high overhead in state propagation caused by Kubernetes
events.

	If you do not want Cilium to store state in Kubernetes custom resources
(CRDs).

Requirements

Make sure your Kubernetes environment is meeting the requirements:

	Kubernetes >= 1.9

	Linux kernel >= 4.9

	Kubernetes in CNI mode

	Mounted BPF filesystem mounted on all worker nodes

	Recommended: Enable PodCIDR allocation (--allocate-node-cidrs) in the kube-controller-manager (recommended)

Refer to the section Requirements for detailed instruction on how to
prepare your Kubernetes environment.

Configure the External Etcd

When using an external kvstore, the address of the external kvstore needs to be
configured in the ConfigMap. Download the base YAML and configure it with
Helm:

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Change the etcd endpoints accordingly:

helm template cilium \
 --namespace kube-system \
 --set global.etcd.enabled=true \
 --set global.etcd.endpoints[0]=http://etcd-endpoint1:2379 \
 --set global.etcd.endpoints[1]=http://etcd-endpoint2:2379 \
 > cilium.yaml

Optional: Configure the SSL certificates

Create a Kubernetes secret with the root certificate authority, and client-side
key and certificate of etcd:

kubectl create secret generic -n kube-system cilium-etcd-secrets \
 --from-file=etcd-client-ca.crt=ca.crt \
 --from-file=etcd-client.key=client.key \
 --from-file=etcd-client.crt=client.crt

Adjust the helm template generation to enable SSL for etcd and use https instead
of http for the etcd endpoint URLs:

helm template cilium \
 --namespace kube-system \
 --set global.etcd.enabled=true \
 --set global.etcd.ssl=true \
 --set global.etcd.endpoints[0]=https://etcd-endpoint1:2379 \
 --set global.etcd.endpoints[1]=https://etcd-endpoint2:2379 \
 > cilium.yaml

Deploy Cilium

kubectl create -f cilium.yaml

Validate the Installation

Verify that Cilium pods were started on each of your worker nodes

kubectl --namespace kube-system get ds cilium
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
cilium 4 4 4 <none> 2m

kubectl -n kube-system get deployments cilium-operator
NAME READY UP-TO-DATE AVAILABLE AGE
cilium-operator 1/1 1 1 5m25s

Managed Kubernetes

The following guides cover the installation steps for managed Kubernetes
environments as offered by cloud providers. If a particular offering is not
covered, the guide Installation with managed etcd has a good chance of
working out of the box as well.

	Installation on AWS EKS

	Installation on Google GKE

	Installation on Azure AKS

Installation on AWS EKS

Create an EKS Cluster

The first step is to create an EKS cluster. This guide will use eksctl [https://github.com/weaveworks/eksctl] but you can also follow the Getting
Started with Amazon EKS [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html] guide.

Prerequisites

Ensure your AWS credentials are located in ~/.aws/credentials or are stored
as environment variables [https://docs.aws.amazon.com/cli/latest/userguide/cli-environment.html] .

Next, install eksctl [https://github.com/weaveworks/eksctl] :

Linux

MacOS

curl --silent --location "https://github.com/weaveworks/eksctl/releases/download/latest_release/eksctl_$(uname -s)_amd64.tar.gz" | tar xz -C /tmp
sudo mv /tmp/eksctl /usr/local/bin

brew install weaveworks/tap/eksctl

Ensure that aws-iam-authenticator is installed and in the executable path:

which aws-iam-authenticator

If not, install it based on the AWS IAM authenticator documentation [https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html] .

Create the cluster

Create an EKS cluster with eksctl see the eksctl Documentation [https://github.com/weaveworks/eksctl] for details on how to set credentials,
change region, VPC, cluster size, etc.

eksctl create cluster -n test-cluster -N 0

You should see something like this:

[ℹ] using region us-west-2
[ℹ] setting availability zones to [us-west-2b us-west-2a us-west-2c]
[...]
[✔] EKS cluster "test-cluster" in "us-west-2" region is ready

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.cni.chainingMode=aws-cni \
 --set global.masquerade=false \
 --set global.tunnel=disabled \
 --set global.nodeinit.enabled=true \
 > cilium.yaml
kubectl create -f cilium.yaml

Scale up the cluster

eksctl get nodegroup --cluster test-cluster
CLUSTER NODEGROUP CREATED MIN SIZE MAX SIZE DESIRED CAPACITY INSTANCE TYPE IMAGE ID
test-cluster ng-25560078 2019-07-23T06:05:35Z 0 2 0 m5.large ami-0923e4b35a30a5f53

eksctl scale nodegroup --cluster test-cluster -n ng-25560078 -N 2
[ℹ] scaling nodegroup stack "eksctl-test-cluster-nodegroup-ng-25560078" in cluster eksctl-test-cluster-cluster
[ℹ] scaling nodegroup, desired capacity from 0 to 2

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Installation on Google GKE

GKE Requirements

	Install the Google Cloud SDK (gcloud) see [Installing Google Cloud SDK](https://cloud.google.com/sdk/install)

	Create a project or use an existing one

export GKE_PROJECT=gke-clusters
gcloud projects create $GKE_PROJECT

	Enable the GKE API for the project if not already done

gcloud services enable --project $GKE_PROJECT container.googleapis.com

Create a GKE Cluster

You can apply any method to create a GKE cluster. The example given here is
using the Google Cloud SDK [https://cloud.google.com/sdk/]. This guide
will create a cluster on zone europe-west4-a; feel free to change the zone
if you are in a different region of the globe.

export GKE_ZONE="europe-west4-a"
gcloud container --project $GKE_PROJECT clusters create cluster1 \
 --username "admin" --image-type COS --num-nodes 2 --zone ${GKE_ZONE}

When done, you should be able to access your cluster like this:

kubectl get nodes
NAME STATUS ROLES AGE VERSION
gke-cluster1-default-pool-a63a765c-flr2 Ready <none> 6m v1.11.7-gke.4
gke-cluster1-default-pool-a63a765c-z73c Ready <none> 6m v1.11.7-gke.4

Create a cluster-admin-binding

kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user your@google.email

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML files and deploy them:

helm template cilium \
 --namespace cilium \
 --set global.nodeinit.enabled=true \
 --set nodeinit.reconfigureKubelet=true \
 --set nodeinit.removeCbrBridge=true \
 --set global.cni.binPath=/home/kubernetes/bin \
 > cilium.yaml
kubectl create namespace cilium
kubectl create -f cilium.yaml

The NodeInit DaemonSet is required to prepare the GKE nodes as nodes are added
to the cluster. The NodeInit DaemonSet will perform the following actions:

	Reconfigure kubelet to run in CNI mode

	Mount the BPF filesystem

Restart remaining pods

Once Cilium is up and running, restart all pods in kube-system so they can
be managed by Cilium, similar to the steps that we have previously performed
for kube-dns

$ kubectl delete pods -n kube-system $(kubectl get pods -n kube-system -o custom-columns=NAME:.metadata.name,HOSTNETWORK:.spec.hostNetwork --no-headers=true | grep '<none>' | awk '{ print $1 }')
pod "event-exporter-v0.2.3-f9c896d75-cbvcz" deleted
pod "fluentd-gcp-scaler-69d79984cb-nfwwk" deleted
pod "heapster-v1.6.0-beta.1-56d5d5d87f-qw8pv" deleted
pod "kube-dns-5f8689dbc9-2nzft" deleted
pod "kube-dns-5f8689dbc9-j7x5f" deleted
pod "kube-dns-autoscaler-76fcd5f658-22r72" deleted
pod "kube-state-metrics-7d9774bbd5-n6m5k" deleted
pod "l7-default-backend-6f8697844f-d2rq2" deleted
pod "metrics-server-v0.3.1-54699c9cc8-7l5w2" deleted

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Installation on Azure AKS

This guide covers installing Cilium into an Azure AKS environment. This guide
will work when setting up AKS in both Basic [https://docs.microsoft.com/en-us/azure/aks/concepts-network#kubenet-basic-networking] and Advanced [https://docs.microsoft.com/en-us/azure/aks/concepts-network#azure-cni-advanced-networking] networking mode.

This is achieved using Cilium in CNI chaining mode, with the Azure CNI plugin
as the base CNI plugin and Cilium chaining on top to provide L3-L7
observability, network policy enforcement enforcement, Kubernetes services
implementation, as well as other advanced features like transparent encryption
and clustermesh.

Prerequisites

Ensure that you have the Azure Cloud CLI [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest] installed.

To verify, confirm that the following command displays the set of available
Kubernetes versions.

az aks get-versions -l westus -o table

Create an AKS Cluster

You can use any method to create and deploy an AKS cluster with the exception
of specifying the Network Policy option. Doing so will still work but will
result in unwanted iptables rules being installed on all of your nodes.

If you want to us the CLI to create a dedicated set of Azure resources
(resource groups, networks, etc.) specifically for this tutorial, the following
commands (borrowed from the AKS documentation) run as a script or manually all
in the same terminal are sufficient.

It can take 10+ minutes for the final command to be complete indicating that
the cluster is ready.

Note

Do NOT specify the ‘–network-policy’ flag when creating the cluster,
as this will cause the Azure CNI plugin to push down unwanted iptables rules:

export RESOURCE_GROUP_NAME=group1
export CLUSTER_NAME=aks-test1
export LOCATION=westus

az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
az aks create \
 --resource-group $RESOURCE_GROUP_NAME \
 --name $CLUSTER_NAME \
 --node-count 2 \
 --generate-ssh-keys \
 --network-plugin azure

Configure kubectl to Point to Newly Created Cluster

Run the following commands to configure kubectl to connect to this
AKS cluster:

az aks get-credentials --resource-group $RESOURCE_GROUP_NAME --name $CLUSTER_NAME

To verify, you should see AKS in the name of the nodes when you run:

kubectl get nodes
NAME STATUS ROLES AGE VERSION
aks-nodepool1-12032939-0 Ready agent 8m26s v1.13.10

Create an AKS + Cilium CNI configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: cilium
data:
 cni-config: |-
 {
 "cniVersion": "0.3.0",
 "name": "azure",
 "plugins": [
 {
 "type": "azure-vnet",
 "mode": "transparent",
 "bridge": "azure0",
 "ipam": {
 "type": "azure-vnet-ipam"
 }
 },
 {
 "type": "portmap",
 "capabilities": {"portMappings": true},
 "snat": true
 },
 {
 "name": "cilium",
 "type": "cilium-cni"
 }
]
 }

Create the cilium namespace:

kubectl create namespace cilium

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace cilium \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.nodeinit.enabled=true \
 --set nodeinit.azure=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

This will create both the main cilium daemonset, as well as the cilium-node-init daemonset, which handles tasks like mounting the BPF filesystem and updating the
existing Azure CNI plugin to run in ‘transparent’ mode.

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Installer Integrations

The following list includes the Kubernetes installer integrations we are aware
of. If your preferred installer is not in the list, you can always fall back to
the standard Installation with managed etcd guide which works independently
any installer.

	Installation using Kops

	Installation using Kubespray

	Installation using kubeadm

External Guides

	Kubernetes with Cilium and Containerd using Kubeadm [https://blog.scottlowe.org/2018/09/06/kubernetes-cilium-containerd-using-kubeadm/]

Installation using Kops

As of kops 1.9 release, Cilium can be plugged into kops-deployed
clusters as the CNI plugin. This guide provides steps to create a Kubernetes
cluster on AWS using kops and Cilium as the CNI plugin. Note, the kops
deployment will automate several deployment features in AWS by default,
including AutoScaling, Volumes, VPCs, etc.

Prerequisites

	aws cli [https://aws.amazon.com/cli/]

	kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl]

	aws account with permissions:
* AmazonEC2FullAccess
* AmazonRoute53FullAccess
* AmazonS3FullAccess
* IAMFullAccess
* AmazonVPCFullAccess

Installing kops

Linux

MacOS

curl -LO https://github.com/kubernetes/kops/releases/download/$(curl -s https://api.github.com/repos/kubernetes/kops/releases/latest | grep tag_name | cut -d '"' -f 4)/kops-linux-amd64
chmod +x kops-linux-amd64
sudo mv kops-linux-amd64 /usr/local/bin/kops

brew update && brew install kops

Setting up IAM Group and User

Assuming you have all the prerequisites, run the following commands to create
the kops user and group:

Create IAM group named kops and grant access
aws iam create-group --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonEC2FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonRoute53FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/IAMFullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonVPCFullAccess --group-name kops
aws iam create-user --user-name kops
aws iam add-user-to-group --user-name kops --group-name kops
aws iam create-access-key --user-name kops

kops requires the creation of a dedicated S3 bucket in order to store the
state and representation of the cluster. You will need to change the bucket
name and provide your unique bucket name (for example a reverse of FQDN added
with short description of the cluster). Also make sure to use the region where
you will be deploying the cluster.

aws s3api create-bucket --bucket prefix-example-com-state-store --region us-west-2 --create-bucket-configuration LocationConstraint=us-west-2
export KOPS_STATE_STORE=s3://prefix-example-com-state-store

The above steps are sufficient for getting a working cluster installed. Please
consult kops aws documentation [https://github.com/kubernetes/kops/blob/master/docs/aws.md] for more
detailed setup instructions.

Cilium Prerequisites

	Ensure the System Requirements are met, particularly the Linux kernel
and key-value store versions.

In this guide, we will use etcd version 3.1.11 and the latest CoreOS stable
image which satisfies the minimum kernel version requirement of Cilium. To get
the latest CoreOS ami image, you can change the region value to your choice
in the command below.

aws ec2 describe-images --region=us-west-2 --owner=595879546273 --filters "Name=virtualization-type,Values=hvm" "Name=name,Values=CoreOS-stable*" --query 'sort_by(Images,&CreationDate)[-1].{id:ImageLocation}'

{
 "id": "595879546273/CoreOS-stable-1745.5.0-hvm"
}

Creating a Cluster

	Note that you will need to specify the --master-zones and --zones for
creating the master and worker nodes. The number of master zones should be
* odd (1, 3, …) for HA. For simplicity, you can just use 1 region.

	The cluster NAME variable should end with k8s.local to use the gossip
protocol. If creating multiple clusters using the same kops user, then make
the cluster name unique by adding a prefix such as com-company-emailid-.

export NAME=com-company-emailid-cilium.k8s.local
export KOPS_FEATURE_FLAGS=SpecOverrideFlag
kops create cluster --state=${KOPS_STATE_STORE} --node-count 3 --node-size t2.medium --master-size t2.medium --topology private --master-zones us-west-2a,us-west-2b,us-west-2c --zones us-west-2a,us-west-2b,us-west-2c --image 595879546273/CoreOS-stable-1745.5.0-hvm --networking cilium --override "cluster.spec.etcdClusters[*].version=3.1.11" --kubernetes-version 1.10.3 --cloud-labels "Team=Dev,Owner=Admin" ${NAME}

You may be prompted to create a ssh public-private key pair.

ssh-keygen

(Please see Deleting a Cluster)

Testing Cilium

Follow the Cilium getting started guide example [http://cilium.readthedocs.io/en/latest/gettingstarted/minikube/#step-2-deploy-the-demo-application]
to test that the cluster is setup properly and that Cilium CNI and security
policies are functional.

Deleting a Cluster

To undo the dependencies and other deployment features in AWS from the kops
cluster creation, use kops to destroy a cluster immediately with the
parameter --yes:

kops delete cluster ${NAME} --yes

Appendix: Details of kops flags used in cluster creation

The following section explains all the flags used in create cluster command.

	KOPS_FEATURE_FLAGS=SpecOverrideFlag : This flag is used to override the etcd version to be used from 2.X[kops default] to 3.1.x [requirement of cilium]

	--state=${KOPS_STATE_STORE} : KOPS uses an S3 bucket to store the state of your cluster and representation of your cluster

	--node-count 3 : No. of worker nodes in the kubernetes cluster.

	--node-size t2.medium : The size of the AWS EC2 instance for worker nodes

	--master-size t2.medium : The size of the AWS EC2 instance of master nodes

	--topology private : Cluster will be created with private topology, what that means is all masters/nodes will be launched in a private subnet in the VPC

	--master-zones eu-west-1a,eu-west-1b,eu-west-1c : The 3 zones ensure the HA of master nodes, each belonging in a different Availability zones.

	--zones eu-west-1a,eu-west-1b,eu-west-1c : Zones where the worker nodes will be deployed

	--image 595879546273/CoreOS-stable-1745.3.1-hvm : Image name to be deployed (Cilium requires kernel version 4.8 and above so ensure to use the right OS for workers.)

	--networking cilium : Networking CNI plugin to be used - cilium

	--override "cluster.spec.etcdClusters[*].version=3.1.11" : Overrides the etcd version to be used.

	--kubernetes-version 1.10.3 : Kubernetes version that is to be installed. Please note [Kops 1.9 officially supports k8s version 1.9]

	--cloud-labels "Team=Dev,Owner=Admin" : Labels for your cluster

	${NAME} : Name of the cluster. Make sure the name ends with k8s.local for a gossip based cluster

Installation using Kubespray

The guide is to use Kubespray for creating an AWS Kubernetes cluster running
Cilium as the CNI. The guide uses:

	Kubespray v2.6.0

	Latest Cilium released version [https://github.com/cilium/cilium/releases] (instructions for using the version are mentioned below)

Please consult Kubespray Prerequisites [https://github.com/kubernetes-incubator/kubespray#requirements] and Cilium System Requirements.

Installing Kubespray

$ git clone --branch v2.6.0 https://github.com/kubernetes-incubator/kubespray

Install dependencies from requirements.txt

$ cd kubespray
$ sudo pip install -r requirements.txt

Infrastructure Provisioning

We will use Terraform for provisioning AWS infrastructure.

Configure AWS credentials

Export the variables for your AWS credentials

export AWS_ACCESS_KEY_ID="www"
export AWS_SECRET_ACCESS_KEY ="xxx"
export AWS_SSH_KEY_NAME="yyy"
export AWS_DEFAULT_REGION="zzz"

Configure Terraform Variables

We will start by specifying the infrastructure needed for the Kubernetes cluster.

$ cd contrib/terraform/aws
$ cp contrib/terraform/aws/terraform.tfvars.example terraform.tfvars`

Open the file and change any defaults particularly, the number of master, etcd, and worker nodes.
You can change the master and etcd number to 1 for deployments that don’t need high availability.
By default, this tutorial will create:

	VPC with 2 public and private subnets

	Bastion Hosts and NAT Gateways in the Public Subnet

	Three of each (masters, etcd, and worker nodes) in the Private Subnet

	AWS ELB in the Public Subnet for accessing the Kubernetes API from
the internet

	Terraform scripts using CoreOS as base image.

Example terraform.tfvars file:

#Global Vars
aws_cluster_name = "kubespray"

#VPC Vars
aws_vpc_cidr_block = "XXX.XXX.192.0/18"
aws_cidr_subnets_private = ["XXX.XXX.192.0/20","XXX.XXX.208.0/20"]
aws_cidr_subnets_public = ["XXX.XXX.224.0/20","XXX.XXX.240.0/20"]

#Bastion Host
aws_bastion_size = "t2.medium"

#Kubernetes Cluster

aws_kube_master_num = 3
aws_kube_master_size = "t2.medium"

aws_etcd_num = 3
aws_etcd_size = "t2.medium"

aws_kube_worker_num = 3
aws_kube_worker_size = "t2.medium"

#Settings AWS ELB

aws_elb_api_port = 6443
k8s_secure_api_port = 6443
kube_insecure_apiserver_address = "0.0.0.0"

Apply the configuration

terraform init to initialize the following modules

	module.aws-vpc

	module.aws-elb

	module.aws-iam

$ terraform init

Once initialized , execute:

$ terraform plan -out=aws_kubespray_plan

This will generate a file, aws_kubespray_plan, depicting an execution
plan of the infrastructure that will be created on AWS. To apply, execute:

$ terraform init
$ terraform apply "aws_kubespray_plan"

Terraform automatically creates an Ansible Inventory file at inventory/hosts.

Installing Kubernetes cluster with Cilium as CNI

Kubespray uses Ansible as its substrate for provisioning and orchestration. Once the infrastructure is created, you can run the Ansible playbook to install Kubernetes and all the required dependencies. Execute the below command in the kubespray clone repo, providing the correct path of the AWS EC2 ssh private key in ansible_ssh_private_key_file=<path to EC2 SSH private key file>

We recommend using the latest released Cilium version [https://github.com/cilium/cilium/releases] by editing roles/download/defaults/main.yml. Open the file, search for cilium_version, and replace the version with the latest released. As an example, the updated version entry will look like: cilium_version: "v1.2.0".

$ ansible-playbook -i ./inventory/hosts ./cluster.yml -e ansible_user=core -e bootstrap_os=coreos -e kube_network_plugin=cilium -b --become-user=root --flush-cache -e ansible_ssh_private_key_file=<path to EC2 SSH private key file>

Validate Cluster

To check if cluster is created successfully, ssh into the bastion host with the user core.

Get information about the basiton host
$ cat ssh-bastion.conf
$ ssh -i ~/path/to/ec2-key-file.pem core@public_ip_of_bastion_host

Execute the commands below from the bastion host. If kubectl isn’t installed on the bastion host, you can login to the master node to test the below commands. You may need to copy the private key to the bastion host to access the master node.

$ kubectl get nodes
$ kubectl get pods -n kube-system

You should see that nodes are in Ready state and Cilium pods are in Running state

Demo Application

Follow this link [https://cilium.readthedocs.io/en/stable/gettingstarted/minikube/#step-2-deploy-the-demo-application] to deploy a demo application and verify the correctness of the installation.

Delete Cluster

$ cd contrib/terraform/aws
$ terraform destroy

Installation using kubeadm

Instructions about installing Cilium on Kubernetes cluster deployed by kubeadm
are available in the official Kubernetes documentation [https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#pod-network].

CNI Chaining

CNI chaining allows to use Cilium in combination with other CNI plugins.

With Cilium CNI chaining, the base network connectivity and IP address management
is managed by the non-Cilium CNI plugin, but Cilium attaches BPF programs to the
network devices created by the non-Cilium plugin to provide L3/L4/L7 network visibility &
policy enforcement and other advanced features like transparent encryption.

	AWS-CNI

	Azure CNI

	Calico

	Generic Veth Chaining

	Portmap (HostPort)

	Weave Net

AWS-CNI

This guide explains how to set up Cilium in combination with aws-cni. In this
hybrid mode, the aws-cni plugin is responsible for setting up the virtual
network devices as well as address allocation (IPAM) via ENI. After the initial
networking is setup, the Cilium CNI plugin is called to attach BPF programs to
the network devices set up by aws-cni to enforce network policies, perform
load-balancing, and encryption.

[image: ../_images/aws-cni-architecture.png]

Setup Cluster on AWS

Follow the instructions in the Installation on AWS EKS guide to set up an EKS
cluster or use any other method of your preference to set up a Kubernetes
cluster.

Ensure that the aws-vpc-cni-k8s [https://github.com/aws/amazon-vpc-cni-k8s]
plugin is installed. If you have set up an EKS cluster, this is automatically
done.

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML files and deploy them:

helm template cilium \
 --namespace kube-system \
 --set global.cni.chainingMode=aws-cni \
 --set global.masquerade=false \
 --set global.tunnel=disabled \
 --set global.nodeinit.enabled=true \
 > cilium.yaml
kubectl apply -f cilium.yaml

This will enable chaining with the aws-cni plugin. It will also disable
tunneling. Tunneling is not required as ENI IP addresses can be directly routed
in your VPC. You can also disable masquerading for the same reason.

Restart existing pods

The new CNI chaining configuration will not apply to any pod that is already
running in the cluster. Existing pods will be reachable and Cilium will
load-balance to them but policy enforcement will not apply to them and
load-balancing is not performed for traffic originating from existing pods.
You must restart these pods in order to invoke the chaining configuration on
them.

If you are unsure if a pod is managed by Cilium or not, run kubectl get cep
in the respective namespace and see if the pod is listed.

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Azure CNI

This guide explains how to set up Cilium in combination with Azure CNI. In this
hybrid mode, the Azure CNI plugin is responsible for setting up the virtual
network devices as well as address allocation (IPAM). After the initial
networking is setup, the Cilium CNI plugin is called to attach BPF programs to
the network devices set up by Azure CNI to enforce network policies, perform
load-balancing, and encryption.

Note

If you are looking to install Cilium on Azure AKS, see the guide
Installation on Azure AKS for a complete guide also covering cluster setup.

Create an AKS + Cilium CNI configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: cilium
data:
 cni-config: |-
 {
 "cniVersion": "0.3.0",
 "name": "azure",
 "plugins": [
 {
 "type": "azure-vnet",
 "mode": "transparent",
 "bridge": "azure0",
 "ipam": {
 "type": "azure-vnet-ipam"
 }
 },
 {
 "type": "portmap",
 "capabilities": {"portMappings": true},
 "snat": true
 },
 {
 "name": "cilium",
 "type": "cilium-cni"
 }
]
 }

Create the cilium namespace:

kubectl create namespace cilium

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace cilium \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.nodeinit.enabled=true \
 --set nodeinit.azure=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

This will create both the main cilium daemonset, as well as the cilium-node-init daemonset, which handles tasks like mounting the BPF filesystem and updating the
existing Azure CNI plugin to run in ‘transparent’ mode.

Restart existing pods

The new CNI chaining configuration will not apply to any pod that is already
running in the cluster. Existing pods will be reachable and Cilium will
load-balance to them but policy enforcement will not apply to them and
load-balancing is not performed for traffic originating from existing pods.
You must restart these pods in order to invoke the chaining configuration on
them.

If you are unsure if a pod is managed by Cilium or not, run kubectl get cep
in the respective namespace and see if the pod is listed.

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Calico

This guide instructs how to install Cilium in chaining configuration on top of
Calico [https://github.com/projectcalico/calico].

Create a CNI configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: kube-system
data:
 cni-config: |-
 {
 "name": "generic-veth",
 "cniVersion": "0.3.1",
 "plugins": [
 {
 "type": "calico",
 "log_level": "info",
 "datastore_type": "kubernetes",
 "mtu": 1440,
 "ipam": {
 "type": "calico-ipam"
 },
 "policy": {
 "type": "k8s"
 },
 "kubernetes": {
 "kubeconfig": "/etc/cni/net.d/calico-kubeconfig"
 }
 },
 {
 "type": "portmap",
 "snat": true,
 "capabilities": {"portMappings": true}
 },
 {
 "type": "cilium-cni"
 }
]
 }

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Deploy Cilium with the portmap plugin enabled

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace=kube-system \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

The new CNI chaining configuration will not apply to any pod that is
already running the cluster. Existing pods will be reachable and Cilium will
load-balance to them but policy enforcement will not apply to them and
load-balancing is not performed for traffic originating from existing pods.

You must restart these pods in order to invoke the chaining configuration on
them.

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Generic Veth Chaining

The generic veth chaining plugin enables CNI chaining on top of any CNI plugin
that is using a veth device model. The majority of CNI plugins use such a
model.

Validate that the current CNI plugin is using veth

	Log into one of the worker nodes using SSH

	Run ip -d link to list all network devices on the node. You should be
able spot network devices representing the pods running on that node.

	A network device might look something like this:

103: lxcb3901b7f9c02@if102: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 3a:39:92:17:75:6f brd ff:ff:ff:ff:ff:ff link-netnsid 18 promiscuity 0
 veth addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

	The veth keyword on line 3 indicates that the network device type is virtual ethernet.

If the CNI plugin you are chaining with is currently not using veth then the
generic-veth plugin is not suitable. In that case, a full CNI chaining
plugin is required which understands the device model of the underlying plugin.
Writing such a plugin is trivial, contact us on Slack for more details.

Create a CNI configuration to define your chaining configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: kube-system
data:
 cni-config: |-
 {
 "name": "generic-veth",
 "cniVersion": "0.3.1",
 "plugins": [
 {
 "type": "XXX",
 [...]
 },
 {
 "type": "cilium-cni"
 }
]
 }

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Deploy Cilium with the portmap plugin enabled

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace=kube-system \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

Portmap (HostPort)

If you want to use the Kubernetes HostPort feature, you must enable CNI
chaining with the portmap plugin which implements HostPort. This guide
documents how to do so. For more information about the Kubernetes HostPort
feature , check out the upstream documentation:
Kubernetes hostPort-CNI plugin documentation [https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-hostport].

Note

Before using HostPort, read the Kubernetes Configuration Best Practices [https://kubernetes.io/docs/concepts/configuration/overview/] to
understand the implications of this feature.

Deploy Cilium with the portmap plugin enabled

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace=kube-system \
 --set global.cni.chainingMode=portmap \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

You can combine the global.cni.chainingMode=portmap option with any of
the other installation guides.

As Cilium is deployed as a DaemonSet, it will write a new CNI configuration
05-cilium.conflist and remove the standard 05-cilium.conf. The new
configuration now enables HostPort. Any new pod scheduled is now able to make
use of the HostPort functionality.

Restart existing pods

The new CNI chaining configuration will not apply to any pod that is already
running the cluster. Existing pods will be reachable and Cilium will
load-balance to them but policy enforcement will not apply to them and
load-balancing is not performed for traffic originating from existing pods.
You must restart these pods in order to invoke the chaining configuration on
them.

Weave Net

This guide instructs how to install Cilium in chaining configuration on top of
Weave Net [https://github.com/weaveworks/weave].

Create a CNI configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: kube-system
data:
 cni-config: |-
 {
 "cniVersion": "0.3.1",
 "name": "weave",
 "plugins": [
 {
 "name": "weave",
 "type": "weave-net",
 "hairpinMode": true
 },
 {
 "type": "portmap",
 "capabilities": {"portMappings": true},
 "snat": true
 },
 {
 "type": "cilium-cni"
 }
]
 }

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Deploy Cilium with the portmap plugin enabled

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace=kube-system \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

The new CNI chaining configuration will not apply to any pod that is
already running the cluster. Existing pods will be reachable and Cilium will
load-balance to them but policy enforcement will not apply to them and
load-balancing is not performed for traffic originating from existing pods.

You must restart these pods in order to invoke the chaining configuration on
them.

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

HTTP/REST API call authorization

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Deploy the Demo Application

Now that we have Cilium deployed and kube-dns operating correctly we can deploy our demo application.

In our Star Wars-inspired example, there are three microservices applications: deathstar, tiefighter, and xwing. The deathstar runs an HTTP webservice on port 80, which is exposed as a Kubernetes Service [https://kubernetes.io/docs/concepts/services-networking/service/] to load-balance requests to deathstar across two pod replicas. The deathstar service provides landing services to the empire’s spaceships so that they can request a landing port. The tiefighter pod represents a landing-request client service on a typical empire ship and xwing represents a similar service on an alliance ship. They exist so that we can test different security policies for access control to deathstar landing services.

Application Topology for Cilium and Kubernetes

[image: ../_images/cilium_http_gsg.png]
The file http-sw-app.yaml contains a Kubernetes Deployment [https://kubernetes.io/docs/concepts/workloads/controllers/deployment/] for each of the three services.
Each deployment is identified using the Kubernetes labels (org=empire, class=deathstar), (org=empire, class=tiefighter),
and (org=alliance, class=xwing).
It also includes a deathstar-service, which load-balances traffic to all pods with label (org=empire, class=deathstar).

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/minikube/http-sw-app.yaml
service/deathstar created
deployment.extensions/deathstar created
pod/tiefighter created
pod/xwing created

Kubernetes will deploy the pods and service in the background. Running
kubectl get pods,svc will inform you about the progress of the operation.
Each pod will go through several states until it reaches Running at which
point the pod is ready.

$ kubectl get pods,svc
NAME READY STATUS RESTARTS AGE
pod/deathstar-6fb5694d48-5hmds 1/1 Running 0 107s
pod/deathstar-6fb5694d48-fhf65 1/1 Running 0 107s
pod/tiefighter 1/1 Running 0 107s
pod/xwing 1/1 Running 0 107s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/deathstar ClusterIP 10.96.110.8 <none> 80/TCP 107s
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3m53s

Each pod will be represented in Cilium as an Endpoint. We can invoke the
cilium tool inside the Cilium pod to list them:

$ kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-5ngzd 1/1 Running 0 3m19s

$ kubectl -n kube-system exec cilium-1c2cz -- cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
108 Disabled Disabled 104 k8s:io.cilium.k8s.policy.cluster=default 10.15.233.139 ready
 k8s:io.cilium.k8s.policy.serviceaccount=coredns
 k8s:io.kubernetes.pod.namespace=kube-system
 k8s:k8s-app=kube-dns
1011 Disabled Disabled 104 k8s:io.cilium.k8s.policy.cluster=default 10.15.96.117 ready
 k8s:io.cilium.k8s.policy.serviceaccount=coredns
 k8s:io.kubernetes.pod.namespace=kube-system
 k8s:k8s-app=kube-dns
2407 Disabled Disabled 22839 k8s:class=deathstar 10.15.129.95 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire
2607 Disabled Disabled 4 reserved:health 10.15.28.196 ready
3339 Disabled Disabled 22839 k8s:class=deathstar 10.15.72.39 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire
3738 Disabled Disabled 47764 k8s:class=xwing 10.15.116.85 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=alliance
3837 Disabled Disabled 9164 k8s:class=tiefighter 10.15.22.126 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire

Both ingress and egress policy enforcement is still disabled on all of these pods because no network
policy has been imported yet which select any of the pods.

Check Current Access

From the perspective of the deathstar service, only the ships with label org=empire are allowed to connect and request landing. Since we have no rules enforced, both xwing and tiefighter will be able to request landing. To test this, use the commands below.

$ kubectl exec xwing -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing
Ship landed
$ kubectl exec tiefighter -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing
Ship landed

Apply an L3/L4 Policy

When using Cilium, endpoint IP addresses are irrelevant when defining security
policies. Instead, you can use the labels assigned to the pods to define
security policies. The policies will be applied to the right pods based on the labels irrespective of where or when it is running within the cluster.

We’ll start with the basic policy restricting deathstar landing requests to only the ships that have label (org=empire). This will not allow any ships that don’t have the org=empire label to even connect with the deathstar service.
This is a simple policy that filters only on IP protocol (network layer 3) and TCP protocol (network layer 4), so it is often referred to as an L3/L4 network security policy.

Note: Cilium performs stateful connection tracking, meaning that if policy allows
the frontend to reach backend, it will automatically allow all required reply
packets that are part of backend replying to frontend within the context of the
same TCP/UDP connection.

L4 Policy with Cilium and Kubernetes

[image: ../_images/cilium_http_l3_l4_gsg.png]
We can achieve that with the following CiliumNetworkPolicy:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "L3-L4 policy to restrict deathstar access to empire ships only"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 org: empire
 class: deathstar
 ingress:
 - fromEndpoints:
 - matchLabels:
 org: empire
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP

CiliumNetworkPolicies match on pod labels using an “endpointSelector” to identify the sources and destinations to which the policy applies.
The above policy whitelists traffic sent from any pods with label (org=empire) to deathstar pods with label (org=empire, class=deathstar) on TCP port 80.

To apply this L3/L4 policy, run:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/minikube/sw_l3_l4_policy.yaml
ciliumnetworkpolicy.cilium.io/rule1 created

Now if we run the landing requests again, only the tiefighter pods with the label org=empire will succeed. The xwing pods will be blocked!

$ kubectl exec tiefighter -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing
Ship landed

This works as expected. Now the same request run from an xwing pod will fail:

$ kubectl exec xwing -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing

This request will hang, so press Control-C to kill the curl request, or wait for it to time out.

Inspecting the Policy

If we run cilium endpoint list again we will see that the pods with the label org=empire and class=deathstar now have ingress policy enforcement enabled as per the policy above.

$ kubectl -n kube-system exec cilium-1c2cz -- cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
108 Disabled Disabled 104 k8s:io.cilium.k8s.policy.cluster=default 10.15.233.139 ready
 k8s:io.cilium.k8s.policy.serviceaccount=coredns
 k8s:io.kubernetes.pod.namespace=kube-system
 k8s:k8s-app=kube-dns
1011 Disabled Disabled 104 k8s:io.cilium.k8s.policy.cluster=default 10.15.96.117 ready
 k8s:io.cilium.k8s.policy.serviceaccount=coredns
 k8s:io.kubernetes.pod.namespace=kube-system
 k8s:k8s-app=kube-dns
1518 Disabled Disabled 4 reserved:health 10.15.28.196 ready
2407 Enabled Disabled 22839 k8s:class=deathstar 10.15.129.95 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire
3339 Enabled Disabled 22839 k8s:class=deathstar 10.15.72.39 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire
3738 Disabled Disabled 47764 k8s:class=xwing 10.15.116.85 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=alliance
3837 Disabled Disabled 9164 k8s:class=tiefighter 10.15.22.126 ready
 k8s:io.cilium.k8s.policy.cluster=default
 k8s:io.cilium.k8s.policy.serviceaccount=default
 k8s:io.kubernetes.pod.namespace=default
 k8s:org=empire

You can also inspect the policy details via kubectl

$ kubectl get cnp
NAME AGE
rule1 2m

$ kubectl describe cnp rule1
Name: rule1
Namespace: default
Labels: <none>
Annotations: <none>
API Version: cilium.io/v2
Description: L3-L4 policy to restrict deathstar access to empire ships only
Kind: CiliumNetworkPolicy
Metadata:
 Creation Timestamp: 2019-01-23T12:36:32Z
 Generation: 1
 Resource Version: 1115
 Self Link: /apis/cilium.io/v2/namespaces/default/ciliumnetworkpolicies/rule1
 UID: 837a2f1b-1f0b-11e9-9609-080027702f09
Spec:
 Endpoint Selector:
 Match Labels:
 Class: deathstar
 Org: empire
 Ingress:
 From Endpoints:
 Match Labels:
 Org: empire
 To Ports:
 Ports:
 Port: 80
 Protocol: TCP
Status:
 Nodes:
 Minikube:
 Enforcing: true
 Last Updated: 2019-01-23T12:36:32.277839184Z
 Local Policy Revision: 5
 Ok: true
Events: <none>

Apply and Test HTTP-aware L7 Policy

In the simple scenario above, it was sufficient to either give tiefighter /
xwing full access to deathstar’s API or no access at all. But to
provide the strongest security (i.e., enforce least-privilege isolation)
between microservices, each service that calls deathstar’s API should be
limited to making only the set of HTTP requests it requires for legitimate
operation.

For example, consider that the deathstar service exposes some maintenance APIs which should not be called by random empire ships. To see this run:

$ kubectl exec tiefighter -- curl -s -XPUT deathstar.default.svc.cluster.local/v1/exhaust-port
Panic: deathstar exploded

goroutine 1 [running]:
main.HandleGarbage(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)
 /code/src/github.com/empire/deathstar/
 temp/main.go:9 +0x64
main.main()
 /code/src/github.com/empire/deathstar/
 temp/main.go:5 +0x85

While this is an illustrative example, unauthorized access such as above can have adverse security repercussions.

L7 Policy with Cilium and Kubernetes

[image: ../_images/cilium_http_l3_l4_l7_gsg.png]
Cilium is capable of enforcing HTTP-layer (i.e., L7) policies to limit what
URLs the tiefighter is allowed to reach. Here is an example policy file that
extends our original policy by limiting tiefighter to making only a POST /v1/request-landing
API call, but disallowing all other calls (including PUT /v1/exhaust-port).

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "L7 policy to restrict access to specific HTTP call"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 org: empire
 class: deathstar
 ingress:
 - fromEndpoints:
 - matchLabels:
 org: empire
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
 rules:
 http:
 - method: "POST"
 path: "/v1/request-landing"

Update the existing rule to apply L7-aware policy to protect app1 using:

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/minikube/sw_l3_l4_l7_policy.yaml
ciliumnetworkpolicy.cilium.io/rule1 configured

We can now re-run the same test as above, but we will see a different outcome:

$ kubectl exec tiefighter -- curl -s -XPOST deathstar.default.svc.cluster.local/v1/request-landing
Ship landed

and

$ kubectl exec tiefighter -- curl -s -XPUT deathstar.default.svc.cluster.local/v1/exhaust-port
Access denied

As you can see, with Cilium L7 security policies, we are able to permit
tiefighter to access only the required API resources on deathstar, thereby
implementing a “least privilege” security approach for communication between
microservices.

You can observe the L7 policy via kubectl:

$ kubectl describe ciliumnetworkpolicies
Name: rule1
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"cilium.io/v2","description":"L7 policy to restrict access to specific HTTP call","kind":"CiliumNetworkPolicy","metadata":{"...
API Version: cilium.io/v2
Description: L7 policy to restrict access to specific HTTP call
Kind: CiliumNetworkPolicy
Metadata:
 Creation Timestamp: 2019-01-23T12:36:32Z
 Generation: 2
 Resource Version: 1484
 Self Link: /apis/cilium.io/v2/namespaces/default/ciliumnetworkpolicies/rule1
 UID: 837a2f1b-1f0b-11e9-9609-080027702f09
Spec:
 Endpoint Selector:
 Match Labels:
 Class: deathstar
 Org: empire
 Ingress:
 From Endpoints:
 Match Labels:
 Org: empire
 To Ports:
 Ports:
 Port: 80
 Protocol: TCP
 Rules:
 Http:
 Method: POST
 Path: /v1/request-landing
Status:
 Nodes:
 Minikube:
 Annotations:
 Kubectl . Kubernetes . Io / Last - Applied - Configuration: {"apiVersion":"cilium.io/v2","description":"L7 policy to restrict access to specific HTTP call","kind":"CiliumNetworkPolicy","metadata":{"annotations":{},"name":"rule1","namespace":"default"},"spec":{"endpointSelector":{"matchLabels":{"class":"deathstar","org":"empire"}},"ingress":[{"fromEndpoints":[{"matchLabels":{"org":"empire"}}],"toPorts":[{"ports":[{"port":"80","protocol":"TCP"}],"rules":{"http":[{"method":"POST","path":"/v1/request-landing"}]}}]}]}}

 Enforcing: true
 Last Updated: 2019-01-23T12:39:30.823729308Z
 Local Policy Revision: 7
 Ok: true
Events: <none>

and cilium CLI:

$ kubectl -n kube-system exec cilium-qh5l2 cilium policy get
[
 {
 "endpointSelector": {
 "matchLabels": {
 "any:class": "deathstar",
 "any:org": "empire",
 "k8s:io.kubernetes.pod.namespace": "default"
 }
 },
 "ingress": [
 {
 "fromEndpoints": [
 {
 "matchLabels": {
 "any:org": "empire",
 "k8s:io.kubernetes.pod.namespace": "default"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "80",
 "protocol": "TCP"
 }
],
 "rules": {
 "http": [
 {
 "path": "/v1/request-landing",
 "method": "POST"
 }
]
 }
 }
]
 }
],
 "labels": [
 {
 "key": "io.cilium.k8s.policy.name",
 "value": "rule1",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.uid",
 "value": "837a2f1b-1f0b-11e9-9609-080027702f09",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.namespace",
 "value": "default",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.derived-from",
 "value": "CiliumNetworkPolicy",
 "source": "k8s"
 }
]
 }
]
Revision: 7

We hope you enjoyed the tutorial. Feel free to play more with the setup, read
the rest of the documentation, and reach out to us on the Cilium
Slack channel [https://cilium.herokuapp.com] with any questions!

Locking down external access with DNS-based policies

This document serves as an introduction for using Cilium to enforce DNS-based
security policies for Kubernetes pods.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Deploy the Demo Application

DNS-based policies are very useful for controlling access to services running outside the Kubernetes cluster. DNS acts as a persistent service identifier for both external services provided by AWS, Google, Twilio, Stripe, etc., and internal services such as database clusters running in private subnets outside Kubernetes. CIDR or IP-based policies are cumbersome and hard to maintain as the IPs associated with external services can change frequently. The Cilium DNS-based policies provide an easy mechanism to specify access control while Cilium manages the harder aspects of tracking DNS to IP mapping.

In this guide we will learn about:

	Controlling egress access to services outside the cluster using DNS-based policies

	Using patterns (or wildcards) to whitelist a subset of DNS domains

	Combining DNS, port and L7 rules for restricting access to external service

In line with our Star Wars theme examples, we will use a simple scenario where the empire’s mediabot pods need access to Twitter for managing the empire’s tweets. The pods shouldn’t have access to any other external service.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-dns/dns-sw-app.yaml
$ kubectl get po
NAME READY STATUS RESTARTS AGE
pod/mediabot 1/1 Running 0 14s

Apply DNS Egress Policy

The following Cilium network policy allows mediabot pods to only access api.twitter.com.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "fqdn"
spec:
 endpointSelector:
 matchLabels:
 org: empire
 class: mediabot
 egress:
 - toFQDNs:
 - matchName: "api.twitter.com"
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"

Let’s take a closer look at the policy:

	The first egress section uses toFQDNs: matchName specification to allow egress to api.twitter.com. The destination DNS should match exactly the name specified in the rule. The endpointSelector allows only pods with labels class: mediabot, org:empire to have the egress access.

	The second egress section allows mediabot pods to access kube-dns service. Note that rules: dns instructs Cilium to inspect and allow DNS lookups matching specified patterns. In this case, inspect and allow all DNS queries.

Note that with this policy the mediabot doesn’t have access to any internal cluster service other than kube-dns. Refer to Network Policy to learn more about policies for controlling access to internal cluster services.

Let’s apply the policy:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-dns/dns-matchname.yaml

Testing the policy, we see that mediabot has access to api.twitter.com but doesn’t have access to any other external service, e.g., help.twitter.com.

$ kubectl exec -it mediabot -- curl -sL https://api.twitter.com
...
...

$ kubectl exec -it mediabot -- curl -sL https://help.twitter.com
^C

DNS Policies Using Patterns

The above policy controlled DNS access based on exact match of the DNS domain name. Often, it is required to allow access to a subset of domains. Let’s say, in the above example, mediabot pods need access to any Twitter sub-domain, e.g., the pattern *.twitter.com. We can achieve this easily by changing the toFQDN rule to use matchPattern instead of matchName.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "fqdn"
spec:
 endpointSelector:
 matchLabels:
 org: empire
 class: mediabot
 egress:
 - toFQDNs:
 - matchPattern: "*.twitter.com"
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-dns/dns-pattern.yaml

Test that mediabot has access to multiple Twitter services for which the DNS matches the pattern *.twitter.com. It is important to note and test that this doesn’t allow access to twitter.com because the *. in the pattern requires one subdomain to be present in the DNS name. You can simply add more matchName and matchPattern clauses to extend the access.
(See DNS based policies to learn more about specifying DNS rules using patterns and names.)

$ kubectl exec -it mediabot -- curl -sL https://help.twitter.com
...

$ kubectl exec -it mediabot -- curl -sL https://about.twitter.com
...

$ kubectl exec -it mediabot -- curl -sL https://twitter.com
^C

Combining DNS, Port and L7 Rules

The DNS-based policies can be combined with port (L4) and API (L7) rules to further restrict the access. In our example, we will restrict mediabot pods to access Twitter services only on ports 443. The toPorts section in the policy below achieves the port-based restrictions along with the DNS-based policies.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "fqdn"
spec:
 endpointSelector:
 matchLabels:
 org: empire
 class: mediabot
 egress:
 - toFQDNs:
 - matchPattern: "*.twitter.com"
 toPorts:
 - ports:
 - port: "443"
 protocol: TCP
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-dns/dns-port.yaml

Testing, the access to https://help.twitter.com on port 443 will succeed but the access to http://help.twitter.com on port 80 will be denied.

$ kubectl exec -it mediabot -- curl https://help.twitter.com
...

$ kubectl exec -it mediabot -- curl http://help.twitter.com
^C

Refer to Layer 4 Examples and Layer 7 Examples to learn more about Cilium L4 and L7 network policies.

Clean-up

$ kubectl delete -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-dns/dns-sw-app.yaml
$ kubectl delete cnp fqdn

Securing a Kafka cluster

This document serves as an introduction to using Cilium to enforce Kafka-aware
security policies. It is a detailed walk-through of getting a single-node
Cilium environment running on your machine. It is designed to take 15-30
minutes.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Deploy the Demo Application

Now that we have Cilium deployed and kube-dns operating correctly we can
deploy our demo Kafka application. Since our first demo of Cilium + HTTP-aware security
policies was Star Wars-themed we decided to do the same for Kafka. While the
HTTP-aware Cilium Star Wars demo [https://www.cilium.io/blog/2017/5/4/demo-may-the-force-be-with-you]
showed how the Galactic Empire used HTTP-aware security policies to protect the Death Star from the
Rebel Alliance, this Kafka demo shows how the lack of Kafka-aware security policies allowed the
Rebels to steal the Death Star plans in the first place.

Kafka is a powerful platform for passing datastreams between different components of an application.
A cluster of “Kafka brokers” connect nodes that “produce” data into a data stream, or “consume” data
from a datastream. Kafka refers to each datastream as a “topic”.
Because scalable and highly-available Kafka clusters are non-trivial to run, the same cluster of
Kafka brokers often handles many different topics at once (read this Introduction to Kafka [https://kafka.apache.org/intro] for more background).

In our simple example, the Empire uses a Kafka cluster to handle two different topics:

	empire-announce : Used to broadcast announcements to sites spread across the galaxy

	deathstar-plans : Used by a small group of sites coordinating on building the ultimate battlestation.

To keep the setup small, we will just launch a small number of pods to represent this setup:

	kafka-broker : A single pod running Kafka and Zookeeper representing the Kafka cluster
(label app=kafka).

	empire-hq : A pod representing the Empire’s Headquarters, which is the only pod that should
produce messages to empire-announce or deathstar-plans (label app=empire-hq).

	empire-backup : A secure backup facility located in Scarif [http://starwars.wikia.com/wiki/Scarif_vault] ,
which is allowed to “consume” from the secret deathstar-plans topic (label app=empire-backup).

	empire-outpost-8888 : A random outpost in the empire. It needs to “consume” messages from
the empire-announce topic (label app=empire-outpost).

	empire-outpost-9999 : Another random outpost in the empire that “consumes” messages from
the empire-announce topic (label app=empire-outpost).

All pods other than kafka-broker are Kafka clients, which need access to the kafka-broker
container on TCP port 9092 in order to send Kafka protocol messages.

[image: ../_images/cilium_kafka_gsg_topology.png]
The file kafka-sw-app.yaml contains a Kubernetes Deployment for each of the pods described
above, as well as a Kubernetes Service for both Kafka and Zookeeper.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-kafka/kafka-sw-app.yaml
deployment "kafka-broker" created
deployment "zookeeper" created
service "zook" created
service "kafka-service" created
deployment "empire-hq" created
deployment "empire-outpost-8888" created
deployment "empire-outpost-9999" created
deployment "empire-backup" created

Kubernetes will deploy the pods and service in the background.
Running kubectl get svc,pods will inform you about the progress of the operation.
Each pod will go through several states until it reaches Running at which
point the setup is ready.

$ kubectl get svc,pods
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kafka-service ClusterIP None <none> 9092/TCP 2m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 10m
zook ClusterIP 10.97.250.131 <none> 2181/TCP 2m

NAME READY STATUS RESTARTS AGE
empire-backup-6f4567d5fd-gcrvg 1/1 Running 0 2m
empire-hq-59475b4b64-mrdww 1/1 Running 0 2m
empire-outpost-8888-78dffd49fb-tnnhf 1/1 Running 0 2m
empire-outpost-9999-7dd9fc5f5b-xp6jw 1/1 Running 0 2m
kafka-broker-b874c78fd-jdwqf 1/1 Running 0 2m
zookeeper-85f64b8cd4-nprck 1/1 Running 0 2m

Setup Client Terminals

First we will open a set of windows to represent the different Kafka clients discussed above.
For consistency, we recommend opening them in the pattern shown in the image below, but this is optional.

[image: ../_images/cilium_kafka_gsg_terminal_layout.png]
In each window, use copy-paste to have each terminal provide a shell inside each pod.

empire-hq terminal:

$ HQ_POD=$(kubectl get pods -l app=empire-hq -o jsonpath='{.items[0].metadata.name}') && kubectl exec -it $HQ_POD -- sh -c "PS1=\"empire-hq $\" /bin/bash"

empire-backup terminal:

$ BACKUP_POD=$(kubectl get pods -l app=empire-backup -o jsonpath='{.items[0].metadata.name}') && kubectl exec -it $BACKUP_POD -- sh -c "PS1=\"empire-backup $\" /bin/bash"

outpost-8888 terminal:

$ OUTPOST_8888_POD=$(kubectl get pods -l outpostid=8888 -o jsonpath='{.items[0].metadata.name}') && kubectl exec -it $OUTPOST_8888_POD -- sh -c "PS1=\"outpost-8888 $\" /bin/bash"

outpost-9999 terminal:

$ OUTPOST_9999_POD=$(kubectl get pods -l outpostid=9999 -o jsonpath='{.items[0].metadata.name}') && kubectl exec -it $OUTPOST_9999_POD -- sh -c "PS1=\"outpost-9999 $\" /bin/bash"

Test Basic Kafka Produce & Consume

First, let’s start the consumer clients listening to their respective Kafka topics. All of the consumer
commands below will hang intentionally, waiting to print data they consume from the Kafka topic:

In the empire-backup window, start listening on the top-secret deathstar-plans topic:

$./kafka-consume.sh --topic deathstar-plans

In the outpost-8888 window, start listening to empire-announcement:

$./kafka-consume.sh --topic empire-announce

Do the same in the outpost-9999 window:

$./kafka-consume.sh --topic empire-announce

Now from the empire-hq, first produce a message to the empire-announce topic:

$ echo "Happy 40th Birthday to General Tagge" | ./kafka-produce.sh --topic empire-announce

This message will be posted to the empire-announce topic, and shows up in both the outpost-8888 and
outpost-9999 windows who consume that topic. It will not show up in empire-backup.

empire-hq can also post a version of the top-secret deathstar plans to the deathstar-plans topic:

$ echo "deathstar reactor design v3" | ./kafka-produce.sh --topic deathstar-plans

This message shows up in the empire-backup window, but not for the outposts.

Congratulations, Kafka is working as expected :)

The Danger of a Compromised Kafka Client

But what if a rebel spy gains access to any of the remote outposts that act as Kafka clients?
Since every client has access to the Kafka broker on port 9092, it can do some bad stuff.
For starters, the outpost container can actually switch roles from a consumer to a producer,
sending “malicious” data to all other consumers on the topic.

To prove this, kill the existing kafka-consume.sh command in the outpost-9999 window
by typing control-C and instead run:

$ echo "Vader Booed at Empire Karaoke Party" | ./kafka-produce.sh --topic empire-announce

Uh oh! Outpost-8888 and all of the other outposts in the empire have now received this fake announcement.

But even more nasty from a security perspective is that the outpost container can access any topic
on the kafka-broker.

In the outpost-9999 container, run:

$./kafka-consume.sh --topic deathstar-plans
"deathstar reactor design v3"

We see that any outpost can actually access the secret deathstar plans. Now we know how the rebels got
access to them!

Securing Access to Kafka with Cilium

Obviously, it would be much more secure to limit each pod’s access to the Kafka broker to be
least privilege (i.e., only what is needed for the app to operate correctly and nothing more).

We can do that with the following Cilium security policy. As with Cilium HTTP policies, we can write
policies that identify pods by labels, and then limit the traffic in/out of this pod. In
this case, we’ll create a policy that identifies the exact traffic that should be allowed to reach the
Kafka broker, and deny the rest.

As an example, a policy could limit containers with label app=empire-outpost to only be able to consume
topic empire-announce, but would block any attempt by a compromised container (e.g., empire-outpost-9999)
from producing to empire-announce or consuming from deathstar-plans.

[image: ../_images/cilium_kafka_gsg_attack.png]
Here is the CiliumNetworkPolicy rule that limits access of pods with label app=empire-outpost to
only consume on topic empire-announce:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "enable outposts to consume empire-announce"
metadata:
 name: "rule2"
spec:
 endpointSelector:
 matchLabels:
 app: kafka
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: empire-outpost
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - role: "consume"
 topic: "empire-announce"

A CiliumNetworkPolicy contains a list of rules that define allowed requests, meaning that requests
that do not match any rules are denied as invalid.

The above rule applies to inbound (i.e., “ingress”) connections to kafka-broker pods (as
indicated by “app: kafka”
in the “endpointSelector” section). The rule will apply to connections from pods with label
“app: empire-outpost” as indicated by the “fromEndpoints” section. The rule explicitly matches
Kafka connections destined to TCP 9092, and allows consume/produce actions on various topics of interest.
For example we are allowing consume from topic empire-announce in this case.

The full policy adds two additional rules that permit the legitimate “produce”
(topic empire-announce and topic deathstar-plans) from empire-hq and the
legitimate consume (topic = “deathstar-plans”) from empire-backup. The full policy
can be reviewed by opening the URL in the command below in a browser.

Apply this Kafka-aware network security policy using kubectl in the main window:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-kafka/kafka-sw-security-policy.yaml

If we then again try to produce a message from outpost-9999 to empire-annnounce, it is denied.
Type control-c and then run:

$ echo "Vader Trips on His Own Cape" | ./kafka-produce.sh --topic empire-announce
>>[2018-04-10 23:50:34,638] ERROR Error when sending message to topic empire-announce with key: null, value: 27 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)
org.apache.kafka.common.errors.TopicAuthorizationException: Not authorized to access topics: [empire-announce]

This is because the policy does not allow messages with role = “produce” for topic “empire-announce” from
containers with label app = empire-outpost. Its worth noting that we don’t simply drop the message (which
could easily be confused with a network error), but rather we respond with the Kafka access denied error
(similar to how HTTP would return an error code of 403 unauthorized).

Likewise, if the outpost container ever tries to consume from topic deathstar-plans, it is denied, as
role = consume is only allowed for topic empire-announce.

To test, from the outpost-9999 terminal, run:

$./kafka-consume.sh --topic deathstar-plans
[2018-04-10 23:51:12,956] WARN Error while fetching metadata with correlation id 2 : {deathstar-plans=TOPIC_AUTHORIZATION_FAILED} (org.apache.kafka.clients.NetworkClient)

This is blocked as well, thanks to the Cilium network policy. Imagine how different things would have been if the empire had been using
Cilium from the beginning!

Clean Up

You have now installed Cilium, deployed a demo app, and tested both
L7 Kafka-aware network security policies. To clean up, run:

$ minikube delete

After this, you can re-run the tutorial from Step 1.

How to secure gRPC

This document serves as an introduction to using Cilium to enforce gRPC-aware
security policies. It is a detailed walk-through of getting a single-node
Cilium environment running on your machine. It is designed to take 15-30
minutes.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

It is important for this demo that kube-dns is working correctly. To know the
status of kube-dns you can run the following command:

$ kubectl get deployment kube-dns -n kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kube-dns 1 1 1 1 13h

Where at least one pod should be available.

Deploy the Demo Application

Now that we have Cilium deployed and kube-dns operating correctly we can
deploy our demo gRPC application. Since our first demo of Cilium + HTTP-aware security
policies was Star Wars-themed, we decided to do the same for gRPC. While the
HTTP-aware Cilium Star Wars demo [https://www.cilium.io/blog/2017/5/4/demo-may-the-force-be-with-you]
showed how the Galactic Empire used HTTP-aware security policies to protect the Death Star from the
Rebel Alliance, this gRPC demo shows how the lack of gRPC-aware security policies allowed Leia, Chewbacca, Lando, C-3PO, and R2-D2 to escape from Cloud City, which had been overtaken by
empire forces.

gRPC [https://grpc.io/] is a high-performance RPC framework built on top of the protobuf [https://developers.google.com/protocol-buffers/]
serialization/deserialization library popularized by Google. There are gRPC bindings
for many programming languages, and the efficiency of the protobuf parsing as well as
advantages from leveraging HTTP 2 as a transport make it a popular RPC framework for
those building new microservices from scratch.

For those unfamiliar with the details of the movie, Leia and the other rebels are
fleeing storm troopers and trying to reach the space port platform where the Millennium Falcon
is parked, so they can fly out of Cloud City. However, the door to the platform is closed,
and the access code has been changed. However, R2-D2 is able to access the Cloud City
computer system via a public terminal, and disable this security, opening the door and
letting the Rebels reach the Millennium Falcon just in time to escape.

[image: ../_images/cilium_grpc_gsg_r2d2_terminal.png]
In our example, Cloud City’s internal computer system is built as a set of gRPC-based
microservices (who knew that gRPC was actually invented a long time ago, in a galaxy
far, far away?).

With gRPC, each service is defined using a language independent protocol buffer definition.
Here is the definition for the system used to manage doors within Cloud City:

package cloudcity;

// The door manager service definition.
service DoorManager {

 // Get human readable name of door.
 rpc GetName(DoorRequest) returns (DoorNameReply) {}

 // Find the location of this door.
 rpc GetLocation (DoorRequest) returns (DoorLocationReply) {}

 // Find out whether door is open or closed
 rpc GetStatus(DoorRequest) returns (DoorStatusReply) {}

 // Request maintenance on the door
 rpc RequestMaintenance(DoorMaintRequest) returns (DoorActionReply) {}

 // Set Access Code to Open / Lock the door
 rpc SetAccessCode(DoorAccessCodeRequest) returns (DoorActionReply) {}

}

To keep the setup small, we will just launch two pods to represent this setup:

	cc-door-mgr: A single pod running the gRPC door manager service with label app=cc-door-mgr.

	terminal-87: One of the public network access terminals scattered across Cloud City. R2-D2 plugs into terminal-87 as the rebels are desperately trying to escape. This terminal uses the gRPC client code to communicate with the door management services with label app=public-terminal.

[image: ../_images/cilium_grpc_gsg_topology.png]
The file cc-door-app.yaml contains a Kubernetes Deployment for the door manager
service, a Kubernetes Pod representing terminal-87, and a Kubernetes Service for
the door manager services. To deploy this example app, run:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-grpc/cc-door-app.yaml
deployment "cc-door-mgr" created
service "cc-door-server" created
pod "terminal-87" created

Kubernetes will deploy the pods and service in the background. Running
kubectl get svc,pods will inform you about the progress of the operation.
Each pod will go through several states until it reaches Running at which
point the setup is ready.

$ kubectl get pods,svc
NAME READY STATUS RESTARTS AGE
po/cc-door-mgr-3590146619-cv4jn 1/1 Running 0 1m
po/terminal-87 1/1 Running 0 1m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/cc-door-server 10.0.0.72 <none> 50051/TCP 1m
svc/kubernetes 10.0.0.1 <none> 443/TCP 6m

Test Access Between gRPC Client and Server

First, let’s confirm that the public terminal can properly act as a client to the
door service. We can test this by running a Python gRPC client for the door service that
exists in the terminal-87 container.

We’ll invoke the ‘cc_door_client’ with the name of the gRPC method to call, and any
parameters (in this case, the door-id):

$ kubectl exec terminal-87 -- python3 /cloudcity/cc_door_client.py GetName 1
Door name is: Spaceport Door #1

$ kubectl exec terminal-87 -- python3 /cloudcity/cc_door_client.py GetLocation 1
Door location is lat = 10.222200393676758 long = 68.87879943847656

Exposing this information to public terminals seems quite useful, as it helps travelers new
to Cloud City identify and locate different doors. But recall that the door service also
exposes several other methods, including SetAccessCode. If access to the door manager
service is protected only using traditional IP and port-based firewalling, the TCP port of
the service (50051 in this example) will be wide open to allow legitimate calls like
GetName and GetLocation, which also leave more sensitive calls like SetAccessCode exposed as
well. It is this mismatch between the course granularity of traditional firewalls and
the fine-grained nature of gRPC calls that R2-D2 exploited to override the security
and help the rebels escape.

To see this, run:

$ kubectl exec terminal-87 -- python3 /cloudcity/cc_door_client.py SetAccessCode 1 999
Successfully set AccessCode to 999

Securing Access to a gRPC Service with Cilium

Once the legitimate owners of Cloud City recover the city from the empire, how can they
use Cilium to plug this key security hole and block requests to SetAccessCode and GetStatus
while still allowing GetName, GetLocation, and RequestMaintenance?

[image: ../_images/cilium_grpc_gsg_policy.png]
Since gRPC build on top of HTTP, this can be achieved easily by understanding how a
gRPC call is mapped to an HTTP URL, and then applying a Cilium HTTP-aware filter to
allow public terminals to only invoke a subset of all the total gRPC methods available
on the door service.

Each gRPC method is mapped to an HTTP POST call to a URL of the form
/cloudcity.DoorManager/<method-name>.

As a result, the following CiliumNetworkPolicy rule limits access of pods with label
app=public-terminal to only invoke GetName, GetLocation, and RequestMaintenance
on the door service, identified by label app=cc-door-sgr:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "L7 policy to allow public terminals to call GetName, GetLocation, and RequestMaintenance, but not GetState, or SetAccessCode on the Door Manager Service"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 app: cc-door-mgr
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: public-terminal
 toPorts:
 - ports:
 - port: "50051"
 protocol: TCP
 rules:
 http:
 - method: "POST"
 path: "/cloudcity.DoorManager/GetName"
 - method: "POST"
 path: "/cloudcity.DoorManager/GetLocation"
 - method: "POST"
 path: "/cloudcity.DoorManager/RequestMaintenance"

A CiliumNetworkPolicy contains a list of rules that define allowed requests,
meaning that requests that do not match any rules (e.g., SetAccessCode) are denied as invalid.

The above rule applies to inbound (i.e., “ingress”) connections to cc-door-mgr pods (as
indicated by app: cc-door-mgr
in the “endpointSelector” section). The rule will apply to connections from pods with label
app: public-terminal as indicated by the “fromEndpoints” section.
The rule explicitly matches
gRPC connections destined to TCP 50051, and white-lists specifically the permitted URLs.

Apply this gRPC-aware network security policy using kubectl in the main window:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-grpc/cc-door-ingress-security.yaml

After this security policy is in place, access to the innocuous calls like GetLocation
still works as intended:

$ kubectl exec terminal-87 -- python3 /cloudcity/cc_door_client.py GetLocation 1
Door location is lat = 10.222200393676758 long = 68.87879943847656

However, if we then again try to invoke SetAccessCode, it is denied:

$ kubectl exec terminal-87 -- python3 /cloudcity/cc_door_client.py SetAccessCode 1 999

Traceback (most recent call last):
 File "/cloudcity/cc_door_client.py", line 71, in <module>
 run()
 File "/cloudcity/cc_door_client.py", line 53, in run
 door_id=int(arg2), access_code=int(arg3)))
 File "/usr/local/lib/python3.4/dist-packages/grpc/_channel.py", line 492, in __call__
 return _end_unary_response_blocking(state, call, False, deadline)
 File "/usr/local/lib/python3.4/dist-packages/grpc/_channel.py", line 440, in _end_unary_response_blocking
 raise _Rendezvous(state, None, None, deadline)
grpc._channel._Rendezvous: <_Rendezvous of RPC that terminated with (StatusCode.CANCELLED, Received http2 header with status: 403)>

This is now blocked, thanks to the Cilium network policy. And notice that unlike
a traditional firewall which would just drop packets in a way indistinguishable
from a network failure, because Cilium operates at the API-layer, it can
explicitly reply with an custom HTTP 403 Unauthorized error, indicating that the
request was intentionally denied for security reasons.

Thank goodness that the empire IT staff hadn’t had time to deploy Cilium on
Cloud City’s internal network prior to the escape attempt, or things might have
turned out quite differently for Leia and the other Rebels!

Clean-Up

You have now installed Cilium, deployed a demo app, and tested
L7 gRPC-aware network security policies. To clean-up, run:

$ minikube delete

After this, you can re-run the tutorial from Step 1.

Getting Started Securing Elasticsearch

This document serves as an introduction for using Cilium to enforce Elasticsearch-aware
security policies. It is a detailed walk-through of getting a single-node
Cilium environment running on your machine. It is designed to take 15-30
minutes.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Deploy the Demo Application

Following the Cilium tradition, we will use a Star Wars-inspired example. The Empire has a large scale Elasticsearch cluster which is used for storing a variety of data including:

	index: troop_logs: Stormtroopers performance logs collected from every outpost which are used to identify and eliminate weak performers!

	index: spaceship_diagnostics: Spaceships diagnostics data collected from every spaceship which is used for R&D and improvement of the spaceships.

Every outpost has an Elasticsearch client service to upload the Stormtroopers logs. And every spaceship has a service to upload diagnostics. Similarly, the Empire headquarters has a service to search and analyze the troop logs and spaceship diagnostics data. Before we look into the security concerns, let’s first create this application scenario in minikube.

Deploy the app using command below, which will create

	An elasticsearch service with the selector label component:elasticsearch and a pod running Elasticsearch.

	Three Elasticsearch clients one each for empire-hq, outpost and spaceship.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-es/es-sw-app.yaml
serviceaccount "elasticsearch" created
service "elasticsearch" created
replicationcontroller "es" created
role "elasticsearch" created
rolebinding "elasticsearch" created
pod "outpost" created
pod "empire-hq" created
pod "spaceship" created

$ kubectl get svc,pods
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/elasticsearch NodePort 10.111.238.254 <none> 9200:30130/TCP,9300:31721/TCP 2d
svc/etcd-cilium NodePort 10.98.67.60 <none> 32379:31079/TCP,32380:31080/TCP 9d
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 9d

NAME READY STATUS RESTARTS AGE
po/empire-hq 1/1 Running 0 2d
po/es-g9qk2 1/1 Running 0 2d
po/etcd-cilium-0 1/1 Running 0 9d
po/outpost 1/1 Running 0 2d
po/spaceship 1/1 Running 0 2d

Security Risks for Elasticsearch Access

For Elasticsearch clusters the least privilege security challenge is to give clients access only to particular indices, and to limit the operations each client is allowed to perform on each index. In this example, the outpost Elasticsearch clients only need access to upload troop logs; and the empire-hq client only needs search access to both the indices. From the security perspective, the outposts are weak spots and susceptible to be captured by the rebels. Once compromised, the clients can be used to search and manipulate the critical data in Elasticsearch. We can simulate this attack, but first let’s run the commands for legitimate behavior for all the client services.

outpost client uploading troop logs

$ kubectl exec outpost -- python upload_logs.py
Uploading Stormtroopers Performance Logs
created : {'_index': 'troop_logs', '_type': 'log', '_id': '1', '_version': 1, 'result': 'created', '_shards': {'total': 2, 'successful': 1, 'failed': 0}, 'created': True}

spaceship uploading diagnostics

$ kubectl exec spaceship -- python upload_diagnostics.py
Uploading Spaceship Diagnostics
created : {'_index': 'spaceship_diagnostics', '_type': 'stats', '_id': '1', '_version': 1, 'result': 'created', '_shards': {'total': 2, 'successful': 1, 'failed': 0}, 'created': True}

empire-hq running search queries for logs and diagnostics

$ kubectl exec empire-hq -- python search.py
Searching for Spaceship Diagnostics
Got 1 Hits:
{'_index': 'spaceship_diagnostics', '_type': 'stats', '_id': '1', '_score': 1.0, \
 '_source': {'spaceshipid': '3459B78XNZTF', 'type': 'tiefighter', 'title': 'Engine Diagnostics', \
 'stats': '[CRITICAL] [ENGINE BURN @SPEED 5000 km/s] [CHANCE 80%]'}}
Searching for Stormtroopers Performance Logs
Got 1 Hits:
{'_index': 'troop_logs', '_type': 'log', '_id': '1', '_score': 1.0, \
 '_source': {'outpost': 'Endor', 'datetime': '33 ABY 4AM DST', 'title': 'Endor Corps 1: Morning Drill', \
 'notes': '5100 PRESENT; 15 ABSENT; 130 CODE-RED BELOW PAR PERFORMANCE'}}

Now imagine an outpost captured by the rebels. In the commands below, the rebels first search all the indices and then manipulate the diagnostics data from a compromised outpost.

$ kubectl exec outpost -- python search.py
Searching for Spaceship Diagnostics
Got 1 Hits:
{'_index': 'spaceship_diagnostics', '_type': 'stats', '_id': '1', '_score': 1.0, \
 '_source': {'spaceshipid': '3459B78XNZTF', 'type': 'tiefighter', 'title': 'Engine Diagnostics', \
 'stats': '[CRITICAL] [ENGINE BURN @SPEED 5000 km/s] [CHANCE 80%]'}}
Searching for Stormtroopers Performance Logs
Got 1 Hits:
{'_index': 'troop_logs', '_type': 'log', '_id': '1', '_score': 1.0, \
 '_source': {'outpost': 'Endor', 'datetime': '33 ABY 4AM DST', 'title': 'Endor Corps 1: Morning Drill', \
 'notes': '5100 PRESENT; 15 ABSENT; 130 CODE-RED BELOW PAR PERFORMANCE'}}

Rebels manipulate spaceship diagnostics data so that the spaceship defects are not known to the empire-hq! (Hint: Rebels have changed the stats for the tiefighter spaceship, a change hard to detect but with adverse impact!)

$ kubectl exec outpost -- python update.py
Uploading Spaceship Diagnostics
{'_index': 'spaceship_diagnostics', '_type': 'stats', '_id': '1', '_score': 1.0, \
 '_source': {'spaceshipid': '3459B78XNZTF', 'type': 'tiefighter', 'title': 'Engine Diagnostics', \
 'stats': '[OK] [ENGINE OK @SPEED 5000 km/s]'}}

Securing Elasticsearch Using Cilium

[image: ../_images/cilium_es_gsg_topology.png]
Following the least privilege security principle, we want to the allow the following legitimate actions and nothing more:

	outpost service only has upload access to index: troop_logs

	spaceship service only has upload access to index: spaceship_diagnostics

	empire-hq service only has search access for both the indices

Fortunately, the Empire DevOps team is using Cilium for their Kubernetes cluster. Cilium provides L7 visibility and security policies to control Elasticsearch API access. Cilium follows the white-list, least privilege model for security. That is to say, a CiliumNetworkPolicy contains a list of rules that define allowed requests and any request that does not match the rules is denied.

In this example, the policy rules are defined for inbound traffic (i.e., “ingress”) connections to the elasticsearch service. Note that endpoints selected as backend pods for the service are defined by the selector labels. Selector labels use the same concept as Kubernetes to define a service. In this example, label component: elasticsearch defines the pods that are part of the elasticsearch service in Kubernetes.

In the policy file below, you will see the following rules for controlling the indices access and actions performed:

	fromEndpoints with labels app:spaceship only HTTP PUT is allowed on paths matching regex ^/spaceship_diagnostics/stats/.*$

	fromEndpoints with labels app:outpost only HTTP PUT is allowed on paths matching regex ^/troop_logs/log/.*$

	fromEndpoints with labels app:empire only HTTP GET is allowed on paths matching regex ^/spaceship_diagnostics/_search/??.*$ and ^/troop_logs/search/??.*$

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: secure-empire-elasticsearch
 namespace: default
specs:
- endpointSelector:
 matchLabels:
 component: elasticsearch
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: spaceship
 toPorts:
 - ports:
 - port: "9200"
 protocol: TCP
 rules:
 http:
 - method: ^PUT$
 path: ^/spaceship_diagnostics/stats/.*$
 - fromEndpoints:
 - matchLabels:
 app: empire-hq
 toPorts:
 - ports:
 - port: "9200"
 protocol: TCP
 rules:
 http:
 - method: ^GET$
 path: ^/spaceship_diagnostics/_search/??.*$
 - method: ^GET$
 path: ^/troop_logs/_search/??.*$
 - fromEndpoints:
 - matchLabels:
 app: outpost
 toPorts:
 - ports:
 - port: "9200"
 protocol: TCP
 rules:
 http:
 - method: ^PUT$
 path: ^/troop_logs/log/.*$
- egress:
 - toEndpoints:
 - matchExpressions:
 - key: k8s:io.kubernetes.pod.namespace
 operator: Exists
 - toEntities:
 - cluster
 - host
 endpointSelector: {}
 ingress:
 - {}

Apply this Elasticsearch-aware network security policy using kubectl:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-es/es-sw-policy.yaml
ciliumnetworkpolicy "secure-empire-elasticsearch" created

Let’s test the security policies. Firstly, the search access is blocked for both outpost and spaceship. So from a compromised outpost, rebels will not be able to search and obtain knowledge about troops and spaceship diagnostics. Secondly, the outpost clients don’t have access to create or update the index: spaceship_diagnostics.

$ kubectl exec outpost -- python search.py
GET http://elasticsearch:9200/spaceship_diagnostics/_search [status:403 request:0.008s]
...
...
elasticsearch.exceptions.AuthorizationException: TransportError(403, 'Access denied\r\n')
command terminated with exit code 1

$ kubectl exec outpost -- python update.py
PUT http://elasticsearch:9200/spaceship_diagnostics/stats/1 [status:403 request:0.006s]
...
...
elasticsearch.exceptions.AuthorizationException: TransportError(403, 'Access denied\r\n')
command terminated with exit code 1

We can re-run any of the below commands to show that the security policy still allows all legitimate requests (i.e., no 403 errors are returned).

$ kubectl exec outpost -- python upload_logs.py
...
$ kubectl exec spaceship -- python upload_diagnostics.py
...
$ kubectl exec empire-hq -- python search.py
...

Clean Up

You have now installed Cilium, deployed a demo app, and finally deployed & tested Elasticsearch-aware network security policies. To clean up, run:

$ minikube delete

How to Secure a Cassandra Database

This document serves as an introduction to using Cilium to enforce Cassandra-aware
security policies. It is a detailed walk-through of getting a single-node
Cilium environment running on your machine. It is designed to take 15-30
minutes.

NOTE: Cassandra-aware policy support is still in beta phase. It is not yet ready for
production use. Additionally, the Cassandra-specific policy language is highly likely to
change in a future Cilium version.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Deploy the Demo Application

Now that we have Cilium deployed and kube-dns operating correctly we can
deploy our demo Cassandra application. Since our first
HTTP-aware Cilium Star Wars demo [https://www.cilium.io/blog/2017/5/4/demo-may-the-force-be-with-you]
showed how the Galactic Empire used HTTP-aware security policies to protect the Death Star from the
Rebel Alliance, this Cassandra demo is Star Wars-themed as well.

Apache Cassanadra [http://cassandra.apache.org] is a popular NOSQL database focused on
delivering high-performance transactions (especially on writes) without sacrificing on availability or scale.
Cassandra operates as a cluster of servers, and Cassandra clients query these services via a
the native Cassandra protocol [https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec] .
Cilium understands the Cassandra protocol, and thus is able to provide deep visibility and control over
which clients are able to access particular tables inside a Cassandra cluster, and which actions
(e.g., “select”, “insert”, “update”, “delete”) can be performed on tables.

With Cassandra, each table belongs to a “keyspace”, allowing multiple groups to use a single cluster without conflicting.
Cassandra queries specify the full table name qualified by the keyspace using the syntax “<keyspace>.<table>”.

In our simple example, the Empire uses a Cassandra cluster to store two different types of information:

	Employee Attendance Records : Use to store daily attendance data (attendance.daily_records).

	Deathstar Scrum Reports : Daily scrum reports from the teams working on the Deathstar (deathstar.scrum_reports).

To keep the setup small, we will just launch a small number of pods to represent this setup:

	cass-server : A single pod running the Cassandra service, representing a Cassandra cluster
(label app=cass-server).

	empire-hq : A pod representing the Empire’s Headquarters, which is the only pod that should
be able to read all attendance data, or read/write the Deathstar scrum notes (label app=empire-hq).

	empire-outpost : A random outpost in the empire. It should be able to insert employee attendance
records, but not read records for other empire facilities. It also should not have any access to the
deathstar keyspace (label app=empire-outpost).

All pods other than cass-server are Cassandra clients, which need access to the cass-server
container on TCP port 9042 in order to send Cassandra protocol messages.

[image: ../_images/cilium_cass_gsg_topology.png]
The file cass-sw-app.yaml contains a Kubernetes Deployment for each of the pods described
above, as well as a Kubernetes Service cassandra-svc for the Cassandra cluster.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-cassandra/cass-sw-app.yaml
deployment.extensions/cass-server created
service/cassandra-svc created
deployment.extensions/empire-hq created
deployment.extensions/empire-outpost created

Kubernetes will deploy the pods and service in the background.
Running kubectl get svc,pods will inform you about the progress of the operation.
Each pod will go through several states until it reaches Running at which
point the setup is ready.

$ kubectl get svc,pods
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cassandra-svc ClusterIP None <none> 9042/TCP 1m
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 15h

NAME READY STATUS RESTARTS AGE
pod/cass-server-5674d5b946-x8v4j 1/1 Running 0 1m
pod/empire-hq-c494c664d-xmvdl 1/1 Running 0 1m
pod/empire-outpost-68bf76858d-flczn 1/1 Running 0 1m

Step 3: Test Basic Cassandra Access

First, we’ll create the keyspaces and tables mentioned above, and populate them with some initial data:

$ curl -s https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-cassandra/cass-populate-tables.sh | bash

Next, create two environment variables that refer to the empire-hq and empire-outpost pods:

$ HQ_POD=$(kubectl get pods -l app=empire-hq -o jsonpath='{.items[0].metadata.name}')
$ OUTPOST_POD=$(kubectl get pods -l app=empire-outpost -o jsonpath='{.items[0].metadata.name}')

Now we will run the ‘cqlsh’ Cassandra client in the empire-outpost pod, telling it to access
the Cassandra cluster identified by the ‘cassandra-svc’ DNS name:

$ kubectl exec -it $OUTPOST_POD cqlsh -- cassandra-svc
Connected to Test Cluster at cassandra-svc:9042.
[cqlsh 5.0.1 | Cassandra 3.11.3 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh>

Next, using the cqlsh prompt, we’ll show that the outpost can add records to the “daily_records” table
in the “attendance” keyspace:

cqlsh> INSERT INTO attendance.daily_records (creation, loc_id, present, empire_member_id) values (now(), 074AD3B9-A47D-4EBC-83D3-CAD75B1911CE, true, 6AD3139F-EBFC-4E0C-9F79-8F997BA01D90);

We have confirmed that outposts are able to report daily attendance records as intended. We’re off to a good start!

The Danger of a Compromised Cassandra Client

But what if a rebel spy gains access to any of the remote outposts that act as a Cassandra client?
Since every client has access to the Cassandra API on port 9042, it can do some bad stuff.
For starters, the outpost container can not only add entries to the attendance.daily_reports table,
but it could read all entries as well.

To see this, we can run the following command:

$ cqlsh> SELECT * FROM attendance.daily_records;

 loc_id | creation | empire_member_id | present
 --------------------------------------+--------------------------------------+--------------------------------------+---------
 a855e745-69d8-4159-b8b6-e2bafed8387a | c692ce90-bf57-11e8-98e6-f1a9f45fc4d8 | cee6d956-dbeb-4b09-ad21-1dd93290fa6c | True
 5b9a7990-657e-442d-a3f7-94484f06696e | c8493120-bf57-11e8-98e6-f1a9f45fc4d8 | e74a0300-94f3-4b3d-aee4-fea85eca5af7 | True
 53ed94d0-ddac-4b14-8c2f-ba6f83a8218c | c641a150-bf57-11e8-98e6-f1a9f45fc4d8 | 104ddbb6-f2f7-4cd0-8683-cc18cccc1326 | True
 074ad3b9-a47d-4ebc-83d3-cad75b1911ce | 9674ed40-bf59-11e8-98e6-f1a9f45fc4d8 | 6ad3139f-ebfc-4e0c-9f79-8f997ba01d90 | True
 fe72cc39-dffb-45dc-8e5f-86c674a58951 | c5e79a70-bf57-11e8-98e6-f1a9f45fc4d8 | 6782689c-0488-4ecb-b582-a2ccd282405e | True
 461f4176-eb4c-4bcc-a08a-46787ca01af3 | c6fefde0-bf57-11e8-98e6-f1a9f45fc4d8 | 01009199-3d6b-4041-9c43-b1ca9aef021c | True
 64dbf608-6947-4a23-98e9-63339c413136 | c8096900-bf57-11e8-98e6-f1a9f45fc4d8 | 6ffe024e-beff-4370-a1b5-dcf6330ec82b | True
 13cefcac-5652-4c69-a3c2-1484671f2467 | c53f4c80-bf57-11e8-98e6-f1a9f45fc4d8 | 55218adc-2f3d-4f84-a693-87a2c238bb26 | True
 eabf5185-376b-4d4a-a5b5-99f912d98279 | c593fc30-bf57-11e8-98e6-f1a9f45fc4d8 | 5e22159b-f3a9-4f8a-9944-97375df570e9 | True
 3c0ae2d1-c836-4aa4-8fe2-5db6cc1f92fc | c7af1400-bf57-11e8-98e6-f1a9f45fc4d8 | 0ccb3df7-78d0-4434-8a7f-4bfa8d714275 | True
 31a292e0-2e28-4a7d-8c84-8d4cf0c57483 | c4e0d8d0-bf57-11e8-98e6-f1a9f45fc4d8 | 8fe7625c-f482-4eb6-b33e-271440777403 | True

(11 rows)

Uh oh! The rebels now has strategic information about empire troop strengths at each location in the galaxy.

But even more nasty from a security perspective is that the outpost container can also access information in any keyspace,
including the deathstar keyspace. For example, run:

$ cqlsh> SELECT * FROM deathstar.scrum_notes;

 empire_member_id | content | creation
--------------------------------------+--+--------------------------------------
34e564c2-781b-477e-acd0-b357d67f94f2 | Designed protective shield for deathstar. Could be based on nearby moon. Feature punted to v2. Not blocked. | c3c8b210-bf57-11e8-98e6-f1a9f45fc4d8
dfa974ea-88cd-4e9b-85e3-542b9d00e2df | I think the exhaust port could be vulnerable to a direct hit. Hope no one finds out about it. Not blocked. | c37f4d00-bf57-11e8-98e6-f1a9f45fc4d8
ee12306a-7b44-46a4-ad68-42e86f0f111e | Trying to figure out if we should paint it medium grey, light grey, or medium-light grey. Not blocked. | c32daa90-bf57-11e8-98e6-f1a9f45fc4d8

(3 rows)

We see that any outpost can actually access the deathstar scrum notes, which mentions a pretty serious issue with the exhaust port.

Securing Access to Cassandra with Cilium

Obviously, it would be much more secure to limit each pod’s access to the Cassandra server to be
least privilege (i.e., only what is needed for the app to operate correctly and nothing more).

We can do that with the following Cilium security policy. As with Cilium HTTP policies, we can write
policies that identify pods by labels, and then limit the traffic in/out of this pod. In
this case, we’ll create a policy that identifies the tables that each client should be able to access,
the actions that are allowed on those tables, and deny the rest.

As an example, a policy could limit containers with label app=empire-outpost to only be able to
insert entries into the table “attendance.daily_reports”, but would block any attempt by a compromised outpost
to read all attendance information or access other keyspaces.

[image: ../_images/cilium_cass_gsg_attack.png]
Here is the CiliumNetworkPolicy rule that limits access of pods with label app=empire-outpost to
only insert records into “attendance.daily_reports”:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "Allow only permitted requests to empire Cassandra server"
metadata:
 name: "secure-empire-cassandra"
specs:
 - endpointSelector:
 matchLabels:
 app: cass-server
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: empire-outpost
 toPorts:
 - ports:
 - port: "9042"
 protocol: TCP
 rules:
 l7proto: cassandra
 l7:
 - query_action: "select"
 query_table: "system\\..*"
 - query_action: "select"
 query_table: "system_schema\\..*"
 - query_action: "insert"
 query_table: "attendance.daily_records"
 - fromEndpoints:
 - matchLabels:
 app: empire-hq
 toPorts:
 - ports:
 - port: "9042"
 protocol: TCP
 rules:
 l7proto: cassandra
 l7:
 - {}

A CiliumNetworkPolicy contains a list of rules that define allowed requests, meaning that requests
that do not match any rules are denied as invalid.

The rule explicitly matches Cassandra connections destined to TCP 9042 on cass-server pods, and allows
query actions like select/insert/update/delete only on a specified set of tables.
The above rule applies to inbound (i.e., “ingress”) connections to cass-server pods (as indicated by “app:cass-server”
in the “endpointSelector” section). The rule applies different rules based on whether the
client pod has labels “app: empire-outpost” or “app: empire-hq” as indicated by the “fromEndpoints” section.

The policy limits the empire-outpost pod to performing “select” queries on the “system” and “system_schema”
keyspaces (required by cqlsh on startup) and “insert” queries to the “attendance.daily_records” table.

The full policy adds another rule that allows all queries from the empire-hq pod.

Apply this Cassandra-aware network security policy using kubectl in a new window:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-cassandra/cass-sw-security-policy.yaml

If we then again try to perform the attacks from the empire-outpost pod, we’ll see that they are denied:

$ cqlsh> SELECT * FROM attendance.daily_records;
Unauthorized: Error from server: code=2100 [Unauthorized] message="Request Unauthorized"

This is because the policy only permits pods with labels app: empire-outpost to insert into attendance.daily_records, it does
not permit select on that table, or any action on other tables (with the exception of the system.* and system_schema.*
keyspaces). Its worth noting that we don’t simply drop the message (which
could easily be confused with a network error), but rather we respond with the Cassandra Unauthorized error message.
(similar to how HTTP would return an error code of 403 unauthorized).

Likewise, if the outpost pod ever tries to access a table in another keyspace, like deathstar, this request will also be
denied:

$ cqlsh> SELECT * FROM deathstar.scrum_notes;
Unauthorized: Error from server: code=2100 [Unauthorized] message="Request Unauthorized"

This is blocked as well, thanks to the Cilium network policy.

Use another window to confirm that the empire-hq pod still has full access to the cassandra cluster:

$ kubectl exec -it $HQ_POD cqlsh -- cassandra-svc
Connected to Test Cluster at cassandra-svc:9042.
[cqlsh 5.0.1 | Cassandra 3.11.3 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.
cqlsh>

The power of Cilium’s identity-based security allows empire-hq to still have full access
to both tables:

$ cqlsh> SELECT * FROM attendance.daily_records;
 loc_id | creation | empire_member_id | present
--------------------------------------+--------------------------------------+--------------------------------------+---------
a855e745-69d8-4159-b8b6-e2bafed8387a | c692ce90-bf57-11e8-98e6-f1a9f45fc4d8 | cee6d956-dbeb-4b09-ad21-1dd93290fa6c | True

<snip>

(12 rows)

Similarly, the deathstar can still access the scrum notes:

$ cqlsh> SELECT * FROM deathstar.scrum_notes;

 <snip>

(3 rows)

Cassandra-Aware Visibility (Bonus)

As a bonus, you can re-run the above queries with policy enforced and view how Cilium provides Cassandra-aware visibility, including
whether requests are forwarded or denied. First, use “kubectl exec” to access the cilium pod.

$ CILIUM_POD=$(kubectl get pods -n kube-system -l k8s-app=cilium -o jsonpath='{.items[0].metadata.name}')
$ kubectl exec -it -n kube-system $CILIUM_POD /bin/bash
root@minikube:~#

Next, start Cilium monitor, and limit the output to only “l7” type messages using the “-t” flag:

root@minikube:~# cilium monitor -t l7
Listening for events on 2 CPUs with 64x4096 of shared memory
Press Ctrl-C to quit

In the other windows, re-run the above queries, and you will see that Cilium provides full visibility at the level of
each Cassandra request, indicating:

	The Kubernetes label-based identity of both the sending and receiving pod.

	The details of the Cassandra request, including the ‘query_action’ (e.g., ‘select’, ‘insert’)
and ‘query_table’ (e.g., ‘system.local’, ‘attendance.daily_records’)

	The ‘verdict’ indicating whether the request was allowed by policy (‘Forwarded’ or ‘Denied’).

Example output is below. All requests are from empire-outpost to cass-server. The first two requests are
allowed, a ‘select’ into ‘system.local’ and an ‘insert’ into ‘attendance.daily_records’.
The second two requests are denied, a ‘select’ into ‘attendance.daily_records’ and a select into ‘deathstar.scrum_notes’ :

<- Request cassandra from 0 ([k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:app=empire-outpost]) to 64503 ([k8s:app=cass-server k8s:io.kubernetes.pod.namespace=default k8s:io.cilium.k8s.policy.serviceaccount=default]), identity 12443->16168, verdict Forwarded query_table:system.local query_action:selec
<- Request cassandra from 0 ([k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:app=empire-outpost]) to 64503 ([k8s:app=cass-server k8s:io.kubernetes.pod.namespace=default k8s:io.cilium.k8s.policy.serviceaccount=default]), identity 12443->16168, verdict Forwarded query_action:insert query_table:attendance.daily_records
<- Request cassandra from 0 ([k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:app=empire-outpost]) to 64503 ([k8s:app=cass-server k8s:io.kubernetes.pod.namespace=default k8s:io.cilium.k8s.policy.serviceaccount=default]), identity 12443->16168, verdict Denied query_action:select query_table:attendance.daily_records
<- Request cassandra from 0 ([k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:app=empire-outpost]) to 64503 ([k8s:app=cass-server k8s:io.kubernetes.pod.namespace=default k8s:io.cilium.k8s.policy.serviceaccount=default]), identity 12443->16168, verdict Denied query_table:deathstar.scrum_notes query_action:select

Clean Up

You have now installed Cilium, deployed a demo app, and tested
L7 Cassandra-aware network security policies. To clean up, run:

$ minikube delete

After this, you can re-run the tutorial from Step 1.

Getting Started Securing Memcached

This document serves as an introduction to using Cilium to enforce memcached-aware
security policies. It walks through a single-node
Cilium environment running on your machine. It is designed to take 15-30
minutes.

NOTE: memcached-aware policy support is still in beta. It is not yet ready for
production use. Additionally, the memcached-specific policy language is highly likely to
change in a future Cilium version.

Memcached [https://memcached.org/] is a high performance, distributed memory object caching system. It’s simple yet powerful, and used by dynamic web applications to alleviate database load. Memcached is designed to work efficiently for a very large number of open connections. Thus, clients are encouraged to cache their connections rather
than the overhead of reopening TCP connections every time they need to store or retrieve data. Multiple clients can benefit from this distributed cache’s performance benefits.

There are two kinds of data sent in the memcache protocol: text lines
and unstructured (binary) data. We will demonstrate clients using both types of protocols to communicate with a memcached server.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Step 2: Deploy the Demo Application

Now that we have Cilium deployed and kube-dns operating correctly we can
deploy our demo memcached application. Since our first
HTTP-aware Cilium demo [https://www.cilium.io/blog/2017/5/4/demo-may-the-force-be-with-you] was based on Star Wars, we continue with the theme for the memcached demo as well.

Ever wonder how the Alliance Fleet manages the changing positions of their ships? The Alliance Fleet uses memcached to store the coordinates of their ships. The Alliance Fleet leverages the memcached-svc service implemented as a memcached server. Each ship in the fleet constantly updates its coordinates and has the ability to get the coordinates of other ships in the Alliance Fleet.

In this simple example, the Alliance Fleet uses a memcached server for their starfighters to store their own supergalatic coordinates and get those of other starfighters.

In order to avoid collisions and protect against compromised starfighters, memcached commands are limited to gets for any starfighter coordinates and sets only to a key specific to the starfighter. Thus the following operations are allowed:

	A-wing: can set coordinates to key “awing-coord” and get the key coordinates.

	X-wing: can set coordinates to key “xwing-coord” and get the key coordinates.

	Alliance-Tracker: can get any coordinates but not set any.

To keep the setup small, we will launch a small number of pods to represent a larger environment:

	memcached-server : A Kubernetes service represented by a single pod running a memcached server (label app=memcd-server).

	a-wing memcached binary client : A pod representing an A-wing starfighter, which can update its coordinates and read it via the binary memcached protocol (label app=a-wing).

	x-wing memcached text-based client : A pod representing an X-wing starfighter, which can update its coordinates and read it via the text-based memcached protocol (label app=x-wing).

	alliance-tracker memcached binary client : A pod representing the Alliance Fleet Tracker, able to read the coordinates of all starfighters (label name=fleet-tracker).

Memcached clients access the memcached-server on TCP port 11211 and send memcached protocol messages to it.

[image: ../_images/cilium_memcd_gsg_topology.png]
The file memcd-sw-app.yaml contains a Kubernetes Deployment for each of the pods described
above, as well as a Kubernetes Service memcached-server for the Memcached server.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-memcached/memcd-sw-app.yaml
deployment.extensions/memcached-server created
service/memcached-server created
deployment.extensions/a-wing created
deployment.extensions/x-wing created
deployment.extensions/alliance-tracker created

Kubernetes will deploy the pods and service in the background.
Running kubectl get svc,pods will inform you about the progress of the operation.
Each pod will go through several states until it reaches Running at which
point the setup is ready.

$ kubectl get svc,pods
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 31m
service/memcached-server ClusterIP None <none> 11211/TCP 14m

NAME READY STATUS RESTARTS AGE
pod/a-wing-67db8d5fcc-dpwl4 1/1 Running 0 14m
pod/alliance-tracker-6b6447bd69-sz5hz 1/1 Running 0 14m
pod/memcached-server-bdbfb87cd-8tdh7 1/1 Running 0 14m
pod/x-wing-fd5dfb9d9-wrtwn 1/1 Running 0 14m

We suggest having a main terminal window to execute kubectl commands and two additional terminal windows dedicated to accessing the A-Wing and Alliance-Tracker, which use a python library to communicate to the memcached server using the binary protocol.

In all three terminal windows, set some handy environment variables for the demo with the following script:

In the terminal window dedicated for the A-wing pod, exec in, use python to import the binary memcached library and set the client connection to the memcached server:

$ kubectl exec -ti $AWING_POD sh
python
Python 3.7.0 (default, Sep 5 2018, 03:25:31)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import bmemcached
>>> client = bmemcached.Client(("memcached-server:11211",))

In the terminal window dedicated for the Alliance-Tracker, exec in, use python to import the binary memcached library and set the client connection to the memcached server:

$ kubectl exec -ti $TRACKER_POD sh
python
Python 3.7.0 (default, Sep 5 2018, 03:25:31)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import bmemcached
>>> client = bmemcached.Client(("memcached-server:11211",))

Step 3: Test Basic Memcached Access

Let’s show that each client is able to access the memcached server. Execute the following to have the A-wing and X-wing starfighters update the Alliance Fleet memcached-server with their respective supergalatic coordinates:

A-wing will access the memcached-server using the binary protocol. In your terminal window for A-Wing, set A-wing’s coordinates:

>>> client.set("awing-coord","4309.432,918.980",time=2400)
True
>>> client.get("awing-coord")
'4309.432,918.980'

In your main terminal window, have X-wing starfighter set their coordinates using the text-based protocol to the memcached server.

$ kubectl exec $XWING_POD sh -- -c "echo -en \"$SETXC\" | nc memcached-server 11211"
STORED
$ kubectl exec $XWING_POD sh -- -c "echo -en \"$GETXC\" | nc memcached-server 11211"
VALUE xwing-coord 0 16
8893.34,234.3290
END

Check that the Alliance Fleet Tracker is able to get all starfighters’ coordinates in your terminal window for the Alliance-Tracker:

>>> client.get("awing-coord")
'4309.432,918.980'
>>> client.get("xwing-coord")
'8893.34,234.3290'

Step 4: The Danger of a Compromised Memcached Client

Imagine if a starfighter ship is captured. Should the starfighter be able to set the coordinates of other ships, or get the coordinates of all other ships? Or if the Alliance-Tracker is compromised, can it modify the coordinates of any starfighter ship?
If every client has access to the Memcached API on port 11211, all have over-privileged access until further locked down.

With L4 port access to the memcached server, all starfighters could write to any key/ship and read all ship coordinates. In your main terminal, execute:

$ kubectl exec $XWING_POD sh -- -c "echo -en \"$GETAC\" | nc memcached-server 11211"
VALUE awing-coord 0 16
4309.432,918.980
END

In your A-Wing terminal window, confirm the over-privileged access:

>>> client.get("xwing-coord")
'8893.34,234.3290'
>>> client.set("xwing-coord","0.0,0.0",time=2400)
True
>>> client.get("xwing-coord")
'0.0,0.0'

From A-Wing, set the X-Wing coordinates back to their proper position:

>>> client.set("xwing-coord","8893.34,234.3290",time=2400)
True

Thus, the Alliance Fleet Tracking System could be made weak if a single starfighter ship is compromised.

Step 5: Securing Access to Memcached with Cilium

Cilium helps lock down Memcached servers to ensure clients have secure access to it. Beyond just providing access to port 11211,
Cilium can enforce specific key value access by understanding both the text-based and the unstructured (binary) memcached protocol.

We’ll create a policy that limits the scope of what a starfighter can access and write. Thus, only the intended memcached protocol calls to the memcached-server can be made.

In this example, we’ll only allow A-Wing to get and set the key “awing-coord”, only allow X-Wing to get and set key “xwing-coord”, and allow Alliance-Tracker to only get coordinates.

[image: ../_images/cilium_memcd_gsg_attack.png]
Here is the CiliumNetworkPolicy rule that limits the access of starfighters to their own key and allows Alliance Tracker to get any coordinate:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "secure-fleet"
spec:
 endpointSelector:
 matchLabels:
 app: memcd-server
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: a-wing
 toPorts:
 - ports:
 - port: '11211'
 protocol: TCP
 rules:
 l7proto: memcache
 l7:
 - command: get
 keyExact: awing-coord
 - command: set
 keyExact: awing-coord
 - fromEndpoints:
 - matchLabels:
 app: x-wing
 toPorts:
 - ports:
 - port: '11211'
 protocol: TCP
 rules:
 l7proto: memcache
 l7:
 - command: get
 keyExact: xwing-coord
 - command: set
 keyExact: xwing-coord
 - fromEndpoints:
 - matchLabels:
 name: fleet-tracker
 toPorts:
 - ports:
 - port: '11211'
 protocol: TCP
 rules:
 l7proto: memcache
 l7:
 - command: get
 keyExact: awing-coord
 - command: get
 keyExact: xwing-coord

A CiliumNetworkPolicy contains a list of rules that define allowed memcached commands, and requests
that do not match any rules are denied. The rules explicitly match connections destined to the Memcached Service on TCP 11211.

The rules apply to inbound (i.e., “ingress”) connections bound for memcached-server pods (as indicated by app:memcached-server
in the “endpointSelector” section). The rules apply differently depending on the
client pod: app:a-wing, app:x-wing, or name:fleet-tracker as indicated by the “fromEndpoints” section.

With the policy in place, A-wings can only get and set the key “awing-coord”; similarly the X-Wing can only get and set “xwing-coord”. The Alliance Tracker can only get coordinates - not set.

Apply this Memcached-aware network security policy using kubectl in your main terminal window:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-memcached/memcd-sw-security-policy.yaml

If we then try to perform the attacks from the X-wing pod from the main terminal window, we’ll see that they are denied:

$ kubectl exec $XWING_POD sh -- -c "echo -en \"$GETAC\" | nc memcached-server 11211"
CLIENT_ERROR access denied

From the A-Wing terminal window, we can confirm that if A-wing goes outside of the bounds of its allowed calls. You may need to run the client.get command twice for the python call:

>>> client.get("awing-coord")
'4309.432,918.980'
>>> client.get("xwing-coord")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.7/site-packages/bmemcached/client/replicating.py", line 42, in get
 value, cas = server.get(key)
 File "/usr/local/lib/python3.7/site-packages/bmemcached/protocol.py", line 440, in get
 raise MemcachedException('Code: %d Message: %s' % (status, extra_content), status)
bmemcached.exceptions.MemcachedException: ("Code: 8 Message: b'access denied'", 8)

Similarly, the Alliance-Tracker cannot set any coordinates, which you can attempt from the Alliance-Tracker terminal window:

>>> client.get("xwing-coord")
'8893.34,234.3290'
>>> client.set("awing-coord","0.0,0.0",time=1200)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.7/site-packages/bmemcached/client/replicating.py", line 112, in set
 returns.append(server.set(key, value, time, compress_level=compress_level))
 File "/usr/local/lib/python3.7/site-packages/bmemcached/protocol.py", line 604, in set
 return self._set_add_replace('set', key, value, time, compress_level=compress_level)
 File "/usr/local/lib/python3.7/site-packages/bmemcached/protocol.py", line 583, in _set_add_replace
 raise MemcachedException('Code: %d Message: %s' % (status, extra_content), status)
bmemcached.exceptions.MemcachedException: ("Code: 8 Message: b'access denied'", 8)

The policy is working as expected.

With the CiliumNetworkPolicy in place, the allowed Memcached calls are still allowed from the respective pods.

In the main terminal window, execute:

$ kubectl exec $XWING_POD sh -- -c "echo -en \"$GETXC\" | nc memcached-server 11211"
VALUE xwing-coord 0 16
8893.34,234.3290
END
$ SETXC="set xwing-coord 0 1200 16\r\n9854.34,926.9187\r\nquit\r\n"
$ kubectl exec $XWING_POD sh -- -c "echo -en \"$SETXC\" | nc memcached-server 11211"
STORED
$ kubectl exec $XWING_POD sh -- -c "echo -en \"$GETXC\" | nc memcached-server 11211"
VALUE xwing-coord 0 16
9854.34,926.9187
END

In the A-Wing terminal window, execute:

>>> client.set("awing-coord","9852.542,892.1318",time=1200)
True
>>> client.get("awing-coord")
'9852.542,892.1318'
>>> exit()
exit

In the Alliance-Tracker terminal window, execute:

>>> client.get("awing-coord")
>>> client.get("xwing-coord")
>>> exit()
exit

Step 7: Clean Up

You have now installed Cilium, deployed a demo app, and tested
L7 memcached-aware network security policies. To clean up, in your main terminal window, run:

$ minikube delete

For some handy memcached references, see below:

	https://memcached.org/

	https://github.com/memcached/memcached/blob/master/doc/protocol.txt

	https://python-binary-memcached.readthedocs.io/en/latest/intro/

Locking down external access using AWS metadata

This document serves as an introduction to using Cilium to enforce policies
based on AWS instances metadata. It is a detailed walk-through of getting a
single-node Cilium environment running on your machine. It is designed to take
15-30 minutes with some experience running Kubernetes.

Setup Cilium

This guide will work with any approach to installing Cilium, including minikube,
as long as the cilium-operator pod in the deployment can reach the AWS API server
However, since the most common use of this mechanism is for Kubernetes clusters
running in AWS, we recommend trying it out along with the guide: Installation on AWS EKS .

Create AWS secrets

Before installing Cilium, a new Kubernetes Secret with the AWS Tokens needs to
be added to your Kubernetes cluster. This Secret will allow Cilium to gather
information from the AWS API which is needed to implement ToGroups policies.

AWS Access keys and IAM role

To create a new access token the following guide can be used [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration].
These keys need to have certain permissions set:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 }
]
}

As soon as you have the access tokens, the following secret needs to be added,
with each empty string replaced by the associated value as a base64-encoded string:

apiVersion: v1
kind: Secret
metadata:
 name: cilium-aws
 namespace: kube-system
type: Opaque
data:
 AWS_ACCESS_KEY_ID: ""
 AWS_SECRET_ACCESS_KEY: ""
 AWS_DEFAULT_REGION: ""

The base64 command line utility can be used to generate each value, for example:

$ echo -n "eu-west-1" | base64
ZXUtd2VzdC0x

This secret stores the AWS credentials, which will be used to connect the AWS
API.

$ kubectl create -f cilium-secret.yaml

To validate that the credentials are correct, the following pod can be created
for debugging purposes:

apiVersion: v1
kind: Pod
metadata:
 name: testing-aws-pod
 namespace: kube-system
spec:
 containers:
 - name: aws-cli
 image: mesosphere/aws-cli
 command: ['sh', '-c', 'sleep 3600']
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: cilium-aws
 key: AWS_ACCESS_KEY_ID
 optional: true
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: cilium-aws
 key: AWS_SECRET_ACCESS_KEY
 optional: true
 - name: AWS_DEFAULT_REGION
 valueFrom:
 secretKeyRef:
 name: cilium-aws
 key: AWS_DEFAULT_REGION
 optional: true

To list all of the available AWS instances, the following command can be used:

$ kubectl -n kube-system exec -ti testing-aws-pod -- aws ec2 describe-instances

Once the secret has been created and validated, the cilium-operator pod must be
restarted in order to pick up the credentials in the secret.
To do this, identify and delete the existing cilium-operator pod, which will be
recreated automatically:

$ kubectl get pods -l name=cilium-operator -n kube-system
NAME READY STATUS RESTARTS AGE
cilium-operator-7c9d69f7c-97vqx 1/1 Running 0 36h

$ kubectl delete pod cilium-operator-7c9d69f7c-97vqx

It is important for this demo that coredns is working correctly. To know the
status of coredns you can run the following command:

$ kubectl get deployment kube-dns -n kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
coredns 2 2 2 2 13h

Where at least one pod should be available.

Configure AWS Security Groups

Cilium’s AWS Metadata filtering capability enables explicit whitelisting
of communication between a subset of pods (identified by Kubernetes labels)
with a set of destination EC2 VMs (identified by membership in an AWS security group).

In this example, the destination EC2 VMs are a member of a single AWS security
group (‘sg-0f2146100a88d03c3’) and pods with label class=xwing should
only be able to make connections outside the cluster to the destination
VMs in that security group.

To enable this, the VMs acting as Kubernetes worker nodes must be able to
send traffic to the destination VMs that are being accessed by pods. One approach
for achieving this is to put all Kubernetes worker VMs in a single ‘k8s-worker’
security group, and then ensure that any security group that is referenced in a
Cilium toGroups policy has an allow all ingress rule (all ports) for connections from the
‘k8s-worker’ security group. Cilium filtering will then ensure that the only pods allowed
by policy can reach the destination VMs.

Create a sample policy

Deploy a demo application:

In this case we’re going to use a demo application that is used in other guides.
These manifests will create three microservices applications: deathstar,
tiefighter, and xwing. In this case, we are only going to use our xwing
microservice to secure communications to existing AWS instances.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/minikube/http-sw-app.yaml
service "deathstar" created
deployment "deathstar" created
deployment "tiefighter" created
deployment "xwing" created

Kubernetes will deploy the pods and service in the background. Running kubectl
get pods,svc will inform you about the progress of the operation. Each pod
will go through several states until it reaches Running at which point the
pod is ready.

$ kubectl get pods,svc
NAME READY STATUS RESTARTS AGE
po/deathstar-76995f4687-2mxb2 1/1 Running 0 1m
po/deathstar-76995f4687-xbgnl 1/1 Running 0 1m
po/tiefighter 1/1 Running 0 1m
po/xwing 1/1 Running 0 1m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/deathstar ClusterIP 10.109.254.198 <none> 80/TCP 3h
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3h

Policy Language:

ToGroups rules can be used to define policy in relation to cloud providers, like AWS.

kind: CiliumNetworkPolicy
apiVersion: cilium.io/v2
metadata:
 name: to-groups-sample
 namespace: default
spec:
 endpointSelector:
 matchLabels:
 org: alliance
 class: xwing
 egress:
 - toPorts:
 - ports:
 - port: '80'
 protocol: TCP
 toGroups:
 - aws:
 securityGroupsIds:
 - 'sg-0f2146100a88d03c3'

This policy allows traffic from pod xwing to any AWS instance that is in
the security group with ID sg-0f2146100a88d03c3.

Validate that derived policy is in place

Every time that a new policy with ToGroups rules is added, an equivalent policy
(also called “derivative policy”), will be created. This policy will contain the
set of CIDRs that correspond to the specification in ToGroups, e.g., the IPs of
all instances that are part of a specified security group. The list of IPs will
be updated periodically.

$ kubectl get cnp
NAME AGE
to-groups-sample 11s
to-groups-sample-togroups-044ba7d1-f491-11e8-ad2e-080027d2d952 10s

Eventually, the derivative policy will contain IPs in the ToCIDR section:

$ kubectl get cnp to-groups-sample-togroups-044ba7d1-f491-11e8-ad2e-080027d2d952

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 creationTimestamp: 2018-11-30T11:13:52Z
 generation: 1
 labels:
 io.cilium.network.policy.kind: derivative
 io.cilium.network.policy.parent.uuid: 044ba7d1-f491-11e8-ad2e-080027d2d952
 name: to-groups-sample-togroups-044ba7d1-f491-11e8-ad2e-080027d2d952
 namespace: default
 ownerReferences:
 - apiVersion: cilium.io/v2
 blockOwnerDeletion: true
 kind: CiliumNetworkPolicy
 name: to-groups-sample
 uid: 044ba7d1-f491-11e8-ad2e-080027d2d952
 resourceVersion: "34853"
 selfLink: /apis/cilium.io/v2/namespaces/default/ciliumnetworkpolicies/to-groups-sample-togroups-044ba7d1-f491-11e8-ad2e-080027d2d952
 uid: 04b289ba-f491-11e8-ad2e-080027d2d952
specs:
- egress:
 - toCIDRSet:
 - cidr: 34.254.113.42/32
 - cidr: 172.31.44.160/32
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
 endpointSelector:
 matchLabels:
 any:class: xwing
 any:org: alliance
 k8s:io.kubernetes.pod.namespace: default
 labels:
 - key: io.cilium.k8s.policy.name
 source: k8s
 value: to-groups-sample
 - key: io.cilium.k8s.policy.uid
 source: k8s
 value: 044ba7d1-f491-11e8-ad2e-080027d2d952
 - key: io.cilium.k8s.policy.namespace
 source: k8s
 value: default
 - key: io.cilium.k8s.policy.derived-from
 source: k8s
 value: CiliumNetworkPolicy
status:
 nodes:
 k8s1:
 enforcing: true
 lastUpdated: 2018-11-30T11:28:03.907678888Z
 localPolicyRevision: 28
 ok: true

The derivative rule should contain the following information:

	metadata.OwnerReferences: that contains the information about the ToGroups
policy.

	specs.Egress.ToCIDRSet: the list of private and public IPs of the instances
that correspond to the spec of the parent policy.

	status: whether or not the policy is enforced yet, and when the policy was
last updated.

The Cilium Endpoint status for the xwing should have policy enforcement
enabled only for egress connectivity:

$ kubectl get cep xwing
NAME ENDPOINT ID IDENTITY ID POLICY ENFORCEMENT ENDPOINT STATE IPV4 IPV6
xwing 23453 63929 egress ready 10.10.0.95 f00d::a0a:0:0:22cf

In this example, xwing pod can only connect to 34.254.113.42/32 and
172.31.44.160/32 and connectivity to other IP will be denied.

Setting up Cilium in AWS ENI mode

Create an AWS cluster

Setup a Kubernetes on AWS. You can use any method you prefer, but for the
simplicity of this tutorial, we are going to use eksctl [https://github.com/weaveworks/eksctl]. For more details on how to set up an
EKS cluster using eksctl, see the section Installation on AWS EKS.

eksctl create cluster -n eni-cluster -N 0

Disable the aws-node DaemonSet (EKS only)

If you are running an EKS cluster, disable the aws-node DaemonSet so it
does not interfere with the ENIs managed by Cilium:

kubectl -n kube-system set image daemonset/aws-node aws-node=docker.io/spaster/alpine-sleep

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.eni=true \
 --set global.egressMasqueradeInterfaces=eth0 \
 --set global.tunnel=disabled \
 --set global.nodeinit.enabled=true \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

The above options are assuming that masquerading is desired and that the VM
is connected to the VPC using eth0. It will route all traffic that does
not stay in the VPC via eth0 and masquerade it.

If you want to avoid masquerading, set global.masquerade=false. You must
ensure that the security groups associated with the ENIs (eth1,
eth2, …) allow for egress traffic to outside of the VPC. By default,
the security groups for pod ENIs are derived from the primary ENI
(eth0).

Scale up the cluster

eksctl get nodegroup --cluster eni-cluster
CLUSTER NODEGROUP CREATED MIN SIZE MAX SIZE DESIRED CAPACITY INSTANCE TYPE IMAGE ID
test-cluster ng-25560078 2019-07-23T06:05:35Z 0 2 0 m5.large ami-0923e4b35a30a5f53

eksctl scale nodegroup --cluster eni-cluster -n ng-25560078 -N 2
[ℹ] scaling nodegroup stack "eksctl-test-cluster-nodegroup-ng-25560078" in cluster eksctl-test-cluster-cluster
[ℹ] scaling nodegroup, desired capacity from 0 to 2

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

Using kube-router to run BGP

This guide explains how to configure Cilium and kube-router to co-operate to
use kube-router for BGP peering and route propagation and Cilium for policy
enforcement and load-balancing.

Note

This is a beta feature. Please provide feedback and file a GitHub issue if
you experience any problems.

Deploy kube-router

Download the kube-router DaemonSet template:

curl -LO https://raw.githubusercontent.com/cloudnativelabs/kube-router/v0.2.0-beta.7/daemonset/generic-kuberouter-only-advertise-routes.yaml

Open the file generic-kuberouter-only-advertise-routes.yaml and edit the
args: section. The following arguments are requried to be set to
exactly these values:

- --run-router=true
- --run-firewall=false
- --run-service-proxy=false
- --enable-cni=false
- --enable-pod-egress=false

The following arguments are optional and may be set according to your
needs. For the purpose of keeping this guide simple, the following values are
being used which require the least preparations in your cluster. Please see the
kube-router user guide [https://github.com/cloudnativelabs/kube-router/blob/master/docs/user-guide.md]
for more information.

- --enable-ibgp=true
- --enable-overlay=true
- --advertise-cluster-ip=true
- --advertise-external-ip=true
- --advertise-loadbalancer-ip=true

The following arguments are optional and should be set if you want BGP peering
with an external router. This is useful if you want externally routable Kubernetes
Pod and Service IPs. Note the values used here should be changed to
whatever IPs and ASNs are configured on your external router.

- --cluster-asn=65001
- --peer-router-ips=10.0.0.1,10.0.2
- --peer-router-asns=65000,65000

Apply the DaemonSet file to deploy kube-router and verify it has come up
correctly:

$ kubectl apply -f generic-kuberouter-only-advertise-routes.yaml
$ kubectl -n kube-system get pods -l k8s-app=kube-router
NAME READY STATUS RESTARTS AGE
kube-router-n6fv8 1/1 Running 0 10m
kube-router-nj4vs 1/1 Running 0 10m
kube-router-xqqwc 1/1 Running 0 10m
kube-router-xsmd4 1/1 Running 0 10m

Deploy Cilium

In order for routing to be delegated to kube-router, tunneling/encapsulation
must be disabled. This is done by setting the tunnel=disabled in the
ConfigMap cilium-config or by adjusting the DaemonSet to run the
cilium-agent with the argument --tunnel=disabled:

Encapsulation mode for communication between nodes
Possible values:
- disabled
- vxlan (default)
- geneve
tunnel: "disabled"

You can then install Cilium according to the instructions in section
Requirements.

Ensure that Cilium is up and running:

$ kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-fhpk2 1/1 Running 0 45m
cilium-jh6kc 1/1 Running 0 44m
cilium-rlx6n 1/1 Running 0 44m
cilium-x5x9z 1/1 Running 0 45m

Verify Installation

Verify that kube-router has installed routes:

$ kubectl -n kube-system exec -ti cilium-fhpk2 -- ip route list scope global
default via 172.0.32.1 dev eth0 proto dhcp src 172.0.50.227 metric 1024
10.2.0.0/24 via 10.2.0.172 dev cilium_host src 10.2.0.172
10.2.1.0/24 via 172.0.51.175 dev eth0 proto 17
10.2.2.0/24 dev tun-172011760 proto 17 src 172.0.50.227
10.2.3.0/24 dev tun-1720186231 proto 17 src 172.0.50.227

In the above example, we see three categories of routes that have been
installed:

	Local PodCIDR: This route points to all pods running on the host and makes
these pods available to
* 10.2.0.0/24 via 10.2.0.172 dev cilium_host src 10.2.0.172

	BGP route: This type of route is installed if kube-router determines that
the remote PodCIDR can be reached via a router known to the local host. It
will instruct pod to pod traffic to be forwarded directly to that router
without requiring any encapsulation.
* 10.2.1.0/24 via 172.0.51.175 dev eth0 proto 17

	IPIP tunnel route: If no direct routing path exists, kube-router will fall
back to using an overlay and establish an IPIP tunnel between the nodes.
* 10.2.2.0/24 dev tun-172011760 proto 17 src 172.0.50.227
* 10.2.3.0/24 dev tun-1720186231 proto 17 src 172.0.50.227

You can test connectivity by deploying the following connectivity checker pods:

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-7d9f9564df-2vbpw 1/1 Running 0 26m
echo-7d9f9564df-ff8xh 1/1 Running 0 26m
echo-7d9f9564df-pnbgc 1/1 Running 0 26m
echo-7d9f9564df-sbrxh 1/1 Running 0 26m
echo-7d9f9564df-wzfrc 1/1 Running 0 26m
probe-8689f6579-7l7w7 1/1 Running 0 27m
probe-8689f6579-fvqp8 1/1 Running 0 27m
probe-8689f6579-lvjlh 1/1 Running 0 27m
probe-8689f6579-m26g8 1/1 Running 0 27m
probe-8689f6579-tzbjk 1/1 Running 0 27m

Setting up Cluster Mesh

This is a step-by-step guide on how to build a mesh of Kubernetes clusters by
connecting them together, enabling pod-to-pod connectivity across all clusters,
define global services to load-balance between clusters and enforce security
policies to restrict access.

Prerequisites

	PodCIDR ranges in all clusters must be non-conflicting.

	This guide and the referenced scripts assume that Cilium was installed using
the Installation with managed etcd instructions which leads to etcd being
managed by Cilium using etcd-operator. You can use any way to manage etcd but
you will have to adjust some of the scripts to account for different secret
names and adjust the LoadBalancer to expose the etcd pods.

	Nodes in all clusters must have IP connectivity between each other. This
requirement is typically met by establishing peering or VPN tunnels between
the networks of the nodes of each cluster.

	All nodes must have a unique IP address assigned them. Node IPs of clusters
being connected together may not conflict with each other.

	Cilium must be configured to use etcd as the kvstore. Consul is not supported
by cluster mesh at this point.

	It is highly recommended to use a TLS protected etcd cluster with Cilium. The
server certificate of etcd must whitelist the host name *.mesh.cilium.io.
If you are using the cilium-etcd-operator as set up in the
Installation with managed etcd instructions then this is automatically
taken care of.

	The network between clusters must allow the inter-cluster communication. The
exact ports are documented in the Firewall Rules section.

Prepare the clusters

Specify the cluster name and ID

Each cluster must be assigned a unique human-readable name. The name will be
used to group nodes of a cluster together. The cluster name is specified with
the --cluster-name=NAME argument or cluster-name ConfigMap option.

To ensure scalability of identity allocation and policy enforcement, each
cluster continues to manage its own security identity allocation. In order to
guarantee compatibility with identities across clusters, each cluster is
configured with a unique cluster ID configured with the --cluster-id=ID
argument or cluster-id ConfigMap option. The value must be between 1 and
255.

kubectl -n kube-system edit cm cilium-config
[... add/edit ...]
cluster-name: cluster1
cluster-id: "1"

Repeat this step for each cluster.

Expose the Cilium etcd to other clusters

The Cilium etcd must be exposed to other clusters. There are many ways to
achieve this. The method documented in this guide will work with cloud
providers that implement the Kubernetes LoadBalancer service type:

GCP

AWS

apiVersion: v1
kind: Service
metadata:
 name: cilium-etcd-external
 annotations:
 cloud.google.com/load-balancer-type: "Internal"
spec:
 type: LoadBalancer
 ports:
 - port: 2379
 selector:
 app: etcd
 etcd_cluster: cilium-etcd
 io.cilium/app: etcd-operator

apiVersion: v1
kind: Service
metadata:
 name: cilium-etcd-external
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0
spec:
 type: LoadBalancer
 ports:
 - port: 2379
 selector:
 app: etcd
 etcd_cluster: cilium-etcd
 io.cilium/app: etcd-operator

The example used here exposes the etcd cluster as managed by
cilium-etcd-operator installed by the standard installation instructions as
an internal service which means that it is only exposed inside of a VPC and not
publicly accessible outside of the VPC. It is recommended to use a static IP
for the ServiceIP to avoid requiring to update the IP mapping as done in one of
the later steps.

If you are running the cilium-etcd-operator you can simply apply the following
service to expose etcd:

GCP

AWS

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/clustermesh/cilium-etcd-external-service/cilium-etcd-external-gke.yaml

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/clustermesh/cilium-etcd-external-service/cilium-etcd-external-eks.yaml

Note

Make sure that you create the service in namespace in which cilium and/or
etcd is running. Depending on which installation method you chose, this
could be kube-system or cilium.

Extract the TLS keys and generate the etcd configuration

The cluster mesh control plane performs TLS based authentication and encryption.
For this purpose, the TLS keys and certificates of each etcd need to be made
available to all clusters that wish to connect.

	Clone the cilium/clustermesh-tools repository. It contains scripts to
extracts the secrets and generate a Kubernetes secret in form of a YAML
file:

git clone https://github.com/cilium/clustermesh-tools.git
cd clustermesh-tools

	Ensure that the kubectl context is pointing to the cluster you want to
extract the secret from.

	Extract the TLS certificate, key and root CA authority.

./extract-etcd-secrets.sh

This will extract the keys that Cilium is using to connect to the etcd in
the local cluster. The key files are written to
config/<cluster-name>.*.{key|crt|-ca.crt}

	Repeat this step for all clusters you want to connect with each other.

	Generate a single Kubernetes secret from all the keys and certificates
extracted. The secret will contain the etcd configuration with the service
IP or host name of the etcd including the keys and certificates to access
it.

./generate-secret-yaml.sh > clustermesh.yaml

Note

The key files in config/ and the secret represented as YAML are
sensitive. Anyone gaining access to these files is able to connect to the
etcd instances in the local cluster. Delete the files after the you are done
setting up the cluster mesh.

Ensure that the etcd service names can be resolved

For TLS authentication to work properly, agents will connect to etcd in remote
clusters using a pre-defined naming schema {clustername}.mesh.cilium.io. In
order for DNS resolution to work on these virtual host name, the names are
statically mapped to the service IP via the /etc/hosts file.

	The following script will generate the required segment which has to be
inserted into the cilium DaemonSet:

./generate-name-mapping.sh > ds.patch

The ds.patch will look something like this:

spec:
 template:
 spec:
 hostAliases:
 - ip: "10.138.0.18"
 hostnames:
 - cluster1.mesh.cilium.io
 - ip: "10.138.0.19"
 hostnames:
 - cluster2.mesh.cilium.io

	Apply the patch to all DaemonSets in all clusters:

kubectl -n kube-system patch ds cilium -p "$(cat ds.patch)"

Establish connections between clusters

1. Import the cilium-clustermesh secret that you generated in the last
chapter into all of your clusters:

kubectl -n kube-system apply -f clustermesh.yaml

	Restart the cilium-agent in all clusters so it picks up the new cluster
name, cluster id and mounts the cilium-clustermesh secret. Cilium will
automatically establish connectivity between the clusters.

kubectl -n kube-system delete pod -l k8s-app=cilium

	For global services to work (see below), also restart the cilium-operator:

kubectl -n kube-system delete pod -l name=cilium-operator

Test pod connectivity between clusters

Run cilium node list to see the full list of nodes discovered. You can run
this command inside any Cilium pod in any cluster:

$ kubectl -n kube-system exec -ti cilium-g6btl cilium node list
Name IPv4 Address Endpoint CIDR IPv6 Address Endpoint CIDR
cluster5/ip-172-0-117-60.us-west-2.compute.internal 172.0.117.60 10.2.2.0/24 <nil> f00d::a02:200:0:0/112
cluster5/ip-172-0-186-231.us-west-2.compute.internal 172.0.186.231 10.2.3.0/24 <nil> f00d::a02:300:0:0/112
cluster5/ip-172-0-50-227.us-west-2.compute.internal 172.0.50.227 10.2.0.0/24 <nil> f00d::a02:0:0:0/112
cluster5/ip-172-0-51-175.us-west-2.compute.internal 172.0.51.175 10.2.1.0/24 <nil> f00d::a02:100:0:0/112
cluster7/ip-172-0-121-242.us-west-2.compute.internal 172.0.121.242 10.4.2.0/24 <nil> f00d::a04:200:0:0/112
cluster7/ip-172-0-58-194.us-west-2.compute.internal 172.0.58.194 10.4.1.0/24 <nil> f00d::a04:100:0:0/112
cluster7/ip-172-0-60-118.us-west-2.compute.internal 172.0.60.118 10.4.0.0/24 <nil> f00d::a04:0:0:0/112

$ kubectl exec -ti pod-cluster5-xxx curl <pod-ip-cluster7>
[...]

Load-balancing with Global Services

Establishing load-balancing between clusters is achieved by defining a
Kubernetes service with identical name and namespace in each cluster and adding
the annotation io.cilium/global-service: "true"` to declare it global.
Cilium will automatically perform load-balancing to pods in both clusters.

apiVersion: v1
kind: Service
metadata:
 name: rebel-base
 annotations:
 io.cilium/global-service: "true"
spec:
 type: ClusterIP
 ports:
 - port: 80
 selector:
 name: rebel-base

Deploying a simple example service

	In cluster 1, deploy:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/clustermesh/global-service-example/cluster1.yaml

	In cluster 2, deploy:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/clustermesh/global-service-example/cluster2.yaml

	From either cluster, access the global service:

kubectl exec -ti xwing-xxx -- curl rebel-base

You will see replies from pods in both clusters.

Security Policies

As addressing and network security is decoupled, network security enforcement
automatically spans across clusters. Note that Kubernetes security policies are
not automatically distributed across clusters, it is your responsibility to
apply CiliumNetworkPolicy or NetworkPolicy in all clusters.

Allowing specific communication between clusters

The following policy illustrates how to allow particular pods to allow
communicate between two clusters. The cluster name refers to the name given via
the --cluster-name agent option or cluster-name ConfigMap option.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-cross-cluster"
 description: "Allow x-wing in cluster1 to contact rebel-base in cluster2"
spec:
 endpointSelector:
 matchLabels:
 name: x-wing
 io.cilium.k8s.policy.cluster: cluster1
 egress:
 - toEndpoints:
 - matchLabels:
 name: rebel-base
 io.cilium.k8s.policy.cluster: cluster2

Troubleshooting

Use the following list of steps to troubleshoot issues with ClusterMesh:

Generic

	Validate that the cilium-xxx as well as the cilium-operator-xxx` pods
are healthy and ready. It is important that the ``cilium-operator is
healthy as well as it is responsible for synchronizing state from the local
cluster into the kvstore. If this fails, check the logs of these pods to
track the reason for failure.

	Validate that the ClusterMesh subsystem is initialized by looking for a
cilium-agent log message like this:

level=info msg="Initializing ClusterMesh routing" path=/var/lib/cilium/clustermesh/ subsys=daemon

Control Plane Connectivity

	Validate that the configuration for remote clusters is picked up correctly.
For each remote cluster, an info log message New remote cluster
configuration along with the remote cluster name must be logged in the
cilium-agent logs.

If the configuration is now found, check the following:

	The Kubernetes secret clustermesh-secrets is imported correctly.

	The secret contains a file for each remote cluster with the filename
matching the name of the remote cluster.

	The contents of the file in the secret is a valid etcd configuration
consisting of the IP to reach the remote etcd as well as the required
certificates to connect to that etcd.

	Run a kubectl exec -ti [...] bash in one of the Cilium pods and check
the contents of the directory /var/lib/cilium/clustermesh/. It must
contain a configuration file for each remote cluster along with all the
required SSL certificates and keys. The filenames must match the cluster
names as provided by the --cluster-name argument or cluster-name
ConfigMap option. If the directory is empty or incomplete, regenerate the
secret again and ensure that the secret is correctly mounted into the
DaemonSet.

	Validate that the connection to the remote cluster could be established.
You will see a log message like this in the cilium-agent logs for each
remote cluster:

level=info msg="Connection to remote cluster established"

If the connection failed, you will see a warning like this:

level=warning msg="Unable to establish etcd connection to remote cluster"

If the connection fails, the cause can be one of the following:

	Validate that the hostAliases section in the Cilium DaemonSet maps
each remote cluster to the IP of the LoadBalancer that makes the remote
control plane available.

	Validate that a local node in the source cluster can reach the IP
specified in the hostAliases section. The clustermesh-secrets
secret contains a configuration file for each remote cluster, it will
point to a logical name representing the remote cluster:

endpoints:
- https://cluster1.mesh.cilium.io:2379

The name will NOT be resolvable via DNS outside of the cilium pod. The
name is mapped to an IP using hostAliases. Run kubectl -n
kube-system get ds cilium -o yaml and grep for the FQDN to retrieve the
IP that is configured. Then use curl to validate that the port is
reachable.

	A firewall between the local cluster and the remote cluster may drop the
control plane connection. Ensure that port 2379/TCP is allowed.

State Propagation

	Run cilium node list in one of the Cilium pods and validate that it
lists both local nodes and nodes from remote clusters. If this discovery
does not work, validate the following:

	In each cluster, check that the kvstore contains information about
local nodes by running:

cilium kvstore get --recursive cilium/state/nodes/v1/

Note

The kvstore will only contain nodes of the local cluster. It will
not contain nodes of remote clusters. The state in the kvstore is
used for other clusters to discover all nodes so it is important that
local nodes are listed.

	Validate the connectivity health matrix across clusters by running
cilium-health status inside any Cilium pod. It will list the status of
the connectivity health check to each remote node.

If this fails:

	Make sure that the network allows the health checking traffic as
specified in the section Firewall Rules.

	Validate that identities are synchronized correctly by running cilium
identity list in one of the Cilium pods. It must list identities from all
clusters. You can determine what cluster an identity belongs to by looking
at the label io.cilium.k8s.policy.cluster.

If this fails:

	Is the identity information available in the kvstore of each cluster? You
can confirm this by running cilium kvstore get --recursive
cilium/state/identities/v1/.

Note

The kvstore will only contain identities of the local cluster. It
will not contain identities of remote clusters. The state in the
kvstore is used for other clusters to discover all identities so it is
important that local identities are listed.

	Validate that the IP cache is synchronized correctly by running cilium
bpf ipcache list or cilium map get cilium_ipcache. The output must
contain pod IPs from local and remote clusters.

If this fails:

	Is the IP cache information available in the kvstore of each cluster? You
can confirm this by running cilium kvstore get --recursive
cilium/state/ip/v1/.

Note

The kvstore will only contain IPs of the local cluster. It will
not contain IPs of remote clusters. The state in the kvstore is
used for other clusters to discover all pod IPs so it is important
that local identities are listed.

	When using global services, ensure that global services are configured with
endpoints from all clusters. Run cilium service list in any Cilium pod
and validate that the backend IPs consist of pod IPs from all clusters
running relevant backends. You can further validate the correct datapath
plumbing by running cilium bpf lb list to inspect the state of the BPF
maps.

If this fails:

	Are services available in the kvstore of each cluster? You can confirm
this by running cilium kvstore get --recursive
cilium/state/services/v1/.

	Run cilium debuginfo and look for the section “k8s-service-cache”. In
that section, you will find the contents of the service correlation
cache. it will list the Kubernetes services and endpoints of the local
cluster. It will also have a section externalEndpoints which must
list all endpoints of remote clusters.

k8s-service-cache

(*k8s.ServiceCache)(0xc00000c500)({
[...]
 services: (map[k8s.ServiceID]*k8s.Service) (len=2) {
 (k8s.ServiceID) default/kubernetes: (*k8s.Service)(0xc000cd11d0)(frontend:172.20.0.1/ports=[https]/selector=map[]),
 (k8s.ServiceID) kube-system/kube-dns: (*k8s.Service)(0xc000cd1220)(frontend:172.20.0.10/ports=[metrics dns dns-tcp]/selector=map[k8s-app:kube-dns])
 },
 endpoints: (map[k8s.ServiceID]*k8s.Endpoints) (len=2) {
 (k8s.ServiceID) kube-system/kube-dns: (*k8s.Endpoints)(0xc0000103c0)(10.16.127.105:53/TCP,10.16.127.105:53/UDP,10.16.127.105:9153/TCP),
 (k8s.ServiceID) default/kubernetes: (*k8s.Endpoints)(0xc0000103f8)(192.168.33.11:6443/TCP)
 },
 externalEndpoints: (map[k8s.ServiceID]k8s.externalEndpoints) {
 }
})

The sections services and endpoints represent the services of the
local cluster, the section externalEndpoints lists all remote
services and will be correlated with services matching the same
ServiceID.

Limitations

	L7 security policies currently only work across multiple clusters if worker
nodes have routes installed allowing to route pod IPs of all clusters. This
is given when running in direct routing mode by running a routing daemon or
--auto-direct-node-routes but won’t work automatically when using
tunnel/encapsulation mode.

	The number of clusters that can be connected together is currently limited
to 255. This limitation will be lifted in the future when running in direct
routing mode or when running in encapsulation mode with encryption enabled.

Roadmap Ahead

	Future versions will put an API server before etcd to provide better
scalability and simplify the installation to support any etcd support

	Introduction of IPsec and use of ESP or utilization of the traffic class
field in the IPv6 header will allow to use more than 8 bits for the
cluster-id and thus support more than 256 clusters.

Cilium integration with Flannel (beta)

This guide contains the necessary steps to run Cilium on top of your Flannel
cluster.

If you have a cluster already set up with Flannel you will not need to install
Flannel again.

This Cilium integration with Flannel was performed with Flannel 0.10.0 and
Kubernetes >= 1.9. If you find any issues with previous Flannel versions please
feel free to reach out to us to help you.

Note

This is a beta feature. Please provide feedback and file a GitHub issue if
you experience any problems.

The feature lacks support of the following, which will be resolved in
upcoming Cilium releases:

	L7 policy enforcement

Flannel installation

NOTE: If kubeadm is used, then pass --pod-network-cidr=10.244.0.0/16 to
kubeadm init to ensure that the podCIDR is set.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/addons/flannel/flannel.yaml

Wait until all pods to be in ready state before preceding to the next step.

Cilium installation

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.flannel.enabled=true \
 > cilium.yaml

Set global.flannel.uninstallOnExit=true if you want Cilium to uninstall
itself when the Cilium pod is stopped.

If the Flannel bridge has a different name than cni0, you must specify
the name by setting global.flannel.masterDevice=....

Optional step:
If your cluster has already pods being managed by Flannel, there is also
an option available that allows Cilium to start managing those pods without
requiring to restart them. To enable this functionality you need to set the
value global.flannel.manageExistingContainers=true

Once you have changed the ConfigMap accordingly, you can deploy Cilium.

kubectl create -f cilium.yaml

Cilium might not come up immediately on all nodes, since Flannel only sets up
the bridge network interface that connects containers with the outside world
when the first container is created on that node. In this case, Cilium will wait
until that bridge is created before marking itself as Ready.

IPVLAN based Networking (beta)

This guide explains how to configure Cilium to set up an ipvlan-based
datapath instead of the default veth-based one.

Note

This is a beta feature. Please provide feedback and file a GitHub issue if
you experience any problems.

The feature lacks support of the following, which will be resolved in
upcoming Cilium releases:

	IPVLAN L2 mode

	L7 policy enforcement

	NAT64

	IPVLAN with tunneling

Note

The ipvlan-based datapath in L3 mode requires v4.12 or more recent Linux
kernel, while L3S mode, in addition, requires a stable kernel with the fix
mentioned in this document (see below).

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.datapathMode=ipvlan \
 --set global.ipvlan.masterDevice=eth0 \
 --set global.tunnel=disabled \
 > cilium.yaml

It is required to specify the master ipvlan device which typically points to a
networking device that is facing the external network. This is done through
setting global.ipvlan.masterDevice to the name of the networking device
such as "eth0" or "bond0", for example. Be aware this option will be
used by all nodes, so it is required this device name is consistent on all
nodes where you are going to deploy Cilium.

The ipvlan datapath only supports direct routing mode right now, therefore
tunneling must be disabled through setting tunnel to "disabled".

To make ipvlan work between hosts, routes on each host have to be installed
either manually or automatically by Cilium. The latter can be enabled
through setting global.autoDirectNodeRoutes to "true".

The global.installIptablesRules parameter is optional and if set to
"false" then Cilium will not install any iptables rules which are
mainly for interaction with kube-proxy, and additionally it will trigger
ipvlan setup in L3 mode. For the default case where the latter is "true",
ipvlan is operated in L3S mode such that netfilter in host namespace
is not bypassed. Optionally, the agent can also be set up for masquerading
all traffic leaving the ipvlan master device if global.masquerade is set
to "true". Note that in order for L3S mode to work correctly, a kernel
with the following fix is required: d5256083f62e [https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/commit/?id=d5256083f62e2720f75bb3c5a928a0afe47d6bc3] .
This fix is included in stable kernels v4.9.155, 4.14.98, 4.19.20,
4.20.6 or higher. Without this kernel fix, ipvlan in L3S mode cannot
connect to kube-apiserver.

Masquerading with iptables in L3-only mode is not possible since netfilter
hooks are bypassed in the kernel in this mode, hence L3S (symmetric) had
to be introduced in the kernel at the cost of performance. However, Cilium
supports its own BPF-based masquerading which does not rely in any way on
iptables masquerading. If the global.installIptablesRules parameter is set
to "false" and global.masquerade set to "true", then Cilium will
use the more efficient BPF-based masquerading where ipvlan can remain in
L3 mode as well (instead of L3S). A Linux kernel v4.16 or higher would be
required for BPF-based masquerading.

Example ConfigMap extract for ipvlan in pure L3 mode:

helm template ciliumn \
 --namespace kube-system \
 --set global.datapathMode=ipvlan \
 --set global.ipvlan.masterDevice=bond0 \
 --set global.tunnel=disabled \
 --set global.installIptablesRules=false \
 --set global.l7Proxy.enabled=false \
 --set global.autoDirectNodeRoutes=true \
 > cilium.yaml

Example ConfigMap extract for ipvlan in L3S mode with iptables
masquerading all traffic leaving the node:

helm template cilium \
 --namespace kube-system \
 --set global.datapathMode=ipvlan \
 --set global.ipvlan.masterDevice=bond0 \
 --set global.tunnel=disabled \
 --set global.masquerade=true \
 --set global.autoDirectNodeRoutes=true \
 > cilium.yaml

Example ConfigMap extract for ipvlan in L3 mode with more efficient
BPF-based masquerading instead of iptables-based:

helm template cilium \
 --namespace kube-system \
 --set global.datapathMode=ipvlan \
 --set global.ipvlan.masterDevice=bond0 \
 --set global.tunnel=disabled \
 --set global.masquerade=true \
 --set global.installIptablesRules=false \
 --set global.autoDirectNodeRoutes=true \
 > cilium.yaml

Apply the DaemonSet file to deploy Cilium and verify that it has
come up correctly:

kubectl create -f ./cilium.yaml
kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-crf7f 1/1 Running 0 10m

For further information on Cilium’s ipvlan datapath mode, see Architecture.

Transparent Encryption (beta)

This guide explains how to configure Cilium to use IPsec based transparent
encryption using Kubernetes secrets to distribute the IPsec keys. After this
configuration is complete all traffic between Cilium
managed endpoints, as well as Cilium managed host traffic, will be encrypted
using IPsec. This guide uses Kubernetes secrets to distribute keys. Alternatively,
keys may be manually distributed but that is not shown here.

Note

This is a beta feature. Please provide feedback and file a GitHub issue
if you experience any problems.

Generate & import the PSK

First create a Kubernetes secret for the IPsec keys to be stored.
This will generate the necessary IPsec keys which will be distributed as a
Kubernetes secret called cilium-ipsec-keys. In this example we use
GMC-128-AES, but any of the supported
Linux algorithms may be used. To generate use the following

$ kubectl create -n kube-system secret generic cilium-ipsec-keys \
 --from-literal=keys="3 rfc4106(gcm(aes)) $(echo $(dd if=/dev/urandom count=20 bs=1 2> /dev/null| xxd -p -c 64)) 128"

The secret can be displayed with kubectl -n kube-system get secret and will be
listed as ‘cilium-ipsec-keys’.

$ kubectl -n kube-system get secrets cilium-ipsec-keys
NAME TYPE DATA AGE
cilium-ipsec-keys Opaque 1 176m

Enable Encryption in Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML files and deploy them:

helm template cilium \
 --namespace cilium \
 --set global.encryption.enabled=true \
 --set global.encryption.nodeEncryption=false \
 > cilium.yaml

Encryption interface

If direct routing is being used an additional argument can be used to identify the
network facing interface. If no interface is specified the default route link is
chosen by inspecting the routing tables. This will work in many cases but depending
on routing rules users may need to specify the encryption interface as follows:

--set global.encryption.interface=ethX

Node to node encryption

In order to enable node-to-node encryption, add:

[...]
--set global.encryption.enabled=true \
--set global.encryption.nodeEncryption=true

Deploy Cilium

kubectl create -f cilium.yaml

At this point the Cilium managed nodes will be using IPsec for all traffic. For further
information on Cilium’s transparent encryption, see Architecture.

Validate the Setup

Run a bash shell in one of the Cilium pods with kubectl -n kube-system
exec -ti cilium-7cpsm -- bash and execute the following commands:

	Install tcpdump

apt-get update
apt-get -y install tcpdump

	Check that traffic is encrypted:

tcpdump -n -i cilium_vxlan
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on cilium_vxlan, link-type EN10MB (Ethernet), capture size 262144 bytes
15:16:21.626416 IP 10.60.1.1 > 10.60.0.1: ESP(spi=0x00000001,seq=0x57e2), length 180
15:16:21.626473 IP 10.60.1.1 > 10.60.0.1: ESP(spi=0x00000001,seq=0x57e3), length 180
15:16:21.627167 IP 10.60.0.1 > 10.60.1.1: ESP(spi=0x00000001,seq=0x579d), length 100
15:16:21.627296 IP 10.60.0.1 > 10.60.1.1: ESP(spi=0x00000001,seq=0x579e), length 100
15:16:21.627523 IP 10.60.0.1 > 10.60.1.1: ESP(spi=0x00000001,seq=0x579f), length 180
15:16:21.627699 IP 10.60.1.1 > 10.60.0.1: ESP(spi=0x00000001,seq=0x57e4), length 100
15:16:21.628408 IP 10.60.1.1 > 10.60.0.1: ESP(spi=0x00000001,seq=0x57e5), length 100

Key Rotation

To replace cilium-ipsec-keys secret with a new keys,

KEYID=$(kubectl get secret -n cilium cilium-ipsec-keys -o yaml|grep keys: | awk '{print $2}' | base64 -d | awk '{print $1}')
if [[$KEYID -gt 15]]; then KEYID=0; fi
data=$(echo "{\"stringData\":{\"keys\":\"$((($KEYID+1))) "rfc4106\(gcm\(aes\)\)" $(echo $(dd if=/dev/urandom count=20 bs=1 2> /dev/null| xxd -p -c 64)) 128\"}}")
kubectl patch secret -n cilium cilium-ipsec-keys -p="${data}" -v=1

Then restart cilium agents to transition to the new key. During transition the
new and old keys will be in use. The cilium agent keeps per endpoint data on
which key is used by each endpoint and will use the correct key if either side
has not yet been updated. In this way encryption will work as new keys are
rolled out.

The KEYID environment variable in the above example stores the current key ID
used by Cilium. The key variable is a uint8 with value between 0-16 and should
be monotonically increasing every re-key with a rollover from 16 to 0. The
cilium agent will default to KEYID of zero if its not specified in the secret.

Troubleshooting

	Make sure that the Cilium pods have kvstore connectivity:

cilium status
KVStore: Ok etcd: 1/1 connected: http://127.0.0.1:31079 - 3.3.2 (Leader)
[...]

	Check for level=warning and level=error messages in the Cilium log files

	Run a bash in a Cilium and validate the following:

	Routing rules matching on fwmark:

ip rule list
1: from all fwmark 0xd00/0xf00 lookup 200
1: from all fwmark 0xe00/0xf00 lookup 200
[...]

	Content of routing table 200

ip route list table 200
local 10.60.0.0/24 dev cilium_vxlan proto 50 scope host
10.60.1.0/24 via 10.60.0.1 dev cilium_host

	XFRM policy:

ip xfrm p
src 10.60.1.1/24 dst 10.60.0.1/24
 dir fwd priority 0
 mark 0xd00/0xf00
 tmpl src 10.60.1.1 dst 10.60.0.1
 proto esp spi 0x00000001 reqid 1 mode tunnel
src 10.60.1.1/24 dst 10.60.0.1/24
 dir in priority 0
 mark 0xd00/0xf00
 tmpl src 10.60.1.1 dst 10.60.0.1
 proto esp spi 0x00000001 reqid 1 mode tunnel
src 10.60.0.1/24 dst 10.60.1.1/24
 dir out priority 0
 mark 0xe00/0xf00
 tmpl src 10.60.0.1 dst 10.60.1.1
 proto esp spi 0x00000001 reqid 1 mode tunnel

	XFRM state:

ip xfrm s
src 10.60.0.1 dst 10.60.1.1
 proto esp spi 0x00000001 reqid 1 mode tunnel
 replay-window 0
 auth-trunc hmac(sha256) 0x6162636465666768696a6b6c6d6e6f70717273747576777a797a414243444546 96
 enc cbc(aes) 0x6162636465666768696a6b6c6d6e6f70717273747576777a797a414243444546
 anti-replay context: seq 0x0, oseq 0xe0c0, bitmap 0x00000000
 sel src 0.0.0.0/0 dst 0.0.0.0/0
src 10.60.1.1 dst 10.60.0.1
 proto esp spi 0x00000001 reqid 1 mode tunnel
 replay-window 0
 auth-trunc hmac(sha256) 0x6162636465666768696a6b6c6d6e6f70717273747576777a797a414243444546 96
 enc cbc(aes) 0x6162636465666768696a6b6c6d6e6f70717273747576777a797a414243444546
 anti-replay context: seq 0x0, oseq 0x0, bitmap 0x00000000
 sel src 0.0.0.0/0 dst 0.0.0.0/0

Disabling Encryption

To disable the encryption, regenerate the YAML with the option
global.encryption.enabled=false

Host-Reachable Services (beta)

This guide explains how to configure Cilium to enable services to be
reached from the host namespace.

Note

This is a beta feature. Please provide feedback and file a GitHub issue if
you experience any problems.

Note

Host-reachable services for TCP and UDP requires a v4.19.57, v5.1.16, v5.2.0
or more recent Linux kernel. Note that v5.0.y kernels do not have the fix
required to run host-reachable services with UDP since at this point in time
the v5.0.y stable kernel is end-of-life (EOL) and not maintained anymore. For
only enabling TCP-based host-reachable services a v4.17.0 or newer kernel
is required.

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.hostServices.enabled=true \
 > cilium.yaml

If you can’t run 4.19.57 but have 4.17.0 available you can restrict protocol
support to TCP only:

helm template cilium \
 --namespace kube-system \
 --set global.hostServices.enabled=true \
 --set global.hostServices.protocols=tcp \
 > cilium.yaml

Host-reachable services act transparent to Cilium’s lower layer datapath
in that upon connect system call (TCP, connected UDP) or sendmsg as well
as recvmsg (UDP) the destination IP is checked for an existing service IP
and one of the service backends is selected as a target, meaning, while
the application is assuming its connection to the service address, the
corresponding kernel’s socket is actually connected to the backend address
and therefore no additional lower layer NAT is required.

Deploy Cilium:

kubectl create -f cilium.yaml
kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-crf7f 1/1 Running 0 10m

Limitations

	The kernel BPF cgroup hooks operate at connect(2), sendmsg(2) and
recvmsg(2) system call layers for connecting the application to one
of the service backends. Currently getpeername(2) does not yet have
a BPF hook for rewriting sock addresses before copying them into
user space in which case the application will see the backend address
instead of the service address. This limitation will be resolved in
future kernels.

Kubernetes NodePort (beta)

This guide explains how to configure Cilium to enable Kubernetes NodePort
services in BPF which can replace NodePort implemented by kube-proxy.
Enabling the feature allows to run a fully functioning Kubernetes cluster
without kube-proxy.

Note

This is a beta feature. Please provide feedback and file a GitHub issue if
you experience any problems.

Note

NodePort services depend on the Host-Reachable Services (beta) feature, therefore
a v4.19.57, v5.1.16, v5.2.0 or more recent Linux kernel is required. Note
that v5.0.y kernels do not have the fix required to run BPF NodePort since
at this point in time the v5.0.y stable kernel is end-of-life (EOL) and
not maintained anymore.

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.nodePort.enabled=true \
 > cilium.yaml

By default, a NodePort service will be accessible via an IP address of a native
device which has a default route on the host. To change a device, set its name
in the global.nodePort.device option.

In addition, thanks to the Host-Reachable Services (beta) feature, the NodePort service
can be accessed from a host or a Pod within a cluster via it’s public,
cilium_host device or loopback address, e.g. 127.0.0.1:$NODE_PORT.

Cilium’s BPF-based NodePort implementation is supported in direct routing as
well as in tunneling mode.

If kube-apiserver was configured to use a non-default NodePort port range,
then the same range must be passed to Cilium via the global.nodePort.range
option.

Once configured, apply the DaemonSet file to deploy Cilium and verify that it
has come up correctly:

kubectl create -f cilium.yaml
kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-crf7f 1/1 Running 0 10m

Limitations

	Both Service’s externalTrafficPolicy: Local and healthCheckNodePort
are currently not supported.

	NodePort services are currently exposed through the native device which has
the default route on the host or a user specified device. In tunneling mode,
they are additionally exposed through the tunnel interface (cilium_vxlan
or cilium_geneve). Exposing services through multiple native devices
will be supported in upcoming Cilium versions.

Kubernetes without kube-proxy (beta)

This guide explains how to provision a Kubernetes cluster without
kube-proxy, and to use Cilium to replace it. For simplicity,
we will use kubeadm to bootstrap the cluster.

For installing kubeadm and for more provisioning options please refer to
the official kubeadm documentation [https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm].

Initialize the control-plane node:

K8s 1.16 and newer

K8s 1.15 and older

kubeadm init --pod-network-cidr=10.217.0.0/16 --skip-phases=addon/kube-proxy

In K8s 1.15 and older it is not yet possible to disable kube-proxy via --skip-phases=addon/kube-proxy
in kubeadm, therefore the below workaround for manually removing the kube-proxy DaemonSet and
cleaning the corresponding iptables rules after kubeadm initialization is still necessary (kubeadm#1733 [https://github.com/kubernetes/kubeadm/issues/1733]).

Initialize control-plane as first step:

kubeadm init --pod-network-cidr=10.217.0.0/16

Then delete the kube-proxy DaemonSet and remove its iptables rules as following:

kubectl -n kube-system delete ds kube-proxy
iptables-restore <(iptables-save | grep -v KUBE)

Afterwards, join worker nodes by specifying the control-plane node IP address
and the token returned by kubeadm init:

kubeadm join <..>

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Next, generate the required YAML files and deploy them. Replace $API_SERVER_IP
and $API_SERVER_PORT with the control-plane node IP address and the kube-apiserver
port number reported by kubeadm init (usually it is 6443).

helm template cilium \
 --namespace kube-system \
 --set global.nodePort.enabled=true \
 --set global.k8sServiceHost=$API_SERVER_IP \
 --set global.k8sServicePort=$API_SERVER_PORT \
> cilium.yaml
kubectl apply -f cilium.yaml

This will install Cilium as a CNI plugin with the BPF kube-proxy replacement.
See Kubernetes NodePort (beta) for requirements and configuration options for NodePort
services.

Finally, verify that Cilium has come up correctly on all nodes:

kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-crf7f 1/1 Running 0 10m
cilium-mkcmb 1/1 Running 0 10m

Kata with Cilium on Google GCE

Kata Containers is an open source project that provides a secure container
runtime with lightweight virtual machines that feel and perform like containers,
but provide stronger workload isolation using hardware virtualization technology
as a second layer of defense.
Similar to the OCI runtime runc provided by Docker, Cilium can be used with
Kata Containers, providing a higher degree of security at the network layer and
at the compute layer with Kata.
This guide provides a walkthrough of installing Kata with Cilium on GCE.
Kata Containers on Google Compute Engine (GCE) makes use of nested virtualization.
At the time of this writing, nested virtualization support was not yet available
on GKE.

GCE Requirements

	Install the Google Cloud SDK (gcloud) see Installing Google Cloud SDK [https://cloud.google.com/sdk/install]
Verify your gcloud installation and configuration:

gcloud info || { echo "ERROR: no Google Cloud SDK"; exit 1; }

	Create a project or use an existing one

export GCE_PROJECT=kata-with-cilium
gcloud projects create $GCE_PROJECT

Create an image on GCE with Nested Virtualization support

As mentioned before, Kata Containers on Google Compute Engine (GCE) makes use of
nested virtualization. As a prerequisite you need to create an image with
nested virtualization enabled in your currently active GCE project.

	Choose a base image

Officially supported images are automatically discoverable with:

gcloud compute images list
NAME PROJECT FAMILY DEPRECATED STATUS
centos-6-v20190423 centos-cloud centos-6 READY
centos-7-v20190423 centos-cloud centos-7 READY
coreos-alpha-2121-0-0-v20190423 coreos-cloud coreos-alpha READY
cos-69-10895-211-0 cos-cloud cos-69-lts READY
ubuntu-1604-xenial-v20180522 ubuntu-os-cloud ubuntu-1604-lts READY
ubuntu-1804-bionic-v20180522 ubuntu-os-cloud ubuntu-1804-lts READY

Select an image based on project and family rather than by name. This ensures
any scripts or other automation always works with a non-deprecated image,
including security updates, updates to GCE-specific scripts, etc.

	Create the image with nested virtualization support

SOURCE_IMAGE_PROJECT=ubuntu-os-cloud
SOURCE_IMAGE_FAMILY=ubuntu-1804-lts
IMAGE_NAME=${SOURCE_IMAGE_FAMILY}-nested

gcloud compute images create \
 --source-image-project $SOURCE_IMAGE_PROJECT \
 --source-image-family $SOURCE_IMAGE_FAMILY \
 --licenses=https://www.googleapis.com/compute/v1/projects/vm-options/global/licenses/enable-vmx \
 $IMAGE_NAME

If successful, gcloud reports that the image was created.

	Verify VMX is enabled

Verify that a virtual machine created with the previous image has VMX enabled.

gcloud compute instances create \
 --image $IMAGE_NAME \
 --machine-type n1-standard-2 \
 --min-cpu-platform "Intel Broadwell" \
 kata-testing

gcloud compute ssh kata-testing
While ssh'd into the VM:
$ [-z "$(lscpu|grep GenuineIntel)"] && { echo "ERROR: Need an Intel CPU"; exit 1; }

Setup Kubernetes with CRI

Kata Containers runtime is an OCI compatible runtime and cannot directly interact
with the CRI API level. For this reason we rely on a CRI implementation to translate
CRI into OCI. There are two supported ways called CRI-O and CRI-containerd.
It is up to you to choose the one that you want, but you have to pick one.

If you select CRI-O, follow the “CRI-O Tutorial” instructions
here [https://github.com/cri-o/cri-o/blob/master/tutorial.md/] to properly install it.
If you select containerd with cri plugin, follow the “Getting Started for Developers”
instructions here [https://github.com/containerd/cri#getting-started-for-developers] to properly install it.

Setup your Kubernetes environment and make sure the following requirements are met:

	Kubernetes >= 1.12

	Linux kernel >= 4.9

	Kubernetes in CNI mode

	Running kube-dns/coredns (When using the etcd-operator installation method)

	Mounted BPF filesystem mounted on all worker nodes

	Enable PodCIDR allocation (--allocate-node-cidrs) in the kube-controller-manager (recommended)

Refer to the section Requirements for detailed instruction on how to
prepare your Kubernetes environment.

Note

Minimum version of kubernetes 1.12 is required to use the RuntimeClass Feature
for Kata Container runtime described below. It is possible to use kubernetes<=1.10
with Kata, but that requires for a slightly different setup that has been
deprecated.

Kubernetes talks with CRI implementations through a container-runtime-endpoint,
also called CRI socket. This socket path is different depending on which CRI
implementation you chose, and the kubelet service has to be updated accordingly.

Configure Kubernetes for CRI-O

Add /etc/systemd/system/kubelet.service.d/0-crio.conf

[Service]
Environment="KUBELET_EXTRA_ARGS=--container-runtime=remote --runtime-request-timeout=15m --container-runtime-endpoint=unix:///var/run/crio/crio.sock"

Configure for Kubernetes for containerd

Add /etc/systemd/system/kubelet.service.d/0-cri-containerd.conf

[Service]
Environment="KUBELET_EXTRA_ARGS=--container-runtime=remote --runtime-request-timeout=15m --container-runtime-endpoint=unix:///run/containerd/containerd.sock"

After you update your kubelet service based on the CRI implementation you are
using, reload and restart kubelet.

Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.containerRuntime.integration=crio \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

If you are using containerd, set global.containerRuntime.integration=containerd.

Validate cilium

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-cvp8q 0/1 Init:0/1 0 53s
cilium-operator-788c55554-gkpbf 0/1 ContainerCreating 0 54s
cilium-tdzcx 0/1 Init:0/1 0 53s
coredns-77b578f78d-km6r4 1/1 Running 0 11m
coredns-77b578f78d-qr6gq 1/1 Running 0 11m
kube-proxy-l47rx 1/1 Running 0 6m28s
kube-proxy-zj6v5 1/1 Running 0 6m28s

It may take a couple of minutes for the etcd-operator to bring up the necessary
number of etcd pods to achieve quorum. Once it reaches quorum, all components
should be healthy and ready:

kubectl -n=kube-system get pods
NAME READY STATUS RESTARTS AGE
cilium-cvp8q 1/1 Running 0 42s
cilium-operator-788c55554-gkpbf 1/1 Running 2 43s
cilium-tdzcx 1/1 Running 0 42s
coredns-77b578f78d-2khwp 1/1 Running 0 13s
coredns-77b578f78d-bs6rp 1/1 Running 0 13s
kube-proxy-l47rx 1/1 Running 0 6m
kube-proxy-zj6v5 1/1 Running 0 6m

For troubleshooting any issues, please refer to Installation with managed etcd

Install Kata on a running Kubernetes Cluster

Kubernetes configured with CRI runtimes by default uses runc runtime for running a
workload. You will need to configure Kubernetes to be able to use an alternate runtime.

RuntimeClass [https://kubernetes.io/docs/concepts/containers/runtime-class/]
is a Kubernetes feature first introduced in Kubernetes 1.12 as alpha. It is the
feature for selecting the container runtime configuration to use
to run a pod’s containers.
To use Kata-Containers, ensure the RuntimeClass feature gate is enabled for k8s < 1.13.
It is enabled by default on k8s 1.14.
See Feature Gates [https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/]
for an explanation of enabling feature gates.

To install Kata Containers and configure CRI to use Kata as a one step process,
you will use kata-deploy [https://github.com/kata-containers/packaging/tree/master/kata-deploy]
tool as shown below.

	Install Kata on a running k8s cluster

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/kata-rbac.yaml
kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/kata-deploy.yaml

This will install all the required Kata binaries under /opt/kata and configure
CRI implementation with the RuntimeClass handlers for the Kata runtime binaries.
Kata Containers can leverage Qemu and Firecracker hypervisor for running
the lightweight VM. kata-fc binary runs a Firecracker isolated Kata Container while
kata-qemu runs a Qemu isolated Kata Container.

	Create the RuntimeClass resource for Kata-containers

To add a RuntimeClass for Qemu isolated Kata-Containers:

K8s 1.14

K8s 1.13

K8s 1.12

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.14/kata-qemu-runtimeClass.yaml

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.13/kata-qemu-runtimeClass.yaml

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.13/kata-qemu-runtimeClass.yaml

To add a RuntimeClass for Firecracker isolated Kata-Containers:

K8s 1.14

K8s 1.13

K8s 1.12

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.14/kata-fc-runtimeClass.yaml

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.13/kata-fc-runtimeClass.yaml

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/k8s-1.13/kata-fc-runtimeClass.yaml

Run Kata Containers with Cilium CNI

Now that Kata is installed on the k8s cluster, you can run an untrusted workload
with Kata Containers with Cilium as the CNI.

The following YAML snippet shows how to specify a workload should use Kata with QEMU:

spec:
 template:
 spec:
 runtimeClassName: kata-qemu

The following YAML snippet shows how to specify a workload should use Kata with Firecracker:

spec:
 template:
 spec:
 runtimeClassName: kata-fc

To run an example pod with kata-qemu:

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/examples/test-deploy-kata-qemu.yaml

To run an example with kata-fc:

kubectl apply -f https://raw.githubusercontent.com/kata-containers/packaging/4bb97ef14a4ba8170b9d501b3e567037eb0f9a41/kata-deploy/examples/test-deploy-kata-fc.yaml

Configuring IPAM modes

	CRD-backed IPAM

CRD-backed IPAM

This is a quick tutorial walking through how to enable CRD-backed IPAM. The
purpose of this tutorial is to show how components are configured and resources
interact with each other to enable users to automate or extend on their own.

For more details, see the section CRD-Backed (Kubernetes)

Enable CRD IPAM mode

	Setup Cilium for Kubernetes using any of the available guides.

	Run Cilium with the --ipam=crd option or set ipam: crd in the
cilium-config ConfigMap.

	Restart Cilium. Cilium will automatically register the CRD if not available already

msg="Waiting for initial IP to become available in 'k8s1' custom resource" subsys=ipam

	Validate that the CRD has been registered:

kubectl get crds
NAME CREATED AT
[...]
ciliumnodes.cilium.io 2019-06-08T12:26:41Z

Create a CiliumNode CR

	Import the following custom resource to make t

apiVersion: "cilium.io/v2"
kind: CiliumNode
metadata:
 name: "k8s1"
spec:
 ipam:
 available:
 192.168.1.1: {}
 192.168.1.2: {}
 192.168.1.3: {}
 192.168.1.4: {}

	Validate that Cilium has started up correctly

cilium status --all-addresses
KVStore: Ok etcd: 1/1 connected, has-quorum=true: https://192.168.33.11:2379 - 3.3.12 (Leader)
[...]
IPAM: IPv4: 2/4 allocated,
Allocated addresses:
 192.168.1.1 (router)
 192.168.1.3 (health)

	Validate the status.IPAM.used section:

kubectl get cn k8s1 -o yaml
apiVersion: cilium.io/v2
kind: CiliumNode
metadata:
 name: k8s1
 [...]
spec:
 ipam:
 available:
 192.168.1.1: {}
 192.168.1.2: {}
 192.168.1.3: {}
 192.168.1.4: {}
status:
 ipam:
 used:
 192.168.1.1:
 owner: router
 192.168.1.3:
 owner: health

Running Prometheus & Grafana

Installation

This is an example deployment that includes Prometheus and Grafana in a single
deployment.

The default installation contains:

	Grafana: A visualization dashboard with Cilium Dashboard pre-loaded.

	Prometheus: a time series database and monitoring system.

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/addons/prometheus/monitoring-example.yaml
configmap/cilium-metrics-config created
namespace/cilium-monitoring created
configmap/prometheus created
deployment.extensions/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
clusterrole.rbac.authorization.k8s.io/prometheus created
serviceaccount/prometheus-k8s created
service/prometheus created
deployment.extensions/grafana created
service/grafana created
configmap/grafana-config created

Deploy Cilium with metrics enabled

Both cilium-agent and cilium-operator do not expose metrics by
default. Enabling metrics for these services will open ports 9090
and 6942 on all nodes of your cluster where these components are running.

To deploy Cilium with metrics enabled, set the global.prometheus.enabled=true Helm
value:

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set global.prometheus.enabled=true \
 > cilium.yaml
kubectl create -f cilium.yaml

Note

You can combine the global.prometheus.enabled=true option with any of
the other installation guides.

How to access Grafana

Expose the port on your local machine

kubectl -n cilium-monitoring port-forward service/grafana 3000:3000

Access it via your browser: https://localhost:3000

How to access Prometheus

Expose the port on your local machine

kubectl -n cilium-monitoring port-forward service/prometheus 9090:9090

Access it via your browser: https://localhost:9090

Examples

Generic

[image: ../_images/grafana_generic.png]

Network

[image: ../_images/grafana_network.png]

Policy

[image: ../_images/grafana_policy.png]
[image: ../_images/grafana_policy2.png]

Endpoints

[image: ../_images/grafana_endpoints.png]

Controllers

[image: ../_images/grafana_controllers.png]

Kubernetes

[image: ../_images/grafana_k8s.png]

Limiting Identity-Relevant Labels

We recommend that operators with larger environments limit the set of
identity-relevant labels to avoid frequent creation of new security identities.
Many Kubernetes labels are not useful for policy enforcement or visibility. A
few good examples of such labels include timestamps or hashes. These labels,
when included in evaluation, cause Cilium to generate a unique identity for each
pod instead of a single identity for all of the pods that comprise a service or
application.

By default, Cilium evaluates the following labels:

	Label

	Description

	k8s:io.kubernetes.pod.namespace

	Include all io.kubernetes.pod.namespace labels

	k8s:app.kubernetes.io

	Include all app.kubernetes.io labels

	k8s:!io.kubernetes

	Ignore all io.kubernetes labels

	k8s:!kubernetes.io

	Ignore all other kubernetes.io labels

	k8s:!beta.kubernetes.io

	Ignore all beta.kubernetes.io labels

	k8s:!k8s.io

	Ignore all k8s.io labels

	k8s:!pod-template-generation

	Ignore all pod-template-generation labels

	k8s:!pod-template-hash

	Ignore all pod-template-hash labels

	k8s:!controller-revision-hash

	Ignore all controller-revision-hash labels

	k8s:!annotation.*

	Ignore all annotation labels

	k8s:!etcd_node

	Ignore all etcd_node labels

Configuring Identity-Relevant Labels

To limit the labels used for evaluating Cilium identities, edit the Cilium
ConfigMap object using kubectl edit cm -n kube-system cilium-config
and insert a line to define the labels to include or exclude.

apiVersion: v1
data:
...
 kube-proxy-replacement: partial
 labels: "k8s:io.kubernetes.pod.namespace k8s:k8s-app k8s:app k8s:name"
 masquerade: "true"
 monitor-aggregation: medium
...

Upon defining a custom list of labels in the ConfigMap, Cilium will override
the default list of labels with the list provided. After saving the ConfigMap,
restart the Cilium Agents to pickup the new labels setting.

kubectl delete pods -n kube-system -l k8s-app=cilium

Existing identities will not change as a result of this new configuration. To
apply the new label setting to existing identities, restart the associated pods.
Upon restart, new identities will be created. The old identities will be garbage
collected by the Cilium Operator once they are no longer used by any Cilium
endpoints.

When specifying multiple labels to evaluate, provide the list of labels as a
space-separated string.

Including Labels

Labels can be defined as a list of labels to include. Only the labels specified
will be used to evaluate Cilium identities:

labels: "k8s:io.kubernetes.pod.namespace k8s:k8s-app k8s:app k8s:name"

The above configuration would only include the following labels when evaluating
Cilium identities:

	io.kubernetes.pod.namespace=*

	k8s-app=*

	app=*

	name=*

Excluding Labels

Labels can also be specified as a list of exclusions. Exclude a label by placing
an exclamation mark after colon separating the prefix and label. When defined as a
list of exclusions, Cilium will include the set of default labels, but will
exclude any matches in the provided list when evaluating Cilium identities:

labels: "k8s:!controller-uid k8s:!job-name"

The provided example would cause Cilium to exclude any of the following label
matches:

	k8s:controller-uid=*

	k8s:job-name=*

Getting Started Using Istio

This document serves as an introduction to using Cilium to enforce
security policies in Kubernetes micro-services managed with Istio. It
is a detailed walk-through of getting a single-node Cilium + Istio
environment running on your machine.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Note

If running on minikube, you may need to up the memory and CPUs
available to the minikube VM from the defaults and/or the
instructions provided here for the other GSGs. 5 GB and 4 CPUs
should be enough for this GSG (--memory=5120 --cpus=4).

Step 2: Install cilium-istioctl

Note

Make sure that Cilium is running in your cluster before proceeding.

Download the cilium enhanced istioctl version 1.5.9 [https://github.com/cilium/istio/releases/tag/1.5.9]:

Linux

OSX

curl -L https://github.com/cilium/istio/releases/download/1.5.9/cilium-istioctl-1.5.9-linux.tar.gz | tar xz

curl -L https://github.com/cilium/istio/releases/download/1.5.9/cilium-istioctl-1.5.9-osx.tar.gz | tar xz

Note

Cilium integration, as presented in this Getting Started Guide, has
been tested with Kubernetes releases 1.14, 1.15, 1.16, 1.17, and
1.18. Note that this does not work with K8s 1.13.

Deploy the default Istio configuration profile onto Kubernetes:

./cilium-istioctl manifest apply -y

Add a namespace label to instruct Istio to automatically inject Envoy sidecar proxies when you deploy your application later:

kubectl label namespace default istio-injection=enabled

Step 3: Deploy the Bookinfo Application V1

Now that we have Cilium and Istio deployed, we can deploy version
v1 of the services of the Istio Bookinfo sample application [https://istio.io/docs/examples/bookinfo.html].

While the upstream Istio Bookinfo Application example for Kubernetes [https://istio.io/docs/examples/bookinfo/#if-you-are-running-on-kubernetes]
deploys multiple versions of the Bookinfo application at the same time,
here we first deploy only the version 1.

The BookInfo application is broken into four separate microservices:

	productpage. The productpage microservice calls the details and
reviews microservices to populate the page.

	details. The details microservice contains book information.

	reviews. The reviews microservice contains book reviews. It also
calls the ratings microservice.

	ratings. The ratings microservice contains book ranking
information that accompanies a book review.

In this demo, each specific version of each microservice is deployed
into Kubernetes using separate YAML files which define:

	A Kubernetes Service.

	A Kubernetes Deployment specifying the microservice’s pods, specific
to each service version.

	A Cilium Network Policy limiting the traffic to the microservice,
specific to each service version.

[image: ../_images/istio-bookinfo-v1.png]
To deploy the application with manual sidecar injection, run:

for service in productpage-service productpage-v1 details-v1 reviews-v1; do \
 kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-${service}.yaml ; done

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
details-v1 1/1 1 1 12s
productpage-v1 1/1 1 1 13s
reviews-v1 1/1 1 1 12s

Create an Istio ingress gateway for the productpage service:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-gateway.yaml

To obtain the URL to the frontend productpage service, run:

export GATEWAY_URL=http://$(minikube ip):$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
export PRODUCTPAGE_URL=${GATEWAY_URL}/productpage
open ${PRODUCTPAGE_URL}

Open that URL in your web browser and check that the application has
been successfully deployed. It may take several seconds before all
services become accessible in the Istio service mesh, so you may have
have to reload the page.

Step 4: Canary and Deploy the Reviews Service V2

We will now deploy version v2 of the reviews service. In
addition to providing reviews from readers, reviews v2 queries a
new ratings service for book ratings, and displays each rating as
1 to 5 black stars.

As a precaution, we will use Istio’s service routing feature to canary
the v2 deployment to prevent breaking the end-to-end application
completely if it is faulty.

Before deploying v2, to prevent any traffic from being routed to
it for now, we will create this Istio route rules to route 100% of the
reviews traffic to v1:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1
 weight: 100

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v1.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v1.yaml

Deploy the ratings v1 and reviews v2 services:

for service in ratings-v1 reviews-v2; do \
 kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-${service}.yaml ; done

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
details-v1 1/1 1 1 17m
productpage-v1 1/1 1 1 17m
ratings-v1 1/1 1 1 69s
reviews-v1 1/1 1 1 17m
reviews-v2 1/1 1 1 68s

Check in your web browser that no stars are appearing in the Book
Reviews, even after refreshing the page several times. This indicates
that all reviews are retrieved from reviews v1 and none from
reviews v2.

[image: ../_images/istio-bookinfo-reviews-v1.png]
The ratings-v1 CiliumNetworkPolicy explicitly whitelists access
to the ratings API only from productpage and reviews v2:

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: ratings-v1
 namespace: default
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": ratings
 "k8s:version": v1
 ingress:
 - fromEndpoints:
 - matchLabels:
 "k8s:app": productpage
 "k8s:version": v1
 toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/ratings/[0-9]*"
 - fromEndpoints:
 - matchLabels:
 "k8s:app": reviews
 "k8s:version": v2
 toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/ratings/[0-9]*"

Check that reviews v1 may not be able to access the ratings
service, even if it were compromised or suffered from a bug, by
running curl from within the pod:

Note

All traffic from reviews v1 to ratings is blocked, so the
connection attempt fails after the connection timeout.

export POD_REVIEWS_V1=`kubectl get pods -l app=reviews,version=v1 -o jsonpath='{.items[0].metadata.name}'`
kubectl exec ${POD_REVIEWS_V1} -c istio-proxy -ti -- curl --connect-timeout 5 --fail http://ratings:9080/ratings/0
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

Update the Istio route rule to send 50% of reviews traffic to
v1 and 50% to v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1
 weight: 50
 - destination:
 host: reviews
 subset: v2
 weight: 50

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v1-and-v2.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v1-v2.yaml

Check in your web browser that stars are appearing in the Book Reviews
roughly 50% of the time. This may require refreshing the page for a
few seconds to observe. Queries to reviews v2 result in reviews
containing ratings displayed as black stars:

[image: ../_images/istio-bookinfo-reviews-v2.png]
Finally, update the route rule to send 100% of reviews traffic to
v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2
 weight: 100

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v2.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v2.yaml

Refresh the product page in your web browser several times to verify
that stars are now appearing in the Book Reviews on every page
refresh. All the reviews are now retrieved from reviews v2 and
none from reviews v1.

Step 5: Deploy the Product Page Service V2

We will now deploy version v2 of the productpage service,
which brings two changes:

	It is deployed with a more restrictive CiliumNetworkPolicy, which
restricts access to a subset of the HTTP URLs, at Layer-7.

	It implements a new authentication audit log into Kafka.

[image: ../_images/istio-bookinfo-productpage-v2-kafka.png]
The policy for v1 currently allows read access to the full HTTP
REST API, under the /api/v1 HTTP URI path:

	/api/v1/products: Returns the list of books and their details.

	/api/v1/products/<id>: Returns details about a specific book.

	/api/v1/products/<id>/reviews: Returns reviews for a specific
book.

	/api/v1/products/<id>/ratings: Returns ratings for a specific
book.

Check that the full REST API is currently accessible in v1 and
returns valid JSON data:

for APIPATH in /api/v1/products /api/v1/products/0 /api/v1/products/0/reviews /api/v1/products/0/ratings; do echo ; curl -s -S "${GATEWAY_URL}${APIPATH}" ; echo ; done

The output will be similar to this:

[{"descriptionHtml": "Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and mistaken identity, in addition to puns and word play.", "id": 0, "title": "The Comedy of Errors"}]

{"publisher": "PublisherA", "language": "English", "author": "William Shakespeare", "id": 0, "ISBN-10": "1234567890", "ISBN-13": "123-1234567890", "year": 1595, "type": "paperback", "pages": 200}

{"reviews": [{"reviewer": "Reviewer1", "rating": {"color": "black", "stars": 5}, "text": "An extremely entertaining play by Shakespeare. The slapstick humour is refreshing!"}, {"reviewer": "Reviewer2", "rating": {"color": "black", "stars": 4}, "text": "Absolutely fun and entertaining. The play lacks thematic depth when compared to other plays by Shakespeare."}], "id": "0"}

{"ratings": {"Reviewer2": 4, "Reviewer1": 5}, "id": 0}

We realized that the REST API to get the book reviews and ratings was
meant only for consumption by other internal services, and will be
blocked from external clients using the updated Layer-7
CiliumNetworkPolicy in productpage v2, i.e. only the
/api/v1/products and /api/v1/products/<id> HTTP URLs will be
whitelisted:

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: productpage-v2
 namespace: default
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": productpage
 "k8s:version": v2
 ingress:
 - toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/"
 - method: GET
 path: "/index.html"
 - method: POST
 path: "/login"
 - method: GET
 path: "/logout"
 - method: GET
 path: "/productpage"
 - method: GET
 path: "/api/v1/products"
 - method: GET
 path: "/api/v1/products/[0-9]*"
- method: GET
path: "/api/v1/products/[0-9]*/reviews"
- method: GET
path: "/api/v1/products/[0-9]*/ratings"

Because productpage v2 sends messages into Kafka, we must first
deploy a Kafka broker:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/kafka-v1-destrule.yaml

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/kafka-v1.yaml

Wait until the kafka-v1-0 pod is ready, i.e. until it has a
READY count of 1/1:

watch "kubectl get pods -l app=kafka"
NAME READY STATUS RESTARTS AGE
kafka-v1-0 1/1 Running 0 21m

Create the authaudit Kafka topic, which will be used by
productpage v2:

kubectl exec kafka-v1-0 -c kafka -- bash -c '/opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh --zookeeper localhost:2181/kafka --create --topic authaudit --partitions 1 --replication-factor 1'

We are now ready to deploy productpage v2.

Create the productpage v2 service and its updated
CiliumNetworkPolicy and delete productpage v1:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-productpage-v2.yaml

kubectl delete -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-productpage-v1.yaml

productpage v2 implements an authorization audit logging. On
every user login or logout, it produces into Kafka topic authaudit
a JSON-formatted message which contains the following information:

	event: login or logout

	username

	client IP address

	timestamp

To observe the Kafka messages sent by productpage, we will run an
additional authaudit-logger service. This service fetches and
prints out all messages from the authaudit Kafka topic. Start
this service:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/authaudit-logger-v1.yaml

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
authaudit-logger-v1 1/1 1 1 41s
details-v1 1/1 1 1 37m
productpage-v2 1/1 1 1 4m47s
ratings-v1 1/1 1 1 20m
reviews-v1 1/1 1 1 37m
reviews-v2 1/1 1 1 20m

Check that the product REST API is still accessible, and that Cilium
now denies at Layer-7 any access to the reviews and ratings REST API:

for APIPATH in /api/v1/products /api/v1/products/0 /api/v1/products/0/reviews /api/v1/products/0/ratings; do echo ; curl -s -S "${GATEWAY_URL}${APIPATH}" ; echo ; done

The output will be similar to this:

[{"descriptionHtml": "Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and mistaken identity, in addition to puns and word play.", "id": 0, "title": "The Comedy of Errors"}]

{"publisher": "PublisherA", "language": "English", "author": "William Shakespeare", "id": 0, "ISBN-10": "1234567890", "ISBN-13": "123-1234567890", "year": 1595, "type": "paperback", "pages": 200}

Access denied

Access denied

This demonstrated that requests to the
/api/v1/products/<id>/reviews and
/api/v1/products/<id>/ratings URIs now result in Cilium returning
HTTP 403 Forbidden HTTP responses.

Every login and logout on the product page will result in a line in
this service’s log. Note that you need to log in/out using the sign
in/sign out element on the bookinfo web page. When you do, you
can observe these kind of audit logs:

export POD_LOGGER_V1=`kubectl get pods -l app=authaudit-logger,version=v1 -o jsonpath='{.items[0].metadata.name}'`

kubectl logs ${POD_LOGGER_V1} -c authaudit-logger
...
{"timestamp": "2017-12-04T09:34:24.341668", "remote_addr": "10.15.28.238", "event": "login", "user": "richard"}
{"timestamp": "2017-12-04T09:34:40.943772", "remote_addr": "10.15.28.238", "event": "logout", "user": "richard"}
{"timestamp": "2017-12-04T09:35:03.096497", "remote_addr": "10.15.28.238", "event": "login", "user": "gilfoyle"}
{"timestamp": "2017-12-04T09:35:08.777389", "remote_addr": "10.15.28.238", "event": "logout", "user": "gilfoyle"}

As you can see, the user-identifiable information sent by
productpage in every Kafka message is sensitive, so access to this
Kafka topic must be protected using Cilium. The CiliumNetworkPolicy
configured on the Kafka broker enforces that:

	only productpage v2 is allowed to produce messages into the
authaudit topic;

	only authaudit-logger can fetch messages from this topic;

	no service can access any other topic.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: kafka-authaudit
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": kafka
 ingress:
 - fromEndpoints:
 - matchLabels:
 "k8s:app": productpage
 "k8s:version": v2
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - apiKey: "produce"
 topic: "authaudit"
 - apiKey: "apiversions"
 - apiKey: "metadata"
 - apiKey: "heartbeat"
 - fromEndpoints:
 - matchLabels:
 app: kafka
 - fromEndpoints:
 - matchLabels:
 "k8s:app": authaudit-logger
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - apiKey: "fetch"
 topic: "authaudit"
 - apiKey: "apiversions"
 - apiKey: "metadata"
 - apiKey: "findcoordinator"
 - apiKey: "joingroup"
 - apiKey: "leavegroup"
 - apiKey: "syncgroup"
 - apiKey: "offsets"
 - apiKey: "offsetcommit"
 - apiKey: "offsetfetch"
 - apiKey: "heartbeat"

Check that Cilium prevents the authaudit-logger service from
writing into the authaudit topic (enter a message followed by
ENTER, e.g. test message)

Note

Note that the error message may take a short time to appear.

Note

You can terminate the command with a single <CTRL>-d.

kubectl exec ${POD_LOGGER_V1} -c authaudit-logger -ti -- /opt/kafka_2.11-0.10.1.0/bin/kafka-console-producer.sh --broker-list=kafka:9092 --topic=authaudit
test message
[2017-12-07 02:13:47,020] ERROR Error when sending message to topic authaudit with key: null, value: 12 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)
org.apache.kafka.common.errors.TopicAuthorizationException: Not authorized to access topics: [authaudit]

This demonstrated that Cilium sent a response with an authorization
error for any Produce request from this service.

Create another topic named credit-card-payments, meant to transmit
highly-sensitive credit card payment requests:

kubectl exec kafka-v1-0 -c kafka -- bash -c '/opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh --zookeeper localhost:2181/kafka --create --topic credit-card-payments --partitions 1 --replication-factor 1'

Check that Cilium prevents the authaudit-logger service from
fetching messages from this topic:

kubectl exec ${POD_LOGGER_V1} -c authaudit-logger -ti -- /opt/kafka_2.11-0.10.1.0/bin/kafka-console-consumer.sh --bootstrap-server=kafka:9092 --topic=credit-card-payments
[2017-12-07 03:08:54,513] WARN Not authorized to read from topic credit-card-payments. (org.apache.kafka.clients.consumer.internals.Fetcher)
[2017-12-07 03:08:54,517] ERROR Error processing message, terminating consumer process: (kafka.tools.ConsoleConsumer$)
org.apache.kafka.common.errors.TopicAuthorizationException: Not authorized to access topics: [credit-card-payments]
Processed a total of 0 messages

This demonstrated that Cilium sent a response with an authorization
error for any Fetch request from this service for any topic other
than authaudit.

Note

At present, the above command may also result in an error message.

Step 6: Clean Up

You have now installed Cilium and Istio, deployed a demo app, and
tested both Cilium’s L3-L7 network security policies and Istio’s
service route rules. To clean up, run:

minikube delete

After this, you can re-run the tutorial from Step 0.

Cilium with Docker & libnetwork

This tutorial leverages Vagrant and VirtualBox, thus should run on any
operating system supported by Vagrant, including Linux, macOS, and Windows.

Step 0: Install Vagrant

If you don’t already have Vagrant installed, refer to the Developer / Contributor Guide for links to installation instructions for Vagrant.

Step 1: Download the Cilium Source Code

Download the latest Cilium source code [https://github.com/cilium/cilium/archive/master.zip]
and unzip the files.

Alternatively, if you are a developer, feel free to clone the repository:

$ git clone https://github.com/cilium/cilium

Step 2: Starting the Docker + Cilium VM

Open a terminal and navigate into the top of the cilium source directory.

Then navigate into examples/getting-started and run vagrant up:

$ cd examples/getting-started
$ vagrant up

The script usually takes a few minutes depending on the speed of your internet
connection. Vagrant will set up a VM, install the Docker container runtime and
run Cilium with the help of Docker Compose [https://docs.docker.com/compose/]. When the script completes successfully,
it will print:

==> cilium-1: Creating cilium-kvstore
==> cilium-1: Creating cilium
==> cilium-1: Creating cilium-docker-plugin
$

If the script exits with an error message, do not attempt to proceed with the
tutorial, as later steps will not work properly. Instead, contact us on the
Cilium Slack channel [https://cilium.herokuapp.com].

Step 3: Accessing the VM

After the script has successfully completed, you can log into the VM using
vagrant ssh:

$ vagrant ssh

All commands for the rest of the tutorial below should be run from inside this
Vagrant VM. If you end up disconnecting from this VM, you can always reconnect
in a new terminal window just by running vagrant ssh again from the Cilium
directory.

Step 4: Confirm that Cilium is Running

The Cilium agent is now running as a system service and you can interact with
it using the cilium CLI client. Check the status of the agent by running
cilium status:

$ cilium status
KVStore: Ok Consul: 172.18.0.2:8300
ContainerRuntime: Ok
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Listening for events on 1 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
Controller Status: 6/6 healthy
Proxy Status: OK, ip 10.15.28.238, port-range 10000-20000
Cluster health: 1/1 reachable (2018-04-05T16:08:22Z)

The status indicates that all components are operational with the Kubernetes
integration currently being disabled.

Step 5: Create a Docker Network of Type Cilium

Cilium integrates with local container runtimes, which in the case of this demo
means Docker. With Docker, native networking is handled via a component called
libnetwork. In order to steer Docker to request networking of a container from
Cilium, a container must be started with a network of driver type “cilium”.

With Cilium, all containers are connected to a single logical network, with
isolation added not based on IP addresses but based on container labels (as we
will do in the steps below). So with Docker, we simply create a single network
named ‘cilium-net’ for all containers:

$ docker network create --ipv6 --subnet ::1/112 --driver cilium --ipam-driver cilium cilium-net

Step 6: Start an Example Service with Docker

In this tutorial, we’ll use a container running a simple HTTP server to
represent a microservice application which we will refer to as app1. As a result, we
will start this container with the label “id=app1”, so we can create Cilium
security policies for that service.

Use the following command to start the app1 container connected to the
Docker network managed by Cilium:

$ docker run -d --name app1 --net cilium-net -l "id=app1" cilium/demo-httpd
e5723edaa2a1307e7aa7e71b4087882de0250973331bc74a37f6f80667bc5856

This has launched a container running an HTTP server which Cilium is now
managing as an Endpoint. A Cilium endpoint is one or more application
containers which can be addressed by an individual IP address.

Step 7: Apply an L3/L4 Policy With Cilium

When using Cilium, endpoint IP addresses are irrelevant when defining security
policies. Instead, you can use the labels assigned to the VM to define
security policies, which are automatically applied to any container with that
label, no matter where or when it is run within a container cluster.

We’ll start with an overly simple example where we create two additional
apps, app2 and app3, and we want app2 containers to be able
to reach app1 containers, but app3 containers should not be allowed
to reach app1 containers. Additionally, we only want to allow app1
to be reachable on port 80, but no other ports. This is a simple policy that
filters only on IP address (network layer 3) and TCP port (network layer 4), so
it is often referred to as an L3/L4 network security policy.

Cilium performs stateful ‘’connection tracking’‘, meaning that if a policy allows
app2 to contact app1, it will automatically allow return
packets that are part of app1 replying to app2 within the context
of the same TCP/UDP connection.

L4 Policy with Cilium and Docker

[image: ../_images/cilium_dkr_demo_l3-l4-policy-170817.png]
We can achieve that with the following Cilium policy:

[{
 "labels": [{"key": "name", "value": "l3-rule"}],
 "endpointSelector": {"matchLabels":{"id":"app1"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"app2"}}
],
 "toPorts": [{
 "ports": [{"port": "80", "protocol": "TCP"}]
 }]
 }]
}]

Save this JSON to a file named l3_l4_policy.json in your VM, and apply the
policy by running:

$ cilium policy import l3_l4_policy.json
Revision: 1

Step 8: Test L3/L4 Policy

You can now launch additional containers that represent other services attempting to
access app1. Any new container with label “id=app2” will be allowed
to access app1 on port 80, otherwise the network request will be dropped.

To test this out, we’ll make an HTTP request to app1 from a container
with the label “id=app2” :

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -m 20 http://app1
<html><body><h1>It works!</h1></body></html>

We can see that this request was successful, as we get a valid HTTP response.

Now let’s run the same HTTP request to app1 from a container that has
label “id=app3”:

$ docker run --rm -ti --net cilium-net -l "id=app3" cilium/demo-client curl -m 10 http://app1

You will see no reply as all packets are dropped by the Cilium security policy.
The request will time-out after 10 seconds.

So with this we see Cilium’s ability to segment containers based purely on a
container-level identity label. This means that the end user can apply
security policies without knowing anything about the IP address of the
container or requiring some complex mechanism to ensure that containers of a
particular service are assigned an IP address in a particular range.

Step 9: Apply and Test an L7 Policy with Cilium

In the simple scenario above, it was sufficient to either give app2 /
app3 full access to app1’s API or no access at all. But to
provide the strongest security (i.e., enforce least-privilege isolation)
between microservices, each service that calls app1’s API should be
limited to making only the set of HTTP requests it requires for legitimate
operation.

	For example, consider a scenario where app1 has two API calls:

	
	GET /public

	GET /private

Continuing with the example from above, if app2 requires access only to
the GET /public API call, the L3/L4 policy alone has no visibility into the
HTTP requests, and therefore would allow any HTTP request from app2
(since all HTTP is over port 80).

To see this, run:

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl 'http://app1/public'
{ 'val': 'this is public' }

and

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl 'http://app1/private'
{ 'val': 'this is private' }

Cilium is capable of enforcing HTTP-layer (i.e., L7) policies to limit what
URLs app2 is allowed to reach. Here is an example policy file that
extends our original policy by limiting app2 to making only a GET /public
API call, but disallowing all other calls (including GET /private).

L7 Policy with Cilium and Docker

[image: ../_images/cilium_dkr_demo_l7-policy-230817.png]
The following Cilium policy file achieves this goal:

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"id":"app1"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"app2"}}
],
 "toPorts": [{
 "ports": [{"port": "80", "protocol": "TCP"}],
 "rules": {
 "http": [{
 "method": "GET",
 "path": "/public"
 }]
 }
 }]
 }]
}]

Create a file with this contents and name it l7_aware_policy.json. Then
import this policy to Cilium by running:

$ cilium policy delete --all
Revision: 2
$ cilium policy import l7_aware_policy.json
Revision: 3

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -si 'http://app1/public'
HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Length: 28
Date: Tue, 31 Oct 2017 14:30:56 GMT
Etag: "1c-54bb868cec400"
Last-Modified: Mon, 27 Mar 2017 15:58:08 GMT
Server: Apache/2.4.25 (Unix)
Content-Type: text/plain; charset=utf-8

{ 'val': 'this is public' }

and

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -si 'http://app1/private'
HTTP/1.1 403 Forbidden
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Tue, 31 Oct 2017 14:31:09 GMT
Content-Length: 14

Access denied

As you can see, with Cilium L7 security policies, we are able to permit
app2 to access only the required API resources on app1, thereby
implementing a “least privilege” security approach for communication between
microservices.

We hope you enjoyed the tutorial. Feel free to play more with the setup, read
the rest of the documentation, and reach out to us on the Cilium
Slack channel [https://cilium.herokuapp.com] with any questions!

Step 10: Clean-Up

Exit the vagrant VM by typing exit.

When you are done with the setup and want to tear-down the Cilium + Docker VM,
and destroy all local state (e.g., the VM disk image), open a terminal in the
cilium/examples/getting-started directory and type:

$ vagrant destroy cilium-1

You can always re-create the VM using the steps described above.

If instead you just want to shut down the VM but may use it later,
vagrant halt cilium-1 will work, and you can start it again later.

Cilium with Mesos/Marathon

This tutorial leverages Vagrant and VirtualBox to deploy Apache Mesos, Marathon
and Cilium. You will run Cilium to apply a simple policy between a simulated
web-service and clients. This tutorial can be run on any operating system
supported by Vagrant including Linux, macOS, and Windows.

For more information on Apache Mesos and Marathon orchestration, check out the
Mesos [https://github.com/apache/mesos] and Marathon [https://mesosphere.github.io/marathon/] GitHub pages, respectively.

Step 0: Install Vagrant

You need to run at least Vagrant version 1.8.3 or you will run into issues
booting the Ubuntu 17.04 base image. You can verify by running vagrant
--version.

If you don’t already have Vagrant installed, follow the
Vagrant Install Instructions [https://www.vagrantup.com/docs/installation/]
or see Download Vagrant [https://www.vagrantup.com/downloads.html] for newer versions.

Step 1: Download the Cilium Source Code

Download the latest Cilium source code [https://github.com/cilium/cilium/archive/master.zip]
and unzip the files.

Alternatively, if you are a developer, feel free to clone the repository:

$ git clone https://github.com/cilium/cilium

Step 2: Starting a VM with Cilium

Open a terminal and navigate into the top of the cilium source directory.

Then navigate into examples/mesos and run vagrant up:

$ cd examples/mesos
$ vagrant up

The script usually takes a few minutes depending on the speed of your internet
connection. Vagrant will set up a VM, install Mesos & Marathon, run Cilium with
the help of Docker compose, and start up the Mesos master and slave services.
When the script completes successfully, it will print:

==> default: Creating cilium-kvstore
Creating cilium-kvstore ... done
==> default: Creating cilium ...
==> default: Creating cilium
Creating cilium ... done
==> default: Installing loopback driver...
==> default: Installing cilium-cni to /host/opt/cni/bin/ ...
==> default: Installing new /host/etc/cni/net.d/00-cilium.conf ...
==> default: Deploying Vagrant VM + Cilium + Mesos...done
$

If the script exits with an error message, do not attempt to proceed with the
tutorial, as later steps will not work properly. Instead, contact us on the
Cilium Slack channel [https://cilium.herokuapp.com].

Step 3: Accessing the VM

After the script has successfully completed, you can log into the VM using
vagrant ssh:

$ vagrant ssh

All commands for the rest of the tutorial below should be run from inside this
Vagrant VM. If you end up disconnecting from this VM, you can always reconnect
by going to the examples/mesos directory and then running the command vagrant ssh.

Step 4: Confirm that Cilium is Running

The Cilium agent is now running and you can interact with it using the
cilium CLI client. Check the status of the agent by running cilium
status:

$ cilium status
KVStore: Ok Consul: 172.18.0.2:8300
ContainerRuntime: Ok docker daemon: OK
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Disabled
Cilium health daemon: Ok
IPv4 address pool: 3/65535 allocated
IPv6 address pool: 2/65535 allocated
Controller Status: 10/10 healthy
Proxy Status: OK, ip 10.15.0.1, port-range 10000-20000
Cluster health: 1/1 reachable (2018-06-19T15:10:28Z)

The status indicates that all necessary components are operational.

Step 5: Run Script to Start Marathon

Start Marathon inside the Vagrant VM:

$./start_marathon.sh
Starting marathon...
...
...
...
...
Done

Step 6: Simulate a Web-Server and Clients

Use curl to submit a task to Marathon for scheduling, with data to run the
simulated web-server provided by the web-server.json. The web-server simply
responds to requests on a particular port.

$ curl -i -H 'Content-Type: application/json' -d @web-server.json 127.0.0.1:8080/v2/apps

You should see output similar to the following:

HTTP/1.1 201 Created
...
Marathon-Deployment-Id: [UUID]
...

Confirm that Cilium sees the new workload. The output should return the
endpoint with label mesos:id=web-server and the assigned IP:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Disabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready

Test the web-server provides OK output:

$ export WEB_IP=`cilium endpoint list | grep web-server | awk '{print $7}'`
$ curl $WEB_IP:8181/api
OK

Run a script to create two client tasks (“good client” and “bad client”) that
will attempt to access the web-server. The output of these tasks will be used
to validate the Cilium network policy enforcement later in the exercise. The
script will generate goodclient.json and badclient.json files for the
client tasks, respectively:

$./generate_client_file.sh goodclient
$./generate_client_file.sh badclient

Then submit the client tasks to Marathon, which will generate GET /public and GET /private requests:

$ curl -i -H 'Content-Type: application/json' -d @goodclient.json 127.0.0.1:8080/v2/apps
$ curl -i -H 'Content-Type: application/json' -d @badclient.json 127.0.0.1:8080/v2/apps

You can observe the newly created endpoints in Cilium, similar to the following output:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Disabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready
37835 Disabled Disabled 15197 mesos:id=goodclient f00d::a0f:0:0:93cb 10.15.152.208 ready
51053 Disabled Disabled 5113 mesos:id=badclient f00d::a0f:0:0:c76d 10.15.34.97 ready

Marathon runs the tasks as batch jobs with stdout logged to task-specific
files located in /var/lib/mesos. To simplify the retrieval of the
stdout log, use the tail_client.sh script to output each of the client
logs. In a new terminal, go to examples/mesos, start a new ssh session to
the Vagrant VM with vagrant ssh and tail the goodclient logs:

$./tail_client.sh goodclient

and in a separate terminal, do the same thing with vagrant ssh and observe the badclient logs:

$./tail_client.sh badclient

Make sure both tail logs continuously prints the result of the clients accessing the /public and /private API of the web-server:

...
---------- Test #X ----------
 Request: GET /public
 Reply: OK

 Request: GET /private
 Reply: OK

...

Note that both clients are able to access the web-server and retrieve both URLs because no Cilium policy has been applied yet.

Step 7: Apply L3/L4 Policy with Cilium

Apply an L3/L4 policy only allowing the goodclient to access the web-server. The L3/L4 json policy looks like:

[{
 "labels": [{"key": "name", "value": "l3-l4-rule"}],
 "endpointSelector": {"matchLabels":{"id":"web-server"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"goodclient"}}
],
 "toPorts": [{
 "ports": [{"port": "8181", "protocol": "TCP"}]
 }]
 }]
}]

In your original terminal session, use cilium CLI to apply the L3/L4 policy above, saved in the l3-l4-policy.json file on the VM:

$ cilium policy import l3-l4-policy.json
Revision: 1

L3/L4 Policy with Cilium and Mesos

[image: ../_images/cilium_mesos_demo_l3-l4-policy-170817.png]
You can observe that the policy is applied via cilium CLI as the POLICY ENFORCEMENT column changed from Disabled to Enabled:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Enabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready
37835 Disabled Disabled 15197 mesos:id=goodclient f00d::a0f:0:0:93cb 10.15.152.208 ready
51053 Disabled Disabled 5113 mesos:id=badclient f00d::a0f:0:0:c76d 10.15.34.97 ready

You should also observe that the goodclient logs continue to output the web-server responses, whereas the badclient request does not reach the web-server because of policy enforcement, and logging output similar to below.

...
---------- Test #X ----------
 Request: GET /public
 Reply: Timeout!

 Request: GET /private
 Reply: Timeout!

...

Remove the L3/L4 policy in order to give badclient access to the web-server again.

$ cilium policy delete --all
Revision: 2

The badclient logs should resume outputting the web-server’s response and Cilium is configured to no longer enforce policy:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
29898 Disabled Disabled 37948 reserved:health f00d::a0f:0:0:74ca 10.15.242.54 ready
33115 Disabled Disabled 38072 mesos:id=web-server f00d::a0f:0:0:815b 10.15.220.6 ready
38061 Disabled Disabled 46430 mesos:id=badclient f00d::a0f:0:0:94ad 10.15.0.173 ready
64189 Disabled Disabled 31645 mesos:id=goodclient f00d::a0f:0:0:fabd 10.15.152.27 ready

Step 8: Apply L7 Policy with Cilium

Now, apply an L7 Policy that only allows access for the goodclient to the /public API, included in the l7-policy.json file:

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"id":"web-server"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"goodclient"}}
],
 "toPorts": [{
 "ports": [{"port": "8181", "protocol": "TCP"}],
 "rules": {
 "http": [{
 "method": "GET",
 "path": "/public"
 }]
 }
 }]
 }]
}]

Apply using cilium CLI:

$ cilium policy import l7-policy.json
Revision: 3

L7 Policy with Cilium and Mesos

[image: ../_images/cilium_mesos_demo_l7-policy-230817.png]
In the terminal sessions tailing the goodclient and badclient logs, check the goodclient’s log to see that /private is no longer accessible, and the badclient’s requests are the same results as the enforced policy in the previous step.

...
---------- Test #X ----------
 Request: GET /public
 Reply: OK

 Request: GET /private
 Reply: Access Denied

...

(optional) Remove the policy and notice that the access to /private is unrestricted again:

$ cilium policy delete --all
Revision: 4

Step 9: Clean-Up

Exit the vagrant VM by typing exit in original terminal session. When you want to tear-down the Cilium + Mesos VM and destroy all local state (e.g., the VM disk image), ensure you are in the cilium/examples/mesos directory and type:

$ vagrant destroy

You can always re-create the VM using the steps described above.

If instead you just want to shut down the VM but may use it later,
vagrant halt default will work, and you can start it again later.

Troubleshooting

For assistance on any of the Getting Started Guides, please reach out and ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com].

Concepts

The goal of this document is to describe the components of the Cilium
architecture, and the different models for deploying Cilium within your
datacenter or cloud environment. It focuses on the higher-level understanding
required to run a full Cilium deployment.

	Component Overview

	Terminology

	Address Management

	Multi Host Networking

	Security

	Datapath

	Failure Behavior

Component Overview

[image: ../_images/cilium-arch.png]
A deployment of Cilium consists of the following components running on each
Linux container node in the container cluster:

	Cilium Agent (Daemon): Userspace daemon that interacts with the container runtime
and orchestration systems such as Kubernetes via Plugins to setup networking
and security for containers running on the local server. Provides an API for
configuring network security policies, extracting network visibility data,
etc.

	Cilium CLI Client: Simple CLI client for communicating with the local
Cilium Agent, for example, to configure network security or visibility
policies.

	Linux Kernel BPF: Integrated capability of the Linux kernel to accept
compiled bytecode that is run at various hook / trace points within the kernel.
Cilium compiles BPF programs and has the kernel run them at key points in the
network stack to have visibility and control over all network traffic in /
out of all containers.

	Container Platform Network Plugin: Each container platform (e.g.,
Docker, Kubernetes) has its own plugin model for how external networking
platforms integrate. In the case of Docker, each Linux node runs a process
(cilium-docker) that handles each Docker libnetwork call and passes data /
requests on to the main Cilium Agent.

In addition to these components, Cilium also depends on the following
components running in the cluster:

	Key-Value Store: Cilium shares data between Cilium Agents on different
nodes via a kvstore. The currently supported key-value stores are etcd or
consul.

	Cilium Operator: Daemon for handling cluster management duties which can
be handled once per cluster, rather than once per node.

Cilium Agent

The Cilium agent (cilium-agent) runs on each Linux container host. At a
high-level, the agent accepts configuration that describes service-level
network security and visibility policies. It then listens to events in the
container runtime to learn when containers are started or stopped, and it
creates custom BPF programs which the Linux kernel uses to control all network
access in / out of those containers. In more detail, the agent:

	Exposes APIs to allow operations / security teams to configure security
policies (see below) that control all communication between containers in the
cluster. These APIs also expose monitoring capabilities to gain additional
visibility into network forwarding and filtering behavior.

	Gathers metadata about each new container that is created. In particular, it
queries identity metadata like container / pod labels, which are used to
identify Endpoint in Cilium security policies.

	Interacts with the container platforms network plugin to perform IP address
management (IPAM), which controls what IPv4 and IPv6 addresses are assigned
to each container. The IPAM is managed by the agent in a shared pool between
all plugins which means that the Docker and CNI network plugin can run side
by side allocating a single address pool.

	Combines its knowledge about container identity and addresses with the
already configured security and visibility policies to generate highly
efficient BPF programs that are tailored to the network forwarding and
security behavior appropriate for each container.

	Compiles the BPF programs to bytecode using clang/LLVM [https://clang.llvm.org/] and passes them to the Linux kernel to run for
all packets in / out of the container’s virtual ethernet device(s).

Cilium CLI Client

The Cilium CLI Client (cilium) is a command-line tool that is installed along
with the Cilium Agent. It gives a command-line interface to interact with all
aspects of the Cilium Agent API. This includes inspecting Cilium’s state
about each network endpoint (i.e., container), configuring and viewing security
policies, and configuring network monitoring behavior.

Linux Kernel BPF

Berkeley Packet Filter (BPF) is a Linux kernel bytecode interpreter originally
introduced to filter network packets, e.g. tcpdump and socket filters. It has
since been extended with additional data structures such as hashtable and
arrays as well as additional actions to support packet mangling, forwarding,
encapsulation, etc. An in-kernel verifier ensures that BPF programs are safe to
run and a JIT compiler converts the bytecode to CPU architecture specific
instructions for native execution efficiency. BPF programs can be run at
various hooking points in the kernel such as for incoming packets, outgoing
packets, system calls, kprobes, etc.

BPF continues to evolve and gain additional capabilities with each new Linux
release. Cilium leverages BPF to perform core datapath filtering, mangling,
monitoring and redirection, and requires BPF capabilities that are in any Linux
kernel version 4.8.0 or newer. On the basis that 4.8.x is already declared end
of life and 4.9.x has been nominated as a stable release we recommend to run at
least kernel 4.9.17 (the latest current stable Linux kernel as of this writing
is 4.10.x).

Cilium is capable of probing the Linux kernel for available features and will
automatically make use of more recent features as they are detected.

Linux distros that focus on being a container runtime (e.g., CoreOS, Fedora
Atomic) typically already ship kernels that are newer than 4.8, but even recent
versions of general purpose operating systems such as Ubuntu 16.10 ship fairly
recent kernels. Some Linux distributions still ship older kernels but many of
them allow installing recent kernels from separate kernel package repositories.

For more detail on kernel versions, see: Linux Kernel.

Key-Value Store

The Key-Value (KV) Store is used for the following state:

	Policy Identities: list of labels <=> policy identity identifier

	Global Services: global service id to VIP association (optional)

	Encapsulation VTEP mapping (optional)

To simplify things in a larger deployment, the key-value store can be the same
one used by the container orchestrator (e.g., Kubernetes using etcd).

Cilium Operator

The Cilium Operator is responsible for managing duties in the cluster which
should logically be handled once for the entire cluster, rather than once for
each node in the cluster. Its design helps with scale limitations in large
kubernetes clusters (>1000 nodes). The responsibilities of Cilium operator
include:

	Synchronizing kubernetes services with etcd for Cluster Mesh

	Synchronizing node resources with etcd

	Ensuring that DNS pods are managed by Cilium

	Garbage-collection of Cilium Endpoints resources, unused security identities
from the key-value store, and status of deleted nodes from CiliumNetworkPolicy

	Translation of toGroups policy

	Interaction with the AWS API for managing AWS ENI

Terminology

Labels

Labels are a generic, flexible and highly scalable way of addressing a large
set of resources as they allow for arbitrary grouping and creation of sets.
Whenever something needs to be described, addressed or selected, it is done
based on labels:

	Endpoint are assigned labels as derived from the container runtime,
orchestration system, or other sources.

	Network Policy select pairs of Endpoint which are allowed to
communicate based on labels. The policies themselves are identified by labels
as well.

What is a Label?

A label is a pair of strings consisting of a key and value. A label can
be formatted as a single string with the format key=value. The key portion
is mandatory and must be unique. This is typically achieved by using the
reverse domain name notion, e.g. io.cilium.mykey=myvalue. The value portion
is optional and can be omitted, e.g. io.cilium.mykey.

Key names should typically consist of the character set [a-z0-9-.].

When using labels to select resources, both the key and the value must match,
e.g. when a policy should be applied to all endpoints with the label
my.corp.foo then the label my.corp.foo=bar will not match the
selector.

Label Source

A label can be derived from various sources. For example, an endpoint will
derive the labels associated to the container by the local container runtime as
well as the labels associated with the pod as provided by Kubernetes. As these
two label namespaces are not aware of each other, this may result in
conflicting label keys.

To resolve this potential conflict, Cilium prefixes all label keys with
source: to indicate the source of the label when importing labels, e.g.
k8s:role=frontend, container:user=joe, k8s:role=backend. This means
that when you run a Docker container using docker run [...] -l foo=bar, the
label container:foo=bar will appear on the Cilium endpoint representing the
container. Similarly, a Kubernetes pod started with the label foo: bar
will be represented with a Cilium endpoint associated with the label
k8s:foo=bar. A unique name is allocated for each potential source. The
following label sources are currently supported:

	container: for labels derived from the local container runtime

	k8s: for labels derived from Kubernetes

	mesos: for labels derived from Mesos

	reserved: for special reserved labels, see Special Identities.

	unspec: for labels with unspecified source

When using labels to identify other resources, the source can be included to
limit matching of labels to a particular type. If no source is provided, the
label source defaults to any: which will match all labels regardless of
their source. If a source is provided, the source of the selecting and matching
labels need to match.

Endpoint

Cilium makes application containers available on the network by assigning them
IP addresses. Multiple application containers can share the same IP address; a
typical example for this model is a Kubernetes Pod. All application containers
which share a common address are grouped together in what Cilium refers to as
an endpoint.

Allocating individual IP addresses enables the use of the entire Layer 4 port
range by each endpoint. This essentially allows multiple application containers
running on the same cluster node to all bind to well known ports such as 80
without causing any conflicts.

The default behavior of Cilium is to assign both an IPv6 and IPv4 address to
every endpoint. However, this behavior can be configured to only allocate an
IPv6 address with the --enable-ipv4=false option. If both an IPv6 and IPv4
address are assigned, either address can be used to reach the endpoint. The
same behavior will apply with regard to policy rules, load-balancing, etc. See
Address Management for more details.

Identification

For identification purposes, Cilium assigns an internal endpoint id to all
endpoints on a cluster node. The endpoint id is unique within the context of
an individual cluster node.

Endpoint Metadata

An endpoint automatically derives metadata from the application containers
associated with the endpoint. The metadata can then be used to identify the
endpoint for security/policy, load-balancing and routing purposes.

The source of the metadata will depend on the orchestration system and
container runtime in use. The following metadata retrieval mechanisms are
currently supported:

	System

	Description

	Kubernetes

	Pod labels (via k8s API)

	Mesos

	Labels (via CNI)

	containerd (Docker)

	Container labels (via Docker API)

Metadata is attached to endpoints in the form of Labels.

The following example launches a container with the label app=benchmark
which is then associated with the endpoint. The label is prefixed with
container: to indicate that the label was derived from the container
runtime.

$ docker run --net cilium -d -l app=benchmark tgraf/netperf
aaff7190f47d071325e7af06577f672beff64ccc91d2b53c42262635c063cf1c
$ cilium endpoint list
ENDPOINT POLICY IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT
62006 Disabled 257 container:app=benchmark f00d::a00:20f:0:f236 10.15.116.202 ready

An endpoint can have metadata associated from multiple sources. A typical
example is a Kubernetes cluster which uses containerd as the container runtime.
Endpoints will derive Kubernetes pod labels (prefixed with the k8s: source
prefix) and containerd labels (prefixed with container: source prefix).

Identity

All Endpoint are assigned an identity. The identity is what is used to enforce
basic connectivity between endpoints. In traditional networking terminology,
this would be equivalent to Layer 3 enforcement.

An identity is identified by Labels and is given a cluster wide unique
identifier. The endpoint is assigned the identity which matches the endpoint’s
Security Relevant Labels, i.e. all endpoints which share the same set of
Security Relevant Labels will share the same identity. This concept allows to
scale policy enforcement to a massive number of endpoints as many individual
endpoints will typically share the same set of security Labels as applications
are scaled.

What is an Identity?

The identity of an endpoint is derived based on the Labels associated with
the pod or container which are derived to the endpoint. When a pod or
container is started, Cilium will create an endpoint based on the event
received by the container runtime to represent the pod or container on the
network. As a next step, Cilium will resolve the identity of the endpoint
created. Whenever the Labels of the pod or container change, the identity is
reconfirmed and automatically modified as required.

Security Relevant Labels

Not all Labels associated with a container or pod are meaningful when
deriving the Identity. Labels may be used to store metadata such as the
timestamp when a container was launched. Cilium requires to know which labels
are meaningful and are subject to being considered when deriving the identity.
For this purpose, the user is required to specify a list of string prefixes of
meaningful labels. The standard behavior is to include all labels which start
with the prefix id., e.g. id.service1, id.service2,
id.groupA.service44. The list of meaningful label prefixes can be specified
when starting the agent.

Special Identities

All endpoints which are managed by Cilium will be assigned an identity. In
order to allow communication to network endpoints which are not managed by
Cilium, special identities exist to represent those. Special reserved
identities are prefixed with the string reserved:.

	Identity

	Description

	reserved:unknown

	The identity could not be derived.

	reserved:host

	The collection of all cluster hosts. Any traffic
that originates from or is designated to one of
the IPs of any host in the cluster is assigned the
reserved:host identity.

	reserved:world

	Any network endpoint outside of the cluster

	reserved:health

	This is health checking traffic generated by
Cilium agents.

	reserved:init

	An endpoint for which the identity has not yet
been resolved is assigned the init identity.
This represents the phase of an endpoint in which
some of the metadata required to derive the
security identity is still missing. This is
typically the case in the bootstrapping phase.

The init identity is only allocated if the labels
of the endpoint are not known at creation time.
This can be the case for the Docker plugin.

	reserved:unmanaged

	An endpoint that is not managed by Cilium, e.g.
a Kubernetes pod that was launched before Cilium
was installed.

Well-known Identities

The following is a list of well-known identities which Cilium is aware of
automatically and will hand out a security identity without requiring to
contact any external dependencies such as the kvstore. The purpose of this is
to allow bootstrapping Cilium and enable network connectivity with policy
enforcement in the cluster for essential services without depending on any
dependencies.

	Deployment

	Namespace

	ServiceAccount

	Cluster Name

	Numeric ID

	Labels

	cilium-etcd-operator

	<cilium-namespace>

	cilium-etcd-operator

	<cilium-cluster>

	107

	name=cilium-etcd-operator, io.cilium/app=etcd-operator

	etcd-operator

	<cilium-namespace>

	cilium-etcd-sa

	<cilium-cluster>

	100

	io.cilium/app=etcd-operator

	cilium-etcd

	<cilium-namespace>

	default

	<cilium-cluster>

	101

	app=etcd, etcd_cluster=cilium-etcd, io.cilium/app=etcd-operator

	kube-dns

	kube-system

	kube-dns

	<cilium-cluster>

	102

	k8s-app=kube-dns

	kube-dns (EKS)

	kube-system

	kube-dns

	<cilium-cluster>

	103

	k8s-app=kube-dns, eks.amazonaws.com/component=kube-dns

	core-dns

	kube-system

	coredns

	<cilium-cluster>

	104

	k8s-app=kube-dns

	core-dns (EKS)

	kube-system

	coredns

	<cilium-cluster>

	106

	k8s-app=kube-dns, eks.amazonaws.com/component=coredns

	cilium-operator

	<cilium-namespace>

	cilium-operator

	<cilium-cluster>

	105

	name=cilium-operator, io.cilium/app=operator

Note: if cilium-cluster is not defined with the cluster-name option,
the default value will be set to “default”.

Identity Management in the Cluster

Identities are valid in the entire cluster which means that if several pods or
containers are started on several cluster nodes, all of them will resolve and
share a single identity if they share the identity relevant labels. This
requires coordination between cluster nodes.

[image: ../_images/identity_store.png]
The operation to resolve an endpoint identity is performed with the help of the
distributed key-value store which allows to perform atomic operations in the
form generate a new unique identifier if the following value has not been seen
before. This allows each cluster node to create the identity relevant subset
of labels and then query the key-value store to derive the identity. Depending
on whether the set of labels has been queried before, either a new identity
will be created, or the identity of the initial query will be returned.

Node

Cilium refers to a node as an individual member of a cluster. Each node must be
running the cilium-agent and will operate in a mostly autonomous manner.
Synchronization of state between Cilium agent’s running on different nodes is
kept to a minimum for simplicity and scale. It occurs exclusively via the
Key-Value store or with packet metadata.

Node Address

Cilium will automatically detect the node’s IPv4 and IPv6 address. The detected
node address is printed out when the cilium-agent starts:

Local node-name: worker0
Node-IPv6: f00d::ac10:14:0:1
External-Node IPv4: 172.16.0.20
Internal-Node IPv4: 10.200.28.238

Address Management

Cilium supports multiple different address management modes:

	Host Scope (default)

	CRD-Backed (Kubernetes)

	AWS ENI

Host Scope (default)

The host-scope IPAM mode delegates the address allocation to each individual
node in the cluster. Each cluster node is assigned an allocation CIDR out of
which the node can allocate IPs without further coordination with any other
nodes.

This means that no state needs to be synchronized between cluster nodes to
allocate IP addresses and to determine whether an IP address belongs to an
endpoint of the cluster and whether that endpoint resides on the local
cluster node.

Note

If you are using Kubernetes, the allocation of the node address prefix
can be simply delegated to Kubernetes by specifying
--allocate-node-cidrs flag to kube-controller-manager. Cilium
will automatically use the IPv4 node CIDR allocated by Kubernetes.

The following values are used by default if the cluster prefix is left
unspecified. These are meant for testing and need to be adjusted according to
the needs of your environment.

	Type

	Cluster

	Node Prefix

	IPv4

	10.0.0.0/8

	10.X.0.0/16 where X is derived using the
last 8 bits of the first IPv4 address in the list
of global scope addresses on the cluster node.

	IPv6

	f00d::/48

	f00d:0:0:0:<ipv4-address>::/96 where the
IPv4 address is the first address in the list of
global scope addresses on the cluster node.

Note: Only 16 bits out of the /96 node
prefix are currently used when allocating
container addresses. This allows to use the
remaining 16 bits to store arbitrary connection
state when sending packets between nodes. A
typical use case for the state is direct server
return.

The size of the IPv4 cluster prefix can be changed with the
--ipv4-cluster-cidr-mask-size option. The size of the IPv6 cluster prefix
is currently fixed sized at /48. The node allocation prefixes can be
specified manually with the option --ipv4-range respectively
--ipv6-range.

CRD-Backed (Kubernetes)

The CRD-backed IPAM mode provides an extendable interface to control the IP
address management via a Kubernetes Custom Resource Definition (CRD). This
allows to delegate IPAM to external operators or make it user configurable per
node.

Architecture

[image: ../../_images/crd_arch.png]
When this mode is enabled, each Cilium agent will start watching for a
Kubernetes custom resource ciliumnodes.cilium.io with a name matching the
Kubernetes node on which the agent is running.

Whenever the custom resource is updated, the per node allocation pool is
updated with all addresses listed in the spec.ipam.available field. When an
IP is removed that is currently allocated, the IP will continue to be used but
will not be available for re-allocation after release.

Upon allocation of an IP in the allocation pool, the IP is added to the
status.ipam.inuse field.

Note

The node status update is limited to run at most once every 15 seconds.
Therefore, if several pods are scheduled at the same time, the update of the
status section can bag behind.

Configuration

The CRD-backed IPAM mode is enabled by setting ipam: crd in the
cilium-config ConfigMap or by specifying the option --ipam=crd. When
enabled, the agent will wait for a CiliumNode custom resource matching the
Kubernetes node name to become available with at least one IP address listed as
available. When connectivity health-checking is enabled, at least two IP
addresses must be available.

While waiting, the agent will print the following log message:

Waiting for initial IP to become available in '<node-name>' custom resource

For a practical tutorial on how to enable CRD IPAM mode with Cilium, see the
section CRD-backed IPAM.

Privileges

In order for the custom resource to be functional, the following additional
privileges are required. These privileges are automatically granted when using
the standard Cilium deployment artifacts:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cilium
rules:
- apiGroups:
 - cilium.io
 resources:
 - ciliumnodes
 - ciliumnodes/status
 verbs:
 - '*'

CRD Definition

The CilumNode custom resource is modeled after a standard Kubernetes resource
and is split into a spec and status section:

type CiliumNode struct {
 [...]

 // Spec is the specification of the node
 Spec NodeSpec `json:"spec"`

 // Status it the status of the node
 Status NodeStatus `json:"status"`
}

IPAM Specification

The spec section embeds an IPAM specific field which allows to define the
list of all IPs which are available to the node for allocation:

// NodeSpec is the configuration specific to a node
type NodeSpec struct {
 // [...]

 // IPAM is the address management specification. This section can be
 // populated by a user or it can be automatically populated by an IPAM
 // operator
 //
 // +optional
 IPAM IPAMSpec `json:"ipam,omitempty"`
}

// IPAMSpec is the IPAM specification of the node
type IPAMSpec struct {
 // Pool is the list of IPs available to the node for allocation. When
 // an IP is used, the IP will remain on this list but will be added to
 // Status.IPAM.InUse
 //
 // +optional
 Pool map[string]AllocationIP `json:"pool,omitempty"`
}

// AllocationIP is an IP available for allocation or already allocated
type AllocationIP struct {
 // Owner is the owner of the IP, this field is set if the IP has been
 // allocated. It will be set to the pod name or another identifier
 // representing the usage of the IP
 //
 // The owner field is left blank for an entry in Spec.IPAM.Pool
 // and filled out as the IP is used and also added to
 // Status.IPAM.InUse.
 //
 // +optional
 Owner string `json:"owner,omitempty"`

 // Resource is set for both available and allocated IPs, it represents
 // what resource the IP is associated with, e.g. in combination with
 // AWS ENI, this will refer to the ID of the ENI
 //
 // +optional
 Resource string `json:"resource,omitempty"`
}

IPAM Status

The status section contains an IPAM specific field. The IPAM status reports
all used addresses on that node:

// NodeStatus is the status of a node
type NodeStatus struct {
 // [...]

 // IPAM is the IPAM status of the node
 //
 // +optional
 IPAM IPAMStatus `json:"ipam,omitempty"`
}

// IPAMStatus is the IPAM status of a node
type IPAMStatus struct {
 // InUse lists all IPs out of Spec.IPAM.Pool which have been
 // allocated and are in use.
 //
 // +optional
 InUse map[string]AllocationIP `json:"used,omitempty"`
}

AWS ENI

The AWS ENI allocator is specific to Cilium deployments running in the AWS
cloud and performs IP allocation based on IPs of AWS Elastic Network Interfaces (ENI) [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html] by
communicating with the AWS EC2 API.

The architecture ensures that only a single operator communicates with the EC2
service API to avoid rate-limiting issues in large clusters. A pre-allocation
watermark allows to maintain a number of IP addresses to be available for use
on nodes at all time without requiring to contact the EC2 API when a new pod is
scheduled in the cluster.

Architecture

[image: ../../_images/eni_arch.png]
The AWS ENI allocator builds on top of the CRD-backed allocator. Each node
creates a ciliumnodes.cilium.io custom resource matching the node name when
Cilium starts up for the first time on that node. It contacts the EC2 metadata
API to retrieve instance ID, instance type, and VPC information and populates
the custom resource with this information. ENI allocation parameters are
provided as agent configuration option and are passed into the custom resource
as well.

The Cilium operator listens for new ciliumnodes.cilium.io custom resources
and starts managing the IPAM aspect automatically. It scans the EC2 instances
for existing ENIs with associated IPs and makes them available via the
spec.ipam.available field. It will then constantly monitor the used IP
addresses in the status.ipam.used field and automatically create ENIs and
allocate more IPs as needed to meet the IP pre-allocation watermark. This ensures
that there are always IPs available

The selection of subnets to use for allocation as well as attachment of
security groups to new ENIs can be controlled separately for each node. This
makes it possible to hand out pod IPs with differing security groups on
individual nodes.

The corresponding datapath is described in section AWS ENI.

Configuration

	The Cilium agent and operator must be run with the option --ipam=eni or
the option ipam: eni must be set in the ConfigMap. This will enable ENI
allocation in both the node agent and operator.

	In most scenarios, it makes sense to automatically create the
ciliumnodes.cilium.io custom resource when the agent starts up on a node
for the first time. To enable this, specify the option
--auto-create-cilium-node-resource or set
auto-create-cilium-node-resource: "true" in the ConfigMap.

	It is generally a good idea to enable metrics in the Operator as well with
the option --enable-metrics. See the section Running Prometheus & Grafana for
additional information how to install and run Prometheus including the
Grafana dashboard.

ENI Allocation Parameters

The following parameters are available to control the ENI creation and IP
allocation:

	InstanceID

	The AWS EC2 instance identifier matching the node.

This field is automatically populated when using ``–auto-create-cilium-node-resource``

	InstanceType

	The AWS EC2 instance type

This field is automatically populated when using ``–auto-create-cilium-node-resource``

	spec.eni.vpc-id

	The VPC identifier used to create ENIs and select AWS subnets for IP
allocation.

This field is automatically populated when using ``–auto-create-cilium-node-resource``

	spec.eni.availability-zone

	The availability zone used to create ENIs and select AWS subnets for IP
allocation.

This field is automatically populated when using ``–auto-create-cilium-node-resource``

	spec.eni.min-allocate

	The minimum number of IPs that must be allocated when the node is first
bootstrapped. It defines the minimum base socket of addresses that must be
available. After reaching this watermark, the PreAllocate and
MaxAboveWatermark logic takes over to continue allocating IPs.

If unspecified, no minimum number of IPs is required.

	spec.eni.pre-allocate

	The number of IP addresses that must be available for allocation at all
times. It defines the buffer of addresses available immediately without
requiring for the operator to get involved.

If unspecified, this value defaults to 8.

	spec.eni.max-above-watermark

	The maximum number of addresses to allocate beyond the addresses needed to
reach the PreAllocate watermark. Going above the watermark can help reduce
the number of API calls to allocate IPs, e.g. when a new ENI is allocated, as
many secondary IPs as possible are allocated. Limiting the amount can help
reduce waste of IPs.

If let unspecified, the value defaults to 0.

	spec.eni.first-interface-index

	The index of the first ENI to use for IP allocation, e.g. if the node has
eth0, eth1, eth2 and FirstInterfaceIndex is set to 1, then only
eth1 and eth2 will be used for IP allocation, eth0 will be
ignored for PodIP allocation.

If unspecified, this value defaults to 1 which means that eth0 will not
be used for pod IPs.

	spec.eni.security-groups

	The list of security groups to attach to any ENI that is created and attached
to the instance.

If unspecified, the security groups of eth0 will be used.

	spec.eni.subnet-tags

	The tags used to select the AWS subnets for IP allocation. This is an
additional requirement on top of requiring to match the availability zone and
VPC of the instance.

If unspecified, no tags are required.

	spec.eni.delete-on-termination

	Remove the ENI when the instance is terminated

If unspecified, this option is enabled.

Operational Details

Cache of ENIs, Subnets, and VPCs

The operator maintains a list of all EC2 ENIs, VPCs and subnets associated with
the AWS account in a cache. For this purpose, the operator performs the
following two EC2 API operations:

	DescribeNetworkInterfaces

	DescribeSubnets

	DescribeVpcs

The cache is updated once per minute or after an IP allocation or ENI creation
has been performed. When triggered based on an allocation or creation, the
operation is performed at most once per second.

Publication of available ENI IPs

Following the update of the cache, all CiliumNode custom resources representing
nodes are updated to publish eventual new IPs that have become available.

In this process, all ENIs with an interface index greater than
spec.eni.first-interface-index are scanned for all available IPs. All IPs
found are added to spec.ipam.available. Each ENI meeting this criteria is
also added to status.eni.enis.

If this updated caused the custom resource to change, the custom resource is
updated using the Kubernetes API methods Update() and/or UpdateStatus()
if available.

Determination of ENI IP deficits

The operator constantly monitors all nodes and detects deficits in available
ENI IP addresses. The check to recognize a deficit is performed on two
occasions:

	When a CiliumNode custom resource is updated

	All nodes are scanned in a regular interval (once per minute)

When determining whether a node has a deficit in IP addresses, the following
calculation is performed:

spec.eni.pre-allocate - (len(spec.ipam.available) - len(status.ipam.used))

Upon detection of a deficit, the node is added to the list of nodes which
require IP address allocation. When a deficit is detected using the interval
based scan, the allocation order of nodes is determined based on the severity
of the deficit, i.e. the node with the biggest deficit will be at the front of
the allocation queue.

The allocation queue is handled on demand but at most once per second.

IP Allocation

When performing IP allocation for a node with an address deficit, the operator
first looks at the ENIs which are already attached to the instance represented
by the CiliumNode resource. All ENIs with an interface index greater than
spec.eni.first-interface-index are considered for use.

Note

In order to not use eth0 for IP allocation, set
spec.eni.first-interface-index to 1 to skip the first interface in
line.

The operator will then pick the first already allocated ENI which meets the
following criteria:

	The ENI has addresses associated which are not yet used or the number of
addresses associated with the ENI is lesser than the instance type specific
limit.

	The subnet associated with the ENI has IPs available for allocation

The following formula is used to determine how many IPs are allocated on the
ENI:

min(AvailableOnSubnet, min(AvailableOnENI, NeededAddresses + spec.eni.max-above-watermark))

This means that the number of IPs allocated in a single allocation cycle can be
less than what is required to fulfill spec.eni.pre-allocate.

In order to allocate the IPs, the method AssignPrivateIpAddresses of the
EC2 service API is called. When no more ENIs are available meeting the above
criteria, a new ENI is created.

ENI Creation

As long as an instance type is capable allocating additional ENIs, ENIs are
allocated automatically based on demand.

When allocating an ENI, the first operation performed is to identify the best
subnet. This is done by searching through all subnets and finding a subnet that
matches the following criteria:

	The VPC ID of the subnet matches spec.eni.vpc-id

	The Availability Zone of the subnet matches
spec.eni.availability-zone

	The subnet contains all tags as specified by
spec.eni.subnet-tags

If multiple subnets match, the subnet with the most available addresses is selected.

After selecting the ENI, the interface index is determine. For this purpose,
all existing ENIs are scanned and the first unused index greater than
spec.eni.first-interface-index is selected.

After determining the subnet and interface index, the ENI is created and
attached to the EC2 instance using the methods CreateNetworkInterface and
AttachNetworkInterface of the EC2 API.

The security groups attached to the ENI will be equivalent to
spec.eni.security-groups. The description will be in the following format:

"Cilium-CNI (<EC2 instance ID>)"

ENI Deletion Policy

ENIs can be marked for deletion when the EC2 instance to which the ENI is
attached to is terminated. In order to enable this, the option
spec.eni.delete-on-termination can be enabled. If enabled, the ENI
is modifying after creation using ModifyNetworkInterface to specify this
deletion policy.

Node Termination

When a node or instance terminates, the Kubernetes apiserver will send a node
deletion event. This event will be picked up by the operator and the operator
will delete the corresponding ciliumnodes.cilium.io custom resource.

Required Privileges

The following EC2 privileges are required by the Cilium operator in order to
perform ENI creation and IP allocation:

	DescribeNetworkInterfaces

	DescribeSubnets

	DescribeVpcs

	CreateNetworkInterface

	AttachNetworkInterface

	ModifyNetworkInterface

	AssignPrivateIpAddresses

Metrics

The following metrics are exposed:

	cilium_operator_eni_ips

	Number of IPs allocated

Labels:

	type: { “used” | “available” | “needed” }

	cilium_operator_eni_allocation_ops

	Number of IP allocation operations

Labels:

	subnetId: Thew AWS subnet ID used for the allocation

	cilium_operator_eni_interface_creation_ops

	Number of ENIs allocated

Labels:

	subnetId: The AWS subnet ID used for the creation

	status: The status of the creation

	cilium_operator_eni_available

	Number of ENIs with addresses available

	cilium_operator_eni_nodes

	Number of nodes by category

Labels:

	category: { total | in-deficit | at-capacity }

	cilium_operator_eni_aws_api_duration_seconds

	Duration of interactions with AWS API”

Labels:

	operation:

	EC2 API operation

	responseCode:

	Status code returned by the operation

	cilium_operator_ec2_rate_limit_duration_seconds

	Duration of EC2 client-side rate limiter blocking

Labels:

	operation:

	EC2 API operation

	cilium_operator_eni_resync_total

	Number of synchronization operations of the AWS EC2 metadata cache

Multi Host Networking

Cilium is in full control over both ends of the connection for connections
inside the cluster. It can thus transmit state and security context information
between two container hosts by embedding the information in encapsulation
headers or even unused bits of the IPv6 packet header. This allows Cilium to
transmit the security context of where the packet originates, which allows
tracing back which container labels are assigned to the origin container.

Note

As the packet headers contain security sensitive information, it is highly
recommended to either encrypt all traffic or run Cilium in a trusted network
environment.

Cilium keeps the networking concept as simple as possible. There are two
networking models to choose from.

	Overlay Network Mode

	Direct / Native Routing Mode

Regardless of the option chosen, the container itself has no awareness of the
underlying network it runs on; it only contains a default route which points to
the IP address of the cluster node. Given the removal of the routing cache in
the Linux kernel, this reduces the amount of state to keep in the per
connection flow cache (TCP metrics), which allows to terminate millions of
connections in each container.

Overlay Network Mode

When no configuration is provided, Cilium automatically runs in this mode.

In this mode, all cluster nodes form a mesh of tunnels using the UDP based
encapsulation protocols VXLAN or Geneve. All container-to-container network
traffic is routed through these tunnels. This mode has several major
advantages:

	Simplicity: The network which connects the cluster nodes does not need to
be made aware of the cluster prefix. Cluster nodes can spawn multiple
routing or link-layer domains. The topology of the underlying network is
irrelevant as long as cluster nodes can reach each other using IP/UDP.

	Auto-configuration: When running together with an orchestration system
such as Kubernetes, the list of all nodes in the cluster including their
associated allocation prefix node is made available to each agent
automatically. This means that if Kubernetes is being run with the
--allocate-node-cidrs option, Cilium can form an overlay network
automatically without any configuration by the user. New nodes joining the
cluster will automatically be incorporated into the mesh.

	Identity transfer: Encapsulation protocols allow for the carrying of
arbitrary metadata along with the network packet. Cilium makes use of this
ability to transfer metadata such as the source security identity and
load balancing state to perform direct-server-return.

Direct / Native Routing Mode

Note

This is an advanced networking mode which requires the underlying
network to be made aware of container IPs. You can enable this mode
by running Cilium with the option --tunnel disabled.

In direct routing mode, Cilium will hand all packets which are not addressed
for another local endpoint to the routing subsystem of the Linux kernel. This
means that the packet will be routed as if a local process would have emitted
the packet. As a result, the network connecting the cluster nodes must be aware
that each of the node IP prefixes are reachable by using the node’s primary IP
address as an L3 next hop address.

Cilium automatically enables IP forwarding in Linux when direct mode is
configured, but it is up to the container cluster administrator to ensure that
each routing element in the underlying network has a route that describes each
node IP as the IP next hop for the corresponding node prefix.

This is typically achieved using two methods:

	Operation of a routing protocol such as OSPF or BGP via routing daemon such
as Zebra, bird, bgpd. The routing protocols will announce the node allocation
prefix via the node’s IP to all other nodes.

	Use of the cloud provider’s routing functionality. Refer to the documentation
of your cloud provider for additional details (e.g,. AWS VPC Route Tables [http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Route_Tables.html]
or GCE Routes [https://cloud.google.com/compute/docs/reference/latest/routes]). These APIs can be used to associate each node prefix with
the appropriate next hop IP each time a container node is added to the
cluster. If you are running Kubernetes with the --cloud-provider in
combination with the --allocate-node-cidrs option then this is configured
automatically for IPv4 prefixes.

Note

Use of direct routing mode with advanced policy use cases such as
L7 policies is currently beta. Please provide feedback and file a
GitHub issue if you experience any problems.

There are two possible approaches to performing network forwarding for
container-to-container traffic:

Cluster Mesh

Cluster mesh extends the networking datapath across multiple clusters. It
allows endpoints in all connected clusters to communicate while providing full
policy enforcement. Load-balancing is available via Kubernetes annotations.

See Setting up Cluster Mesh for instructions on how to set up cluster mesh.

Container Communication with External Hosts

Container communication with the outside world has two primary modes:

	Containers exposing API services for consumption by hosts outside of the
container cluster.

	Containers making outgoing connections. Examples include connecting to
3rd-party API services like Twilio or Stripe as well as accessing private
APIs that are hosted elsewhere in your enterprise datacenter or cloud
deployment.

In the Direct / Native Routing Mode mode described before, if container IP
addresses are routable outside of the container cluster, communication with
external hosts requires little more than enabling L3 forwarding on each of the
Linux nodes.

External Network Connectivity

If the destination of a packet lies outside of the cluster, Cilium will
delegate routing to the routing subsystem of the cluster node to use the
default route which is installed on the node of the cluster.

As the IP addresses used for the cluster prefix are typically allocated
from RFC1918 private address blocks and are not publicly routable. Cilium will
automatically masquerade the source IP address of all traffic that is leaving
the cluster. This behavior can be disabled by running cilium-agent with
the option --masquerade=false.

Public Endpoint Exposure

In direct routing mode, endpoint IPs can be publicly routable IPs and no
additional action needs to be taken.

In overlay mode, endpoints that are accepting inbound connections from
cluster external clients likely want to be exposed via some kind of
load-balancing layer. Such a load-balancer will have a public external address
that is not part of the Cilium network. This can be achieved by having a
load-balancer container that both has a public IP on an externally reachable
network and a private IP on a Cilium network. However, many container
orchestration frameworks, like Kubernetes, have built in abstractions to handle
this “ingress” load-balancing capability, which achieve the same effect that
Cilium handles forwarding and security only for ‘’internal’’ traffic between
different services.

Security

Cilium provides security on multiple levels. Each can be used individually or
combined together.

	Identity based Connectivity Access Control: Connectivity policies between endpoints (Layer 3),
e.g. any endpoint with label role=frontend can connect to any endpoint with
label role=backend.

	Restriction of accessible ports (Layer 4) for both incoming and outgoing
connections, e.g. endpoint with label role=frontend can only make outgoing
connections on port 443 (https) and endpoint role=backend can only accept
connections on port 443 (https).

	Fine grained access control on application protocol level to secure HTTP and
remote procedure call (RPC) protocols, e.g the endpoint with label
role=frontend can only perform the REST API call GET /userdata/[0-9]+,
all other API interactions with role=backend are restricted.

Currently on the roadmap, to be added soon:

	Authentication: Any endpoint which wants to initiate a connection to an
endpoint with the label role=backend must have a particular security
certificate to authenticate itself before being able to initiate any
connections. See GH issue 502 [https://github.com/cilium/cilium/issues/502] for additional details.

	Encryption: Communication between any endpoint with the label role=frontend
to any endpoint with the label role=backend is automatically encrypted with
a key that is automatically rotated. See GH issue 504 [https://github.com/cilium/cilium/issues/504] to track progress on this
feature.

Identity based Connectivity Access Control

Container management systems such as Kubernetes deploy a networking model which
assigns an individual IP address to each pod (group of containers). This
ensures simplicity in architecture, avoids unnecessary network address
translation (NAT) and provides each individual container with a full range of
port numbers to use. The logical consequence of this model is that depending on
the size of the cluster and total number of pods, the networking layer has to
manage a large number of IP addresses.

Traditionally security enforcement architectures have been based on IP address
filters. Let’s walk through a simple example: If all pods with the label
role=frontend should be allowed to initiate connections to all pods with
the label role=backend then each cluster node which runs at least one pod
with the label role=backend must have a corresponding filter installed
which allows all IP addresses of all role=frontend pods to initiate a
connection to the IP addresses of all local role=backend pods. All other
connection requests should be denied. This could look like this: If the
destination address is 10.1.1.2 then allow the connection only if the source
address is one of the following [10.1.2.2,10.1.2.3,20.4.9.1].

Every time a new pod with the label role=frontend or role=backend is
either started or stopped, the rules on every cluster node which run any such
pods must be updated by either adding or removing the corresponding IP address
from the list of allowed IP addresses. In large distributed applications, this
could imply updating thousands of cluster nodes multiple times per second
depending on the churn rate of deployed pods. Worse, the starting of new
role=frontend pods must be delayed until all servers running
role=backend pods have been updated with the new security rules as
otherwise connection attempts from the new pod could be mistakenly dropped.
This makes it difficult to scale efficiently.

In order to avoid these complications which can limit scalability and
flexibility, Cilium entirely separates security from network addressing.
Instead, security is based on the identity of a pod, which is derived through
labels. This identity can be shared between pods. This means that when the
first role=frontend pod is started, Cilium assigns an identity to that pod
which is then allowed to initiate connections to the identity of the
role=backend pod. The subsequent start of additional role=frontend pods
only requires to resolve this identity via a key-value store, no action has to
be performed on any of the cluster nodes hosting role=backend pods. The
starting of a new pod must only be delayed until the identity of the pod has
been resolved which is a much simpler operation than updating the security
rules on all other cluster nodes.

[image: ../_images/identity.png]

Policy Enforcement

All security policies are described assuming stateful policy enforcement for
session based protocols. This means that the intent of the policy is to
describe allowed direction of connection establishment. If the policy allows
A => B then reply packets from B to A are automatically allowed as
well. However, B is not automatically allowed to initiate connections to
A. If that outcome is desired, then both directions must be explicitly
allowed.

Security policies may be enforced at ingress or egress. For ingress,
this means that each cluster node verifies all incoming packets and determines
whether the packet is allowed to be transmitted to the intended endpoint.
Correspondingly, for egress each cluster node verifies outgoing packets and
determines whether the packet is allowed to be transmitted to its intended
destination.

In order to enforce identity based security in a multi host cluster, the
identity of the transmitting endpoint is embedded into every network packet
that is transmitted in between cluster nodes. The receiving cluster node can
then extract the identity and verify whether a particular identity is allowed
to communicate with any of the local endpoints.

Default Security Policy

If no policy is loaded, the default behavior is to allow all communication
unless policy enforcement has been explicitly enabled. As soon as the first
policy rule is loaded, policy enforcement is enabled automatically and any
communication must then be white listed or the relevant packets will be
dropped.

Similarly, if an endpoint is not subject to an L4 policy, communication from
and to all ports is permitted. Associating at least one L4 policy to an
endpoint will block all connectivity to ports unless explicitly allowed.

Orchestration System Specifics

Kubernetes

Cilium regards each deployed Pod as an endpoint with regards to networking and
security policy enforcement. Labels associated with pods can be used to define
the identity of the endpoint.

When two pods communicate via a service construct, then the labels of the
origin pod apply to determine the identity.

Datapath

AWS ENI

The AWS ENI datapath is enabled when Cilium is run with the option
--ipam=eni. It is a special purpose datapath that is useful when running
Cilium in an AWS environment.

Advantages of the model

	Pods are assigned ENI IPs which are directly routable in the AWS VPC. This
simplifies communication of pod traffic within VPCs and avoids the need for
SNAT.

	Pod IPs are assigned a security group. The security groups for pods are
configured per node which allows to create node pools and give different
security group assignments to different pods. See section AWS ENI for
more details.

Disadvantages of this model

	The number of ENI IPs is limited per instance. The limit depends on the EC2
instance type. This can become a problem when attempting to run a larger
number of pods on very small instance types.

	Allocation of ENIs and ENI IPs requires interaction with the EC2 API which is
subject to rate limiting. This is primarily mitigated via the operator
design, see section AWS ENI for more details.

Architecture

Ingress

	Traffic is received on one of the ENIs attached to the instance which is
represented on the node as interface ethN.

	An IP routing rule ensures that traffic to all local pod IPs is done using
the main routing table:

20: from all to 192.168.105.44 lookup main

	The main routing table contains an exact match route to steer traffic into a
veth pair which is hooked into the pod:

192.168.105.44 dev lxc5a4def8d96c5

	All traffic passing lxc5a4def8d96c5 on the way into the pod is subject
to Cilium’s BPF program to enforce network policies, provide service reverse
load-balancing, and visibility.

Egress

	The pod’s network namespace contains a default route which points to the
node’s router IP via the veth pair which is named eth0 inside of the pod
and lxcXXXXXX in the host namespace. The router IP is allocated from the
ENI space, allowing for sending of ICMP errors from the router IP for Path
MTU purposes.

	After passing through the veth pair and before reaching the Linux routing
layer, all traffic is subject to Cilium’s BPF program to enforce network
policies, implement load-balancing and provide networking features.

	An IP routing rule ensures that traffic from individual endpoints are using
a routing table specific to the ENI from which the endpoint IP was
allocated:

30: from 192.168.105.44 to 192.168.0.0/16 lookup 92

	The ENI specific routing table contains a default route which redirects
to the router of the VPC via the ENI interface:

default via 192.168.0.1 dev eth2
192.168.0.1 dev eth2

Configuration

The AWS ENI datapath is enabled by setting the following option:

	ipam: eni Enables the ENI specific IPAM backend and indicates to the
datapath that ENI IPs will be used.

	blacklist-conflicting-routes: "false" disables blacklisting of local
routes. This is required as routes will exist covering ENI IPs pointing to
interfaces that are not owned by Cilium. If blacklisting is not disabled, all
ENI IPs would be considered used by another networking component.

	enable-endpoint-routes: "true" enables direct routing to the ENI
veth pairs without requiring to route via the cilium_host interface.

	auto-create-cilium-node-resource: "true" enables the automatic creation of
the CiliumNode custom resource with all required ENI parameters. It is
possible to disable this and provide the custom resource manually.

	egress-masquerade-interfaces: eth+ is the interface selector of all
interfaces which are subject to masquerading. Masquerading can be disabled
entirely with masquerade: "false".

See the section AWS ENI for details on how to configure ENI IPAM
specific parameters.

Failure Behavior

If Cilium loses connectivity with the KV-Store, it guarantees that:

	Normal networking operations will continue;

	If policy enforcement is enabled, the existing Endpoint will still have
their policy enforced but you will lose the ability to add additional
containers that belong to security identities which are unknown on the node;

	If services are enabled, you will lose the ability to add additional services
/ loadbalancers;

	When the connectivity is restored to the KV-Store, Cilium can take up to 5
minutes to re-sync the out-of-sync state with the KV-Store.

Cilium will keep running even if it is out-of-sync with the KV-Store.

If Cilium crashes / or the DaemonSet is accidentally deleted, the following are
guaranteed:

	When running Cilium as a DaemonSet / container, with the specification files
provided in the documentation Installation with external etcd, the endpoints /
containers which are already running will not lose any connectivity, and they
will keep running with the policy loaded before Cilium stopped unexpectedly.

	When running Cilium in a different way, just make sure the bpf fs is mounted
Mounted BPF filesystem.

Architecture

This document describes the Cilium architecture. It focuses on
documenting the BPF datapath hooks to implement the Cilium datapath, how
the Cilium datapath integrates with the container orchestration layer, and the
objects shared between the layers e.g. the BPF datapath and Cilium agent.

Datapath

The Linux kernel supports a set of BPF hooks in the networking stack
that can be used to run BPF programs. The Cilium datapath uses these
hooks to load BPF programs that when used together create higher level
networking constructs.

The following is a list of the hooks used by Cilium and a brief
description. For a more thorough documentation on specifics of each
hook see BPF and XDP Reference Guide.

	XDP: The XDP BPF hook is at the earliest point possible in the networking driver
and triggers a run of the BPF program upon packet reception. This
achieves the best possible packet processing performance since the
program runs directly on the packet data before any other processing
can happen. This hook is ideal for running filtering programs that
drop malicious or unexpected traffic, and other common DDOS protection
mechanisms.

	Traffic Control Ingress/Egress: BPF programs attached to the traffic
control (tc) ingress hook are attached to a networking interface, same as
XDP, but will run after the networking stack has done initial processing
of the packet. The hook is run before the L3 layer of the stack but has
access to most of the metadata associated with a packet. This is ideal
for doing local node processing, such as applying L3/L4 endpoint policy
and redirecting traffic to endpoints. For networking facing devices the
tc ingress hook can be coupled with above XDP hook. When this is done it
is reasonable to assume that the majority of the traffic at this
point is legitimate and destined for the host.

Containers typically use a virtual device called a veth pair which acts
as a virtual wire connecting the container to the host. By attaching to
the TC ingress hook of the host side of this veth pair Cilium can monitor
and enforce policy on all traffic exiting a container. By attaching a BPF
program to the veth pair associated with each container and routing all
network traffic to the host side virtual devices with another BPF program
attached to the tc ingress hook as well Cilium can monitor and enforce
policy on all traffic entering or exiting the node.

Depending on the use case, containers may also be connected through ipvlan
devices instead of a veth pair. In this mode, the physical device in the
host is the ipvlan master where virtual ipvlan devices in slave mode are
set up inside the container. One of the benefits of ipvlan over a veth pair
is that the stack requires less resources to push the packet into the
ipvlan slave device of the other network namespace and therefore may
achieve better latency results. This option can be used for unprivileged
containers. The BPF programs for tc are then attached to the tc egress
hook on the ipvlan slave device inside the container’s network namespace
in order to have Cilium apply L3/L4 endpoint policy, for example, combined
with another BPF program running on the tc ingress hook of the ipvlan master
such that also incoming traffic on the node can be enforced.

	Socket operations: The socket operations hook is attached to a specific
cgroup and runs on TCP events. Cilium attaches a BPF socket operations
program to the root cgroup and uses this to monitor for TCP state transitions,
specifically for ESTABLISHED state transitions. When
a socket transitions into ESTABLISHED state if the TCP socket has a node
local peer (possibly a local proxy) a socket send/recv program is attached.

	Socket send/recv: The socket send/recv hook runs on every send operation
performed by a TCP socket. At this point the hook can inspect the message
and either drop the message, send the message to the TCP layer, or redirect
the message to another socket. Cilium uses this to accelerate the datapath redirects
as described below.

Combining the above hooks with a virtual interfaces (cilium_host, cilium_net),
an optional overlay interface (cilium_vxlan), Linux kernel crypto support and
a userspace proxy (Envoy) Cilium creates the following networking objects.

	Prefilter: The prefilter object runs an XDP program and
provides a set of prefilter rules used to filter traffic from the network for best performance. Specifically,
a set of CIDR maps supplied by the Cilium agent are used to do a lookup and the packet
is either dropped, for example when the destination is not a valid endpoint, or allowed to be processed by the stack. This can be easily
extended as needed to build in new prefilter criteria/capabilities.

	Endpoint Policy: The endpoint policy object implements the Cilium endpoint enforcement.
Using a map to lookup a packets associated identity and policy this layer
scales well to lots of endpoints. Depending on the policy this layer may drop the
packet, forward to a local endpoint, forward to the service object or forward to the
L7 Policy object for further L7 rules. This is the primary object in the Cilium
datapath responsible for mapping packets to identities and enforcing L3 and L4 policies.

	Service: The Service object performs a map lookup on the destination IP
and optionally destination port for every packet received by the object.
If a matching entry is found, the packet will be forwarded to one of the
configured L3/L4 endpoints. The Service block can be used to implement a
standalone load balancer on any interface using the TC ingress hook or may
be integrated in the endpoint policy object.

	L3 Encryption: On ingress the L3 Encryption object marks packets for
decryption, passes the packets to the Linux xfrm (transform) layer for
decryption, and after the packet is decrypted the object receives the packet
then passes it up the stack for further processing by other objects. Depending
on the mode, direct routing or overlay, this may be a BPF tail call or the
Linux routing stack that passes the packet to the next object. The key required
for decryption is encoded in the IPsec header so on ingress we do not need to
do a map lookup to find the decryption key.

On egress a map lookup is first performed using the destination IP to determine
if a packet should be encrypted and if so what keys are available on the destination
node. The most recent key available on both nodes is chosen and the
packet is marked for encryption. The packet is then passed to the Linux
xfrm layer where it is encrypted. Upon receiving the now encrypted packet
it is passed to the next layer either by sending it to the Linux stack for
routing or doing a direct tail call if an overlay is in use.

	Socket Layer Enforcement: Socket layer enforcement use two
hooks the socket operations hook and the socket send/recv hook to monitor
and attach to all TCP sockets associated with Cilium managed endpoints, including
any L7 proxies. The socket operations hook
will identify candidate sockets for accelerating. These include all local node connections
(endpoint to endpoint) and any connection to a Cilium proxy.
These identified connections will then have all messages handled by the socket
send/recv hook and will be accelerated using sockmap fast redirects. The fast
redirect ensures all policies implemented in Cilium are valid for the associated
socket/endpoint mapping and assuming they are sends the message directly to the
peer socket. This is allowed because the sockmap send/recv hooks ensures the message
will not need to be processed by any of the objects above.

	L7 Policy: The L7 Policy object redirect proxy traffic to a Cilium userspace
proxy instance. Cilium uses an Envoy instance as its userspace proxy. Envoy will
then either forward the traffic or generate appropriate reject messages based on the configured L7 policy.

These components are connected to create the flexible and efficient datapath used
by Cilium. Below we show the following possible flows connecting endpoints on a single
node, ingress to an endpoint, and endpoint to egress networking device. In each case
there is an additional diagram showing the TCP accelerated path available when socket layer enforcement is enabled.

Endpoint to Endpoint

First we show the local endpoint to endpoint flow with optional L7 Policy on
egress and ingress. Followed by the same endpoint to endpoint flow with
socket layer enforcement enabled. With socket layer enforcement enabled for TCP
traffic the
handshake initiating the connection will traverse the endpoint policy object until TCP state
is ESTABLISHED. Then after the connection is ESTABLISHED only the L7 Policy
object is still required.

[image: _images/cilium_bpf_endpoint.svg]

Egress from Endpoint

Next we show local endpoint to egress with optional overlay network. In the
optional overlay network traffic is forwarded out the Linux network interface
corresponding to the overlay. In the default case the overlay interface is
named cilium_vxlan. Similar to above, when socket layer enforcement is enabled
and a L7 proxy is in use we can avoid running the endpoint policy block between
the endpoint and the L7 Policy for TCP traffic. An optional L3 encryption block
will encrypt the packet if enabled.

[image: _images/cilium_bpf_egress.svg]

Ingress to Endpoint

Finally we show ingress to local endpoint also with optional overlay network.
Similar to above socket layer enforcement can be used to avoid a set of
policy traversals between the proxy and the endpoint socket. If the packet
is encrypted upon receive it is first decrypted and then handled through
the normal flow.

[image: _images/cilium_bpf_ingress.svg]

veth-based versus ipvlan-based datapath

Note

The ipvlan-based datapath is currently only in technology preview
and to be used for experimentation purposes. This restriction will
be lifted in future Cilium releases.

By default Cilium CNI operates in veth-based datapath mode which allows for
more flexibility in that all BPF programs are managed by Cilium out of the host
network namespace such that containers can be granted privileges for their
namespaces like CAP_NET_ADMIN without affecting security since BPF enforcement
points in the host are unreachable for the container. Given BPF programs are
attached from the host’s network namespace, BPF also has the ability to take
over and efficiently manage most of the forwarding logic between local containers
and host since there always is a networking device reachable. However, this
also comes at a latency cost as in veth-based mode the network stack internally
needs to be re-traversed when handing the packet from one veth device to its
peer device in the other network namespace. This egress-to-ingress switch needs
to be done twice when communicating between local Cilium endpoints, and once
for packet that are arriving or sent out of the host.

For a more latency optimized datapath, Cilium CNI also supports ipvlan L3/L3S mode
with a number of restrictions. In order to support older kernel’s without ipvlan’s
hairpin mode, Cilium attaches BPF programs at the ipvlan slave device inside
the container’s network namespace on the tc egress layer, which means that
this datapath mode can only be used for containers which are not running with
CAP_NET_ADMIN and CAP_NET_RAW privileges! ipvlan uses an internal forwarding
logic for direct slave-to-slave or slave-to-master redirection and therefore
forwarding to devices is not performed from the BPF program itself. The network
namespace switching is more efficient in ipvlan mode since the stack does not
need to be re-traversed as in veth-based datapath case for external packets.
The host-to-container network namespace switch happens directly at L3 layer
without having to queue and reschedule the packet for later ingress processing.
In case of communication among local endpoints, the egress-to-ingress switch
is performed once instead of having to perform it twice.

For Cilium in ipvlan mode there are a number of additional restrictions in
the current implementation which are to be addressed in upcoming work: NAT64
cannot be enabled at this point as well as L7 policy enforcement via proxy.
Service load-balancing to local endpoints is currently not enabled as well
as container to host-local communication. If one of these features are needed,
then the default veth-based datapath mode is recommended instead.

The ipvlan mode in Cilium’s CNI can be enabled by running the Cilium daemon
with e.g. --datapath-mode=ipvlan --ipvlan-master-device=bond0 where the
latter typically specifies the physical networking device which then also acts
as the ipvlan master device. Note that in case ipvlan datapath mode is deployed
in L3S mode with Kubernetes, make sure to have a stable kernel running with the
following ipvlan fix included: d5256083f62e [https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/commit/?id=d5256083f62e2720f75bb3c5a928a0afe47d6bc3].

This completes the datapath overview. More BPF specifics can be found in the
BPF and XDP Reference Guide. Additional details on how to extend the L7 Policy
exist in the Envoy section.

Scale

BPF Map Limitations

All BPF maps are created with upper capacity limits. Insertion beyond the limit
will fail and thus limits the scalability of the datapath. The following table
shows the default values of the maps. Each limit can be bumped in the source
code. Configuration options will be added on request if demand arises.

	Map Name

	Scope

	Default Limit

	Scale Implications

	Connection Tracking

	node or endpoint

	1M TCP/256K UDP

	Max 1M concurrent TCP connections, max 256K expected UDP answers

	Endpoints

	node

	64k

	Max 64k local endpoints + host IPs per node

	IP cache

	node

	512K

	Max 256K endpoints (IPv4+IPv6), max 512k endpoints (IPv4 or IPv6) across all clusters

	Load Balancer

	node

	64k

	Max 64k cumulative backends across all services across all clusters

	Policy

	endpoint

	16k

	Max 16k allowed identity + port + protocol pairs for specific endpoint

	Proxy Map

	node

	512k

	Max 512k concurrent redirected TCP connections to proxy

	Tunnel

	node

	64k

	Max 32k nodes (IPv4+IPv6) or 64k nodes (IPv4 or IPv6) across all clusters

Kubernetes Integration

The following diagram shows the integration of iptables rules as installed by
kube-proxy and the iptables rules as installed by Cilium.

[image: _images/kubernetes_iptables.svg]

Getting Help

Cilium is a project with a growing community. There are numerous ways to get
help with Cilium if needed:

FAQ

Cilium Frequently Asked Questions (FAQ): Cilium uses GitHub
tags [https://github.com/cilium/cilium/issues?utf8=%E2%9C%93&q=label%3Akind%2Fquestion%20]
to maintain a list of questions asked by users. We suggest checking to see if
your question is already answered.

Slack

Chat: The best way to get immediate help if you get stuck is to ask in one
of the Cilium Slack channels [https://cilium.herokuapp.com].

GitHub

Bug Tracker: All the issues are addressed in the GitHub issue tracker [https://github.com/cilium/cilium/issues]. If you want to report a bug or a
new feature please file the issue according to the GitHub template [https://github.com/cilium/cilium/blob/master/.github/issue_template.md].

Contributing: If you want to contribute, reading the Developer / Contributor Guide should
help you.

Security Bugs

Security: We strongly encourage you to report security vulnerabilities to
our private security mailing list: security@cilium.io - first, before
disclosing them in any public forums.

This is a private mailing list where only members of the Cilium internal
security team are subscribed to, and is treated as top priority.

Kubernetes

Cilium provides seamless integration into Kubernetes. The following guidance may help you
to navigate this documentation section:

	If you are looking for a simple and safe playground to experiment with Cilium
and Kubernetes Getting Started Using Minikube.

	If you want to learn more about Cilium on Kubernetes first: Introduction.

	If you want to run Cilium on your kops cluster: Installation using Kops.

The following sections describe the Kubernetes integration in detail:

	Introduction

	Concepts

	Requirements

	Configuration

	Network Policy

	Endpoint CRD

	Kubernetes Compatibility

	Troubleshooting

Introduction

What does Cilium provide in your Kubernetes Cluster?

The following functionality is provided as your run Cilium in your Kubernetes
cluster:

	CNI plugin support to provide pod_connectivity with
Multi Host Networking.

	Identity based implementation of the NetworkPolicy resource to isolate pod
to pod connectivity on Layer 3 and 4.

	An extension to NetworkPolicy in the form of a CustomResourceDefinition
which extends policy control to add:

	Layer 7 policy enforcement on ingress and egress for the following
application protocols:

	HTTP

	Kafka

	Egress support for CIDRs to secure access to external services

	Enforcement to external headless services to automatically restrict to the
set of Kubernetes endpoints configured for a service.

	ClusterIP implementation to provide distributed load-balancing for pod to pod
traffic.

	Fully compatible with existing kube-proxy model

Pod-to-Pod Connectivity

In Kubernetes, containers are deployed within units referred to as Pod, which
include one or more containers reachable via a single IP address. With Cilium,
each Pod gets an IP address from the node prefix of the Linux node running the
Pod. See Address Management for additional details. In the absence of any
network security policies, all Pods can reach each other.

Pod IP addresses are typically local to the Kubernetes cluster. If pods need to
reach services outside the cluster as a client, the network traffic is
automatically masqueraded as it leaves the node. You can find additional
information in the section External Network Connectivity.

Service Load-balancing

Kubernetes has developed the Services abstraction which provides the user the
ability to load balance network traffic to different pods. This abstraction
allows the pods reaching out to other pods by a single IP address, a virtual IP
address, without knowing all the pods that are running that particular service.

Without Cilium, kube-proxy is installed on every node, watches for endpoints
and services addition and removal on the kube-master which allows it to to
apply the necessary enforcement on iptables. Thus, the received and sent
traffic from and to the pods are properly routed to the node and port serving
for that service. For more information you can check out the kubernetes user
guide for Services [http://kubernetes.io/docs/user-guide/services].

When implementing ClusterIP, Cilium acts on the same principles as kube-proxy,
it watches for services addition or removal, but instead of doing the
enforcement on the iptables, it updates BPF map entries on each node. For more
information, see the Pull Request [https://github.com/cilium/cilium/pull/109].

Further Reading

The Kubernetes documentation contains more background on the Kubernetes
Networking Model [https://kubernetes.io/docs/concepts/cluster-administration/networking/] and
Kubernetes Network Plugins [https://kubernetes.io/docs/concepts/cluster-administration/network-plugins/]
.

Concepts

Deployment

The configuration of a standard Cilium Kubernetes deployment consists of
several Kubernetes resources:

	A DaemonSet resource: describes the Cilium pod that is deployed to each
Kubernetes node. This pod runs the cilium-agent and associated daemons. The
configuration of this DaemonSet includes the image tag indicating the exact
version of the Cilium docker container (e.g., v1.0.0) and command-line
options passed to the cilium-agent.

	A ConfigMap resource: describes common configuration values that are
passed to the cilium-agent, such as the kvstore endpoint and credentials,
enabling/disabling debug mode, etc.

	ServiceAccount, ClusterRole, and ClusterRoleBindings resources:
the identity and permissions used by cilium-agent to access the Kubernetes
API server when Kubernetes RBAC is enabled.

	A Secret resource: describes the credentials use access the etcd kvstore,
if required.

Networking For Existing Pods

In case pods were already running before the Cilium DaemonSet was deployed,
these pods will still be connected using the previous networking plugin
according to the CNI configuration. A typical example for this is the
kube-dns service which runs in the kube-system namespace by default.

A simple way to change networking for such existing pods is to rely on the fact
that Kubernetes automatically restarts pods in a Deployment if they are
deleted, so we can simply delete the original kube-dns pod and the replacement
pod started immediately after will have networking managed by Cilium. In a
production deployment, this step could be performed as a rolling update of
kube-dns pods to avoid downtime of the DNS service.

$ kubectl --namespace kube-system delete pods -l k8s-app=kube-dns
pod "kube-dns-268032401-t57r2" deleted

Running kubectl get pods will show you that Kubernetes started a new set of
kube-dns pods while at the same time terminating the old pods:

$ kubectl --namespace kube-system get pods
NAME READY STATUS RESTARTS AGE
cilium-5074s 1/1 Running 0 58m
kube-addon-manager-minikube 1/1 Running 0 59m
kube-dns-268032401-j0vml 3/3 Running 0 9s
kube-dns-268032401-t57r2 3/3 Terminating 0 57m

Default Ingress Allow from Local Host

Kubernetes has functionality to indicate to users the current health of their
applications via Liveness Probes and Readiness Probes [https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/].
In order for kubelet to run these health checks for each pod, by default,
Cilium will always allow all ingress traffic from the local host to each pod.

Requirements

Kubernetes Version

All Kubernetes versions listed are e2e tested and guaranteed to be compatible
with this Cilium version. Older Kubernetes versions not listed here do not have
Cilium support. Newer Kubernetes versions, while not listed, will depend on the
backward compatibility offered by Kubernetes.

	1.10

	1.11

	1.12

	1.13

	1.14

	1.15

	1.16

System Requirements

Cilium requires a Linux kernel >= 4.9. See System Requirements for the
full details on all systems requirements.

Enable CNI in Kubernetes

CNI - Container Network Interface is the plugin layer used by Kubernetes to
delegate networking configuration. CNI must be enabled in your Kubernetes
cluster in order to install Cilium. This is done by passing
--network-plugin=cni to kubelet on all nodes. For more information, see
the Kubernets CNI network-plugins documentation [https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/].

Mounted BPF filesystem

This step is required for production environments but optional for testing
and development. It allows the cilium-agent to pin BPF resources to a
persistent filesystem and make them persistent across restarts of the agent.
If the BPF filesystem is not mounted in the host filesystem, Cilium will
automatically mount the filesystem but it will be unmounted and re-mounted when
the Cilium pod is restarted. This in turn will cause BPF resources to be
re-created which will cause network connectivity to be disrupted. Mounting the
BPF filesystem in the host mount namespace will ensure that the agent can be
restarted without affecting connectivity of any pods.

In order to mount the BPF filesystem, the following command must be run in the
host mount namespace. The command must only be run once during the boot process
of the machine.

mount bpffs /sys/fs/bpf -t bpf

A portable way to achieve this with persistence is to add the following line to
/etc/fstab and then run mount /sys/fs/bpf. This will cause the
filesystem to be automatically mounted when the node boots.

bpffs /sys/fs/bpf bpf defaults 0 0

If you are using systemd to manage the kubelet, see the section
Mounting BPFFS with systemd.

kube-dns

The Installation with managed etcd relies on the etcd-operator to manage an
etcd cluster. In order for the etcd cluster to be available, the Cilium pod is
being run with dnsPolicy: ClusterFirstWithHostNet in order for Cilium to be
able to look up Kubernetes service names via DNS. This creates a dependency on
kube-dns. If you would like to avoid running kube-dns, choose a different
installation method and remove the dnsPolicy field from the DaemonSet.

Enable automatic node CIDR allocation (Recommended)

Kubernetes has the capability to automatically allocate and assign a per node IP
allocation CIDR. Cilium automatically uses this feature if enabled. This is the
easiest method to handle IP allocation in a Kubernetes cluster. To enable this
feature, simply add the following flag when starting
kube-controller-manager:

--allocate-node-cidrs

This option is not required but highly recommended.

Configuration

ConfigMap Options

In the ConfigMap there are several options that can be configured according
to your preferences:

	debug - Sets to run Cilium in full debug mode, which enables verbose
logging and configures BPF programs to emit more visibility events into the
output of cilium monitor.

	enable-ipv4 - Enable IPv4 addressing support

	enable-ipv6 - Enable IPv6 addressing support

	clean-cilium-bpf-state - Removes all BPF state from the filesystem on
startup. Endpoints will be restored with the same IP addresses, but ongoing
connections may be briefly disrupted and loadbalancing decisions will be
lost, so active connections via the loadbalancer will break. All BPF state
will be reconstructed from their original sources (for example, from
kubernetes or the kvstore). This may be used to mitigate serious issues
regarding BPF maps. This option should be turned off again after restarting
the daemon.

	clean-cilium-state - Removes all Cilium state, including unrecoverable
information such as all endpoint state, as well as recoverable state such as
BPF state pinned to the filesystem, CNI configuration files, library code,
links, routes, and other information. This operation is irreversible.
Existing endpoints currently managed by Cilium may continue to operate as
before, but Cilium will no longer manage them and they may stop working
without warning. After using this operation, endpoints must be deleted and
reconnected to allow the new instance of Cilium to manage them.

	monitor-aggregation - This option enables coalescing of tracing events in
cilium monitor to only include periodic updates from active flows, or any
packets that involve an L4 connection state change. Valid options are
none, low, medium, maximum.

	preallocate-bpf-maps - Pre-allocation of map entries allows per-packet
latency to be reduced, at the expense of up-front memory allocation for the
entries in the maps. Set to true to optimize for latency. If this value
is modified, then during the next Cilium startup connectivity may be
temporarily disrupted for endpoints with active connections.

Any changes that you perform in the Cilium ConfigMap and in
cilium-etcd-secrets Secret will require you to restart any existing
Cilium pods in order for them to pick the latest configuration.

The following ConfigMap is an example where the etcd cluster is running in 2
nodes, node-1 and node-2 with TLS, and client to server authentication
enabled.

apiVersion: v1
kind: ConfigMap
metadata:
 name: cilium-config
 namespace: kube-system
data:
 endpoints:
 - https://node-1:31079
 - https://node-2:31079
 #
 # In case you want to use TLS in etcd, uncomment the 'trusted-ca-file' line
 # and create a kubernetes secret by following the tutorial in
 # https://cilium.link/etcd-config
 trusted-ca-file: '/var/lib/etcd-secrets/etcd-client-ca.crt'
 #
 # In case you want client to server authentication, uncomment the following
 # lines and create a kubernetes secret by following the tutorial in
 # https://cilium.link/etcd-config
 key-file: '/var/lib/etcd-secrets/etcd-client.key'
 cert-file: '/var/lib/etcd-secrets/etcd-client.crt'

 # If you want to run cilium in debug mode change this value to true
 debug: "false"
 enable-ipv4: "true"
 # If you want to clean cilium state; change this value to true
 clean-cilium-state: "false"

CNI

CNI - Container Network Interface is the plugin layer used by Kubernetes to
delegate networking configuration. You can find additional information on the
CNI project website.

Note

Kubernetes `` >= 1.3.5`` requires the loopback CNI plugin to be
installed on all worker nodes. The binary is typically provided by
most Kubernetes distributions. See section Manually installing CNI for
instructions on how to install CNI in case the loopback binary
is not already installed on your worker nodes.

CNI configuration is automatically being taken care of when deploying Cilium
via the provided DaemonSet. The script cni-install.sh is automatically run
via the postStart mechanism when the cilium pod is started.

Note

In order for the the cni-install.sh script to work properly, the
kubelet task must either be running on the host filesystem of the
worker node, or the /etc/cni/net.d and /opt/cni/bin
directories must be mounted into the container where kubelet is
running. This can be achieved with Volumes mounts.

The CNI auto installation is performed as follows:

	The /etc/cni/net.d and /opt/cni/bin directories are mounted from the
host filesystem into the pod where Cilium is running.

	The file /etc/cni/net.d/05-cilium.conf is written in case it does not
exist yet.

	The binary cilium-cni is installed to /opt/cni/bin. Any existing
binary with the name cilium-cni is overwritten.

Manually installing CNI

This step is typically already included in all Kubernetes distributions or
Kubernetes installers but can be performed manually:

sudo mkdir -p /opt/cni
wget https://storage.googleapis.com/kubernetes-release/network-plugins/cni-0799f5732f2a11b329d9e3d51b9c8f2e3759f2ff.tar.gz
sudo tar -xvf cni-0799f5732f2a11b329d9e3d51b9c8f2e3759f2ff.tar.gz -C /opt/cni
rm cni-0799f5732f2a11b329d9e3d51b9c8f2e3759f2ff.tar.gz

Adjusting CNI configuration

The CNI configuration file is automatically written and maintained by the
scripts cni-install.sh and cni-uninstall.sh which are running as
postStart and preStop hooks of the Cilium pod.

If you want to provide your own custom CNI configuration file, set the
CILIUM_CUSTOM_CNI_CONF environment variable to avoid overwriting the
configuration file by adding the following to the env: section of the
cilium DaemonSet:

- name: CILIUM_CUSTOM_CNI_CONF
 value: "true"

The CNI installation can be configured with environment variables. These
environment variables can be specified in the DaemonSet file like this:

env:
 - name: "CNI_CONF_NAME"
 value: "05-cilium.conf"

The following variables are supported:

	Option

	Description

	Default

	HOST_PREFIX

	Path prefix of all host mounts

	/host

	CNI_DIR

	Path to mounted CNI directory

	${HOST_PREFIX}/opt/cni

	CNI_CONF_NAME

	Name of configuration file

	05-cilium.conf

If you want to further adjust the CNI configuration you may do so by creating
the CNI configuration /etc/cni/net.d/05-cilium.conf manually:

sudo mkdir -p /etc/cni/net.d
sudo sh -c 'echo "{
 "name": "cilium",
 "type": "cilium-cni"
}
" > /etc/cni/net.d/05-cilium.conf'

Cilium will use any existing /etc/cni/net.d/05-cilium.conf file if it
already exists on a worker node and only creates it if it does not exist yet.

CRD Validation

Custom Resource Validation was introduced in Kubernetes since version 1.8.0.
This is still considered an alpha feature in Kubernetes 1.8.0 and beta in
Kubernetes 1.9.0.

Since Cilium v1.0.0-rc3, Cilium will create, or update in case it exists,
the Cilium Network Policy (CNP) Resource Definition with the embedded
validation schema. This allows the validation of CiliumNetworkPolicy to be done
on the kube-apiserver when the policy is imported with an ability to provide
direct feedback when importing the resource.

To enable this feature, the flag --feature-gates=CustomResourceValidation=true
must be set when starting kube-apiserver. Cilium itself will automatically make
use of this feature and no additional flag is required.

Note

In case there is an invalid CNP before updating to Cilium
v1.0.0-rc3, which contains the validator, the kube-apiserver
validator will prevent Cilium from updating that invalid CNP with
Cilium node status. By checking Cilium logs for unable to update
CNP, retrying..., it is possible to determine which Cilium Network
Policies are considered invalid after updating to Cilium
v1.0.0-rc3.

To verify that the CNP resource definition contains the validation schema, run
the following command:

kubectl get crd ciliumnetworkpolicies.cilium.io -o json

kubectl get crd ciliumnetworkpolicies.cilium.io -o json | grep -A 12 openAPIV3Schema
 "openAPIV3Schema": {
 "oneOf": [
 {
 "required": [
 "spec"
]
 },
 {
 "required": [
 "specs"
]
 }
],

In case the user writes a policy that does not conform to the schema, Kubernetes
will return an error, e.g.:

cat <<EOF > ./bad-cnp.yaml
apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "Policy to test multiple rules in a single file"
metadata:
 name: my-new-cilium-object
spec:
 endpointSelector:
 matchLabels:
 app: details
 track: stable
 version: v1
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: reviews
 track: stable
 version: v1
 toPorts:
 - ports:
 - port: '65536'
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/health"
EOF

kubectl create -f ./bad-cnp.yaml
...
spec.ingress.toPorts.ports.port in body should match '^(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}|[0-9]{1,4})$'

In this case, the policy has a port out of the 0-65535 range.

Mounting BPFFS with systemd

Due to how systemd mounts [https://unix.stackexchange.com/questions/283442/systemd-mount-fails-where-setting-doesnt-match-unit-name]
filesystems, the mount point path must be reflected in the unit filename.

cat <<EOF | sudo tee /etc/systemd/system/sys-fs-bpf.mount
[Unit]
Description=Cilium BPF mounts
Documentation=http://docs.cilium.io/
DefaultDependencies=no
Before=local-fs.target umount.target
After=swap.target

[Mount]
What=bpffs
Where=/sys/fs/bpf
Type=bpf

[Install]
WantedBy=multi-user.target
EOF

Container Runtimes

CRIO

If you want to use CRIO, generate the YAML using:

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

helm template cilium \
 --namespace kube-system \
 --set global.containerRuntime.integration=crio \
 > cilium.yaml

Since CRI-O does not automatically detect that a new CNI plugin has been
installed, you will need to restart the CRI-O daemon for it to pick up the
Cilium CNI configuration.

First make sure cilium is running:

kubectl get pods -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cilium-mqtdz 1/1 Running 0 3m 10.0.2.15 minikube

After that you can restart CRI-O:

minikube ssh -- sudo systemctl restart crio

Finally, you need to restart the Cilium pod so it can re-mount
/var/run/crio/crio.sock which was recreated by CRI-O

kubectl delete -n kube-system pod -l k8s-app=cilium

Disable container runtime

If you want to run the Cilium agent on a node that will not host any
application containers, then that node may not have a container runtime
installed at all. You may still want to run the Cilium agent on the node to
ensure that local processes on that node can reach application containers on
other nodes. The default behavior of Cilium on startup when no container
runtime has been found is to abort startup. To avoid this abort, you can run
the cilium-agent with the following option.

helm template cilium \
 --namespace kube-system \
 --set global.containerRuntime.integration=none \
 > cilium.yaml

Network Policy

If you are running Cilium on Kubernetes, you can benefit from Kubernetes
distributing policies for you. In this mode, Kubernetes is responsible for
distributing the policies across all nodes and Cilium will automatically apply
the policies. Two formats are available to configure network policies natively
with Kubernetes:

	The standard NetworkPolicy resource which at the time of this writing,
supports to specify L3/L4 ingress policies with limited egress support marked
as beta.

	The extended CiliumNetworkPolicy format which is available as a
CustomResourceDefinition which supports specification of policies
at Layers 3-7 for both ingress and egress.

It is recommended to only use one of the above policy types at a time to
minimize unintended effects arising from the interaction between the
policies.

NetworkPolicy

For more information, see the official NetworkPolicy documentation [https://kubernetes.io/docs/concepts/services-networking/network-policies/].

Known missing features for Kubernetes Network Policy:

	Feature

	Tracking Issue

	Use of named ports

	https://github.com/cilium/cilium/issues/2942

	Ingress CIDR-based L4 policy

	https://github.com/cilium/cilium/issues/1684

	ipBlock set with a pod IP

	https://github.com/cilium/cilium/issues/9209

	SCTP

	https://github.com/cilium/cilium/issues/5719

CiliumNetworkPolicy

The CiliumNetworkPolicy is very similar to the standard NetworkPolicy. The
purpose is provide the functionality which is not yet supported in
NetworkPolicy. Ideally all of the functionality will be merged into the
standard resource format and this CRD will no longer be required.

The raw specification of the resource in Go looks like this:

type CiliumNetworkPolicy struct {
 metav1.TypeMeta `json:",inline"`
 // +optional
 Metadata metav1.ObjectMeta `json:"metadata"`

 // Spec is the desired Cilium specific rule specification.
 Spec *api.Rule `json:"spec,omitempty"`

 // Specs is a list of desired Cilium specific rule specification.
 Specs api.Rules `json:"specs,omitempty"`

 // Status is the status of the Cilium policy rule
 // +optional
 Status CiliumNetworkPolicyStatus `json:"status"`
}

	Metadata

	Describes the policy. This includes:

	Name of the policy, unique within a namespace

	Namespace of where the policy has been injected into

	Set of labels to identify resource in Kubernetes

	Spec

	Field which contains a Rule Basics

	Specs

	Field which contains a list of Rule Basics. This field is useful if
multiple rules must be removed or added automatically.

	Status

	Provides visibility into whether the policy has been successfully applied

Examples

See Layer 3 Examples for a detailed list of example policies.

Endpoint CRD

When managing pods in Kubernetes, Cilium will create a Custom Resource
Definition (CRD) of Kind CiliumEndpoint. One CiliumEndpoint is created
for each pod managed by Cilium, with the same name and in the same namespace.
The CiliumEndpoint objects contain the same information as the json output
of cilium endpoint get under the .status field, but can be fetched for
all pods in the cluster. Adding the -o json will export more information
about each endpoint. This includes the endpoint’s labels, security identity and
the policy in effect on it.

For example:

kubectl get ciliumendpoints --all-namespaces
NAMESPACE NAME AGE
default app1-55d7944bdd-l7c8j 1h
default app1-55d7944bdd-sn9xj 1h
default app2 1h
default app3 1h
kube-system cilium-health-minikube 1h
kube-system microscope 1h

Note

Each cilium-agent pod will create a CiliumEndpoint to represent its
own inter-agent health-check endpoint. These are not pods in
Kubernetes and are in the kube-system namespace. They are named as
cilium-health-<node-name>

	orphan

	

Kubernetes Compatibility

Cilium is compatible with multiple Kubernetes API Groups. Some are deprecated
or beta, and may only be available in specific versions of Kubernetes.

All Kubernetes versions listed are e2e tested and guaranteed to be compatible
with Cilium. Older Kubernetes versions not listed in this table do not have
Cilium support. Newer Kubernetes versions, while not listed, will depend on the
backward compatibility offered by Kubernetes.

	k8s Version

	k8s NetworkPolicy API

	CiliumNetworkPolicy

	1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16

	
	networking.k8s.io/v1 [https://kubernetes.io/docs/api-reference/v1.8/#networkpolicy-v1-networking]

	cilium.io/v2 has a
CustomResourceDefinition

Troubleshooting

Verifying the installation

Check the status of the DaemonSet and verify that all desired instances are in
“ready” state:

$ kubectl --namespace kube-system get ds
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
cilium 1 1 0 <none> 3s

In this example, we see a desired state of 1 with 0 being ready. This indicates
a problem. The next step is to list all cilium pods by matching on the label
k8s-app=cilium and also sort the list by the restart count of each pod to
easily identify the failing pods:

$ kubectl --namespace kube-system get pods --selector k8s-app=cilium \
 --sort-by='.status.containerStatuses[0].restartCount'
NAME READY STATUS RESTARTS AGE
cilium-813gf 0/1 CrashLoopBackOff 2 44s

Pod cilium-813gf is failing and has already been restarted 2 times. Let’s
print the logfile of that pod to investigate the cause:

$ kubectl --namespace kube-system logs cilium-813gf
INFO _ _ _
INFO ___|_| |_|_ _ _____
INFO | _| | | | | | |
INFO |___|_|_|_|___|_|_|_|
INFO Cilium 0.8.90 f022e2f Thu, 27 Apr 2017 23:17:56 -0700 go version go1.7.5 linux/amd64
CRIT kernel version: NOT OK: minimal supported kernel version is >= 4.8

In this example, the cause for the failure is a Linux kernel running on the
worker node which is not meeting System Requirements.

If the cause for the problem is not apparent based on these simple steps,
please come and seek help on our Slack channel.

Apiserver outside of cluster

If you are running Kubernetes Apiserver outside of your cluster for some reason (like keeping master nodes behind a firewall), make sure that you run Cilium on master nodes too.
Otherwise Kubernetes pod proxies created by Apiserver will not be able to route to pod IPs and you may encounter errors when trying to proxy traffic to pods.

You may run Cilium as a static pod [https://kubernetes.io/docs/tasks/administer-cluster/static-pod/] or set tolerations [https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/] for Cilium DaemonSet to ensure
that Cilium pods will be scheduled on your master nodes. The exact way to do it depends on your setup.

Istio

Cilium can be deployed along Istio to provide L3-L7 network filtering
in complement to Istio’s microservice mesh features. The following
quick guide guides you through the process step by step:

	Getting Started Using Istio

For more information on Istio, check out the Istio website [https://istio.io/].

Getting Started Using Istio

This document serves as an introduction to using Cilium to enforce
security policies in Kubernetes micro-services managed with Istio. It
is a detailed walk-through of getting a single-node Cilium + Istio
environment running on your machine.

If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

Note

If running on minikube, you may need to up the memory and CPUs
available to the minikube VM from the defaults and/or the
instructions provided here for the other GSGs. 5 GB and 4 CPUs
should be enough for this GSG (--memory=5120 --cpus=4).

Step 2: Install cilium-istioctl

Note

Make sure that Cilium is running in your cluster before proceeding.

Download the cilium enhanced istioctl version 1.5.9 [https://github.com/cilium/istio/releases/tag/1.5.9]:

Linux

OSX

curl -L https://github.com/cilium/istio/releases/download/1.5.9/cilium-istioctl-1.5.9-linux.tar.gz | tar xz

curl -L https://github.com/cilium/istio/releases/download/1.5.9/cilium-istioctl-1.5.9-osx.tar.gz | tar xz

Note

Cilium integration, as presented in this Getting Started Guide, has
been tested with Kubernetes releases 1.14, 1.15, 1.16, 1.17, and
1.18. Note that this does not work with K8s 1.13.

Deploy the default Istio configuration profile onto Kubernetes:

./cilium-istioctl manifest apply -y

Add a namespace label to instruct Istio to automatically inject Envoy sidecar proxies when you deploy your application later:

kubectl label namespace default istio-injection=enabled

Step 3: Deploy the Bookinfo Application V1

Now that we have Cilium and Istio deployed, we can deploy version
v1 of the services of the Istio Bookinfo sample application [https://istio.io/docs/examples/bookinfo.html].

While the upstream Istio Bookinfo Application example for Kubernetes [https://istio.io/docs/examples/bookinfo/#if-you-are-running-on-kubernetes]
deploys multiple versions of the Bookinfo application at the same time,
here we first deploy only the version 1.

The BookInfo application is broken into four separate microservices:

	productpage. The productpage microservice calls the details and
reviews microservices to populate the page.

	details. The details microservice contains book information.

	reviews. The reviews microservice contains book reviews. It also
calls the ratings microservice.

	ratings. The ratings microservice contains book ranking
information that accompanies a book review.

In this demo, each specific version of each microservice is deployed
into Kubernetes using separate YAML files which define:

	A Kubernetes Service.

	A Kubernetes Deployment specifying the microservice’s pods, specific
to each service version.

	A Cilium Network Policy limiting the traffic to the microservice,
specific to each service version.

[image: ../_images/istio-bookinfo-v1.png]
To deploy the application with manual sidecar injection, run:

for service in productpage-service productpage-v1 details-v1 reviews-v1; do \
 kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-${service}.yaml ; done

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
details-v1 1/1 1 1 12s
productpage-v1 1/1 1 1 13s
reviews-v1 1/1 1 1 12s

Create an Istio ingress gateway for the productpage service:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-gateway.yaml

To obtain the URL to the frontend productpage service, run:

export GATEWAY_URL=http://$(minikube ip):$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
export PRODUCTPAGE_URL=${GATEWAY_URL}/productpage
open ${PRODUCTPAGE_URL}

Open that URL in your web browser and check that the application has
been successfully deployed. It may take several seconds before all
services become accessible in the Istio service mesh, so you may have
have to reload the page.

Step 4: Canary and Deploy the Reviews Service V2

We will now deploy version v2 of the reviews service. In
addition to providing reviews from readers, reviews v2 queries a
new ratings service for book ratings, and displays each rating as
1 to 5 black stars.

As a precaution, we will use Istio’s service routing feature to canary
the v2 deployment to prevent breaking the end-to-end application
completely if it is faulty.

Before deploying v2, to prevent any traffic from being routed to
it for now, we will create this Istio route rules to route 100% of the
reviews traffic to v1:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1
 weight: 100

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: reviews
spec:
 host: reviews
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v1.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v1.yaml

Deploy the ratings v1 and reviews v2 services:

for service in ratings-v1 reviews-v2; do \
 kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-${service}.yaml ; done

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
details-v1 1/1 1 1 17m
productpage-v1 1/1 1 1 17m
ratings-v1 1/1 1 1 69s
reviews-v1 1/1 1 1 17m
reviews-v2 1/1 1 1 68s

Check in your web browser that no stars are appearing in the Book
Reviews, even after refreshing the page several times. This indicates
that all reviews are retrieved from reviews v1 and none from
reviews v2.

[image: ../_images/istio-bookinfo-reviews-v1.png]
The ratings-v1 CiliumNetworkPolicy explicitly whitelists access
to the ratings API only from productpage and reviews v2:

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: ratings-v1
 namespace: default
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": ratings
 "k8s:version": v1
 ingress:
 - fromEndpoints:
 - matchLabels:
 "k8s:app": productpage
 "k8s:version": v1
 toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/ratings/[0-9]*"
 - fromEndpoints:
 - matchLabels:
 "k8s:app": reviews
 "k8s:version": v2
 toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/ratings/[0-9]*"

Check that reviews v1 may not be able to access the ratings
service, even if it were compromised or suffered from a bug, by
running curl from within the pod:

Note

All traffic from reviews v1 to ratings is blocked, so the
connection attempt fails after the connection timeout.

export POD_REVIEWS_V1=`kubectl get pods -l app=reviews,version=v1 -o jsonpath='{.items[0].metadata.name}'`
kubectl exec ${POD_REVIEWS_V1} -c istio-proxy -ti -- curl --connect-timeout 5 --fail http://ratings:9080/ratings/0
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

Update the Istio route rule to send 50% of reviews traffic to
v1 and 50% to v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1
 weight: 50
 - destination:
 host: reviews
 subset: v2
 weight: 50

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v1-and-v2.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v1-v2.yaml

Check in your web browser that stars are appearing in the Book Reviews
roughly 50% of the time. This may require refreshing the page for a
few seconds to observe. Queries to reviews v2 result in reviews
containing ratings displayed as black stars:

[image: ../_images/istio-bookinfo-reviews-v2.png]
Finally, update the route rule to send 100% of reviews traffic to
v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v2
 weight: 100

[image: ../_images/istio-bookinfo-reviews-v2-route-to-v2.png]
Apply this route rule:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/route-rule-reviews-v2.yaml

Refresh the product page in your web browser several times to verify
that stars are now appearing in the Book Reviews on every page
refresh. All the reviews are now retrieved from reviews v2 and
none from reviews v1.

Step 5: Deploy the Product Page Service V2

We will now deploy version v2 of the productpage service,
which brings two changes:

	It is deployed with a more restrictive CiliumNetworkPolicy, which
restricts access to a subset of the HTTP URLs, at Layer-7.

	It implements a new authentication audit log into Kafka.

[image: ../_images/istio-bookinfo-productpage-v2-kafka.png]
The policy for v1 currently allows read access to the full HTTP
REST API, under the /api/v1 HTTP URI path:

	/api/v1/products: Returns the list of books and their details.

	/api/v1/products/<id>: Returns details about a specific book.

	/api/v1/products/<id>/reviews: Returns reviews for a specific
book.

	/api/v1/products/<id>/ratings: Returns ratings for a specific
book.

Check that the full REST API is currently accessible in v1 and
returns valid JSON data:

for APIPATH in /api/v1/products /api/v1/products/0 /api/v1/products/0/reviews /api/v1/products/0/ratings; do echo ; curl -s -S "${GATEWAY_URL}${APIPATH}" ; echo ; done

The output will be similar to this:

[{"descriptionHtml": "Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and mistaken identity, in addition to puns and word play.", "id": 0, "title": "The Comedy of Errors"}]

{"publisher": "PublisherA", "language": "English", "author": "William Shakespeare", "id": 0, "ISBN-10": "1234567890", "ISBN-13": "123-1234567890", "year": 1595, "type": "paperback", "pages": 200}

{"reviews": [{"reviewer": "Reviewer1", "rating": {"color": "black", "stars": 5}, "text": "An extremely entertaining play by Shakespeare. The slapstick humour is refreshing!"}, {"reviewer": "Reviewer2", "rating": {"color": "black", "stars": 4}, "text": "Absolutely fun and entertaining. The play lacks thematic depth when compared to other plays by Shakespeare."}], "id": "0"}

{"ratings": {"Reviewer2": 4, "Reviewer1": 5}, "id": 0}

We realized that the REST API to get the book reviews and ratings was
meant only for consumption by other internal services, and will be
blocked from external clients using the updated Layer-7
CiliumNetworkPolicy in productpage v2, i.e. only the
/api/v1/products and /api/v1/products/<id> HTTP URLs will be
whitelisted:

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: productpage-v2
 namespace: default
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": productpage
 "k8s:version": v2
 ingress:
 - toPorts:
 - ports:
 - port: "9080"
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/"
 - method: GET
 path: "/index.html"
 - method: POST
 path: "/login"
 - method: GET
 path: "/logout"
 - method: GET
 path: "/productpage"
 - method: GET
 path: "/api/v1/products"
 - method: GET
 path: "/api/v1/products/[0-9]*"
- method: GET
path: "/api/v1/products/[0-9]*/reviews"
- method: GET
path: "/api/v1/products/[0-9]*/ratings"

Because productpage v2 sends messages into Kafka, we must first
deploy a Kafka broker:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/kafka-v1-destrule.yaml

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/kafka-v1.yaml

Wait until the kafka-v1-0 pod is ready, i.e. until it has a
READY count of 1/1:

watch "kubectl get pods -l app=kafka"
NAME READY STATUS RESTARTS AGE
kafka-v1-0 1/1 Running 0 21m

Create the authaudit Kafka topic, which will be used by
productpage v2:

kubectl exec kafka-v1-0 -c kafka -- bash -c '/opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh --zookeeper localhost:2181/kafka --create --topic authaudit --partitions 1 --replication-factor 1'

We are now ready to deploy productpage v2.

Create the productpage v2 service and its updated
CiliumNetworkPolicy and delete productpage v1:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-productpage-v2.yaml

kubectl delete -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/bookinfo-productpage-v1.yaml

productpage v2 implements an authorization audit logging. On
every user login or logout, it produces into Kafka topic authaudit
a JSON-formatted message which contains the following information:

	event: login or logout

	username

	client IP address

	timestamp

To observe the Kafka messages sent by productpage, we will run an
additional authaudit-logger service. This service fetches and
prints out all messages from the authaudit Kafka topic. Start
this service:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes-istio/authaudit-logger-v1.yaml

Check the progress of the deployment (every service should have an
AVAILABLE count of 1):

watch "kubectl get deployments"
NAME READY UP-TO-DATE AVAILABLE AGE
authaudit-logger-v1 1/1 1 1 41s
details-v1 1/1 1 1 37m
productpage-v2 1/1 1 1 4m47s
ratings-v1 1/1 1 1 20m
reviews-v1 1/1 1 1 37m
reviews-v2 1/1 1 1 20m

Check that the product REST API is still accessible, and that Cilium
now denies at Layer-7 any access to the reviews and ratings REST API:

for APIPATH in /api/v1/products /api/v1/products/0 /api/v1/products/0/reviews /api/v1/products/0/ratings; do echo ; curl -s -S "${GATEWAY_URL}${APIPATH}" ; echo ; done

The output will be similar to this:

[{"descriptionHtml": "Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major part of the humour coming from slapstick and mistaken identity, in addition to puns and word play.", "id": 0, "title": "The Comedy of Errors"}]

{"publisher": "PublisherA", "language": "English", "author": "William Shakespeare", "id": 0, "ISBN-10": "1234567890", "ISBN-13": "123-1234567890", "year": 1595, "type": "paperback", "pages": 200}

Access denied

Access denied

This demonstrated that requests to the
/api/v1/products/<id>/reviews and
/api/v1/products/<id>/ratings URIs now result in Cilium returning
HTTP 403 Forbidden HTTP responses.

Every login and logout on the product page will result in a line in
this service’s log. Note that you need to log in/out using the sign
in/sign out element on the bookinfo web page. When you do, you
can observe these kind of audit logs:

export POD_LOGGER_V1=`kubectl get pods -l app=authaudit-logger,version=v1 -o jsonpath='{.items[0].metadata.name}'`

kubectl logs ${POD_LOGGER_V1} -c authaudit-logger
...
{"timestamp": "2017-12-04T09:34:24.341668", "remote_addr": "10.15.28.238", "event": "login", "user": "richard"}
{"timestamp": "2017-12-04T09:34:40.943772", "remote_addr": "10.15.28.238", "event": "logout", "user": "richard"}
{"timestamp": "2017-12-04T09:35:03.096497", "remote_addr": "10.15.28.238", "event": "login", "user": "gilfoyle"}
{"timestamp": "2017-12-04T09:35:08.777389", "remote_addr": "10.15.28.238", "event": "logout", "user": "gilfoyle"}

As you can see, the user-identifiable information sent by
productpage in every Kafka message is sensitive, so access to this
Kafka topic must be protected using Cilium. The CiliumNetworkPolicy
configured on the Kafka broker enforces that:

	only productpage v2 is allowed to produce messages into the
authaudit topic;

	only authaudit-logger can fetch messages from this topic;

	no service can access any other topic.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: kafka-authaudit
specs:
 - endpointSelector:
 matchLabels:
 "k8s:app": kafka
 ingress:
 - fromEndpoints:
 - matchLabels:
 "k8s:app": productpage
 "k8s:version": v2
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - apiKey: "produce"
 topic: "authaudit"
 - apiKey: "apiversions"
 - apiKey: "metadata"
 - apiKey: "heartbeat"
 - fromEndpoints:
 - matchLabels:
 app: kafka
 - fromEndpoints:
 - matchLabels:
 "k8s:app": authaudit-logger
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - apiKey: "fetch"
 topic: "authaudit"
 - apiKey: "apiversions"
 - apiKey: "metadata"
 - apiKey: "findcoordinator"
 - apiKey: "joingroup"
 - apiKey: "leavegroup"
 - apiKey: "syncgroup"
 - apiKey: "offsets"
 - apiKey: "offsetcommit"
 - apiKey: "offsetfetch"
 - apiKey: "heartbeat"

Check that Cilium prevents the authaudit-logger service from
writing into the authaudit topic (enter a message followed by
ENTER, e.g. test message)

Note

Note that the error message may take a short time to appear.

Note

You can terminate the command with a single <CTRL>-d.

kubectl exec ${POD_LOGGER_V1} -c authaudit-logger -ti -- /opt/kafka_2.11-0.10.1.0/bin/kafka-console-producer.sh --broker-list=kafka:9092 --topic=authaudit
test message
[2017-12-07 02:13:47,020] ERROR Error when sending message to topic authaudit with key: null, value: 12 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)
org.apache.kafka.common.errors.TopicAuthorizationException: Not authorized to access topics: [authaudit]

This demonstrated that Cilium sent a response with an authorization
error for any Produce request from this service.

Create another topic named credit-card-payments, meant to transmit
highly-sensitive credit card payment requests:

kubectl exec kafka-v1-0 -c kafka -- bash -c '/opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh --zookeeper localhost:2181/kafka --create --topic credit-card-payments --partitions 1 --replication-factor 1'

Check that Cilium prevents the authaudit-logger service from
fetching messages from this topic:

kubectl exec ${POD_LOGGER_V1} -c authaudit-logger -ti -- /opt/kafka_2.11-0.10.1.0/bin/kafka-console-consumer.sh --bootstrap-server=kafka:9092 --topic=credit-card-payments
[2017-12-07 03:08:54,513] WARN Not authorized to read from topic credit-card-payments. (org.apache.kafka.clients.consumer.internals.Fetcher)
[2017-12-07 03:08:54,517] ERROR Error processing message, terminating consumer process: (kafka.tools.ConsoleConsumer$)
org.apache.kafka.common.errors.TopicAuthorizationException: Not authorized to access topics: [credit-card-payments]
Processed a total of 0 messages

This demonstrated that Cilium sent a response with an authorization
error for any Fetch request from this service for any topic other
than authaudit.

Note

At present, the above command may also result in an error message.

Step 6: Clean Up

You have now installed Cilium and Istio, deployed a demo app, and
tested both Cilium’s L3-L7 network security policies and Istio’s
service route rules. To clean up, run:

minikube delete

After this, you can re-run the tutorial from Step 0.

Docker

Cilium can be integrated with Docker in two ways:

	via the CNI interface. This method is used by Kubernetes and Mesos.

	via Docker’s libnetwork [https://github.com/docker/libnetwork/blob/master/docs/design.md] plugin interface, if networking is to be managed by
the Docker runtime. This method is used, for example, by Docker Compose [https://docs.docker.com/compose/].

To run Cilium with Docker’s libnetwork, it needs a single logical Docker
network of type cilium with an IPAM-driver of type cilium. The
IPAM-driver delegates control over IPv4 and IPv6 address management and network
connectivity to Cilium for all containers attached to this network. Each Docker
container is allocated an IP address from the node prefix of the node running
that container.

When deployed with Docker, each Linux node must also run a cilium-docker
agent that receives libnetwork calls from Docker and then communicates with the
Cilium Agent to control container networking.

Security policies controlling connectivity between the Docker containers can be
written in terms of the Docker container labels passed to Docker when creating
the container. These policies can be created and updated via the Cilium agent
API or by using the Cilium CLI client.

Follow this guide for a step by step introduction on how to use Cilium with
Docker Compose [https://docs.docker.com/compose/]:

	Cilium with Docker & libnetwork

Cilium with Docker & libnetwork

This tutorial leverages Vagrant and VirtualBox, thus should run on any
operating system supported by Vagrant, including Linux, macOS, and Windows.

Step 0: Install Vagrant

If you don’t already have Vagrant installed, refer to the Developer / Contributor Guide for links to installation instructions for Vagrant.

Step 1: Download the Cilium Source Code

Download the latest Cilium source code [https://github.com/cilium/cilium/archive/master.zip]
and unzip the files.

Alternatively, if you are a developer, feel free to clone the repository:

$ git clone https://github.com/cilium/cilium

Step 2: Starting the Docker + Cilium VM

Open a terminal and navigate into the top of the cilium source directory.

Then navigate into examples/getting-started and run vagrant up:

$ cd examples/getting-started
$ vagrant up

The script usually takes a few minutes depending on the speed of your internet
connection. Vagrant will set up a VM, install the Docker container runtime and
run Cilium with the help of Docker Compose [https://docs.docker.com/compose/]. When the script completes successfully,
it will print:

==> cilium-1: Creating cilium-kvstore
==> cilium-1: Creating cilium
==> cilium-1: Creating cilium-docker-plugin
$

If the script exits with an error message, do not attempt to proceed with the
tutorial, as later steps will not work properly. Instead, contact us on the
Cilium Slack channel [https://cilium.herokuapp.com].

Step 3: Accessing the VM

After the script has successfully completed, you can log into the VM using
vagrant ssh:

$ vagrant ssh

All commands for the rest of the tutorial below should be run from inside this
Vagrant VM. If you end up disconnecting from this VM, you can always reconnect
in a new terminal window just by running vagrant ssh again from the Cilium
directory.

Step 4: Confirm that Cilium is Running

The Cilium agent is now running as a system service and you can interact with
it using the cilium CLI client. Check the status of the agent by running
cilium status:

$ cilium status
KVStore: Ok Consul: 172.18.0.2:8300
ContainerRuntime: Ok
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Listening for events on 1 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
Controller Status: 6/6 healthy
Proxy Status: OK, ip 10.15.28.238, port-range 10000-20000
Cluster health: 1/1 reachable (2018-04-05T16:08:22Z)

The status indicates that all components are operational with the Kubernetes
integration currently being disabled.

Step 5: Create a Docker Network of Type Cilium

Cilium integrates with local container runtimes, which in the case of this demo
means Docker. With Docker, native networking is handled via a component called
libnetwork. In order to steer Docker to request networking of a container from
Cilium, a container must be started with a network of driver type “cilium”.

With Cilium, all containers are connected to a single logical network, with
isolation added not based on IP addresses but based on container labels (as we
will do in the steps below). So with Docker, we simply create a single network
named ‘cilium-net’ for all containers:

$ docker network create --ipv6 --subnet ::1/112 --driver cilium --ipam-driver cilium cilium-net

Step 6: Start an Example Service with Docker

In this tutorial, we’ll use a container running a simple HTTP server to
represent a microservice application which we will refer to as app1. As a result, we
will start this container with the label “id=app1”, so we can create Cilium
security policies for that service.

Use the following command to start the app1 container connected to the
Docker network managed by Cilium:

$ docker run -d --name app1 --net cilium-net -l "id=app1" cilium/demo-httpd
e5723edaa2a1307e7aa7e71b4087882de0250973331bc74a37f6f80667bc5856

This has launched a container running an HTTP server which Cilium is now
managing as an Endpoint. A Cilium endpoint is one or more application
containers which can be addressed by an individual IP address.

Step 7: Apply an L3/L4 Policy With Cilium

When using Cilium, endpoint IP addresses are irrelevant when defining security
policies. Instead, you can use the labels assigned to the VM to define
security policies, which are automatically applied to any container with that
label, no matter where or when it is run within a container cluster.

We’ll start with an overly simple example where we create two additional
apps, app2 and app3, and we want app2 containers to be able
to reach app1 containers, but app3 containers should not be allowed
to reach app1 containers. Additionally, we only want to allow app1
to be reachable on port 80, but no other ports. This is a simple policy that
filters only on IP address (network layer 3) and TCP port (network layer 4), so
it is often referred to as an L3/L4 network security policy.

Cilium performs stateful ‘’connection tracking’‘, meaning that if a policy allows
app2 to contact app1, it will automatically allow return
packets that are part of app1 replying to app2 within the context
of the same TCP/UDP connection.

L4 Policy with Cilium and Docker

[image: ../_images/cilium_dkr_demo_l3-l4-policy-170817.png]
We can achieve that with the following Cilium policy:

[{
 "labels": [{"key": "name", "value": "l3-rule"}],
 "endpointSelector": {"matchLabels":{"id":"app1"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"app2"}}
],
 "toPorts": [{
 "ports": [{"port": "80", "protocol": "TCP"}]
 }]
 }]
}]

Save this JSON to a file named l3_l4_policy.json in your VM, and apply the
policy by running:

$ cilium policy import l3_l4_policy.json
Revision: 1

Step 8: Test L3/L4 Policy

You can now launch additional containers that represent other services attempting to
access app1. Any new container with label “id=app2” will be allowed
to access app1 on port 80, otherwise the network request will be dropped.

To test this out, we’ll make an HTTP request to app1 from a container
with the label “id=app2” :

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -m 20 http://app1
<html><body><h1>It works!</h1></body></html>

We can see that this request was successful, as we get a valid HTTP response.

Now let’s run the same HTTP request to app1 from a container that has
label “id=app3”:

$ docker run --rm -ti --net cilium-net -l "id=app3" cilium/demo-client curl -m 10 http://app1

You will see no reply as all packets are dropped by the Cilium security policy.
The request will time-out after 10 seconds.

So with this we see Cilium’s ability to segment containers based purely on a
container-level identity label. This means that the end user can apply
security policies without knowing anything about the IP address of the
container or requiring some complex mechanism to ensure that containers of a
particular service are assigned an IP address in a particular range.

Step 9: Apply and Test an L7 Policy with Cilium

In the simple scenario above, it was sufficient to either give app2 /
app3 full access to app1’s API or no access at all. But to
provide the strongest security (i.e., enforce least-privilege isolation)
between microservices, each service that calls app1’s API should be
limited to making only the set of HTTP requests it requires for legitimate
operation.

	For example, consider a scenario where app1 has two API calls:

	
	GET /public

	GET /private

Continuing with the example from above, if app2 requires access only to
the GET /public API call, the L3/L4 policy alone has no visibility into the
HTTP requests, and therefore would allow any HTTP request from app2
(since all HTTP is over port 80).

To see this, run:

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl 'http://app1/public'
{ 'val': 'this is public' }

and

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl 'http://app1/private'
{ 'val': 'this is private' }

Cilium is capable of enforcing HTTP-layer (i.e., L7) policies to limit what
URLs app2 is allowed to reach. Here is an example policy file that
extends our original policy by limiting app2 to making only a GET /public
API call, but disallowing all other calls (including GET /private).

L7 Policy with Cilium and Docker

[image: ../_images/cilium_dkr_demo_l7-policy-230817.png]
The following Cilium policy file achieves this goal:

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"id":"app1"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"app2"}}
],
 "toPorts": [{
 "ports": [{"port": "80", "protocol": "TCP"}],
 "rules": {
 "http": [{
 "method": "GET",
 "path": "/public"
 }]
 }
 }]
 }]
}]

Create a file with this contents and name it l7_aware_policy.json. Then
import this policy to Cilium by running:

$ cilium policy delete --all
Revision: 2
$ cilium policy import l7_aware_policy.json
Revision: 3

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -si 'http://app1/public'
HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Length: 28
Date: Tue, 31 Oct 2017 14:30:56 GMT
Etag: "1c-54bb868cec400"
Last-Modified: Mon, 27 Mar 2017 15:58:08 GMT
Server: Apache/2.4.25 (Unix)
Content-Type: text/plain; charset=utf-8

{ 'val': 'this is public' }

and

$ docker run --rm -ti --net cilium-net -l "id=app2" cilium/demo-client curl -si 'http://app1/private'
HTTP/1.1 403 Forbidden
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Tue, 31 Oct 2017 14:31:09 GMT
Content-Length: 14

Access denied

As you can see, with Cilium L7 security policies, we are able to permit
app2 to access only the required API resources on app1, thereby
implementing a “least privilege” security approach for communication between
microservices.

We hope you enjoyed the tutorial. Feel free to play more with the setup, read
the rest of the documentation, and reach out to us on the Cilium
Slack channel [https://cilium.herokuapp.com] with any questions!

Step 10: Clean-Up

Exit the vagrant VM by typing exit.

When you are done with the setup and want to tear-down the Cilium + Docker VM,
and destroy all local state (e.g., the VM disk image), open a terminal in the
cilium/examples/getting-started directory and type:

$ vagrant destroy cilium-1

You can always re-create the VM using the steps described above.

If instead you just want to shut down the VM but may use it later,
vagrant halt cilium-1 will work, and you can start it again later.

Mesos

Cilium can be integrated with Apache Mesos and Marathon using the CNI plugin. The
following quick guide guides you through the process step by step:

	Cilium with Mesos/Marathon

For more information on Apache Mesos and Marathon orchestration, check out the
Mesos [https://github.com/apache/mesos] and Marathon [https://mesosphere.github.io/marathon/] GitHub pages, respectively.

Cilium with Mesos/Marathon

This tutorial leverages Vagrant and VirtualBox to deploy Apache Mesos, Marathon
and Cilium. You will run Cilium to apply a simple policy between a simulated
web-service and clients. This tutorial can be run on any operating system
supported by Vagrant including Linux, macOS, and Windows.

For more information on Apache Mesos and Marathon orchestration, check out the
Mesos [https://github.com/apache/mesos] and Marathon [https://mesosphere.github.io/marathon/] GitHub pages, respectively.

Step 0: Install Vagrant

You need to run at least Vagrant version 1.8.3 or you will run into issues
booting the Ubuntu 17.04 base image. You can verify by running vagrant
--version.

If you don’t already have Vagrant installed, follow the
Vagrant Install Instructions [https://www.vagrantup.com/docs/installation/]
or see Download Vagrant [https://www.vagrantup.com/downloads.html] for newer versions.

Step 1: Download the Cilium Source Code

Download the latest Cilium source code [https://github.com/cilium/cilium/archive/master.zip]
and unzip the files.

Alternatively, if you are a developer, feel free to clone the repository:

$ git clone https://github.com/cilium/cilium

Step 2: Starting a VM with Cilium

Open a terminal and navigate into the top of the cilium source directory.

Then navigate into examples/mesos and run vagrant up:

$ cd examples/mesos
$ vagrant up

The script usually takes a few minutes depending on the speed of your internet
connection. Vagrant will set up a VM, install Mesos & Marathon, run Cilium with
the help of Docker compose, and start up the Mesos master and slave services.
When the script completes successfully, it will print:

==> default: Creating cilium-kvstore
Creating cilium-kvstore ... done
==> default: Creating cilium ...
==> default: Creating cilium
Creating cilium ... done
==> default: Installing loopback driver...
==> default: Installing cilium-cni to /host/opt/cni/bin/ ...
==> default: Installing new /host/etc/cni/net.d/00-cilium.conf ...
==> default: Deploying Vagrant VM + Cilium + Mesos...done
$

If the script exits with an error message, do not attempt to proceed with the
tutorial, as later steps will not work properly. Instead, contact us on the
Cilium Slack channel [https://cilium.herokuapp.com].

Step 3: Accessing the VM

After the script has successfully completed, you can log into the VM using
vagrant ssh:

$ vagrant ssh

All commands for the rest of the tutorial below should be run from inside this
Vagrant VM. If you end up disconnecting from this VM, you can always reconnect
by going to the examples/mesos directory and then running the command vagrant ssh.

Step 4: Confirm that Cilium is Running

The Cilium agent is now running and you can interact with it using the
cilium CLI client. Check the status of the agent by running cilium
status:

$ cilium status
KVStore: Ok Consul: 172.18.0.2:8300
ContainerRuntime: Ok docker daemon: OK
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Disabled
Cilium health daemon: Ok
IPv4 address pool: 3/65535 allocated
IPv6 address pool: 2/65535 allocated
Controller Status: 10/10 healthy
Proxy Status: OK, ip 10.15.0.1, port-range 10000-20000
Cluster health: 1/1 reachable (2018-06-19T15:10:28Z)

The status indicates that all necessary components are operational.

Step 5: Run Script to Start Marathon

Start Marathon inside the Vagrant VM:

$./start_marathon.sh
Starting marathon...
...
...
...
...
Done

Step 6: Simulate a Web-Server and Clients

Use curl to submit a task to Marathon for scheduling, with data to run the
simulated web-server provided by the web-server.json. The web-server simply
responds to requests on a particular port.

$ curl -i -H 'Content-Type: application/json' -d @web-server.json 127.0.0.1:8080/v2/apps

You should see output similar to the following:

HTTP/1.1 201 Created
...
Marathon-Deployment-Id: [UUID]
...

Confirm that Cilium sees the new workload. The output should return the
endpoint with label mesos:id=web-server and the assigned IP:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Disabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready

Test the web-server provides OK output:

$ export WEB_IP=`cilium endpoint list | grep web-server | awk '{print $7}'`
$ curl $WEB_IP:8181/api
OK

Run a script to create two client tasks (“good client” and “bad client”) that
will attempt to access the web-server. The output of these tasks will be used
to validate the Cilium network policy enforcement later in the exercise. The
script will generate goodclient.json and badclient.json files for the
client tasks, respectively:

$./generate_client_file.sh goodclient
$./generate_client_file.sh badclient

Then submit the client tasks to Marathon, which will generate GET /public and GET /private requests:

$ curl -i -H 'Content-Type: application/json' -d @goodclient.json 127.0.0.1:8080/v2/apps
$ curl -i -H 'Content-Type: application/json' -d @badclient.json 127.0.0.1:8080/v2/apps

You can observe the newly created endpoints in Cilium, similar to the following output:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Disabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready
37835 Disabled Disabled 15197 mesos:id=goodclient f00d::a0f:0:0:93cb 10.15.152.208 ready
51053 Disabled Disabled 5113 mesos:id=badclient f00d::a0f:0:0:c76d 10.15.34.97 ready

Marathon runs the tasks as batch jobs with stdout logged to task-specific
files located in /var/lib/mesos. To simplify the retrieval of the
stdout log, use the tail_client.sh script to output each of the client
logs. In a new terminal, go to examples/mesos, start a new ssh session to
the Vagrant VM with vagrant ssh and tail the goodclient logs:

$./tail_client.sh goodclient

and in a separate terminal, do the same thing with vagrant ssh and observe the badclient logs:

$./tail_client.sh badclient

Make sure both tail logs continuously prints the result of the clients accessing the /public and /private API of the web-server:

...
---------- Test #X ----------
 Request: GET /public
 Reply: OK

 Request: GET /private
 Reply: OK

...

Note that both clients are able to access the web-server and retrieve both URLs because no Cilium policy has been applied yet.

Step 7: Apply L3/L4 Policy with Cilium

Apply an L3/L4 policy only allowing the goodclient to access the web-server. The L3/L4 json policy looks like:

[{
 "labels": [{"key": "name", "value": "l3-l4-rule"}],
 "endpointSelector": {"matchLabels":{"id":"web-server"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"goodclient"}}
],
 "toPorts": [{
 "ports": [{"port": "8181", "protocol": "TCP"}]
 }]
 }]
}]

In your original terminal session, use cilium CLI to apply the L3/L4 policy above, saved in the l3-l4-policy.json file on the VM:

$ cilium policy import l3-l4-policy.json
Revision: 1

L3/L4 Policy with Cilium and Mesos

[image: ../_images/cilium_mesos_demo_l3-l4-policy-170817.png]
You can observe that the policy is applied via cilium CLI as the POLICY ENFORCEMENT column changed from Disabled to Enabled:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
20928 Enabled Disabled 59281 mesos:id=web-server f00d::a0f:0:0:51c0 10.15.137.206 ready
23520 Disabled Disabled 4 reserved:health f00d::a0f:0:0:5be0 10.15.162.64 ready
37835 Disabled Disabled 15197 mesos:id=goodclient f00d::a0f:0:0:93cb 10.15.152.208 ready
51053 Disabled Disabled 5113 mesos:id=badclient f00d::a0f:0:0:c76d 10.15.34.97 ready

You should also observe that the goodclient logs continue to output the web-server responses, whereas the badclient request does not reach the web-server because of policy enforcement, and logging output similar to below.

...
---------- Test #X ----------
 Request: GET /public
 Reply: Timeout!

 Request: GET /private
 Reply: Timeout!

...

Remove the L3/L4 policy in order to give badclient access to the web-server again.

$ cilium policy delete --all
Revision: 2

The badclient logs should resume outputting the web-server’s response and Cilium is configured to no longer enforce policy:

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
29898 Disabled Disabled 37948 reserved:health f00d::a0f:0:0:74ca 10.15.242.54 ready
33115 Disabled Disabled 38072 mesos:id=web-server f00d::a0f:0:0:815b 10.15.220.6 ready
38061 Disabled Disabled 46430 mesos:id=badclient f00d::a0f:0:0:94ad 10.15.0.173 ready
64189 Disabled Disabled 31645 mesos:id=goodclient f00d::a0f:0:0:fabd 10.15.152.27 ready

Step 8: Apply L7 Policy with Cilium

Now, apply an L7 Policy that only allows access for the goodclient to the /public API, included in the l7-policy.json file:

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"id":"web-server"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"id":"goodclient"}}
],
 "toPorts": [{
 "ports": [{"port": "8181", "protocol": "TCP"}],
 "rules": {
 "http": [{
 "method": "GET",
 "path": "/public"
 }]
 }
 }]
 }]
}]

Apply using cilium CLI:

$ cilium policy import l7-policy.json
Revision: 3

L7 Policy with Cilium and Mesos

[image: ../_images/cilium_mesos_demo_l7-policy-230817.png]
In the terminal sessions tailing the goodclient and badclient logs, check the goodclient’s log to see that /private is no longer accessible, and the badclient’s requests are the same results as the enforced policy in the previous step.

...
---------- Test #X ----------
 Request: GET /public
 Reply: OK

 Request: GET /private
 Reply: Access Denied

...

(optional) Remove the policy and notice that the access to /private is unrestricted again:

$ cilium policy delete --all
Revision: 4

Step 9: Clean-Up

Exit the vagrant VM by typing exit in original terminal session. When you want to tear-down the Cilium + Mesos VM and destroy all local state (e.g., the VM disk image), ensure you are in the cilium/examples/mesos directory and type:

$ vagrant destroy

You can always re-create the VM using the steps described above.

If instead you just want to shut down the VM but may use it later,
vagrant halt default will work, and you can start it again later.

Troubleshooting

For assistance on any of the Getting Started Guides, please reach out and ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com].

Envoy

	Envoy Go Extensions

Envoy Go Extensions

Note

This feature is currently in beta phase.

This is a guide for developers who are interested in writing a Go extension to the
Envoy proxy as part of Cilium.

[image: ../_images/proxylib_logical_flow.png]
As depicted above, this framework allows a developer to write a small amount of Go
code (green box) focused on parsing a new API protocol, and this Go code is able to
take full advantage of Cilium features including high-performance redirection to/from Envoy,
rich L7-aware policy language
and access logging, and visibility into encrypted traffic traffic via kTLS (coming soon!).
In sum, you as the developer need only worry about the logic of parsing the protocol,
and Cilium + Envoy + BPF do the heavy-lifting.

This guide uses simple examples based on a hypothetical “r2d2” protocol
(see proxylib/r2d2/r2d2parser.go [https://github.com/cilium/cilium/blob/master/proxylib/r2d2/r2d2parser.go])
that might be used to talk to a simple protocol droid a long time ago in a galaxy far, far away.
But it also points to other real protocols like Memcached and Cassandra that already exist in the cilium/proxylib
directory.

Step 1: Decide on a Basic Policy Model

To get started, take some time to think about what it means to provide protocol-aware security
in the context of your chosen protocol. Most protocols follow a common pattern of a client
who performs an ‘’operation’’ on a ‘’resource’‘. For example:

	A standard RESTful HTTP request has a GET/POST/PUT/DELETE methods (operation) and URLs (resource).

	A database protocol like MySQL has SELECT/INSERT/UPDATE/DELETE actions (operation) on a combined database + table name (resource).

	A queueing protocol like Kafka has produce/consume (operation) on a particular queue (resource).

A common policy model is to allow the user to whitelist certain operations on one or more resources.
In some cases, the resources need to support regexes to avoid explicit matching on variable content
like ids (e.g., /users/<uuid> would match /users/.*)

In our examples, the ‘’r2d2’’ example, we’ll use a basic set of operations (READ/WRITE/HALT/RESET).
The READ and WRITE commands also support a ‘filename’ resource, while HALT and RESET have no resource.

Step 2: Understand Protocol, Encoding, Framing and Types

Next, get your head wrapped around how a protocol looks terms of the raw data, as this is what you’ll be parsing.

Try looking for official definitions of the protocol or API. Official docs will not only help you quickly
learn how the protocol works, but will also help you by documenting tricky corner cases that wouldn’t be
obvious just from regular use of the protocol. For example, here are example specs for
Redis Protocol [https://redis.io/topics/protocol] , Cassandra Protocol [https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec],
and AWS SQS [https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Welcome.html] .

These specs help you understand protocol aspects like:

	encoding / framing : how to recognize the beginning/end of individual requests/replies within a TCP stream.
This typically involves reading a header that encodes the overall request length, though some simple
protocols use a delimiter like ‘’rn’’ to separate messages.

	request/reply fields : for most protocols, you will need to parse out fields at various offsets
into the request data in order to extract security-relevant values for visibility + filtering. In some cases, access
control requires filtering requests from clients to servers, but in some cases, parsing replies will also be required
if reply data is required to understand future requests (e.g., prepared-statements in database protocols).

	message flow : specs often describe various dependencies between different requests. Basic protocols tend to
follow a simple serial request/reply model, but more advanced protocols will support pipelining (i.e., sending
multiple requests before any replies have been received).

	protocol errors : when a Cilium proxy denies a request based on policy, it should return a protocol-specific
error to the client (e.g., in HTTP, a proxy should return a ‘‘403 Access Denied’’ error). Looking at the protocol
spec will typically indicate how you should return an equivalent ‘’Access Denied’’ error.

Sometimes, the protocol spec does not give you a full sense of the set of commands that can be sent over the protocol. In that
case, looking at higher-level user documentation can fill in some of these knowledge gaps. Here are examples for
Redis Commands [https://redis.io/commands] and Cassandra CQL Commands [https://docs.datastax.com/en/cql/3.1/cql/cql_reference/cqlCommandsTOC.html] .

Another great trick is to use Wireshark [https://www.wireshark.org] to capture raw packet data between
a client and server. For many protocols, the Wireshark Sample Captures [https://wiki.wireshark.org/SampleCaptures]
has already saved captures for us. Otherwise, you can easily use tcpdump to capture a file. For example, for
MySQL traffic on port 3306, you could run the following in a container running the MySQL client or server:
“tcpdump -s 0 port 3306 -w mysql.pcap”. More Info [https://linuxexplore.com/2012/06/07/use-tcpdump-to-capture-in-a-pcap-file-wireshark-dump/]

In our example r2d2 protocol, we’ll keep the spec as simple as possible. It is a text-only based protocol,
with each request being a line terminated by ‘’rn’‘. A request starts with a case-insensitive string
command (“READ”,”WRITE”,”HALT”,”RESET”). If the command is “READ” or “WRITE”, the command must be followed
by a space, and a non-empty filename that contains only non whitespace ASCII characters.

Step 3: Search for Existing Parser Code / Libraries

Look for open source Go library/code that can help.
Is there existing open source Go code that parse your protocol that you can leverage,
either directly as library or a motivating example? For example, the tidwall/recon library [https://github.com/tidwall/redcon] parses Redis in Go, and Vitess [https://github.com/vitessio/vitess] parses MySQL in Go. Wireshark dissectors [https://github.com/boundary/wireshark/tree/master/epan/dissectors] also has a wealth of
protocol parsers written in C that can serve as useful guidance. Note: finding client-only
protocol parsing code is typically less helpful than finding a proxy implementation, or a full
parser library. This is because the set of requests a client parsers is typically the inverse
set of the requests a Cilium proxy needs to parse, since the proxy mimics the server rather than
the client. Still, viewing a Go client can give you a general idea of how to parse the
general serialization format of the protocol.

Step 4: Follow the Cilium Developer Guide

It is easiest to start Cilium development by following the Developer / Contributor Guide

After cloning Cilium:

$ cd cilium
$ contrib/vagrant/start.sh
$ cd proxylib

While this dev VM is running, you can open additional terminals to the Cilium dev VM
by running ‘’vagrant ssh’’ from within the cilium source directory.

Step 5: Create New Proxy Skeleton

From inside the proxylib directory, copy the rd2d directory and rename the files.
Replace ‘’newproto’’ with your protocol:

$ mkdir newproto
$ cd newproto
$ cp ../r2d2/r2d2parser.go newproto.go
$ cp ../r2d2/r2d2parser_test.go newproto_test.go

Within both newproto.go and newproto_test.go update references to r2d2 with
your protocol name. Search for both ‘’r2d2’’ and ‘’R2D2’‘.

Also, edit proxylib.go and add the following import line:

_ "github.com/cilium/cilium/proxylib/newproto"

Step 6: Update OnData Method

Implementing a parser requires you as the developer to implement three primary functions,
shown as blue in the diagram below. We will cover OnData() in this section, and
the other functions in section Step 9: Add Policy Loading and Matching.

[image: ../_images/proxylib_key_functions.png]
The beating heart of your parsing is implementing the onData function. You can think of any
proxy as have two data streams, one in the request direction (i.e., client to server) and one in
the reply direction (i.e., server to client). OnData is called when there is data to process,
and the value of the boolean ‘reply’ parameter indicates the direction of the stream for a given
call to OnData. The data passed to OnData is a slice of byte slices (i.e., an array of byte arrays).

The return values of the OnData function tell the Go framework tell how data in the stream
should be processed, with four primary outcomes:

	PASS x : The next x bytes in the data stream passed to OnData represent a request/reply that should be
passed on to the server/client. The common case here is that this is a request that should be
allowed by policy, or that no policy is applied. Note: x bytes may be less than the total amount
of data passed to OnData, in which case the remaining bytes will still be in the data stream when
onData is invoked next. x bytes may also be more than the data that has been passed to OnData.
For example, in the case of a protocol where the parser filters only on values in a protocol header,
it is often possible to make a filtering decision, and then pass (or drop) the size of the full
request/reply without having the entire request passed to Go.

	MORE x : The buffers passed to OnData to do not represent all of the data required to frame and
filter the request/reply. Instead, the parser
needs to see at least x additional bytes beyond the current data to make a decision.
In some cases, the full request must be read to understand framing and filtering, but in others a decision
can be made simply by reading a protocol header. When parsing data, be defensive, and recognize that it is technically possible that
data arrives one byte byte at a time. Two common scenarios exist here:

	Text-based Protocols : For text-based protocols
that use a delimiter like “rn”, it is common to simply check if the delimiter exists, and return
MORE 1 if it does not, as technically one more character could result in the delimiter being present.
See the sample r2d2 parser as a basic example of this.

	Binary-based protocols : Many binary protocols
have a fixed header length, which containers a field that then indicates the remaining length
of the request. In the binary case, first check to make sure a full header is received. Typically
the header will indicate both the full request length (i.e., framing), as well as the request type,
which indicates how much of the full request must be read in order to perform filtering (in many cases, this is less than
the full request). A binary parser will typically return MORE if the data passed to OnData is less than
the header length. After reading a full header, the simple approach is for the parser to return MORE to wait
for the full request to be received and parsed (see the existing CassandraParser as an example).
However, as an optimization, the parser can attempt to only
request the minimum number of bytes required beyond the header to make a policy decision, and then PASS or DROP
the remaining bytes without requiring them to be passed to the Go parser.

	DROP x : Remove the first x bytes from the data stream passed to OnData, as they represent a request/reply
that should not be forwarded to the client or server based on policy. Don’t worry about making onData return
a drop right away, as we’ll return to DROP in a later step below.

	ERROR y : The connection contains data that does not match the protocol spec, and prevents you from further
parsing the data stream. The framework will terminate the connection. An example would be a request length
that falls outside the min/max specified by the protocol spec, or values for a field that fall outside the values
indicated by the spec (e.g., wrong versions, unknown commands). If you are still able to properly frame the
requests, you can also choose to simply drop the request and return a protocol error (e.g., similar to an
‘’HTTP 400 Bad Request’’ error. But in all cases, you should write your parser defensively, such that you
never forward a request that you do not understand, as such a request could become an avenue for subverting
the intended security visibility and filtering policies. See proxylib/types.h for the set of valid error codes.

See proxylib/proxylib/parserfactory.go for the official OnData interface definition.

Keep it simple, and work iteratively. Start out just getting the framing right. Can you write a parser that just
prints out the length and contents of a request, and then PASS each request with no policy enforcement?

One simple trick is to comment out the r2d2 parsing logic in OnData, but leave it in the file as a reference, as your protocol will likely
require similar code as we add more functionality below.

Step 7: Use Unit Testing To Drive Development

Use unit tests to drive your development. Its tempting to want to first test your parser by firing up a
client and server and developing on the fly. But in our experience you’ll iterate faster by using the
great unit test framework created along with the Go proxy framework. This framework lets you pass
in an example set of requests as byte arrays to a CheckOnDataOK method, which are passed to the parser’s OnData method.
CheckOnDataOK takes a set of expected return values, and compares them to the actual return values from OnData
processing the byte arrays.

Take some time to look at the unit tests for the r2d2 parser, and then for more complex parsers like Cassandra
and Memcached. For simple text-based protocols, you can simply write ASCII strings to represent protocol messages,
and convert them to []byte arrays and pass them to CheckOnDataOK. For binary protocols, one can either create
byte arrays directly, or use a mechanism to convert a hex string to byte[] array using a helper function like
hexData in cassandra/cassandraparser_test.go

A great way to get the exact data to pass in is to copy the data from the Wireshark captures mentioned
above in Step #2. You can see the full application layer data streams in Wireshark by right-clicking
on a packet and selecting “Follow As… TCP Stream”. If the protocol is text-based, you can copy the data
as ASCII (see r2d2/r2d2parser_test.go as an example of this). For binary data, it can be easier to instead
select “raw” in the drop-down, and use a basic utility to convert from ascii strings to binary raw data (see
cassandra/cassandraparser_test.go for an example of this).

To run the unit tests, go to proxylib/newproto and run:

$ go test

This will build the latest version of your parser and unit test files and run the unit tests.

Step 8: Add More Advanced Parsing

Thinking back to step #1, what are the critical fields to parse out of the request in order to
understand the “operation” and “resource” of each request. Can you print those out for each request?

Use the unit test framework to pass in increasingly complex requests, and confirm that the parser prints out the right values, and that the
unit tests are properly slicing the datastream into requests and parsing out the required fields.

A couple scenarios to make sure your parser handles properly via unit tests:

	data chunks that are less than a full request (return MORE)

	requests that are spread across multiple data chunks. (return MORE ,then PASS)

	multiple requests that are bundled into a single data chunk (return PASS, then another PASS)

	rejection of malformed requests (return ERROR).

For certain advanced cases, it is required for a parser to store state across requests.
In this case, data can be stored using data structures that
are included as part of the main parser struct. See CassandraParser in cassandra/cassandraparser.go as an example
of how the parser uses a string to store the current ‘keyspace’ in use, and uses Go maps to keep
state required for handling prepared queries.

Step 9: Add Policy Loading and Matching

Once you have the parsing of most protocol messages ironed out, its time to start enforcing policy.

First, create a Go object that will represent a single rule in the policy language. For example,
this is the rule for the r2d2 protocol, which performs exact match on the command string, and a regex
on the filename:

type R2d2Rule struct {
 cmdExact string
 fileRegexCompiled *regexp.Regexp
}

There are two key methods to update:

	Matches : This function implements the basic logic of comparing data from a single request
against a single policy rule, and return true if that rule matches (i.e., allows) that request.

	<NewProto>RuleParser : Reads key value pairs from policy, validates those entries, and stores
them as a <NewProto>Rule object.

See r2d2/r2d2parser.go for examples of both functions for the r2d2 protocol.

You’ll also need to update OnData to call p.connection.Matches(), and if this function return false,
return DROP for a request. Note: despite the similar names between the Matches() function you
create in your newprotoparser.go and p.connection.Matches(), do not confuse
the two. Your OnData function should always call p.connection.Matches() rather than invoking your
own Matches() directly, as p.connection.Matches()
calls the parser’s Matches() function only on the subset of L7 rules that apply for the given
Cilium source identity for this particular connection.

Once you add the logic to call Matches() and return DROP in OnData, you will need to update
unit tests to have policies that allow the traffic you expect to be passed. The following
is an example of how r2d2/r2d2parser_test.go adds an allow-all policy for a given test:

s.ins.CheckInsertPolicyText(c, "1", []string{`
 name: "cp1"
 policy: 2
 ingress_per_port_policies: <
 port: 80
 rules: <
 l7_proto: "r2d2"
 >
 >
 `})

The following is an example of a policy that would allow READ commands with a file
regex of “.*”:

s.ins.CheckInsertPolicyText(c, "1", []string{`
 name: "cp2"
 policy: 2
 ingress_per_port_policies: <
 port: 80
 rules: <
 l7_proto: "r2d2"
 l7_rules: <
 rule: <
 key: "cmd"
 value: "READ"
 >
 rule: <
 key: "file"
 value: ".*"
 >
 >
 >
 >
 >
 `})

Step 10: Inject Error Response

Simply dropping the request from the request data stream prevents the request from reaching the server, but it would
leave the client hanging, waiting for a response that would never come since the server did not see the request.

Instead, the proxy should return an application-layer reply indicating that access was denied, similar to how
an HTTP proxy would return a ‘‘403 Access Denied’’ error. Look back at the protocol spec discussed in Step 2 to
understand what an access denied message looks like for this protocol, and use the p.connection.Inject() method
to send this error reply back to the client. See r2d2/r2d2parser.go for an example.

p.connection.Inject(true, []byte("ERROR\r\n"))

Note: p.connection.Inject() will inject the data it is passed into the reply datastream. In order for the client
to parse this data correctly, it must be injected at a proper framing boundary (i.e., in between other reply messages
that may be in the reply data stream). If the client is following a basic serial request/reply model per connection, this is
essentially guaranteed as at the time of a request that is denied, there are no other replies potentially in the
reply datastream. But if the protocol supports pipelining (i.e., multiple requests in flight) replies must be properly
framed and PASSed on a per request basis, and the timing of the call to p.connection.Inject() must be controlled
such that the client will properly match the Error response with the correct request. See the Memcached parser
as an example of how to accomplish this.

Step 11: Add Access Logging

Cilium also has the notion of an ‘’Access Log’‘, which records each request handled by the proxy
and indicates whether the request was allowed or denied.

A call to ‘’p.connection.Log()’’ implements access logging. See the OnData function in r2d2/r2d2parser.go
as an example:

p.connection.Log(access_log_entry_type,
 &cilium.LogEntry_GenericL7{
 &cilium.L7LogEntry{
 Proto: "r2d2",
 Fields: map[string]string{
 "cmd": reqData.cmd,
 "file": reqData.file,
 },
 },
})

Step 12: Manual Testing

Find the standard docker container for running the protocol server. Often the same image also has a CLI client that you can use as a client.

Start both a server and client container running in the cilium dev VM, and attach them to the already created “cilium-net”. For example, with Cassandra, we run:

docker run --name cass-server -l id=cass-server -d --net cilium-net cassandra

docker run --name cass-client -l id=cass-client -d --net cilium-net cassandra sh -c 'sleep 3000'

Note that we run both containers with labels that will make it easy to refer to these containers in a cilium
network policy. Note that we have the client container run the sleep command, as we will use ‘docker exec’ to
access the client CLI.

Use ‘’cilium endpoint list’’ to identify the IP address of the protocol server.

$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
2987 Disabled Disabled 31423 container:id=cass-server f00d::a0b:0:0:bab 10.11.51.247 ready
27333 Disabled Disabled 4 reserved:health f00d::a0b:0:0:6ac5 10.11.92.46 ready
50923 Disabled Disabled 18253 container:id=cass-client f00d::a0b:0:0:c6eb 10.11.175.191 ready

One can then invoke the client CLI using that server IP address (10.11.51.247 in the above example):

docker exec -it cass-client sh -c 'cqlsh 10.11.51.247 -e "select * from system.local"'

Note that in the above example, ingress policy is not enforced for the Cassandra server endpoint, so no data will flow through the
Cassandra parser. A simple ‘’allow all’’ L7 Cassandra policy can be used to send all data to the Cassandra server through the
Go Cassandra parser. This policy has a single empty rule, which matches all requests. An allow all policy looks like:

[{
 "endpointSelector": {"matchLabels":{"id":"cass-server"}},
 "ingress": [{
 "toPorts": [{
 "ports": [{"port": "9042", "protocol": "TCP"}],
 "rules": {
 "l7proto": "cassandra",
 "l7": [{}]
 }
 }]
 }]
}]

A policy can be imported into cilium using ‘’cilium policy import’‘, after which another call to ‘’cilium endpoint list’’
confirms that ingress policy is now in place on the server. If the above policy was saved to a file cass-allow-all.json,
one would run:

$ cilium policy import cass-allow-all.json
Revision: 1
$ cilium endpoint list
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
2987 Enabled Disabled 31423 container:id=cass-server f00d::a0b:0:0:bab 10.11.51.247 ready
27333 Disabled Disabled 4 reserved:health f00d::a0b:0:0:6ac5 10.11.92.46 ready
50923 Disabled Disabled 18253 container:id=cass-client f00d::a0b:0:0:c6eb 10.11.175.191 ready

Note that policy is now showing as ‘’Enabled’’ for the Cassandra server on ingress.

To remove this or any other policy, run:

$ cilium policy delete --all

To install a new policy, first delete, and then run ‘’cilium policy import’’ again. For example, the following policy would allow
select statements on a specific set of tables to this Cassandra server, but deny all other queries.

[{
 "endpointSelector": {"matchLabels":{"id":"cass-server"}},
 "ingress": [{
 "toPorts": [{
 "ports": [{"port": "9042", "protocol": "TCP"}],
 "rules": {
 "l7proto": "cassandra",
 "l7": [
 { "query_action" : "select", "query_table": "^system.*"},
 { "query_action" : "select", "query_table" : "^posts_db.posts$"}

]}
 }]
 }]
}]

When performing manual testing, remember that each time you change your Go proxy code, you must
re-run ‘’make’’ and ‘’sudo make install’’ and then restart the cilium-agent process. If the only changes
you have made since last compiling cilium are in your cilium/proxylib directory, you can safely
just run ‘’make’’ and ‘’sudo make install’’ in that directory, which saves time.
For example:

$ cd proxylib // only safe is this is the only directory that has changed
$ make
 <snip>
$ sudo make install
 <snip>

If you rebase or other files change, you need to run both commands from the top level directory.

Cilium agent default to running as a service in the development VM. However, the default options do not include
the ‘’–debug-verbose=flow’’ flag, which is critical to getting visibility in troubleshooting Go proxy frameworks.
So it is easiest to stop the cilium service and run the cilium-agent directly as a command in a terminal window,
and adding the ‘’–debug-verbose=flow’’ flag.

$ sudo service cilium stop

$ sudo /usr/bin/cilium-agent --debug --auto-direct-node-routes --ipv4-range 10.11.0.0/16 --kvstore-opt consul.address=192.168.33.11:8500 --kvstore consul --container-runtime=docker --container-runtime-endpoint=unix:///var/run/docker.sock -t vxlan --fixed-identity-mapping=128=kv-store --fixed-identity-mapping=129=kube-dns --debug-verbose=flow --access-log=/var/log/cilium-access.log

The cilium access log is accessible from within the developer VM at ‘’/var/log/cilium-access.log’‘

Step 13: Add Runtime Tests

Before submitting this change to the Cilium community, it is recommended that you add runtime tests that will run as
part of Cilium’s continuous integration testing. Usually these runtime test can be based on the same container
images and test commands you used for manual testing.

The best approach for adding runtime tests is typically to start out by copying-and-pasting an existing L7 protocol runtime
test and then updating it to run the container images and CLI commands specific to the new protocol.
See cilium/test/runtime/cassandra.go as an example that matches the use of Cassandra described above in the manual testing
section. Note that the json policy files used by the runtime tests are stored in cilium/test/runtime/manifests, and
the Cassandra example policies in those directories are easy to use as a based for similar policies you may create for your
new protocol.

Step 14: Review Spec for Corner Cases

Many protocols have advanced features or corner cases that will not manifest themselves as part of basic testing.
Once you have written a first rev of the parser, it is a good idea to go back and review the protocol’s spec or list of
commands to see what if any aspects may fall outside the scope of your initial parser.
For example, corner cases like the handling of empty or nil lists may not show up in your testing, but may cause your
parser to fail. Add more unit tests to cover these corner cases.
It is OK for the first rev of your parser not to handle all types of requests, or to have a simplified policy structure
in terms of which fields can be matched. However, it is
important to know what aspects of the protocol you are not parsing, and ensure that it does not lead to any security concerns.
For example, failing to parse prepared statements in a database protocol and instead just passing PREPARE and EXECUTE
commands through would lead to gaping security whole that would render your other filtering meaningless in the face of
a sophisticated attacker.

Step 15: Write Docs or Getting Started Guide (optional)

At a minimum, the policy examples included as part of the runtime tests serve
as basic documentation of the policy and its expected behavior. But we also
encourage adding more user friendly examples and documentation, for example,
Getting Started Guides. cilium/Documentation/gettingstarted/cassandra.rst is
a good example to follow. Also be sure to update Documentation/gettingstarted/index.rst
with a link to this new getting started guide.

With that, you are ready to post this change for feedback from the Cilium community. Congrats!

System Requirements

Before installing Cilium, please ensure that your system meets the minimum
requirements below. Most modern Linux distributions already do.

Summary

When running Cilium using the container image cilium/cilium, the host
system must meet these requirements:

	Linux kernel >= 4.9.17

	Key-Value store etcd >= 3.1.0 or consul >= 0.6.4

When running Cilium as a native process on your host (i.e. not running the
cilium/cilium container image) these additional requirements must be met:

	clang+LLVM [https://llvm.org] >=5.0 (Recommended: >=7.0)

	iproute2 [https://www.kernel.org/pub/linux/utils/net/iproute2/] with BPF templating patches 1

	Requirement

	Minimum Version

	In cilium container

	Linux kernel

	>= 4.9.17

	no

	Key-Value store (etcd)

	>= 3.1.0

	no

	Key-Value store (consul)

	>= 0.6.4

	no

	clang+LLVM

	>= 5.0.0

	yes

	iproute2

	>= 5.0.0 1

	yes

	1(1,2)

	Requires support for BPF templating as documented
below.

Linux Distribution Compatibility Matrix

The following table lists Linux distributions that are known to work
well with Cilium.

	Distribution

	Minimum Version

	Amazon Linux 2 [https://aws.amazon.com/amazon-linux-2/]

	all

	Container-Optimized OS [https://cloud.google.com/container-optimized-os/docs]

	all

	CentOS [https://centos.org]

	>= 7.0 2

	CoreOS [https://coreos.com/releases/]

	stable (>= 1298.5.0)

	Debian [https://wiki.debian.org/DebianStretch]

	>= 9 Stretch

	Fedora Atomic/Core [http://www.projectatomic.io/blog/2017/03/fedora_atomic_2week_2/]

	>= 25

	LinuxKit [https://github.com/linuxkit/linuxkit/tree/master/kernel]

	all

	RedHat Enterprise Linux [https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux]

	>= 8.0

	Ubuntu [https://wiki.ubuntu.com/YakketyYak/ReleaseNotes#Linux_kernel_4.8]

	>= 16.04.2, >= 16.10

	Opensuse [https://www.opensuse.org/]

	Tumbleweed, >=Leap 15.0

	2

	CentOS 7 requires a third-party kernel provided by ElRepo [http://elrepo.org/tiki/tiki-index.php]
whereas CentOS 8 ships with a supported kernel.

Note

The above list is based on feedback by users. If you find an unlisted
Linux distribution that works well, please let us know by opening a
GitHub issue or by creating a pull request that updates this guide.

Linux Kernel

Cilium leverages and builds on the kernel BPF functionality as well as various
subsystems which integrate with BPF. Therefore, host systems are required to
run Linux kernel version 4.9.17 or later to run a Cilium agent. More recent
kernels may provide additional BPF functionality that Cilium will automatically
detect and use on agent start.

In order for the BPF feature to be enabled properly, the following kernel
configuration options must be enabled. This is typically the case with
distribution kernels. When an option can be built as a module or statically
linked, either choice is valid.

CONFIG_BPF=y
CONFIG_BPF_SYSCALL=y
CONFIG_NET_CLS_BPF=y
CONFIG_BPF_JIT=y
CONFIG_NET_CLS_ACT=y
CONFIG_NET_SCH_INGRESS=y
CONFIG_CRYPTO_SHA1=y
CONFIG_CRYPTO_USER_API_HASH=y

Note

Users running Linux 4.10 or earlier with Cilium CIDR policies may face
Restrictions on unique prefix lengths for CIDR policy rules.

L7 proxy redirection currently uses TPROXY iptables actions as well
as socket matches. For L7 redirection to work as intended kernel
configuration must include the following modules:

CONFIG_NETFILTER_XT_TARGET_TPROXY=m
CONFIG_NETFILTER_XT_MATCH_MARK=m
CONFIG_NETFILTER_XT_MATCH_SOCKET=m

When xt_socket kernel module is missing the forwarding of
redirected L7 traffic does not work in non-tunneled datapath
modes. Since some notable kernels (e.g., COS) are shipping without
xt_socket module, Cilium implements a fallback compatibility mode
to allow L7 policies and visibility to be used with those
kernels. Currently this fallback disables ip_early_demux kernel
feature in non-tunneled datapath modes, which may decrease system
networking performance. This guarantees HTTP and Kafka redirection
works as intended. However, if HTTP or Kafka enforcement policies or
visibility annotations are never used, this behavior can be turned off
by adding the following to the helm configuration command line:

helm template cilium ...
 --set global.enableXTSocketFallback=false
> cilium.yaml

Advanced Features and Required Kernel Version

Cilium requires Linux kernel 4.9.17 or higher, however development on additional
kernel features and functionality continues to progress in the Linux community.
Some Cilium features and functionality are dependent on newer kernel versions.
These additional Cilium features and functionality are enabled by upgrading to
a later kernel version as detailed below:

	Cilium Feature

	Minimum Kernel Version

	Restrictions on unique prefix lengths for CIDR policy rules

	>= 4.11

	Host-Reachable Services (beta)

	>= 4.19.57, >= 5.1.16, >= 5.2

	Kubernetes without kube-proxy (beta)

	>= 4.19.57, >= 5.1.16, >= 5.2

Key-Value store

Cilium uses a distributed Key-Value store to manage, synchronize and distribute
security identities across all cluster nodes. The following Key-Value stores
are currently supported:

	etcd >= 3.1.0

	consul >= 0.6.4

See Key-Value Store for details on how to configure the
cilium-agent to use a Key-Value store.

clang+LLVM

Note

This requirement is only needed if you run cilium-agent natively.
If you are using the Cilium container image cilium/cilium,
clang+LLVM is included in the container image.

LLVM is the compiler suite that Cilium uses to generate BPF bytecode programs
to be loaded into the Linux kernel. The minimum supported version of LLVM
available to cilium-agent should be >=5.0. The version of clang installed
must be compiled with the BPF backend enabled.

See https://releases.llvm.org/ for information on how to download and install
LLVM.

iproute2

Note

iproute2 is only needed if you run cilium-agent directly on the
host machine. iproute2 is included in the cilium/cilium container
image.

iproute2 [https://www.kernel.org/pub/linux/utils/net/iproute2/] is a low level tool used to configure various networking related
subsystems of the Linux kernel. Cilium uses iproute2 to configure networking
and tc, which is part of iproute2, to load BPF programs into the kernel.

The version of iproute2 must include the BPF templating patches. See the
links in the table below for documentation on how to install the correct
version of iproute2 for your distribution.

	Distribution

	Link

	Binary (OpenSUSE)

	Open Build Service [https://build.opensuse.org/package/show/security:netfilter/iproute2]

	Source

	Cilium iproute2 source [https://github.com/cilium/iproute2/tree/static-data]

Firewall Rules

If you are running Cilium in an environment that requires firewall rules to enable connectivity, you will have to add the following rules to ensure Cilium works properly.

It is recommended but optional that all nodes running Cilium in a given cluster must be able to ping each other so cilium-health can report and monitor connectivity among nodes. This requires ICMP Type 0/8, Code 0 open among all nodes. TCP 4240 should also be open among all nodes for cilium-health monitoring. Note that it is also an option to only use one of these two methods to enable health monitoring. If the firewall does not permit either of these methods, Cilium will still operate fine but will not be able to provide health information.

If you are using VXLAN overlay network mode, Cilium uses Linux’s default VXLAN port 8472 over UDP, unless Linux has been configured otherwise. In this case, UDP 8472 must be open among all nodes to enable VXLAN overlay mode. The same applies to Geneve overlay network mode, except the port is UDP 6081.

If you are running in direct routing mode, your network must allow routing of pod IPs.

As an example, if you are running on AWS with VXLAN overlay networking, here is a minimum set of AWS Security Group (SG) rules. It assumes a separation between the SG on the master nodes, master-sg, and the worker nodes, worker-sg. It also assumes etcd is running on the master nodes.

Master Nodes (master-sg) Rules:

	Port Range / Protocol

	Ingress/Egress

	Source/Destination

	Description

	2379-2380/tcp

	ingress

	worker-sg

	etcd access

	8472/udp

	ingress

	master-sg (self)

	VXLAN overlay

	8472/udp

	ingress

	worker-sg

	VXLAN overlay

	4240/tcp

	ingress

	master-sg (self)

	health checks

	4240/tcp

	ingress

	worker-sg

	health checks

	ICMP 8/0

	ingress

	master-sg (self)

	health checks

	ICMP 8/0

	ingress

	worker-sg

	health checks

	8472/udp

	egress

	master-sg (self)

	VXLAN overlay

	8472/udp

	egress

	worker-sg

	VXLAN overlay

	4240/tcp

	egress

	master-sg (self)

	health checks

	4240/tcp

	egress

	worker-sg

	health checks

	ICMP 8/0

	egress

	master-sg (self)

	health checks

	ICMP 8/0

	egress

	worker-sg

	health checks

Worker Nodes (worker-sg):

	Port Range / Protocol

	Ingress/Egress

	Source/Destination

	Description

	8472/udp

	ingress

	master-sg

	VXLAN overlay

	8472/udp

	ingress

	worker-sg (self)

	VXLAN overlay

	4240/tcp

	ingress

	master-sg

	health checks

	4240/tcp

	ingress

	worker-sg (self)

	health checks

	ICMP 8/0

	ingress

	master-sg

	health checks

	ICMP 8/0

	ingress

	worker-sg (self)

	health checks

	8472/udp

	egress

	master-sg

	VXLAN overlay

	8472/udp

	egress

	worker-sg (self)

	VXLAN overlay

	4240/tcp

	egress

	master-sg

	health checks

	4240/tcp

	egress

	worker-sg (self)

	health checks

	ICMP 8/0

	egress

	master-sg

	health checks

	ICMP 8/0

	egress

	worker-sg (self)

	health checks

	2379-2380/tcp

	egress

	master-sg

	etcd access

Note

If you use a shared SG for the masters and workers, you can condense
these rules into ingress/egress to self. If you are using Direct
Routing mode, you can condense all rules into ingress/egress ANY
port/protocol to/from self.

Privileges

The following privileges are required to run Cilium. When running the standard
Kubernetes DaemonSet, the privileges are automatically granted to Cilium.

	Cilium interacts with the Linux kernel to install BPF program which will then
perform networking tasks and implement security rules. In order to install
BPF programs system-wide, CAP_SYS_ADMIN privileges are required. These
privileges must be granted to cilium-agent.

The quickest way to meet the requirement is to run cilium-agent as root
and/or as privileged container.

	Cilium requires access to the host networking namespace. For this purpose,
the Cilium pod is scheduled to run in the host networking namespace directly.

Upgrade Guide

This upgrade guide is intended for Cilium running on Kubernetes. If you have
questions, feel free to ping us on the Slack channel.

Warning

Do not upgrade to 1.6.0 before reading the section
IMPORTANT: Changes required before upgrading to 1.6.7.

Running pre-flight check (Required)

When rolling out an upgrade with Kubernetes, Kubernetes will first terminate the
pod followed by pulling the new image version and then finally spin up the new
image. In order to reduce the downtime of the agent, the new image version can
be pre-pulled. It also verifies that the new image version can be pulled and
avoids ErrImagePull errors during the rollout. If you are running in Kubernetes without kube-proxy (beta)
mode you need to also pass on the Kubernetes API Server IP and /
or the Kubernetes API Server Port when generating the cilium-preflight.yaml
file.

 helm template cilium \
 --namespace=kube-system \
 --set preflight.enabled=true \
 --set agent.enabled=false \
 --set config.enabled=false \
 --set operator.enabled=false \
 > cilium-preflight.yaml
 kubectl create cilium-preflight.yaml

.. group-tab:: kubectl (kubeproxy-free)

 .. parsed-literal::

 helm template |CHART_RELEASE| \\
 --set preflight.enabled=true \\
 --set agent.enabled=false \\
 --set config.enabled=false \\
 --set operator.enabled=false \\
 --set global.k8sServiceHost=API_SERVER_IP \\
 --set global.k8sServicePort=API_SERVER_PORT \\
 > cilium-preflight.yaml
 kubectl create cilium-preflight.yaml

.. group-tab:: Helm (kubeproxy-free)

 .. parsed-literal::

 helm install cilium-preflight |CHART_RELEASE| \\
 --namespace=kube-system \\
 --set preflight.enabled=true \\
 --set agent.enabled=false \\
 --set config.enabled=false \\
 --set operator.enabled=false \\
 --set global.k8sServiceHost=API_SERVER_IP \\
 --set global.k8sServicePort=API_SERVER_PORT

After running the cilium-pre-flight.yaml, make sure the number of READY pods
is the same number of Cilium pods running.

kubectl get daemonset -n kube-system | grep cilium
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
cilium 2 2 2 2 2 <none> 1h20m
cilium-pre-flight-check 2 2 2 2 2 <none> 7m15s

Once the number of READY pods are the same, make sure the Cilium PreFlight
deployment is also marked as READY 1/1. In case it shows READY 0/1 please see
CNP Validation.

kubectl get deployment -n kube-system cilium-pre-flight-check -w
NAME READY UP-TO-DATE AVAILABLE AGE
cilium-pre-flight-check 1/1 1 0 12s

Clean up pre-flight check

Once the number of READY for the preflight DaemonSet is the same as the number
of cilium pods running and the preflight Deployment is marked as READY 1/1
you can delete the cilium-preflight and proceed with the upgrade.

kubectl delete -f cilium-preflight.yaml

Upgrading Micro Versions

Micro versions within a particular minor version, e.g. 1.2.x -> 1.2.y, are
always 100% compatible for both up- and downgrades. Upgrading or downgrading is
as simple as changing the image tag version in the DaemonSet file:

kubectl -n kube-system set image daemonset/cilium cilium-agent=docker.io/cilium/cilium:vX.Y.Z
kubectl -n kube-system rollout status daemonset/cilium

Kubernetes will automatically restart all Cilium according to the
UpgradeStrategy specified in the DaemonSet.

Note

Direct version upgrade between minor versions is not recommended as RBAC
and DaemonSet definitions are subject to change between minor versions.
See Upgrading Minor Versions for instructions on how to up or downgrade between
different minor versions.

Upgrading Minor Versions

Warning

Do not upgrade to 1.6.y before reading the section
IMPORTANT: Changes required before upgrading to 1.6.7 and completing the required steps. Skipping to
apply the changes may lead to an non-functional upgrade.

Step 1: Upgrade to latest micro version (Recommended)

When upgrading from one minor release to another minor release, for example 1.x
to 1.y, it is recommended to first upgrade to the latest micro release
as documented in (Upgrading Micro Versions). This ensures that downgrading by rolling back
on a failed minor release upgrade is always possible and seamless.

Step 2: Option A: Generate YAML using Helm (Recommended)

Since Cilium version 1.6, Helm is used to generate the YAML file for
deployment. This allows to regenerate the entire YAML from scratch using the
same option sets as used for the initial deployment while ensuring that all
Kubernetes resources are updated accordingly to version you are upgrading to:

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 > cilium.yaml
kubectl apply -f cilium.yaml

Note

Make sure that you are using the same options as for the initial deployment.
Instead of using --set, you can also modify the values.yaml` in
``install/kubernetes/cilium/values.yaml and use it to regenerate the YAML
for the latest version.

Step 2: Option B: Preserve ConfigMap

Alternatively, you can use Helm to regenerate all Kubernetes resources except
for the ConfigMap. The configuration of Cilium is stored in a ConfigMap
called cilium-config. The format is compatible between minor releases so
configuration parameters are automatically preserved across upgrades. However,
new minor releases may introduce new functionality that require opt-in via the
ConfigMap. Refer to the Version Specific Notes for a list of new
configuration options for each minor version.

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace kube-system \
 --set config.enabled=false \
 > cilium.yaml
kubectl apply -f cilium.yaml

Note

The above variant can not be used in combination with --set or providing
values.yaml because all options are fed into the DaemonSets and
Deployments using the ConfigMap which is not generated if
config.enabled=false is set. The above command only generates the
DaemonSet, Deployment and RBAC definitions.

Step 3: Rolling Back

Occasionally, it may be necessary to undo the rollout because a step was missed
or something went wrong during upgrade. To undo the rollout, change the image
tag back to the previous version or undo the rollout using kubectl:

$ kubectl rollout undo daemonset/cilium -n kube-system

This will revert the latest changes to the Cilium DaemonSet and return
Cilium to the state it was in prior to the upgrade.

Note

When rolling back after new features of the new minor version have already
been consumed, consult an eventual existing downgrade section in the
Version Specific Notes to check and prepare for incompatible feature use
before downgrading/rolling back. This step is only required after new
functionality introduced in the new minor version has already been
explicitly used by importing policy or by opting into new features via the
ConfigMap.

Version Specific Notes

This section documents the specific steps required for upgrading from one
version of Cilium to another version of Cilium. There are particular version
transitions which are suggested by the Cilium developers to avoid known issues
during upgrade, then subsequently there are sections for specific upgrade
transitions, ordered by version.

The table below lists suggested upgrade transitions, from a specified current
version running in a cluster to a specified target version. If a specific
combination is not listed in the table below, then it may not be safe. In that
case, consider staging the upgrade, for example upgrading from 1.1.x to the
latest 1.1.y release before subsequently upgrading to 1.2.z.

	Current version

	Target version

	DaemonSet upgrade

	L3 impact

	L7 impact

	1.0.x

	1.1.y

	Required

	N/A

	Clients must reconnect[1]

	1.1.x

	1.2.y

	Required

	Temporary disruption[2]

	Clients must reconnect[1]

	1.2.x

	1.3.y

	Required

	Minimal to None

	Clients must reconnect[1]

	>=1.2.5

	1.5.y

	Required

	Minimal to None

	Clients must reconnect[1]

	1.5.x

	1.6.y

	Required

	Minimal to None

	Clients must reconnect[1]

Annotations:

	Clients must reconnect: Any traffic flowing via a proxy (for example,
because an L7 policy is in place) will be disrupted during upgrade.
Endpoints communicating via the proxy must reconnect to re-establish
connections.

	Temporary disruption: All traffic may be temporarily disrupted during
upgrade. Connections should successfully re-establish without requiring
clients to reconnect.

1.6 Upgrade Notes

IMPORTANT: Changes required before upgrading to 1.6.7

Warning

Do not upgrade to 1.6.7 before reading the following sections and completing
the required steps for both 1.7.0 and 1.6.7.

	api-server-port: This flag, available in cilium-operator deployment only,
changed its behavior. The old behavior was opening that port on all interfaces,
the new behavior is opening that port on 127.0.0.1 and ::1 only.

IMPORTANT: Changes required before upgrading to 1.6.0

Warning

Do not upgrade to 1.6.0 before reading the following section and completing
the required steps.

	The kvstore and kvstore-opt options have been moved from the
DaemonSet into the ConfigMap. For many users, the DaemonSet definition
was not considered to be under user control as the upgrade guide requests to
apply the latest definition. Doing so for 1.6.0 without adding these options
to the ConfigMap which is under user control would result in those settings
to refer back to its default values.

Required action:

Add the following two lines to the cilium-config ConfigMap:

kvstore: etcd
kvstore-opt: '{"etcd.config": "/var/lib/etcd-config/etcd.config"}'

This will preserve the existing behavior of the DaemonSet. Adding the options
to the ConfigMap will not impact the ability to rollback. Cilium 1.5.y and
earlier are compatible with the options although their values will be ignored
as both options are defined in the DaemonSet definitions for these versions
which takes precedence over the ConfigMap.

	Downgrade warning: Be aware that if you want to change the
identity-allocation-mode from kvstore to crd in order to no
longer depend on the kvstore for identity allocation, then a
rollback/downgrade requires you to revert that option and it will result in
brief disruptions of all connections as identities are re-created in the
kvstore.

Upgrading from >=1.5.0 to 1.6.y

	Follow the standard procedures to perform the upgrade as described in
Upgrading Minor Versions. Users running older versions should first upgrade to
the latest v1.5.x point release to minimize disruption of service
connections during upgrade.

Changes that may require action

	The CNI configuration file auto-generated by Cilium
(/etc/cni/net.d/05-cilium.conf) is now always automatically overwritten
unless the environment variable CILIUM_CUSTOM_CNI_CONF is set in which
case any already existing configuration file is untouched.

	The new default value for the option monitor-aggregation is now
medium instead of none. This will cause the BPF datapath to
perform more aggressive aggregation on packet forwarding related events to
reduce CPU consumption while running cilium monitor. The automatic
change only applies to the default ConfigMap. Existing deployments will
need to change the setting in the ConfigMap explicitly.

	Any new Cilium deployment on Kubernetes using the default ConfigMap will no
longer fetch the container runtime specific labels when an endpoint is
created and solely rely on the pod, namespace and ServiceAccount labels.
Previously, Cilium also scraped labels from the container runtime which we
are also pod labels and prefixed those with container:. We have seen
less and less use of container runtime specific labels by users so it is no
longer justified for every deployment to pay the cost of interacting with
the container runtime by default. Any new deployment wishing to apply
policy based on container runtime labels, must change the ConfigMap option
container-runtime to auto or specify the container runtime to use.

Existing deployments will continue to interact with the container runtime
to fetch labels which are known to the runtime but not known to Kubernetes
as pod labels. If you are not using container runtime labels, consider
disabling it to reduce resource consumption on each by setting the option
container-runtime to none in the ConfigMap.

New ConfigMap Options

	cni-chaining-mode has been added to automatically generate CNI chaining
configurations with various other plugins. See the section
CNI Chaining for a list of supported CNI chaining plugins.

	identity-allocation-mode has been added to allow selecting the identity
allocation method. The default for new deployments is crd as per
default ConfigMap. Existing deployments will continue to use kvstore
unless opted into new behavior via the ConfigMap.

Deprecated options

	enable-legacy-services: This option was introduced to ease the transition
between Cilium 1.4.x and 1.5.x releases, allowing smooth upgrade and
downgrade. As of 1.6.0, it is deprecated. Subsequently downgrading from 1.6.x
or later to 1.4.x may result in disruption of connections that connect via
services.

Deprecated metrics

	policy_l7_parse_errors_total: Use policy_l7_total instead.

	policy_l7_forwarded_total: Use policy_l7_total instead.

	policy_l7_denied_total: Use policy_l7_total instead.

	policy_l7_received_total: Use policy_l7_total instead.

1.5 Upgrade Notes

Upgrading from >=1.4.0 to 1.5.y

	In v1.4, the TCP conntrack table size ct-global-max-entries-tcp
ConfigMap parameter was ineffective due to a bug and thus, the default
value (1000000) was used instead. To prevent from breaking established
TCP connections, bpf-ct-global-tcp-max must be set to 1000000 in
the ConfigMap before upgrading. Refer to the section Rebasing a ConfigMap
on how to upgrade the ConfigMap.

	If you previously upgraded to v1.5, downgraded to <v1.5, and now want to
upgrade to v1.5 again, then you must run the following DaemonSet before
doing the upgrade:

K8s 1.10

K8s 1.11

K8s 1.12

K8s 1.13

K8s 1.14

K8s 1.15

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.10/cilium-pre-flight-with-rm-svc-v2.yaml

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.11/cilium-pre-flight-with-rm-svc-v2.yaml

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.12/cilium-pre-flight-with-rm-svc-v2.yaml

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.13/cilium-pre-flight-with-rm-svc-v2.yaml

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.14/cilium-pre-flight-with-rm-svc-v2.yaml

$ kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.5/examples/kubernetes/1.15/cilium-pre-flight-with-rm-svc-v2.yaml

See Running pre-flight check (Required) for instructions how to run, validate and remove
a pre-flight DaemonSet.

	Follow the standard procedures to perform the upgrade as described in Upgrading Minor Versions.

New Default Values

	The connection-tracking garbage collector interval is now dynamic. It will
automatically adjust based n on the percentage of the connection tracking
table that has been cleared in the last run. The interval will vary between
10 seconds and 30 minutes or 12 hours for LRU based maps. This should
automatically optimize CPU consumption as much as possible while keeping the
connection tracking table utilization below 25%. If needed, the interval can
be set to a static interval with the option --conntrack-gc-interval. If
connectivity fails and cilium monitor --type drop shows xx drop (CT:
Map insertion failed), then it is likely that the connection tracking
table is filling up and the automatic adjustment of the garbage collector
interval is insufficient. Set --conntrack-gc-interval to an interval
lower than the default. Alternatively, the value for
bpf-ct-global-any-max and bpf-ct-global-tcp-max can be increased.
Setting both of these options will be a trade-off of CPU for
conntrack-gc-interval, and for bpf-ct-global-any-max and
bpf-ct-global-tcp-max the amount of memory consumed.

Advanced

Upgrade Impact

Upgrades are designed to have minimal impact on your running deployment.
Networking connectivity, policy enforcement and load balancing will remain
functional in general. The following is a list of operations that will not be
available during the upgrade:

	API aware policy rules are enforced in user space proxies and are currently
running as part of the Cilium pod unless Cilium is configured to run in Istio
mode. Upgrading Cilium will cause the proxy to restart which will result in
a connectivity outage and connection to be reset.

	Existing policy will remain effective but implementation of new policy rules
will be postponed to after the upgrade has been completed on a particular
node.

	Monitoring components such as cilium monitor will experience a brief
outage while the Cilium pod is restarting. Events are queued up and read
after the upgrade. If the number of events exceeds the event buffer size,
events will be lost.

Rebasing a ConfigMap

This section describes the procedure to rebase an existing ConfigMap to the
template of another version.

Export the current ConfigMap

$ kubectl get configmap -n kube-system cilium-config -o yaml --export > cilium-cm-old.yaml
$ cat ./cilium-cm-old.yaml
apiVersion: v1
data:
 clean-cilium-state: "false"
 debug: "true"
 disable-ipv4: "false"
 etcd-config: |-

 endpoints:
 - https://192.168.33.11:2379
 #
 # In case you want to use TLS in etcd, uncomment the 'trusted-ca-file' line
 # and create a kubernetes secret by following the tutorial in
 # https://cilium.link/etcd-config
 trusted-ca-file: '/var/lib/etcd-secrets/etcd-client-ca.crt'
 #
 # In case you want client to server authentication, uncomment the following
 # lines and add the certificate and key in cilium-etcd-secrets below
 key-file: '/var/lib/etcd-secrets/etcd-client.key'
 cert-file: '/var/lib/etcd-secrets/etcd-client.crt'
kind: ConfigMap
metadata:
 creationTimestamp: null
 name: cilium-config
 selfLink: /api/v1/namespaces/kube-system/configmaps/cilium-config

In the ConfigMap above, we can verify that Cilium is using debug with
true, it has a etcd endpoint running with TLS [https://coreos.com/etcd/docs/latest/op-guide/security.html],
and the etcd is set up to have client to server authentication [https://coreos.com/etcd/docs/latest/op-guide/security.html#example-2-client-to-server-authentication-with-https-client-certificates].

Generate the latest ConfigMap

helm template cilium \
 --namespace=kube-system \
 --set agent.enabled=false \
 --set config.enabled=true \
 --set operator.enabled=false \
 > cilium-configmap.yaml

Add new options

Add the new options manually to your old ConfigMap, and make the necessary
changes.

In this example, the debug option is meant to be kept with true, the
etcd-config is kept unchanged, and monitor-aggregation is a new
option, but after reading the Version Specific Notes the value was kept unchanged
from the default value.

After making the necessary changes, the old ConfigMap was migrated with the
new options while keeping the configuration that we wanted:

$ cat ./cilium-cm-old.yaml
apiVersion: v1
data:
 debug: "true"
 disable-ipv4: "false"
 # If you want to clean cilium state; change this value to true
 clean-cilium-state: "false"
 monitor-aggregation: "medium"
 etcd-config: |-

 endpoints:
 - https://192.168.33.11:2379
 #
 # In case you want to use TLS in etcd, uncomment the 'trusted-ca-file' line
 # and create a kubernetes secret by following the tutorial in
 # https://cilium.link/etcd-config
 trusted-ca-file: '/var/lib/etcd-secrets/etcd-client-ca.crt'
 #
 # In case you want client to server authentication, uncomment the following
 # lines and add the certificate and key in cilium-etcd-secrets below
 key-file: '/var/lib/etcd-secrets/etcd-client.key'
 cert-file: '/var/lib/etcd-secrets/etcd-client.crt'
kind: ConfigMap
metadata:
 creationTimestamp: null
 name: cilium-config
 selfLink: /api/v1/namespaces/kube-system/configmaps/cilium-config

Apply new ConfigMap

After adding the options, manually save the file with your changes and install
the ConfigMap in the kube-system namespace of your cluster.

$ kubectl apply -n kube-system -f ./cilium-cm-old.yaml

As the ConfigMap is successfully upgraded we can start upgrading Cilium
DaemonSet and RBAC which will pick up the latest configuration from the
ConfigMap.

Restrictions on unique prefix lengths for CIDR policy rules

The Linux kernel applies limitations on the complexity of BPF code that is
loaded into the kernel so that the code may be verified as safe to execute on
packets. Over time, Linux releases become more intelligent about the
verification of programs which allows more complex programs to be loaded.
However, the complexity limitations affect some features in Cilium depending
on the kernel version that is used with Cilium.

One such limitation affects Cilium’s configuration of CIDR policies. On Linux
kernels 4.10 and earlier, this manifests as a restriction on the number of
unique prefix lengths supported in CIDR policy rules.

Unique prefix lengths are counted by looking at the prefix portion of CIDR
rules and considering which prefix lengths are unique. For example, in the
following policy example, the toCIDR section specifies a /32, and the
toCIDRSet section specifies a /8 with a /12 removed from it. In
addition, three prefix lengths are always counted: the host prefix length for
the protocol (IPv4: /32, IPv6: /128), the default prefix length
(/0), and the cluster prefix length (default IPv4: /8, IPv6: /64).
All in all, the following example counts as seven unique prefix lengths in IPv4:

	/32 (from toCIDR, also from host prefix)

	/12 (from toCIDRSet)

	/11 (from toCIDRSet)

	/10 (from toCIDRSet)

	/9 (from toCIDRSet)

	/8 (from cluster prefix)

	/0 (from default prefix)

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "cidr-rule"
spec:
 endpointSelector:
 matchLabels:
 app: myService
 egress:
 - toCIDR:
 - 20.1.1.1/32
 - toCIDRSet:
 - cidr: 10.0.0.0/8
 except:
 - 10.96.0.0/12

[{
 "labels": [{"key": "name", "value": "cidr-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toCIDR": [
 "20.1.1.1/32"
]
 }, {
 "toCIDRSet": [{
 "cidr": "10.0.0.0/8",
 "except": [
 "10.96.0.0/12"
]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "cidr-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toCIDR": [
 "20.1.1.1/32"
]
 }, {
 "toCIDRSet": [{
 "cidr": "10.0.0.0/8",
 "except": [
 "10.96.0.0/12"
]}
]
 }]
}]

Affected versions

	Any version of Cilium running on Linux 4.10 or earlier

When a CIDR policy with too many unique prefix lengths is imported, Cilium will
reject the policy with a message like the following:

$ cilium policy import too_many_cidrs.json
Error: Cannot import policy: [PUT /policy][500] putPolicyFailure Adding
specified prefixes would result in too many prefix lengths (current: 3,
result: 32, max: 18)

The supported count of unique prefix lengths may differ between Cilium minor
releases, for example Cilium 1.1 supported 20 unique prefix lengths on Linux
4.10 or older, while Cilium 1.2 only supported 18 (for IPv4) or 4 (for IPv6).

Mitigation

Users may construct CIDR policies that use fewer unique prefix lengths. This
can be achieved by composing or decomposing adjacent prefixes.

Solution

Upgrade the host Linux version to 4.11 or later. This step is beyond the scope
of the Cilium guide.

Upgrading DNS Polling deployments to DNS Proxy (preferred)

In cilium versions 1.2 and 1.3 DNS Polling was automatically used to
obtain IP information for use in toFQDNs.matchName rules in DNS based
policies.
Cilium 1.4 and later have switched to a DNS Proxy scheme - the
DNS Polling behaviour may be enabled via the a CLI option - and expect a
pod to make a DNS request that can be intercepted. Existing pods may have
already-cached DNS lookups that the proxy cannot intercept and thus cilium will
block these on upgrade. New connections with DNS requests that can be
intercepted will be allowed per-policy without special action.
Cilium deployments already configured with DNS Proxy rules are not
impacted and will retain DNS data when restarted or upgraded.

Affected versions

	Cilium 1.2 and 1.3 when using DNS Polling with toFQDNs.matchName
policy rules and upgrading to cilium 1.4.0 or later.

	Cilium 1.4 or later that do not yet have L7 DNS Proxy (preferred) policy rules.

Mitigation

Deployments that require a seamless transition to DNS Proxy
may use Running pre-flight check (Required) to create a copy of DNS information on each cilium
node for use by the upgraded cilium-agent at startup. This data is used to
allow L3 connections (via toFQDNs.matchName and toFQDNs.matchPattern
rules) without a DNS request from pods.
Running pre-flight check (Required) accomplishes this via the --tofqdns-pre-cache CLI option,
which reads DNS cache data for use on startup.

Solution

DNS data obtained via polling must be recorded for use on startup and rules
added to intercept DNS lookups. The steps are split into a section on
seamlessly upgrading DNS Polling and then further beginning to intercept
DNS data via a DNS Proxy.

Policy rules may be prepared to use the DNS Proxy before an
upgrade to 1.4. The new policy rule fields toFQDNs.matchPattern and
toPorts.rules.dns.matchName/matchPattern will be ignored by older cilium
versions and can be safely implemented prior to an upgrade.

The following example allows DNS access to kube-dns via the DNS Proxy and allows all DNS requests to kube-dns. For completeness,
toFQDNs rules are included for examples of the syntax for those L3 policies
as well. Existing toFQDNs rules do not need to be modified but will now use
IPs seen by DNS requests and allowed by the toFQDNs.matchPattern rule.

k8s YAML

JSON

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: "tofqdn-dns-visibility"
spec:
 endpointSelector:
 matchLabels:
 any:org: alliance
 egress:
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"
 - toFQDNs:
 - matchName: "cilium.io"
 - matchName: "sub.cilium.io"

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" }
]
 }
]
 }
]

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" }
]
 }
]
 }
]

Upgrade steps - DNS Polling

	Set the tofqdns-enable-poller field to true in the cilium ConfigMap used
in the upgrade. Alternatively, pass --tofqdns-enable-poller=true to
the upgraded cilium-agent.

	Add tofqdns-pre-cache: "/var/run/cilium/dns-precache-upgrade.json"
to the ConfigMap. Alternatively, pass
--tofqdns-pre-cache="/var/run/cilium/dns-precache-upgrade.json" to
cilium-agent.

	Deploy the cilium Running pre-flight check (Required) helper by generating the manifest with
the preflight.tofqdnsPreCache option set as below. This will download the
cilium container image and also create DNS pre-cache data at
/var/run/cilium/dns-precache-upgrade.json. This data will have a TTL of
1 week.

helm template cilium \
 --namespace=kube-system \
 --set preflight.enabled=true \
 --set preflight.tofqdnsPrecache="/var/run/cilium/dns-precache-upgrade.json" \
 --set agent.enabled=false \
 --set config.enabled=false \
 --set operator.enabled=false \
 > cilium-preflight.yaml
kubectl create cilium-preflight.yaml

	Deploy the new cilium DaemonSet

	(optional) Remove tofqdns-pre-cache: "/var/run/cilium/dns-precache-upgrade.json"
from the cilium ConfigMap. The data will automatically age-out after 1 week.

Conversion steps - DNS Proxy (preferred)

	Update existing policies to intercept DNS requests.

See DNS Policy and IP Discovery or the example above

	Allow pods to make DNS requests to populate the cilium-agent cache. To check
which exact queries are in the DNS cache and when they will expire use
cilium fqdn cache list

	Set the tofqdns-enable-poller field to false in the cilium ConfigMap

	Restart the cilium pods with the new ConfigMap. They will restore Endpoint
policy with DNS information from intercepted DNS requests stored in the
cache

Migrating from kvstore-backed identities to kubernetes CRD-backed identities

Beginning with cilium 1.6, kubernetes CRD-backed security identities can be
used for smaller clusters. Along with other changes in 1.6 this allows
kvstore-free operation if desired. It is possible to migrate identities from an
existing kvstore deployment to CRD-backed identities. This minimizes
disruptions to traffic as the update rolls out through the cluster.

Affected versions

	Cilium 1.6 deployments using kvstore-backend identities

Mitigation

When identities change, existing connections can be disrupted while cilium
initializes and synchronizes with the shared identity store. The disruption
occurs when new numeric identities are used for existing pods on some instances
and others are used on others. When converting to CRD-backed identities, it is
possible to pre-allocate CRD identities so that the numeric identities match
those in the kvstore. This allows new and old cilium instances in the rollout
to agree.

The steps below show an example of such a migration. It is safe to re-run the
command if desired. It will identify already allocated identities or ones that
cannot be migrated. Note that identity 34815 is migrated, 17003 is
already migrated, and 11730 has a conflict and a new ID allocated for those
labels.

The steps below assume a stable cluster with no new identities created during
the rollout. Once a cilium using CRD-backed identities is running, it may begin
allocating identities in a way that conflicts with older ones in the kvstore.

The cilium preflight manifest requires etcd support and can be built with:

helm template cilium \
 --namespace=kube-system \
 --set preflight.enabled=true \
 --set agent.enabled=false \
 --set config.enabled=false \
 --set operator.enabled=false \
 --set global.etcd.enabled=true \
 --set global.etcd.ssl=true \
 > cilium-preflight.yaml
kubectl create cilium-preflight.yaml

Example migration

$ kubectl exec -n kube-system cilium-preflight-1234 -- cilium preflight migrate-identity
INFO[0000] Setting up kvstore client
INFO[0000] Connecting to etcd server... config=/var/lib/cilium/etcd-config.yml endpoints="[https://192.168.33.11:2379]" subsys=kvstore
INFO[0000] Setting up kubernetes client
INFO[0000] Establishing connection to apiserver host="https://192.168.33.11:6443" subsys=k8s
INFO[0000] Connected to apiserver subsys=k8s
INFO[0000] Got lease ID 29c66c67db8870c8 subsys=kvstore
INFO[0000] Got lock lease ID 29c66c67db8870ca subsys=kvstore
INFO[0000] Successfully verified version of etcd endpoint config=/var/lib/cilium/etcd-config.yml endpoints="[https://192.168.33.11:2379]" etcdEndpoint="https://192.168.33.11:2379" subsys=kvstore version=3.3.13
INFO[0000] CRD (CustomResourceDefinition) is installed and up-to-date name=CiliumNetworkPolicy/v2 subsys=k8s
INFO[0000] Updating CRD (CustomResourceDefinition)... name=v2.CiliumEndpoint subsys=k8s
INFO[0001] CRD (CustomResourceDefinition) is installed and up-to-date name=v2.CiliumEndpoint subsys=k8s
INFO[0001] Updating CRD (CustomResourceDefinition)... name=v2.CiliumNode subsys=k8s
INFO[0002] CRD (CustomResourceDefinition) is installed and up-to-date name=v2.CiliumNode subsys=k8s
INFO[0002] Updating CRD (CustomResourceDefinition)... name=v2.CiliumIdentity subsys=k8s
INFO[0003] CRD (CustomResourceDefinition) is installed and up-to-date name=v2.CiliumIdentity subsys=k8s
INFO[0003] Listing identities in kvstore
INFO[0003] Migrating identities to CRD
INFO[0003] Skipped non-kubernetes labels when labelling ciliumidentity. All labels will still be used in identity determination labels="map[]" subsys=crd-allocator
INFO[0003] Skipped non-kubernetes labels when labelling ciliumidentity. All labels will still be used in identity determination labels="map[]" subsys=crd-allocator
INFO[0003] Skipped non-kubernetes labels when labelling ciliumidentity. All labels will still be used in identity determination labels="map[]" subsys=crd-allocator
INFO[0003] Migrated identity identity=34815 identityLabels="k8s:class=tiefighter;k8s:io.cilium.k8s.policy.cluster=default;k8s:io.cilium.k8s.policy.serviceaccount=default;k8s:io.kubernetes.pod.namespace=default;k8s:org=empire;"
WARN[0003] ID is allocated to a different key in CRD. A new ID will be allocated for the this key identityLabels="k8s:class=deathstar;k8s:io.cilium.k8s.policy.cluster=default;k8s:io.cilium.k8s.policy.serviceaccount=default;k8s:io.kubernetes.pod.namespace=default;k8s:org=empire;" oldIdentity=11730
INFO[0003] Reusing existing global key key="k8s:class=deathstar;k8s:io.cilium.k8s.policy.cluster=default;k8s:io.cilium.k8s.policy.serviceaccount=default;k8s:io.kubernetes.pod.namespace=default;k8s:org=empire;" subsys=allocator
INFO[0003] New ID allocated for key in CRD identity=17281 identityLabels="k8s:class=deathstar;k8s:io.cilium.k8s.policy.cluster=default;k8s:io.cilium.k8s.policy.serviceaccount=default;k8s:io.kubernetes.pod.namespace=default;k8s:org=empire;" oldIdentity=11730
INFO[0003] ID was already allocated to this key. It is already migrated identity=17003 identityLabels="k8s:class=xwing;k8s:io.cilium.k8s.policy.cluster=default;k8s:io.cilium.k8s.policy.serviceaccount=default;k8s:io.kubernetes.pod.namespace=default;k8s:org=alliance;"

Note

It is also possible to use the --k8s-kubeconfig-path and --kvstore-opt
cilium CLI options with the preflight command. The default is to derive the
configuration as cilium-agent does.

cilium preflight migrate-identity --k8s-kubeconfig-path /var/lib/cilium/cilium.kubeconfig --kvstore etcd --kvstore-opt etcd.config=/var/lib/cilium/etcd-config.yml

Clearing CRD identities

If a migration has gone wrong, it possible to start with a clean slate. Ensure that no cilium instances are running with identity-allocation-mode crd and execute:

$ kubectl delete ciliumid --all

CNP Validation

Running the CNP Validator will make sure the policies deployed in the cluster
are valid. It is important to run this validation before an upgrade so it will
make sure Cilium has a correct behavior after upgrade. Avoiding doing this
validation might cause Cilium from updating its NodeStatus in those invalid
Network Policies as well as in the worst case scenario it might give a false
sense of security to the user if a policy is badly formatted and Cilium is not
enforcing that policy due a bad validation schema. This CNP Validator is
automatically executed as part of the pre-flight check Running pre-flight check (Required).

Start by deployment the cilium-pre-flight-check and check if the the
Deployment shows READY 1/1, if it does not check the pod logs.

$ kubectl get deployment -n kube-system cilium-pre-flight-check -w
NAME READY UP-TO-DATE AVAILABLE AGE
cilium-pre-flight-check 0/1 1 0 12s

$ kubectl logs -n kube-system deployment/cilium-pre-flight-check -c cnp-validator --previous
level=info msg="Setting up kubernetes client"
level=info msg="Establishing connection to apiserver" host="https://172.20.0.1:443" subsys=k8s
level=info msg="Connected to apiserver" subsys=k8s
level=info msg="Validating CiliumNetworkPolicy 'default/cidr-rule': OK!
level=error msg="Validating CiliumNetworkPolicy 'default/cnp-update': unexpected validation error: spec.labels: Invalid value: \"string\": spec.labels in body must be of type object: \"string\""
level=error msg="Found invalid CiliumNetworkPolicy"

In this example, we can see the CiliumNetworkPolicy in the default
namespace with the name cnp-update is not valid for the Cilium version we
are trying to upgrade. In order to fix this policy we need to edit it, we can
do this by saving the policy locally and modify it. For this example it seems
the .spec.labels has set an array of strings which is not correct as per
the official schema.

$ kubectl get cnp -n default cnp-update -o yaml > cnp-bad.yaml
$ cat cnp-bad.yaml
 apiVersion: cilium.io/v2
 kind: CiliumNetworkPolicy
 [...]
 spec:
 endpointSelector:
 matchLabels:
 id: app1
 ingress:
 - fromEndpoints:
 - matchLabels:
 id: app2
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
 labels:
 - custom=true
 [...]

To fix this policy we need to set the .spec.labels with the right format and
commit these changes into kubernetes.

$ cat cnp-bad.yaml
 apiVersion: cilium.io/v2
 kind: CiliumNetworkPolicy
 [...]
 spec:
 endpointSelector:
 matchLabels:
 id: app1
 ingress:
 - fromEndpoints:
 - matchLabels:
 id: app2
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
 labels:
 - key: "custom"
 value: "true"
 [...]
$
$ kubectl apply -f ./cnp-bad.yaml

After applying the fixed policy we can delete the pod that was validating the
policies so that kubernetes creates a new pod immediately to verify if the fixed
policies are now valid.

$ kubectl delete pod -n kube-system -l k8s-app=cilium-pre-flight-check-deployment
pod "cilium-pre-flight-check-86dfb69668-ngbql" deleted
$ kubectl get deployment -n kube-system cilium-pre-flight-check
NAME READY UP-TO-DATE AVAILABLE AGE
cilium-pre-flight-check 1/1 1 1 55m
$ kubectl logs -n kube-system deployment/cilium-pre-flight-check -c cnp-validator
level=info msg="Setting up kubernetes client"
level=info msg="Establishing connection to apiserver" host="https://172.20.0.1:443" subsys=k8s
level=info msg="Connected to apiserver" subsys=k8s
level=info msg="Validating CiliumNetworkPolicy 'default/cidr-rule': OK!
level=info msg="Validating CiliumNetworkPolicy 'default/cnp-update': OK!
level=info msg="All CCNPs and CNPs valid!"

Once they are valid you can continue with the upgrade process. Clean up pre-flight check

Network Policy

This chapter documents the policy language used to configure network policies
in Cilium. Security policies can be specified and imported via the following
mechanisms:

	Using Kubernetes NetworkPolicy and CiliumNetworkPolicy resources. See
the section Network Policy for more details. In this mode, Kubernetes will
automatically distribute the policies to all agents.

	Directly imported into the agent via CLI or API Reference of the agent. This
method does not automatically distribute policies to all agents. It is in the
responsibility of the user to import the policy in all required agents.

New in version future: Use of the KVstore to distribute security policies [https://github.com/cilium/cilium/issues/3554]
is on the roadmap but has not been implemented yet.

	Policy Enforcement Modes

	Rule Basics

	Layer 3 Examples

	Layer 4 Examples

	Layer 7 Examples

	Kubernetes

	Endpoint Lifecycle

	Troubleshooting

Policy Enforcement Modes

The configuration of the Cilium agent and the Cilium Network Policy determines whether an endpoint accepts traffic from a source or not. The agent can be put into the following three policy enforcement modes:

	default

	This is the default behavior for policy enforcement when Cilium is launched without
any specified value for the policy enforcement configuration. The following rules
apply:

	If any rule selects an Endpoint and the rule has an ingress
section, the endpoint goes into default deny at ingress.

	If any rule selects an Endpoint and the rule has an egress section, the
endpoint goes into default deny at egress.

This means that endpoints will start without any restrictions and as soon as
a rule restricts their ability to receive traffic on ingress or to transmit
traffic on egress, then the endpoint goes into whitelisting mode and all
traffic must be explicitly allowed.

	always

	With always mode, policy enforcement is enabled on all endpoints even if no
rules select specific endpoints.

	never

	With never mode, policy enforcement is disabled on all endpoints, even if
rules do select specific endpoints. In other words, all traffic is allowed
from any source (on ingress) or destination (on egress).

To configure the policy enforcement mode at runtime for all endpoints managed by a Cilium agent, use:

$ cilium config PolicyEnforcement={default,always,never}

If you want to configure the policy enforcement mode at start-time for a particular agent, provide the following flag when launching the Cilium
daemon:

$ cilium-agent --enable-policy={default,always,never} [...]

Similarly, you can enable the policy enforcement mode across a Kubernetes cluster by including the parameter above in the Cilium DaemonSet.

- name: CILIUM_ENABLE_POLICY
 value: always

Rule Basics

All policy rules are based upon a whitelist model, that is, each rule in the
policy allows traffic that matches the rule. If two rules exist, and one
would match a broader set of traffic, then all traffic matching the broader
rule will be allowed. If there is an intersection between two or more rules,
then traffic matching the union of those rules will be allowed. Finally, if
traffic does not match any of the rules, it will be dropped pursuant to the
Policy Enforcement Modes.

Policy rules share a common base type which specifies which endpoints the
rule applies to and common metadata to identify the rule. Each rule is split
into an ingress section and an egress section. The ingress section contains
the rules which must be applied to traffic entering the endpoint, and the
egress section contains rules applied to traffic coming from the endpoint
matching the endpoint selector. Either ingress, egress, or both can be
provided. If both ingress and egress are omitted, the rule has no effect.

type Rule struct {
 // EndpointSelector selects all endpoints which should be subject to
 // this rule. Cannot be empty.
 EndpointSelector EndpointSelector `json:"endpointSelector"`

 // Ingress is a list of IngressRule which are enforced at ingress.
 // If omitted or empty, this rule does not apply at ingress.
 //
 // +optional
 Ingress []IngressRule `json:"ingress,omitempty"`

 // Egress is a list of EgressRule which are enforced at egress.
 // If omitted or empty, this rule does not apply at egress.
 //
 // +optional
 Egress []EgressRule `json:"egress,omitempty"`

 // Labels is a list of optional strings which can be used to
 // re-identify the rule or to store metadata. It is possible to lookup
 // or delete strings based on labels. Labels are not required to be
 // unique, multiple rules can have overlapping or identical labels.
 //
 // +optional
 Labels labels.LabelArray `json:"labels,omitempty"`

 // Description is a free form string, it can be used by the creator of
 // the rule to store human readable explanation of the purpose of this
 // rule. Rules cannot be identified by comment.
 //
 // +optional
 Description string `json:"description,omitempty"`
}

	endpointSelector

	Selects the endpoints which the policy rules apply to. The policy rules
will be applied to all endpoints which match the labels specified in the
Endpoint Selector. See the Endpoint Selector section for additional details.

	ingress

	List of rules which must apply at ingress of the endpoint, i.e. to all
network packets which are entering the endpoint.

	egress

	List of rules which must apply at egress of the endpoint, i.e. to all network
packets which are leaving the endpoint.

	labels

	Labels are used to identify the rule. Rules can be listed and deleted by
labels. Policy rules which are imported via kubernetes
automatically get the label io.cilium.k8s.policy.name=NAME assigned where
NAME corresponds to the name specified in the NetworkPolicy or
CiliumNetworkPolicy resource.

	description

	Description is a string which is not interpreted by Cilium. It can be used to
describe the intent and scope of the rule in a human readable form.

Endpoint Selector

The Endpoint Selector is based on the Kubernetes LabelSelector [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors].
It is called Endpoint Selector because it only applies to labels associated
with Endpoint.

Layer 3 Examples

The layer 3 policy establishes the base connectivity rules regarding which endpoints
can talk to each other. Layer 3 policies can be specified using the following methods:

	Labels Based: This is used to describe the relationship if both endpoints
are managed by Cilium and are thus assigned labels. The big advantage of this
method is that IP addresses are not encoded into the policies and the policy is
completely decoupled from the addressing.

	Services based: This is an intermediate form between Labels and CIDR and
makes use of the services concept in the orchestration system. A good example
of this is the Kubernetes concept of Service endpoints which are
automatically maintained to contain all backend IP addresses of a service.
This allows to avoid hardcoding IP addresses into the policy even if the
destination endpoint is not controlled by Cilium.

	Entities Based: Entities are used to describe remote peers which can be
categorized without knowing their IP addresses. This includes connectivity
to the local host serving the endpoints or all connectivity to outside of
the cluster.

	IP/CIDR based: This is used to describe the relationship to or from external
services if the remote peer is not an endpoint. This requires to hardcode either
IP addresses or subnets into the policies. This construct should be used as a
last resort as it requires stable IP or subnet assignments.

	DNS based: Selects remote, non-cluster, peers using DNS names converted to
IPs via DNS lookups. It shares all limitations of the IP/CIDR based rules
above. DNS information is acquired by routing DNS traffic via a proxy, or
polling for listed DNS targets. DNS TTLs are respected.

Labels Based

Label-based L3 policy is used to establish policy between endpoints inside the
cluster managed by Cilium. Label-based L3 policies are defined by using an
Endpoint Selector inside a rule to choose what kind of traffic that can be
received (on ingress), or sent (on egress). An empty Endpoint Selector allows
all traffic. The examples below demonstrate this in further detail.

Note

Kubernetes: See section Namespaces for details on how
the Endpoint Selector applies in a Kubernetes environment with
regard to namespaces.

Ingress

An endpoint is allowed to receive traffic from another endpoint if at least one
ingress rule exists which selects the destination endpoint with the
Endpoint Selector in the endpointSelector field. To restrict traffic upon
ingress to the selected endpoint, the rule selects the source endpoint with the
Endpoint Selector in the fromEndpoints field.

Simple Ingress Allow

The following example illustrates how to use a simple ingress rule to allow
communication from endpoints with the label role=frontend to endpoints with
the label role=backend.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "l3-rule"
spec:
 endpointSelector:
 matchLabels:
 role: backend
 ingress:
 - fromEndpoints:
 - matchLabels:
 role: frontend

[{
 "labels": [{"key": "name", "value": "l3-rule"}],
 "endpointSelector": {"matchLabels": {"role":"backend"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"role":"frontend"}}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "l3-rule"}],
 "endpointSelector": {"matchLabels": {"role":"backend"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"role":"frontend"}}
]
 }]
}]

Ingress Allow All

An empty Endpoint Selector will select all endpoints, thus writing a rule that will allow
all ingress traffic to an endpoint may be done as follows:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-all-to-victim"
spec:
 endpointSelector:
 matchLabels:
 role: victim
 ingress:
 - fromEndpoints:
 - {}

[{
 "labels": [{"key": "name", "value": "allow-all-to-victim"}],
 "endpointSelector": {"matchLabels": {"role":"victim"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{}}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "allow-all-to-victim"}],
 "endpointSelector": {"matchLabels": {"role":"victim"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{}}
]
 }]
}]

Note that while the above examples allow all ingress traffic to an endpoint, this does not
mean that all endpoints are allowed to send traffic to this endpoint per their policies.
In other words, policy must be configured on both sides (sender and receiver).

Egress

An endpoint is allowed to send traffic to another endpoint if at least one
egress rule exists which selects the destination endpoint with the
Endpoint Selector in the endpointSelector field. To restrict traffic upon
egress to the selected endpoint, the rule selects the destination endpoint with
the Endpoint Selector in the toEndpoints field.

Simple Egress Allow

The following example illustrates how to use a simple egress rule to allow
communication to endpoints with the label role=backend from endpoints with
the label role=frontend.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "l3-egress-rule"
spec:
 endpointSelector:
 matchLabels:
 role: frontend
 egress:
 - toEndpoints:
 - matchLabels:
 role: backend

[{
 "labels": [{"key": "name", "value": "l3-egress-rule"}],
 "endpointSelector": {"matchLabels": {"role":"frontend"}},
 "egress": [{
 "toEndpoints": [
 {"matchLabels":{"role":"backend"}}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "l3-egress-rule"}],
 "endpointSelector": {"matchLabels": {"role":"frontend"}},
 "egress": [{
 "toEndpoints": [
 {"matchLabels":{"role":"backend"}}
]
 }]
}]

Egress Allow All

An empty Endpoint Selector will select all endpoints, thus writing a rule that will allow
all egress traffic from an endpoint may be done as follows:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-all-from-frontend"
spec:
 endpointSelector:
 matchLabels:
 role: frontend
 egress:
 - toEndpoints:
 - {}

[{
 "labels": [{"key": "name", "value": "allow-all-from-frontend"}],
 "endpointSelector": {"matchLabels": {"role":"frontend"}},
 "egress": [{
 "toEndpoints": [
 {"matchLabels":{}}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "allow-all-from-frontend"}],
 "endpointSelector": {"matchLabels": {"role":"frontend"}},
 "egress": [{
 "toEndpoints": [
 {"matchLabels":{}}
]
 }]
}]

Note that while the above examples allow all egress traffic from an endpoint, the receivers
of the egress traffic may have ingress rules that deny the traffic. In other words,
policy must be configured on both sides (sender and receiver).

Ingress/Egress Default Deny

An endpoint can be put into the default deny mode at ingress or egress if a
rule selects the endpoint and contains the respective rule section ingress or
egress.

Note

Any rule selecting the endpoint will have this effect, this example
illustrates how to put an endpoint into default deny mode without
whitelisting other peers at the same time.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "deny-all-egress"
spec:
 endpointSelector:
 matchLabels:
 role: restricted
 egress:
 - {}

[{
 "labels": [{"key": "name", "value": "deny-all-egress"}],
 "endpointSelector": {"matchLabels": {"role":"restricted"}},
 "egress": [{}]
}]

[{
 "labels": [{"key": "name", "value": "deny-all-egress"}],
 "endpointSelector": {"matchLabels": {"role":"restricted"}},
 "egress": [{}]
}]

Additional Label Requirements

It is often required to apply the principle of separation of concern when defining
policies. For this reason, an additional construct exists which allows to establish
base requirements for any connectivity to happen.

For this purpose, the fromRequires field can be used to establish label
requirements which serve as a foundation for any fromEndpoints
relationship. fromRequires is a list of additional constraints which must
be met in order for the selected endpoints to be reachable. These additional
constraints do not grant access privileges by themselves, so to allow traffic
there must also be rules which match fromEndpoints. The same applies for
egress policies, with toRequires and toEndpoints.

The purpose of this rule is to allow establishing base requirements such as, any
endpoint in env=prod can only be accessed if the source endpoint also carries
the label env=prod.

This example shows how to require every endpoint with the label env=prod to
be only accessible if the source endpoint also has the label env=prod.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "For endpoints with env=prod, only allow if source also has label env=prod"
metadata:
 name: "requires-rule"
specs:
 - endpointSelector:
 matchLabels:
 env: prod
 ingress:
 - fromRequires:
 - matchLabels:
 env: prod

[{
 "labels": [{"key": "name", "value": "requires-rule"}],
 "endpointSelector": {"matchLabels": {"env":"prod"}},
 "ingress": [{
 "fromRequires": [
 {"matchLabels":{"env":"prod"}}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "requires-rule"}],
 "endpointSelector": {"matchLabels": {"env":"prod"}},
 "ingress": [{
 "fromRequires": [
 {"matchLabels":{"env":"prod"}}
]
 }]
}]

Services based

Services running in your cluster can be whitelisted in Egress rules.
Currently Kubernetes Services without a Selector [https://kubernetes.io/docs/concepts/services-networking/service/#services-without-selectors]
are supported when defined by their name and namespace or label selector.
Future versions of Cilium will support specifying non-Kubernetes services
and Kubernetes services which are backed by pods.

This example shows how to allow all endpoints with the label id=app2
to talk to all endpoints of kubernetes service myservice in kubernetes
namespace default.

Note

These rules will only take effect on Kubernetes services without a
selector.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "service-rule"
spec:
 endpointSelector:
 matchLabels:
 id: app2
 egress:
 - toServices:
 - k8sService:
 serviceName: myservice
 namespace: default

[{
 "labels": [{"key": "name", "value": "service-rule"}],
 "endpointSelector": {
 "matchLabels": {
 "id": "app2"
 }
 },
 "egress": [
 {
 "toServices": [
 {
 "k8sService": {
 "serviceName": "myservice",
 "namespace": "default"
 }
 }
]
 }
]
}]

[{
 "labels": [{"key": "name", "value": "service-rule"}],
 "endpointSelector": {
 "matchLabels": {
 "id": "app2"
 }
 },
 "egress": [
 {
 "toServices": [
 {
 "k8sService": {
 "serviceName": "myservice",
 "namespace": "default"
 }
 }
]
 }
]
}]

This example shows how to allow all endpoints with the label id=app2
to talk to all endpoints of all kubernetes headless services which
have head:none set as the label.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "service-labels-rule"
spec:
 endpointSelector:
 matchLabels:
 id: app2
 egress:
 - toServices:
 - k8sServiceSelector:
 selector:
 matchLabels:
 head: none

[{
 "labels": [{"key": "name", "value": "service-labels-rule"}],
 "endpointSelector": {
 "matchLabels": {
 "id": "app2"
 }
 },
 "egress": [
 {
 "toServices": [
 {
 "k8sServiceSelector": {
 "selector": {
 "matchLabels": {
 "head": "none"
 }
 }
 }
 }
]
 }
]
}
]

[{
 "labels": [{"key": "name", "value": "service-labels-rule"}],
 "endpointSelector": {
 "matchLabels": {
 "id": "app2"
 }
 },
 "egress": [
 {
 "toServices": [
 {
 "k8sServiceSelector": {
 "selector": {
 "matchLabels": {
 "head": "none"
 }
 }
 }
 }
]
 }
]
}
]

Entities Based

fromEntities is used to describe the entities that can access the selected
endpoints. toEntities is used to describe the entities that can be accessed
by the selected endpoints.

The following entities are defined:

	host

	The host entity includes all cluster nodes. This also includes all
containers running in host networking mode.

	cluster

	Cluster is the logical group of all network endpoints inside of the local
cluster. This includes all Cilium-managed endpoints of the local cluster.
It also includes the host entity to cover host networking containers as
well as the init entity to include endpoints currently being bootstrapped.

	init

	The init entity contains all endpoints in bootstrap phase for which the
security identity has not been resolved yet. See section
Endpoint Lifecycle for details.

	world

	The world entity corresponds to all endpoints outside of the cluster.
Allowing to world is identical to allowing to CIDR 0/0. An alternative
to allowing from and to world is to define fine grained DNS or CIDR based
policies.

	all

	The all entity represents the combination of all known clusters as well
world and whitelists all communication.

New in version future: Allowing users to define custom identities [https://github.com/cilium/cilium/issues/3553]
is on the roadmap but has not been implemented yet.

Access to/from local host

Allow all endpoints with the label env=dev to access the host that is
serving the particular endpoint.

Note

Kubernetes will automatically allow all communication from and to the
local host of all local endpoints. You can run the agent with the
option --allow-localhost=policy to disable this behavior which
will give you control over this via policy.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "dev-to-host"
spec:
 endpointSelector:
 matchLabels:
 env: dev
 egress:
 - toEntities:
 - host

[{
 "labels": [{"key": "name", "value": "dev-to-host"}],
 "endpointSelector": {"matchLabels": {"env":"dev"}},
 "egress": [{
 "toEntities": ["host"]
 }]
}]

[{
 "labels": [{"key": "name", "value": "dev-to-host"}],
 "endpointSelector": {"matchLabels": {"env":"dev"}},
 "egress": [{
 "toEntities": ["host"]
 }]
}]

Access to/from outside cluster

This example shows how to enable access from outside of the cluster to all
endpoints that have the label role=public.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "from-world-to-role-public"
spec:
 endpointSelector:
 matchLabels:
 role: public
 ingress:
 - fromEntities:
 - world

[{
 "labels": [{"key": "name", "value":"from-world-to-role-public"}],
 "endpointSelector": {"matchLabels": {"role":"public"}},
 "ingress": [{
 "fromEntities": ["world"]
 }]
}]

[{
 "labels": [{"key": "name", "value":"from-world-to-role-public"}],
 "endpointSelector": {"matchLabels": {"role":"public"}},
 "ingress": [{
 "fromEntities": ["world"]
 }]
}]

IP/CIDR based

CIDR policies are used to define policies to and from endpoints which are not
managed by Cilium and thus do not have labels associated with them. These are
typically external services, VMs or metal machines running in particular
subnets. CIDR policy can also be used to limit access to external services, for
example to limit external access to a particular IP range. CIDR policies can
be applied at ingress or egress.

CIDR rules apply if Cilium cannot map the source or destination to an identity
derived from endpoint labels, ie the Special Identities. For example, CIDR rules
will apply to traffic where one side of the connection is:

	A network endpoint outside the cluster

	The host network namespace where the pod is running.

	Within the cluster prefix but the IP’s networking is not provided by Cilium.

Note

When running Cilium on Linux 4.10 or earlier, there are Restrictions on unique prefix lengths for CIDR policy rules.

Ingress

	fromCIDR

	List of source prefixes/CIDRs that are allowed to talk to all endpoints
selected by the endpointSelector.

	fromCIDRSet

	List of source prefixes/CIDRs that are allowed to talk to all endpoints
selected by the endpointSelector, along with an optional list of
prefixes/CIDRs per source prefix/CIDR that are subnets of the source
prefix/CIDR from which communication is not allowed.

Egress

	toCIDR

	List of destination prefixes/CIDRs that endpoints selected by
endpointSelector are allowed to talk to. Note that endpoints which are
selected by a fromEndpoints are automatically allowed to talk to their
respective destination endpoints.

	toCIDRSet

	List of destination prefixes/CIDRs that are allowed to talk to all endpoints
selected by the endpointSelector, along with an optional list of
prefixes/CIDRs per source prefix/CIDR that are subnets of the destination
prefix/CIDR to which communication is not allowed.

Allow to external CIDR block

This example shows how to allow all endpoints with the label app=myService
to talk to the external IP 20.1.1.1, as well as the CIDR prefix 10.0.0.0/8,
but not CIDR prefix 10.96.0.0/12

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "cidr-rule"
spec:
 endpointSelector:
 matchLabels:
 app: myService
 egress:
 - toCIDR:
 - 20.1.1.1/32
 - toCIDRSet:
 - cidr: 10.0.0.0/8
 except:
 - 10.96.0.0/12

[{
 "labels": [{"key": "name", "value": "cidr-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toCIDR": [
 "20.1.1.1/32"
]
 }, {
 "toCIDRSet": [{
 "cidr": "10.0.0.0/8",
 "except": [
 "10.96.0.0/12"
]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "cidr-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toCIDR": [
 "20.1.1.1/32"
]
 }, {
 "toCIDRSet": [{
 "cidr": "10.0.0.0/8",
 "except": [
 "10.96.0.0/12"
]}
]
 }]
}]

DNS based

DNS policies are used to define Layer 3 policies to endpoints that are not
managed by cilium, but have DNS queryable domain names. The IP addresses
provided in DNS responses are allowed by Cilium in a similar manner to IPs in
CIDR based policies. They are an alternative when the remote IPs may change
or are not know a priori, or when DNS is more convenient. To enforce policy on
DNS requests themselves, see Layer 7 Examples.

IP information is captured from DNS responses per-Endpoint via a DNS Proxy
or DNS Polling. An L3 CIDR based rule is generated for every toFQDNs
rule and applies to the same endpoints. The IP information is selected for
insertion by matchName or matchPattern rules, and is collected from all
DNS responses seen by Cilium on the node. Multiple selectors may be included in
a single egress rule. See Obtaining DNS Data for use by toFQDNs for information on
collecting this IP data.

toFQDNs egress rules cannot contain any other L3 rules, such as
toEndpoints (under Labels Based) and toCIDRs (under CIDR Based).
They may contain L4/L7 rules, such as toPorts (see Layer 4 Examples)
with, optionally, HTTP and Kafka sections (see Layer 7 Examples).

Note

DNS based rules are intended for external connections and behave
similarly to CIDR based rules. See Services based and
Labels based for cluster-internal traffic.

IPs to be allowed are selected via:

	toFQDNs.matchName

	Inserts IPs of domains that match matchName exactly. Multiple distinct
names may be included in separate matchName entries and IPs for domains
that match any matchName will be inserted.

	toFQDNs.matchPattern

	Inserts IPs of domains that match the pattern in matchPattern, accounting
for wildcards. Patterns are composed of literal characters that that are
allowed in domain names: a-z, 0-9, . and -.

* is allowed as a wildcard with a number of convenience behaviors:

	* within a domain allows 0 or more valid DNS characters, except for the
. separator. *.cilium.io will match sub.cilium.io but not
cilium.io. part*ial.com will match partial.com and
part-extra-ial.com.

	* alone matches all names, and inserts all cached DNS IPs into this
rule.

Note

DNS Polling will not poll matchPattern entries even if they
are literal DNS names.

Example

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "to-fqdn"
spec:
 endpointSelector:
 matchLabels:
 app: test-app
 egress:
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"
 - toFQDNs:
 - matchName: "my-remote-service.com"

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 {
 "matchName": "my-remote-service.com"
 }
]
 }
]
 }
]

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 {
 "matchName": "my-remote-service.com"
 }
]
 }
]
 }
]

Managing Long-Lived Connections & Minimum DNS Cache Times

Often, an application may keep a connection open for longer than the configured
DNS TTL. Without further DNS queries the remote IP used in the long-lived
connection may expire out of the DNS cache. When this occurs, existing
connections will become disallowed by policy and will be blocked. In cases
where an application retries the connection, a new DNS query is issued and the
IP is added to the policy.

A minimum TTL is used to ensure a lower bound to DNS data expiration, and DNS
data in the Cilium DNS cache will not expire sooner than this minimum. It
can be configured with the --tofqdns-min-ttl CLI option. The value is in
integer seconds and must be 1 or more. The default is 1 week, or 1 hour when
DNS Polling is enabled.

Some care needs to be taken when setting --tofqdns-min-ttl with DNS data
that returns many distinct IPs over time. A long TTL will keep each IP cached
long after the related connections may have terminated. Large numbers of IPs
have corresponding Security Identities and too many may slow down Cilium policy
regeneration. This can be especially pronounced when using DNS Polling to
obtain DNS data. In such cases a shorter minimum TTL is recommended, as
DNS Polling will recover up-do-date IPs regularly.

Note

It is recommended that --tofqdns-min-ttl be set to the minimum
time a connection must be maintained.

Managing Short-Lived Connections & Maximum IPs per FQDN/endpoint

The minimal TTL for DNS entries in the cache is deliberately long with 1 week
per default. This is done to accommodate long-lived, persistent connections. On
the other end of the spectrum are workloads which perform short-lived
connections in repetition to FQDNs which are backed by a large number of IP
addresses (e.g. AWS S3). Such workloads can grow the number of IPs mapping to an
FQDN quickly. In order to limit the number of IP addresses that map a particular
FQDN, each FQDN per endpoint has a max capacity of IPs that are being maintained
(default: 50). Once the capacity is exceeded, the oldest entries are
automatically expired from the cache. This capacity can be changed using the
--tofqdns-max-ip-per-hostname option.

Layer 4 Examples

Limit ingress/egress ports

Layer 4 policy can be specified in addition to layer 3 policies or independently.
It restricts the ability of an endpoint to emit and/or receive packets on a
particular port using a particular protocol. If no layer 4 policy is specified
for an endpoint, the endpoint is allowed to send and receive on all layer 4
ports and protocols including ICMP. If any layer 4 policy is specified, then
ICMP will be blocked unless it’s related to a connection that is otherwise
allowed by the policy. Layer 4 policies apply to ports after service port
mapping has been applied.

Layer 4 policy can be specified at both ingress and egress using the
toPorts field. The toPorts field takes a PortProtocol structure
which is defined as follows:

// PortProtocol specifies an L4 port with an optional transport protocol
type PortProtocol struct {
 // Port is an L4 port number. For now the string will be strictly
 // parsed as a single uint16. In the future, this field may support
 // ranges in the form "1024-2048
 Port string `json:"port"`

 // Protocol is the L4 protocol. If omitted or empty, any protocol
 // matches. Accepted values: "TCP", "UDP", ""/"ANY"
 //
 // Matching on ICMP is not supported.
 //
 // +optional
 Protocol string `json:"protocol,omitempty"`
}

Example (L4)

The following rule limits all endpoints with the label app=myService to
only be able to emit packets using TCP on port 80, to any layer 3 destination:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "l4-rule"
spec:
 endpointSelector:
 matchLabels:
 app: myService
 egress:
 - toPorts:
 - ports:
 - port: "80"
 protocol: TCP

[{
 "labels": [{"key": "name", "value": "l4-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "l4-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "egress": [{
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

Labels-dependent Layer 4 rule

This example enables all endpoints with the label role=frontend to
communicate with all endpoints with the label role=backend, but they must
communicate using TCP on port 80. Endpoints with other labels will not be
able to communicate with the endpoints with the label role=backend, and
endpoints with the label role=frontend will not be able to communicate with
role=backend on ports other than 80.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "l4-rule"
spec:
 endpointSelector:
 matchLabels:
 role: backend
 ingress:
 - fromEndpoints:
 - matchLabels:
 role: frontend
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP

[{
 "labels": [{"key": "name", "value": "l4-rule"}],
 "endpointSelector": {"matchLabels":{"role":"backend"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"role":"frontend"}}
],
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "l4-rule"}],
 "endpointSelector": {"matchLabels":{"role":"backend"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"role":"frontend"}}
],
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

CIDR-dependent Layer 4 Rule

This example enables all endpoints with the label role=crawler to
communicate with all remote destinations inside the CIDR 192.0.2.0/24, but
they must communicate using TCP on port 80. The policy does not allow Endpoints
without the label role=crawler to communicate with destinations in the CIDR
192.0.2.0/24. Furthermore, endpoints with the label role=crawler will
not be able to communicate with destinations in the CIDR 192.0.2.0/24 on
ports other than port 80.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "cidr-l4-rule"
spec:
 endpointSelector:
 matchLabels:
 role: crawler
 egress:
 - toCIDR:
 - 192.0.2.0/24
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP

[{
 "labels": [{"key": "name", "value": "cidr-l4-rule"}],
 "endpointSelector": {"matchLabels":{"role":"crawler"}},
 "egress": [{
 "toCIDR": [
 "192.0.2.0/24"
],
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "cidr-l4-rule"}],
 "endpointSelector": {"matchLabels":{"role":"crawler"}},
 "egress": [{
 "toCIDR": [
 "192.0.2.0/24"
],
 "toPorts": [
 {"ports":[{"port": "80", "protocol": "TCP"}]}
]
 }]
}]

Layer 7 Examples

Layer 7 policy rules are embedded into Layer 4 Examples rules and can be specified
for ingress and egress. L7Rules structure is a base type containing an
enumeration of protocol specific fields.

// L7Rules is a union of port level rule types. Mixing of different port
// level rule types is disallowed, so exactly one of the following must be set.
// If none are specified, then no additional port level rules are applied.
type L7Rules struct {
 // HTTP specific rules.
 //
 // +optional
 HTTP []PortRuleHTTP `json:"http,omitempty"`

 // Kafka-specific rules.
 //
 // +optional
 Kafka []PortRuleKafka `json:"kafka,omitempty"`

 // DNS-specific rules.
 //
 // +optional
 DNS []PortRuleDNS `json:"dns,omitempty"`
}

The structure is implemented as a union, i.e. only one member field can be used
per port. If multiple toPorts rules with identical PortProtocol select
an overlapping list of endpoints, then the layer 7 rules are combined together
if they are of the same type. If the type differs, the policy is rejected.

Each member consists of a list of application protocol rules. A layer 7
request is permitted if at least one of the rules matches. If no rules are
specified, then all traffic is permitted.

If a layer 4 rule is specified in the policy, and a similar layer 4 rule
with layer 7 rules is also specified, then the layer 7 portions of the
latter rule will have no effect.

Note

Unlike layer 3 and layer 4 policies, violation of layer 7 rules does
not result in packet drops. Instead, if possible, an application
protocol specific access denied message is crafted and returned, e.g.
an HTTP 403 access denied is sent back for HTTP requests which
violate the policy, or a DNS REFUSED response for DNS requests.

Note

There is currently a max limit of 40 ports with layer 7 policies per
endpoint. This might change in the future when support for ranges is
added.

HTTP

The following fields can be matched on:

	Path

	Path is an extended POSIX regex matched against the path of a request.
Currently it can contain characters disallowed from the conventional “path”
part of a URL as defined by RFC 3986. Paths must begin with a /. If
omitted or empty, all paths are all allowed.

	Method

	Method is an extended POSIX regex matched against the method of a request,
e.g. GET, POST, PUT, PATCH, DELETE, … If omitted or
empty, all methods are allowed.

	Host

	Host is an extended POSIX regex matched against the host header of a request,
e.g. foo.com. If omitted or empty, the value of the host header is
ignored.

	Headers

	Headers is a list of HTTP headers which must be present in the request. If
omitted or empty, requests are allowed regardless of headers present.

Allow GET /public

The following example allows GET requests to the URL /public to be
allowed to endpoints with the labels env:prod, but requests to any other
URL, or using another method, will be rejected. Requests on ports other than
port 80 will be dropped.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "Allow HTTP GET /public from env=prod to app=service"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 app: service
 ingress:
 - fromEndpoints:
 - matchLabels:
 env: prod
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
 rules:
 http:
 - method: "GET"
 path: "/public"

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "service"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"env": "prod"}}
]},{
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/public"
 }
]
 }
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "service"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"env": "prod"}}
]},{
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/public"
 }
]
 }
 }]
 }]
}]

All GET /path1 and PUT /path2 when header set

The following example limits all endpoints which carry the labels
app=myService to only be able to receive packets on port 80 using TCP.
While communicating on this port, the only API endpoints allowed will be GET
/path1 and PUT /path2 with the HTTP header X-My_header set to
true:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "l7-rule"
spec:
 endpointSelector:
 matchLabels:
 app: myService
 ingress:
 - toPorts:
 - ports:
 - port: '80'
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/path1$"
 - method: PUT
 path: "/path2$"
 headers:
 - 'X-My-Header: true'

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "ingress": [{
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/path1$"
 },{
 "method": "PUT",
 "path": "/path2$",
 "headers": ["X-My-Header: true"]
 }
]
 }
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "l7-rule"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "ingress": [{
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/path1$"
 },{
 "method": "PUT",
 "path": "/path2$",
 "headers": ["X-My-Header: true"]
 }
]
 }
 }]
 }]
}]

Kafka (beta)

Note

Kafka support is currently in beta phase.

PortRuleKafka is a list of Kafka protocol constraints. All fields are optional,
if all fields are empty or missing, the rule will match all Kafka messages.
There are two ways to specify the Kafka rules. We can choose to specify a
high-level “produce” or “consume” role to a topic or choose to specify more
low-level Kafka protocol specific apiKeys. Writing rules based on Kafka roles
is easier and covers most common use cases, however if more granularity is
needed then users can alternatively write rules using specific apiKeys.

The following fields can be matched on:

	Role

	Role is a case-insensitive string which describes a group of API keys
necessary to perform certain higher-level Kafka operations such as “produce”
or “consume”. A Role automatically expands into all APIKeys required
to perform the specified higher-level operation.
The following roles are supported:

	“produce”: Allow producing to the topics specified in the rule.

	“consume”: Allow consuming from the topics specified in the rule.

This field is incompatible with the APIKey field, i.e APIKey and Role
cannot both be specified in the same rule.
If omitted or empty, and if APIKey is not specified, then all keys are
allowed.

	APIKey

	APIKey is a case-insensitive string matched against the key of a request,
for example “produce”, “fetch”, “createtopic”, “deletetopic”. For a more
extensive list, see the Kafka protocol reference [https://kafka.apache.org/protocol#protocol_api_keys].
This field is incompatible with the Role field.

	APIVersion

	APIVersion is the version matched against the api version of the Kafka
message. If set, it must be a string representing a positive integer. If
omitted or empty, all versions are allowed.

	ClientID

	ClientID is the client identifier as provided in the request.

From Kafka protocol documentation: This is a user supplied identifier for the
client application. The user can use any identifier they like and it will be
used when logging errors, monitoring aggregates, etc. For example, one might
want to monitor not just the requests per second overall, but the number
coming from each client application (each of which could reside on multiple
servers). This id acts as a logical grouping across all requests from a
particular client.

If omitted or empty, all client identifiers are allowed.

	Topic

	Topic is the topic name contained in the message. If a Kafka request contains
multiple topics, then all topics in the message must be allowed by the policy
or the message will be rejected.

This constraint is ignored if the matched request message type does not
contain any topic. The maximum length of the Topic is 249 characters,
which must be either a-z, A-Z, 0-9, -, . or _.

If omitted or empty, all topics are allowed.

Allow producing to topic empire-announce using Role

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "enable empire-hq to produce to empire-announce and deathstar-plans"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 app: kafka
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: empire-hq
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - role: "produce"
 topic: "deathstar-plans"
 - role: "produce"
 topic: "empire-announce"

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "kafka"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"app": "empire-hq"}}
],
 "toPorts": [{
 "ports": [
 {"port": "9092", "protocol": "TCP"}
],
 "rules": {
 "kafka": [
 {"role": "produce","topic": "deathstar-plans"},
 {"role": "produce", "topic": "empire-announce"}
]
 }
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "kafka"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"app": "empire-hq"}}
],
 "toPorts": [{
 "ports": [
 {"port": "9092", "protocol": "TCP"}
],
 "rules": {
 "kafka": [
 {"role": "produce","topic": "deathstar-plans"},
 {"role": "produce", "topic": "empire-announce"}
]
 }
 }]
 }]
}]

Allow producing to topic empire-announce using apiKeys

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
description: "enable empire-hq to produce to empire-announce and deathstar-plans"
metadata:
 name: "rule1"
spec:
 endpointSelector:
 matchLabels:
 app: kafka
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: empire-hq
 toPorts:
 - ports:
 - port: "9092"
 protocol: TCP
 rules:
 kafka:
 - apiKey: "apiversions"
 - apiKey: "metadata"
 - apiKey: "produce"
 topic: "deathstar-plans"
 - apiKey: "produce"
 topic: "empire-announce"

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "kafka"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"app": "empire-hq"}}
],
 "toPorts": [{
 "ports": [
 {"port": "9092", "protocol": "TCP"}
],
 "rules": {
 "kafka": [
 {"apiKey": "apiversions"},
 {"apiKey": "metadata"},
 {"apiKey": "produce", "topic": "deathstar-plans"},
 {"apiKey": "produce", "topic": "empire-announce"}
]
 }
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "rule1"}],
 "endpointSelector": {"matchLabels": {"app": "kafka"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels": {"app": "empire-hq"}}
],
 "toPorts": [{
 "ports": [
 {"port": "9092", "protocol": "TCP"}
],
 "rules": {
 "kafka": [
 {"apiKey": "apiversions"},
 {"apiKey": "metadata"},
 {"apiKey": "produce", "topic": "deathstar-plans"},
 {"apiKey": "produce", "topic": "empire-announce"}
]
 }
 }]
 }]
}]

DNS Policy and IP Discovery

Policy may be applied to DNS traffic, allowing or disallowing specific DNS
query names or patterns of names (other DNS fields, such as query type, are not
considered). This policy is effected via a DNS proxy, which is also used to
collect IPs used to populate L3 DNS based toFQDNs rules.

Note

While Layer 7 DNS policy can be applied without any other Layer 3
rules, the presence of a Layer 7 rule (with its Layer 3 and 4
components) will block other traffic.

DNS policy may be applied via:

	matchName

	Allows queries for domains that match matchName exactly. Multiple
distinct names may be included in separate matchName entries and queries
for domains that match any matchName will be allowed.

	matchPattern

	Allows queries for domains that match the pattern in matchPattern,
accounting for wildcards. Patterns are composed of literal characters that
that are allowed in domain names: a-z, 0-9, . and -.

* is allowed as a wildcard with a number of convenience behaviors:

	* within a domain allows 0 or more valid DNS characters, except for the
. separator. *.cilium.io will match sub.cilium.io but not
cilium.io. part*ial.com will match partial.com and
part-extra-ial.com.

	* alone matches all names, and inserts all IPs in DNS responses into
the cilium-agent DNS cache.

In this example, L7 DNS policy allows queries for cilium.io and any
subdomains of cilium.io and api.cilium.io. No other DNS queries will be
allowed.

The separate L3 toFQDNs egress rule allows connections to any IPs returned
in DNS queries for cilium.io, sub.cilium.io, service1.api.cilium.io
and any matches of special*service.api.cilium.io, such as
special-region1-service.api.cilium.io but not
region1-service.api.cilium.io. DNS queries to anothersub.cilium.io are
allowed but connections to the returned IPs are not, as there is no L3
toFQDNs rule selecting them. L4 and L7 policy may also be applied (see
DNS based), restricting connections to TCP port 80 in this case.

k8s YAML

JSON

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: "tofqdn-dns-visibility"
spec:
 endpointSelector:
 matchLabels:
 any:org: alliance
 egress:
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchName: "cilium.io"
 - matchPattern: "*.cilium.io"
 - matchPattern: "*.api.cilium.io"

 - toFQDNs:
 - matchName: "cilium.io"
 - matchName: "sub.cilium.io"
 - matchName: "service1.api.cilium.io"
 - matchPattern: "special*service.api.cilium.io"
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchName": "cilium.io" },
 { "matchPattern": "*.cilium.io" },
 { "matchPattern": "*.api.cilium.io" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" },
 { "matchName": "service1.api.cilium.io" },
 { "matchPattern": "special*service.api.cilium.io" }
]
 }
]
 }
]

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchName": "cilium.io" },
 { "matchPattern": "*.cilium.io" },
 { "matchPattern": "*.api.cilium.io" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" },
 { "matchName": "service1.api.cilium.io" },
 { "matchPattern": "special*service.api.cilium.io" }
]
 }
]
 }
]

Note

When applying DNS policy in kubernetes, queries for
service.namespace.svc.cluster.local. must be explicitly allowed
with matchPattern: *.*.svc.cluster.local..

Similarly, queries that rely on the DNS search list to complete the
FQDN must be allowed in their entirety. e.g. A query for
servicename that succeeds with
servicename.namespace.svc.cluster.local. must have the latter
allowed with matchName or matchPattern.

Obtaining DNS Data for use by toFQDNs

IPs are obtained via intercepting DNS requests with a proxy or DNS polling, and
matching names are inserted irrespective of how the data is obtained. These IPs
can be selected with toFQDN rules. DNS responses are cached within cilium
agent respecting TTL.

DNS Proxy (preferred)

A DNS Proxy intercepts egress DNS traffic and records IPs seen in the
responses. This interception is, itself, a separate policy rule governing the
DNS requests, and must be specified separately. For details on how to enforce
policy on DNS requests and configuring the DNS proxy, see Layer 7
Examples.

Only IPs in intercepted DNS responses to an application will be allowed in
the cilium policy rules. For a given domain name, IPs from responses to all
pods managed by a Cilium instance are allowed by policy (respecting TTLs).
This ensures that allowed IPs are consistent with those returned to
applications. The DNS Proxy is the only method to allow IPs from responses
allowed by wildcard L7 DNS matchPattern rules for use in toFQDNs
rules.

The following example obtains DNS data by interception without blocking any
DNS requests. It allows L3 connections to cilium.io, sub.cilium.io
and any subdomains of sub.cilium.io.

k8s YAML

JSON

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: "tofqdn-dns-visibility"
spec:
 endpointSelector:
 matchLabels:
 any:org: alliance
 egress:
 - toEndpoints:
 - matchLabels:
 "k8s:io.kubernetes.pod.namespace": kube-system
 "k8s:k8s-app": kube-dns
 toPorts:
 - ports:
 - port: "53"
 protocol: ANY
 rules:
 dns:
 - matchPattern: "*"
 - toFQDNs:
 - matchName: "cilium.io"
 - matchName: "sub.cilium.io"
 - matchPattern: "*.sub.cilium.io"

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" },
 { "matchPattern": "*.sub.cilium.io" }
]
 }
]
 }
]

[
 {
 "endpointSelector": {
 "matchLabels": {
 "app": "test-app"
 }
 },
 "egress": [
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "app-type": "dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 { "matchPattern": "*" }
]
 }
 }
]
 },
 {
 "toFQDNs": [
 { "matchName": "cilium.io" },
 { "matchName": "sub.cilium.io" },
 { "matchPattern": "*.sub.cilium.io" }
]
 }
]
 }
]

DNS Polling

DNS Polling periodically issues a DNS lookup for each matchName from
cilium-agent. The result is used to regenerate endpoint policy. Despite the
name, the matchName field does not have to be a fully-qualified domain
name. In cases where search domains are configured for cilium-agent, the DNS
lookups from Cilium will not be qualified and will utilize the search list.
Unqualified names must be matched as-is by matchPattern in order to
insert related IPs.

DNS lookups are repeated with an interval of 5 seconds, and are made for
A(IPv4) and AAAA(IPv6) addresses. Should a lookup fail, the most recent IP
data is used instead. An IP change will trigger a regeneration of the Cilium
policy for each endpoint and increment the per cilium-agent policy repository
revision.

Polling may be enabled by the --tofqdns-enable-poller cilium-agent
CLI option. It is disabled by default.

The DNS polling implementation is very limited. It may not behave as expected.

	The DNS polling is done from the cilium-agent process. This may result in
different IPs being returned in the DNS response than those seen by an
application.

	When using DNS Polling with DNS responses that return a new IP on every
query, the IP being whitelisted may differ from the one used for
connections by applications. This is because the application will make
a DNS query independent from the poll.

	When DNS lookups return many distinct IPs over time, large values of
--tofqdns-min-ttl may result in unacceptably slow policy
regeneration. See DNS and Long-Lived Connections for details.

	The lookups from Cilium follow the configuration of the environment it
is in via /etc/resolv.conf. When running as a kubernetes pod, the
contents of resolv.conf are controlled via the dnsPolicy field of a
spec. When running directly on a host, it will use the host’s file.
Irrespective of how the DNS lookups are configured, TTLs and caches on the
resolver will impact the IPs seen by the cilium-agent lookups.

Note

Connections to the DNS resolver must be explicitly whitelisted to
allow DNS queries. This is independent of the source of DNS
information, whether from polling or the DNS proxy.

Kubernetes

This section covers Kubernetes specific network policy aspects.

Namespaces

Namespaces [https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/]
are used to create virtual clusters within a Kubernetes cluster. All Kubernetes objects
including NetworkPolicy and CiliumNetworkPolicy belong to a particular
namespace. Depending on how a policy is being defined and created, Kubernetes
namespaces are automatically being taken into account:

	Network policies created and imported as CiliumNetworkPolicy CRD and
NetworkPolicy apply within the namespace, i.e. the policy only applies
to pods within that namespace. It is however possible to grant access to and
from pods in other namespaces as described below.

	Network policies imported directly via the API Reference apply to all
namespaces unless a namespace selector is specified as described below.

Note

While specification of the namespace via the label
k8s:io.kubernetes.pod.namespace in the fromEndpoints and
toEndpoints fields is deliberately supported. Specification of the
namespace in the endpointSelector is prohibited as it would
violate the namespace isolation principle of Kubernetes. The
endpointSelector always applies to pods of the namespace which is
associated with the CiliumNetworkPolicy resource itself.

Example: Enforce namespace boundaries

This example demonstrates how to enforce Kubernetes namespace-based boundaries
for the namespaces ns1 and ns2 by enabling default-deny on all pods of
either namespace and then allowing communication from all pods within the same
namespace.

Note

The example locks down ingress of the pods in ns1 and ns2.
This means that the pods can still communicate egress to anywhere
unless the destination is in either ns1 or ns2 in which case
both source and destination have to be in the same namespace. In
order to enforce namespace boundaries at egress, the same example can
be used by specifying the rules at egress in addition to ingress.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "isolate-ns1"
 namespace: ns1
spec:
 endpointSelector:
 matchLabels:
 {}
 ingress:
 - fromEndpoints:
 - matchLabels:
 {}

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "isolate-ns1"
 namespace: ns2
spec:
 endpointSelector:
 matchLabels:
 {}
 ingress:
 - fromEndpoints:
 - matchLabels:
 {}

[
 {
 "ingress" : [
 {
 "fromEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns1"
 }
 }
]
 }
],
 "endpointSelector" : {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns1"
 }
 }
 },
 {
 "endpointSelector" : {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns2"
 }
 },
 "ingress" : [
 {
 "fromEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns2"
 }
 }
]
 }
]
 }
]

[
 {
 "ingress" : [
 {
 "fromEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns1"
 }
 }
]
 }
],
 "endpointSelector" : {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns1"
 }
 }
 },
 {
 "endpointSelector" : {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns2"
 }
 },
 "ingress" : [
 {
 "fromEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "ns2"
 }
 }
]
 }
]
 }
]

Example: Expose pods across namespaces

The following example exposes all pods with the label name=leia in the
namespace ns1 to all pods with the label name=luke in the namespace
ns2.

Refer to the example YAML files [https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/policies/kubernetes/namespace/demo-pods.yaml]
for a fully functional example including pods deployed to different namespaces.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "k8s-expose-across-namespace"
 namespace: ns1
spec:
 endpointSelector:
 matchLabels:
 name: leia
 ingress:
 - fromEndpoints:
 - matchLabels:
 k8s:io.kubernetes.pod.namespace: ns2
 name: luke

[{
 "labels": [{"key": "name", "value": "k8s-svc-account"}],
 "endpointSelector": {
 "matchLabels": {"name":"leia", "k8s:io.kubernetes.pod.namespace":"ns1"}
 },
 "ingress": [{
 "fromEndpoints": [{
	 "matchLabels":{"name": "luke", "k8s:io.kubernetes.pod.namespace":"ns2"}
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "k8s-svc-account"}],
 "endpointSelector": {
 "matchLabels": {"name":"leia", "k8s:io.kubernetes.pod.namespace":"ns1"}
 },
 "ingress": [{
 "fromEndpoints": [{
	 "matchLabels":{"name": "luke", "k8s:io.kubernetes.pod.namespace":"ns2"}
 }]
 }]
}]

Example: Allow egress to kube-dns in kube-system namespace

The following example allows all pods in the namespace in which the policy is
created to communicate with kube-dns on port 53/UDP in the kube-system
namespace.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-to-kubedns"
spec:
 endpointSelector:
 {}
 egress:
 - toEndpoints:
 - matchLabels:
 k8s:io.kubernetes.pod.namespace: kube-system
 k8s-app: kube-dns
 toPorts:
 - ports:
 - port: '53'
 protocol: UDP

[
 {
 "endpointSelector" : {
 "matchLabels" : {}
 },
 "egress" : [
 {
 "toEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "kube-system",
 "k8s-app" : "kube-dns"
 }
 }
],
 "toPorts" : [
 {
 "ports" : [
 {
 "port" : "53",
 "protocol" : "UDP"
 }
]
 }
]
 }
]
 }
]

[
 {
 "endpointSelector" : {
 "matchLabels" : {}
 },
 "egress" : [
 {
 "toEndpoints" : [
 {
 "matchLabels" : {
 "k8s:io.kubernetes.pod.namespace" : "kube-system",
 "k8s-app" : "kube-dns"
 }
 }
],
 "toPorts" : [
 {
 "ports" : [
 {
 "port" : "53",
 "protocol" : "UDP"
 }
]
 }
]
 }
]
 }
]

ServiceAccounts

Kubernetes Service Accounts [https://kubernetes.io/docs/concepts/configuration/assign-pod-node/] are used
to associate an identity to a pod or process managed by Kubernetes and grant
identities access to Kubernetes resources and secrets. Cilium supports the
specification of network security policies based on the service account
identity of a pod.

The service account of a pod is either defined via the service account
admission controller [https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#serviceaccount]
or can be directly specified in the Pod, Deployment, ReplicationController
resource like this:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 serviceAccountName: leia
 ...

Example

The following example grants any pod running under the service account of
“luke” to issue a HTTP GET /public request on TCP port 80 to all pods
running associated to the service account of “leia”.

Refer to the example YAML files [https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/policies/kubernetes/serviceaccount/demo-pods.yaml]
for a fully functional example including deployment and service account
resources.

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "k8s-svc-account"
spec:
 endpointSelector:
 matchLabels:
 io.cilium.k8s.policy.serviceaccount: leia
 ingress:
 - fromEndpoints:
 - matchLabels:
 io.cilium.k8s.policy.serviceaccount: luke
 toPorts:
 - ports:
 - port: '80'
 protocol: TCP
 rules:
 http:
 - method: GET
 path: "/public$"

[{
 "labels": [{"key": "name", "value": "k8s-svc-account"}],
 "endpointSelector": {"matchLabels": {"io.cilium.k8s.policy.serviceaccount":"leia"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"io.cilium.k8s.policy.serviceaccount":"luke"}}
],
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/public$"
 }
]
 }
 }]
 }]
}]

[{
 "labels": [{"key": "name", "value": "k8s-svc-account"}],
 "endpointSelector": {"matchLabels": {"io.cilium.k8s.policy.serviceaccount":"leia"}},
 "ingress": [{
 "fromEndpoints": [
 {"matchLabels":{"io.cilium.k8s.policy.serviceaccount":"luke"}}
],
 "toPorts": [{
 "ports": [
 {"port": "80", "protocol": "TCP"}
],
 "rules": {
 "http": [
 {
 "method": "GET",
 "path": "/public$"
 }
]
 }
 }]
 }]
}]

Multi-Cluster

When operating multiple cluster with cluster mesh, the cluster name is exposed
via the label io.cilium.k8s.policy.cluster and can be used to restrict
policies to a particular cluster.

k8s YAML

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-cross-cluster"
 description: "Allow x-wing in cluster1 to contact rebel-base in cluster2"
spec:
 endpointSelector:
 matchLabels:
 name: x-wing
 io.cilium.k8s.policy.cluster: cluster1
 egress:
 - toEndpoints:
 - matchLabels:
 name: rebel-base
 io.cilium.k8s.policy.cluster: cluster2

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "allow-cross-cluster"
 description: "Allow x-wing in cluster1 to contact rebel-base in cluster2"
spec:
 endpointSelector:
 matchLabels:
 name: x-wing
 io.cilium.k8s.policy.cluster: cluster1
 egress:
 - toEndpoints:
 - matchLabels:
 name: rebel-base
 io.cilium.k8s.policy.cluster: cluster2

Endpoint Lifecycle

This section specifies the lifecycle of Cilium endpoints.

Every endpoint in Cilium is in one of the following states:

	restoring: The endpoint was started before Cilium started, and
Cilium is restoring its networking configuration.

	waiting-for-identity: Cilium is allocating a unique identity for
the endpoint.

	waiting-to-regenerate: The endpoint received an identity and is
waiting for its networking configuration to be (re)generated.

	regenerating: The endpoint’s networking configuration is being
(re)generated. This includes programming BPF for that endpoint.

	ready: The endpoint’s networking configuration has been
successfully (re)generated.

	disconnecting: The endpoint is being deleted.

	disconnected: The endpoint has been deleted.

[image: ../_images/cilium-endpoint-lifecycle.png]
The state of an endpoint can be queried using the cilium endpoint
list and cilium endpoint get CLI commands.

While an endpoint is running, it transitions between the
waiting-for-identity, waiting-to-regenerate, regenerating,
and ready states. A transition into the waiting-for-identity
state indicates that the endpoint changed its identity. A transition
into the waiting-to-regenerate or regenerating state indicates
that the policy to be enforced on the endpoint has changed because of
a change in identity, policy, or configuration.

An endpoint transitions into the disconnecting state when it is
being deleted, regardless of its current state.

In some environments, notably Docker and Kubernetes, Cilium can’t
determine the labels of an endpoint immediately when the endpoint is
created, and therefore can’t allocate an identity for the endpoint at
that point. Until the endpoint’s labels are known, Cilium temporarily
associates a special single label reserved:init to the endpoint.
When the endpoint’s labels become known, Cilium then replaces that
special label with the endpoint’s labels and allocates a proper
identity to the endpoint.

To allow traffic to/from endpoints while they are initializing, you
can create policy rules that select the reserved:init label,
and/or rules that allow traffic to/from the special init entity.

For instance, writing a rule that allows all initializing endpoints to
receive connections from the host and to perform DNS queries may be
done as follows:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: init
specs:
 - endpointSelector:
 matchLabels:
 "reserved:init": ""
 ingress:
 - fromEntities:
 - host
 egress:
 - toEntities:
 - all
 toPorts:
 - ports:
 - port: "53"
 protocol: UDP

[{
 "labels": [{"key": "name", "value": "init"}],
 "endpointSelector": {"matchLabels":{"reserved:init":""}},
 "ingress": [{
 "fromEntities": ["host"]
 }],
 "egress": [{
 "toEntities": ["all"],
 "toPorts": [
 {"ports":[{"port": "53", "protocol": "UDP"}]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "init"}],
 "endpointSelector": {"matchLabels":{"reserved:init":""}},
 "ingress": [{
 "fromEntities": ["host"]
 }],
 "egress": [{
 "toEntities": ["all"],
 "toPorts": [
 {"ports":[{"port": "53", "protocol": "UDP"}]}
]
 }]
}]

Likewise, writing a rule that allows an endpoint to receive DNS
queries from initializing endpoints may be done as follows:

k8s YAML

JSON

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
 name: "from-init"
spec:
 endpointSelector:
 matchLabels:
 app: myService
 ingress:
 - fromEntities:
 - init
 - toPorts:
 - ports:
 - port: "53"
 protocol: UDP

[{
 "labels": [{"key": "name", "value": "from-init"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "ingress": [{
 "fromEntities": ["init"],
 "toPorts": [
 {"ports":[{"port": "53", "protocol": "UDP"}]}
]
 }]
}]

[{
 "labels": [{"key": "name", "value": "from-init"}],
 "endpointSelector": {"matchLabels":{"app":"myService"}},
 "ingress": [{
 "fromEntities": ["init"],
 "toPorts": [
 {"ports":[{"port": "53", "protocol": "UDP"}]}
]
 }]
}]

If any ingress (resp. egress) policy rules selects the
reserved:init label, all ingress (resp. egress) traffic to
(resp. from) initializing endpoints that is not explicitly allowed by
those rules will be dropped. Otherwise, if the policy enforcement
mode is never or default, all ingress (resp. egress) traffic
is allowed to (resp. from) initializing endpoints. Otherwise, all
ingress (resp. egress) traffic is dropped.

Troubleshooting

Policy Tracing

If Cilium is allowing / denying connections in a way that is not aligned with the
intent of your Cilium Network policy, there is an easy way to
verify if and what policy rules apply between two
endpoints. We can use the cilium policy trace to simulate a policy decision
between the source and destination endpoints.

We will use the example from the Minikube Getting Started Guide [http://cilium.readthedocs.io/en/latest/gettingstarted/minikube/#getting-started-using-minikube] to trace the policy. In this example, there is:

	deathstar service identified by labels: org=empire, class=deathstar. The service is backed by two pods.

	tiefighter spaceship client pod with labels: org=empire, class=tiefighter

	xwing spaceship client pod with labels: org=alliance, class=xwing

An L3/L4 policy is enforced on the deathstar service to allow access to all spaceships with labels org=empire. With this policy, the tiefighter access is allowed but xwing access will be denied. Let’s use the cilium policy trace to simulate the policy decision. The command provides flexibility to run using pod names, labels or Cilium security identities.

Note

If the --dport option is not specified, then L4 policy will not be
consulted in this policy trace command.

Currently, there is no support for tracing L7 policies via this tool.

Policy trace using pod name and service labels

$ kubectl exec -ti cilium-88k78 -n kube-system -- cilium policy trace --src-k8s-pod default:xwing -d any:class=deathstar,k8s:org=empire,k8s:io.kubernetes.pod.namespace=default --dport 80
level=info msg="Waiting for k8s api-server to be ready..." subsys=k8s
level=info msg="Connected to k8s api-server" ipAddr="https://10.96.0.1:443" subsys=k8s
--
Tracing From: [k8s:class=xwing, k8s:io.cilium.k8s.policy.serviceaccount=default, k8s:io.kubernetes.pod.namespace=default, k8s:org=alliance] => To: [any:class=deathstar, k8s:org=empire, k8s:io.kubernetes.pod.namespace=default] Ports: [80/ANY]

Resolving ingress policy for [any:class=deathstar k8s:org=empire k8s:io.kubernetes.pod.namespace=default]
* Rule {"matchLabels":{"any:class":"deathstar","any:org":"empire","k8s:io.kubernetes.pod.namespace":"default"}}: selected
 Allows from labels {"matchLabels":{"any:org":"empire","k8s:io.kubernetes.pod.namespace":"default"}}
 Labels [k8s:class=xwing k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:org=alliance] not found
1/1 rules selected
Found no allow rule
Ingress verdict: denied

Final verdict: DENIED

Get the Cilium security id

$ kubectl exec -ti cilium-88k78 -n kube-system -- cilium endpoint list | egrep 'deathstar|xwing|tiefighter'
ENDPOINT POLICY (ingress) POLICY (egress) IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT ENFORCEMENT
568 Enabled Disabled 22133 k8s:class=deathstar f00d::a0f:0:0:238 10.15.65.193 ready
900 Enabled Disabled 22133 k8s:class=deathstar f00d::a0f:0:0:384 10.15.114.17 ready
33633 Disabled Disabled 53208 k8s:class=xwing f00d::a0f:0:0:8361 10.15.151.230 ready
38654 Disabled Disabled 22962 k8s:class=tiefighter f00d::a0f:0:0:96fe 10.15.88.156 ready

Policy trace using Cilium security ids

$ kubectl exec -ti cilium-88k78 -n kube-system -- cilium policy trace --src-identity 53208 --dst-identity 22133 --dport 80
--
Tracing From: [k8s:class=xwing, k8s:io.cilium.k8s.policy.serviceaccount=default, k8s:io.kubernetes.pod.namespace=default, k8s:org=alliance] => To: [any:class=deathstar, k8s:org=empire, k8s:io.kubernetes.pod.namespace=default] Ports: [80/ANY]

Resolving ingress policy for [any:class=deathstar k8s:org=empire k8s:io.kubernetes.pod.namespace=default]
* Rule {"matchLabels":{"any:class":"deathstar","any:org":"empire","k8s:io.kubernetes.pod.namespace":"default"}}: selected
 Allows from labels {"matchLabels":{"any:org":"empire","k8s:io.kubernetes.pod.namespace":"default"}}
 Labels [k8s:class=xwing k8s:io.cilium.k8s.policy.serviceaccount=default k8s:io.kubernetes.pod.namespace=default k8s:org=alliance] not found
1/1 rules selected
Found no allow rule
Ingress verdict: denied

Final verdict: DENIED

Policy Rule to Endpoint Mapping

To determine which policy rules are currently in effect for an endpoint the
data from cilium endpoint list and cilium endpoint get can be paired
with the data from cilium policy get. cilium endpoint get will list the
labels of each rule that applies to an endpoint. The list of labels can be
passed to cilium policy get to show that exact source policy. Note that
rules that have no labels cannot be fetched alone (a no label cililum policy
get returns the complete policy on the node). Rules with the same labels will
be returned together.

In the above example, for one of the deathstar pods the endpoint id is 568. We can print all policies applied to it with:

Get a shell on the Cilium pod

$ kubectl exec -ti cilium-88k78 -n kube-system /bin/bash

print out the ingress labels
clean up the data
fetch each policy via each set of labels
(Note that while the structure is "...l4.ingress...", it reflects all L3, L4 and L7 policy.

$ cilium endpoint get 568 -o jsonpath='{range ..status.policy.realized.l4.ingress[*].derived-from-rules}{@}{"\n"}{end}'|tr -d '][' | xargs -I{} bash -c 'echo "Labels: {}"; cilium policy get {}'
Labels: k8s:io.cilium.k8s.policy.name=rule1 k8s:io.cilium.k8s.policy.namespace=default
[
 {
 "endpointSelector": {
 "matchLabels": {
 "any:class": "deathstar",
 "any:org": "empire",
 "k8s:io.kubernetes.pod.namespace": "default"
 }
 },
 "ingress": [
 {
 "fromEndpoints": [
 {
 "matchLabels": {
 "any:org": "empire",
 "k8s:io.kubernetes.pod.namespace": "default"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "80",
 "protocol": "TCP"
 }
],
 "rules": {
 "http": [
 {
 "path": "/v1/request-landing",
 "method": "POST"
 }
]
 }
 }
]
 }
],
 "labels": [
 {
 "key": "io.cilium.k8s.policy.name",
 "value": "rule1",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.namespace",
 "value": "default",
 "source": "k8s"
 }
]
 }
]
Revision: 217

repeat for egress
$ cilium endpoint get 568 -o jsonpath='{range ..status.policy.realized.l4.egress[*].derived-from-rules}{@}{"\n"}{end}' | tr -d '][' | xargs -I{} bash -c 'echo "Labels: {}"; cilium policy get {}'

Troubleshooting toFQDNs rules

The effect of toFQDNs may change long after a policy is applied, as DNS
data changes. This can make it difficult to debug unexpectedly blocked
connections, or transient failures. Cilium provides CLI tools to introspect
the state of applying FQDN policy in multiple layers of the daemon:

	cilium policy get should show the FQDN policy that was imported:

{
 "endpointSelector": {
 "matchLabels": {
 "any:class": "mediabot",
 "any:org": "empire",
 "k8s:io.kubernetes.pod.namespace": "default"
 }
 },
 "egress": [
 {
 "toFQDNs": [
 {
 "matchName": "api.twitter.com"
 }
]
 },
 {
 "toEndpoints": [
 {
 "matchLabels": {
 "k8s:io.kubernetes.pod.namespace": "kube-system",
 "k8s:k8s-app": "kube-dns"
 }
 }
],
 "toPorts": [
 {
 "ports": [
 {
 "port": "53",
 "protocol": "ANY"
 }
],
 "rules": {
 "dns": [
 {
 "matchPattern": "*"
 }
]
 }
 }
]
 }
],
 "labels": [
 {
 "key": "io.cilium.k8s.policy.derived-from",
 "value": "CiliumNetworkPolicy",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.name",
 "value": "fqdn",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.namespace",
 "value": "default",
 "source": "k8s"
 },
 {
 "key": "io.cilium.k8s.policy.uid",
 "value": "fc9d6022-2ffa-4f72-b59e-b9067c3cfecf",
 "source": "k8s"
 }
]
}

	After making a DNS request, the FQDN to IP mapping should be available via
cilium fqdn cache list:

cilium fqdn cache list
Endpoint FQDN TTL ExpirationTime IPs
2761 help.twitter.com. 604800 2019-07-16T17:57:38.179Z 104.244.42.67,104.244.42.195,104.244.42.3,104.244.42.131
2761 api.twitter.com. 604800 2019-07-16T18:11:38.627Z 104.244.42.194,104.244.42.130,104.244.42.66,104.244.42.2

	If the traffic is allowed, then these IPs should have corresponding local identities via
cilium identity list | grep <IP>:

cilium identity list | grep -A 1 104.244.42.194
16777220 cidr:104.244.42.194/32
 reserved:world

	Given the identity of the traffic that should be allowed, the regular
Policy Tracing steps can be used to validate that the policy is
calculated correctly.

Monitoring & Metrics

cilium-agent and cilium-operator can be configured to serve Prometheus [https://prometheus.io] metrics. Prometheus is a pluggable metrics collection
and storage system and can act as a data source for Grafana [https://grafana.com/], a metrics visualization frontend. Unlike some metrics
collectors like statsd, Prometheus requires the collectors to pull metrics from
each source.

To run Cilium with Prometheus metrics enabled, deploy it with the
global.prometheus.enabled=true Helm value set.

All metrics are exported under the cilium Prometheus namespace. When
running and collecting in Kubernetes they will be tagged with a pod name and
namespace.

Installation

When deployed with the Helm value global.prometheus.enabled=true, all Cilium
components will have the annotations to signal Prometheus whether to scrape
metrics:

prometheus.io/scrape: "true"
prometheus.io/port: "9090"

Example Prometheus & Grafana Deployment

If you don’t have an existing Prometheus and Grafana stack running, you can
deploy a stack with:

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/addons/prometheus/monitoring-example.yaml

It will run Prometheus and Grafana in the cilium-monitoring namespace. You
can then expose Grafana to access it via your browser.

kubectl -n cilium-monitoring port-forward service/grafana 3000:3000

Open your browser and access https://localhost:3000/

cilium-agent

To expose any metrics, invoke cilium-agent with the
--prometheus-serve-addr option. This option takes a IP:Port pair but
passing an empty IP (e.g. :9090) will bind the server to all available
interfaces (there is usually only one in a container).

in examples/kubernetes/addons/prometheus/monitoring-example.yaml [https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/addons/prometheus/monitoring-example.yaml]

Exported Metrics

Endpoint

	Name

	Labels

	Description

	endpoint_count

	
	Number of endpoints managed by this agent

	endpoint_regenerations

	outcome

	Count of all endpoint regenerations that have completed

	endpoint_regeneration_time_stats_seconds

	scope

	Endpoint regeneration time stats

	endpoint_state

	state

	Count of all endpoints

Services

	Name

	Labels

	Description

	services_events_total

	
	Number of services events labeled by action type

Datapath

	Name

	Labels

	Description

	datapath_errors_total

	area, name, family

	Total number of errors occurred in datapath management

	datapath_conntrack_gc_runs_total

	status

	Number of times that the conntrack garbage collector process was run

	datapath_conntrack_gc_key_fallbacks_total

	
	The number of alive and deleted conntrack entries at the end of a garbage collector run labeled by datapath family

	datapath_conntrack_gc_entries

	family

	The number of alive and deleted conntrack entries at the end of a garbage collector run

	datapath_conntrack_gc_duration_seconds

	status

	Duration in seconds of the garbage collector process

BPF

	Name

	Labels

	Description

	bpf_syscall_duration_seconds

	operation, outcome

	Duration of BPF system call performed

	bpf_map_ops_total

	mapName, operation, outcome

	Number of BPF map operations performed

Drops/Forwards (L3/L4)

	Name

	Labels

	Description

	drop_count_total

	reason, direction

	Total dropped packets

	drop_bytes_total

	reason, direction

	Total dropped bytes

	forward_count_total

	direction

	Total forwarded packets

	forward_bytes_total

	direction

	Total forwarded bytes

Policy

	Name

	Labels

	Description

	policy_count

	
	Number of policies currently loaded

	policy_regeneration_total

	
	Total number of policies regenerated successfully

	policy_regeneration_time_stats_seconds

	scope

	Policy regeneration time stats labeled by the scope

	policy_max_revision

	
	Highest policy revision number in the agent

	policy_import_errors

	
	Number of times a policy import has failed

	policy_endpoint_enforcement_status

	
	Number of endpoints labeled by policy enforcement status

Policy L7 (HTTP/Kafka)

	Name

	Labels

	Description

	proxy_redirects

	protocol

	Number of redirects installed for endpoints

	proxy_upstream_reply_seconds

	
	Seconds waited for upstream server to reply to a request

	policy_l7_total

	type

	Number of total L7 requests/responses

Identity

	Name

	Labels

	Description

	identity_count

	
	Number of identities currently allocated

Events external to Cilium

	Name

	Labels

	Description

	event_ts

	source

	Last timestamp when we received an event

Controllers

	Name

	Labels

	Description

	controllers_runs_total

	status

	Number of times that a controller process was run

	controllers_runs_duration_seconds

	status

	Duration in seconds of the controller process

SubProcess

	Name

	Labels

	Description

	subprocess_start_total

	subsystem

	Number of times that Cilium has started a subprocess

Kubernetes

	Name

	Labels

	Description

	kubernetes_events_received_total

	scope, action, validity, equal

	Number of Kubernetes events received

	kubernetes_events_total

	scope, action, outcome

	Number of Kubernetes events processed

	k8s_cnp_status_completion_seconds

	attempts, outcome

	Duration in seconds in how long it took to complete a CNP status update

IPAM

	Name

	Labels

	Description

	ipam_events_total

	
	Number of IPAM events received labeled by action and datapath family type

KVstore

	Name

	Labels

	Description

	kvstore_operations_duration_seconds

	action, kind, outcome, scope

	Duration of kvstore operation

	kvstore_events_queue_seconds

	action, scope

	Duration of seconds of time received event was blocked before it could be queued

Agent

	Name

	Labels

	Description

	agent_bootstrap_seconds

	scope, outcome

	Duration of various bootstrap phases

	api_process_time_seconds

	
	Processing time of all the API calls made to the cilium-agent, labeled by API method, API path and returned HTTP code.

FQDN

	Name

	Labels

	Description

	qdn_gc_deletions_total

	
	Number of FQDNs that have been cleaned on FQDN garbage collector job

cilium-operator

cilium-operator can be configured to serve metrics by running with the
option --enable-metrics. By default, the operator will expose metrics on
port 6942, the port can be changed with the option --metrics-address.

Exported Metrics

All metrics are exported under the cilium_operator_ Prometheus namespace.

ENI

	Name

	Labels

	Description

	eni_ips

	type

	Number of IPs allocated

	eni_allocation_ops

	subnetId

	Number of IP allocation operations

	eni_interface_creation_ops

	subnetId, status

	Number of ENIs allocated

	eni_available

	
	Number of ENIs with addresses available

	eni_nodes_at_capacity

	
	Number of nodes unable to allocate more addresses

	eni_aws_api_duration_seconds

	operation, responseCode

	Duration of interactions with AWS API

	eni_resync_total

	
	Number of synchronization operations to synchronize AWS EC2 metadata

	eni_ec2_rate_limit

	operation

	Number of times the EC2 client rate limiter kicked in

Troubleshooting

This document describes how to troubleshoot Cilium in different deployment
modes. It focuses on a full deployment of Cilium within a datacenter or public
cloud. If you are just looking for a simple way to experiment, we highly
recommend trying out the Getting Started Guides instead.

This guide assumes that you have read the Concepts which explains all
the components and concepts.

We use GitHub issues to maintain a list of Cilium Frequently Asked Questions
(FAQ) [https://github.com/cilium/cilium/issues?utf8=%E2%9C%93&q=label%3Akind%2Fquestion%20]. You can also check there to see if your question(s) is already
addressed.

Component & Cluster Health

Kubernetes

An initial overview of Cilium can be retrieved by listing all pods to verify
whether all pods have the status Running:

$ kubectl -n kube-system get pods -l k8s-app=cilium
NAME READY STATUS RESTARTS AGE
cilium-2hq5z 1/1 Running 0 4d
cilium-6kbtz 1/1 Running 0 4d
cilium-klj4b 1/1 Running 0 4d
cilium-zmjj9 1/1 Running 0 4d

If Cilium encounters a problem that it cannot recover from, it will
automatically report the failure state via cilium status which is regularly
queried by the Kubernetes liveness probe to automatically restart Cilium pods.
If a Cilium pod is in state CrashLoopBackoff then this indicates a
permanent failure scenario.

Detailed Status

If a particular Cilium pod is not in running state, the status and health of
the agent on that node can be retrieved by running cilium status in the
context of that pod:

$ kubectl -n kube-system exec -ti cilium-2hq5z -- cilium status
KVStore: Ok etcd: 1/1 connected: http://demo-etcd-lab--a.etcd.tgraf.test1.lab.corp.covalent.link:2379 - 3.2.5 (Leader)
ContainerRuntime: Ok docker daemon: OK
Kubernetes: Ok OK
Kubernetes APIs: ["cilium/v2::CiliumNetworkPolicy", "networking.k8s.io/v1::NetworkPolicy", "core/v1::Service", "core/v1::Endpoint", "core/v1::Node", "CustomResourceDefinition"]
Cilium: Ok OK
NodeMonitor: Disabled
Cilium health daemon: Ok
Controller Status: 14/14 healthy
Proxy Status: OK, ip 10.2.0.172, port-range 10000-20000
Cluster health: 4/4 reachable (2018-06-16T09:49:58Z)

Alternatively, the k8s-cilium-exec.sh script can be used to run cilium
status on all nodes. This will provide detailed status and health information
of all nodes in the cluster:

$ curl -sLO releases.cilium.io/v1.1.0/tools/k8s-cilium-exec.sh
$ chmod +x ./k8s-cilium-exec.sh

… and run cilium status on all nodes:

$./k8s-cilium-exec.sh cilium status
KVStore: Ok Etcd: http://127.0.0.1:2379 - (Leader) 3.1.10
ContainerRuntime: Ok
Kubernetes: Ok OK
Kubernetes APIs: ["extensions/v1beta1::Ingress", "core/v1::Node", "CustomResourceDefinition", "cilium/v2::CiliumNetworkPolicy", "networking.k8s.io/v1::NetworkPolicy", "core/v1::Service", "core/v1::Endpoint"]
Cilium: Ok OK
NodeMonitor: Listening for events on 2 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
Controller Status: 7/7 healthy
Proxy Status: OK, ip 10.15.28.238, 0 redirects, port-range 10000-20000
Cluster health: 1/1 reachable (2018-02-27T00:24:34Z)

Logs

To retrieve log files of a cilium pod, run (replace cilium-1234 with a pod
name returned by kubectl -n kube-system get pods -l k8s-app=cilium)

$ kubectl -n kube-system logs --timestamps cilium-1234

If the cilium pod was already restarted due to the liveness problem after
encountering an issue, it can be useful to retrieve the logs of the pod before
the last restart:

$ kubectl -n kube-system logs --timestamps -p cilium-1234

Generic

When logged in a host running Cilium, the cilium CLI can be invoked directly,
e.g.:

$ cilium status
KVStore: Ok etcd: 1/1 connected: https://192.168.33.11:2379 - 3.2.7 (Leader)
ContainerRuntime: Ok
Kubernetes: Ok OK
Kubernetes APIs: ["core/v1::Endpoint", "extensions/v1beta1::Ingress", "core/v1::Node", "CustomResourceDefinition", "cilium/v2::CiliumNetworkPolicy", "networking.k8s.io/v1::NetworkPolicy", "core/v1::Service"]
Cilium: Ok OK
NodeMonitor: Listening for events on 2 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
IPv4 address pool: 261/65535 allocated
IPv6 address pool: 4/4294967295 allocated
Controller Status: 20/20 healthy
Proxy Status: OK, ip 10.0.28.238, port-range 10000-20000
Cluster health: 2/2 reachable (2018-04-11T15:41:01Z)

Connectivity Problems

Checking cluster connectivity health

Cilium allows to rule out network fabric related issues when troubleshooting
connectivity issues by providing reliable health and latency probes between all
cluster nodes and between a simulated workload running on each node.

By default when Cilium is run, it launches instances of cilium-health in
the background to determine overall connectivity status of the cluster. This
tool periodically runs bidirectional traffic across multiple paths through the
cluster and through each node using different protocols to determine the health
status of each path and protocol. At any point in time, cilium-health may be
queried for the connectivity status of the last probe.

$ kubectl -n kube-system exec -ti cilium-2hq5z -- cilium-health status
Probe time: 2018-06-16T09:51:58Z
Nodes:
 ip-172-0-52-116.us-west-2.compute.internal (localhost):
 Host connectivity to 172.0.52.116:
 ICMP to stack: OK, RTT=315.254µs
 HTTP to agent: OK, RTT=368.579µs
 Endpoint connectivity to 10.2.0.183:
 ICMP to stack: OK, RTT=190.658µs
 HTTP to agent: OK, RTT=536.665µs
 ip-172-0-117-198.us-west-2.compute.internal:
 Host connectivity to 172.0.117.198:
 ICMP to stack: OK, RTT=1.009679ms
 HTTP to agent: OK, RTT=1.808628ms
 Endpoint connectivity to 10.2.1.234:
 ICMP to stack: OK, RTT=1.016365ms
 HTTP to agent: OK, RTT=2.29877ms

For each node, the connectivity will be displayed for each protocol and path,
both to the node itself and to an endpoint on that node. The latency specified
is a snapshot at the last time a probe was run, which is typically once per
minute. The ICMP connectivity row represents Layer 3 connectivity to the
networking stack, while the HTTP connectivity row represents connection to an
instance of the cilium-health agent running on the host or as an endpoint.

Monitoring Packet Drops

Sometimes you may experience broken connectivity, which may be due to a
number of different causes. A main cause can be unwanted packet drops on
the networking level. The tool
cilium monitor allows you to quickly inspect and see if and where packet
drops happen. Following is an example output (use kubectl exec as in previous
examples if running with Kubernetes):

$ kubectl -n kube-system exec -ti cilium-2hq5z -- cilium monitor --type drop
Listening for events on 2 CPUs with 64x4096 of shared memory
Press Ctrl-C to quit
xx drop (Policy denied (L3)) to endpoint 25729, identity 261->264: fd02::c0a8:210b:0:bf00 -> fd02::c0a8:210b:0:6481 EchoRequest
xx drop (Policy denied (L3)) to endpoint 25729, identity 261->264: fd02::c0a8:210b:0:bf00 -> fd02::c0a8:210b:0:6481 EchoRequest
xx drop (Policy denied (L3)) to endpoint 25729, identity 261->264: 10.11.13.37 -> 10.11.101.61 EchoRequest
xx drop (Policy denied (L3)) to endpoint 25729, identity 261->264: 10.11.13.37 -> 10.11.101.61 EchoRequest
xx drop (Invalid destination mac) to endpoint 0, identity 0->0: fe80::5c25:ddff:fe8e:78d8 -> ff02::2 RouterSolicitation

The above indicates that a packet to endpoint ID 25729 has been dropped due
to violation of the Layer 3 policy.

Handling drop (CT: Map insertion failed)

If connectivity fails and cilium monitor --type drop shows xx drop (CT:
Map insertion failed), then it is likely that the connection tracking table
is filling up and the automatic adjustment of the garbage collector interval is
insufficient. Set --conntrack-gc-interval to an interval lower than the
default. Alternatively, the value for bpf-ct-global-any-max and
bpf-ct-global-tcp-max can be increased. Setting both of these options will
be a trade-off of CPU for conntrack-gc-interval, and for
bpf-ct-global-any-max and bpf-ct-global-tcp-max the amount of memory
consumed.

Policy Troubleshooting

Ensure pod is managed by Cilium

A potential cause for policy enforcement not functioning as expected is that
the networking of the pod selected by the policy is not being managed by
Cilium. The following situations result in unmanaged pods:

	The pod is running in host networking and will use the host’s IP address
directly. Such pods have full network connectivity but Cilium will not
provide security policy enforcement for such pods.

	The pod was started before Cilium was deployed. Cilium only manages pods
that have been deployed after Cilium itself was started. Cilium will not
provide security policy enforcement for such pods.

If pod networking is not managed by Cilium. Ingress and egress policy rules
selecting the respective pods will not be applied. See the section
Network Policy for more details.

You can run the following script to list the pods which are not managed by
Cilium:

$./contrib/k8s/k8s-unmanaged.sh
kube-system/cilium-hqpk7
kube-system/kube-addon-manager-minikube
kube-system/kube-dns-54cccfbdf8-zmv2c
kube-system/kubernetes-dashboard-77d8b98585-g52k5
kube-system/storage-provisioner

See section Policy Tracing for details and examples on how to use the
policy tracing feature.

Understand the rendering of your policy

There are always multiple ways to approach a problem. Cilium can provide the
rendering of the aggregate policy provided to it, leaving you to simply compare
with what you expect the policy to actually be rather than search (and potentially
overlook) every policy. At the expense of reading a very large dump of an endpoint,
this is often a faster path to discovering errant policy requests in the Kubernetes
API.

Start by finding the endpoint you are debugging from the following list. There are
several cross references for you to use in this list, including the IP address and
pod labels:

kubectl -n kube-system exec -ti cilium-q8wvt -- cilium endpoint list

When you find the correct endpoint, the first column of every row is the endpoint ID.
Use that to dump the full endpoint information:

kubectl -n kube-system exec -ti cilium-q8wvt -- cilium endpoint get 59084

[image: _images/troubleshooting_policy.png]
Importing this dump into a JSON-friendly editor can help browse and navigate the
information here. At the top level of the dump, there are two nodes of note:

	spec: The desired state of the endpoint

	status: The current state of the endpoint

This is the standard Kubernetes control loop pattern. Cilium is the controller here,
and it is iteratively working to bring the status in line with the spec.

Opening the status, we can drill down through policy.realized.l4. Do your
ingress and egress rules match what you expect? If not, the reference to the errant
rules can be found in the derived-from-rules node.

Symptom Library

Node to node traffic is being dropped

Symptom

Endpoint to endpoint communication on a single node succeeds but communication
fails between endpoints across multiple nodes.

Troubleshooting steps:

	Run cilium-health status on the node of the source and destination
endpoint. It should describe the connectivity from that node to other
nodes in the cluster, and to a simulated endpoint on each other node.
Identify points in the cluster that cannot talk to each other. If the
command does not describe the status of the other node, there may be an
issue with the KV-Store.

	Run cilium monitor on the node of the source and destination endpoint.
Look for packet drops.

When running in Overlay Network Mode mode:

	Run cilium bpf tunnel list and verify that each Cilium node is aware of
the other nodes in the cluster. If not, check the logfile for errors.

	If nodes are being populated correctly, run tcpdump -n -i cilium_vxlan on
each node to verify whether cross node traffic is being forwarded correctly
between nodes.

If packets are being dropped,

	verify that the node IP listed in cilium bpf tunnel list can reach each
other.

	verify that the firewall on each node allows UDP port 8472.

When running in Direct / Native Routing Mode mode:

	Run ip route or check your cloud provider router and verify that you have
routes installed to route the endpoint prefix between all nodes.

	Verify that the firewall on each node permits to route the endpoint IPs.

Useful Scripts

Retrieve Cilium pod managing a particular pod

Identifies the Cilium pod that is managing a particular pod in a namespace:

k8s-get-cilium-pod.sh <pod> <namespace>

Example:

$ curl -sLO releases.cilium.io/v1.1.0/tools/k8s-get-cilium-pod.sh
$./k8s-get-cilium-pod.sh luke-pod default
cilium-zmjj9

Execute a command in all Kubernetes Cilium pods

Run a command within all Cilium pods of a cluster

k8s-cilium-exec.sh <command>

Example:

$ curl -sLO releases.cilium.io/v1.1.0/tools/k8s-cilium-exec.sh
$./k8s-cilium-exec.sh uptime
 10:15:16 up 6 days, 7:37, 0 users, load average: 0.00, 0.02, 0.00
 10:15:16 up 6 days, 7:32, 0 users, load average: 0.00, 0.03, 0.04
 10:15:16 up 6 days, 7:30, 0 users, load average: 0.75, 0.27, 0.15
 10:15:16 up 6 days, 7:28, 0 users, load average: 0.14, 0.04, 0.01

List unmanaged Kubernetes pods

Lists all Kubernetes pods in the cluster for which Cilium does not provide
networking. This includes pods running in host-networking mode and pods that
were started before Cilium was deployed.

k8s-unmanaged.sh

Example:

$ curl -sLO releases.cilium.io/v1.1.0/tools/k8s-unmanaged.sh
$./k8s-unmanaged.sh
kube-system/cilium-hqpk7
kube-system/kube-addon-manager-minikube
kube-system/kube-dns-54cccfbdf8-zmv2c
kube-system/kubernetes-dashboard-77d8b98585-g52k5
kube-system/storage-provisioner

Reporting a problem

Automatic log & state collection

Before you report a problem, make sure to retrieve the necessary information
from your cluster before the failure state is lost. Cilium provides a script
to automatically grab logs and retrieve debug information from all Cilium pods
in the cluster.

The script has the following list of prerequisites:

	Requires Python >= 2.7.*

	Requires kubectl.

	kubectl should be pointing to your cluster before running the tool.

You can download the latest version of the cilium-sysdump tool using the
following command:

curl -sLO https://github.com/cilium/cilium-sysdump/releases/latest/download/cilium-sysdump.zip
python cilium-sysdump.zip

You can specify from which nodes to collect the system dumps by passing
node IP addresses via the --nodes argument:

python cilium-sysdump.zip --nodes=$NODE1_IP,$NODE2_IP2

Use --help to see more options:

python cilium-sysdump.zip --help

Single Node Bugtool

If you are not running Kubernetes, it is also possible to run the bug
collection tool manually with the scope of a single node:

The cilium-bugtool captures potentially useful information about your
environment for debugging. The tool is meant to be used for debugging a single
Cilium agent node. In the Kubernetes case, if you have multiple Cilium pods,
the tool can retrieve debugging information from all of them. The tool works by
archiving a collection of command output and files from several places. By
default, it writes to the tmp directory.

Note that the command needs to be run from inside the Cilium pod/container.

$ cilium-bugtool

When running it with no option as shown above, it will try to copy various
files and execute some commands. If kubectl is detected, it will search for
Cilium pods. The default label being k8s-app=cilium, but this and the
namespace can be changed via k8s-namespace and k8s-label respectively.

If you want to capture the archive from a Kubernetes pod, then the process is a
bit different

First we need to get the Cilium pod
$ kubectl get pods --namespace kube-system
 NAME READY STATUS RESTARTS AGE
 cilium-kg8lv 1/1 Running 0 13m
 kube-addon-manager-minikube 1/1 Running 0 1h
 kube-dns-6fc954457d-sf2nk 3/3 Running 0 1h
 kubernetes-dashboard-6xvc7 1/1 Running 0 1h

Run the bugtool from this pod
$ kubectl -n kube-system exec cilium-kg8lv cilium-bugtool
 [...]

Copy the archive from the pod
$ kubectl cp kube-system/cilium-kg8lv:/tmp/cilium-bugtool-20180411-155146.166+0000-UTC-266836983.tar /tmp/cilium-bugtool-20180411-155146.166+0000-UTC-266836983.tar
 [...]

Note

Please check the archive for sensitive information and strip it
away before sharing it with us.

Below is an approximate list of the kind of information in the archive.

	Cilium status

	Cilium version

	Kernel configuration

	Resolve configuration

	Cilium endpoint state

	Cilium logs

	Docker logs

	dmesg

	ethtool

	ip a

	ip link

	ip r

	iptables-save

	kubectl -n kube-system get pods

	kubectl get pods,svc for all namespaces

	uname

	uptime

	cilium bpf * list

	cilium endpoint get for each endpoint

	cilium endpoint list

	hostname

	cilium policy get

	cilium service list

	…

Debugging information

If you are not running Kubernetes, you can use the cilium debuginfo command
to retrieve useful debugging information. If you are running Kubernetes, this
command is automatically run as part of the system dump.

cilium debuginfo can print useful output from the Cilium API. The output
format is in Markdown format so this can be used when reporting a bug on the
issue tracker [https://github.com/cilium/cilium/issues]. Running without arguments will print to standard output, but
you can also redirect to a file like

$ cilium debuginfo -f debuginfo.md

Note

Please check the debuginfo file for sensitive information and strip it
away before sharing it with us.

Slack Assistance

The Cilium slack community is helpful first point of assistance to get help
troubleshooting a problem or to discuss options on how to address a problem.

The slack community is open to everyone. You can request an invite email by
visiting Slack [https://cilium.herokuapp.com/].

Report an issue via GitHub

If you believe to have found an issue in Cilium, please report a GitHub issue [https://github.com/cilium/cilium/issues] and make sure to attach a system
dump as described above to ensure that developers have the best chance to
reproduce the issue.

Special Interest Groups

All SIGs

The following is a list of special interest groups (SIG) that are meeting on a
regular interval. See the respective slack channel for exact meeting cadence
and meeting links.

	SIG

	Meeting

	Slack

	Description

	Datapath

	Wednesdays, 08:00 PT

	#sig-datapath

	Owner of all eBPF- and Linux-kernel-related datapath code.

	Documentation

	None

	#sig-docs

	All documentation related discussions

	Envoy

	Every 2 weeks

	#sig-envoy

	Envoy, Istio and maintenance of all L7 protocol parsers.

	Policy

	Every Wed, 9:30 PT (Policy-Zoom [https://zoom.us/j/878657504])

	#sig-policy

	All topics related to policy. The SIG is responsible for all security relevant APIs and the enforcement logic.

	Release Management

	None

	#launchpad

	Responsible for the release management and backport process.

How to create a SIG

	Open a new GitHub issue [https://github.com/cilium/cilium/issues]

	Specify the title “SIG-Request: <Name>”

	Provide a description

	Find two Cilium committers to support the SIG.

	Ask on #development to get the Slack channel and Zoom meeting created

	Submit a PR to update the documentation to get your new SIG listed

Slack

The Cilium community is maintaining an active Slack channel. Click here [https://cilium.herokuapp.com] to request an invite.

Slack channels

	Name

	Purpose

	#development

	Development discussions

	#ebpf

	eBPF-specific questions

	#general

	General user discussions & questions

	#git

	GitHub notifications

	#kubernetes

	Kubernetes specific questions

	#sig-*

	SIG specific discussions

	#testing

	CI and testing related discussions

Developer / Contributor Guide

We’re happy you’re interested in contributing to the Cilium project.

This guide will help you make sure you have an environment capable of testing
changes to the Cilium source code, and that you understand the workflow of getting
these changes reviewed and merged upstream.

Setting up the development environment

Requirements

You need to have the following tools available in order to effectively
contribute to Cilium:

	Dependency

	Version / Commit ID

	Download Command

	git

	latest

	N/A (OS-specific)

	glibc-devel (32-bit)

	latest

	N/A (OS-specific)

	go [https://golang.org/dl/]

	1.12.17

	N/A (OS-specific)

	dep [https://github.com/golang/dep/]

	>= v0.4.1

	curl https://raw.githubusercontent.com/golang/dep/master/install.sh | sh

	go-bindata [https://github.com/cilium/go-bindata]

	a0ff2567cfb

	go get -u github.com/cilium/go-bindata/...

	ginkgo [https://github.com/onsi/ginkgo]

	>= 1.4.0

	go get -u github.com/onsi/ginkgo/ginkgo

	gomega [https://github.com/onsi/gomega]

	>= 1.2.0

	go get -u github.com/onsi/gomega

	ineffassign [https://github.com/gordonklaus/ineffassign]

	>= 1003c8b

	go get -u github.com/gordonklaus/ineffassign

	Docker [https://docs.docker.com/engine/installation/]

	OS-Dependent

	N/A (OS-specific)

	Docker-Compose [https://docs.docker.com/compose/install/]

	OS-Dependent

	N/A (OS-specific)

To run Cilium locally on VMs, you need:

	Dependency

	Version / Commit ID

	Download Command

	Vagrant [https://www.vagrantup.com/downloads.html]

	>= 2.0

	Vagrant Install Instructions [https://www.vagrantup.com/docs/installation/]

	VirtualBox [https://www.virtualbox.org/wiki/Downloads] (if not using libvirt)

	>= 5.2

	N/A (OS-specific)

Finally, in order to build the documentation, you should have Sphinx installed:

$ sudo pip install sphinx

You should start with the Getting Started Guides, which walks you through the set-up, such
as installing Vagrant, getting the Cilium sources, and going through some
Cilium basics.

Vagrant Setup

While the Getting Started Guides uses a Vagrantfile tuned for the basic walk through, the
setup for the Vagrantfile in the root of the Cilium tree depends on a number of
environment variables and network setup that are managed via
contrib/vagrant/start.sh.

Using the provided Vagrantfile

To bring up a Vagrant VM with Cilium
plus dependencies installed, run:

$ contrib/vagrant/start.sh

This will create and run a vagrant VM based on the base box
cilium/ubuntu. The box is currently available for the
following providers:

	virtualbox

Options

The following environment variables can be set to customize the VMs
brought up by vagrant:

	NWORKERS=n: Number of child nodes you want to start with the master,
default 0.

	RELOAD=1: Issue a vagrant reload instead of vagrant up, useful
to resume halted VMs.

	NFS=1: Use NFS for vagrant shared directories instead of rsync.

	K8S=1: Build & install kubernetes on the nodes. k8s1 is the master
node, which contains both master components: etcd, kube-controller-manager,
kube-scheduler, kube-apiserver, and node components: kubelet,
kube-proxy, kubectl and Cilium. When used in combination with NWORKERS=1 a
second node is created, where k8s2 will be a kubernetes node, which
contains: kubelet, kube-proxy, kubectl and cilium.

	IPV4=1: Run Cilium with IPv4 enabled.

	RUNTIME=x: Sets up the container runtime to be used inside a kubernetes
cluster. Valid options are: docker, containerd and crio. If not
set, it defaults to docker.

	VAGRANT_DEFAULT_PROVIDER={virtualbox \| libvirt \| ...}

	VM_SET_PROXY=https://127.0.0.1:80/ Sets up VM’s https_proxy.

If you want to start the VM with cilium enabled with containerd, with
kubernetes installed and plus a worker, run:

$ RUNTIME=containerd K8S=1 NWORKERS=1 contrib/vagrant/start.sh

If you want to get VM status, run:

$ RUNTIME=containerd K8S=1 NWORKERS=1 vagrant status

If you want to connect to the Kubernetes cluster running inside the developer VM via kubectl from your host machine, set KUBECONFIG environment variable to include new kubeconfig file:

$ export KUBECONFIG=$KUBECONFIG:$GOPATH/src/github.com/cilium/cilium/vagrant.kubeconfig

and add 127.0.0.1 k8s1 to your hosts file.

If you have any issue with the provided vagrant box
cilium/ubuntu or need a different box format, you may
build the box yourself using the packer scripts [https://github.com/cilium/packer-ci-build]

Manual Installation

Alternatively you can import the vagrant box cilium/ubuntu
directly and manually install Cilium:

$ vagrant init cilium/ubuntu
$ vagrant up
$ vagrant ssh [...]
$ cd go/src/github.com/cilium/cilium/
$ make
$ sudo make install
$ sudo mkdir -p /etc/sysconfig/
$ sudo cp contrib/systemd/cilium.service /etc/systemd/system/
$ sudo cp contrib/systemd/cilium /etc/sysconfig/cilium
$ sudo usermod -a -G cilium vagrant
$ sudo systemctl enable cilium
$ sudo systemctl restart cilium

Notes

Your Cilium tree is mapped to the VM so that you do not need to keep manually
copying files between your host and the VM. Folders are by default synced
automatically using VirtualBox Shared Folders [https://www.virtualbox.org/manual/ch04.html#sharedfolders] .
You can also use NFS to access your Cilium tree from the VM by
setting the environment variable NFS (mentioned above) before running the
startup script (export NFS=1). Note that your host firewall must have a variety
of ports open. The Vagrantfile will inform you of the configuration of these addresses
and ports to enable NFS.

Note

OSX file system is by default case insensitive, which can confuse
git. At the writing of this Cilium repo has no file names that
would be considered referring to the same file on a case
insensitive file system. Regardless, it may be useful to create a
disk image with a case sensitive file system for holding your git
repos.

Note

VirtualBox for OSX currently (version 5.1.22) always reports
host-only networks’ prefix length as 64. Cilium needs this prefix
to be 16, and the startup script will check for this. This check
always fails when using VirtualBox on OSX, but it is safe to let
the startup script to reset the prefix length to 16.

If for some reason, running of the provisioning script fails, you should bring the VM down before trying again:

$ vagrant halt

Packer-CI-Build

As part of Cilium development, we use a custom base box with a bunch of
pre-installed libraries and tools that we need to enhance our daily workflow.
That base box is built with Packer [https://www.packer.io/] and it is hosted
in the packer-ci-build [https://jenkins.cilium.io/job/Vagrant-Master-Boxes-Packer-Build/] GitHub
repository.

New versions of this box can be created via Jenkins Packer Build [https://jenkins.cilium.io/job/Vagrant-Master-Boxes-Packer-Build/], where
new builds of the image will be pushed to Vagrant Cloud [https://app.vagrantup.com/cilium] . The version of the image corresponds to
the BUILD_ID [https://qa.nuxeo.org/jenkins/pipeline-syntax/globals#env]
environment variable in the Jenkins job. That version ID will be used in Cilium
Vagrantfiles [https://github.com/cilium/cilium/blob/master/test/Vagrantfile#L10].

Changes to this image are made via contributions to the packer-ci-build
repository. Authorized GitHub users can trigger builds with a GitHub comment on
the PR containing the trigger phrase build-me-please. In case that a new box
needs to be rebased with a different branch than master, authorized developers
can run the build with custom parameters. To use a different Cilium branch in
the job [https://jenkins.cilium.io/job/Vagrant-Master-Boxes-Packer-Build/] go
to Build with parameters and a base branch can be set as the user needs.

This box will need to be updated when a new developer needs a new dependency
that is not installed in the current version of the box, or if a dependency that
is cached within the box becomes stale.

Make sure that you update vagrant box versions in test Vagrantfile [https://github.com/cilium/cilium/blob/master/test/Vagrantfile]
and root Vagrantfile [https://github.com/cilium/cilium/blob/master/Vagrantfile] after new box is built and tested.

Development process

Local Development in Vagrant Box

See Setting up the development environment for information on how to setup the development environment.

When the development VM is provisioned, it builds and installs Cilium. After
the initial build and install you can do further building and testing
incrementally inside the VM. vagrant ssh takes you to the Cilium source
tree directory (/home/vagrant/go/src/github.com/cilium/cilium) by default,
and the following commands assume that you are working within that directory.

Build Cilium

Assuming you have synced (rsync) the source tree after you have made changes,
or the tree is automatically in sync via NFS or guest additions folder sharing,
you can issue a build as follows:

$ make

Install to dev environment

After a successful build and test you can re-install Cilium by:

$ sudo -E make install

Restart Cilium service

To run the newly installed version of Cilium, restart the service:

$ sudo systemctl restart cilium

You can verify the service and cilium-agent status by the following
commands, respectively:

$ sudo systemctl status cilium
$ cilium status

Making Changes

	Create a topic branch: git checkout -b myBranch master

	Make the changes you want

	Separate the changes into logical commits.

	Describe the changes in the commit messages. Focus on answering the
question why the change is required and document anything that might be
unexpected.

	If any description is required to understand your code changes, then
those instructions should be code comments instead of statements in the
commit description.

	Make sure your changes meet the following criteria:

	New code is covered by Unit Testing.

	End to end integration / runtime tests have been extended or added. If
not required, mention in the commit message what existing test covers the
new code.

	Follow-up commits are squashed together nicely. Commits should separate
logical chunks of code and not represent a chronological list of changes.

	Run git diff --check to catch obvious white space violations

	Run make to build your changes. This will also run go fmt and error out
on any golang formatting errors.

	See Unit Testing on how to run unit tests.

	See End-To-End Testing Framework for information how to run the end to end integration
tests

Unit Testing

Cilium uses the standard go test [https://golang.org/pkg/testing/] framework
in combination with gocheck [http://labix.org/gocheck] for richer testing
functionality.

Prerequisites

Some tests interact with the kvstore and depend on a local kvstore instances of
both etcd and consul. To start the local instances, run:

$ make start-kvstores

Running all tests

To run unit tests over the entire repository, run the following command in the
project root directory:

$ make unit-tests

Testing individual packages

It is possible to test individual packages by invoking go test directly.
You can then cd into the package subject to testing and invoke go test:

$ cd pkg/kvstore
$ go test

If you need more verbose output, you can pass in the -check.v and
-check.vv arguments:

$ cd pkg/kvstore
$ go test -check.v -check.vv

If the unit tests have some prerequisites like Prerequisites,
you can use the following command to automatically set up the prerequisites,
run the unit tests and tear down the prerequisites:

$ make unit-tests TESTPKGS=github.com/cilium/cilium/pkg/kvstore

Running individual tests

Due to the use of gocheck, the standard go test -run will not work,
instead, the -check.f argument has to be specified:

$ go test -check.f TestParallelAllocation

Automatically run unit tests on code changes

The script contrib/shell/test.sh contains some helpful bash functions to
improve the feedback cycle between writing tests and seeing their results. If
you’re writing unit tests in a particular package, the watchtest function
will watch for changes in a directory and run the unit tests for that package
any time the files change. For example, if writing unit tests in pkg/policy,
run this in a terminal next to your editor:

$. contrib/shell/test.sh
$ watchtest pkg/policy

This shell script depends on the inotify-tools package on Linux.

Add/update a golang dependency

Once you have downloaded dep make sure you have version >= 0.4.1

$ dep version
dep:
 version : v0.4.1
 build date : 2018-01-24
 git hash : 37d9ea0a
 go version : go1.9.1
 go compiler : gc
 platform : linux/amd64

After that, you can edit the Gopkg.toml file, add the library that you want
to add. Lets assume we want to add github.com/containernetworking/cni
version v0.5.2:

[[constraint]]
 name = "github.com/containernetworking/cni"
 revision = "v0.5.2"

Once you add the libraries that you need you can save the file and run

$ dep ensure -v

For a first run, it can take a while as it will download all dependencies to
your local cache but the remaining runs will be faster.

Debugging

Datapath code

The tool cilium monitor can also be used to retrieve debugging information
from the BPF based datapath. Debugging messages are sent if either the
cilium-agent itself or the respective endpoint is in debug mode. The debug
mode of the agent can be enabled by starting cilium-agent with the option
--debug enabled or by running cilium config debug=true for an already
running agent. Debugging of an individual endpoint can be enabled by running
cilium endpoint config ID debug=true

$ cilium endpoint config 3978 debug=true
Endpoint 3978 configuration updated successfully
$ cilium monitor -v --hex
Listening for events on 2 CPUs with 64x4096 of shared memory
Press Ctrl-C to quit
--
CPU 00: MARK 0x1c56d86c FROM 3978 DEBUG: 70 bytes Incoming packet from container ifindex 85
00000000 33 33 00 00 00 02 ae 45 75 73 11 04 86 dd 60 00 |33.....Eus....`.|
00000010 00 00 00 10 3a ff fe 80 00 00 00 00 00 00 ac 45 |....:..........E|
00000020 75 ff fe 73 11 04 ff 02 00 00 00 00 00 00 00 00 |u..s............|
00000030 00 00 00 00 00 02 85 00 15 b4 00 00 00 00 01 01 |................|
00000040 ae 45 75 73 11 04 00 00 00 00 00 00 |.Eus........|
CPU 00: MARK 0x1c56d86c FROM 3978 DEBUG: Handling ICMPv6 type=133
--
CPU 00: MARK 0x1c56d86c FROM 3978 Packet dropped 131 (Invalid destination mac) 70 bytes ifindex=0 284->0
00000000 33 33 00 00 00 02 ae 45 75 73 11 04 86 dd 60 00 |33.....Eus....`.|
00000010 00 00 00 10 3a ff fe 80 00 00 00 00 00 00 ac 45 |....:..........E|
00000020 75 ff fe 73 11 04 ff 02 00 00 00 00 00 00 00 00 |u..s............|
00000030 00 00 00 00 00 02 85 00 15 b4 00 00 00 00 01 01 |................|
00000040 00 00 00 00 |....|
--
CPU 00: MARK 0x7dc2b704 FROM 3978 DEBUG: 86 bytes Incoming packet from container ifindex 85
00000000 33 33 ff 00 8a d6 ae 45 75 73 11 04 86 dd 60 00 |33.....Eus....`.|
00000010 00 00 00 20 3a ff fe 80 00 00 00 00 00 00 ac 45 |... :..........E|
00000020 75 ff fe 73 11 04 ff 02 00 00 00 00 00 00 00 00 |u..s............|
00000030 00 01 ff 00 8a d6 87 00 20 40 00 00 00 00 fd 02 |........ @......|
00000040 00 00 00 00 00 00 c0 a8 21 0b 00 00 8a d6 01 01 |........!.......|
00000050 ae 45 75 73 11 04 00 00 00 00 00 00 |.Eus........|
CPU 00: MARK 0x7dc2b704 FROM 3978 DEBUG: Handling ICMPv6 type=135
CPU 00: MARK 0x7dc2b704 FROM 3978 DEBUG: ICMPv6 neighbour soliciation for address b21a8c0:d68a0000

One of the most common issues when developing datapath code is that the BPF
code cannot be loaded into the kernel. This frequently manifests as the
endpoints appearing in the “not-ready” state and never switching out of it:

$ cilium endpoint list
ENDPOINT POLICY IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS
 ENFORCEMENT
48896 Disabled 266 container:id.server fd02::c0a8:210b:0:bf00 10.11.13.37 not-ready
60670 Disabled 267 container:id.client fd02::c0a8:210b:0:ecfe 10.11.167.158 not-ready

Running cilium endpoint get for one of the endpoints will provide a
description of known state about it, which includes BPF verification logs.

The files under /var/run/cilium/state provide context about how the BPF
datapath is managed and set up. The .log files will describe the BPF
requirements and features that Cilium detected and used to generate the BPF
programs. The .h files describe specific configurations used for BPF program
compilation. The numbered directories describe endpoint-specific state,
including header configuration files and BPF binaries.

for log in /var/run/cilium/state/*.log; do echo "cat $log"; cat $log; done
cat /var/run/cilium/state/bpf_features.log
BPF/probes: CONFIG_CGROUP_BPF=y is not in kernel configuration
BPF/probes: CONFIG_LWTUNNEL_BPF=y is not in kernel configuration
HAVE_LPM_MAP_TYPE: Your kernel doesn't support LPM trie maps for BPF, thus disabling CIDR policies. Recommendation is to run 4.11+ kernels.
HAVE_LRU_MAP_TYPE: Your kernel doesn't support LRU maps for BPF, thus switching back to using hash table for the cilium connection tracker. Recommendation is to run 4.10+ kernels.

Current BPF map state for particular programs is held under /sys/fs/bpf/,
and the bpf-map [https://github.com/cilium/bpf-map] utility can be useful
for debugging what is going on inside them, for example:

ls /sys/fs/bpf/tc/globals/
cilium_calls_15124 cilium_calls_48896 cilium_ct4_global cilium_lb4_rr_seq cilium_lb6_services cilium_policy_25729 cilium_policy_60670 cilium_proxy6
cilium_calls_25729 cilium_calls_60670 cilium_ct6_global cilium_lb4_services cilium_lxc cilium_policy_3978 cilium_policy_reserved_1 cilium_reserved_policy
cilium_calls_3978 cilium_calls_netdev_ns_1 cilium_events cilium_lb6_reverse_nat cilium_policy cilium_policy_4314 cilium_policy_reserved_2 cilium_tunnel_map
cilium_calls_4314 cilium_calls_overlay_2 cilium_lb4_reverse_nat cilium_lb6_rr_seq cilium_policy_15124 cilium_policy_48896 cilium_proxy4
bpf-map info /sys/fs/bpf/tc/globals/cilium_policy_15124
Type: Hash
Key size: 8
Value size: 24
Max entries: 1024
Flags: 0x0
bpf-map dump /sys/fs/bpf/tc/globals/cilium_policy_15124
Key:
00000000 6a 01 00 00 82 23 06 00 |j....#..|
Value:
00000000 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000010 00 00 00 00 00 00 00 00 |........|

End-To-End Testing Framework

Introduction

Cilium uses Ginkgo [https://onsi.github.io/ginkgo] as a testing framework for
writing end-to-end tests which test Cilium all the way from the API level (e.g.
importing policies, CLI) to the datapath (i.e, whether policy that is imported
is enforced accordingly in the datapath). The tests in the test directory
are built on top of Ginkgo. Ginkgo provides a rich framework for developing
tests alongside the benefits of Golang (compilation-time checks, types, etc.).
To get accustomed to the basics of Ginkgo, we recommend reading the Ginkgo
Getting-Started Guide [https://onsi.github.io/ginkgo/#getting-started-writing-your-first-test] , as
well as running example tests [https://github.com/onsi/composition-ginkgo-example] to get a feel for the
Ginkgo workflow.

These test scripts will invoke vagrant to create virtual machine(s) to
run the tests. The tests make heavy use of the Ginkgo focus [https://onsi.github.io/ginkgo/#focused-specs] concept to
determine which VMs are necessary to run particular tests. All test names
must begin with one of the following prefixes:

	Runtime: Test cilium in a runtime environment running on a single node.

	K8s: Create a small multi-node kubernetes environment for testing
features beyond a single host, and for testing kubernetes-specific features.

	Nightly: sets up a multinode Kubernetes cluster to run scale, performance, and chaos testing for Cilium.

Running End-To-End Tests

Running All Tests

Running all of the Ginkgo tests may take an hour or longer. To run all the
ginkgo tests, invoke the make command as follows from the root of the cilium
repository:

$ sudo make -C test/

The first time that this is invoked, the testsuite will pull the
testing VMs [https://app.vagrantup.com/cilium/boxes/ginkgo] and provision
Cilium into them. This may take several minutes, depending on your internet
connection speed. Subsequent runs of the test will reuse the image.

Running Runtime Tests

To run all of the runtime tests, execute the following command from the test directory:

ginkgo --focus="Runtime*" -noColor

Ginkgo searches for all tests in all subdirectories that are “named” beginning
with the string “Runtime” and contain any characters after it. For instance,
here is an example showing what tests will be ran using Ginkgo’s dryRun option:

$ ginkgo --focus="Runtime*" -noColor -v -dryRun
Running Suite: runtime
======================
Random Seed: 1516125117
Will run 42 of 164 specs
................
RuntimePolicyEnforcement Policy Enforcement Always
 Always to Never with policy
 /Users/ianvernon/go/src/github.com/cilium/cilium/test/runtime/Policies.go:258
•

RuntimePolicyEnforcement Policy Enforcement Always
 Always to Never without policy
 /Users/ianvernon/go/src/github.com/cilium/cilium/test/runtime/Policies.go:293
•

RuntimePolicyEnforcement Policy Enforcement Never
 Container creation
 /Users/ianvernon/go/src/github.com/cilium/cilium/test/runtime/Policies.go:332
•

RuntimePolicyEnforcement Policy Enforcement Never
 Never to default with policy
 /Users/ianvernon/go/src/github.com/cilium/cilium/test/runtime/Policies.go:349
.................
Ran 42 of 164 Specs in 0.002 seconds
SUCCESS! -- 0 Passed | 0 Failed | 0 Pending | 122 Skipped PASS

Ginkgo ran 1 suite in 1.830262168s
Test Suite Passed

The output has been truncated. For more information about this functionality,
consult the aforementioned Ginkgo documentation.

Running Kubernetes Tests

To run all of the Kubernetes tests, run the following command from the test directory:

ginkgo --focus="K8s*" -noColor

Similar to the Runtime test suite, Ginkgo searches for all tests in all
subdirectories that are “named” beginning with the string “K8s” and
contain any characters after it.

The Kubernetes tests support the following Kubernetes versions:

	1.8

	1.9

	1.10

	1.11

	1.12

	1.13

	1.14

	1.15

	1.16

By default, the Vagrant VMs are provisioned with Kubernetes 1.13. To run with any other
supported version of Kubernetes, run the test suite with the following format:

K8S_VERSION=<version> ginkgo --focus="K8s*" -noColor

Note

When provisioning VMs with the net-next kernel (NETNEXT=true) on
VirtualBox which version does not match a version of the VM image
VirtualBox Guest Additions, Vagrant will install a new version of
the Additions with mount.vboxsf. The latter is not compatible with
vboxsf.ko shipped within the VM image, and thus syncing of shared
folders will not work.

To avoid this, one can prevent Vagrant from installing the Additions by
putting the following into $HOME/.vagrant.d/Vagrantfile:

Vagrant.configure('2') do |config|
 if Vagrant.has_plugin?("vagrant-vbguest") then
 config.vbguest.auto_update = false
 end

 config.vm.provider :virtualbox do |vbox|
 vbox.check_guest_additions = false
 end
end

Running Nightly Tests

To run all of the Nightly tests, run the following command from the test directory:

ginkgo --focus="Nightly*" -noColor

Similar to the other test suites, Ginkgo searches for all tests in all
subdirectories that are “named” beginning with the string “Nightly” and contain
any characters after it. The default version of running Nightly test are 1.8,
but can be changed using the environment variable K8S_VERSION.

Available CLI Options

For more advanced workflows, check the list of available custom options for the Cilium
framework in the test/ directory and interact with ginkgo directly:

$ cd test/
$ ginkgo . -- --help | grep -A 1 cilium
 -cilium.SSHConfig string
 Specify a custom command to fetch SSH configuration (eg: 'vagrant ssh-config')
 -cilium.holdEnvironment
 On failure, hold the environment in its current state
 -cilium.provision
 Provision Vagrant boxes and Cilium before running test (default true)
 -cilium.showCommands
 Output which commands are ran to stdout
 -cilium.testScope string
 Specifies scope of test to be ran (k8s, Nightly, runtime)
$ ginkgo --focus "Policies*" -- --cilium.provision=false

For more information about other built-in options to Ginkgo, consult the
Ginkgo documentation [https://onsi.github.io/ginkgo/].

Running Specific Tests Within a Test Suite

If you want to run one specified test, there are a few options:

	By modifying code: add the prefix “FIt” on the test you want to run; this marks the test as focused. Ginkgo will skip other tests and will only run the “focused” test. For more information, consult the Focused Specs [https://onsi.github.io/ginkgo/#focused-specs] documentation from Ginkgo.

It("Example test", func(){
 Expect(true).Should(BeTrue())
})

FIt("Example focused test", func(){
 Expect(true).Should(BeTrue())
})

	From the command line: specify a more granular focus if you want to focus on, say, L7 tests:

ginkgo --focus "Run*" --focus "L7 "

This will focus on tests prefixed with “Run*”, and within that focus, run any
test that starts with “L7”.

Test Reports

The Cilium Ginkgo framework formulates JUnit reports for each test. The
following files currently are generated depending upon the test suite that is ran:

	runtime.xml

	K8s.xml

Best Practices for Writing Tests

	Provide informative output to console during a test using the By construct [https://onsi.github.io/ginkgo/#documenting-complex-its-by]. This helps with debugging and gives those who did not write the test a good idea of what is going on. The lower the barrier of entry is for understanding tests, the better our tests will be!

	Leave the testing environment in the same state that it was in when the test started by deleting resources, resetting configuration, etc.

	Gather logs in the case that a test fails. If a test fails while running on Jenkins, a postmortem needs to be done to analyze why. So, dumping logs to a location where Jenkins can pick them up is of the highest imperative. Use the following code in an AfterFailed method:

AfterFailed(func() {
 vm.ReportFailed()
})

Ginkgo Extensions

In Cilium, some Ginkgo features are extended to cover some uses cases that are
useful for testing Cilium.

BeforeAll

This function will run before all BeforeEach [https://onsi.github.io/ginkgo/#extracting-common-setup-beforeeach] within a
Describe or Context [https://onsi.github.io/ginkgo/#organizing-specs-with-containers-describe-and-context].
This method is an equivalent to SetUp or initialize functions in common
unit test frameworks.

AfterAll

This method will run after all AfterEach [https://onsi.github.io/ginkgo/#extracting-common-setup-beforeeach] functions
defined in a Describe or Context [https://onsi.github.io/ginkgo/#organizing-specs-with-containers-describe-and-context].
This method is used for tearing down objects created which are used by all
Its within the given Context or Describe. It is ran after all Its
have ran, this method is a equivalent to tearDown or finalize methods in
common unit test frameworks.

A good use case for using AfterAll method is to remove containers or pods
that are needed for multiple Its in the given Context or Describe.

JustAfterEach

This method will run just after each test and before AfterFailed and
AfterEach. The main reason of this method is to to perform some assertions
for a group of tests. A good example of using a global JustAfterEach
function is for deadlock detection, which checks the Cilium logs for deadlocks
that may have occurred in the duration of the tests.

AfterFailed

This method will run before all AfterEach and after JustAfterEach. This
function is only called when the test failed.This construct is used to gather
logs, the status of Cilium, etc, which provide data for analysis when tests
fail.

Example Test Layout

Here is an example layout of how a test may be written with the aforementioned
constructs:

Test description diagram:

Describe
 BeforeAll(A)
 AfterAll(A)
 AfterFailed(A)
 AfterEach(A)
 JustAfterEach(A)
 TESTA1
 TESTA2
 TESTA3
 Context
 BeforeAll(B)
 AfterAll(B)
 AfterFailed(B)
 AfterEach(B)
 JustAfterEach(B)
 TESTB1
 TESTB2
 TESTB3

Test execution flow:

Describe
 BeforeAll
 TESTA1; JustAfterEach(A), AfterFailed(A), AfterEach(A)
 TESTA2; JustAfterEach(A), AfterFailed(A), AfterEach(A)
 TESTA3; JustAfterEach(A), AfterFailed(A), AfterEach(A)
 Context
 BeforeAll(B)
 TESTB1:
 JustAfterEach(B); JustAfterEach(A)
 AfterFailed(B); AfterFailed(A);
 AfterEach(B) ; AfterEach(A);
 TESTB2:
 JustAfterEach(B); JustAfterEach(A)
 AfterFailed(B); AfterFailed(A);
 AfterEach(B) ; AfterEach(A);
 TESTB3:
 JustAfterEach(B); JustAfterEach(A)
 AfterFailed(B); AfterFailed(A);
 AfterEach(B) ; AfterEach(A);
 AfterAll(B)
 AfterAll(A)

Debugging:

Ginkgo provides to us different ways of debugging. In case that you want to see
all the logs messages in the console you can run the test in verbose mode using
the option -v:

ginkgo --focus "Runtime*" -v

In case that the verbose mode is not enough, you can retrieve all run commands
and their output in the report directory (./test/test_results). Each test
creates a new folder, which contains a file called log where all information is
saved, in case of a failing test an exhaustive data will be added.

$ head test/test_results/RuntimeKafkaKafkaPolicyIngress/logs
level=info msg=Starting testName=RuntimeKafka
level=info msg="Vagrant: running command \"vagrant ssh-config runtime\""
cmd: "sudo cilium status" exitCode: 0
 KVStore: Ok Consul: 172.17.0.3:8300
ContainerRuntime: Ok
Kubernetes: Disabled
Kubernetes APIs: [""]
Cilium: Ok OK
NodeMonitor: Disabled
Allocated IPv4 addresses:

Running with delve

Delve [https://github.com/derekparker/delve] is a debugging tool for Go
applications. If you want to run your test with delve, you should add a new
breakpoint using
runtime.BreakPoint() [https://golang.org/pkg/runtime/#Breakpoint] in the
code, and run ginkgo using dlv.

Example how to run ginkgo using dlv:

dlv test . -- --ginkgo.focus="Runtime" -ginkgo.v=true --cilium.provision=false

Running End-To-End Tests In Other Environments

If you want to run tests in a different VM, you can use --cilium.SSHConfig to
provide the SSH configuration of the endpoint on which tests will be ran. The
tests presume the following on the remote instance:

	Cilium source code is located in the directory /home/vagrant/go/src/github.com/cilium/cilium/.

	Cilium is installed and running.

The ssh connection needs to be defined as a ssh-config file and need to have
the following targets:

	runtime: To run runtime tests

	k8s{1..2}-${K8S_VERSION}: to run Kubernetes tests. These instances must have
Kubernetes installed and running as a prerequisite for running tests.

An example ssh-config can be the following:

Host runtime
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /home/eloy/.go/src/github.com/cilium/cilium/test/.vagrant/machines/runtime/virtualbox/private_key
 IdentitiesOnly yes
 LogLevel FATAL

To run this you can use the following command:

ginkgo -v -- --cilium.provision=false --cilium.SSHConfig="cat ssh-config"

VMs for Testing

The VMs used for testing are defined in test/Vagrantfile. There are a variety of
configuration options that can be passed as environment variables:

	ENV variable

	Default Value

	Options

	Description

	K8S_NODES

	2

	0..100

	Number of Kubernetes nodes in the cluster

	NFS

	0

	1

	If Cilium folder needs to be shared using NFS

	IPv6

	0

	0-1

	If 1 the Kubernetes cluster will use IPv6

	CONTAINER_RUNTIME

	docker

	containerd

	To set the default container runtime in the Kubernetes cluster

	K8S_VERSION

	1.13

	1.**

	Kubernetes version to install

	SERVER_BOX

	cilium/ubuntu-dev

	
	

	Vagrantcloud base image

	CPU

	2

	0..100

	Number of CPUs that need to have the VM

	MEMORY

	4096

	d+

	RAM size in Megabytes

Further Assistance

Have a question about how the tests work or want to chat more about improving the
testing infrastructure for Cilium? Hop on over to the
testing [https://cilium.slack.com/messages/C7PE7V806] channel on Slack.

How to contribute

Getting Started

	Make sure you have a GitHub account [https://github.com/signup/free]

	Clone the cilium repository

go get -d github.com/cilium/cilium
cd $GOPATH/src/github.com/cilium/cilium

	Set up your Setting up the development environment

	Check the GitHub issues for good tasks to get started [https://github.com/cilium/cilium/issues?q=is%3Aopen+is%3Aissue+label%3Agood-first-issue].

Submitting a pull request

Contributions must be submitted in the form of pull requests against the github
repository at: https://github.com/cilium/cilium

	Fork the Cilium repository to your own personal GitHub space or request
access to a Cilium developer account on Slack

	Push your changes to the topic branch in your fork of the repository.

	Submit a pull request on https://github.com/cilium/cilium.

Before hitting the submit button, please make sure that the following
requirements have been met:

	Each commit compiles and is functional on its own to allow for bisecting of
commits.

	All code is covered by unit and/or runtime tests where feasible.

	All changes have been tested and checked for regressions by running the
existing testsuite against your changes. See the End-To-End Testing Framework section
for additional details.

	All commits contain a well written commit description including a title,
description and a Fixes: #XXX line if the commit addresses a particular
GitHub issue. Note that the GitHub issue will be automatically closed when
the commit is merged.

apipanic: Log stack at debug level

Previously, it was difficult to debug issues when the API panicked
because only a single line like the following was printed:

level=warning msg="Cilium API handler panicked" client=@ method=GET
panic_message="write unix /var/run/cilium/cilium.sock->@: write: broken
pipe"

This patch logs the stack at this point at debug level so that it can at
least be determined in developer environments.

Fixes: #4191

Signed-off-by: Joe Stringer <joe@covalent.io>

	If any of the commits fixes a particular commit already in the tree, that
commit is referenced in the commit message of the bugfix. This ensures that
whoever performs a backport will pull in all required fixes:

daemon: use endpoint RLock in HandleEndpoint

Fixes: a804c7c7dd9a ("daemon: wait for endpoint to be in ready state if specified via EndpointChangeRequest")

Signed-off-by: André Martins <andre@cilium.io>

	All commits are signed off. See the section Developer’s Certificate of Origin.

	Pick the appropriate milestone for which this PR is being targeted to, e.g.
1.1, 1.2. This is in particular important in the time frame between
the feature freeze and final release date.

	Pick the right release-note label

	Labels

	When to set

	release-note/bug

	This is a non-trivial bugfix

	release-note/major

	This is a major feature addition, e.g. Add MongoDB support

	release-note/minor

	This is a minor feature addition, e.g. Refactor endpoint package

	Verify the release note text. If not explicitly changed, the title of the PR
will be used for the release notes. If you want to change this, you can add
a special section to the description of the PR.

```release-note
This is a release note text
```


Note

If multiple lines are provided, then the first line serves as the high
level bullet point item and any additional line will be added as a sub
item to the first line.

	Pick the right labels for your PR:

	Labels

	When to set

	kind/bug

	This is a bugfix worth mentioning in the release notes

	kind/enhancement

	This is an enhancement/feature

	priority/release-blocker

	This PR should block the current release

	area/*

	Code area this PR covers

	needs-backport/X.Y

	PR needs to be backported to these stable releases

	pending-review

	PR is immediately ready for review

	wip

	PR is still work in progress, signals reviewers to hold.

	backport/X.Y

	This is backport PR, may only be set as part of Backporting process

	upgrade-impact

	The code changes have a potential upgrade impact

Getting a pull request merged

	As you submit the pull request as described in the section Submitting a pull request.
One of the reviewers will start a CI run by replying with a comment
test-me-please as described in Triggering Pull-Request Builds With Jenkins. If you are a
core team member, you may trigger the CI run yourself.

	Hound: basic golang/lint static code analyzer. You need to make the
puppy happy.

	CI / Jenkins: Will run a series of tests:

	Unit tests

	Single node runtime tests

	Multi node Kubernetes tests

	As part of the submission, GitHub will have requested a review from the
respective code owners according to the CODEOWNERS file in the
repository.

	Address any feedback received from the reviewers

	You can push individual commits to address feedback and then rebase your
branch at the end before merging.

	Owners of the repository will automatically adjust the labels on the pull
request to track its state and progress towards merging.

	Once the PR has been reviewed and the CI tests have passed, the PR will be
merged by one of the repository owners. In case this does not happen, ping
us on Slack.

Pull request review process

Note

These instructions assume that whoever is reviewing is a member of the
Cilium GitHub organization or has the status of a contributor. This is
required to obtain the privileges to modify GitHub labels on the pull
request.

	Review overall correctness of the PR according to the rules specified in the
section Submitting a pull request.

Set the label accordingly.

	Labels

	When to set

	dont-merge/needs-sign-off

	Some commits are not signed off

	needs-rebase

	PR is outdated and needs to be rebased

	As soon as a PR has the label pending-review, review the code and
request changes as needed by using the GitHub Request Changes feature or
by using Reviewable.

	Validate that bugfixes are marked with kind/bug and validate whether the
assessment of backport requirements as requested by the submitter conforms
to the Stable releases process.

	Labels

	When to set

	needs-backport/X.Y

	PR needs to be backported to these stable releases

	If the PR is subject to backport, validate that the PR does not mix bugfix
and refactoring of code as it will heavily complicate the backport process.
Demand for the PR to be split.

	Validate the release-note/* label and check the PR title for release
note suitability. Put yourself into the perspective of a future release
notes reader with lack of context and ensure the title is precise but brief.

	Labels

	When to set

	dont-merge/needs-release-note

	Do NOT merge PR, needs a release note

	release-note/bug

	This is a non-trivial bugfix

	release-note/major

	This is a major feature addition

	release-note/minor

	This is a minor feature addition

	Check for upgrade compatibility impact and if in doubt, set the label
upgrade-impact and discuss in the Slack channel.

	Labels

	When to set

	upgrade-impact

	The code changes have a potential upgrade impact

	When everything looks OK, approve the changes.

	When all review objectives for all CODEOWNERS are met and all CI tests
have passed, you may set the ready-to-merge label to indicate that all
criteria have been met.

	Labels

	When to set

	ready-to-merge

	PR is ready to be merged

Building Container Images

Two make targets exists to build container images automatically based on the
locally checked out branch:

Developer images

DOCKER_IMAGE_TAG=jane-developer-my-fix make dev-docker-image

You can then push the image tag to the registry for development builds:

docker push cilium/cilium-dev:jane-developer-my-fix

Access to the developer builds registry is restricted but access is granted
liberally. Join the #development channel in Slack and ask for permission to
push builds.

Official release images

Anyone can build official release images using the make target below but
pushing to the official registries is restricted to Cilium maintainers. Ask in
the #launchpad Slack channels for the exact details.

DOCKER_IMAGE_TAG=v1.4.0 make docker-image

You can then push the image tag to the registry:

docker push cilium/cilium:v1.4.0

Documentation

Building

The documentation has several dependencies which can be installed using pip:

$ pip install -r Documentation/requirements.txt

Whenever making changes to Cilium documentation you should check that you did not introduce any new warnings or errors, and also check that your changes look as you intended. To do this you can build the docs:

$ make -C Documentation html

After this you can browse the updated docs as HTML starting at
Documentation_build\html\index.html.

Alternatively you can use a Docker container to build the pages:

$ make render-docs

This builds the docs in a container and builds and starts a web server with
your document changes.

Now the documentation page should be browsable on http://localhost:9080.

Update cilium-builder and cilium-runtime images

Login to quay.io with your credentials to the repository that you want to
update:

cilium-builder [https://quay.io/repository/cilium/cilium-builder?tab=builds] - contains Cilium build-time dependencies
cilium-runtime [https://quay.io/repository/cilium/cilium-runtime?tab=builds] - contains Cilium run-time dependencies

	After login, select the tab “builds” on the left menu.

[image: ../_images/cilium-quayio-tag-0.png]

	Click on the wheel.

	Enable the trigger for that build trigger.

[image: ../_images/cilium-quayio-tag-1.png]

	Confirm that you want to enable the trigger.

[image: ../_images/cilium-quayio-tag-2.png]

	After enabling the trigger, click again on the wheel.

	And click on “Run Trigger Now”.

[image: ../_images/cilium-quayio-tag-3.png]

	A new pop-up will appear and you can select the branch that contains your
changes.

	Select the branch that contains the new changes.

[image: ../_images/cilium-quayio-tag-4.png]

	After selecting your branch click on “Start Build”.

[image: ../_images/cilium-quayio-tag-5.png]

	Once the build has started you can disable the Build trigger by clicking on
the wheel.

	And click on “Disable Trigger”.

[image: ../_images/cilium-quayio-tag-6.png]

	Confirm that you want to disable the build trigger.

[image: ../_images/cilium-quayio-tag-7.png]

	Once the build is finished click under Tags (on the left menu).

	Click on the wheel and;

	Add a new tag to the image that was built.

[image: ../_images/cilium-quayio-tag-8.png]

	Write the name of the tag that you want to give for the newly built image.

	Confirm the name is correct and click on “Create Tag”.

[image: ../_images/cilium-quayio-tag-9.png]

	After the new tag was created you can delete the other tag, which is the
name of your branch. Select the tag name.

	Click in Actions.

	Click in “Delete Tags”.

[image: ../_images/cilium-quayio-tag-10.png]

	Confirm that you want to delete tag with your branch name.

[image: ../_images/cilium-quayio-tag-11.png]
You have created a new image build with a new tag. The next steps should be to
update the repository root’s Dockerfile so that it points to the new
cilium-builder or cilium-runtime image recently created.

	Update the versions of the images that are pulled into the CI VMs.

	Open a PR against the Packer-CI-Build with an update to said image versions. Once your PR is merged, a new version of the VM will be ready for consumption in the CI.

	Update the SERVER_VERSION field in test/Vagrantfile to contain the new version, which is the build number from the Jenkins Job for the VMs [https://jenkins.cilium.io/job/Vagrant-Master-Boxes-Packer-Build/]. For example, build 119 from the pipeline would be the value to set for SERVER_VERSION.

	Open a pull request with this version change in the cilium repository.

Nightly Docker image

After each successful Nightly build, a cilium/nightly [https://hub.docker.com/r/cilium/nightly/] image is pushed to dockerhub.

To use latest nightly build, please use cilium/nightly:latest tag.
Nightly images are stored on dockerhub tagged with following format: YYYYMMDD-<job number>.
Job number is added to tag for the unlikely event of two consecutive nightly builds being built on the same date.

Developer’s Certificate of Origin

To improve tracking of who did what, we’ve introduced a “sign-off”
procedure.

The sign-off is a simple line at the end of the explanation for the
commit, which certifies that you wrote it or otherwise have the right to
pass it on as open-source work. The rules are pretty simple: if you can
certify the below:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

then you just add a line saying:

Signed-off-by: Random J Developer <random@developer.example.org>

Use your real name (sorry, no pseudonyms or anonymous contributions.)

	Cilium Committer Grant/Revocation Policy
	Expectations for Developers with commit access
	Pre-requisites

	Review

	Git conventions

	Granting Commit Access

	Revoking Commit Access

	Changing the Policy

	Template Emails
	Nomination to Grant Commit Access

	Vote to Grant Commit Access

	Vote Results for Grant of Commit Access

	Invitation to Accepted Committer

	Proposal to Remove Commit Access for Inactivity

	Notification of Commit Removal for Inactivity

	Proposal to Revoke Commit Access for Detrimental Behavior

	Vote to Revoke Commit Access

	Vote Results for Revocation of Commit Access

	Notification of Commit Revocation for Detrimental Behavior

Cilium Committer Grant/Revocation Policy

A Cilium committer is a participant in the project with the ability to
commit code directly to the master repository. Commit access grants a
broad ability to affect the progress of the project as presented by its
most important artifact, the code and related resources that produce
working binaries of Cilium. As such it represents a significant level of
trust in an individual’s commitment to working with other committers and
the community at large for the benefit of the project. It can not be
granted lightly and, in the worst case, must be revocable if the trust
placed in an individual was inappropriate.

This document suggests guidelines for granting and revoking commit
access. It is intended to provide a framework for evaluation of such
decisions without specifying deterministic rules that wouldn’t be
sensitive to the nuance of specific situations. In the end the decision
to grant or revoke committer privileges is a judgment call made by the
existing set of committers.

Expectations for Developers with commit access

Pre-requisites

Be familiar with the Developer / Contributor Guide.

Review

Code (yours or others’) must be reviewed publicly (by you or others)
before you push it to the repository. With one exception (see below),
every change needs at least one review.

If one or more people know an area of code particularly well, code that
affects that area should ordinarily get a review from one of them.

The riskier, more subtle, or more complicated the change, the more
careful the review required. When a change needs careful review, use
good judgment regarding the quality of reviews. If a change adds 1000
lines of new code, and a review posted 5 minutes later says just “Looks
good,” then this is probably not a quality review.

(The size of a change is correlated with the amount of care needed in
review, but it is not strictly tied to it. A search and replace across
many files may not need much review, but one-line optimization changes
can have widespread implications.)

Your own small changes to fix a recently broken build (“make”) or tests
(“make check”), that you believe to be visible to a large number of
developers, may be checked in without review. If you are not sure, ask
for review.

Regularly review submitted code in areas where you have expertise.
Consider reviewing other code as well.

Git conventions

If you apply a change (yours or another’s) then it is your
responsibility to handle any resulting problems, especially broken
builds and other regressions. If it is someone else’s change, then you
can ask the original submitter to address it. Regardless, you need to
ensure that the problem is fixed in a timely way. The definition of
“timely” depends on the severity of the problem.

If a bug is present on master and other branches, fix it on master
first, then backport the fix to other branches. Straightforward
backports do not require additional review (beyond that for the fix on
master).

Feature development should be done only on master. Occasionally it makes
sense to add a feature to the most recent release branch, before the
first actual release of that branch. These should be handled in the same
way as bug fixes, that is, first implemented on master and then
backported.

Keep the authorship of a commit clear by maintaining a correct list of
“Signed-off-by:”s. If a confusing situation comes up, as it occasionally
does, bring it up in the development forums. If you explain the use of
“Signed-off-by:” to a new developer, explain not just how but why, since
the intended meaning of “Signed-off-by:” is more important than the
syntax.

Use Reported-by: and Tested-by: tags in commit messages to indicate the
source of a bug report.

Keep the AUTHORS [https://github.com/cilium/cilium/blob/master/AUTHORS] file up to date.

Granting Commit Access

Granting commit access should be considered when a candidate has
demonstrated the following in their interaction with the project:

	Contribution of significant new features through the patch submission
process where:

	Submissions are free of obvious critical defects

	Submissions do not typically require many iterations of improvement
to be accepted

	Consistent participation in code review of other’s patches, including
existing committers, with comments consistent with the overall
project standards

	Assistance to those in the community who are less knowledgeable
through active participation in project forums.

	Plans for sustained contribution to the project compatible with the
project’s direction as viewed by current committers.

	Commitment to meet the expectations described in the “Expectations of
Developer’s with commit access”

The process to grant commit access to a candidate is simple:

	An existing committer nominates the candidate by sending an email to
all existing committers with information substantiating the
contributions of the candidate in the areas described above.

	All existing committers discuss the pros and cons of granting commit
access to the candidate in the email thread.

	When the discussion has converged or a reasonable time has elapsed
without discussion developing (e.g. a few business days) the
nominator calls for a final decision on the candidate with a followup
email to the thread.

	Each committer may vote yes, no, or abstain by replying to the email
thread. A failure to reply is an implicit abstention.

	After votes from all existing committers have been collected or a
reasonable time has elapsed for them to be provided (e.g. a couple of
business days) the votes are evaluated. To be granted commit access
the candidate must receive yes votes from a majority of the existing
committers and zero no votes. Since a no vote is effectively a veto
of the candidate it should be accompanied by a reason for the vote.

	The nominator summarizes the result of the vote in an email to all
existing committers.

	If the vote to grant commit access passed, the candidate is contacted
with an invitation to become a committer to the project which asks
them to agree to the committer expectations documented on the project
web site.

	If the candidate agrees access is granted by setting up commit access
to the repos.

Revoking Commit Access

There are two situations in which commit access might be revoked.

The straightforward situation is a committer who is no longer active in
the project and has no plans to become active in the near future. The
process in this case is:

	Any time after a committer has been inactive for more than 6 months
any other committer to the project may identify that committer as a
candidate for revocation of commit access due to inactivity.

	The plans of revocation should be sent in a private email to the
candidate.

	If the candidate for removal states plans to continue participating
no action is taken and this process terminates.

	If the candidate replies they no longer require commit access then
commit access is removed and a notification is sent to the candidate
and all existing committers.

	If the candidate can not be reached within 1 week of the first
attempting to contact this process continues.

	A message proposing removal of commit access is sent to the candidate
and all other committers.

	If the candidate for removal states plans to continue participating
no action is taken.

	If the candidate replies they no longer require commit access then
their access is removed.

	If the candidate can not be reached within 2 months of the second
attempting to contact them, access is removed.

	In any case, where access is removed, this fact is published through
an email to all existing committers (including the candidate for
removal).

The more difficult situation is a committer who is behaving in a manner
that is viewed as detrimental to the future of the project by other
committers. This is a delicate situation with the potential for the
creation of division within the greater community and should be handled
with care. The process in this case is:

	Discuss the behavior of concern with the individual privately and
explain why you believe it is detrimental to the project. Stick to
the facts and keep the email professional. Avoid personal attacks and
the temptation to hypothesize about unknowable information such as
the other’s motivations. Make it clear that you would prefer not to
discuss the behavior more widely but will have to raise it with other
contributors if it does not change. Ideally the behavior is
eliminated and no further action is required. If not,

	Start an email thread with all committers, including the source of
the behavior, describing the behavior and the reason it is
detrimental to the project. The message should have the same tone as
the private discussion and should generally repeat the same points
covered in that discussion. The person whose behavior is being
questioned should not be surprised by anything presented in this
discussion. Ideally the wider discussion provides more perspective to
all participants and the issue is resolved. If not,

	Start an email thread with all committers except the source of the
detrimental behavior requesting a vote on revocation of commit
rights. Cite the discussion among all committers and describe all the
reasons why it was not resolved satisfactorily. This email should be
carefully written with the knowledge that the reasoning it contains
may be published to the larger community to justify the decision.

	Each committer may vote yes, no, or abstain by replying to the email
thread. A failure to reply is an implicit abstention.

	After all votes have been collected or a reasonable time has elapsed
for them to be provided (e.g. a couple of business days) the votes
are evaluated. For the request to revoke commit access for the
candidate to pass it must receive yes votes from two thirds of the
existing committers.

	anyone that votes no must provide their reasoning, and

	if the proposal passes then counter-arguments for the reasoning in no
votes should also be documented along with the initial reasons the
revocation was proposed. Ideally there should be no new
counter-arguments supplied in a no vote as all concerns should have
surfaced in the discussion before the vote.

	The original person to propose revocation summarizes the result of
the vote in an email to all existing committers excepting the
candidate for removal.

	If the vote to revoke commit access passes, access is removed and the
candidate for revocation is informed of that fact and the reasons for
it as documented in the email requesting the revocation vote.

	Ideally the revoked committer peacefully leaves the community and no
further action is required. However, there is a distinct possibility
that he/she will try to generate support for his/her point of view
within the larger community. In this case the reasoning for removing
commit access as described in the request for a vote will be
published to the community.

Changing the Policy

The process for changing the policy is:

	Propose the changes to the policy in an email to all current
committers and request discussion.

	After an appropriate period of discussion (a few days) update the
proposal based on feedback if required and resend it to all current
committers with a request for a formal vote.

	After all votes have been collected or a reasonable time has elapsed
for them to be provided (e.g. a couple of business days) the votes
are evaluated. For the request to modify the policy to pass it must
receive yes votes from two thirds of the existing committers.

Template Emails

Nomination to Grant Commit Access

I would like to nominate *[candidate]* for commit access. I believe
[he/she] has met the conditions for commit access described in the
committer grant policy on the project web site in the following ways:

[list of requirements & evidence]

Please reply to all in this message thread with your comments and
questions. If that discussion concludes favorably I will request a formal
vote on the nomination in a few days.

Vote to Grant Commit Access

I nominated *[candidate]* for commit access on *[date]*. Having allowed
sufficient time for discussion it's now time to formally vote on the
proposal.

Please reply to all in this thread with your vote of: YES, NO, or ABSTAIN.
A failure to reply will be counted as an abstention. If you vote NO, by our
policy you must include the reasons for that vote in your reply. The
deadline for votes is *[date and time]*.

If a majority of committers vote YES and there are zero NO votes commit
access will be granted.

Vote Results for Grant of Commit Access

The voting period for granting to commit access to *[candidate]* initiated
at *[date and time]* is now closed with the following results:

YES: *[count of yes votes]* (*[% of voters]*)

NO: *[count of no votes]* (*[% of voters]*)

ABSTAIN: *[count of abstentions]* (*[% of voters]*)

Based on these results commit access *[is/is NOT]* granted.

Invitation to Accepted Committer

Due to your sustained contributions to the Cilium project we
would like to provide you with commit access to the project repository.
Developers with commit access must agree to fulfill specific
responsibilities described in the source repository:

 /Documentation/commit-access.rst

Please let us know if you would like to accept commit access and if so that
you agree to fulfill these responsibilities. Once we receive your response
we'll set up access. We're looking forward continuing to work together to
advance the Cilium project.

Proposal to Remove Commit Access for Inactivity

Committer *[candidate]* has been inactive for *[duration]*. I have
attempted to privately contacted *[him/her]* and *[he/she]* could not be
reached.

Based on this I would like to formally propose removal of commit access.
If a response to this message documenting the reasons to retain commit
access is not received by *[date]* access will be removed.

Notification of Commit Removal for Inactivity

Committer *[candidate]* has been inactive for *[duration]*. *[He/she]*
[stated no commit access is required/failed to respond] to the formal
proposal to remove access on *[date]*. Commit access has now been removed.

Proposal to Revoke Commit Access for Detrimental Behavior

I regret that I feel compelled to propose revocation of commit access for
[candidate]. I have privately discussed with *[him/her]* the following
reasons I believe *[his/her]* actions are detrimental to the project and we
have failed to come to a mutual understanding:

[List of reasons and supporting evidence]

Please reply to all in this thread with your thoughts on this proposal. I
plan to formally propose a vote on the proposal on or after *[date and
time]*.

It is important to get all discussion points both for and against the
proposal on the table during the discussion period prior to the vote.
Please make it a high priority to respond to this proposal with your
thoughts.

Vote to Revoke Commit Access

I nominated *[candidate]* for revocation of commit access on *[date]*.
Having allowed sufficient time for discussion it's now time to formally
vote on the proposal.

Please reply to all in this thread with your vote of: YES, NO, or ABSTAIN.
A failure to reply will be counted as an abstention. If you vote NO, by our
policy you must include the reasons for that vote in your reply. The
deadline for votes is *[date and time]*.

If 2/3rds of committers vote YES commit access will be revoked.

The following reasons for revocation have been given in the original
proposal or during discussion:

[list of reasons to remove access]

The following reasons for retaining access were discussed:

[list of reasons to retain access]

The counter-argument for each reason for retaining access is:

[list of counter-arguments for retaining access]

Vote Results for Revocation of Commit Access

The voting period for revoking the commit access of *[candidate]* initiated
at *[date and time]* is now closed with the following results:

- YES: *[count of yes votes]* (*[% of voters]*)

- NO: *[count of no votes]* (*[% of voters]*)

- ABSTAIN: *[count of abstentions]* (*[% of voters]*)

Based on these results commit access *[is/is NOT]* revoked. The following
reasons for retaining commit access were proposed in NO votes:

[list of reasons]

The counter-arguments for each of these reasons are:

[list of counter-arguments]

Notification of Commit Revocation for Detrimental Behavior

After private discussion with you and careful consideration of the
situation, the other committers to the Cilium project have
concluded that it is in the best interest of the project that your commit
access to the project repositories be revoked and this has now occurred.

The reasons for this decision are:

[list of reasons for removing access]

While your goals and those of the project no longer appear to be aligned we
greatly appreciate all the work you have done for the project and wish you
continued success in your future work.

Release Management

This section describes the release cadence and all release related processes.

Release Cadence

Cilium schedules a minor release every 6 weeks. Each minor release is performed
by incrementing the Y in the version format X.Y.Z. The group of
committers can decide to increment X instead to mark major milestones in
which case Y is reset to 0.

Stable releases

The committers can nominate PRs merged into master as required for backport
into the stable release branches. Upon necessity, stable releases are published
with the version X.Y.Z+1. Stable releases are regularly released in high
frequency or on demand to address major incidents.

In order to guarantee stable production usage while maintaining a high release
cadence, the following stable releases will be maintained:

	Stable backports into the last two releases

	LTS release for extended long term backport coverage

Backport criteria for X.Y.Z+n

Criteria for the inclusion into latest stable release branch, i.e. what goes
into v1.1.x before v1.2.0 has been released:

	All bugfixes

Backport criteria for X.Y-1.Z

Criteria for the inclusion into the stable release branch of the previous
release, i.e. what goes into v1.0.x, before v1.2.0 has been released:

	Security relevant fixes

	Major bugfixes relevant to the correct operation of Cilium

LTS

The group of committers nominates a release to be a long term stable release.
Such releases are guaranteed to receive backports for major and security
relevant bugfixes. LTS releases will be declared end of life after 6 months.
The group of committers will nominate and start supporting a new LTS release
before the current LTS expires. If for some reason, no release can be declared
LTS before the current LTS release expires, the current LTS lifetime will be
extended.

Given the current 6 weeks release cadence, the development teams will aim at
declaring every 3rd release to be an LTS to guarantee enough time overlap
between LTS release.

Current LTS releases

	Release

	Original Release Date

	Scheduled End of Life

	1.0

	2018-04-24

	2018-10-24

Generic Release Process

This process applies to all releases other than minor releases, this includes:

	Stable releases

	Release candidates

If you intent to release a new minor release, see the
Minor Release Process section instead.

Note

The following commands have been validated when ran in the VM
used in the Cilium development process. See Setting up the development environment for
detailed instructions about setting up said VM.

GitHub template process

	File a new release issue [https://github.com/cilium/cilium/issues/new?assignees=&labels=kind%2Frelease&template=release_template.md&title=vX.Y.Z+release]
on GitHub, updating the title to reflect the version that will be released.

	Follow the steps in the issue template to prepare the release.

Reference steps for the template

	Ensure that the necessary backports have been completed and merged. See
Backporting process.

	Update GitHub project and create vX.Y.Z+1 project if applicable.

	Update PRs / issues that were added to the vX.Y.Z project, but didn’t
make it into this release into the vX.Y.Z+1 project.

	Create a new project named “X.Y.Z+1” to automatically track the backports
for that particular release. Direct Link: [https://github.com/cilium/cilium/projects/new]

	Checkout the desired stable branch and pull it:

git checkout v1.0; git pull

	Run the release preparation script:

contrib/release/start-release.sh

Note

Check to see if the AUTHORS file has any formatting errors (for
instance, indentation mismatches) as well as duplicate contributor
names, and correct them accordingly.

	Update the cilium_version and cilium_tag variables in
examples/getting-started/Vagrantfile

	Add all modified files using git add and create a pull request with the
title Prepare for release v1.0.3.

	Prepare a pull request for the changes:

contrib/release/submit-release.sh

	Follow standard procedures to get the aforementioned PR merged into the
desired stable branch. See Submitting a pull request for more information about this
process.

	Checkout out the stable branch and pull your merged changes:

git checkout v1.0; git pull

	Create and push release tags to GitHub:

contrib/release/tag-release.sh

Note

There are two tags that correspond to the same release because GitHub
recommends using vx.y.z for release version formatting, and ReadTheDocs,
which hosts the Cilium documentation, requires the version to be in format
x.y.z For more information about how ReadTheDocs does versioning, you can
read their Versions Documentation [https://docs.readthedocs.io/en/latest/versions.html].

	Wait for DockerHub to prepare all docker images.

	Publish a GitHub release [https://github.com/cilium/cilium/releases/]:

Following the steps above, the release draft will already be prepared.
Preview the description and then publish the release.

	Prepare Helm changes for the release using the Cilium Helm Charts Repository [https://github.com/cilium/charts/]
and push the changes into that repository (not the main cilium repository):

./prepare_artifacts.sh /path/to/cilium/repository/checked/out/to/release/commit
git push

	Prepare Helm changes for the dev version of the branch using the Cilium Helm Charts Repository [https://github.com/cilium/charts/]
for the vX.Y helm charts, and push the changes into that repository (not the main cilium repository):

In the cilium/cilium repository:

	git checkout vx.y -b vx.z-dev

	Change the VERSION file to x.y-dev

	Run make -C install/kubernetes

In the cilium/charts repository:

./prepare_artifacts.sh /path/to/cilium/repository/checked/out/to/release/commit
git push

After pushing you can revert all the changes made in the local branch
x.y-dev from cilium/cilium.

	Announce the release in the #general channel on Slack. Sample text:

:cilium-new: **Announcement:** Cilium vX.Y.Z has been released :tada:

<If security release or major bugfix, short summary of fix here>

For more details, see the release notes:
https://github.com/cilium/cilium/releases/tag/vX.Y.Z

	Create a new git branch based on the master branch to update README.rst:

git checkout -b pr/bump-readme-vX.Y.Z origin/master
contrib/release/bump-readme.sh
(Commit changes & submit PR)

	Bump the version of Cilium used in the Cilium upgrade tests to use the new release

Please reach out on the #development channel on Slack for assistance with
this task.

	Update the stable tags for cilium, cilium-operator,
cilium-operator-aws, cilium-operator-azure,
cilium-operator-generic, cilium-docker-plugin and hubble-relay
on DockerHub, for the latest version of Cilium. For example, if the latest
version is 1.8, then for all patch releases on the 1.8 line, this
step should be performed. Once 1.9 is out for example, then this is no
longer required for 1.8.

Note, the DockerHub UI will not allow you to modify the stable tag
directly. You will need to delete it, and then create a new, updated one.

	Update the following external tools and guides to point to the released
Cilium version. This step is only required on a new minor release like going
from 1.8 to 1.9.

	kubeadm [https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/]

	kops [https://github.com/kubernetes/kops/]

	kubespray [https://github.com/kubernetes-sigs/kubespray/]

Minor Release Process

On Freeze date

	Fork a new release branch from master:

git checkout master; git pull
git checkout -b v1.2
git push

	Protect the branch using the GitHub UI to disallow direct push and require
merging via PRs with proper reviews.

	Replace the contents of the CODEOWNERS file with the following to reduce
code reviews to essential approvals:

* @cilium/janitors
api/ @cilium/api
pkg/apisocket/ @cilium/api
pkg/monitor/payload @cilium/api
pkg/policy/api/ @cilium/api
pkg/proxy/accesslog @cilium/api

	Commit changes, open a pull request against the new v1.2 branch, and get
the pull request merged

git checkout -b pr/prepare-v1.2
git add [...]
git commit
git push

	Follow the Generic Release Process to release v1.2.0-rc1.

	Create the following GitHub labels:

	backport-pending/1.2

	backport-done/1.2

	backport/1.2

	needs-backport/1.2

	Prepare the master branch for the next development cycle:

git checkout master; git pull

	Update the VERSION file to contain v1.2.90

	Add the VERSION file using git add and create & merge a PR titled
Prepare for 1.3.0 development.

	
	Update the release branch on

	Jenkins [https://jenkins.cilium.io/job/cilium-ginkgo/job/cilium/] to be
tested on every change and Nightly.

	(Only 1.0 minor releases) Tag newest 1.0.x Docker image as v1.0-stable
and push it to Docker Hub. This will ensure that Kops uses latest 1.0 release by default.

For the final release

	Follow the Generic Release Process to create the final replace and replace
X.Y.0-rcX with X.Y.0.

Backporting process

Cilium PRs that are marked with the label needs-backport/X.Y need to be
backported to the stable branch X.Y. The following steps summarize
the process for backporting these PRs.

	Make sure the Github labels are up-to-date, as this process will
deal with all commits from PRs that have the needs-backport/X.Y label
set (for a stable release version X.Y). If any PRs contain labels such as
backport-pending/X.Y, ensure that the backport for that PR have been
merged and if so, change the label to backport-done/X.Y.

	The scripts referred to below need to be run in Linux, they do not
work on OSX. You can use the cilium dev VM for this, but you need
to configure git to have your name and email address to be used in
the commit messages:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

	Make sure you have your a GitHub developer access token
available. For details, see contrib/backporting/README.md [https://github.com/cilium/cilium/blob/master/contrib/backporting/README.md]

	Fetch the repo, e.g., git fetch

	Check a new branch for your backports based on the stable branch for that
version, e.g., git checkout -b pr/v1.0-backport-YY-MM-DD origin/v1.0

	Run the check-stable script, referring to your Github access
token, this will list the commits that need backporting, from the
newest to oldest:

$ GITHUB_TOKEN=xxx contrib/backporting/check-stable 1.0

Note

contrib/backporting/check-stable accepts a second argument to
specify a path to write a nicely-formatted pull request message to.
This can be used alongside
Github command-line tools [https://github.com/node-gh/gh] to
send the pull request from the command line in steps 9-10 via
gh pull-request -b vX.Y -l backport/vX.Y -F <path>.

	Cherry-pick the commits using the master git SHAs listed, starting
from the oldest (bottom), working your way up and fixing any merge
conflicts as they appear. Note that for PRs that have multiple
commits you will want to check that you are cherry-picking oldest
commits first. The cherry-pick script accepts multiple arguments,
in which case it will attempt to apply each commit in the order
specified on the command line until one cherry pick fails or every
commit is cherry-picked.

$ contrib/backporting/cherry-pick <oldest-commit-sha>
...
$ contrib/backporting/cherry-pick <newest-commit-sha>

	Push your backports branch to cilium repo, e.g., git push -u origin pr/v1.0-backports-YY-MM-DD

	In Github, create a new PR from your branch towards the feature
branch you are backporting to. Note that by default Github creates
PRs against the master branch, so you will need to change it.

	Label the new backport PR with the backport label for the stable branch
such as backport/X.Y so that it is easy to find backport PRs later.

	Mark all PRs you backported with the backport pending label backport-pending/X.Y
and clear the needs-backport/vX.Y label. This can be via the GitHub
interface, or using the backport script contrib/backporting/set-labels.py, e.g.:

Set PR 1234's v1.0 backporting labels to pending
$ contrib/backporting/set-labels.py 1234 pending 1.0

Note

contrib/backporting/set-labels.py requires Python 3 and
PyGithub [https://pypi.org/project/PyGithub/] installed.

	After the backport PR is merged, mark all backported PRs with
backport-done/X.Y label and clear the backport-pending/X.Y label(s).

Set PR 1234's v1.0 backporting labels to done
contrib/backporting/set-labels.py 1234 done 1.0.

CI / Jenkins

The main CI infrastructure is maintained at https://jenkins.cilium.io/

Jobs Overview

Cilium-PR-Ginkgo-Tests-Validated

Runs validated Ginkgo tests which are confirmed to be stable and have been
verified. These tests must always pass.

The configuration for this job is contained within ginkgo.Jenkinsfile.

It first runs unit tests using docker-compose using a YAML located at
test/docker-compose.yaml.

The next steps happens in parallel:

	Runs the single-node e2e tests using the Docker runtime.

	Runs the multi-node Kubernetes e2e tests against the latest default
version of Kubernetes specified above.

This job can be used to run tests on custom branches. To do so, log into Jenkins and go to https://jenkins.cilium.io/job/cilium-ginkgo/configure .
Then add your branch name to GitHub Organization -> cilium -> Filter by name (with wildcards) -> Include field and save changes.
After you don’t need to run tests on your branch, please remove the branch from this field.

Cilium-PR-Ginkgo-Tests-k8s

Runs the Kubernetes e2e tests against all Kubernetes versions that are not
currently not tested as part of each pull-request, but which Cilium still
supports, as well as the the most-recently-released versions of Kubernetes that
that might not be declared stable by Kubernetes upstream:

First stage.

	1.10

	1.11

Second stage (other versions)

	1.12

	1.13

Third stage

	1.14

	beta versions (1.16-beta once it’s out)

Ginkgo-CI-Tests-Pipeline

https://jenkins.cilium.io/job/Ginkgo-CI-Tests-Pipeline/

Cilium-Nightly-Tests-PR

Runs long-lived tests which take extended time. Some of these tests have an
expected failure rate.

Nightly tests run once per day in the Cilium-Nightly-Tests Job. The
configuration for this job is stored in Jenkinsfile.nightly.

To see the results of these tests, you can view the JUnit Report for an individual job:

	Click on the build number you wish to get test results from on the left hand
side of the Cilium-Nightly-Tests Job.

	Click on ‘Test Results’ on the left side of the page to view the results from the build.
This will give you a report of which tests passed and failed. You can click on each test
to view its corresponding output created from Ginkgo.

This first runs the Nightly tests with the following setup:

	4 Kubernetes 1.8 nodes

	4 GB of RAM per node.

	4 vCPUs per node.

Then, it runs tests Kubernetes tests against versions of Kubernetes that are currently not tested against
as part of each pull-request, but that Cilium still supports.

It also runs a variety of tests against Envoy to ensure that proxy functionality is working correctly.

Triggering Pull-Request Builds With Jenkins

To ensure that build resources are used judiciously, builds on Jenkins
are manually triggered via comments on each pull-request that contain
“trigger-phrases”. Only members of the Cilium GitHub organization are
allowed to trigger these jobs. Refer to the table below for information
regarding which phrase triggers which build, which build is required for
a pull-request to be merged, etc. Each linked job contains a description
illustrating which subset of tests the job runs.

	Jenkins Job

	Trigger Phrase

	Required To Merge?

	Cilium-PR-Ginkgo-Tests-Validated [https://jenkins.cilium.io/job/Cilium-PR-Ginkgo-Tests-Validated/]

	test-me-please

	Yes

	Cilium-Pr-Ginkgo-Test-k8s [https://jenkins.cilium.io/job/Cilium-PR-Ginkgo-Tests-k8s/]

	test-missed-k8s

	No

	Cilium-Nightly-Tests-PR [https://jenkins.cilium.io/job/Cilium-PR-Nightly-Tests-All/]

	test-nightly

	No

	Cilium-PR-Doc-Tests [https://jenkins.cilium.io/view/all/job/Cilium-PR-Doc-Tests/]

	test-docs-please

	No

	Cilium-PR-Kubernetes-Upstream [https://jenkins.cilium.io/view/PR/job/Cilium-PR-Kubernetes-Upstream/]

	test-upstream-k8s

	No

	Cilium-PR-Flannel [https://jenkins.cilium.io/job/Cilium-PR-Flannel/]

	test-flannel

	No

There are some feature flags based on Pull Requests labels, the list of labels
are the following:

	area/containerd: Enable containerd runtime on all Kubernetes test.

	ci/next-next: Run tests on net-next kernel. This causes the
test-me-please target to only run on the net-next kernel. It is purely
for testing on a different kernel, to merge a PR it must pass the CI
without this flag.

Using Jenkins for testing

Typically when running Jenkins tests via one of the above trigger phases, it
will run all of the tests in that particular category. However, there may be
cases where you just want to run a single test quickly on Jenkins and observe
the test result. To do so, you need to update the relevant test to have a
custom name, and to update the Jenkins file to focus that test. Below is an
example patch that shows how this can be achieved.

diff --git a/ginkgo.Jenkinsfile b/ginkgo.Jenkinsfile
index ee17808748a6..637f99269a41 100644
--- a/ginkgo.Jenkinsfile
+++ b/ginkgo.Jenkinsfile
@@ -62,10 +62,10 @@ pipeline {
 steps {
 parallel(
 "Runtime":{
- sh 'cd ${TESTDIR}; ginkgo --focus="RuntimeValidated*" -v -noColor'
+ sh 'cd ${TESTDIR}; ginkgo --focus="XFoooo*" -v -noColor'
 },
 "K8s-1.9":{
- sh 'cd ${TESTDIR}; K8S_VERSION=1.9 ginkgo --focus=" K8sValidated*" -v -noColor ${FAILFAST}'
+ sh 'cd ${TESTDIR}; K8S_VERSION=1.9 ginkgo --focus=" K8sFooooo*" -v -noColor ${FAILFAST}'
 },
 failFast: true
)
diff --git a/test/k8sT/Nightly.go b/test/k8sT/Nightly.go
index 62b324619797..3f955c73a818 100644
--- a/test/k8sT/Nightly.go
+++ b/test/k8sT/Nightly.go
@@ -466,7 +466,7 @@ var _ = Describe("NightlyExamples", func() {

 })

- It("K8sValidated Updating Cilium stable to master", func() {
+ FIt("K8sFooooo K8sValidated Updating Cilium stable to master", func() {
 podFilter := "k8s:zgroup=testapp"

 //This test should run in each PR for now.

CI Failure Triage

This section describes the process to triage CI failures. We define 3 categories:

	Keyword

	Description

	Flake

	Failure due to a temporary situation such as loss of connectivity to external
services or bug in system component, e.g. quay.io is down, VM race conditions,
kube-dns bug, …

	CI-Bug

	Bug in the test itself that renders the test unreliable, e.g. timing issue when
importing and missing to block until policy is being enforced before connectivity
is verified.

	Regression

	Failure is due to a regression, all failures in the CI that are not caused by
bugs in the test are considered regressions.

Pipelines subject to triage

Build/test failures for the following Jenkins pipelines must be reported as
GitHub issues using the process below:

	Pipeline

	Description

	Ginkgo-Tests-Validated-master [https://jenkins.cilium.io/job/cilium-ginkgo/job/cilium/job/master/]

	Runs whenever a PR is merged into master

	Ginkgo-CI-Tests-Pipeline [https://jenkins.cilium.io/job/Ginkgo-CI-Tests-Pipeline/]

	Runs every two hours on the master branch

	Master-Nightly [https://jenkins.cilium.io/job/Cilium-Master-Nightly/]

	Runs durability tests every night

	Vagrant-Master-Boxes-Packer-Build [https://jenkins.cilium.io/job/Vagrant-Master-Boxes-Packer-Build/]

	Runs on merge into github.com/cilium/packer-ci-build [https://github.com/cilium/packer-ci-build/].

	Release-branch [https://jenkins.cilium.io/view/Cilium-v1.6/]

	Runs various Ginkgo tests on merge into branch “v1.6”

Triage process

	Discover untriaged Jenkins failures via the jenkins-failures.sh script. It
defaults to checking the previous 24 hours but this can be modified by
setting the SINCE environment variable (it is a unix timestamp). The script
checks the various test pipelines that need triage.

$ contrib/scripts/jenkins-failures.sh

Note

You can quickly assign SINCE with statements like SINCE=`date -d -3days`

	Investigate the failure you are interested in and determine if it is a
CI-Bug, Flake, or a Regression as defined in the table above.

	Search GitHub issues [https://github.com/cilium/cilium/issues?utf8=%E2%9C%93&q=is%3Aissue+]
to see if bug is already filed. Make sure to also include closed issues in
your search as a CI issue can be considered solved and then re-appears.
Good search terms are:

	The test name, e.g.

k8s-1.7.K8sValidatedKafkaPolicyTest Kafka Policy Tests KafkaPolicies (from (k8s-1.7.xml))

	The line on which the test failed, e.g.

github.com/cilium/cilium/test/k8sT/KafkaPolicies.go:202

	The error message, e.g.

Failed to produce from empire-hq on topic deathstar-plan

	If a corresponding GitHub issue exists, update it with:

	A link to the failing Jenkins build (note that the build information is
eventually deleted).

	Attach the zipfile downloaded from Jenkins with logs from the failing
tests. A zipfile for all tests is also available.

	Check how much time has passed since the last reported occurrence of this
failure and move this issue to the correct column in the CI flakes
project [https://github.com/cilium/cilium/projects/8] board.

	If no existing GitHub issue was found, file a new GitHub issue [https://github.com/cilium/cilium/issues/new]:

	Attach zipfile downloaded from Jenkins with logs from failing test

	If the failure is a new regression or a real bug:

	Title: <Short bug description>

	Labels kind/bug and needs/triage.

	If failure is a new CI-Bug, Flake or if you are unsure:

	Title CI: <testname>: <cause>, e.g. CI: K8sValidatedPolicyTest Namespaces: cannot curl service

	Labels kind/bug/CI and needs/triage

	Include a link to the failing Jenkins build (note that the build information is
eventually deleted).

	Attach zipfile downloaded from Jenkins with logs from failing test

	Include the test name and whole Stacktrace section to help others find this issue.

	Add issue to CI flakes project [https://github.com/cilium/cilium/projects/8]

Note

Be extra careful when you see a new flake on a PR, and want to open an
issue. It’s much more difficult to debug these without context around the
PR and the changes it introduced. When creating an issue for a PR flake,
include a description of the code change, the PR, or the diff. If it
isn’t related to the PR, then it should already happen in master, and a
new issue isn’t needed.

	Edit the description of the Jenkins build to mark it as triaged. This will
exclude it from future jenkins-failures.sh output.

	Login -> Click on build -> Edit Build Information

	Add the failure type and GH issue number. Use the table describing the
failure categories, at the beginning of this section, to help
categorize them.

Note

This step can only be performed with an account on Jenkins. If you are
interested in CI failure reviews and do not have an account yet, ping us
on Slack.

Examples:

	Flake, quay.io is down

	Flake, DNS not ready, #3333

	CI-Bug, K8sValidatedPolicyTest: Namespaces, pod not ready, #9939

	Regression, k8s host policy, #1111

Infrastructure details

Logging into VM running tests

	If you have access to credentials for Jenkins, log into the Jenkins slave running the test workload

	Identify the vagrant box running the specific test

$ vagrant global-status
id name provider state directory

6e68c6c k8s1-build-PR-1588-6 virtualbox running /root/jenkins/workspace/cilium_cilium_PR-1588-CWL743UTZEF6CPEZCNXQVSZVEW32FR3CMGKGY6667CU7X43AAZ4Q/tests/k8s
ec5962a cilium-master-build-PR-1588-6 virtualbox running /root/jenkins/workspace/cilium_cilium_PR-1588-CWL743UTZEF6CPEZCNXQVSZVEW32FR3CMGKGY6667CU7X43AAZ4Q
bfaffaa k8s2-build-PR-1588-6 virtualbox running /root/jenkins/workspace/cilium_cilium_PR-1588-CWL743UTZEF6CPEZCNXQVSZVEW32FR3CMGKGY6667CU7X43AAZ4Q/tests/k8s
3fa346c k8s1-build-PR-1588-7 virtualbox running /root/jenkins/workspace/cilium_cilium_PR-1588-CWL743UTZEF6CPEZCNXQVSZVEW32FR3CMGKGY6667CU7X43AAZ4Q@2/tests/k8s
b7ded3c cilium-master-build-PR-1588-7 virtualbox running /root/jenkins/workspace/cilium_cilium_PR-1588-CWL743UTZEF6CPEZCNXQVSZVEW32FR3CMGKGY6667CU7X43AAZ4Q@2

	Log into the specific VM

$ JOB_BASE_NAME=PR-1588 BUILD_NUMBER=6 vagrant ssh 6e68c6c

Jenkinsfiles Extensions

Cilium uses a custom Jenkins helper library [https://github.com/cilium/Jenkins-library] to gather metadata from PRs and
simplify our Jenkinsfiles. The exported methods are:

	ispr(): return true if the current build is a PR.

	setIfPr(string, string): return the first argument in case of a PR, if not
a PR return the second one.

	BuildIfLabel(String label, String Job): trigger a new Job if the PR has
that specific Label.

	Status(String status, String context): set pull request check status on
the given context, example Status("SUCCESS", "$JOB_BASE_NAME")

BPF and XDP Reference Guide

Note

This documentation section is targeted at developers and users who
want to understand BPF and XDP in great technical depth. While
reading this reference guide may help broaden your understanding of
Cilium, it is not a requirement to use Cilium. Please refer to the
Getting Started Guides and Architecture for a higher level
introduction.

BPF is a highly flexible and efficient virtual machine-like construct in the
Linux kernel allowing to execute bytecode at various hook points in a safe
manner. It is used in a number of Linux kernel subsystems, most prominently
networking, tracing and security (e.g. sandboxing).

Although BPF exists since 1992, this document covers the extended Berkeley
Packet Filter (eBPF) version which has first appeared in Kernel 3.18 and
renders the original version which is being referred to as “classic” BPF
(cBPF) these days mostly obsolete. cBPF is known to many as being the packet
filter language used by tcpdump. Nowadays, the Linux kernel runs eBPF only and
loaded cBPF bytecode is transparently translated into an eBPF representation
in the kernel before program execution. This documentation will generally refer
to the term BPF unless explicit differences between eBPF and cBPF are being
pointed out.

Even though the name Berkeley Packet Filter hints at a packet filtering specific
purpose, the instruction set is generic and flexible enough these days that
there are many use cases for BPF apart from networking. See Further Reading
for a list of projects which use BPF.

Cilium uses BPF heavily in its data path, see Architecture for further
information. The goal of this chapter is to provide a BPF reference guide in
order to gain understanding of BPF, its networking specific use including loading
BPF programs with tc (traffic control) and XDP (eXpress Data Path), and to aid
with developing Cilium’s BPF templates.

BPF Architecture

BPF does not define itself by only providing its instruction set, but also by
offering further infrastructure around it such as maps which act as efficient
key / value stores, helper functions to interact with and leverage kernel
functionality, tail calls for calling into other BPF programs, security
hardening primitives, a pseudo file system for pinning objects (maps,
programs), and infrastructure for allowing BPF to be offloaded, for example, to
a network card.

LLVM provides a BPF back end, so that tools like clang can be used to
compile C into a BPF object file, which can then be loaded into the kernel.
BPF is deeply tied to the Linux kernel and allows for full programmability
without sacrificing native kernel performance.

Last but not least, also the kernel subsystems making use of BPF are part of
BPF’s infrastructure. The two main subsystems discussed throughout this
document are tc and XDP where BPF programs can be attached to. XDP BPF programs
are attached at the earliest networking driver stage and trigger a run of the
BPF program upon packet reception. By definition, this achieves the best
possible packet processing performance since packets cannot get processed at an
even earlier point in software. However, since this processing occurs so early
in the networking stack, the stack has not yet extracted metadata out of the
packet. On the other hand, tc BPF programs are executed later in the kernel
stack, so they have access to more metadata and core kernel functionality.
Apart from tc and XDP programs, there are various other kernel subsystems as
well which use BPF such as tracing (kprobes, uprobes, tracepoints, etc).

The following subsections provide further details on individual aspects of the
BPF architecture.

Instruction Set

BPF is a general purpose RISC instruction set and was originally designed for the
purpose of writing programs in a subset of C which can be compiled into BPF instructions
through a compiler back end (e.g. LLVM), so that the kernel can later on map them
through an in-kernel JIT compiler into native opcodes for optimal execution performance
inside the kernel.

The advantages for pushing these instructions into the kernel include:

	Making the kernel programmable without having to cross kernel / user space
boundaries. For example, BPF programs related to networking, as in the case of
Cilium, can implement flexible container policies, load balancing and other means
without having to move packets to user space and back into the kernel. State
between BPF programs and kernel / user space can still be shared through maps
whenever needed.

	Given the flexibility of a programmable data path, programs can be heavily optimized
for performance also by compiling out features that are not required for the use cases
the program solves. For example, if a container does not require IPv4, then the BPF
program can be built to only deal with IPv6 in order to save resources in the fast-path.

	In case of networking (e.g. tc and XDP), BPF programs can be updated atomically
without having to restart the kernel, system services or containers, and without
traffic interruptions. Furthermore, any program state can also be maintained
throughout updates via BPF maps.

	BPF provides a stable ABI towards user space, and does not require any third party
kernel modules. BPF is a core part of the Linux kernel that is shipped everywhere,
and guarantees that existing BPF programs keep running with newer kernel versions.
This guarantee is the same guarantee that the kernel provides for system calls with
regard to user space applications. Moreover, BPF programs are portable across
different architectures.

	BPF programs work in concert with the kernel, they make use of existing kernel
infrastructure (e.g. drivers, netdevices, tunnels, protocol stack, sockets) and
tooling (e.g. iproute2) as well as the safety guarantees which the kernel provides.
Unlike kernel modules, BPF programs are verified through an in-kernel verifier in
order to ensure that they cannot crash the kernel, always terminate, etc. XDP
programs, for example, reuse the existing in-kernel drivers and operate on the
provided DMA buffers containing the packet frames without exposing them or an entire
driver to user space as in other models. Moreover, XDP programs reuse the existing
stack instead of bypassing it. BPF can be considered a generic “glue code” to
kernel facilities for crafting programs to solve specific use cases.

The execution of a BPF program inside the kernel is always event-driven! Examples:

	A networking device which has a BPF program attached on its ingress path will
trigger the execution of the program once a packet is received.

	A kernel address which has a kprobe with a BPF program attached will trap once
the code at that address gets executed, which will then invoke the kprobe’s
callback function for instrumentation, subsequently triggering the execution
of the attached BPF program.

BPF consists of eleven 64 bit registers with 32 bit subregisters, a program counter
and a 512 byte large BPF stack space. Registers are named r0 - r10. The
operating mode is 64 bit by default, the 32 bit subregisters can only be accessed
through special ALU (arithmetic logic unit) operations. The 32 bit lower subregisters
zero-extend into 64 bit when they are being written to.

Register r10 is the only register which is read-only and contains the frame pointer
address in order to access the BPF stack space. The remaining r0 - r9
registers are general purpose and of read/write nature.

A BPF program can call into a predefined helper function, which is defined by
the core kernel (never by modules). The BPF calling convention is defined as
follows:

	r0 contains the return value of a helper function call.

	r1 - r5 hold arguments from the BPF program to the kernel helper function.

	r6 - r9 are callee saved registers that will be preserved on helper function call.

The BPF calling convention is generic enough to map directly to x86_64, arm64
and other ABIs, thus all BPF registers map one to one to HW CPU registers, so that a
JIT only needs to issue a call instruction, but no additional extra moves for placing
function arguments. This calling convention was modeled to cover common call
situations without having a performance penalty. Calls with 6 or more arguments
are currently not supported. The helper functions in the kernel which are dedicated
to BPF (BPF_CALL_0() to BPF_CALL_5() functions) are specifically designed
with this convention in mind.

Register r0 is also the register containing the exit value for the BPF program.
The semantics of the exit value are defined by the type of program. Furthermore, when
handing execution back to the kernel, the exit value is passed as a 32 bit value.

Registers r1 - r5 are scratch registers, meaning the BPF program needs to
either spill them to the BPF stack or move them to callee saved registers if these
arguments are to be reused across multiple helper function calls. Spilling means
that the variable in the register is moved to the BPF stack. The reverse operation
of moving the variable from the BPF stack to the register is called filling. The
reason for spilling/filling is due to the limited number of registers.

Upon entering execution of a BPF program, register r1 initially contains the
context for the program. The context is the input argument for the program (similar
to argc/argv pair for a typical C program). BPF is restricted to work on a single
context. The context is defined by the program type, for example, a networking
program can have a kernel representation of the network packet (skb) as the
input argument.

The general operation of BPF is 64 bit to follow the natural model of 64 bit
architectures in order to perform pointer arithmetics, pass pointers but also pass 64
bit values into helper functions, and to allow for 64 bit atomic operations.

The maximum instruction limit per program is restricted to 4096 BPF instructions,
which, by design, means that any program will terminate quickly. Although the
instruction set contains forward as well as backward jumps, the in-kernel BPF
verifier will forbid loops so that termination is always guaranteed. Since BPF
programs run inside the kernel, the verifier’s job is to make sure that these are
safe to run, not affecting the system’s stability. This means that from an instruction
set point of view, loops can be implemented, but the verifier will restrict that.
However, there is also a concept of tail calls that allows for one BPF program to
jump into another one. This, too, comes with an upper nesting limit of 32 calls,
and is usually used to decouple parts of the program logic, for example, into stages.

The instruction format is modeled as two operand instructions, which helps mapping
BPF instructions to native instructions during JIT phase. The instruction set is
of fixed size, meaning every instruction has 64 bit encoding. Currently, 87 instructions
have been implemented and the encoding also allows to extend the set with further
instructions when needed. The instruction encoding of a single 64 bit instruction on a
big-endian machine is defined as a bit sequence from most significant bit (MSB) to least
significant bit (LSB) of op:8, dst_reg:4, src_reg:4, off:16, imm:32.
off and imm is of signed type. The encodings are part of the kernel headers and
defined in linux/bpf.h header, which also includes linux/bpf_common.h.

op defines the actual operation to be performed. Most of the encoding for op
has been reused from cBPF. The operation can be based on register or immediate
operands. The encoding of op itself provides information on which mode to use
(BPF_X for denoting register-based operations, and BPF_K for immediate-based
operations respectively). In the latter case, the destination operand is always
a register. Both dst_reg and src_reg provide additional information about
the register operands to be used (e.g. r0 - r9) for the operation. off
is used in some instructions to provide a relative offset, for example, for addressing
the stack or other buffers available to BPF (e.g. map values, packet data, etc),
or jump targets in jump instructions. imm contains a constant / immediate value.

The available op instructions can be categorized into various instruction
classes. These classes are also encoded inside the op field. The op field
is divided into (from MSB to LSB) code:4, source:1 and class:3. class
is the more generic instruction class, code denotes a specific operational
code inside that class, and source tells whether the source operand is a register
or an immediate value. Possible instruction classes include:

	BPF_LD, BPF_LDX: Both classes are for load operations. BPF_LD is
used for loading a double word as a special instruction spanning two instructions
due to the imm:32 split, and for byte / half-word / word loads of packet data.
The latter was carried over from cBPF mainly in order to keep cBPF to BPF
translations efficient, since they have optimized JIT code. For native BPF
these packet load instructions are less relevant nowadays. BPF_LDX class
holds instructions for byte / half-word / word / double-word loads out of
memory. Memory in this context is generic and could be stack memory, map value
data, packet data, etc.

	BPF_ST, BPF_STX: Both classes are for store operations. Similar to BPF_LDX
the BPF_STX is the store counterpart and is used to store the data from a
register into memory, which, again, can be stack memory, map value, packet data,
etc. BPF_STX also holds special instructions for performing word and double-word
based atomic add operations, which can be used for counters, for example. The
BPF_ST class is similar to BPF_STX by providing instructions for storing
data into memory only that the source operand is an immediate value.

	BPF_ALU, BPF_ALU64: Both classes contain ALU operations. Generally,
BPF_ALU operations are in 32 bit mode and BPF_ALU64 in 64 bit mode.
Both ALU classes have basic operations with source operand which is register-based
and an immediate-based counterpart. Supported by both are add (+), sub (-),
and (&), or (|), left shift (<<), right shift (>>), xor (^),
mul (*), div (/), mod (%), neg (~) operations. Also mov (<X> := <Y>)
was added as a special ALU operation for both classes in both operand modes.
BPF_ALU64 also contains a signed right shift. BPF_ALU additionally
contains endianness conversion instructions for half-word / word / double-word
on a given source register.

	BPF_JMP: This class is dedicated to jump operations. Jumps can be unconditional
and conditional. Unconditional jumps simply move the program counter forward, so
that the next instruction to be executed relative to the current instruction is
off + 1, where off is the constant offset encoded in the instruction. Since
off is signed, the jump can also be performed backwards as long as it does not
create a loop and is within program bounds. Conditional jumps operate on both,
register-based and immediate-based source operands. If the condition in the jump
operations results in true, then a relative jump to off + 1 is performed,
otherwise the next instruction (0 + 1) is performed. This fall-through
jump logic differs compared to cBPF and allows for better branch prediction as it
fits the CPU branch predictor logic more naturally. Available conditions are
jeq (==), jne (!=), jgt (>), jge (>=), jsgt (signed >), jsge
(signed >=), jlt (<), jle (<=), jslt (signed <), jsle (signed
<=) and jset (jump if DST & SRC). Apart from that, there are three
special jump operations within this class: the exit instruction which will leave
the BPF program and return the current value in r0 as a return code, the call
instruction, which will issue a function call into one of the available BPF helper
functions, and a hidden tail call instruction, which will jump into a different
BPF program.

The Linux kernel is shipped with a BPF interpreter which executes programs assembled in
BPF instructions. Even cBPF programs are translated into eBPF programs transparently
in the kernel, except for architectures that still ship with a cBPF JIT and
have not yet migrated to an eBPF JIT.

Currently x86_64, arm64, ppc64, s390x, mips64, sparc64 and
arm architectures come with an in-kernel eBPF JIT compiler.

All BPF handling such as loading of programs into the kernel or creation of BPF maps
is managed through a central bpf() system call. It is also used for managing map
entries (lookup / update / delete), and making programs as well as maps persistent
in the BPF file system through pinning.

Helper Functions

Helper functions are a concept which enables BPF programs to consult a core kernel
defined set of function calls in order to retrieve / push data from / to the
kernel. Available helper functions may differ for each BPF program type,
for example, BPF programs attached to sockets are only allowed to call into
a subset of helpers compared to BPF programs attached to the tc layer.
Encapsulation and decapsulation helpers for lightweight tunneling constitute
an example of functions which are only available to lower tc layers, whereas
event output helpers for pushing notifications to user space are available to
tc and XDP programs.

Each helper function is implemented with a commonly shared function signature
similar to system calls. The signature is defined as:

u64 fn(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)

The calling convention as described in the previous section applies to all
BPF helper functions.

The kernel abstracts helper functions into macros BPF_CALL_0() to BPF_CALL_5()
which are similar to those of system calls. The following example is an extract
from a helper function which updates map elements by calling into the
corresponding map implementation callbacks:

BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
 void *, value, u64, flags)
{
 WARN_ON_ONCE(!rcu_read_lock_held());
 return map->ops->map_update_elem(map, key, value, flags);
}

const struct bpf_func_proto bpf_map_update_elem_proto = {
 .func = bpf_map_update_elem,
 .gpl_only = false,
 .ret_type = RET_INTEGER,
 .arg1_type = ARG_CONST_MAP_PTR,
 .arg2_type = ARG_PTR_TO_MAP_KEY,
 .arg3_type = ARG_PTR_TO_MAP_VALUE,
 .arg4_type = ARG_ANYTHING,
};

There are various advantages of this approach: while cBPF overloaded its
load instructions in order to fetch data at an impossible packet offset to
invoke auxiliary helper functions, each cBPF JIT needed to implement support
for such a cBPF extension. In case of eBPF, each newly added helper function
will be JIT compiled in a transparent and efficient way, meaning that the JIT
compiler only needs to emit a call instruction since the register mapping
is made in such a way that BPF register assignments already match the
underlying architecture’s calling convention. This allows for easily extending
the core kernel with new helper functionality. All BPF helper functions are
part of the core kernel and cannot be extended or added through kernel modules.

The aforementioned function signature also allows the verifier to perform type
checks. The above struct bpf_func_proto is used to hand all the necessary
information which need to be known about the helper to the verifier, so that
the verifier can make sure that the expected types from the helper match the
current contents of the BPF program’s analyzed registers.

Argument types can range from passing in any kind of value up to restricted
contents such as a pointer / size pair for the BPF stack buffer, which the
helper should read from or write to. In the latter case, the verifier can also
perform additional checks, for example, whether the buffer was previously
initialized.

The list of available BPF helper functions is rather long and constantly growing,
for example, at the time of this writing, tc BPF programs can choose from 38
different BPF helpers. The kernel’s struct bpf_verifier_ops contains a
get_func_proto callback function that provides the mapping of a specific
enum bpf_func_id to one of the available helpers for a given BPF program
type.

Maps

[image: _images/bpf_map.png]
Maps are efficient key / value stores that reside in kernel space. They can be
accessed from a BPF program in order to keep state among multiple BPF program
invocations. They can also be accessed through file descriptors from user space
and can be arbitrarily shared with other BPF programs or user space applications.

BPF programs which share maps with each other are not required to be of the same
program type, for example, tracing programs can share maps with networking programs.
A single BPF program can currently access up to 64 different maps directly.

Map implementations are provided by the core kernel. There are generic maps with
per-CPU and non-per-CPU flavor that can read / write arbitrary data, but there are
also a few non-generic maps that are used along with helper functions.

Generic maps currently available are BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH, BPF_MAP_TYPE_PERCPU_ARRAY, BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH and BPF_MAP_TYPE_LPM_TRIE. They all use the
same common set of BPF helper functions in order to perform lookup, update or
delete operations while implementing a different backend with differing semantics
and performance characteristics.

Non-generic maps that are currently in the kernel are BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_STACK_TRACE, BPF_MAP_TYPE_ARRAY_OF_MAPS,
BPF_MAP_TYPE_HASH_OF_MAPS. For example, BPF_MAP_TYPE_PROG_ARRAY is an
array map which holds other BPF programs, BPF_MAP_TYPE_ARRAY_OF_MAPS and
BPF_MAP_TYPE_HASH_OF_MAPS both hold pointers to other maps such that entire
BPF maps can be atomically replaced at runtime. These types of maps tackle a
specific issue which was unsuitable to be implemented solely through a BPF helper
function since additional (non-data) state is required to be held across BPF
program invocations.

Object Pinning

[image: _images/bpf_fs.png]
BPF maps and programs act as a kernel resource and can only be accessed through
file descriptors, backed by anonymous inodes in the kernel. Advantages, but
also a number of disadvantages come along with them:

User space applications can make use of most file descriptor related APIs,
file descriptor passing for Unix domain sockets work transparently, etc, but
at the same time, file descriptors are limited to a processes’ lifetime,
which makes options like map sharing rather cumbersome to carry out.

Thus, it brings a number of complications for certain use cases such as iproute2,
where tc or XDP sets up and loads the program into the kernel and terminates
itself eventually. With that, also access to maps is unavailable from user
space side, where it could otherwise be useful, for example, when maps are
shared between ingress and egress locations of the data path. Also, third
party applications may wish to monitor or update map contents during BPF
program runtime.

To overcome this limitation, a minimal kernel space BPF file system has been
implemented, where BPF map and programs can be pinned to, a process called
object pinning. The BPF system call has therefore been extended with two new
commands which can pin (BPF_OBJ_PIN) or retrieve (BPF_OBJ_GET) a
previously pinned object.

For instance, tools such as tc make use of this infrastructure for sharing
maps on ingress and egress. The BPF related file system is not a singleton,
it does support multiple mount instances, hard and soft links, etc.

Tail Calls

[image: _images/bpf_tailcall.png]
Another concept that can be used with BPF is called tail calls. Tail calls can
be seen as a mechanism that allows one BPF program to call another, without
returning back to the old program. Such a call has minimal overhead as unlike
function calls, it is implemented as a long jump, reusing the same stack frame.

Such programs are verified independently of each other, thus for transferring
state, either per-CPU maps as scratch buffers or in case of tc programs, skb
fields such as the cb[] area must be used.

Only programs of the same type can be tail called, and they also need to match
in terms of JIT compilation, thus either JIT compiled or only interpreted programs
can be invoked, but not mixed together.

There are two components involved for carrying out tail calls: the first part
needs to setup a specialized map called program array (BPF_MAP_TYPE_PROG_ARRAY)
that can be populated by user space with key / values, where values are the
file descriptors of the tail called BPF programs, the second part is a
bpf_tail_call() helper where the context, a reference to the program array
and the lookup key is passed to. Then the kernel inlines this helper call
directly into a specialized BPF instruction. Such a program array is currently
write-only from user space side.

The kernel looks up the related BPF program from the passed file descriptor
and atomically replaces program pointers at the given map slot. When no map
entry has been found at the provided key, the kernel will just “fall through”
and continue execution of the old program with the instructions following
after the bpf_tail_call(). Tail calls are a powerful utility, for example,
parsing network headers could be structured through tail calls. During runtime,
functionality can be added or replaced atomically, and thus altering the BPF
program’s execution behavior.

BPF to BPF Calls

[image: _images/bpf_call.png]
Aside from BPF helper calls and BPF tail calls, a more recent feature that has
been added to the BPF core infrastructure is BPF to BPF calls. Before this
feature was introduced into the kernel, a typical BPF C program had to declare
any reusable code that, for example, resides in headers as always_inline
such that when LLVM compiles and generates the BPF object file all these
functions were inlined and therefore duplicated many times in the resulting
object file, artificially inflating its code size:

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

#ifndef __inline
define __inline \
 inline __attribute__((always_inline))
#endif

static __inline int foo(void)
{
 return XDP_DROP;
}

__section("prog")
int xdp_drop(struct xdp_md *ctx)
{
 return foo();
}

char __license[] __section("license") = "GPL";

The main reason why this was necessary was due to lack of function call support
in the BPF program loader as well as verifier, interpreter and JITs. Starting
with Linux kernel 4.16 and LLVM 6.0 this restriction got lifted and BPF programs
no longer need to use always_inline everywhere. Thus, the prior shown BPF
example code can then be rewritten more naturally as:

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

static int foo(void)
{
 return XDP_DROP;
}

__section("prog")
int xdp_drop(struct xdp_md *ctx)
{
 return foo();
}

char __license[] __section("license") = "GPL";

Mainstream BPF JIT compilers like x86_64 and arm64 support BPF to BPF
calls today with others following in near future. BPF to BPF call is an
important performance optimization since it heavily reduces the generated BPF
code size and therefore becomes friendlier to a CPU’s instruction cache.

The calling convention known from BPF helper function applies to BPF to BPF
calls just as well, meaning r1 up to r5 are for passing arguments to
the callee and the result is returned in r0. r1 to r5 are scratch
registers whereas r6 to r9 preserved across calls the usual way. The
maximum number of nesting calls respectively allowed call frames is 8.
A caller can pass pointers (e.g. to the caller’s stack frame) down to the
callee, but never vice versa.

BPF to BPF calls are currently incompatible with the use of BPF tail calls,
since the latter requires to reuse the current stack setup as-is, whereas
the former adds additional stack frames and thus changes the expected layout
for tail calls.

BPF JIT compilers emit separate images for each function body and later fix
up the function call addresses in the image in a final JIT pass. This has
proven to require minimal changes to the JITs in that they can treat BPF to
BPF calls as conventional BPF helper calls.

JIT

[image: _images/bpf_jit.png]
The 64 bit x86_64, arm64, ppc64, s390x, mips64, sparc64
and 32 bit arm, x86_32 architectures are all shipped with an in-kernel
eBPF JIT compiler, also all of them are feature equivalent and can be enabled
through:

echo 1 > /proc/sys/net/core/bpf_jit_enable

The 32 bit mips, ppc and sparc architectures currently have a cBPF
JIT compiler. The mentioned architectures still having a cBPF JIT as well as all
remaining architectures supported by the Linux kernel which do not have a BPF JIT
compiler at all need to run eBPF programs through the in-kernel interpreter.

In the kernel’s source tree, eBPF JIT support can be easily determined through
issuing a grep for HAVE_EBPF_JIT:

git grep HAVE_EBPF_JIT arch/
arch/arm/Kconfig: select HAVE_EBPF_JIT if !CPU_ENDIAN_BE32
arch/arm64/Kconfig: select HAVE_EBPF_JIT
arch/powerpc/Kconfig: select HAVE_EBPF_JIT if PPC64
arch/mips/Kconfig: select HAVE_EBPF_JIT if (64BIT && !CPU_MICROMIPS)
arch/s390/Kconfig: select HAVE_EBPF_JIT if PACK_STACK && HAVE_MARCH_Z196_FEATURES
arch/sparc/Kconfig: select HAVE_EBPF_JIT if SPARC64
arch/x86/Kconfig: select HAVE_EBPF_JIT if X86_64

JIT compilers speed up execution of the BPF program significantly since they
reduce the per instruction cost compared to the interpreter. Often instructions
can be mapped 1:1 with native instructions of the underlying architecture. This
also reduces the resulting executable image size and is therefore more
instruction cache friendly to the CPU. In particular in case of CISC instruction
sets such as x86, the JITs are optimized for emitting the shortest possible
opcodes for a given instruction to shrink the total necessary size for the
program translation.

Hardening

BPF locks the entire BPF interpreter image (struct bpf_prog) as well
as the JIT compiled image (struct bpf_binary_header) in the kernel as
read-only during the program’s lifetime in order to prevent the code from
potential corruptions. Any corruption happening at that point, for example,
due to some kernel bugs will result in a general protection fault and thus
crash the kernel instead of allowing the corruption to happen silently.

Architectures that support setting the image memory as read-only can be
determined through:

$ git grep ARCH_HAS_SET_MEMORY | grep select
arch/arm/Kconfig: select ARCH_HAS_SET_MEMORY
arch/arm64/Kconfig: select ARCH_HAS_SET_MEMORY
arch/s390/Kconfig: select ARCH_HAS_SET_MEMORY
arch/x86/Kconfig: select ARCH_HAS_SET_MEMORY

The option CONFIG_ARCH_HAS_SET_MEMORY is not configurable, thanks to
which this protection is always built-in. Other architectures might follow
in the future.

In case of the x86_64 JIT compiler, the JITing of the indirect jump from
the use of tail calls is realized through a retpoline in case CONFIG_RETPOLINE
has been set which is the default at the time of writing in most modern Linux
distributions.

In case of /proc/sys/net/core/bpf_jit_harden set to 1 additional
hardening steps for the JIT compilation take effect for unprivileged users.
This effectively trades off their performance slightly by decreasing a
(potential) attack surface in case of untrusted users operating on the
system. The decrease in program execution still results in better performance
compared to switching to interpreter entirely.

Currently, enabling hardening will blind all user provided 32 bit and 64 bit
constants from the BPF program when it gets JIT compiled in order to prevent
JIT spraying attacks which inject native opcodes as immediate values. This is
problematic as these immediate values reside in executable kernel memory,
therefore a jump that could be triggered from some kernel bug would jump to
the start of the immediate value and then execute these as native instructions.

JIT constant blinding prevents this due to randomizing the actual instruction,
which means the operation is transformed from an immediate based source operand
to a register based one through rewriting the instruction by splitting the
actual load of the value into two steps: 1) load of a blinded immediate
value rnd ^ imm into a register, 2) xoring that register with rnd
such that the original imm immediate then resides in the register and
can be used for the actual operation. The example was provided for a load
operation, but really all generic operations are blinded.

Example of JITing a program with hardening disabled:

echo 0 > /proc/sys/net/core/bpf_jit_harden

 ffffffffa034f5e9 + <x>:
 [...]
 39: mov $0xa8909090,%eax
 3e: mov $0xa8909090,%eax
 43: mov $0xa8ff3148,%eax
 48: mov $0xa89081b4,%eax
 4d: mov $0xa8900bb0,%eax
 52: mov $0xa810e0c1,%eax
 57: mov $0xa8908eb4,%eax
 5c: mov $0xa89020b0,%eax
 [...]

The same program gets constant blinded when loaded through BPF
as an unprivileged user in the case hardening is enabled:

echo 1 > /proc/sys/net/core/bpf_jit_harden

 ffffffffa034f1e5 + <x>:
 [...]
 39: mov $0xe1192563,%r10d
 3f: xor $0x4989b5f3,%r10d
 46: mov %r10d,%eax
 49: mov $0xb8296d93,%r10d
 4f: xor $0x10b9fd03,%r10d
 56: mov %r10d,%eax
 59: mov $0x8c381146,%r10d
 5f: xor $0x24c7200e,%r10d
 66: mov %r10d,%eax
 69: mov $0xeb2a830e,%r10d
 6f: xor $0x43ba02ba,%r10d
 76: mov %r10d,%eax
 79: mov $0xd9730af,%r10d
 7f: xor $0xa5073b1f,%r10d
 86: mov %r10d,%eax
 89: mov $0x9a45662b,%r10d
 8f: xor $0x325586ea,%r10d
 96: mov %r10d,%eax
 [...]

Both programs are semantically the same, only that none of the
original immediate values are visible anymore in the disassembly of
the second program.

At the same time, hardening also disables any JIT kallsyms exposure
for privileged users, preventing that JIT image addresses are not
exposed to /proc/kallsyms anymore.

Moreover, the Linux kernel provides the option CONFIG_BPF_JIT_ALWAYS_ON
which removes the entire BPF interpreter from the kernel and permanently
enables the JIT compiler. This has been developed as part of a mitigation
in the context of Spectre v2 such that when used in a VM-based setting,
the guest kernel is not going to reuse the host kernel’s BPF interpreter
when mounting an attack anymore. For container-based environments, the
CONFIG_BPF_JIT_ALWAYS_ON configuration option is optional, but in
case JITs are enabled there anyway, the interpreter may as well be compiled
out to reduce the kernel’s complexity. Thus, it is also generally
recommended for widely used JITs in case of main stream architectures
such as x86_64 and arm64.

Last but not least, the kernel offers an option to disable the use of
the bpf(2) system call for unprivileged users through the
/proc/sys/kernel/unprivileged_bpf_disabled sysctl knob. This is
on purpose a one-time kill switch, meaning once set to 1, there is
no option to reset it back to 0 until a new kernel reboot. When
set only CAP_SYS_ADMIN privileged processes out of the initial
namespace are allowed to use the bpf(2) system call from that
point onwards. Upon start, Cilium sets this knob to 1 as well.

echo 1 > /proc/sys/kernel/unprivileged_bpf_disabled

Offloads

[image: _images/bpf_offload.png]
Networking programs in BPF, in particular for tc and XDP do have an
offload-interface to hardware in the kernel in order to execute BPF
code directly on the NIC.

Currently, the nfp driver from Netronome has support for offloading
BPF through a JIT compiler which translates BPF instructions to an
instruction set implemented against the NIC. This includes offloading
of BPF maps to the NIC as well, thus the offloaded BPF program can
perform map lookups, updates and deletions.

Toolchain

Current user space tooling, introspection facilities and kernel control knobs around
BPF are discussed in this section. Note, the tooling and infrastructure around BPF
is still rapidly evolving and thus may not provide a complete picture of all available
tools.

Development Environment

A step by step guide for setting up a development environment for BPF can be found
below for both Fedora and Ubuntu. This will guide you through building, installing
and testing a development kernel as well as building and installing iproute2.

The step of manually building iproute2 and Linux kernel is usually not necessary
given that major distributions already ship recent enough kernels by default, but
would be needed for testing bleeding edge versions or contributing BPF patches to
iproute2 and to the Linux kernel, respectively. Similarly, for debugging and
introspection purposes building bpftool is optional, but recommended.

Fedora

The following applies to Fedora 25 or later:

$ sudo dnf install -y git gcc ncurses-devel elfutils-libelf-devel bc \
 openssl-devel libcap-devel clang llvm graphviz bison flex glibc-static

Note

If you are running some other Fedora derivative and dnf is missing,
try using yum instead.

Ubuntu

The following applies to Ubuntu 17.04 or later:

$ sudo apt-get install -y make gcc libssl-dev bc libelf-dev libcap-dev \
 clang gcc-multilib llvm libncurses5-dev git pkg-config libmnl-dev bison flex \
 graphviz

openSUSE Tumbleweed

The following applies to openSUSE Tumbleweed and openSUSE Leap 15.0 or later:

$ sudo zypper install -y git gcc ncurses-devel libelf-devel bc libopenssl-devel \
libcap-devel clang llvm graphviz bison flex glibc-devel-static

Compiling the Kernel

Development of new BPF features for the Linux kernel happens inside the net-next
git tree, latest BPF fixes in the net tree. The following command will obtain
the kernel source for the net-next tree through git:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git

If the git commit history is not of interest, then --depth 1 will clone the
tree much faster by truncating the git history only to the most recent commit.

In case the net tree is of interest, it can be cloned from this url:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git

There are dozens of tutorials in the Internet on how to build Linux kernels, one
good resource is the Kernel Newbies website (https://kernelnewbies.org/KernelBuild)
that can be followed with one of the two git trees mentioned above.

Make sure that the generated .config file contains the following CONFIG_*
entries for running BPF. These entries are also needed for Cilium.

CONFIG_CGROUP_BPF=y
CONFIG_BPF=y
CONFIG_BPF_SYSCALL=y
CONFIG_NET_SCH_INGRESS=m
CONFIG_NET_CLS_BPF=m
CONFIG_NET_CLS_ACT=y
CONFIG_BPF_JIT=y
CONFIG_LWTUNNEL_BPF=y
CONFIG_HAVE_EBPF_JIT=y
CONFIG_BPF_EVENTS=y
CONFIG_TEST_BPF=m

Some of the entries cannot be adjusted through make menuconfig. For example,
CONFIG_HAVE_EBPF_JIT is selected automatically if a given architecture does
come with an eBPF JIT. In this specific case, CONFIG_HAVE_EBPF_JIT is optional
but highly recommended. An architecture not having an eBPF JIT compiler will need
to fall back to the in-kernel interpreter with the cost of being less efficient
executing BPF instructions.

Verifying the Setup

After you have booted into the newly compiled kernel, navigate to the BPF selftest
suite in order to test BPF functionality (current working directory points to
the root of the cloned git tree):

$ cd tools/testing/selftests/bpf/
$ make
$ sudo ./test_verifier

The verifier tests print out all the current checks being performed. The summary
at the end of running all tests will dump information of test successes and
failures:

Summary: 847 PASSED, 0 SKIPPED, 0 FAILED

Note

For kernel releases 4.16+ the BPF selftest has a dependency on LLVM 6.0+
caused by the BPF function calls which do not need to be inlined
anymore. See section BPF to BPF Calls or the cover letter mail
from the kernel patch (https://lwn.net/Articles/741773/) for more information.
Not every BPF program has a dependency on LLVM 6.0+ if it does not
use this new feature. If your distribution does not provide LLVM 6.0+
you may compile it by following the instruction in the LLVM
section.

In order to run through all BPF selftests, the following command is needed:

$ sudo make run_tests

If you see any failures, please contact us on Slack with the full test output.

Compiling iproute2

Similar to the net (fixes only) and net-next (new features) kernel trees,
the iproute2 git tree has two branches, namely master and net-next. The
master branch is based on the net tree and the net-next branch is
based against the net-next kernel tree. This is necessary, so that changes
in header files can be synchronized in the iproute2 tree.

In order to clone the iproute2 master branch, the following command can
be used:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/iproute2/iproute2.git

Similarly, to clone into mentioned net-next branch of iproute2, run the
following:

$ git clone -b net-next git://git.kernel.org/pub/scm/linux/kernel/git/iproute2/iproute2.git

After that, proceed with the build and installation:

$ cd iproute2/
$./configure --prefix=/usr
TC schedulers
 ATM no

libc has setns: yes
SELinux support: yes
ELF support: yes
libmnl support: no
Berkeley DB: no

docs: latex: no
 WARNING: no docs can be built from LaTeX files
 sgml2html: no
 WARNING: no HTML docs can be built from SGML
$ make
[...]
$ sudo make install

Ensure that the configure script shows ELF support: yes, so that iproute2
can process ELF files from LLVM’s BPF back end. libelf was listed in the instructions
for installing the dependencies in case of Fedora and Ubuntu earlier.

Compiling bpftool

bpftool is an essential tool around debugging and introspection of BPF programs
and maps. It is part of the kernel tree and available under tools/bpf/bpftool/.

Make sure to have cloned either the net or net-next kernel tree as described
earlier. In order to build and install bpftool, the following steps are required:

$ cd <kernel-tree>/tools/bpf/bpftool/
$ make
Auto-detecting system features:
... libbfd: [on]
... disassembler-four-args: [OFF]

 CC xlated_dumper.o
 CC prog.o
 CC common.o
 CC cgroup.o
 CC main.o
 CC json_writer.o
 CC cfg.o
 CC map.o
 CC jit_disasm.o
 CC disasm.o
make[1]: Entering directory '/home/foo/trees/net/tools/lib/bpf'

Auto-detecting system features:
... libelf: [on]
... bpf: [on]

 CC libbpf.o
 CC bpf.o
 CC nlattr.o
 LD libbpf-in.o
 LINK libbpf.a
make[1]: Leaving directory '/home/foo/trees/bpf/tools/lib/bpf'
 LINK bpftool
$ sudo make install

LLVM

LLVM is currently the only compiler suite providing a BPF back end. gcc does
not support BPF at this point.

The BPF back end was merged into LLVM’s 3.7 release. Major distributions enable
the BPF back end by default when they package LLVM, therefore installing clang
and llvm is sufficient on most recent distributions to start compiling C
into BPF object files.

The typical workflow is that BPF programs are written in C, compiled by LLVM
into object / ELF files, which are parsed by user space BPF ELF loaders (such as
iproute2 or others), and pushed into the kernel through the BPF system call.
The kernel verifies the BPF instructions and JITs them, returning a new file
descriptor for the program, which then can be attached to a subsystem (e.g.
networking). If supported, the subsystem could then further offload the BPF
program to hardware (e.g. NIC).

For LLVM, BPF target support can be checked, for example, through the following:

$ llc --version
LLVM (http://llvm.org/):
LLVM version 3.8.1
Optimized build.
Default target: x86_64-unknown-linux-gnu
Host CPU: skylake

Registered Targets:
 [...]
 bpf - BPF (host endian)
 bpfeb - BPF (big endian)
 bpfel - BPF (little endian)
 [...]

By default, the bpf target uses the endianness of the CPU it compiles on,
meaning that if the CPU’s endianness is little endian, the program is represented
in little endian format as well, and if the CPU’s endianness is big endian,
the program is represented in big endian. This also matches the runtime behavior
of BPF, which is generic and uses the CPU’s endianness it runs on in order
to not disadvantage architectures in any of the format.

For cross-compilation, the two targets bpfeb and bpfel were introduced,
thanks to that BPF programs can be compiled on a node running in one endianness
(e.g. little endian on x86) and run on a node in another endianness format (e.g.
big endian on arm). Note that the front end (clang) needs to run in the target
endianness as well.

Using bpf as a target is the preferred way in situations where no mixture of
endianness applies. For example, compilation on x86_64 results in the same
output for the targets bpf and bpfel due to being little endian, therefore
scripts triggering a compilation also do not have to be endian aware.

A minimal, stand-alone XDP drop program might look like the following example
(xdp-example.c):

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

__section("prog")
int xdp_drop(struct xdp_md *ctx)
{
 return XDP_DROP;
}

char __license[] __section("license") = "GPL";

It can then be compiled and loaded into the kernel as follows:

$ clang -O2 -Wall -target bpf -c xdp-example.c -o xdp-example.o
ip link set dev em1 xdp obj xdp-example.o

Note

Attaching an XDP BPF program to a network device as above requires
Linux 4.11 with a device that supports XDP, or Linux 4.12 or later.

For the generated object file LLVM (>= 3.9) uses the official BPF machine value,
that is, EM_BPF (decimal: 247 / hex: 0xf7). In this example, the program
has been compiled with bpf target under x86_64, therefore LSB (as opposed
to MSB) is shown regarding endianness:

$ file xdp-example.o
xdp-example.o: ELF 64-bit LSB relocatable, *unknown arch 0xf7* version 1 (SYSV), not stripped

readelf -a xdp-example.o will dump further information about the ELF file, which can
sometimes be useful for introspecting generated section headers, relocation entries
and the symbol table.

In the unlikely case where clang and LLVM need to be compiled from scratch, the
following commands can be used:

$ git clone http://llvm.org/git/llvm.git
$ cd llvm/tools
$ git clone --depth 1 http://llvm.org/git/clang.git
$ cd ..; mkdir build; cd build
$ cmake .. -DLLVM_TARGETS_TO_BUILD="BPF;X86" -DBUILD_SHARED_LIBS=OFF -DCMAKE_BUILD_TYPE=Release -DLLVM_BUILD_RUNTIME=OFF
$ make -j $(getconf _NPROCESSORS_ONLN)

$./bin/llc --version
LLVM (http://llvm.org/):
LLVM version x.y.zsvn
Optimized build.
Default target: x86_64-unknown-linux-gnu
Host CPU: skylake

Registered Targets:
 bpf - BPF (host endian)
 bpfeb - BPF (big endian)
 bpfel - BPF (little endian)
 x86 - 32-bit X86: Pentium-Pro and above
 x86-64 - 64-bit X86: EM64T and AMD64

$ export PATH=$PWD/bin:$PATH # add to ~/.bashrc

Make sure that --version mentions Optimized build., otherwise the
compilation time for programs when having LLVM in debugging mode will
significantly increase (e.g. by 10x or more).

For debugging, clang can generate the assembler output as follows:

$ clang -O2 -S -Wall -target bpf -c xdp-example.c -o xdp-example.S
$ cat xdp-example.S
 .text
 .section prog,"ax",@progbits
 .globl xdp_drop
 .p2align 3
xdp_drop: # @xdp_drop
BB#0:
 r0 = 1
 exit

 .section license,"aw",@progbits
 .globl __license # @__license
__license:
 .asciz "GPL"

Starting from LLVM’s release 6.0, there is also assembler parser support. You can
program using BPF assembler directly, then use llvm-mc to assemble it into an
object file. For example, you can assemble the xdp-example.S listed above back
into object file using:

$ llvm-mc -triple bpf -filetype=obj -o xdp-example.o xdp-example.S

Furthermore, more recent LLVM versions (>= 4.0) can also store debugging
information in dwarf format into the object file. This can be done through
the usual workflow by adding -g for compilation.

$ clang -O2 -g -Wall -target bpf -c xdp-example.c -o xdp-example.o
$ llvm-objdump -S -no-show-raw-insn xdp-example.o

xdp-example.o: file format ELF64-BPF

Disassembly of section prog:
xdp_drop:
; {
 0: r0 = 1
; return XDP_DROP;
 1: exit

The llvm-objdump tool can then annotate the assembler output with the
original C code used in the compilation. The trivial example in this case
does not contain much C code, however, the line numbers shown as 0:
and 1: correspond directly to the kernel’s verifier log.

This means that in case BPF programs get rejected by the verifier, llvm-objdump
can help to correlate the instructions back to the original C code, which is
highly useful for analysis.

ip link set dev em1 xdp obj xdp-example.o verb

Prog section 'prog' loaded (5)!
 - Type: 6
 - Instructions: 2 (0 over limit)
 - License: GPL

Verifier analysis:

0: (b7) r0 = 1
1: (95) exit
processed 2 insns

As it can be seen in the verifier analysis, the llvm-objdump output dumps
the same BPF assembler code as the kernel.

Leaving out the -no-show-raw-insn option will also dump the raw
struct bpf_insn as hex in front of the assembly:

$ llvm-objdump -S xdp-example.o

xdp-example.o: file format ELF64-BPF

Disassembly of section prog:
xdp_drop:
; {
 0: b7 00 00 00 01 00 00 00 r0 = 1
; return foo();
 1: 95 00 00 00 00 00 00 00 exit

For LLVM IR debugging, the compilation process for BPF can be split into
two steps, generating a binary LLVM IR intermediate file xdp-example.bc, which
can later on be passed to llc:

$ clang -O2 -Wall -target bpf -emit-llvm -c xdp-example.c -o xdp-example.bc
$ llc xdp-example.bc -march=bpf -filetype=obj -o xdp-example.o

The generated LLVM IR can also be dumped in human readable format through:

$ clang -O2 -Wall -emit-llvm -S -c xdp-example.c -o -

LLVM is able to attach debug information such as the description of used data
types in the program to the generated BPF object file. By default this is in
DWARF format.

A heavily simplified version used by BPF is called BTF (BPF Type Format). The
resulting DWARF can be converted into BTF and is later on loaded into the
kernel through BPF object loaders. The kernel will then verify the BTF data
for correctness and keeps track of the data types the BTF data is containing.

BPF maps can then be annotated with key and value types out of the BTF data
such that a later dump of the map exports the map data along with the related
type information. This allows for better introspection, debugging and value
pretty printing. Note that BTF data is a generic debugging data format and
as such any DWARF to BTF converted data can be loaded (e.g. kernel’s vmlinux
DWARF data could be converted to BTF and loaded). Latter is in particular
useful for BPF tracing in the future.

In order to generate BTF from DWARF debugging information, elfutils (>= 0.173)
is needed. If that is not available, then adding the -mattr=dwarfris option
to the llc command is required during compilation:

$ llc -march=bpf -mattr=help |& grep dwarfris
 dwarfris - Disable MCAsmInfo DwarfUsesRelocationsAcrossSections.
 [...]

The reason using -mattr=dwarfris is because the flag dwarfris (dwarf
relocation in section) disables DWARF cross-section relocations between DWARF
and the ELF’s symbol table since libdw does not have proper BPF relocation
support, and therefore tools like pahole would otherwise not be able to
properly dump structures from the object.

elfutils (>= 0.173) implements proper BPF relocation support and therefore
the same can be achieved without the -mattr=dwarfris option. Dumping
the structures from the object file could be done from either DWARF or BTF
information. pahole uses the LLVM emitted DWARF information at this
point, however, future pahole versions could rely on BTF if available.

For converting DWARF into BTF, a recent pahole version (>= 1.12) is required.
A recent pahole version can also be obtained from its official git repository
if not available from one of the distribution packages:

$ git clone https://git.kernel.org/pub/scm/devel/pahole/pahole.git

pahole comes with the option -J to convert DWARF into BTF from an
object file. pahole can be probed for BTF support as follows (note that
the llvm-objcopy tool is required for pahole as well, so check its
presence, too):

$ pahole --help | grep BTF
-J, --btf_encode Encode as BTF

Generating debugging information also requires the front end to generate
source level debug information by passing -g to the clang command
line. Note that -g is needed independently of whether llc’s
dwarfris option is used. Full example for generating the object file:

$ clang -O2 -g -Wall -target bpf -emit-llvm -c xdp-example.c -o xdp-example.bc
$ llc xdp-example.bc -march=bpf -mattr=dwarfris -filetype=obj -o xdp-example.o

Alternatively, by using clang only to build a BPF program with debugging
information (again, the dwarfris flag can be omitted when having proper
elfutils version):

$ clang -target bpf -O2 -g -c -Xclang -target-feature -Xclang +dwarfris -c xdp-example.c -o xdp-example.o

After successful compilation pahole can be used to properly dump structures
of the BPF program based on the DWARF information:

$ pahole xdp-example.o
struct xdp_md {
 __u32 data; /* 0 4 */
 __u32 data_end; /* 4 4 */
 __u32 data_meta; /* 8 4 */

 /* size: 12, cachelines: 1, members: 3 */
 /* last cacheline: 12 bytes */
};

Through the option -J pahole can eventually generate the BTF from
DWARF. In the object file DWARF data will still be retained alongside the
newly added BTF data. Full clang and pahole example combined:

$ clang -target bpf -O2 -Wall -g -c -Xclang -target-feature -Xclang +dwarfris -c xdp-example.c -o xdp-example.o
$ pahole -J xdp-example.o

The presence of a .BTF section can be seen through readelf tool:

$ readelf -a xdp-example.o
[...]
 [18] .BTF PROGBITS 0000000000000000 00000671
[...]

BPF loaders such as iproute2 will detect and load the BTF section, so that
BPF maps can be annotated with type information.

LLVM by default uses the BPF base instruction set for generating code
in order to make sure that the generated object file can also be loaded
with older kernels such as long-term stable kernels (e.g. 4.9+).

However, LLVM has a -mcpu selector for the BPF back end in order to
select different versions of the BPF instruction set, namely instruction
set extensions on top of the BPF base instruction set in order to generate
more efficient and smaller code.

Available -mcpu options can be queried through:

$ llc -march bpf -mcpu=help
Available CPUs for this target:

 generic - Select the generic processor.
 probe - Select the probe processor.
 v1 - Select the v1 processor.
 v2 - Select the v2 processor.
[...]

The generic processor is the default processor, which is also the
base instruction set v1 of BPF. Options v1 and v2 are typically
useful in an environment where the BPF program is being cross compiled
and the target host where the program is loaded differs from the one
where it is compiled (and thus available BPF kernel features might differ
as well).

The recommended -mcpu option which is also used by Cilium internally is
-mcpu=probe! Here, the LLVM BPF back end queries the kernel for availability
of BPF instruction set extensions and when found available, LLVM will use
them for compiling the BPF program whenever appropriate.

A full command line example with llc’s -mcpu=probe:

$ clang -O2 -Wall -target bpf -emit-llvm -c xdp-example.c -o xdp-example.bc
$ llc xdp-example.bc -march=bpf -mcpu=probe -filetype=obj -o xdp-example.o

Generally, LLVM IR generation is architecture independent. There are
however a few differences when using clang -target bpf versus
leaving -target bpf out and thus using clang’s default target which,
depending on the underlying architecture, might be x86_64, arm64
or others.

Quoting from the kernel’s Documentation/bpf/bpf_devel_QA.txt:

	BPF programs may recursively include header file(s) with file scope
inline assembly codes. The default target can handle this well, while
bpf target may fail if bpf backend assembler does not understand
these assembly codes, which is true in most cases.

	When compiled without -g, additional elf sections, e.g., .eh_frame
and .rela.eh_frame, may be present in the object file with default
target, but not with bpf target.

	The default target may turn a C switch statement into a switch table
lookup and jump operation. Since the switch table is placed in the
global read-only section, the bpf program will fail to load.
The bpf target does not support switch table optimization. The clang
option -fno-jump-tables can be used to disable switch table
generation.

	For clang -target bpf, it is guaranteed that pointer or long /
unsigned long types will always have a width of 64 bit, no matter
whether underlying clang binary or default target (or kernel) is
32 bit. However, when native clang target is used, then it will
compile these types based on the underlying architecture’s
conventions, meaning in case of 32 bit architecture, pointer or
long / unsigned long types e.g. in BPF context structure will have
width of 32 bit while the BPF LLVM back end still operates in 64 bit.

The native target is mostly needed in tracing for the case of walking
the kernel’s struct pt_regs that maps CPU registers, or other kernel
structures where CPU’s register width matters. In all other cases such
as networking, the use of clang -target bpf is the preferred choice.

Also, LLVM started to support 32-bit subregisters and BPF ALU32 instructions since
LLVM’s release 7.0. A new code generation attribute alu32 is added. When it is
enabled, LLVM will try to use 32-bit subregisters whenever possible, typically
when there are operations on 32-bit types. The associated ALU instructions with
32-bit subregisters will become ALU32 instructions. For example, for the
following sample code:

$ cat 32-bit-example.c
 void cal(unsigned int *a, unsigned int *b, unsigned int *c)
 {
 unsigned int sum = *a + *b;
 *c = sum;
 }

At default code generation, the assembler will looks like:

$ clang -target bpf -emit-llvm -S 32-bit-example.c
$ llc -march=bpf 32-bit-example.ll
$ cat 32-bit-example.s
 cal:
 r1 = *(u32 *)(r1 + 0)
 r2 = *(u32 *)(r2 + 0)
 r2 += r1
 *(u32 *)(r3 + 0) = r2
 exit

64-bit registers are used, hence the addition means 64-bit addition. Now, if you
enable the new 32-bit subregisters support by specifying -mattr=+alu32, then
the assembler will looks like:

$ llc -march=bpf -mattr=+alu32 32-bit-example.ll
$ cat 32-bit-example.s
 cal:
 w1 = *(u32 *)(r1 + 0)
 w2 = *(u32 *)(r2 + 0)
 w2 += w1
 *(u32 *)(r3 + 0) = w2
 exit

w register, meaning 32-bit subregister, will be used instead of 64-bit r
register.

Enable 32-bit subregisters might help reducing type extension instruction
sequences. It could also help kernel eBPF JIT compiler for 32-bit architectures
for which registers pairs are used to model the 64-bit eBPF registers and extra
instructions are needed for manipulating the high 32-bit. Given read from 32-bit
subregister is guaranteed to read from low 32-bit only even though write still
needs to clear the high 32-bit, if the JIT compiler has known the definition of
one register only has subregister reads, then instructions for setting the high
32-bit of the destination could be eliminated.

When writing C programs for BPF, there are a couple of pitfalls to be aware
of, compared to usual application development with C. The following items
describe some of the differences for the BPF model:

	Everything needs to be inlined, there are no function calls (on older
LLVM versions) or shared library calls available.

Shared libraries, etc cannot be used with BPF. However, common library
code used in BPF programs can be placed into header files and included in
the main programs. For example, Cilium makes heavy use of it (see bpf/lib/).
However, this still allows for including header files, for example, from
the kernel or other libraries and reuse their static inline functions or
macros / definitions.

Unless a recent kernel (4.16+) and LLVM (6.0+) is used where BPF to BPF
function calls are supported, then LLVM needs to compile and inline the
entire code into a flat sequence of BPF instructions for a given program
section. In such case, best practice is to use an annotation like __inline
for every library function as shown below. The use of always_inline
is recommended, since the compiler could still decide to uninline large
functions that are only annotated as inline.

In case the latter happens, LLVM will generate a relocation entry into
the ELF file, which BPF ELF loaders such as iproute2 cannot resolve and
will thus produce an error since only BPF maps are valid relocation entries
which loaders can process.

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

#ifndef __inline
define __inline \
 inline __attribute__((always_inline))
#endif

static __inline int foo(void)
{
 return XDP_DROP;
}

__section("prog")
int xdp_drop(struct xdp_md *ctx)
{
 return foo();
}

char __license[] __section("license") = "GPL";

	Multiple programs can reside inside a single C file in different sections.

C programs for BPF make heavy use of section annotations. A C file is
typically structured into 3 or more sections. BPF ELF loaders use these
names to extract and prepare the relevant information in order to load
the programs and maps through the bpf system call. For example, iproute2
uses maps and license as default section name to find metadata
needed for map creation and the license for the BPF program, respectively.
On program creation time the latter is pushed into the kernel as well,
and enables some of the helper functions which are exposed as GPL only
in case the program also holds a GPL compatible license, for example
bpf_ktime_get_ns(), bpf_probe_read() and others.

The remaining section names are specific for BPF program code, for example,
the below code has been modified to contain two program sections, ingress
and egress. The toy example code demonstrates that both can share a map
and common static inline helpers such as the account_data() function.

The xdp-example.c example has been modified to a tc-example.c
example that can be loaded with tc and attached to a netdevice’s ingress
and egress hook. It accounts the transferred bytes into a map called
acc_map, which has two map slots, one for traffic accounted on the
ingress hook, one on the egress hook.

#include <linux/bpf.h>
#include <linux/pkt_cls.h>
#include <stdint.h>
#include <iproute2/bpf_elf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

#ifndef __inline
define __inline \
 inline __attribute__((always_inline))
#endif

#ifndef lock_xadd
define lock_xadd(ptr, val) \
 ((void)__sync_fetch_and_add(ptr, val))
#endif

#ifndef BPF_FUNC
define BPF_FUNC(NAME, ...) \
 (*NAME)(__VA_ARGS__) = (void *)BPF_FUNC_##NAME
#endif

static void *BPF_FUNC(map_lookup_elem, void *map, const void *key);

struct bpf_elf_map acc_map __section("maps") = {
 .type = BPF_MAP_TYPE_ARRAY,
 .size_key = sizeof(uint32_t),
 .size_value = sizeof(uint32_t),
 .pinning = PIN_GLOBAL_NS,
 .max_elem = 2,
};

static __inline int account_data(struct __sk_buff *skb, uint32_t dir)
{
 uint32_t *bytes;

 bytes = map_lookup_elem(&acc_map, &dir);
 if (bytes)
 lock_xadd(bytes, skb->len);

 return TC_ACT_OK;
}

__section("ingress")
int tc_ingress(struct __sk_buff *skb)
{
 return account_data(skb, 0);
}

__section("egress")
int tc_egress(struct __sk_buff *skb)
{
 return account_data(skb, 1);
}

char __license[] __section("license") = "GPL";

The example also demonstrates a couple of other things which are useful
to be aware of when developing programs. The code includes kernel headers,
standard C headers and an iproute2 specific header containing the
definition of struct bpf_elf_map. iproute2 has a common BPF ELF loader
and as such the definition of struct bpf_elf_map is the very same for
XDP and tc typed programs.

A struct bpf_elf_map entry defines a map in the program and contains
all relevant information (such as key / value size, etc) needed to generate
a map which is used from the two BPF programs. The structure must be placed
into the maps section, so that the loader can find it. There can be
multiple map declarations of this type with different variable names, but
all must be annotated with __section("maps").

The struct bpf_elf_map is specific to iproute2. Different BPF ELF
loaders can have different formats, for example, the libbpf in the kernel
source tree, which is mainly used by perf, has a different specification.
iproute2 guarantees backwards compatibility for struct bpf_elf_map.
Cilium follows the iproute2 model.

The example also demonstrates how BPF helper functions are mapped into
the C code and being used. Here, map_lookup_elem() is defined by
mapping this function into the BPF_FUNC_map_lookup_elem enum value
which is exposed as a helper in uapi/linux/bpf.h. When the program is later
loaded into the kernel, the verifier checks whether the passed arguments
are of the expected type and re-points the helper call into a real
function call. Moreover, map_lookup_elem() also demonstrates how
maps can be passed to BPF helper functions. Here, &acc_map from the
maps section is passed as the first argument to map_lookup_elem().

Since the defined array map is global, the accounting needs to use an
atomic operation, which is defined as lock_xadd(). LLVM maps
__sync_fetch_and_add() as a built-in function to the BPF atomic
add instruction, that is, BPF_STX | BPF_XADD | BPF_W for word sizes.

Last but not least, the struct bpf_elf_map tells that the map is to
be pinned as PIN_GLOBAL_NS. This means that tc will pin the map
into the BPF pseudo file system as a node. By default, it will be pinned
to /sys/fs/bpf/tc/globals/acc_map for the given example. Due to the
PIN_GLOBAL_NS, the map will be placed under /sys/fs/bpf/tc/globals/.
globals acts as a global namespace that spans across object files.
If the example used PIN_OBJECT_NS, then tc would create a directory
that is local to the object file. For example, different C files with
BPF code could have the same acc_map definition as above with a
PIN_GLOBAL_NS pinning. In that case, the map will be shared among
BPF programs originating from various object files. PIN_NONE would
mean that the map is not placed into the BPF file system as a node,
and as a result will not be accessible from user space after tc quits. It
would also mean that tc creates two separate map instances for each
program, since it cannot retrieve a previously pinned map under that
name. The acc_map part from the mentioned path is the name of the
map as specified in the source code.

Thus, upon loading of the ingress program, tc will find that no such
map exists in the BPF file system and creates a new one. On success, the
map will also be pinned, so that when the egress program is loaded
through tc, it will find that such map already exists in the BPF file
system and will reuse that for the egress program. The loader also
makes sure in case maps exist with the same name that also their properties
(key / value size, etc) match.

Just like tc can retrieve the same map, also third party applications
can use the BPF_OBJ_GET command from the bpf system call in order
to create a new file descriptor pointing to the same map instance, which
can then be used to lookup / update / delete map elements.

The code can be compiled and loaded via iproute2 as follows:

$ clang -O2 -Wall -target bpf -c tc-example.c -o tc-example.o

tc qdisc add dev em1 clsact
tc filter add dev em1 ingress bpf da obj tc-example.o sec ingress
tc filter add dev em1 egress bpf da obj tc-example.o sec egress

tc filter show dev em1 ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 tc-example.o:[ingress] direct-action id 1 tag c5f7825e5dac396f

tc filter show dev em1 egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 tc-example.o:[egress] direct-action id 2 tag b2fd5adc0f262714

mount | grep bpf
sysfs on /sys/fs/bpf type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
bpf on /sys/fs/bpf type bpf (rw,relatime,mode=0700)

tree /sys/fs/bpf/
/sys/fs/bpf/
+-- ip -> /sys/fs/bpf/tc/
+-- tc
| +-- globals
| +-- acc_map
+-- xdp -> /sys/fs/bpf/tc/

4 directories, 1 file

As soon as packets pass the em1 device, counters from the BPF map will
be increased.

	There are no global variables allowed.

For the reasons already mentioned in point 1, BPF cannot have global variables
as often used in normal C programs.

However, there is a work-around in that the program can simply use a BPF map
of type BPF_MAP_TYPE_PERCPU_ARRAY with just a single slot of arbitrary
value size. This works, because during execution, BPF programs are guaranteed
to never get preempted by the kernel and therefore can use the single map entry
as a scratch buffer for temporary data, for example, to extend beyond the stack
limitation. This also functions across tail calls, since it has the same
guarantees with regards to preemption.

Otherwise, for holding state across multiple BPF program runs, normal BPF
maps can be used.

	There are no const strings or arrays allowed.

Defining const strings or other arrays in the BPF C program does not work
for the same reasons as pointed out in sections 1 and 3, which is, that relocation
entries will be generated in the ELF file which will be rejected by loaders due
to not being part of the ABI towards loaders (loaders also cannot fix up such
entries as it would require large rewrites of the already compiled BPF sequence).

In the future, LLVM might detect these occurrences and early throw an error
to the user.

Helper functions such as trace_printk() can be worked around as follows:

static void BPF_FUNC(trace_printk, const char *fmt, int fmt_size, ...);

#ifndef printk
define printk(fmt, ...) \
 ({ \
 char ____fmt[] = fmt; \
 trace_printk(____fmt, sizeof(____fmt), ##__VA_ARGS__); \
 })
#endif

The program can then use the macro naturally like printk("skb len:%u\n", skb->len);.
The output will then be written to the trace pipe. tc exec bpf dbg can be
used to retrieve the messages from there.

The use of the trace_printk() helper function has a couple of disadvantages
and thus is not recommended for production usage. Constant strings like the
"skb len:%u\n" need to be loaded into the BPF stack each time the helper
function is called, but also BPF helper functions are limited to a maximum
of 5 arguments. This leaves room for only 3 additional variables which can be
passed for dumping.

Therefore, despite being helpful for quick debugging, it is recommended (for networking
programs) to use the skb_event_output() or the xdp_event_output() helper,
respectively. They allow for passing custom structs from the BPF program to
the perf event ring buffer along with an optional packet sample. For example,
Cilium’s monitor makes use of these helpers in order to implement a debugging
framework, notifications for network policy violations, etc. These helpers pass
the data through a lockless memory mapped per-CPU perf ring buffer, and
is thus significantly faster than trace_printk().

	Use of LLVM built-in functions for memset()/memcpy()/memmove()/memcmp().

Since BPF programs cannot perform any function calls other than those to BPF
helpers, common library code needs to be implemented as inline functions. In
addition, also LLVM provides some built-ins that the programs can use for
constant sizes (here: n) which will then always get inlined:

#ifndef memset
define memset(dest, chr, n) __builtin_memset((dest), (chr), (n))
#endif

#ifndef memcpy
define memcpy(dest, src, n) __builtin_memcpy((dest), (src), (n))
#endif

#ifndef memmove
define memmove(dest, src, n) __builtin_memmove((dest), (src), (n))
#endif

The memcmp() built-in had some corner cases where inlining did not take place
due to an LLVM issue in the back end, and is therefore not recommended to be
used until the issue is fixed.

	There are no loops available (yet).

The BPF verifier in the kernel checks that a BPF program does not contain
loops by performing a depth first search of all possible program paths besides
other control flow graph validations. The purpose is to make sure that the
program is always guaranteed to terminate.

A very limited form of looping is available for constant upper loop bounds
by using #pragma unroll directive. Example code that is compiled to BPF:

#pragma unroll
 for (i = 0; i < IPV6_MAX_HEADERS; i++) {
 switch (nh) {
 case NEXTHDR_NONE:
 return DROP_INVALID_EXTHDR;
 case NEXTHDR_FRAGMENT:
 return DROP_FRAG_NOSUPPORT;
 case NEXTHDR_HOP:
 case NEXTHDR_ROUTING:
 case NEXTHDR_AUTH:
 case NEXTHDR_DEST:
 if (skb_load_bytes(skb, l3_off + len, &opthdr, sizeof(opthdr)) < 0)
 return DROP_INVALID;

 nh = opthdr.nexthdr;
 if (nh == NEXTHDR_AUTH)
 len += ipv6_authlen(&opthdr);
 else
 len += ipv6_optlen(&opthdr);
 break;
 default:
 *nexthdr = nh;
 return len;
 }
 }

Another possibility is to use tail calls by calling into the same program
again and using a BPF_MAP_TYPE_PERCPU_ARRAY map for having a local
scratch space. While being dynamic, this form of looping however is limited
to a maximum of 32 iterations.

In the future, BPF may have some native, but limited form of implementing loops.

	Partitioning programs with tail calls.

Tail calls provide the flexibility to atomically alter program behavior during
runtime by jumping from one BPF program into another. In order to select the
next program, tail calls make use of program array maps (BPF_MAP_TYPE_PROG_ARRAY),
and pass the map as well as the index to the next program to jump to. There is no
return to the old program after the jump has been performed, and in case there was
no program present at the given map index, then execution continues on the original
program.

For example, this can be used to implement various stages of a parser, where
such stages could be updated with new parsing features during runtime.

Another use case are event notifications, for example, Cilium can opt in packet
drop notifications during runtime, where the skb_event_output() call is
located inside the tail called program. Thus, during normal operations, the
fall-through path will always be executed unless a program is added to the
related map index, where the program then prepares the metadata and triggers
the event notification to a user space daemon.

Program array maps are quite flexible, enabling also individual actions to
be implemented for programs located in each map index. For example, the root
program attached to XDP or tc could perform an initial tail call to index 0
of the program array map, performing traffic sampling, then jumping to index 1
of the program array map, where firewalling policy is applied and the packet
either dropped or further processed in index 2 of the program array map, where
it is mangled and sent out of an interface again. Jumps in the program array
map can, of course, be arbitrary. The kernel will eventually execute the
fall-through path when the maximum tail call limit has been reached.

Minimal example extract of using tail calls:

[...]

#ifndef __stringify
define __stringify(X) #X
#endif

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

#ifndef __section_tail
define __section_tail(ID, KEY) \
 __section(__stringify(ID) "/" __stringify(KEY))
#endif

#ifndef BPF_FUNC
define BPF_FUNC(NAME, ...) \
 (*NAME)(__VA_ARGS__) = (void *)BPF_FUNC_##NAME
#endif

#define BPF_JMP_MAP_ID 1

static void BPF_FUNC(tail_call, struct __sk_buff *skb, void *map,
 uint32_t index);

struct bpf_elf_map jmp_map __section("maps") = {
 .type = BPF_MAP_TYPE_PROG_ARRAY,
 .id = BPF_JMP_MAP_ID,
 .size_key = sizeof(uint32_t),
 .size_value = sizeof(uint32_t),
 .pinning = PIN_GLOBAL_NS,
 .max_elem = 1,
};

__section_tail(JMP_MAP_ID, 0)
int looper(struct __sk_buff *skb)
{
 printk("skb cb: %u\n", skb->cb[0]++);
 tail_call(skb, &jmp_map, 0);
 return TC_ACT_OK;
}

__section("prog")
int entry(struct __sk_buff *skb)
{
 skb->cb[0] = 0;
 tail_call(skb, &jmp_map, 0);
 return TC_ACT_OK;
}

char __license[] __section("license") = "GPL";

When loading this toy program, tc will create the program array and pin it
to the BPF file system in the global namespace under jmp_map. Also, the
BPF ELF loader in iproute2 will also recognize sections that are marked as
__section_tail(). The provided id in struct bpf_elf_map will be
matched against the id marker in the __section_tail(), that is, JMP_MAP_ID,
and the program therefore loaded at the user specified program array map index,
which is 0 in this example. As a result, all provided tail call sections
will be populated by the iproute2 loader to the corresponding maps. This mechanism
is not specific to tc, but can be applied with any other BPF program type
that iproute2 supports (such as XDP, lwt).

The generated elf contains section headers describing the map id and the
entry within that map:

$ llvm-objdump -S --no-show-raw-insn prog_array.o | less
prog_array.o: file format ELF64-BPF

Disassembly of section 1/0:
looper:
 0: r6 = r1
 1: r2 = *(u32 *)(r6 + 48)
 2: r1 = r2
 3: r1 += 1
 4: *(u32 *)(r6 + 48) = r1
 5: r1 = 0 ll
 7: call -1
 8: r1 = r6
 9: r2 = 0 ll
 11: r3 = 0
 12: call 12
 13: r0 = 0
 14: exit
Disassembly of section prog:
entry:
 0: r2 = 0
 1: *(u32 *)(r1 + 48) = r2
 2: r2 = 0 ll
 4: r3 = 0
 5: call 12
 6: r0 = 0
 7: exi

In this case, the section 1/0 indicates that the looper() function
resides in the map id 1 at position 0.

The pinned map can be retrieved by a user space applications (e.g. Cilium daemon),
but also by tc itself in order to update the map with new programs. Updates
happen atomically, the initial entry programs that are triggered first from the
various subsystems are also updated atomically.

Example for tc to perform tail call map updates:

tc exec bpf graft m:globals/jmp_map key 0 obj new.o sec foo

In case iproute2 would update the pinned program array, the graft command
can be used. By pointing it to globals/jmp_map, tc will update the
map at index / key 0 with a new program residing in the object file new.o
under section foo.

	Limited stack space of maximum 512 bytes.

Stack space in BPF programs is limited to only 512 bytes, which needs to be
taken into careful consideration when implementing BPF programs in C. However,
as mentioned earlier in point 3, a BPF_MAP_TYPE_PERCPU_ARRAY map with a
single entry can be used in order to enlarge scratch buffer space.

	Use of BPF inline assembly possible.

LLVM 6.0 or later allows use of inline assembly for BPF for the rare cases where it
might be needed. The following (nonsense) toy example shows a 64 bit atomic
add. Due to lack of documentation, LLVM source code in lib/Target/BPF/BPFInstrInfo.td
as well as test/CodeGen/BPF/ might be helpful for providing some additional
examples. Test code:

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

__section("prog")
int xdp_test(struct xdp_md *ctx)
{
 __u64 a = 2, b = 3, *c = &a;
 /* just a toy xadd example to show the syntax */
 asm volatile("lock *(u64 *)(%0+0) += %1" : "=r"(c) : "r"(b), "0"(c));
 return a;
}

char __license[] __section("license") = "GPL";

The above program is compiled into the following sequence of BPF
instructions:

Verifier analysis:

0: (b7) r1 = 2
1: (7b) *(u64 *)(r10 -8) = r1
2: (b7) r1 = 3
3: (bf) r2 = r10
4: (07) r2 += -8
5: (db) lock *(u64 *)(r2 +0) += r1
6: (79) r0 = *(u64 *)(r10 -8)
7: (95) exit
processed 8 insns (limit 131072), stack depth 8

	Remove struct padding with aligning members by using #pragma pack.

In modern compilers, data structures are aligned by default to access memory
efficiently. Structure members are aligned to memory address that multiples their
size, and padding is added for the proper alignment. Because of this, the size
of struct may often grow larger than expected.

struct called_info {
 u64 start; // 8-byte
 u64 end; // 8-byte
 u32 sector; // 4-byte
}; // size of 20-byte ?

printf("size of %d-byte\n", sizeof(struct called_info)); // size of 24-byte

// Actual compiled composition of struct called_info
// 0x0(0) 0x8(8)
// ↓________________________↓
// | start (8) |
// |________________________|
// | end (8) |
// |________________________|
// | sector(4) | PADDING | <= address aligned to 8
// |____________|___________| with 4-byte PADDING.

The BPF verifier in the kernel checks the stack boundary that a BPF program does
not access outside of boundary or uninitialized stack area. Using struct with the
padding as a map value, will cause invalid indirect read from stack failure on
bpf_prog_load().

Example code:

struct called_info {
 u64 start;
 u64 end;
 u32 sector;
};

struct bpf_map_def SEC("maps") called_info_map = {
 .type = BPF_MAP_TYPE_HASH,
 .key_size = sizeof(long),
 .value_size = sizeof(struct called_info),
 .max_entries = 4096,
};

SEC("kprobe/submit_bio")
int submit_bio_entry(struct pt_regs *ctx)
{
 char fmt[] = "submit_bio(bio=0x%lx) called: %llu\n";
 u64 start_time = bpf_ktime_get_ns();
 long bio_ptr = PT_REGS_PARM1(ctx);
 struct called_info called_info = {
 .start = start_time,
 .end = 0,
 .bi_sector = 0
 };

 bpf_map_update_elem(&called_info_map, &bio_ptr, &called_info, BPF_ANY);
 bpf_trace_printk(fmt, sizeof(fmt), bio_ptr, start_time);
 return 0;
}

// On bpf_load_program
bpf_load_program() err=13
0: (bf) r6 = r1
...
19: (b7) r1 = 0
20: (7b) *(u64 *)(r10 -72) = r1
21: (7b) *(u64 *)(r10 -80) = r7
22: (63) *(u32 *)(r10 -64) = r1
...
30: (85) call bpf_map_update_elem#2
invalid indirect read from stack off -80+20 size 24

At bpf_prog_load(), an eBPF verifier bpf_check() is called, and it’ll
check stack boundary by calling check_func_arg() -> check_stack_boundary().
From the upper error shows, struct called_info is compiled to 24-byte size,
and the message says reading a data from +20 is an invalid indirect read.
And as we discussed earlier, the address 0x14(20) is the place where PADDING is.

// Actual compiled composition of struct called_info
// 0x10(16) 0x14(20) 0x18(24)
// ↓____________↓___________↓
// | sector(4) | PADDING | <= address aligned to 8
// |____________|___________| with 4-byte PADDING.

The check_stack_boundary() internally loops through the every access_size (24)
byte from the start pointer to make sure that it’s within stack boundary and all
elements of the stack are initialized. Since the padding isn’t supposed to be used,
it gets the ‘invalid indirect read from stack’ failure. To avoid this kind of
failure, remove the padding from the struct is necessary.

Removing the padding by using #pragma pack(n) directive:

#pragma pack(4)
struct called_info {
 u64 start; // 8-byte
 u64 end; // 8-byte
 u32 sector; // 4-byte
}; // size of 20-byte ?

printf("size of %d-byte\n", sizeof(struct called_info)); // size of 20-byte

// Actual compiled composition of packed struct called_info
// 0x0(0) 0x8(8)
// ↓________________________↓
// | start (8) |
// |________________________|
// | end (8) |
// |________________________|
// | sector(4) | <= address aligned to 4
// |____________| with no PADDING.

By locating #pragma pack(4) before of struct called_info, compiler will align
members of a struct to the least of 4-byte and their natural alignment. As you can
see, the size of struct called_info has been shrunk to 20-byte and the padding
is no longer exist.

But, removing the padding have downsides either. For example, compiler will generate
less optimized code. Since we’ve removed the padding, processors will conduct
unaligned access to the structure and this might lead to performance degradation.
And also, unaligned access might get rejected by verifier on some architectures.

However, there is a way to avoid downsides of packed structure. By simply adding the
explicit padding u32 pad member at the end will resolve the same problem without
packing of the structure.

struct called_info {
 u64 start; // 8-byte
 u64 end; // 8-byte
 u32 sector; // 4-byte
 u32 pad; // 4-byte
}; // size of 24-byte ?

printf("size of %d-byte\n", sizeof(struct called_info)); // size of 24-byte

// Actual compiled composition of struct called_info with explicit padding
// 0x0(0) 0x8(8)
// ↓________________________↓
// | start (8) |
// |________________________|
// | end (8) |
// |________________________|
// | sector(4) | pad (4) | <= address aligned to 8
// |____________|___________| with explicit PADDING.

	Accessing packet data via invalidated references

Some networking BPF helper functions such as bpf_skb_store_bytes might
change the size of a packet data. As verifier is not able to track such
changes, any a priori reference to the data will be invalidated by verifier.
Therefore, the reference needs to be updated before accessing the data to
avoid verifier rejecting a program.

To illustrate this, consider the following snippet:

struct iphdr *ip4 = (struct iphdr *) skb->data + ETH_HLEN;

skb_store_bytes(skb, l3_off + offsetof(struct iphdr, saddr), &new_saddr, 4, 0);

if (ip4->protocol == IPPROTO_TCP) {
 // do something
}

Verifier will reject the snippet due to dereference of the invalidated
ip4->protocol:

R1=pkt_end(id=0,off=0,imm=0) R2=pkt(id=0,off=34,r=34,imm=0) R3=inv0
R6=ctx(id=0,off=0,imm=0) R7=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R8=inv4294967162 R9=pkt(id=0,off=0,r=34,imm=0) R10=fp0,call_-1
...
18: (85) call bpf_skb_store_bytes#9
19: (7b) *(u64 *)(r10 -56) = r7
R0=inv(id=0) R6=ctx(id=0,off=0,imm=0) R7=inv(id=0,umax_value=2,var_off=(0x0; 0x3))
R8=inv4294967162 R9=inv(id=0) R10=fp0,call_-1 fp-48=mmmm???? fp-56=mmmmmmmm
21: (61) r1 = *(u32 *)(r9 +23)
R9 invalid mem access 'inv'

To fix this, the reference to ip4 has to be updated:

struct iphdr *ip4 = (struct iphdr *) skb->data + ETH_HLEN;

skb_store_bytes(skb, l3_off + offsetof(struct iphdr, saddr), &new_saddr, 4, 0);

ip4 = (struct iphdr *) skb->data + ETH_HLEN;

if (ip4->protocol == IPPROTO_TCP) {
 // do something
}

iproute2

There are various front ends for loading BPF programs into the kernel such as bcc,
perf, iproute2 and others. The Linux kernel source tree also provides a user space
library under tools/lib/bpf/, which is mainly used and driven by perf for
loading BPF tracing programs into the kernel. However, the library itself is
generic and not limited to perf only. bcc is a toolkit providing many useful
BPF programs mainly for tracing that are loaded ad-hoc through a Python interface
embedding the BPF C code. Syntax and semantics for implementing BPF programs
slightly differ among front ends in general, though. Additionally, there are also
BPF samples in the kernel source tree (samples/bpf/) which parse the generated
object files and load the code directly through the system call interface.

This and previous sections mainly focus on the iproute2 suite’s BPF front end for
loading networking programs of XDP, tc or lwt type, since Cilium’s programs are
implemented against this BPF loader. In future, Cilium will be equipped with a
native BPF loader, but programs will still be compatible to be loaded through
iproute2 suite in order to facilitate development and debugging.

All BPF program types supported by iproute2 share the same BPF loader logic
due to having a common loader back end implemented as a library (lib/bpf.c
in iproute2 source tree).

The previous section on LLVM also covered some iproute2 parts related to writing
BPF C programs, and later sections in this document are related to tc and XDP
specific aspects when writing programs. Therefore, this section will rather focus
on usage examples for loading object files with iproute2 as well as some of the
generic mechanics of the loader. It does not try to provide a complete coverage
of all details, but enough for getting started.

1. Loading of XDP BPF object files.

Given a BPF object file prog.o has been compiled for XDP, it can be loaded
through ip to a XDP-supported netdevice called em1 with the following
command:

ip link set dev em1 xdp obj prog.o

The above command assumes that the program code resides in the default section
which is called prog in XDP case. Should this not be the case, and the
section is named differently, for example, foobar, then the program needs
to be loaded as:

ip link set dev em1 xdp obj prog.o sec foobar

Note that it is also possible to load the program out of the .text section.
Changing the minimal, stand-alone XDP drop program by removing the __section()
annotation from the xdp_drop entry point would look like the following:

#include <linux/bpf.h>

#ifndef __section
define __section(NAME) \
 __attribute__((section(NAME), used))
#endif

int xdp_drop(struct xdp_md *ctx)
{
 return XDP_DROP;
}

char __license[] __section("license") = "GPL";

And can be loaded as follows:

ip link set dev em1 xdp obj prog.o sec .text

By default, ip will throw an error in case a XDP program is already attached
to the networking interface, to prevent it from being overridden by accident. In
order to replace the currently running XDP program with a new one, the -force
option must be used:

ip -force link set dev em1 xdp obj prog.o

Most XDP-enabled drivers today support an atomic replacement of the existing
program with a new one without traffic interruption. There is always only a
single program attached to an XDP-enabled driver due to performance reasons,
hence a chain of programs is not supported. However, as described in the
previous section, partitioning of programs can be performed through tail
calls to achieve a similar use case when necessary.

The ip link command will display an xdp flag if the interface has an XDP
program attached. ip link | grep xdp can thus be used to find all interfaces
that have XDP running. Further introspection facilities are provided through
the detailed view with ip -d link and bpftool can be used to retrieve
information about the attached program based on the BPF program ID shown in
the ip link dump.

In order to remove the existing XDP program from the interface, the following
command must be issued:

ip link set dev em1 xdp off

In the case of switching a driver’s operation mode from non-XDP to native XDP
and vice versa, typically the driver needs to reconfigure its receive (and
transmit) rings in order to ensure received packet are set up linearly
within a single page for BPF to read and write into. However, once completed,
then most drivers only need to perform an atomic replacement of the program
itself when a BPF program is requested to be swapped.

In total, XDP supports three operation modes which iproute2 implements as well:
xdpdrv, xdpoffload and xdpgeneric.

xdpdrv stands for native XDP, meaning the BPF program is run directly in
the driver’s receive path at the earliest possible point in software. This is
the normal / conventional XDP mode and requires driver’s to implement XDP
support, which all major 10G/40G/+ networking drivers in the upstream Linux
kernel already provide.

xdpgeneric stands for generic XDP and is intended as an experimental test
bed for drivers which do not yet support native XDP. Given the generic XDP hook
in the ingress path comes at a much later point in time when the packet already
enters the stack’s main receive path as a skb, the performance is significantly
less than with processing in xdpdrv mode. xdpgeneric therefore is for
the most part only interesting for experimenting, less for production environments.

Last but not least, the xdpoffload mode is implemented by SmartNICs such
as those supported by Netronome’s nfp driver and allow for offloading the entire
BPF/XDP program into hardware, thus the program is run on each packet reception
directly on the card. This provides even higher performance than running in
native XDP although not all BPF map types or BPF helper functions are available
for use compared to native XDP. The BPF verifier will reject the program in
such case and report to the user what is unsupported. Other than staying in
the realm of supported BPF features and helper functions, no special precautions
have to be taken when writing BPF C programs.

When a command like ip link set dev em1 xdp obj [...] is used, then the
kernel will attempt to load the program first as native XDP, and in case the
driver does not support native XDP, it will automatically fall back to generic
XDP. Thus, for example, using explicitly xdpdrv instead of xdp, the
kernel will only attempt to load the program as native XDP and fail in case
the driver does not support it, which provides a guarantee that generic XDP
is avoided altogether.

Example for enforcing a BPF/XDP program to be loaded in native XDP mode,
dumping the link details and unloading the program again:

ip -force link set dev em1 xdpdrv obj prog.o
ip link show
[...]
6: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp qdisc mq state UP mode DORMANT group default qlen 1000
 link/ether be:08:4d:b6:85:65 brd ff:ff:ff:ff:ff:ff
 prog/xdp id 1 tag 57cd311f2e27366b
[...]
ip link set dev em1 xdpdrv off

Same example now for forcing generic XDP, even if the driver would support
native XDP, and additionally dumping the BPF instructions of the attached
dummy program through bpftool:

ip -force link set dev em1 xdpgeneric obj prog.o
ip link show
[...]
6: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdpgeneric qdisc mq state UP mode DORMANT group default qlen 1000
 link/ether be:08:4d:b6:85:65 brd ff:ff:ff:ff:ff:ff
 prog/xdp id 4 tag 57cd311f2e27366b <-- BPF program ID 4
[...]
bpftool prog dump xlated id 4 <-- Dump of instructions running on em1
0: (b7) r0 = 1
1: (95) exit
ip link set dev em1 xdpgeneric off

And last but not least offloaded XDP, where we additionally dump program
information via bpftool for retrieving general metadata:

ip -force link set dev em1 xdpoffload obj prog.o
ip link show
[...]
6: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdpoffload qdisc mq state UP mode DORMANT group default qlen 1000
 link/ether be:08:4d:b6:85:65 brd ff:ff:ff:ff:ff:ff
 prog/xdp id 8 tag 57cd311f2e27366b
[...]
bpftool prog show id 8
8: xdp tag 57cd311f2e27366b dev em1 <-- Also indicates a BPF program offloaded to em1
 loaded_at Apr 11/20:38 uid 0
 xlated 16B not jited memlock 4096B
ip link set dev em1 xdpoffload off

Note that it is not possible to use xdpdrv and xdpgeneric or other
modes at the same time, meaning only one of the XDP operation modes must be
picked.

A switch between different XDP modes e.g. from generic to native or vice
versa is not atomically possible. Only switching programs within a specific
operation mode is:

ip -force link set dev em1 xdpgeneric obj prog.o
ip -force link set dev em1 xdpoffload obj prog.o
RTNETLINK answers: File exists
ip -force link set dev em1 xdpdrv obj prog.o
RTNETLINK answers: File exists
ip -force link set dev em1 xdpgeneric obj prog.o <-- Succeeds due to xdpgeneric
#

Switching between modes requires to first leave the current operation mode
in order to then enter the new one:

ip -force link set dev em1 xdpgeneric obj prog.o
ip -force link set dev em1 xdpgeneric off
ip -force link set dev em1 xdpoffload obj prog.o
ip l
[...]
6: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdpoffload qdisc mq state UP mode DORMANT group default qlen 1000
 link/ether be:08:4d:b6:85:65 brd ff:ff:ff:ff:ff:ff
 prog/xdp id 17 tag 57cd311f2e27366b
[...]
ip -force link set dev em1 xdpoffload off

2. Loading of tc BPF object files.

Given a BPF object file prog.o has been compiled for tc, it can be loaded
through the tc command to a netdevice. Unlike XDP, there is no driver dependency
for supporting attaching BPF programs to the device. Here, the netdevice is called
em1, and with the following command the program can be attached to the networking
ingress path of em1:

tc qdisc add dev em1 clsact
tc filter add dev em1 ingress bpf da obj prog.o

The first step is to set up a clsact qdisc (Linux queueing discipline). clsact
is a dummy qdisc similar to the ingress qdisc, which can only hold classifier
and actions, but does not perform actual queueing. It is needed in order to attach
the bpf classifier. The clsact qdisc provides two special hooks called
ingress and egress, where the classifier can be attached to. Both ingress
and egress hooks are located in central receive and transmit locations in the
networking data path, where every packet on the device passes through. The ingress
hook is called from __netif_receive_skb_core() -> sch_handle_ingress() in the
kernel and the egress hook from __dev_queue_xmit() -> sch_handle_egress().

The equivalent for attaching the program to the egress hook looks as follows:

tc filter add dev em1 egress bpf da obj prog.o

The clsact qdisc is processed lockless from ingress and egress
direction and can also be attached to virtual, queue-less devices such as
veth devices connecting containers.

Next to the hook, the tc filter command selects bpf to be used in da
(direct-action) mode. da mode is recommended and should always be specified.
It basically means that the bpf classifier does not need to call into external
tc action modules, which are not necessary for bpf anyway, since all packet
mangling, forwarding or other kind of actions can already be performed inside
the single BPF program which is to be attached, and is therefore significantly
faster.

At this point, the program has been attached and is executed once packets traverse
the device. Like in XDP, should the default section name not be used, then it
can be specified during load, for example, in case of section foobar:

tc filter add dev em1 egress bpf da obj prog.o sec foobar

iproute2’s BPF loader allows for using the same command line syntax across
program types, hence the obj prog.o sec foobar is the same syntax as with
XDP mentioned earlier.

The attached programs can be listed through the following commands:

tc filter show dev em1 ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 prog.o:[ingress] direct-action id 1 tag c5f7825e5dac396f

tc filter show dev em1 egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 prog.o:[egress] direct-action id 2 tag b2fd5adc0f262714

The output of prog.o:[ingress] tells that program section ingress was
loaded from the file prog.o, and bpf operates in direct-action mode.
The program id and tag is appended for each case, where the latter denotes
a hash over the instruction stream which can be correlated with the object file
or perf reports with stack traces, etc. Last but not least, the id
represents the system-wide unique BPF program identifier that can be used along
with bpftool to further inspect or dump the attached BPF program.

tc can attach more than just a single BPF program, it provides various other
classifiers which can be chained together. However, attaching a single BPF program
is fully sufficient since all packet operations can be contained in the program
itself thanks to da (direct-action) mode, meaning the BPF program itself
will already return the tc action verdict such as TC_ACT_OK, TC_ACT_SHOT
and others. For optimal performance and flexibility, this is the recommended usage.

In the above show command, tc also displays pref 49152 and
handle 0x1 next to the BPF related output. Both are auto-generated in
case they are not explicitly provided through the command line. pref
denotes a priority number, which means that in case multiple classifiers are
attached, they will be executed based on ascending priority, and handle
represents an identifier in case multiple instances of the same classifier have
been loaded under the same pref. Since in case of BPF, a single program is
fully sufficient, pref and handle can typically be ignored.

Only in the case where it is planned to atomically replace the attached BPF
programs, it would be recommended to explicitly specify pref and handle
a priori on initial load, so that they do not have to be queried at a later
point in time for the replace operation. Thus, creation becomes:

tc filter add dev em1 ingress pref 1 handle 1 bpf da obj prog.o sec foobar

tc filter show dev em1 ingress
filter protocol all pref 1 bpf
filter protocol all pref 1 bpf handle 0x1 prog.o:[foobar] direct-action id 1 tag c5f7825e5dac396f

And for the atomic replacement, the following can be issued for updating the
existing program at ingress hook with the new BPF program from the file
prog.o in section foobar:

tc filter replace dev em1 ingress pref 1 handle 1 bpf da obj prog.o sec foobar

Last but not least, in order to remove all attached programs from the ingress
respectively egress hook, the following can be used:

tc filter del dev em1 ingress
tc filter del dev em1 egress

For removing the entire clsact qdisc from the netdevice, which implicitly also
removes all attached programs from the ingress and egress hooks, the
below command is provided:

tc qdisc del dev em1 clsact

tc BPF programs can also be offloaded if the NIC and driver has support for it
similarly as with XDP BPF programs. Netronome’s nfp supported NICs offer both
types of BPF offload.

tc qdisc add dev em1 clsact
tc filter replace dev em1 ingress pref 1 handle 1 bpf skip_sw da obj prog.o
Error: TC offload is disabled on net device.
We have an error talking to the kernel

If the above error is shown, then tc hardware offload first needs to be enabled
for the device through ethtool’s hw-tc-offload setting:

ethtool -K em1 hw-tc-offload on
tc qdisc add dev em1 clsact
tc filter replace dev em1 ingress pref 1 handle 1 bpf skip_sw da obj prog.o
tc filter show dev em1 ingress
filter protocol all pref 1 bpf
filter protocol all pref 1 bpf handle 0x1 prog.o:[classifier] direct-action skip_sw in_hw id 19 tag 57cd311f2e27366b

The in_hw flag confirms that the program has been offloaded to the NIC.

Note that BPF offloads for both tc and XDP cannot be loaded at the same time,
either the tc or XDP offload option must be selected.

3. Testing BPF offload interface via netdevsim driver.

The netdevsim driver which is part of the Linux kernel provides a dummy driver
which implements offload interfaces for XDP BPF and tc BPF programs and
facilitates testing kernel changes or low-level user space programs
implementing a control plane directly against the kernel’s UAPI.

A netdevsim device can be created as follows:

modprobe netdevsim
// [ID] [PORT_COUNT]
echo "1 1" > /sys/bus/netdevsim/new_device
devlink dev
netdevsim/netdevsim1
devlink port
netdevsim/netdevsim1/0: type eth netdev eth0 flavour physical
ip l
[...]
4: eth0: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 2a:d5:cd:08:d1:3f brd ff:ff:ff:ff:ff:ff

After that step, XDP BPF or tc BPF programs can be test loaded as shown
in the various examples earlier:

ip -force link set dev eth0 xdpoffload obj prog.o
ip l
[...]
4: eth0: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 xdpoffload qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 2a:d5:cd:08:d1:3f brd ff:ff:ff:ff:ff:ff
 prog/xdp id 16 tag a04f5eef06a7f555

These two workflows are the basic operations to load XDP BPF respectively tc BPF
programs with iproute2.

There are other various advanced options for the BPF loader that apply both to XDP
and tc, some of them are listed here. In the examples only XDP is presented for
simplicity.

1. Verbose log output even on success.

The option verb can be appended for loading programs in order to dump the
verifier log, even if no error occurred:

ip link set dev em1 xdp obj xdp-example.o verb

Prog section 'prog' loaded (5)!
 - Type: 6
 - Instructions: 2 (0 over limit)
 - License: GPL

Verifier analysis:

0: (b7) r0 = 1
1: (95) exit
processed 2 insns

2. Load program that is already pinned in BPF file system.

Instead of loading a program from an object file, iproute2 can also retrieve
the program from the BPF file system in case some external entity pinned it
there and attach it to the device:

ip link set dev em1 xdp pinned /sys/fs/bpf/prog

iproute2 can also use the short form that is relative to the detected mount
point of the BPF file system:

ip link set dev em1 xdp pinned m:prog

When loading BPF programs, iproute2 will automatically detect the mounted
file system instance in order to perform pinning of nodes. In case no mounted
BPF file system instance was found, then tc will automatically mount it
to the default location under /sys/fs/bpf/.

In case an instance has already been found, then it will be used and no additional
mount will be performed:

mkdir /var/run/bpf
mount --bind /var/run/bpf /var/run/bpf
mount -t bpf bpf /var/run/bpf
tc filter add dev em1 ingress bpf da obj tc-example.o sec prog
tree /var/run/bpf
/var/run/bpf
+-- ip -> /run/bpf/tc/
+-- tc
| +-- globals
| +-- jmp_map
+-- xdp -> /run/bpf/tc/

4 directories, 1 file

By default tc will create an initial directory structure as shown above,
where all subsystem users will point to the same location through symbolic
links for the globals namespace, so that pinned BPF maps can be reused
among various BPF program types in iproute2. In case the file system instance
has already been mounted and an existing structure already exists, then tc will
not override it. This could be the case for separating lwt, tc and
xdp maps in order to not share globals among all.

As briefly covered in the previous LLVM section, iproute2 will install a
header file upon installation which can be included through the standard
include path by BPF programs:

#include <iproute2/bpf_elf.h>

The purpose of this header file is to provide an API for maps and default section
names used by programs. It’s a stable contract between iproute2 and BPF programs.

The map definition for iproute2 is struct bpf_elf_map. Its members have
been covered earlier in the LLVM section of this document.

When parsing the BPF object file, the iproute2 loader will walk through
all ELF sections. It initially fetches ancillary sections like maps and
license. For maps, the struct bpf_elf_map array will be checked
for validity and whenever needed, compatibility workarounds are performed.
Subsequently all maps are created with the user provided information, either
retrieved as a pinned object, or newly created and then pinned into the BPF
file system. Next the loader will handle all program sections that contain
ELF relocation entries for maps, meaning that BPF instructions loading
map file descriptors into registers are rewritten so that the corresponding
map file descriptors are encoded into the instructions immediate value, in
order for the kernel to be able to convert them later on into map kernel
pointers. After that all the programs themselves are created through the BPF
system call, and tail called maps, if present, updated with the program’s file
descriptors.

bpftool

bpftool is the main introspection and debugging tool around BPF and developed
and shipped along with the Linux kernel tree under tools/bpf/bpftool/.

The tool can dump all BPF programs and maps that are currently loaded in
the system, or list and correlate all BPF maps used by a specific program.
Furthermore, it allows to dump the entire map’s key / value pairs, or
lookup, update, delete individual ones as well as retrieve a key’s neighbor
key in the map. Such operations can be performed based on BPF program or
map IDs or by specifying the location of a BPF file system pinned program
or map. The tool additionally also offers an option to pin maps or programs
into the BPF file system.

For a quick overview of all BPF programs currently loaded on the host
invoke the following command:

bpftool prog
398: sched_cls tag 56207908be8ad877
 loaded_at Apr 09/16:24 uid 0
 xlated 8800B jited 6184B memlock 12288B map_ids 18,5,17,14
399: sched_cls tag abc95fb4835a6ec9
 loaded_at Apr 09/16:24 uid 0
 xlated 344B jited 223B memlock 4096B map_ids 18
400: sched_cls tag afd2e542b30ff3ec
 loaded_at Apr 09/16:24 uid 0
 xlated 1720B jited 1001B memlock 4096B map_ids 17
401: sched_cls tag 2dbbd74ee5d51cc8
 loaded_at Apr 09/16:24 uid 0
 xlated 3728B jited 2099B memlock 4096B map_ids 17
[...]

Similarly, to get an overview of all active maps:

bpftool map
5: hash flags 0x0
 key 20B value 112B max_entries 65535 memlock 13111296B
6: hash flags 0x0
 key 20B value 20B max_entries 65536 memlock 7344128B
7: hash flags 0x0
 key 10B value 16B max_entries 8192 memlock 790528B
8: hash flags 0x0
 key 22B value 28B max_entries 8192 memlock 987136B
9: hash flags 0x0
 key 20B value 8B max_entries 512000 memlock 49352704B
[...]

Note that for each command, bpftool also supports json based output by
appending --json at the end of the command line. An additional
--pretty improves the output to be more human readable.

bpftool prog --json --pretty

For dumping the post-verifier BPF instruction image of a specific BPF
program, one starting point could be to inspect a specific program, e.g.
attached to the tc ingress hook:

tc filter show dev cilium_host egress
filter protocol all pref 1 bpf chain 0
filter protocol all pref 1 bpf chain 0 handle 0x1 bpf_host.o:[from-netdev] \
 direct-action not_in_hw id 406 tag e0362f5bd9163a0a jited

The program from the object file bpf_host.o, section from-netdev has
a BPF program ID of 406 as denoted in id 406. Based on this information
bpftool can provide some high-level metadata specific to the program:

bpftool prog show id 406
406: sched_cls tag e0362f5bd9163a0a
 loaded_at Apr 09/16:24 uid 0
 xlated 11144B jited 7721B memlock 12288B map_ids 18,20,8,5,6,14

The program of ID 406 is of type sched_cls (BPF_PROG_TYPE_SCHED_CLS),
has a tag of e0362f5bd9163a0a (SHA sum over the instruction sequence),
it was loaded by root uid 0 on Apr 09/16:24. The BPF instruction
sequence is 11,144 bytes long and the JITed image 7,721 bytes. The
program itself (excluding maps) consumes 12,288 bytes that are accounted /
charged against user uid 0. And the BPF program uses the BPF maps with
IDs 18, 20, 8, 5, 6 and 14. The latter IDs can further
be used to get information or dump the map themselves.

Additionally, bpftool can issue a dump request of the BPF instructions the
program runs:

bpftool prog dump xlated id 406
 0: (b7) r7 = 0
 1: (63) *(u32 *)(r1 +60) = r7
 2: (63) *(u32 *)(r1 +56) = r7
 3: (63) *(u32 *)(r1 +52) = r7
[...]
47: (bf) r4 = r10
48: (07) r4 += -40
49: (79) r6 = *(u64 *)(r10 -104)
50: (bf) r1 = r6
51: (18) r2 = map[id:18] <-- BPF map id 18
53: (b7) r5 = 32
54: (85) call bpf_skb_event_output#5656112 <-- BPF helper call
55: (69) r1 = *(u16 *)(r6 +192)
[...]

bpftool correlates BPF map IDs into the instruction stream as shown above
as well as calls to BPF helpers or other BPF programs.

The instruction dump reuses the same ‘pretty-printer’ as the kernel’s BPF
verifier. Since the program was JITed and therefore the actual JIT image
that was generated out of above xlated instructions is executed, it
can be dumped as well through bpftool:

bpftool prog dump jited id 406
 0: push %rbp
 1: mov %rsp,%rbp
 4: sub $0x228,%rsp
 b: sub $0x28,%rbp
 f: mov %rbx,0x0(%rbp)
13: mov %r13,0x8(%rbp)
17: mov %r14,0x10(%rbp)
1b: mov %r15,0x18(%rbp)
1f: xor %eax,%eax
21: mov %rax,0x20(%rbp)
25: mov 0x80(%rdi),%r9d
[...]

Mainly for BPF JIT developers, the option also exists to interleave the
disassembly with the actual native opcodes:

bpftool prog dump jited id 406 opcodes
 0: push %rbp
 55
 1: mov %rsp,%rbp
 48 89 e5
 4: sub $0x228,%rsp
 48 81 ec 28 02 00 00
 b: sub $0x28,%rbp
 48 83 ed 28
 f: mov %rbx,0x0(%rbp)
 48 89 5d 00
13: mov %r13,0x8(%rbp)
 4c 89 6d 08
17: mov %r14,0x10(%rbp)
 4c 89 75 10
1b: mov %r15,0x18(%rbp)
 4c 89 7d 18
[...]

The same interleaving can be done for the normal BPF instructions which
can sometimes be useful for debugging in the kernel:

bpftool prog dump xlated id 406 opcodes
 0: (b7) r7 = 0
 b7 07 00 00 00 00 00 00
 1: (63) *(u32 *)(r1 +60) = r7
 63 71 3c 00 00 00 00 00
 2: (63) *(u32 *)(r1 +56) = r7
 63 71 38 00 00 00 00 00
 3: (63) *(u32 *)(r1 +52) = r7
 63 71 34 00 00 00 00 00
 4: (63) *(u32 *)(r1 +48) = r7
 63 71 30 00 00 00 00 00
 5: (63) *(u32 *)(r1 +64) = r7
 63 71 40 00 00 00 00 00
 [...]

The basic blocks of a program can also be visualized with the help of
graphviz. For this purpose bpftool has a visual dump mode that
generates a dot file instead of the plain BPF xlated instruction
dump that can later be converted to a png file:

bpftool prog dump xlated id 406 visual &> output.dot
$ dot -Tpng output.dot -o output.png

Another option would be to pass the dot file to dotty as a viewer, that
is dotty output.dot, where the result for the bpf_host.o program
looks as follows (small extract):

[image: _images/bpf_dot.png]
Note that the xlated instruction dump provides the post-verifier BPF
instruction image which means that it dumps the instructions as if they
were to be run through the BPF interpreter. In the kernel, the verifier
performs various rewrites of the original instructions provided by the
BPF loader.

One example of rewrites is the inlining of helper functions in order to
improve runtime performance, here in the case of a map lookup for hash
tables:

bpftool prog dump xlated id 3
 0: (b7) r1 = 2
 1: (63) *(u32 *)(r10 -4) = r1
 2: (bf) r2 = r10
 3: (07) r2 += -4
 4: (18) r1 = map[id:2] <-- BPF map id 2
 6: (85) call __htab_map_lookup_elem#77408 <-+ BPF helper inlined rewrite
 7: (15) if r0 == 0x0 goto pc+2 |
 8: (07) r0 += 56 |
 9: (79) r0 = *(u64 *)(r0 +0) <-+
10: (15) if r0 == 0x0 goto pc+24
11: (bf) r2 = r10
12: (07) r2 += -4
[...]

bpftool correlates calls to helper functions or BPF to BPF calls through
kallsyms. Therefore, make sure that JITed BPF programs are exposed to
kallsyms (bpf_jit_kallsyms) and that kallsyms addresses are not
obfuscated (calls are otherwise shown as call bpf_unspec#0):

echo 0 > /proc/sys/kernel/kptr_restrict
echo 1 > /proc/sys/net/core/bpf_jit_kallsyms

BPF to BPF calls are correlated as well for both, interpreter as well
as JIT case. In the latter, the tag of the subprogram is shown as
call target. In each case, the pc+2 is the pc-relative offset of
the call target, which denotes the subprogram.

bpftool prog dump xlated id 1
0: (85) call pc+2#__bpf_prog_run_args32
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit

JITed variant of the dump:

bpftool prog dump xlated id 1
0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit

In the case of tail calls, the kernel maps them into a single instruction
internally, bpftool will still correlate them as a helper call for ease
of debugging:

bpftool prog dump xlated id 2
[...]
10: (b7) r2 = 8
11: (85) call bpf_trace_printk#-41312
12: (bf) r1 = r6
13: (18) r2 = map[id:1]
15: (b7) r3 = 0
16: (85) call bpf_tail_call#12
17: (b7) r1 = 42
18: (6b) *(u16 *)(r6 +46) = r1
19: (b7) r0 = 0
20: (95) exit

bpftool map show id 1
1: prog_array flags 0x0
 key 4B value 4B max_entries 1 memlock 4096B

Dumping an entire map is possible through the map dump subcommand
which iterates through all present map elements and dumps the key /
value pairs.

If no BTF (BPF Type Format) data is available for a given map, then
the key / value pairs are dumped as hex:

bpftool map dump id 5
key:
f0 0d 00 00 00 00 00 00 0a 66 00 00 00 00 8a d6
02 00 00 00
value:
00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
key:
0a 66 1c ee 00 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00
value:
00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[...]
Found 6 elements

However, with BTF, the map also holds debugging information about
the key and value structures. For example, BTF in combination with
BPF maps and the BPF_ANNOTATE_KV_PAIR() macro from iproute2 will
result in the following dump (test_xdp_noinline.o from kernel
selftests):

cat tools/testing/selftests/bpf/test_xdp_noinline.c
 [...]
 struct ctl_value {
 union {
 __u64 value;
 __u32 ifindex;
 __u8 mac[6];
 };
 };

 struct bpf_map_def __attribute__ ((section("maps"), used)) ctl_array = {
 .type = BPF_MAP_TYPE_ARRAY,
 .key_size = sizeof(__u32),
 .value_size = sizeof(struct ctl_value),
 .max_entries = 16,
 .map_flags = 0,
 };
 BPF_ANNOTATE_KV_PAIR(ctl_array, __u32, struct ctl_value);

 [...]

The BPF_ANNOTATE_KV_PAIR() macro forces a map-specific ELF section
containing an empty key and value, this enables the iproute2 BPF loader
to correlate BTF data with that section and thus allows to choose the
corresponding types out of the BTF for loading the map.

Compiling through LLVM and generating BTF through debugging information
by pahole:

clang [...] -O2 -target bpf -g -emit-llvm -c test_xdp_noinline.c -o - |
 llc -march=bpf -mcpu=probe -mattr=dwarfris -filetype=obj -o test_xdp_noinline.o
pahole -J test_xdp_noinline.o

Now loading into kernel and dumping the map via bpftool:

ip -force link set dev lo xdp obj test_xdp_noinline.o sec xdp-test
ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 xdpgeneric/id:227 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
[...]
bpftool prog show id 227
227: xdp tag a85e060c275c5616 gpl
 loaded_at 2018-07-17T14:41:29+0000 uid 0
 xlated 8152B not jited memlock 12288B map_ids 381,385,386,382,384,383
bpftool map dump id 386
 [{
 "key": 0,
 "value": {
 "": {
 "value": 0,
 "ifindex": 0,
 "mac": []
 }
 }
 },{
 "key": 1,
 "value": {
 "": {
 "value": 0,
 "ifindex": 0,
 "mac": []
 }
 }
 },{
[...]

Lookup, update, delete, and ‘get next key’ operations on the map for specific
keys can be performed through bpftool as well.

BPF sysctls

The Linux kernel provides few sysctls that are BPF related and covered in this section.

	/proc/sys/net/core/bpf_jit_enable: Enables or disables the BPF JIT compiler.

	Value

	Description

	0

	Disable the JIT and use only interpreter (kernel’s default value)

	1

	Enable the JIT compiler

	2

	Enable the JIT and emit debugging traces to the kernel log

As described in subsequent sections, bpf_jit_disasm tool can be used to
process debugging traces when the JIT compiler is set to debugging mode (option 2).

	/proc/sys/net/core/bpf_jit_harden: Enables or disables BPF JIT hardening.
Note that enabling hardening trades off performance, but can mitigate JIT spraying
by blinding out the BPF program’s immediate values. For programs processed through
the interpreter, blinding of immediate values is not needed / performed.

	Value

	Description

	0

	Disable JIT hardening (kernel’s default value)

	1

	Enable JIT hardening for unprivileged users only

	2

	Enable JIT hardening for all users

	/proc/sys/net/core/bpf_jit_kallsyms: Enables or disables export of JITed
programs as kernel symbols to /proc/kallsyms so that they can be used together
with perf tooling as well as making these addresses aware to the kernel for
stack unwinding, for example, used in dumping stack traces. The symbol names
contain the BPF program tag (bpf_prog_<tag>). If bpf_jit_harden is enabled,
then this feature is disabled.

	Value

	Description

	0

	Disable JIT kallsyms export (kernel’s default value)

	1

	Enable JIT kallsyms export for privileged users only

	/proc/sys/kernel/unprivileged_bpf_disabled: Enables or disable unprivileged
use of the bpf(2) system call. The Linux kernel has unprivileged use of
bpf(2) enabled by default, but once the switch is flipped, unprivileged use
will be permanently disabled until the next reboot. This sysctl knob is a one-time
switch, meaning if once set, then neither an application nor an admin can reset
the value anymore. This knob does not affect any cBPF programs such as seccomp
or traditional socket filters that do not use the bpf(2) system call for
loading the program into the kernel.

	Value

	Description

	0

	Unprivileged use of bpf syscall enabled (kernel’s default value)

	1

	Unprivileged use of bpf syscall disabled

Kernel Testing

The Linux kernel ships a BPF selftest suite, which can be found in the kernel
source tree under tools/testing/selftests/bpf/.

$ cd tools/testing/selftests/bpf/
$ make
make run_tests

The test suite contains test cases against the BPF verifier, program tags,
various tests against the BPF map interface and map types. It contains various
runtime tests from C code for checking LLVM back end, and eBPF as well as cBPF
asm code that is run in the kernel for testing the interpreter and JITs.

JIT Debugging

For JIT developers performing audits or writing extensions, each compile run
can output the generated JIT image into the kernel log through:

echo 2 > /proc/sys/net/core/bpf_jit_enable

Whenever a new BPF program is loaded, the JIT compiler will dump the output,
which can then be inspected with dmesg, for example:

[3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f from=tcpdump pid=20583
[3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
[3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
[3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
[3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
[3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3

flen is the length of the BPF program (here, 6 BPF instructions), and proglen
tells the number of bytes generated by the JIT for the opcode image (here, 70 bytes
in size). pass means that the image was generated in 3 compiler passes, for
example, x86_64 can have various optimization passes to further reduce the image
size when possible. image contains the address of the generated JIT image, from
and pid the user space application name and PID respectively, which triggered the
compilation process. The dump output for eBPF and cBPF JITs is the same format.

In the kernel tree under tools/bpf/, there is a tool called bpf_jit_disasm. It
reads out the latest dump and prints the disassembly for further inspection:

./bpf_jit_disasm
70 bytes emitted from JIT compiler (pass:3, flen:6)
ffffffffa0069c8f + <x>:
 0: push %rbp
 1: mov %rsp,%rbp
 4: sub $0x60,%rsp
 8: mov %rbx,-0x8(%rbp)
 c: mov 0x68(%rdi),%r9d
 10: sub 0x6c(%rdi),%r9d
 14: mov 0xd8(%rdi),%r8
 1b: mov $0xc,%esi
 20: callq 0xffffffffe0ff9442
 25: cmp $0x800,%eax
 2a: jne 0x0000000000000042
 2c: mov $0x17,%esi
 31: callq 0xffffffffe0ff945e
 36: cmp $0x1,%eax
 39: jne 0x0000000000000042
 3b: mov $0xffff,%eax
 40: jmp 0x0000000000000044
 42: xor %eax,%eax
 44: leaveq
 45: retq

Alternatively, the tool can also dump related opcodes along with the disassembly.

./bpf_jit_disasm -o
70 bytes emitted from JIT compiler (pass:3, flen:6)
ffffffffa0069c8f + <x>:
 0: push %rbp
 55
 1: mov %rsp,%rbp
 48 89 e5
 4: sub $0x60,%rsp
 48 83 ec 60
 8: mov %rbx,-0x8(%rbp)
 48 89 5d f8
 c: mov 0x68(%rdi),%r9d
 44 8b 4f 68
 10: sub 0x6c(%rdi),%r9d
 44 2b 4f 6c
 14: mov 0xd8(%rdi),%r8
 4c 8b 87 d8 00 00 00
 1b: mov $0xc,%esi
 be 0c 00 00 00
 20: callq 0xffffffffe0ff9442
 e8 1d 94 ff e0
 25: cmp $0x800,%eax
 3d 00 08 00 00
 2a: jne 0x0000000000000042
 75 16
 2c: mov $0x17,%esi
 be 17 00 00 00
 31: callq 0xffffffffe0ff945e
 e8 28 94 ff e0
 36: cmp $0x1,%eax
 83 f8 01
 39: jne 0x0000000000000042
 75 07
 3b: mov $0xffff,%eax
 b8 ff ff 00 00
 40: jmp 0x0000000000000044
 eb 02
 42: xor %eax,%eax
 31 c0
 44: leaveq
 c9
 45: retq
 c3

More recently, bpftool adapted the same feature of dumping the BPF JIT
image based on a given BPF program ID already loaded in the system (see
bpftool section).

For performance analysis of JITed BPF programs, perf can be used as
usual. As a prerequisite, JITed programs need to be exported through kallsyms
infrastructure.

echo 1 > /proc/sys/net/core/bpf_jit_enable
echo 1 > /proc/sys/net/core/bpf_jit_kallsyms

Enabling or disabling bpf_jit_kallsyms does not require a reload of the
related BPF programs. Next, a small workflow example is provided for profiling
BPF programs. A crafted tc BPF program is used for demonstration purposes,
where perf records a failed allocation inside bpf_clone_redirect() helper.
Due to the use of direct write, bpf_try_make_head_writable() failed, which
would then release the cloned skb again and return with an error message.
perf thus records all kfree_skb events.

tc qdisc add dev em1 clsact
tc filter add dev em1 ingress bpf da obj prog.o sec main
tc filter show dev em1 ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 prog.o:[main] direct-action id 1 tag 8227addf251b7543

cat /proc/kallsyms
[...]
ffffffffc00349e0 t fjes_hw_init_command_registers [fjes]
ffffffffc003e2e0 d __tracepoint_fjes_hw_stop_debug_err [fjes]
ffffffffc0036190 t fjes_hw_epbuf_tx_pkt_send [fjes]
ffffffffc004b000 t bpf_prog_8227addf251b7543

perf record -a -g -e skb:kfree_skb sleep 60
perf script --kallsyms=/proc/kallsyms
[...]
ksoftirqd/0 6 [000] 1004.578402: skb:kfree_skb: skbaddr=0xffff9d4161f20a00 protocol=2048 location=0xffffffffc004b52c
 7fffb8745961 bpf_clone_redirect (/lib/modules/4.10.0+/build/vmlinux)
 7fffc004e52c bpf_prog_8227addf251b7543 (/lib/modules/4.10.0+/build/vmlinux)
 7fffc05b6283 cls_bpf_classify (/lib/modules/4.10.0+/build/vmlinux)
 7fffb875957a tc_classify (/lib/modules/4.10.0+/build/vmlinux)
 7fffb8729840 __netif_receive_skb_core (/lib/modules/4.10.0+/build/vmlinux)
 7fffb8729e38 __netif_receive_skb (/lib/modules/4.10.0+/build/vmlinux)
 7fffb872ae05 process_backlog (/lib/modules/4.10.0+/build/vmlinux)
 7fffb872a43e net_rx_action (/lib/modules/4.10.0+/build/vmlinux)
 7fffb886176c __do_softirq (/lib/modules/4.10.0+/build/vmlinux)
 7fffb80ac5b9 run_ksoftirqd (/lib/modules/4.10.0+/build/vmlinux)
 7fffb80ca7fa smpboot_thread_fn (/lib/modules/4.10.0+/build/vmlinux)
 7fffb80c6831 kthread (/lib/modules/4.10.0+/build/vmlinux)
 7fffb885e09c ret_from_fork (/lib/modules/4.10.0+/build/vmlinux)

The stack trace recorded by perf will then show the bpf_prog_8227addf251b7543()
symbol as part of the call trace, meaning that the BPF program with the
tag 8227addf251b7543 was related to the kfree_skb event, and
such program was attached to netdevice em1 on the ingress hook as
shown by tc.

Introspection

The Linux kernel provides various tracepoints around BPF and XDP which
can be used for additional introspection, for example, to trace interactions
of user space programs with the bpf system call.

Tracepoints for BPF:

perf list | grep bpf:
bpf:bpf_map_create [Tracepoint event]
bpf:bpf_map_delete_elem [Tracepoint event]
bpf:bpf_map_lookup_elem [Tracepoint event]
bpf:bpf_map_next_key [Tracepoint event]
bpf:bpf_map_update_elem [Tracepoint event]
bpf:bpf_obj_get_map [Tracepoint event]
bpf:bpf_obj_get_prog [Tracepoint event]
bpf:bpf_obj_pin_map [Tracepoint event]
bpf:bpf_obj_pin_prog [Tracepoint event]
bpf:bpf_prog_get_type [Tracepoint event]
bpf:bpf_prog_load [Tracepoint event]
bpf:bpf_prog_put_rcu [Tracepoint event]

Example usage with perf (alternatively to sleep example used here,
a specific application like tc could be used here instead, of course):

perf record -a -e bpf:* sleep 10
perf script
sock_example 6197 [005] 283.980322: bpf:bpf_map_create: map type=ARRAY ufd=4 key=4 val=8 max=256 flags=0
sock_example 6197 [005] 283.980721: bpf:bpf_prog_load: prog=a5ea8fa30ea6849c type=SOCKET_FILTER ufd=5
sock_example 6197 [005] 283.988423: bpf:bpf_prog_get_type: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
sock_example 6197 [005] 283.988443: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[06 00 00 00] val=[00 00 00 00 00 00 00 00]
[...]
sock_example 6197 [005] 288.990868: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[01 00 00 00] val=[14 00 00 00 00 00 00 00]
 swapper 0 [005] 289.338243: bpf:bpf_prog_put_rcu: prog=a5ea8fa30ea6849c type=SOCKET_FILTER

For the BPF programs, their individual program tag is displayed.

For debugging, XDP also has a tracepoint that is triggered when exceptions are raised:

perf list | grep xdp:
xdp:xdp_exception [Tracepoint event]

Exceptions are triggered in the following scenarios:

	The BPF program returned an invalid / unknown XDP action code.

	The BPF program returned with XDP_ABORTED indicating a non-graceful exit.

	The BPF program returned with XDP_TX, but there was an error on transmit,
for example, due to the port not being up, due to the transmit ring being full,
due to allocation failures, etc.

Both tracepoint classes can also be inspected with a BPF program itself
attached to one or more tracepoints, collecting further information
in a map or punting such events to a user space collector through the
bpf_perf_event_output() helper, for example.

Miscellaneous

BPF programs and maps are memory accounted against RLIMIT_MEMLOCK similar
to perf. The currently available size in unit of system pages which may be
locked into memory can be inspected through ulimit -l. The setrlimit system
call man page provides further details.

The default limit is usually insufficient to load more complex programs or
larger BPF maps, so that the BPF system call will return with errno
of EPERM. In such situations a workaround with ulimit -l unlimited or
with a sufficiently large limit could be performed. The RLIMIT_MEMLOCK is
mainly enforcing limits for unprivileged users. Depending on the setup,
setting a higher limit for privileged users is often acceptable.

Program Types

At the time of this writing, there are eighteen different BPF program types
available, two of the main types for networking are further explained in below
subsections, namely XDP BPF programs as well as tc BPF programs. Extensive
usage examples for the two program types for LLVM, iproute2 or other tools
are spread throughout the toolchain section and not covered here. Instead,
this section focuses on their architecture, concepts and use cases.

XDP

XDP stands for eXpress Data Path and provides a framework for BPF that enables
high-performance programmable packet processing in the Linux kernel. It runs
the BPF program at the earliest possible point in software, namely at the moment
the network driver receives the packet.

At this point in the fast-path the driver just picked up the packet from its
receive rings, without having done any expensive operations such as allocating
an skb for pushing the packet further up the networking stack, without
having pushed the packet into the GRO engine, etc. Thus, the XDP BPF program
is executed at the earliest point when it becomes available to the CPU for
processing.

XDP works in concert with the Linux kernel and its infrastructure, meaning
the kernel is not bypassed as in various networking frameworks that operate
in user space only. Keeping the packet in kernel space has several major
advantages:

	XDP is able to reuse all the upstream developed kernel networking drivers,
user space tooling, or even other available in-kernel infrastructure such
as routing tables, sockets, etc in BPF helper calls itself.

	Residing in kernel space, XDP has the same security model as the rest of
the kernel for accessing hardware.

	There is no need for crossing kernel / user space boundaries since the
processed packet already resides in the kernel and can therefore flexibly
forward packets into other in-kernel entities like namespaces used by
containers or the kernel’s networking stack itself. This is particularly
relevant in times of Meltdown and Spectre.

	Punting packets from XDP to the kernel’s robust, widely used and efficient
TCP/IP stack is trivially possible, allows for full reuse and does not
require maintaining a separate TCP/IP stack as with user space frameworks.

	The use of BPF allows for full programmability, keeping a stable ABI with
the same ‘never-break-user-space’ guarantees as with the kernel’s system
call ABI and compared to modules it also provides safety measures thanks to
the BPF verifier that ensures the stability of the kernel’s operation.

	XDP trivially allows for atomically swapping programs during runtime without
any network traffic interruption or even kernel / system reboot.

	XDP allows for flexible structuring of workloads integrated into
the kernel. For example, it can operate in “busy polling” or “interrupt
driven” mode. Explicitly dedicating CPUs to XDP is not required. There
are no special hardware requirements and it does not rely on hugepages.

	XDP does not require any third party kernel modules or licensing. It is
a long-term architectural solution, a core part of the Linux kernel, and
developed by the kernel community.

	XDP is already enabled and shipped everywhere with major distributions
running a kernel equivalent to 4.8 or higher and supports most major 10G
or higher networking drivers.

As a framework for running BPF in the driver, XDP additionally ensures that
packets are laid out linearly and fit into a single DMA’ed page which is
readable and writable by the BPF program. XDP also ensures that additional
headroom of 256 bytes is available to the program for implementing custom
encapsulation headers with the help of the bpf_xdp_adjust_head() BPF helper
or adding custom metadata in front of the packet through bpf_xdp_adjust_meta().

The framework contains XDP action codes further described in the section
below which a BPF program can return in order to instruct the driver how
to proceed with the packet, and it enables the possibility to atomically
replace BPF programs running at the XDP layer. XDP is tailored for
high-performance by design. BPF allows to access the packet data through
‘direct packet access’ which means that the program holds data pointers
directly in registers, loads the content into registers, respectively
writes from there into the packet.

The packet representation in XDP that is passed to the BPF program as
the BPF context looks as follows:

struct xdp_buff {
 void *data;
 void *data_end;
 void *data_meta;
 void *data_hard_start;
 struct xdp_rxq_info *rxq;
};

data points to the start of the packet data in the page, and as the
name suggests, data_end points to the end of the packet data. Since XDP
allows for a headroom, data_hard_start points to the maximum possible
headroom start in the page, meaning, when the packet should be encapsulated,
then data is moved closer towards data_hard_start via bpf_xdp_adjust_head().
The same BPF helper function also allows for decapsulation in which case
data is moved further away from data_hard_start.

data_meta initially points to the same location as data but
bpf_xdp_adjust_meta() is able to move the pointer towards data_hard_start
as well in order to provide room for custom metadata which is invisible to
the normal kernel networking stack but can be read by tc BPF programs since
it is transferred from XDP to the skb. Vice versa, it can remove or reduce
the size of the custom metadata through the same BPF helper function by
moving data_meta away from data_hard_start again. data_meta can
also be used solely for passing state between tail calls similarly to the
skb->cb[] control block case that is accessible in tc BPF programs.

This gives the following relation respectively invariant for the struct xdp_buff
packet pointers: data_hard_start <= data_meta <= data < data_end.

The rxq field points to some additional per receive queue metadata which
is populated at ring setup time (not at XDP runtime):

struct xdp_rxq_info {
 struct net_device *dev;
 u32 queue_index;
 u32 reg_state;
} ____cacheline_aligned;

The BPF program can retrieve queue_index as well as additional data
from the netdevice itself such as ifindex, etc.

BPF program return codes

After running the XDP BPF program, a verdict is returned from the program in
order to tell the driver how to process the packet next. In the linux/bpf.h
system header file all available return verdicts are enumerated:

enum xdp_action {
 XDP_ABORTED = 0,
 XDP_DROP,
 XDP_PASS,
 XDP_TX,
 XDP_REDIRECT,
};

XDP_DROP as the name suggests will drop the packet right at the driver
level without wasting any further resources. This is in particular useful
for BPF programs implementing DDoS mitigation mechanisms or firewalling in
general. The XDP_PASS return code means that the packet is allowed to
be passed up to the kernel’s networking stack. Meaning, the current CPU
that was processing this packet now allocates a skb, populates it, and
passes it onwards into the GRO engine. This would be equivalent to the
default packet handling behavior without XDP. With XDP_TX the BPF program
has an efficient option to transmit the network packet out of the same NIC it
just arrived on again. This is typically useful when few nodes are implementing,
for example, firewalling with subsequent load balancing in a cluster and
thus act as a hairpinned load balancer pushing the incoming packets back
into the switch after rewriting them in XDP BPF. XDP_REDIRECT is similar
to XDP_TX in that it is able to transmit the XDP packet, but through
another NIC. Another option for the XDP_REDIRECT case is to redirect
into a BPF cpumap, meaning, the CPUs serving XDP on the NIC’s receive queues
can continue to do so and push the packet for processing the upper kernel
stack to a remote CPU. This is similar to XDP_PASS, but with the ability
that the XDP BPF program can keep serving the incoming high load as opposed
to temporarily spend work on the current packet for pushing into upper
layers. Last but not least, XDP_ABORTED which serves denoting an exception
like state from the program and has the same behavior as XDP_DROP only
that XDP_ABORTED passes the trace_xdp_exception tracepoint which
can be additionally monitored to detect misbehavior.

Use cases for XDP

Some of the main use cases for XDP are presented in this subsection. The
list is non-exhaustive and given the programmability and efficiency XDP
and BPF enables, it can easily be adapted to solve very specific use
cases.

	DDoS mitigation, firewalling

One of the basic XDP BPF features is to tell the driver to drop a packet
with XDP_DROP at this early stage which allows for any kind of efficient
network policy enforcement with having an extremely low per-packet cost.
This is ideal in situations when needing to cope with any sort of DDoS
attacks, but also more general allows to implement any sort of firewalling
policies with close to no overhead in BPF e.g. in either case as stand alone
appliance (e.g. scrubbing ‘clean’ traffic through XDP_TX) or widely
deployed on nodes protecting end hosts themselves (via XDP_PASS or
cpumap XDP_REDIRECT for good traffic). Offloaded XDP takes this even
one step further by moving the already small per-packet cost entirely
into the NIC with processing at line-rate.

	Forwarding and load-balancing

Another major use case of XDP is packet forwarding and load-balancing
through either XDP_TX or XDP_REDIRECT actions. The packet can
be arbitrarily mangled by the BPF program running in the XDP layer,
even BPF helper functions are available for increasing or decreasing
the packet’s headroom in order to arbitrarily encapsulate respectively
decapsulate the packet before sending it out again. With XDP_TX
hairpinned load-balancers can be implemented that push the packet out
of the same networking device it originally arrived on, or with the
XDP_REDIRECT action it can be forwarded to another NIC for
transmission. The latter return code can also be used in combination
with BPF’s cpumap to load-balance packets for passing up the local
stack, but on remote, non-XDP processing CPUs.

	Pre-stack filtering / processing

Besides policy enforcement, XDP can also be used for hardening the
kernel’s networking stack with the help of XDP_DROP case, meaning,
it can drop irrelevant packets for a local node right at the earliest
possible point before the networking stack sees them e.g. given we
know that a node only serves TCP traffic, any UDP, SCTP or other L4
traffic can be dropped right away. This has the advantage that packets
do not need to traverse various entities like GRO engine, the kernel’s
flow dissector and others before it can be determined to drop them and
thus this allows for reducing the kernel’s attack surface. Thanks to
XDP’s early processing stage, this effectively ‘pretends’ to the kernel’s
networking stack that these packets have never been seen by the networking
device. Additionally, if a potential bug in the stack’s receive path
got uncovered and would cause a ‘ping of death’ like scenario, XDP can be
utilized to drop such packets right away without having to reboot the
kernel or restart any services. Due to the ability to atomically swap
such programs to enforce a drop of bad packets, no network traffic is
even interrupted on a host.

Another use case for pre-stack processing is that given the kernel has not
yet allocated an skb for the packet, the BPF program is free to modify
the packet and, again, have it ‘pretend’ to the stack that it was received
by the networking device this way. This allows for cases such as having
custom packet mangling and encapsulation protocols where the packet can be
decapsulated prior to entering GRO aggregation in which GRO otherwise would
not be able to perform any sort of aggregation due to not being aware of
the custom protocol. XDP also allows to push metadata (non-packet data) in
front of the packet. This is ‘invisible’ to the normal kernel stack, can
be GRO aggregated (for matching metadata) and later on processed in
coordination with a tc ingress BPF program where it has the context of
a skb available for e.g. setting various skb fields.

	Flow sampling, monitoring

XDP can also be used for cases such as packet monitoring, sampling or any
other network analytics, for example, as part of an intermediate node in
the path or on end hosts in combination also with prior mentioned use cases.
For complex packet analysis, XDP provides a facility to efficiently push
network packets (truncated or with full payload) and custom metadata into
a fast lockless per CPU memory mapped ring buffer provided from the Linux
perf infrastructure to an user space application. This also allows for
cases where only a flow’s initial data can be analyzed and once determined
as good traffic having the monitoring bypassed. Thanks to the flexibility
brought by BPF, this allows for implementing any sort of custom monitoring
or sampling.

One example of XDP BPF production usage is Facebook’s SHIV and Droplet
infrastructure which implement their L4 load-balancing and DDoS countermeasures.
Migrating their production infrastructure away from netfilter’s IPVS
(IP Virtual Server) over to XDP BPF allowed for a 10x speedup compared
to their previous IPVS setup. This was first presented at the netdev 2.1
conference:

	Slides: https://www.netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

	Video: https://youtu.be/YEU2ClcGqts

Another example is the integration of XDP into Cloudflare’s DDoS mitigation
pipeline, which originally was using cBPF instead of eBPF for attack signature
matching through iptables’ xt_bpf module. Due to use of iptables this
caused severe performance problems under attack where a user space bypass
solution was deemed necessary but came with drawbacks as well such as needing
to busy poll the NIC and expensive packet re-injection into the kernel’s stack.
The migration over to eBPF and XDP combined best of both worlds by having
high-performance programmable packet processing directly inside the kernel:

	Slides: https://www.netdevconf.org/2.1/slides/apr6/bertin_Netdev-XDP.pdf

	Video: https://youtu.be/7OuOukmuivg

XDP operation modes

XDP has three operation modes where ‘native’ XDP is the default mode. When
talked about XDP this mode is typically implied.

	Native XDP

This is the default mode where the XDP BPF program is run directly out
of the networking driver’s early receive path. Most widespread used NICs
for 10G and higher support native XDP already.

	Offloaded XDP

In the offloaded XDP mode the XDP BPF program is directly offloaded into
the NIC instead of being executed on the host CPU. Thus, the already
extremely low per-packet cost is pushed off the host CPU entirely and
executed on the NIC, providing even higher performance than running in
native XDP. This offload is typically implemented by SmartNICs
containing multi-threaded, multicore flow processors where a in-kernel
JIT compiler translates BPF into native instructions for the latter.
Drivers supporting offloaded XDP usually also support native XDP for
cases where some BPF helpers may not yet or only be available for the
native mode.

	Generic XDP

For drivers not implementing native or offloaded XDP yet, the kernel
provides an option for generic XDP which does not require any driver
changes since run at a much later point out of the networking stack.
This setting is primarily targeted at developers who want to write and
test programs against the kernel’s XDP API, and will not operate at the
performance rate of the native or offloaded modes. For XDP usage in a
production environment either the native or offloaded mode is better
suited and the recommended way to run XDP.

Driver support

Since BPF and XDP is evolving quickly in terms of feature and driver support,
the following lists native and offloaded XDP drivers as of kernel 4.17.

Drivers supporting native XDP

	Broadcom

	bnxt

	Cavium

	thunderx

	Intel

	ixgbe

	ixgbevf

	i40e

	Mellanox

	mlx4

	mlx5

	Netronome

	nfp

	Others

	tun

	virtio_net

	Qlogic

	qede

	Solarflare

	sfc 1

Drivers supporting offloaded XDP

	Netronome

	nfp 2

Note that examples for writing and loading XDP programs are included in
the toolchain section under the respective tools.

	1

	XDP for sfc available via out of tree driver as of kernel 4.17, but
will be upstreamed soon.

	2(1,2)

	Some BPF helper functions such as retrieving the current CPU number
will not be available in an offloaded setting.

tc (traffic control)

Aside from other program types such as XDP, BPF can also be used out of the
kernel’s tc (traffic control) layer in the networking data path. On a high-level
there are three major differences when comparing XDP BPF programs to tc BPF
ones:

	The BPF input context is a sk_buff not a xdp_buff. When the kernel’s
networking stack receives a packet, after the XDP layer, it allocates a buffer
and parses the packet to store metadata about the packet. This representation
is known as the sk_buff. This structure is then exposed in the BPF input
context so that BPF programs from the tc ingress layer can use the metadata that
the stack extracts from the packet. This can be useful, but comes with an
associated cost of the stack performing this allocation and metadata extraction,
and handling the packet until it hits the tc hook. By definition, the xdp_buff
doesn’t have access to this metadata because the XDP hook is called before
this work is done. This is a significant contributor to the performance
difference between the XDP and tc hooks.

Therefore, BPF programs attached to the tc BPF hook can, for instance, read or
write the skb’s mark, pkt_type, protocol, priority,
queue_mapping, napi_id, cb[] array, hash, tc_classid or
tc_index, vlan metadata, the XDP transferred custom metadata and various
other information. All members of the struct __sk_buff BPF context used
in tc BPF are defined in the linux/bpf.h system header.

Generally, the sk_buff is of a completely different nature than
xdp_buff where both come with advantages and disadvantages. For example,
the sk_buff case has the advantage that it is rather straight forward to
mangle its associated metadata, however, it also contains a lot of protocol
specific information (e.g. GSO related state) which makes it difficult to
simply switch protocols by solely rewriting the packet data. This is due to
the stack processing the packet based on the metadata rather than having the
cost of accessing the packet contents each time. Thus, additional conversion
is required from BPF helper functions taking care that sk_buff internals
are properly converted as well. The xdp_buff case however does not
face such issues since it comes at such an early stage where the kernel
has not even allocated an sk_buff yet, thus packet rewrites of any
kind can be realized trivially. However, the xdp_buff case has the
disadvantage that sk_buff metadata is not available for mangling
at this stage. The latter is overcome by passing custom metadata from
XDP BPF to tc BPF, though. In this way, the limitations of each program
type can be overcome by operating complementary programs of both types
as the use case requires.

	Compared to XDP, tc BPF programs can be triggered out of ingress and also
egress points in the networking data path as opposed to ingress only in
the case of XDP.

The two hook points sch_handle_ingress() and sch_handle_egress() in
the kernel are triggered out of __netif_receive_skb_core() and
__dev_queue_xmit(), respectively. The latter two are the main receive
and transmit functions in the data path that, setting XDP aside, are triggered
for every network packet going in or coming out of the node allowing for
full visibility for tc BPF programs at these hook points.

	The tc BPF programs do not require any driver changes since they are run
at hook points in generic layers in the networking stack. Therefore, they
can be attached to any type of networking device.

While this provides flexibility, it also trades off performance compared
to running at the native XDP layer. However, tc BPF programs still come
at the earliest point in the generic kernel’s networking data path after
GRO has been run but before any protocol processing, traditional iptables
firewalling such as iptables PREROUTING or nftables ingress hooks or other
packet processing takes place. Likewise on egress, tc BPF programs execute
at the latest point before handing the packet to the driver itself for
transmission, meaning after traditional iptables firewalling hooks like
iptables POSTROUTING, but still before handing the packet to the kernel’s
GSO engine.

One exception which does require driver changes however are offloaded tc
BPF programs, typically provided by SmartNICs in a similar way as offloaded
XDP just with differing set of features due to the differences in the BPF
input context, helper functions and verdict codes.

BPF programs run in the tc layer are run from the cls_bpf classifier.
While the tc terminology describes the BPF attachment point as a “classifier”,
this is a bit misleading since it under-represents what cls_bpf is
capable of. That is to say, a fully programmable packet processor being able
not only to read the skb metadata and packet data, but to also arbitrarily
mangle both, and terminate the tc processing with an action verdict. cls_bpf
can thus be regarded as a self-contained entity that manages and executes tc
BPF programs.

cls_bpf can hold one or more tc BPF programs. In the case where Cilium
deploys cls_bpf programs, it attaches only a single program for a given hook
in direct-action mode. Typically, in the traditional tc scheme, there is a
split between classifier and action modules, where the classifier has one
or more actions attached to it that are triggered once the classifier has a
match. In the modern world for using tc in the software data path this model
does not scale well for complex packet processing. Given tc BPF programs
attached to cls_bpf are fully self-contained, they effectively fuse the
parsing and action process together into a single unit. Thanks to cls_bpf’s
direct-action mode, it will just return the tc action verdict and
terminate the processing pipeline immediately. This allows for implementing
scalable programmable packet processing in the networking data path by avoiding
linear iteration of actions. cls_bpf is the only such “classifier” module
in the tc layer capable of such a fast-path.

Like XDP BPF programs, tc BPF programs can be atomically updated at runtime
via cls_bpf without interrupting any network traffic or having to restart
services.

Both the tc ingress and the egress hook where cls_bpf itself can be
attached to is managed by a pseudo qdisc called sch_clsact. This is a
drop-in replacement and proper superset of the ingress qdisc since it
is able to manage both, ingress and egress tc hooks. For tc’s egress hook
in __dev_queue_xmit() it is important to stress that it is not executed
under the kernel’s qdisc root lock. Thus, both tc ingress and egress hooks
are executed in a lockless manner in the fast-path. In either case, preemption
is disabled and execution happens under RCU read side.

Typically on egress there are qdiscs attached to netdevices such as sch_mq,
sch_fq, sch_fq_codel or sch_htb where some of them are classful
qdiscs that contain subclasses and thus require a packet classification
mechanism to determine a verdict where to demux the packet. This is handled
by a call to tcf_classify() which calls into tc classifiers if present.
cls_bpf can also be attached and used in such cases. Such operation usually
happens under the qdisc root lock and can be subject to lock contention. The
sch_clsact qdisc’s egress hook comes at a much earlier point however which
does not fall under that and operates completely independent from conventional
egress qdiscs. Thus for cases like sch_htb the sch_clsact qdisc could
perform the heavy lifting packet classification through tc BPF outside of the
qdisc root lock, setting the skb->mark or skb->priority from there such
that sch_htb only requires a flat mapping without expensive packet
classification under the root lock thus reducing contention.

Offloaded tc BPF programs are supported for the case of sch_clsact in
combination with cls_bpf where the prior loaded BPF program was JITed
from a SmartNIC driver to be run natively on the NIC. Only cls_bpf
programs operating in direct-action mode are supported to be offloaded.
cls_bpf only supports offloading a single program and cannot offload
multiple programs. Furthermore only the ingress hook supports offloading
BPF programs.

One cls_bpf instance is able to hold multiple tc BPF programs internally.
If this is the case, then the TC_ACT_UNSPEC program return code will
continue execution with the next tc BPF program in that list. However, this
has the drawback that several programs would need to parse the packet over
and over again resulting in degraded performance.

BPF program return codes

Both the tc ingress and egress hook share the same action return verdicts
that tc BPF programs can use. They are defined in the linux/pkt_cls.h
system header:

#define TC_ACT_UNSPEC (-1)
#define TC_ACT_OK 0
#define TC_ACT_SHOT 2
#define TC_ACT_STOLEN 4
#define TC_ACT_REDIRECT 7

There are a few more action TC_ACT_* verdicts available in the system
header file which are also used in the two hooks. However, they share the
same semantics with the ones above. Meaning, from a tc BPF perspective,
TC_ACT_OK and TC_ACT_RECLASSIFY have the same semantics, as well as
the three TC_ACT_STOLEN, TC_ACT_QUEUED and TC_ACT_TRAP opcodes.
Therefore, for these cases we only describe TC_ACT_OK and the TC_ACT_STOLEN
opcode for the two groups.

Starting out with TC_ACT_UNSPEC. It has the meaning of “unspecified action”
and is used in three cases, i) when an offloaded tc BPF program is attached
and the tc ingress hook is run where the cls_bpf representation for the
offloaded program will return TC_ACT_UNSPEC, ii) in order to continue
with the next tc BPF program in cls_bpf for the multi-program case. The
latter also works in combination with offloaded tc BPF programs from point i)
where the TC_ACT_UNSPEC from there continues with a next tc BPF program
solely running in non-offloaded case. Last but not least, iii) TC_ACT_UNSPEC
is also used for the single program case to simply tell the kernel to continue
with the skb without additional side-effects. TC_ACT_UNSPEC is very
similar to the TC_ACT_OK action code in the sense that both pass the
skb onwards either to upper layers of the stack on ingress or down to
the networking device driver for transmission on egress, respectively. The
only difference to TC_ACT_OK is that TC_ACT_OK sets skb->tc_index
based on the classid the tc BPF program set. The latter is set out of the
tc BPF program itself through skb->tc_classid from the BPF context.

TC_ACT_SHOT instructs the kernel to drop the packet, meaning, upper
layers of the networking stack will never see the skb on ingress and
similarly the packet will never be submitted for transmission on egress.
TC_ACT_SHOT and TC_ACT_STOLEN are both similar in nature with few
differences: TC_ACT_SHOT will indicate to the kernel that the skb
was released through kfree_skb() and return NET_XMIT_DROP to the
callers for immediate feedback, whereas TC_ACT_STOLEN will release
the skb through consume_skb() and pretend to upper layers that
the transmission was successful through NET_XMIT_SUCCESS. The perf’s
drop monitor which records traces of kfree_skb() will therefore
also not see any drop indications from TC_ACT_STOLEN since its
semantics are such that the skb has been “consumed” or queued but
certainly not “dropped”.

Last but not least the TC_ACT_REDIRECT action which is available for
tc BPF programs as well. This allows to redirect the skb to the same
or another’s device ingress or egress path together with the bpf_redirect()
helper. Being able to inject the packet into another device’s ingress or
egress direction allows for full flexibility in packet forwarding with
BPF. There are no requirements on the target networking device other than
being a networking device itself, there is no need to run another instance
of cls_bpf on the target device or other such restrictions.

tc BPF FAQ

This section contains a few miscellaneous question and answer pairs related to
tc BPF programs that are asked from time to time.

	Question: What about act_bpf as a tc action module, is it still relevant?

	Answer: Not really. Although cls_bpf and act_bpf share the same
functionality for tc BPF programs, cls_bpf is more flexible since it is a
proper superset of act_bpf. The way tc works is that tc actions need to be
attached to tc classifiers. In order to achieve the same flexibility as cls_bpf,
act_bpf would need to be attached to the cls_matchall classifier. As the
name says, this will match on every packet in order to pass them through for attached
tc action processing. For act_bpf, this is will result in less efficient packet
processing than using cls_bpf in direct-action mode directly. If act_bpf
is used in a setting with other classifiers than cls_bpf or cls_matchall
then this will perform even worse due to the nature of operation of tc classifiers.
Meaning, if classifier A has a mismatch, then the packet is passed to classifier
B, reparsing the packet, etc, thus in the typical case there will be linear
processing where the packet would need to traverse N classifiers in the worst
case to find a match and execute act_bpf on that. Therefore, act_bpf has
never been largely relevant. Additionally, act_bpf does not provide a tc
offloading interface either compared to cls_bpf.

	Question: Is it recommended to use cls_bpf not in direct-action mode?

	Answer: No. The answer is similar to the one above in that this is otherwise
unable to scale for more complex processing. tc BPF can already do everything needed
by itself in an efficient manner and thus there is no need for anything other than
direct-action mode.

	Question: Is there any performance difference in offloaded cls_bpf and
offloaded XDP?

	Answer: No. Both are JITed through the same compiler in the kernel which
handles the offloading to the SmartNIC and the loading mechanism for both is
very similar as well. Thus, the BPF program gets translated into the same target
instruction set in order to be able to run on the NIC natively. The two tc BPF
and XDP BPF program types have a differing set of features, so depending on the
use case one might be picked over the other due to availability of certain helper
functions in the offload case, for example.

Use cases for tc BPF

Some of the main use cases for tc BPF programs are presented in this subsection.
Also here, the list is non-exhaustive and given the programmability and efficiency
of tc BPF, it can easily be tailored and integrated into orchestration systems
in order to solve very specific use cases. While some use cases with XDP may overlap,
tc BPF and XDP BPF are mostly complementary to each other and both can also be
used at the same time or one over the other depending which is most suitable for a
given problem to solve.

	Policy enforcement for containers

One application which tc BPF programs are suitable for is to implement policy
enforcement, custom firewalling or similar security measures for containers or
pods, respectively. In the conventional case, container isolation is implemented
through network namespaces with veth networking devices connecting the host’s
initial namespace with the dedicated container’s namespace. Since one end of
the veth pair has been moved into the container’s namespace whereas the other
end remains in the initial namespace of the host, all network traffic from the
container has to pass through the host-facing veth device allowing for attaching
tc BPF programs on the tc ingress and egress hook of the veth. Network traffic
going into the container will pass through the host-facing veth’s tc egress
hook whereas network traffic coming from the container will pass through the
host-facing veth’s tc ingress hook.

For virtual devices like veth devices XDP is unsuitable in this case since the
kernel operates solely on a skb here and generic XDP has a few limitations
where it does not operate with cloned skb’s. The latter is heavily used
from the TCP/IP stack in order to hold data segments for retransmission where
the generic XDP hook would simply get bypassed instead. Moreover, generic XDP
needs to linearize the entire skb resulting in heavily degraded performance.
tc BPF on the other hand is more flexible as it specializes on the skb
input context case and thus does not need to cope with the limitations from
generic XDP.

	Forwarding and load-balancing

The forwarding and load-balancing use case is quite similar to XDP, although
slightly more targeted towards east-west container workloads rather than
north-south traffic (though both technologies can be used in either case).
Since XDP is only available on ingress side, tc BPF programs allow for
further use cases that apply in particular on egress, for example, container
based traffic can already be NATed and load-balanced on the egress side
through BPF out of the initial namespace such that this is done transparent
to the container itself. Egress traffic is already based on the sk_buff
structure due to the nature of the kernel’s networking stack, so packet
rewrites and redirects are suitable out of tc BPF. By utilizing the
bpf_redirect() helper function, BPF can take over the forwarding logic
to push the packet either into the ingress or egress path of another networking
device. Thus, any bridge-like devices become unnecessary to use as well by
utilizing tc BPF as forwarding fabric.

	Flow sampling, monitoring

Like in XDP case, flow sampling and monitoring can be realized through a
high-performance lockless per-CPU memory mapped perf ring buffer where the
BPF program is able to push custom data, the full or truncated packet
contents, or both up to a user space application. From the tc BPF program
this is realized through the bpf_skb_event_output() BPF helper function
which has the same function signature and semantics as bpf_xdp_event_output().
Given tc BPF programs can be attached to ingress and egress as opposed to
only ingress in XDP BPF case plus the two tc hooks are at the lowest layer
in the (generic) networking stack, this allows for bidirectional monitoring
of all network traffic from a particular node. This might be somewhat related
to the cBPF case which tcpdump and Wireshark makes use of, though, without
having to clone the skb and with being a lot more flexible in terms of
programmability where, for example, BPF can already perform in-kernel
aggregation rather than pushing everything up to user space as well as
custom annotations for packets pushed into the ring buffer. The latter is
also heavily used in Cilium where packet drops can be further annotated
to correlate container labels and reasons for why a given packet had to
be dropped (such as due to policy violation) in order to provide a richer
context.

	Packet scheduler pre-processing

The sch_clsact’s egress hook which is called sch_handle_egress()
runs right before taking the kernel’s qdisc root lock, thus tc BPF programs
can be utilized to perform all the heavy lifting packet classification
and mangling before the packet is transmitted into a real full blown
qdisc such as sch_htb. This type of interaction of sch_clsact
with a real qdisc like sch_htb coming later in the transmission phase
allows to reduce the lock contention on transmission since sch_clsact’s
egress hook is executed without taking locks.

One concrete example user of tc BPF but also XDP BPF programs is Cilium.
Cilium is open source software for transparently securing the network
connectivity between application services deployed using Linux container
management platforms like Docker and Kubernetes and operates at Layer 3/4
as well as Layer 7. At the heart of Cilium operates BPF in order to
implement the policy enforcement as well as load balancing and monitoring.

	Slides: https://www.slideshare.net/ThomasGraf5/dockercon-2017-cilium-network-and-application-security-with-bpf-and-xdp

	Video: https://youtu.be/ilKlmTDdFgk

	Github: https://github.com/cilium/cilium

Driver support

Since tc BPF programs are triggered from the kernel’s networking stack
and not directly out of the driver, they do not require any extra driver
modification and therefore can run on any networking device. The only
exception listed below is for offloading tc BPF programs to the NIC.

Drivers supporting offloaded tc BPF

	Netronome

	nfp 2

Note that also here examples for writing and loading tc BPF programs are
included in the toolchain section under the respective tools.

Further Reading

Mentioned lists of docs, projects, talks, papers, and further reading
material are likely not complete. Thus, feel free to open pull requests
to complete the list.

Kernel Developer FAQ

Under Documentation/bpf/, the Linux kernel provides two FAQ files that
are mainly targeted for kernel developers involved in the BPF subsystem.

	BPF Devel FAQ: this document provides mostly information around patch
submission process as well as BPF kernel tree, stable tree and bug
reporting workflows, questions around BPF’s extensibility and interaction
with LLVM and more.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/bpf/bpf_devel_QA.rst

	BPF Design FAQ: this document tries to answer frequently asked questions
around BPF design decisions related to the instruction set, verifier,
calling convention, JITs, etc.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/bpf/bpf_design_QA.rst

Projects using BPF

The following list includes a selection of open source projects making
use of BPF respectively provide tooling for BPF. In this context the eBPF
instruction set is specifically meant instead of projects utilizing the
legacy cBPF:

Tracing

	BCC

BCC stands for BPF Compiler Collection and its key feature is to provide
a set of easy to use and efficient kernel tracing utilities all based
upon BPF programs hooking into kernel infrastructure based upon kprobes,
kretprobes, tracepoints, uprobes, uretprobes as well as USDT probes. The
collection provides close to hundred tools targeting different layers
across the stack from applications, system libraries, to the various
different kernel subsystems in order to analyze a system’s performance
characteristics or problems. Additionally, BCC provides an API in order
to be used as a library for other projects.

https://github.com/iovisor/bcc

	bpftrace

bpftrace is a DTrace-style dynamic tracing tool for Linux and uses LLVM
as a back end to compile scripts to BPF-bytecode and makes use of BCC
for interacting with the kernel’s BPF tracing infrastructure. It provides
a higher-level language for implementing tracing scripts compared to
native BCC.

https://github.com/ajor/bpftrace

	perf

The perf tool which is developed by the Linux kernel community as
part of the kernel source tree provides a way to load tracing BPF
programs through the conventional perf record subcommand where the
aggregated data from BPF can be retrieved and post processed in
perf.data for example through perf script and other means.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf

	ply

ply is a tracing tool that follows the ‘Little Language’ approach of
yore, and compiles ply scripts into Linux BPF programs that are attached
to kprobes and tracepoints in the kernel. The scripts have a C-like syntax,
heavily inspired by DTrace and by extension awk. ply keeps dependencies
to very minimum and only requires flex and bison at build time, only libc
at runtime.

https://github.com/wkz/ply

	systemtap

systemtap is a scripting language and tool for extracting, filtering and
summarizing data in order to diagnose and analyze performance or functional
problems. It comes with a BPF back end called stapbpf which translates
the script directly into BPF without the need of an additional compiler
and injects the probe into the kernel. Thus, unlike stap’s kernel modules
this does neither have external dependencies nor requires to load kernel
modules.

https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary

	PCP

Performance Co-Pilot (PCP) is a system performance and analysis framework
which is able to collect metrics through a variety of agents as well as
analyze collected systems’ performance metrics in real-time or by using
historical data. With pmdabcc, PCP has a BCC based performance metrics
domain agent which extracts data from the kernel via BPF and BCC.

https://github.com/performancecopilot/pcp

	Weave Scope

Weave Scope is a cloud monitoring tool collecting data about processes,
networking connections or other system data by making use of BPF in combination
with kprobes. Weave Scope works on top of the gobpf library in order to load
BPF ELF files into the kernel, and comes with a tcptracer-bpf tool which
monitors connect, accept and close calls in order to trace TCP events.

https://github.com/weaveworks/scope

Networking

	Cilium

Cilium provides and transparently secures network connectivity and load-balancing
between application workloads such as application containers or processes. Cilium
operates at Layer 3/4 to provide traditional networking and security services
as well as Layer 7 to protect and secure use of modern application protocols
such as HTTP, gRPC and Kafka. It is integrated into orchestration frameworks
such as Kubernetes and Mesos, and BPF is the foundational part of Cilium that
operates in the kernel’s networking data path.

https://github.com/cilium/cilium

	Suricata

Suricata is a network IDS, IPS and NSM engine, and utilizes BPF as well as XDP
in three different areas, that is, as BPF filter in order to process or bypass
certain packets, as a BPF based load balancer in order to allow for programmable
load balancing and for XDP to implement a bypass or dropping mechanism at high
packet rates.

http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html

https://github.com/OISF/suricata

	systemd

systemd allows for IPv4/v6 accounting as well as implementing network access
control for its systemd units based on BPF’s cgroup ingress and egress hooks.
Accounting is based on packets / bytes, and ACLs can be specified as address
prefixes for allow / deny rules. More information can be found at:

http://0pointer.net/blog/ip-accounting-and-access-lists-with-systemd.html

https://github.com/systemd/systemd

	iproute2

iproute2 offers the ability to load BPF programs as LLVM generated ELF files
into the kernel. iproute2 supports both, XDP BPF programs as well as tc BPF
programs through a common BPF loader backend. The tc and ip command line
utilities enable loader and introspection functionality for the user.

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/

	p4c-xdp

p4c-xdp presents a P4 compiler backend targeting BPF and XDP. P4 is a domain
specific language describing how packets are processed by the data plane of
a programmable network element such as NICs, appliances or switches, and with
the help of p4c-xdp P4 programs can be translated into BPF C programs which
can be compiled by clang / LLVM and loaded as BPF programs into the kernel
at XDP layer for high performance packet processing.

https://github.com/vmware/p4c-xdp

Others

	LLVM

clang / LLVM provides the BPF back end in order to compile C BPF programs
into BPF instructions contained in ELF files. The LLVM BPF back end is
developed alongside with the BPF core infrastructure in the Linux kernel
and maintained by the same community. clang / LLVM is a key part in the
toolchain for developing BPF programs.

https://llvm.org/

	libbpf

libbpf is a generic BPF library which is developed by the Linux kernel
community as part of the kernel source tree and allows for loading and
attaching BPF programs from LLVM generated ELF files into the kernel.
The library is used by other kernel projects such as perf and bpftool.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf

	bpftool

bpftool is the main tool for introspecting and debugging BPF programs
and BPF maps, and like libbpf is developed by the Linux kernel community.
It allows for dumping all active BPF programs and maps in the system,
dumping and disassembling BPF or JITed BPF instructions from a program
as well as dumping and manipulating BPF maps in the system. bpftool
supports interaction with the BPF filesystem, loading various program
types from an object file into the kernel and much more.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/bpf/bpftool

	gobpf

gobpf provides go bindings for the bcc framework as well as low-level routines in
order to load and use BPF programs from ELF files.

https://github.com/iovisor/gobpf

	ebpf_asm

ebpf_asm provides an assembler for BPF programs written in an Intel-like assembly
syntax, and therefore offers an alternative for writing BPF programs directly in
assembly for cases where programs are rather small and simple without needing the
clang / LLVM toolchain.

https://github.com/solarflarecom/ebpf_asm

XDP Newbies

There are a couple of walk-through posts by David S. Miller to the xdp-newbies
mailing list (http://vger.kernel.org/vger-lists.html#xdp-newbies), which explain
various parts of XDP and BPF:

	
	May 2017,

	BPF Verifier Overview,
David S. Miller,
https://www.spinics.net/lists/xdp-newbies/msg00185.html

	
	May 2017,

	Contextually speaking…,
David S. Miller,
https://www.spinics.net/lists/xdp-newbies/msg00181.html

	
	May 2017,

	bpf.h and you…,
David S. Miller,
https://www.spinics.net/lists/xdp-newbies/msg00179.html

	
	Apr 2017,

	XDP example of the day,
David S. Miller,
https://www.spinics.net/lists/xdp-newbies/msg00009.html

BPF Newsletter

Alexander Alemayhu initiated a newsletter around BPF roughly once per week
covering latest developments around BPF in Linux kernel land and its
surrounding ecosystem in user space.

All BPF update newsletters (01 - 12) can be found here:

https://cilium.io/blog/categories/BPF%20Newsletter

Podcasts

There have been a number of technical podcasts partially covering BPF.
Incomplete list:

	
	Feb 2017,

	Linux Networking Update from Netdev Conference,
Thomas Graf,
Software Gone Wild, Show 71,
http://blog.ipspace.net/2017/02/linux-networking-update-from-netdev.html
http://media.blubrry.com/ipspace/stream.ipspace.net/nuggets/podcast/Show_71-NetDev_Update.mp3

	
	Jan 2017,

	The IO Visor Project,
Brenden Blanco,
OVS Orbit, Episode 23,
https://ovsorbit.org/#e23
https://ovsorbit.org/episode-23.mp3

	
	Oct 2016,

	Fast Linux Packet Forwarding,
Thomas Graf,
Software Gone Wild, Show 64,
http://blog.ipspace.net/2016/10/fast-linux-packet-forwarding-with.html
http://media.blubrry.com/ipspace/stream.ipspace.net/nuggets/podcast/Show_64-Cilium_with_Thomas_Graf.mp3

	
	Aug 2016,

	P4 on the Edge,
John Fastabend,
OVS Orbit, Episode 11,
https://ovsorbit.org/#e11
https://ovsorbit.org/episode-11.mp3

	
	May 2016,

	Cilium,
Thomas Graf,
OVS Orbit, Episode 4,
https://ovsorbit.org/#e4
https://ovsorbit.benpfaff.org/episode-4.mp3

Blog posts

The following (incomplete) list includes blog posts around BPF, XDP and related projects:

	
	May 2017,

	An entertaining eBPF XDP adventure,
Suchakra Sharma,
https://suchakra.wordpress.com/2017/05/23/an-entertaining-ebpf-xdp-adventure/

	
	May 2017,

	eBPF, part 2: Syscall and Map Types,
Ferris Ellis,
https://ferrisellis.com/posts/ebpf_syscall_and_maps/

	
	May 2017,

	Monitoring the Control Plane,
Gary Berger,
http://firstclassfunc.com/2017/05/monitoring-the-control-plane/

	
	Apr 2017,

	USENIX/LISA 2016 Linux bcc/BPF Tools,
Brendan Gregg,
http://www.brendangregg.com/blog/2017-04-29/usenix-lisa-2016-bcc-bpf-tools.html

	
	Apr 2017,

	Liveblog: Cilium for Network and Application Security with BPF and XDP,
Scott Lowe,
http://blog.scottlowe.org//2017/04/18/black-belt-cilium/

	
	Apr 2017,

	eBPF, part 1: Past, Present, and Future,
Ferris Ellis,
https://ferrisellis.com/posts/ebpf_past_present_future/

	
	Mar 2017,

	Analyzing KVM Hypercalls with eBPF Tracing,
Suchakra Sharma,
https://suchakra.wordpress.com/2017/03/31/analyzing-kvm-hypercalls-with-ebpf-tracing/

	
	Jan 2017,

	Golang bcc/BPF Function Tracing,
Brendan Gregg,
http://www.brendangregg.com/blog/2017-01-31/golang-bcc-bpf-function-tracing.html

	
	Dec 2016,

	Give me 15 minutes and I’ll change your view of Linux tracing,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-12-27/linux-tracing-in-15-minutes.html

	
	Nov 2016,

	Cilium: Networking and security for containers with BPF and XDP,
Daniel Borkmann,
https://opensource.googleblog.com/2016/11/cilium-networking-and-security.html

	
	Nov 2016,

	Linux bcc/BPF tcplife: TCP Lifespans,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-11-30/linux-bcc-tcplife.html

	
	Oct 2016,

	DTrace for Linux 2016,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-27/dtrace-for-linux-2016.html

	
	Oct 2016,

	Linux 4.9’s Efficient BPF-based Profiler,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-21/linux-efficient-profiler.html

	
	Oct 2016,

	Linux bcc tcptop,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-15/linux-bcc-tcptop.html

	
	Oct 2016,

	Linux bcc/BPF Node.js USDT Tracing,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-12/linux-bcc-nodejs-usdt.html

	
	Oct 2016,

	Linux bcc/BPF Run Queue (Scheduler) Latency,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html

	
	Oct 2016,

	Linux bcc ext4 Latency Tracing,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-06/linux-bcc-ext4dist-ext4slower.html

	
	Oct 2016,

	Linux MySQL Slow Query Tracing with bcc/BPF,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-04/linux-bcc-mysqld-qslower.html

	
	Oct 2016,

	Linux bcc Tracing Security Capabilities,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-10-01/linux-bcc-security-capabilities.html

	
	Sep 2016,

	Suricata bypass feature,
Eric Leblond,
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/

	
	Aug 2016,

	Introducing the p0f BPF compiler,
Gilberto Bertin,
https://blog.cloudflare.com/introducing-the-p0f-bpf-compiler/

	
	Jun 2016,

	Ubuntu Xenial bcc/BPF,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-06-14/ubuntu-xenial-bcc-bpf.html

	
	Mar 2016,

	Linux BPF/bcc Road Ahead, March 2016,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-03-28/linux-bpf-bcc-road-ahead-2016.html

	
	Mar 2016,

	Linux BPF Superpowers,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html

	
	Feb 2016,

	Linux eBPF/bcc uprobes,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-02-08/linux-ebpf-bcc-uprobes.html

	
	Feb 2016,

	Who is waking the waker? (Linux chain graph prototype),
Brendan Gregg,
http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html

	
	Feb 2016,

	Linux Wakeup and Off-Wake Profiling,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html

	
	Jan 2016,

	Linux eBPF Off-CPU Flame Graph,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html

	
	Jan 2016,

	Linux eBPF Stack Trace Hack,
Brendan Gregg,
http://www.brendangregg.com/blog/2016-01-18/ebpf-stack-trace-hack.html

	
	Sep 2015,

	Linux Networking, Tracing and IO Visor, a New Systems Performance Tool for a Distributed World,
Suchakra Sharma,
https://thenewstack.io/comparing-dtrace-iovisor-new-systems-performance-platform-advance-linux-networking-virtualization/

	
	Aug 2015,

	BPF Internals - II,
Suchakra Sharma,
https://suchakra.wordpress.com/2015/08/12/bpf-internals-ii/

	
	May 2015,

	eBPF: One Small Step,
Brendan Gregg,
http://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-step.html

	
	May 2015,

	BPF Internals - I,
Suchakra Sharma,
https://suchakra.wordpress.com/2015/05/18/bpf-internals-i/

	
	Jul 2014,

	Introducing the BPF Tools,
Marek Majkowski,
https://blog.cloudflare.com/introducing-the-bpf-tools/

	
	May 2014,

	BPF - the forgotten bytecode,
Marek Majkowski,
https://blog.cloudflare.com/bpf-the-forgotten-bytecode/

Talks

The following (incomplete) list includes talks and conference papers
related to BPF and XDP:

	
	May 2017,

	PyCon 2017, Portland,
Executing python functions in the linux kernel by transpiling to bpf,
Alex Gartrell,
https://www.youtube.com/watch?v=CpqMroMBGP4

	
	May 2017,

	gluecon 2017, Denver,
Cilium + BPF: Least Privilege Security on API Call Level for Microservices,
Dan Wendlandt,
http://gluecon.com/#agenda

	
	May 2017,

	Lund Linux Con, Lund,
XDP - eXpress Data Path,
Jesper Dangaard Brouer,
http://people.netfilter.org/hawk/presentations/LLC2017/XDP_DDoS_protecting_LLC2017.pdf

	
	May 2017,

	Polytechnique Montreal,
Trace Aggregation and Collection with eBPF,
Suchakra Sharma,
http://step.polymtl.ca/~suchakra/eBPF-5May2017.pdf

	
	Apr 2017,

	DockerCon, Austin,
Cilium - Network and Application Security with BPF and XDP,
Thomas Graf,
https://www.slideshare.net/ThomasGraf5/dockercon-2017-cilium-network-and-application-security-with-bpf-and-xdp

	
	Apr 2017,

	NetDev 2.1, Montreal,
XDP Mythbusters,
David S. Miller,
https://www.netdevconf.org/2.1/slides/apr7/miller-XDP-MythBusters.pdf

	
	Apr 2017,

	NetDev 2.1, Montreal,
Droplet: DDoS countermeasures powered by BPF + XDP,
Huapeng Zhou, Doug Porter, Ryan Tierney, Nikita Shirokov,
https://www.netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

	
	Apr 2017,

	NetDev 2.1, Montreal,
XDP in practice: integrating XDP in our DDoS mitigation pipeline,
Gilberto Bertin,
https://www.netdevconf.org/2.1/slides/apr6/bertin_Netdev-XDP.pdf

	
	Apr 2017,

	NetDev 2.1, Montreal,
XDP for the Rest of Us,
Andy Gospodarek, Jesper Dangaard Brouer,
https://www.netdevconf.org/2.1/slides/apr7/gospodarek-Netdev2.1-XDP-for-the-Rest-of-Us_Final.pdf

	
	Mar 2017,

	SCALE15x, Pasadena,
Linux 4.x Tracing: Performance Analysis with bcc/BPF,
Brendan Gregg,
https://www.slideshare.net/brendangregg/linux-4x-tracing-performance-analysis-with-bccbpf

	
	Mar 2017,

	XDP Inside and Out,
David S. Miller,
https://github.com/iovisor/bpf-docs/raw/master/XDP_Inside_and_Out.pdf

	
	Mar 2017,

	OpenSourceDays, Copenhagen,
XDP - eXpress Data Path, Used for DDoS protection,
Jesper Dangaard Brouer,
https://github.com/iovisor/bpf-docs/raw/master/XDP_Inside_and_Out.pdf

	
	Mar 2017,

	source{d}, Infrastructure 2017, Madrid,
High-performance Linux monitoring with eBPF,
Alfonso Acosta,
https://www.youtube.com/watch?v=k4jqTLtdrxQ

	
	Feb 2017,

	FOSDEM 2017, Brussels,
Stateful packet processing with eBPF, an implementation of OpenState interface,
Quentin Monnet,
https://fosdem.org/2017/schedule/event/stateful_ebpf/

	
	Feb 2017,

	FOSDEM 2017, Brussels,
eBPF and XDP walkthrough and recent updates,
Daniel Borkmann,
http://borkmann.ch/talks/2017_fosdem.pdf

	
	Feb 2017,

	FOSDEM 2017, Brussels,
Cilium - BPF & XDP for containers,
Thomas Graf,
https://fosdem.org/2017/schedule/event/cilium/

	
	Jan 2017,

	linuxconf.au, Hobart,
BPF: Tracing and more,
Brendan Gregg,
https://www.slideshare.net/brendangregg/bpf-tracing-and-more

	
	Dec 2016,

	USENIX LISA 2016, Boston,
Linux 4.x Tracing Tools: Using BPF Superpowers,
Brendan Gregg,
https://www.slideshare.net/brendangregg/linux-4x-tracing-tools-using-bpf-superpowers

	
	Nov 2016,

	Linux Plumbers, Santa Fe,
Cilium: Networking & Security for Containers with BPF & XDP,
Thomas Graf,
http://www.slideshare.net/ThomasGraf5/clium-container-networking-with-bpf-xdp

	
	Nov 2016,

	OVS Conference, Santa Clara,
Offloading OVS Flow Processing using eBPF,
William (Cheng-Chun) Tu,
http://openvswitch.org/support/ovscon2016/7/1120-tu.pdf

	
	Oct 2016,

	One.com, Copenhagen,
XDP - eXpress Data Path, Intro and future use-cases,
Jesper Dangaard Brouer,
http://people.netfilter.org/hawk/presentations/xdp2016/xdp_intro_and_use_cases_sep2016.pdf

	
	Oct 2016,

	Docker Distributed Systems Summit, Berlin,
Cilium: Networking & Security for Containers with BPF & XDP,
Thomas Graf,
http://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823

	
	Oct 2016,

	NetDev 1.2, Tokyo,
Data center networking stack,
Tom Herbert,
http://netdevconf.org/1.2/session.html?tom-herbert

	
	Oct 2016,

	NetDev 1.2, Tokyo,
Fast Programmable Networks & Encapsulated Protocols,
David S. Miller,
http://netdevconf.org/1.2/session.html?david-miller-keynote

	
	Oct 2016,

	NetDev 1.2, Tokyo,
XDP workshop - Introduction, experience, and future development,
Tom Herbert,
http://netdevconf.org/1.2/session.html?herbert-xdp-workshop

	
	Oct 2016,

	NetDev1.2, Tokyo,
The adventures of a Suricate in eBPF land,
Eric Leblond,
http://netdevconf.org/1.2/slides/oct6/10_suricata_ebpf.pdf

	
	Oct 2016,

	NetDev1.2, Tokyo,
cls_bpf/eBPF updates since netdev 1.1,
Daniel Borkmann,
http://borkmann.ch/talks/2016_tcws.pdf

	
	Oct 2016,

	NetDev1.2, Tokyo,
Advanced programmability and recent updates with tc’s cls_bpf,
Daniel Borkmann,
http://borkmann.ch/talks/2016_netdev2.pdf
http://www.netdevconf.org/1.2/papers/borkmann.pdf

	
	Oct 2016,

	NetDev 1.2, Tokyo,
eBPF/XDP hardware offload to SmartNICs,
Jakub Kicinski, Nic Viljoen,
http://netdevconf.org/1.2/papers/eBPF_HW_OFFLOAD.pdf

	
	Aug 2016,

	LinuxCon, Toronto,
What Can BPF Do For You?,
Brenden Blanco,
https://events.linuxfoundation.org/sites/events/files/slides/iovisor-lc-bof-2016.pdf

	
	Aug 2016,

	LinuxCon, Toronto,
Cilium - Fast IPv6 Container Networking with BPF and XDP,
Thomas Graf,
https://www.slideshare.net/ThomasGraf5/cilium-fast-ipv6-container-networking-with-bpf-and-xdp

	
	Aug 2016,

	P4, EBPF and Linux TC Offload,
Dinan Gunawardena, Jakub Kicinski,
https://de.slideshare.net/Open-NFP/p4-epbf-and-linux-tc-offload

	
	Jul 2016,

	Linux Meetup, Santa Clara,
eXpress Data Path,
Brenden Blanco,
http://www.slideshare.net/IOVisor/express-data-path-linux-meetup-santa-clara-july-2016

	
	Jul 2016,

	Linux Meetup, Santa Clara,
CETH for XDP,
Yan Chan, Yunsong Lu,
http://www.slideshare.net/IOVisor/ceth-for-xdp-linux-meetup-santa-clara-july-2016

	
	May 2016,

	P4 workshop, Stanford,
P4 on the Edge,
John Fastabend,
https://schd.ws/hosted_files/2016p4workshop/1d/Intel%20Fastabend-P4%20on%20the%20Edge.pdf

	
	Mar 2016,

	Performance @Scale 2016, Menlo Park,
Linux BPF Superpowers,
Brendan Gregg,
https://www.slideshare.net/brendangregg/linux-bpf-superpowers

	
	Mar 2016,

	eXpress Data Path,
Tom Herbert, Alexei Starovoitov,
https://github.com/iovisor/bpf-docs/raw/master/Express_Data_Path.pdf

	
	Feb 2016,

	NetDev1.1, Seville,
On getting tc classifier fully programmable with cls_bpf,
Daniel Borkmann,
http://borkmann.ch/talks/2016_netdev.pdf
http://www.netdevconf.org/1.1/proceedings/papers/On-getting-tc-classifier-fully-programmable-with-cls-bpf.pdf

	
	Jan 2016,

	FOSDEM 2016, Brussels,
Linux tc and eBPF,
Daniel Borkmann,
http://borkmann.ch/talks/2016_fosdem.pdf

	
	Oct 2015,

	LinuxCon Europe, Dublin,
eBPF on the Mainframe,
Michael Holzheu,
https://events.linuxfoundation.org/sites/events/files/slides/ebpf_on_the_mainframe_lcon_2015.pdf

	
	Aug 2015,

	Tracing Summit, Seattle,
LLTng’s Trace Filtering and beyond (with some eBPF goodness, of course!),
Suchakra Sharma,
https://github.com/iovisor/bpf-docs/raw/master/ebpf_excerpt_20Aug2015.pdf

	
	Jun 2015,

	LinuxCon Japan, Tokyo,
Exciting Developments in Linux Tracing,
Elena Zannoni,
https://events.linuxfoundation.org/sites/events/files/slides/tracing-linux-ezannoni-linuxcon-ja-2015_0.pdf

	
	Feb 2015,

	Collaboration Summit, Santa Rosa,
BPF: In-kernel Virtual Machine,
Alexei Starovoitov,
https://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf

	
	Feb 2015,

	NetDev 0.1, Ottawa,
BPF: In-kernel Virtual Machine,
Alexei Starovoitov,
http://netdevconf.org/0.1/sessions/15.html

	
	Feb 2014,

	DevConf.cz, Brno,
tc and cls_bpf: lightweight packet classifying with BPF,
Daniel Borkmann,
http://borkmann.ch/talks/2014_devconf.pdf

Further Documents

	Dive into BPF: a list of reading material,
Quentin Monnet
(https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/)

	XDP - eXpress Data Path,
Jesper Dangaard Brouer
(https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html)

API Reference

Introduction

The Cilium API is JSON based and provided by the cilium-agent. The purpose
of the API is to provide visibility and control over an individual agent
instance. In general, all API calls affect only the resources managed by the
individual cilium-agent serving the API. A few selected API calls such as
the security identity resolution provides cluster wide visibility. Such API
calls are marked specifically. Unless noted otherwise, API calls will only affect
local agent resources.

How to access the API

CLI Client

The easiest way to access the API is via the cilium CLI client. cilium
will automatically locate the API of the agent running on the same node and
access it. However, using the -H or --host flag, the cilium client
can be pointed to an arbitrary API address.

Example

$ cilium -H unix:///var/run/cilium/cilium.sock
[...]

Golang Package

The following Go packages can be used to access the API:

	Package

	Description

	pkg/client [https://godoc.org/github.com/cilium/cilium/pkg/client]

	Main client API abstraction

	api/v1/models [https://godoc.org/github.com/cilium/cilium/api/v1/models]

	API resource data type models

Example

The full example can be found in the cilium/client-example [https://github.com/cilium/client-example] repository.

import (
 "fmt"

 "github.com/cilium/cilium/pkg/client"
)

func main() {
 c, err := client.NewDefaultClient()
 if err != nil {
 ...
 }

 endpoints, err := c.EndpointList()
 if err != nil {
 ...
 }

 for _, ep := range endpoints {
 fmt.Printf("%8d %14s %16s %32s\n", ep.ID, ep.ContainerName, ep.Addressing.IPV4, ep.Addressing.IPV6)
 }

Compatibility Guarantees

Cilium API is stable as of version 1.0, backward compatibility will be upheld
for whole lifecycle of Cilium 1.x.

API Reference

	
GET /cluster/nodes

	Get nodes information stored in the cilium-agent

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	Request Headers

	
	client-id – Client UUID should be used when the client wants to request
a diff of nodes added and / or removed since the last time
that client has made a request.

	
GET /healthz

	Get health of Cilium daemon

Returns health and status information of the Cilium daemon and related
components such as the local container runtime, connected datastore,
Kubernetes integration.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	Request Headers

	
	brief – Brief will return a brief representation of the Cilium status.

	
GET /config

	Get configuration of Cilium daemon

Returns the configuration of the Cilium daemon.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	
PATCH /config

	Modify daemon configuration

Updates the daemon configuration by applying the provided
ConfigurationMap and regenerates & recompiles all required datapath
components.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad configuration parameters

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Recompilation failed

	
GET /endpoint/{id}

	Get endpoint by endpoint ID

Returns endpoint information

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid endpoint ID format for specified type

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
PUT /endpoint/{id}

	Create endpoint

Creates a new endpoint

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Created

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid endpoint in request

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – Endpoint already exists

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Endpoint creation failed

	
PATCH /endpoint/{id}

	Modify existing endpoint

Applies the endpoint change request to an existing endpoint

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid modify endpoint request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint does not exist

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Endpoint update failed

	
DELETE /endpoint/{id}

	Delete endpoint

Deletes the endpoint specified by the ID. Deletion is imminent and
atomic, if the deletion request is valid and the endpoint exists,
deletion will occur even if errors are encountered in the process. If
errors have been encountered, the code 202 will be returned, otherwise
200 on success.

All resources associated with the endpoint will be freed and the
workload represented by the endpoint will be disconnected.It will no
longer be able to initiate or receive communications of any sort.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	206 Partial Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7] – Deleted with a number of errors encountered

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid endpoint ID format for specified type. Details in error
message

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
GET /endpoint

	Retrieves a list of endpoints that have metadata matching the provided parameters.

Retrieves a list of endpoints that have metadata matching the provided parameters, or all endpoints if no parameters provided.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoints with provided parameters not found

	
GET /endpoint/{id}/config

	Retrieve endpoint configuration

Retrieves the configuration of the specified endpoint.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
PATCH /endpoint/{id}/config

	Modify mutable endpoint configuration

Update the configuration of an existing endpoint and regenerates &
recompiles the corresponding programs automatically.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid configuration request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Update failed. Details in message.

	
GET /endpoint/{id}/labels

	Retrieves the list of labels associated with an endpoint.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
PATCH /endpoint/{id}/labels

	Set label configuration of endpoint

Sets labels associated with an endpoint. These can be user provided or
derived from the orchestration system.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Error while updating labels

	
GET /endpoint/{id}/log

	Retrieves the status logs associated with this endpoint.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid identity provided

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
GET /endpoint/{id}/healthz

	Retrieves the status logs associated with this endpoint.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid identity provided

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Endpoint not found

	
GET /identity

	Retrieves a list of identities that have metadata matching the provided parameters.

Retrieves a list of identities that have metadata matching the provided parameters, or all identities if no parameters are provided.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Identities with provided parameters not found

	520 – Identity storage unreachable. Likely a network problem.

	521 – Invalid identity format in storage

	
GET /identity/{id}

	Retrieve identity

	Parameters

	
	id (string) – Cluster wide unique identifier of a security identity.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid identity provided

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Identity not found

	520 – Identity storage unreachable. Likely a network problem.

	521 – Invalid identity format in storage

	
GET /identity/endpoints

	Retrieve identities which are being used by local endpoints

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Set of identities which are being used by local endpoints could not be found.

	
POST /ipam

	Allocate an IP address

	Query Parameters

	
	family (string) –

	owner (string) –

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Success

	502 Bad Gateway [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3] – Allocation failure

	Request Headers

	
	expiration –

	
POST /ipam/{ip}

	Allocate an IP address

	Parameters

	
	ip (string) – IP address

	Query Parameters

	
	owner (string) –

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid IP address

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – IP already allocated

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – IP allocation failure. Details in message.

	501 Not Implemented [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2] – Allocation for address family disabled

	
DELETE /ipam/{ip}

	Release an allocated IP address

	Parameters

	
	ip (string) – IP address or owner name

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid IP address

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – IP address not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Address release failure

	501 Not Implemented [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2] – Allocation for address family disabled

	
GET /policy

	Retrieve entire policy tree

Returns the entire policy tree with all children.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No policy rules found

	
PUT /policy

	Create or update a policy (sub)tree

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid policy

	460 – Invalid path

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Policy import failed

	
DELETE /policy

	Delete a policy (sub)tree

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Policy not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Error while deleting policy

	
GET /policy/resolve

	Resolve policy for an identity context

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	
GET /policy/selectors

	See what selectors match which identities

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	
GET /service

	Retrieve list of all services

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	
GET /service/{id}

	Retrieve configuration of a service

	Parameters

	
	id (integer) – ID of service

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Service not found

	
PUT /service/{id}

	Create or update service

	Parameters

	
	id (integer) – ID of service

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Updated

	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Created

	460 – Invalid frontend in service configuration

	461 – Invalid backend in service configuration

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Error while creating service

	
DELETE /service/{id}

	Delete a service

	Parameters

	
	id (integer) – ID of service

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Service not found

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Service deletion failed

	
GET /prefilter

	Retrieve list of CIDRs

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Prefilter get failed

	
PATCH /prefilter

	Update list of CIDRs

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Updated

	461 – Invalid CIDR prefix

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Prefilter update failed

	
DELETE /prefilter

	Delete list of CIDRs

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Deleted

	461 – Invalid CIDR prefix

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Prefilter delete failed

	
GET /debuginfo

	Retrieve information about the agent and evironment for debugging

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – DebugInfo get failed

	
GET /map

	List all open maps

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	
GET /map/{name}

	Retrieve contents of BPF map

	Parameters

	
	name (string) – Name of map

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Map not found

	
GET /metrics/

	Retrieve cilium metrics

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Metrics cannot be retrieved

	
GET /fqdn/cache

	Retrieves the list of DNS lookups intercepted from all endpoints.

Retrieves the list of DNS lookups intercepted from endpoints,
optionally filtered by endpoint id, DNS name, or CIDR IP range.

	Query Parameters

	
	matchpattern (string) – A toFQDNs compatible matchPattern expression

	cidr (string) – A CIDR range of IPs

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid request (error parsing parameters)

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No DNS data with provided parameters found

	
DELETE /fqdn/cache

	Deletes matching DNS lookups from the policy-generation cache.

Deletes matching DNS lookups from the cache, optionally restricted by
DNS name. The removed IP data will no longer be used in generated
policies.

	Query Parameters

	
	matchpattern (string) – A toFQDNs compatible matchPattern expression

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid request (error parsing parameters)

	
GET /fqdn/cache/{id}

	Retrieves the list of DNS lookups intercepted from an endpoint.

Retrieves the list of DNS lookups intercepted from endpoints,
optionally filtered by endpoint id, DNS name, or CIDR IP range.

	Parameters

	
	id (string) – String describing an endpoint with the format [prefix:]id. If no prefix
is specified, a prefix of cilium-local: is assumed. Not all endpoints
will be addressable by all endpoint ID prefixes with the exception of the
local Cilium UUID which is assigned to all endpoints.

	Supported endpoint id prefixes:

	
	cilium-local: Local Cilium endpoint UUID, e.g. cilium-local:3389595

	cilium-global: Global Cilium endpoint UUID, e.g. cilium-global:cluster1:nodeX:452343

	container-id: Container runtime ID, e.g. container-id:22222

	container-name: Container name, e.g. container-name:foobar

	pod-name: pod name for this container if K8s is enabled, e.g. pod-name:default:foobar

	docker-endpoint: Docker libnetwork endpoint ID, e.g. docker-endpoint:4444

	Query Parameters

	
	matchpattern (string) – A toFQDNs compatible matchPattern expression

	cidr (string) – A CIDR range of IPs

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Success

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid request (error parsing parameters)

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No DNS data with provided parameters found

Command Cheatsheet

Cilium is controlled via an easy command-line interface. This CLI is a single
application that takes subcommands that you can find in the command reference
guide.

$ cilium
CLI for interacting with the local Cilium Agent

Usage:
 cilium [command]

Available Commands:
 bpf Direct access to local BPF maps
 cleanup Reset the agent state
 completion Output shell completion code for bash
 config Cilium configuration options
 debuginfo Request available debugging information from agent
 endpoint Manage endpoints
 identity Manage security identities
 kvstore Direct access to the kvstore
 monitor Monitoring
 policy Manage security policies
 prefilter Manage XDP CIDR filters
 service Manage services & loadbalancers
 status Display status of daemon
 version Print version information

Flags:
 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

Use "cilium [command] --help" for more information about a command.

All commands and subcommands have the option -h that will provide information
about the options and arguments that the subcommand has. In case of any error in
the command, Cilium CLI will return a non-zero status.

Command utilities:

JSON Output

All the list commands will return a pretty printed list with the information
retrieved from Cilium Daemon. If you need something more detailed you can use JSON
output, to get the JSON output you can use the global option -o json

$ cilium endpoint list -o json

Moreover, Cilium also provides a JSONPath [http://goessner.net/articles/JsonPath/] support, so detailed information can
be extracted. JSONPath template reference can be found in Kubernetes
documentation [https://kubernetes.io/docs/reference/kubectl/jsonpath/]

$ cilium endpoint list -o jsonpath='{[*].id}'
29898 38939 56326
$ cilium endpoint list -o jsonpath='{range [*]}{@.id}{"="}{@.status.policy.spec.policy-enabled}{"\n"}{end}'
29898=none
38939=none
56326=none

Shell Tab-completion

If you use bash or zsh, Cilium CLI can provide tab completion for subcommands.
If you want to install tab completion, you should run the following command in
your terminal.

$ source <(cilium completion)

If you want to have Cilium completion always loaded, you can install using the
following:

$ echo "source <(cilium completion)" >> ~/.bashrc

Command examples:

Basics

Check the status of the agent

$ cilium status
KVStore: Ok Consul: 172.17.0.3:8300
ContainerRuntime: Ok
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Listening for events on 2 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
Controller Status: 6/6 healthy
Proxy Status: OK, ip 10.15.28.238, port-range 10000-20000
Cluster health: 1/1 reachable (2018-04-11T07:33:09Z)
$

Get a detailed status of the agent:

$ cilium status --all-controllers --all-health --all-redirects
KVStore: Ok Consul: 172.17.0.3:8300
ContainerRuntime: Ok
Kubernetes: Disabled
Cilium: Ok OK
NodeMonitor: Listening for events on 2 CPUs with 64x4096 of shared memory
Cilium health daemon: Ok
Controller Status: 6/6 healthy
 Name Last success Last error Count Message
 kvstore-lease-keepalive 2m52s ago never 0 no error
 ipcache-bpf-garbage-collection 2m50s ago never 0 no error
 resolve-identity-29898 2m50s ago never 0 no error
 sync-identity-to-k8s-pod (29898) 50s ago never 0 no error
 sync-IPv4-identity-mapping (29898) 2m49s ago never 0 no error
 sync-IPv6-identity-mapping (29898) 2m49s ago never 0 no error
Proxy Status: OK, ip 10.15.28.238, port-range 10000-20000
Cluster health: 1/1 reachable (2018-04-11T07:32:09Z)
 Name IP Reachable Endpoints reachable
 runtime (localhost) 10.0.2.15 true false
$

Get the current agent configuration

cilium config

Policy management

Importing a Cilium Network Policy

cilium policy import my-policy.json

Get list of all imported policy rules

cilium policy get

Remove all policies

cilium policy delete --all

Tracing

Check policy enforcement between two labels on port 80:

cilium policy trace -s <app.from> -d <app.to> --dport 80

Check policy enforcement between two identities

cilium policy trace --src-identity <from-id> --dst-identity <to-id>

Check policy enforcement between two pods:

cilium policy trace --src-k8s-pod <namespace>:<pod.from> --dst-k8s-pod <namespace>:<pod.to>

Monitoring

Monitor cilium datapath notifications

cilium monitor

Verbose output (including debug if enabled)

cilium monitor -v

Filter for only the events related to endpoint

cilium monitor --related-to=<id>

Filter for only events on layer 7

cilium monitor -t L7

Show notifications only for dropped packet events

cilium monitor --type drop

Don’t dissect packet payload, display payload in hex information

cilium monitor -v --hex

Connectivity

Check cluster Connectivity

cilium-health status

There is also a blog post [https://cilium.io/blog/2018/2/6/cilium-troubleshooting-cluster-health-monitor]
related to this tool.

Endpoints

Get list of all local endpoints

cilium endpoint list

Get detailed view of endpoint properties and state

cilium endpoint get <id>

Show recent endpoint specific log entries

cilium endpoint log <id>

Enable debugging output on the cilium monitor for this endpoint

cilium endpoint config <id> Debug=true

Loadbalancing

Get list of loadbalancer services

cilium service list

Or you can get the loadbalancer information using bpf list
::

cilium bpf lb list

Add a new loadbalancer

cilium service update --frontend 127.0.0.1:80 \
 --backends 127.0.0.2:90,127.0.0.3:90 \
 --id 20 \
 --rev 2

BPF

List node tunneling mapping information

cilium bpf tunnel list

Checking logs for verifier issue

journalctl -u cilium | grep -B20 -F10 Verifier

List connection tracking entries:

sudo cilium bpf ct list global

Flush connection tracking entries:

sudo cilium bpf ct flush

List proxy configuration:

sudo cilium bpf proxy list

Kubernetes examples:

If you running Cilium on top of Kubernetes you may also want a way to list all
cilium endpoints or policies from a single Kubectl commands. Cilium provides all
this information to the user by using Kubernetes Resource Definitions [https://kubernetes.io/docs/concepts/api-extension/custom-resources/]:

Policies

In Kubernetes you can use two kinds of policies, Kubernetes Network Policies or
Cilium Network Policies. Both can be retrieved from the kubectl command:

Kubernetes Network Policies

 kubectl get netpol

Kubernetes Cilium Policies

 $ kubectl get cnp
 NAME AGE
 rule1 3m
 $ kubectl get cnp rule1
 NAME AGE
 rule1 3m
 $ kubectl get cnp rule1 -o json

Endpoints

To retrieve a list of all endpoints managed by cilium, Cilum Endpoint
resource can be used.

$ kubectl get cep
NAME AGE
34e299f0-b25c2fef 41s
34e299f0-dd86986c 42s
4d088f48-83e4f98d 2m
4d088f48-d04ab55f 2m
5c6211b5-9217a4d1 1m
5c6211b5-dccc3d24 1m
700e0976-6cb50b02 3m
700e0976-afd3a30c 3m
78092a35-4874ed16 1m
78092a35-4b08b92b 1m
9b74f61f-14571299 7s
9b74f61f-f9a96f4a 7s

$ kubectl get cep 700e0976-6cb50b02 -o json

$ kubectl get cep -o jsonpath='{range .items[*]}{@.status.id}{"="}{@.status.status.policy.spec.policy-enabled}{"\n"}{end}'
30391=ingress
5766=ingress
51796=none
40355=none

Microscope

Cilium also provides an option to monitor all connections from all Kubernetes
nodes. Microscope [https://github.com/cilium/microscope] is a distributed
monitor that connects to all Cilium instances and retrieves monitor information
from there.

Cilium also provides the ability to monitor all cilium-managed connections in
the kubernetes cluster via Microscope [https://github.com/cilium/microscope].
It is a distributed monitor that connects to all Cilium instances and retrieves
monitor information from each node.

Microscope can be installed an run as a pod, the basic usage is the following:

$ kubectl apply -f
https://raw.githubusercontent.com/cilium/microscope/1.1.0/docs/microscope.yaml
$ kubectl exec -n kube-system microscope -- microscope -h

More information about Cilium Microscope options can be found on the project
homepage: cilium/microscope [https://github.com/cilium/microscope]

Command Reference

	cilium-agent
	Synopsis

	Options

	cilium
	cilium
	Synopsis

	Options

	SEE ALSO

	cilium bpf
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf config
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf config get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ct
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ct flush
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ct list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf endpoint
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf endpoint delete
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf endpoint list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ipcache
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ipcache get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf ipcache list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf lb
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf lb list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf metrics
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf metrics list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf nat
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf nat flush
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf nat list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf policy
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf policy add
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf policy delete
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf policy get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf proxy
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf proxy flush
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf proxy list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf sha
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf sha get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf sha list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf tunnel
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium bpf tunnel list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium cleanup
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium completion
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium config
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium debuginfo
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint config
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint disconnect
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint get
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint health
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint labels
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint log
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium endpoint regenerate
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium fqdn
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium fqdn cache
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium fqdn cache clean
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium fqdn cache list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium identity
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium identity get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium identity list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium kvstore
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium kvstore delete
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium kvstore get
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium kvstore set
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium map
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium map get
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium map list
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium metrics
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium metrics list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium monitor
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium node
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium node list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy delete
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy import
	Synopsis

	Examples

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy selectors
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy trace
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy validate
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium policy wait
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium prefilter
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium prefilter delete
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium prefilter list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium prefilter update
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium preflight
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium preflight fqdn-poller
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium preflight migrate-identity
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium preflight validate-cnp
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium service
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium service delete
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium service get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium service list
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium service update
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium status
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium version
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium-bugtool
	Synopsis

	Examples

	Options

	cilium-health get
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium-health ping
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium-health status
	Synopsis

	Options

	Options inherited from parent commands

	SEE ALSO

	cilium-health
	Synopsis

	Options

	SEE ALSO

	cilium-operator
	Synopsis

	Options

	Key-Value Store
	consul

	etcd

 cilium

cilium

	cilium

	cilium bpf

	cilium bpf config

	cilium bpf config get

	cilium bpf ct

	cilium bpf ct flush

	cilium bpf ct list

	cilium bpf endpoint

	cilium bpf endpoint delete

	cilium bpf endpoint list

	cilium bpf ipcache

	cilium bpf ipcache get

	cilium bpf ipcache list

	cilium bpf lb

	cilium bpf lb list

	cilium bpf metrics

	cilium bpf metrics list

	cilium bpf nat

	cilium bpf nat flush

	cilium bpf nat list

	cilium bpf policy

	cilium bpf policy add

	cilium bpf policy delete

	cilium bpf policy get

	cilium bpf proxy

	cilium bpf proxy flush

	cilium bpf proxy list

	cilium bpf sha

	cilium bpf sha get

	cilium bpf sha list

	cilium bpf tunnel

	cilium bpf tunnel list

	cilium cleanup

	cilium completion

	cilium config

	cilium debuginfo

	cilium endpoint

	cilium endpoint config

	cilium endpoint disconnect

	cilium endpoint get

	cilium endpoint health

	cilium endpoint labels

	cilium endpoint list

	cilium endpoint log

	cilium endpoint regenerate

	cilium fqdn

	cilium fqdn cache

	cilium fqdn cache clean

	cilium fqdn cache list

	cilium identity

	cilium identity get

	cilium identity list

	cilium kvstore

	cilium kvstore delete

	cilium kvstore get

	cilium kvstore set

	cilium map

	cilium map get

	cilium map list

	cilium metrics

	cilium metrics list

	cilium monitor

	cilium node

	cilium node list

	cilium policy

	cilium policy delete

	cilium policy get

	cilium policy import

	cilium policy selectors

	cilium policy trace

	cilium policy validate

	cilium policy wait

	cilium prefilter

	cilium prefilter delete

	cilium prefilter list

	cilium prefilter update

	cilium preflight

	cilium preflight fqdn-poller

	cilium preflight migrate-identity

	cilium preflight validate-cnp

	cilium service

	cilium service delete

	cilium service get

	cilium service list

	cilium service update

	cilium status

	cilium version

	cilium-bugtool

	cilium-health get

	cilium-health ping

	cilium-health status

 cilium

cilium

CLI

Synopsis

CLI for interacting with the local Cilium Agent

Options

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -h, --help help for cilium
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium cleanup - Reset the agent state

	cilium completion - Output shell completion code for bash

	cilium config - Cilium configuration options

	cilium debuginfo - Request available debugging information from agent

	cilium endpoint - Manage endpoints

	cilium fqdn - Manage fqdn proxy

	cilium identity - Manage security identities

	cilium kvstore - Direct access to the kvstore

	cilium map - Access BPF maps

	cilium metrics - Access metric status

	cilium monitor - Display BPF program events

	cilium node - Manage cluster nodes

	cilium policy - Manage security policies

	cilium prefilter - Manage XDP CIDR filters

	cilium preflight - cilium upgrade helper

	cilium service - Manage services & loadbalancers

	cilium status - Display status of daemon

	cilium version - Print version information

 cilium bpf

cilium bpf

Direct access to local BPF maps

Synopsis

Direct access to local BPF maps

Options

 -h, --help help for bpf

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium bpf config - Manage endpoint configuration BPF maps

	cilium bpf ct - Connection tracking tables

	cilium bpf endpoint - Local endpoint map

	cilium bpf ipcache - Manage the IPCache mappings for IP/CIDR <-> Identity

	cilium bpf lb - Load-balancing configuration

	cilium bpf metrics - BPF datapath traffic metrics

	cilium bpf nat - NAT mapping tables

	cilium bpf policy - Manage policy related BPF maps

	cilium bpf proxy - Proxy configuration

	cilium bpf sha - Manage compiled BPF template objects

	cilium bpf tunnel - Tunnel endpoint map

 cilium bpf config

cilium bpf config

Manage endpoint configuration BPF maps

Synopsis

Manage endpoint configuration BPF maps

Options

 -h, --help help for config
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf config get - List contents of an endpoint config BPF map

 cilium bpf config get

cilium bpf config get

List contents of an endpoint config BPF map

Synopsis

List contents of an endpoint config BPF map

cilium bpf config get [flags]

Options

 -h, --help help for get

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf config - Manage endpoint configuration BPF maps

 cilium bpf ct

cilium bpf ct

Connection tracking tables

Synopsis

Connection tracking tables

Options

 -h, --help help for ct

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf ct flush - Flush all connection tracking entries

	cilium bpf ct list - List connection tracking entries

 cilium bpf ct flush

cilium bpf ct flush

Flush all connection tracking entries

Synopsis

Flush all connection tracking entries

cilium bpf ct flush (<endpoint identifier> | global) [flags]

Options

 -h, --help help for flush

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf ct - Connection tracking tables

 cilium bpf ct list

cilium bpf ct list

List connection tracking entries

Synopsis

List connection tracking entries

cilium bpf ct list (<endpoint identifier> | global) [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf ct - Connection tracking tables

 cilium bpf endpoint

cilium bpf endpoint

Local endpoint map

Synopsis

Local endpoint map

Options

 -h, --help help for endpoint

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf endpoint delete - Delete local endpoint entries

	cilium bpf endpoint list - List local endpoint entries

 cilium bpf endpoint delete

cilium bpf endpoint delete

Delete local endpoint entries

Synopsis

Delete local endpoint entries

cilium bpf endpoint delete [flags]

Options

 -h, --help help for delete

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf endpoint - Local endpoint map

 cilium bpf endpoint list

cilium bpf endpoint list

List local endpoint entries

Synopsis

List local endpoint entries

cilium bpf endpoint list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf endpoint - Local endpoint map

 cilium bpf ipcache

cilium bpf ipcache

Manage the IPCache mappings for IP/CIDR <-> Identity

Synopsis

Manage the IPCache mappings for IP/CIDR <-> Identity

Options

 -h, --help help for ipcache

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf ipcache get - Retrieve identity for an ip

	cilium bpf ipcache list - List endpoint IPs (local and remote) and their corresponding security identities

 cilium bpf ipcache get

cilium bpf ipcache get

Retrieve identity for an ip

Synopsis

Retrieve identity for an ip

cilium bpf ipcache get [flags]

Options

 -h, --help help for get

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf ipcache - Manage the IPCache mappings for IP/CIDR <-> Identity

 cilium bpf ipcache list

cilium bpf ipcache list

List endpoint IPs (local and remote) and their corresponding security identities

Synopsis

List endpoint IPs (local and remote) and their corresponding security identities.

Note that for Linux kernel versions between 4.11 and 4.15 inclusive, the native
LPM map type used for implementing the IPCache does not provide the ability to
walk / dump the entries, so on these kernel versions this tool will never
return any entries, even if entries exist in the map. You may instead run:
cilium map get cilium_ipcache

cilium bpf ipcache list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf ipcache - Manage the IPCache mappings for IP/CIDR <-> Identity

 cilium bpf lb

cilium bpf lb

Load-balancing configuration

Synopsis

Load-balancing configuration

Options

 -h, --help help for lb

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf lb list - List load-balancing configuration

 cilium bpf lb list

cilium bpf lb list

List load-balancing configuration

Synopsis

List load-balancing configuration

cilium bpf lb list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'
 --revnat List reverse NAT entries

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf lb - Load-balancing configuration

 cilium bpf metrics

cilium bpf metrics

BPF datapath traffic metrics

Synopsis

BPF datapath traffic metrics

Options

 -h, --help help for metrics

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf metrics list - List BPF datapath traffic metrics

 cilium bpf metrics list

cilium bpf metrics list

List BPF datapath traffic metrics

Synopsis

List BPF datapath traffic metrics

cilium bpf metrics list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf metrics - BPF datapath traffic metrics

 cilium bpf nat

cilium bpf nat

NAT mapping tables

Synopsis

NAT mapping tables

Options

 -h, --help help for nat

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf nat flush - Flush all NAT mapping entries

	cilium bpf nat list - List all NAT mapping entries

 cilium bpf nat flush

cilium bpf nat flush

Flush all NAT mapping entries

Synopsis

Flush all NAT mapping entries

cilium bpf nat flush [flags]

Options

 -h, --help help for flush

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf nat - NAT mapping tables

 cilium bpf nat list

cilium bpf nat list

List all NAT mapping entries

Synopsis

List all NAT mapping entries

cilium bpf nat list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf nat - NAT mapping tables

 cilium bpf policy

cilium bpf policy

Manage policy related BPF maps

Synopsis

Manage policy related BPF maps

Options

 -h, --help help for policy

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf policy add - Add/update policy entry

	cilium bpf policy delete - Delete a policy entry

	cilium bpf policy get - List contents of a policy BPF map

 cilium bpf policy add

cilium bpf policy add

Add/update policy entry

Synopsis

Add/update policy entry

cilium bpf policy add <endpoint id> <traffic-direction> <identity> [port/proto] [flags]

Options

 -h, --help help for add

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf policy - Manage policy related BPF maps

 cilium bpf policy delete

cilium bpf policy delete

Delete a policy entry

Synopsis

Delete a policy entry

cilium bpf policy delete <endpoint id> <identity> [port/proto] [flags]

Options

 -h, --help help for delete

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf policy - Manage policy related BPF maps

 cilium bpf policy get

cilium bpf policy get

List contents of a policy BPF map

Synopsis

List contents of a policy BPF map

cilium bpf policy get [flags]

Options

 --all Dump all policy maps
 -h, --help help for get
 -n, --numeric Do not resolve IDs
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf policy - Manage policy related BPF maps

 cilium bpf proxy

cilium bpf proxy

Proxy configuration

Synopsis

Proxy configuration

Options

 -h, --help help for proxy

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf proxy flush - Flush all proxy entries (deprecated)

	cilium bpf proxy list - List proxy configuration (deprecated)

 cilium bpf proxy flush

cilium bpf proxy flush

Flush all proxy entries (deprecated)

Synopsis

Flush all proxy entries (deprecated)

cilium bpf proxy flush [flags]

Options

 -h, --help help for flush

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf proxy - Proxy configuration

 cilium bpf proxy list

cilium bpf proxy list

List proxy configuration (deprecated)

Synopsis

List proxy configuration (deprecated)

cilium bpf proxy list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf proxy - Proxy configuration

 cilium bpf sha

cilium bpf sha

Manage compiled BPF template objects

Synopsis

Manage compiled BPF template objects

Options

 -h, --help help for sha

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf sha get - Get datapath SHA header

	cilium bpf sha list - List BPF template objects.

 cilium bpf sha get

cilium bpf sha get

Get datapath SHA header

Synopsis

Get datapath SHA header

cilium bpf sha get <sha> [flags]

Options

 -h, --help help for get
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf sha - Manage compiled BPF template objects

 cilium bpf sha list

cilium bpf sha list

List BPF template objects.

Synopsis

List BPF template objects.

cilium bpf sha list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf sha - Manage compiled BPF template objects

 cilium bpf tunnel

cilium bpf tunnel

Tunnel endpoint map

Synopsis

Tunnel endpoint map

Options

 -h, --help help for tunnel

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf - Direct access to local BPF maps

	cilium bpf tunnel list - List tunnel endpoint entries

 cilium bpf tunnel list

cilium bpf tunnel list

List tunnel endpoint entries

Synopsis

List tunnel endpoint entries

cilium bpf tunnel list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium bpf tunnel - Tunnel endpoint map

 cilium cleanup

cilium cleanup

Reset the agent state

Synopsis

Reset the agent state

cilium cleanup [flags]

Options

 --all-state Remove all cilium state
 --bpf-state Remove BPF state
 -f, --force Skip confirmation
 -h, --help help for cleanup

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium completion

cilium completion

Output shell completion code for bash

Synopsis

Output shell completion code for bash

cilium completion [bash] [flags]

Examples

Installing bash completion on macOS using homebrew
If running Bash 3.2 included with macOS
 brew install bash-completion
or, if running Bash 4.1+
 brew install bash-completion@2
afterwards you only need to run
 cilium completion bash > $(brew --prefix)/etc/bash_completion.d/cilium

Installing bash completion on Linux
Load the cilium completion code for bash into the current shell
 source <(cilium completion bash)
Write bash completion code to a file and source if from .bash_profile
 cilium completion bash > ~/.cilium/completion.bash.inc
 printf "
 # Cilium shell completion
 source '$HOME/.cilium/completion.bash.inc'
 " >> $HOME/.bash_profile
 source $HOME/.bash_profile

Options

 -h, --help help for completion

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium config

cilium config

Cilium configuration options

Synopsis

Cilium configuration options

cilium config [<option>=(enable|disable) ...] [flags]

Options

 -h, --help help for config
 --list-options List available options
 -n, --num-pages int Number of pages for perf ring buffer. New values have to be > 0
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium debuginfo

cilium debuginfo

Request available debugging information from agent

Synopsis

Request available debugging information from agent

cilium debuginfo [flags]

Options

 -f, --file Redirect output to file(s)
 --file-per-command Generate a single file per command
 -h, --help help for debuginfo
 --output strings markdown| html| json| jsonpath='{}'
 --output-directory string directory for files (if specified will use directory in which this command was ran)

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium endpoint

cilium endpoint

Manage endpoints

Synopsis

Manage endpoints

Options

 -h, --help help for endpoint

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium endpoint config - View & modify endpoint configuration

	cilium endpoint disconnect - Disconnect an endpoint from the network

	cilium endpoint get - Display endpoint information

	cilium endpoint health - View endpoint health

	cilium endpoint labels - Manage label configuration of endpoint

	cilium endpoint list - List all endpoints

	cilium endpoint log - View endpoint status log

	cilium endpoint regenerate - Force regeneration of endpoint program

 cilium endpoint config

cilium endpoint config

View & modify endpoint configuration

Synopsis

View & modify endpoint configuration

cilium endpoint config <endpoint id> [<option>=(enable|disable) ...] [flags]

Examples

endpoint config 5421 DropNotification=false TraceNotification=false

Options

 -h, --help help for config
 --list-options List available options
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint disconnect

cilium endpoint disconnect

Disconnect an endpoint from the network

Synopsis

Disconnect an endpoint from the network

cilium endpoint disconnect <endpoint-id> [flags]

Options

 -h, --help help for disconnect

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint get

cilium endpoint get

Display endpoint information

Synopsis

Display endpoint information

cilium endpoint get (<endpoint identifier> | -l <endpoint labels>) [flags]

Examples

cilium endpoint get 4598, cilium endpoint get pod-name:default:foobar, cilium endpoint get -l id.baz

Options

 -h, --help help for get
 -l, --labels strings list of labels
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint health

cilium endpoint health

View endpoint health

Synopsis

View endpoint health

cilium endpoint health <endpoint id> [flags]

Examples

cilium endpoint health 5421

Options

 -h, --help help for health
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint labels

cilium endpoint labels

Manage label configuration of endpoint

Synopsis

Manage label configuration of endpoint

cilium endpoint labels [flags]

Options

 -a, --add strings Add/enable labels
 -d, --delete strings Delete/disable labels
 -h, --help help for labels

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint list

cilium endpoint list

List all endpoints

Synopsis

List all endpoints

cilium endpoint list [flags]

Options

 -h, --help help for list
 --no-headers Do not print headers
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint log

cilium endpoint log

View endpoint status log

Synopsis

View endpoint status log

cilium endpoint log <endpoint id> [flags]

Examples

cilium endpoint log 5421

Options

 -h, --help help for log
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium endpoint regenerate

cilium endpoint regenerate

Force regeneration of endpoint program

Synopsis

Force regeneration of endpoint program

cilium endpoint regenerate <endpoint-id> [flags]

Options

 -h, --help help for regenerate

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium endpoint - Manage endpoints

 cilium fqdn

cilium fqdn

Manage fqdn proxy

Synopsis

Manage fqdn proxy

cilium fqdn [flags]

Options

 -h, --help help for fqdn

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium fqdn cache - Manage fqdn proxy cache

 cilium fqdn cache

cilium fqdn cache

Manage fqdn proxy cache

Synopsis

Manage fqdn proxy cache

cilium fqdn cache [flags]

Options

 -h, --help help for cache

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium fqdn - Manage fqdn proxy

	cilium fqdn cache clean - Clean fqdn cache

	cilium fqdn cache list - List fqdn cache contents

 cilium fqdn cache clean

cilium fqdn cache clean

Clean fqdn cache

Synopsis

Clean fqdn cache

cilium fqdn cache clean [flags]

Options

 -f, --force Skip confirmation
 -h, --help help for clean
 -p, --matchpattern string Delete cache entries with FQDNs that match matchpattern

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium fqdn cache - Manage fqdn proxy cache

 cilium fqdn cache list

cilium fqdn cache list

List fqdn cache contents

Synopsis

List fqdn cache contents

cilium fqdn cache list [flags]

Options

 -h, --help help for list
 -p, --matchpattern string List cache entries with FQDN that match matchpattern
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium fqdn cache - Manage fqdn proxy cache

 cilium identity

cilium identity

Manage security identities

Synopsis

Manage security identities

Options

 -h, --help help for identity

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium identity get - Retrieve information about an identity

	cilium identity list - List identities

 cilium identity get

cilium identity get

Retrieve information about an identity

Synopsis

Retrieve information about an identity

cilium identity get [flags]

Options

 -h, --help help for get
 --label strings Label to lookup
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium identity - Manage security identities

 cilium identity list

cilium identity list

List identities

Synopsis

List identities

cilium identity list [LABELS] [flags]

Options

 --endpoints list identities of locally managed endpoints
 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium identity - Manage security identities

 cilium kvstore

cilium kvstore

Direct access to the kvstore

Synopsis

Direct access to the kvstore

Options

 -h, --help help for kvstore
 --kvstore string kvstore type
 --kvstore-opt map kvstore options (default map[])

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium kvstore delete - Delete a key

	cilium kvstore get - Retrieve a key

	cilium kvstore set - Set a key and value

 cilium kvstore delete

cilium kvstore delete

Delete a key

Synopsis

Delete a key

cilium kvstore delete [options] <key> [flags]

Examples

cilium kvstore delete --recursive foo

Options

 -h, --help help for delete
 --recursive Recursive lookup

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API
 --kvstore string kvstore type
 --kvstore-opt map kvstore options (default map[])

SEE ALSO

	cilium kvstore - Direct access to the kvstore

 cilium kvstore get

cilium kvstore get

Retrieve a key

Synopsis

Retrieve a key

cilium kvstore get [options] <key> [flags]

Examples

cilium kvstore get --recursive foo

Options

 -h, --help help for get
 -o, --output string json| jsonpath='{}'
 --recursive Recursive lookup

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API
 --kvstore string kvstore type
 --kvstore-opt map kvstore options (default map[])

SEE ALSO

	cilium kvstore - Direct access to the kvstore

 cilium kvstore set

cilium kvstore set

Set a key and value

Synopsis

Set a key and value

cilium kvstore set [options] <key> [flags]

Examples

cilium kvstore set foo=bar

Options

 -h, --help help for set
 --key string Key
 --value string Value

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API
 --kvstore string kvstore type
 --kvstore-opt map kvstore options (default map[])

SEE ALSO

	cilium kvstore - Direct access to the kvstore

 cilium map

cilium map

Access BPF maps

Synopsis

Access BPF maps

Options

 -h, --help help for map

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium map get - Display BPF map information

	cilium map list - List all open BPF maps

 cilium map get

cilium map get

Display BPF map information

Synopsis

Display BPF map information

cilium map get <name> [flags]

Examples

cilium map get cilium_ipcache

Options

 -h, --help help for get
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium map - Access BPF maps

 cilium map list

cilium map list

List all open BPF maps

Synopsis

List all open BPF maps

cilium map list [flags]

Examples

cilium map list

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'
 --verbose Print cache contents of all maps

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium map - Access BPF maps

 cilium metrics

cilium metrics

Access metric status

Synopsis

Access metric status

Options

 -h, --help help for metrics

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium metrics list - List all metrics

 cilium metrics list

cilium metrics list

List all metrics

Synopsis

List all metrics

cilium metrics list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium metrics - Access metric status

 cilium monitor

cilium monitor

Display BPF program events

Synopsis

The monitor displays notifications and events emitted by the BPF
programs attached to endpoints and devices. This includes:

	Dropped packet notifications

	Captured packet traces

	Debugging information

cilium monitor [flags]

Options

 --from []uint16 Filter by source endpoint id
 -h, --help help for monitor
 --hex Do not dissect, print payload in HEX
 -j, --json Enable json output. Shadows -v flag
 --monitor-socket string Configure monitor socket path
 --related-to []uint16 Filter by either source or destination endpoint id
 --to []uint16 Filter by destination endpoint id
 -t, --type []string Filter by event types [agent capture debug drop l7 trace]
 -v, --verbose Enable verbose output

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium node

cilium node

Manage cluster nodes

Synopsis

Manage cluster nodes

Options

 -h, --help help for node

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium node list - List nodes

 cilium node list

cilium node list

List nodes

Synopsis

List nodes

cilium node list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium node - Manage cluster nodes

 cilium policy

cilium policy

Manage security policies

Synopsis

Manage security policies

Options

 -h, --help help for policy

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium policy delete - Delete policy rules

	cilium policy get - Display policy node information

	cilium policy import - Import security policy in JSON format

	cilium policy selectors - Display cached information about selectors

	cilium policy trace - Trace a policy decision

	cilium policy validate - Validate a policy

	cilium policy wait - Wait for all endpoints to have updated to a given policy revision

 cilium policy delete

cilium policy delete

Delete policy rules

Synopsis

Delete policy rules

cilium policy delete [<labels>] [flags]

Options

 --all Delete all policies
 -h, --help help for delete
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy get

cilium policy get

Display policy node information

Synopsis

Display policy node information

cilium policy get [<labels>] [flags]

Options

 -h, --help help for get
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy import

cilium policy import

Import security policy in JSON format

Synopsis

Import security policy in JSON format

cilium policy import <path> [flags]

Examples

 cilium policy import ~/policy.json
 cilium policy import ./policies/app/

Options

 -h, --help help for import
 -o, --output string json| jsonpath='{}'
 --print Print policy after import

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy selectors

cilium policy selectors

Display cached information about selectors

Synopsis

Display cached information about selectors

cilium policy selectors [flags]

Options

 -h, --help help for selectors
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy trace

cilium policy trace

Trace a policy decision

Synopsis

Verifies if the source is allowed to consume
destination. Source / destination can be provided as endpoint ID, security ID, Kubernetes Pod, YAML file, set of LABELs. LABEL is represented as
SOURCE:KEY[=VALUE].
dports can be can be for example: 80/tcp, 53 or 23/udp.
If multiple sources and / or destinations are provided, each source is tested whether there is a policy allowing traffic between it and each destination.
–src-k8s-pod and –dst-k8s-pod requires cilium-agent to be running with disable-endpoint-crd option set to “false”.

cilium policy trace (-s <label context> | --src-identity <security identity> | --src-endpoint <endpoint ID> | --src-k8s-pod <namespace:pod-name> | --src-k8s-yaml <path to YAML file>) (-d <label context> | --dst-identity <security identity> | --dst-endpoint <endpoint ID> | --dst-k8s-pod <namespace:pod-name> | --dst-k8s-yaml <path to YAML file>) [--dport <port>[/<protocol>] [flags]

Options

 --dport strings L4 destination port to search on outgoing traffic of the source label context and on incoming traffic of the destination label context
 -d, --dst strings Destination label context
 --dst-endpoint string Destination endpoint
 --dst-identity int Destination identity (default -1)
 --dst-k8s-pod string Destination k8s pod ([namespace:]podname)
 --dst-k8s-yaml string Path to YAML file for destination
 -h, --help help for trace
 -o, --output string json| jsonpath='{}'
 -s, --src strings Source label context
 --src-endpoint string Source endpoint
 --src-identity int Source identity (default -1)
 --src-k8s-pod string Source k8s pod ([namespace:]podname)
 --src-k8s-yaml string Path to YAML file for source
 -v, --verbose Set tracing to TRACE_VERBOSE

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy validate

cilium policy validate

Validate a policy

Synopsis

Validate a policy

cilium policy validate <path> [flags]

Options

 -h, --help help for validate
 --print Print policy after validation

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium policy wait

cilium policy wait

Wait for all endpoints to have updated to a given policy revision

Synopsis

Wait for all endpoints to have updated to a given policy revision

cilium policy wait <revision> [flags]

Options

 --fail-wait-time int Wait time after which command fails if endpoint regeration fails (seconds) (default 60)
 -h, --help help for wait
 --max-wait-time int Wait time after which command fails (seconds) (default 360)
 --sleep-time int Sleep interval between checks (seconds) (default 1)

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium policy - Manage security policies

 cilium prefilter

cilium prefilter

Manage XDP CIDR filters

Synopsis

Manage XDP CIDR filters

Options

 -h, --help help for prefilter

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium prefilter delete - Delete CIDR filters

	cilium prefilter list - List CIDR filters

	cilium prefilter update - Update CIDR filters

 cilium prefilter delete

cilium prefilter delete

Delete CIDR filters

Synopsis

Delete CIDR filters

cilium prefilter delete [flags]

Options

 --cidr strings List of CIDR prefixes to delete
 -h, --help help for delete
 --revision uint Update revision

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium prefilter - Manage XDP CIDR filters

 cilium prefilter list

cilium prefilter list

List CIDR filters

Synopsis

List CIDR filters

cilium prefilter list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium prefilter - Manage XDP CIDR filters

 cilium prefilter update

cilium prefilter update

Update CIDR filters

Synopsis

Update CIDR filters

cilium prefilter update [flags]

Options

 --cidr strings List of CIDR prefixes to block
 -h, --help help for update
 --revision uint Update revision

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium prefilter - Manage XDP CIDR filters

 cilium preflight

cilium preflight

cilium upgrade helper

Synopsis

CLI to help upgrade cilium

Options

 -h, --help help for preflight

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium preflight fqdn-poller - Prepare for DNS Polling upgrades to cilium 1.4

	cilium preflight migrate-identity - Migrate KVStore-backed identities to kubernetes CRD-backed identities

	cilium preflight validate-cnp - Validate Cilium Network Policies deployed in the cluster

 cilium preflight fqdn-poller

cilium preflight fqdn-poller

Prepare for DNS Polling upgrades to cilium 1.4

Synopsis

Prepare for DNS Polling upgrades to cilium 1.4 by creating a
placeholder –tofqdns-pre-cache file that can be used to pre-seed the DNS
cached used in toFQDNs rules. This is useful when upgrading cilium with
DNS Polling policies where an interruption in allowed IPs is undesirable. It
may also be used when switching from DNS Polling based DNS discovery to DNS
Proxy based discovery where an endpoint may not make a DNS request soon
enough to be used by toFQDNs policy rules

cilium preflight fqdn-poller [flags]

Options

 -h, --help help for fqdn-poller
 --tofqdns-pre-cache string The path to write serialized ToFQDNs pre-cache information. stdout is the default
 --tofqdns-pre-cache-ttl int TTL, in seconds, to set on generated ToFQDNs pre-cache information (default 604800)

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium preflight - cilium upgrade helper

 cilium preflight migrate-identity

cilium preflight migrate-identity

Migrate KVStore-backed identities to kubernetes CRD-backed identities

Synopsis

migrate-identity allows migrating to CRD-backed identities while
minimizing connection interruptions. It will allocate a CRD-backed identity,
with the same numeric security identity, for each cilium security identity
defined in the kvstore. When cilium-agents are restarted with
identity-allocation-mode set to CRD the numeric identities will then be
equivalent between new instances and not-upgraded ones. In cases where the
numeric identity is already in-use by a different set of labels, a new
numeric identity is created.

cilium preflight migrate-identity [flags]

Options

 -h, --help help for migrate-identity
 --k8s-api-server string Kubernetes api address server (for https use --k8s-kubeconfig-path instead)
 --k8s-kubeconfig-path string Absolute path of the kubernetes kubeconfig file
 --kvstore string Key-value store type
 --kvstore-opt map Key-value store options (default map[])

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium preflight - cilium upgrade helper

 cilium preflight validate-cnp

cilium preflight validate-cnp

Validate Cilium Network Policies deployed in the cluster

Synopsis

Before upgrading Cilium it is recommended to run this validation checker
to make sure the policies deployed are valid. The validator will verify if all policies
deployed in the cluster are valid, in case they are not, an error is printed and the
has an exit code -1 is returned.

cilium preflight validate-cnp [flags]

Options

 -h, --help help for validate-cnp
 --k8s-api-server string Kubernetes api address server (for https use --k8s-kubeconfig-path instead)
 --k8s-kubeconfig-path string Absolute path of the kubernetes kubeconfig file

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium preflight - cilium upgrade helper

 cilium service

cilium service

Manage services & loadbalancers

Synopsis

Manage services & loadbalancers

Options

 -h, --help help for service

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

	cilium service delete - Delete a service

	cilium service get - Display service information

	cilium service list - List services

	cilium service update - Update a service

 cilium service delete

cilium service delete

Delete a service

Synopsis

Delete a service

cilium service delete { <service id> | --all } [flags]

Options

 --all Delete all services
 -h, --help help for delete

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium service - Manage services & loadbalancers

 cilium service get

cilium service get

Display service information

Synopsis

Display service information

cilium service get <service id> [flags]

Options

 -h, --help help for get
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium service - Manage services & loadbalancers

 cilium service list

cilium service list

List services

Synopsis

List services

cilium service list [flags]

Options

 -h, --help help for list
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium service - Manage services & loadbalancers

 cilium service update

cilium service update

Update a service

Synopsis

Update a service

cilium service update [flags]

Options

 --backends strings Backend address or addresses followed by optional weight (<IP:Port>[/weight])
 --frontend string Frontend address
 -h, --help help for update
 --id uint Identifier
 --rev Add reverse translation (default true)

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium service - Manage services & loadbalancers

 cilium status

cilium status

Display status of daemon

Synopsis

Display status of daemon

cilium status [flags]

Options

 --all-addresses Show all allocated addresses, not just count
 --all-controllers Show all controllers, not just failing
 --all-health Show all health status, not just failing
 --all-nodes Show all nodes, not just localhost
 --all-redirects Show all redirects
 --brief Only print a one-line status message
 -h, --help help for status
 -o, --output string json| jsonpath='{}'
 --verbose Equivalent to --all-addresses --all-controllers --all-nodes --all-health

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium version

cilium version

Print version information

Synopsis

Print version information

cilium version [flags]

Options

 -h, --help help for version
 -o, --output string json| jsonpath='{}'

Options inherited from parent commands

 --config string config file (default is $HOME/.cilium.yaml)
 -D, --debug Enable debug messages
 -H, --host string URI to server-side API

SEE ALSO

	cilium - CLI

 cilium-bugtool

cilium-bugtool

Collects agent & system information useful for bug reporting

Synopsis

Collects agent & system information useful for bug reporting

cilium-bugtool [OPTIONS] [flags]

Examples

 # Collect information and create archive file
 $ cilium-bugtool
 [...]

 # Collect and retrieve archive if Cilium is running in a Kubernetes pod
 $ kubectl get pods --namespace kube-system
 NAME READY STATUS RESTARTS AGE
 cilium-kg8lv 1/1 Running 0 13m
 [...]
 $ kubectl -n kube-system exec cilium-kg8lv cilium-bugtool
 $ kubectl cp kube-system/cilium-kg8lv:/tmp/cilium-bugtool-243785589.tar /tmp/cilium-bugtool-243785589.tar

Options

 --archive Create archive when false skips deletion of the output directory (default true)
 --archive-prefix string String to prefix to name of archive if created (e.g., with cilium pod-name)
 -o, --archiveType string Archive type: tar | gz (default "tar")
 --config string Configuration to decide what should be run (default "./.cilium-bugtool.config")
 --dry-run Create configuration file of all commands that would have been executed
 --enable-markdown Dump output of commands in markdown format
 --exec-timeout duration The default timeout for any cmd execution in seconds (default 30s)
 --get-pprof When set, only gets the pprof traces from the cilium-agent binary
 -h, --help help for cilium-bugtool
 -H, --host string URI to server-side API
 --k8s-label string Kubernetes label for Cilium pod (default "k8s-app=cilium")
 --k8s-mode Require Kubernetes pods to be found or fail
 --k8s-namespace string Kubernetes namespace for Cilium pod (default "kube-system")
 --pprof-port int Port on which pprof server is exposed (default 6060)
 --pprof-trace-seconds int Amount of seconds used for pprof CPU traces (default 180)
 -t, --tmp string Path to store extracted files (default "/tmp")

 cilium-health get

 cilium-health ping

 cilium-health status

 cilium-health

 cilium-operator

 Key-Value Store

Key-Value Store

	Option

	Description

	Default

	–kvstore TYPE

	Key Value Store Type:
(consul, etcd)

	

	–kvstore-opt OPTS

	
	

consul

When using consul, the consul agent address needs to be provided with the
consul.address: consul.tlsconfig is optional, and is only required
for TLS authentication:

	Option

	Type

	Description

	consul.address

	Address

	Address of consul agent

	consul.tlsconfig

	Path

	Path to a consul configuration file
for client server authentication

Example of the consul configuration file:

cafile: '/var/lib/cilium/consul-ca.pem'
keyfile: '/var/lib/cilium/client-key.pem'
certfile: '/var/lib/cilium/client.pem'
#insecureskipverify: true

etcd

When using etcd, one of the following options need to be provided to configure the
etcd endpoints:

	Option

	Type

	Description

	etcd.address

	Address

	Address of etcd endpoint

	etcd.config

	Path

	Path to an etcd configuration file.

Example of the etcd configuration file:

endpoints:
- https://192.168.0.1:2379
- https://192.168.0.2:2379
trusted-ca-file: '/var/lib/cilium/etcd-ca.pem'
In case you want client to server authentication
key-file: '/var/lib/cilium/etcd-client.key'
cert-file: '/var/lib/cilium/etcd-client.crt'

 Key-Value Store

Key-Value Store

Cilium uses an external key-value store to exchange information across multiple
Cilium instances:

Layout

All data is stored under a common key prefix:

	Prefix

	Description

	cilium/

	All keys share this common prefix.

	cilium/state/

	State stored by agents, data is automatically recreated on removal or corruption.

Cluster Nodes

Every agent will register itself as a node in the kvstore and make the
following information available to other agents:

	Name

	IP addresses of the node

	Health checking IP addresses

	Allocation range of endpoints on the node

	Key

	Value

	cilium/state/nodes/v1/<cluster>/<node>

	node.Node [https://godoc.org/github.com/cilium/cilium/pkg/node#Node]

All node keys are attached to a lease owned by the agent of the respective
node.

Services

All Kubernetes services are mirrored into the kvstore by the Cilium operator. This is
required to implement multi cluster service discovery.

	Key

	Value

	cilium/state/services/v1/<cluster>/<namespace>/<service>

	service.ClusterService [https://godoc.org/github.com/cilium/cilium/pkg/service#ClusterService]

Identities

Any time a new endpoint is started on a Cilium node, it will determine whether
the labels for the endpoint are unique and allocate an identity for that set of
labels. These identities are only meaningful within the local cluster.

	Key

	Value

	cilium/state/identities/v1/id/<identity>

	labels.LabelArray [https://godoc.org/github.com/cilium/cilium/pkg/labels#LabelArray]

	cilium/state/identities/v1/value/<labels>/<node>

	identity.NumericIdentity [https://godoc.org/github.com/cilium/cilium/pkg/identity#NumericIdentity]

Endpoints

All endpoint IPs and corresponding identities are mirrored to the kvstore by
the agent on the node where the endpoint is launched, to allow peer nodes to
configure egress policies to endpoints backed by these IPs.

	Key

	Value

	cilium/state/ip/v1/<cluster>/<ip>

	identity.IPIdentityPair [https://godoc.org/github.com/cilium/cilium/pkg/identity#IPIdentityPair]

Leases

With a few exceptions, all keys in the key-value store are owned by a
particular agent running on a node. All such keys have a lease attached. The
lease is renewed automatically. When the lease expires, the key is removed from
the key-value store. This guarantees that keys are removed from the key-value
store in the event that an agent dies on a particular and never reappears.

The lease lifetime is set to 15 minutes. The exact expiration behavior is
dependent on the kvstore implementation but the expiration typically occurs
after double the lifetime

Debugging

The contents stored in the kvstore can be queued and manipulate using the
cilium kvstore command. For additional details, see the command reference.

Example:

$ cilium kvstore get --recursive cilium/state/nodes/
cilium/state/nodes/v1/default/runtime1 => {"Name":"runtime1","IPAddresses":[{"AddressType":"InternalIP","IP":"10.0.2.15"}],"IPv4AllocCIDR":{"IP":"10.11.0.0","Mask":"//8AAA=="},"IPv6AllocCIDR":{"IP":"f00d::a0f:0:0:0","Mask":"//////////////////8AAA=="},"IPv4HealthIP":"","IPv6HealthIP":""}

 Further Reading

Further Reading

Related Material

	k8s-snowflake: Configs and scripts for bootstrapping an opinionated
Kubernetes cluster anywhere using Cilium plugin [https://github.com/jessfraz/k8s-snowflake]

	Using Cilium for NetworkPolicy: Kubernetes documentation on how to use Cilium
to implement NetworkPolicy [https://kubernetes.io/docs/tasks/administer-cluster/cilium-network-policy/]

Presentations

	DockerCon, Austin TX, Apr 2017 - Cilium - Network and Application Security with BPF and XDP: Slides [https://www.slideshare.net/ThomasGraf5/dockercon-2017-cilium-network-and-application-security-with-bpf-and-xdp], Video [https://www.youtube.com/watch?v=ilKlmTDdFgk]

	CNCF/KubeCon Meetup, Berlin, Mar 2017 - Linux Native, HTTP Aware Network Security:
Slides [https://www.slideshare.net/ThomasGraf5/linux-native-http-aware-network-security], Video [https://www.youtube.com/watch?v=Yf_INdTWIHI]

	Docker Distributed Systems Summit, Berlin, Oct 2016:
Slides [http://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823], Video [https://www.youtube.com/watch?v=TnJF7ht3ZYc&list=PLkA60AVN3hh8oPas3cq2VA9xB7WazcIgs&index=7]

	NetDev1.2, Tokyo, Sep 2016 - cls_bpf/eBPF updates since netdev 1.1: Slides [http://borkmann.ch/talks/2016_tcws.pdf], Video [https://youtu.be/gwzaKXWIelc?t=12m55s]

	NetDev1.2, Tokyo, Sep 2016 - Advanced programmability and recent updates with tc’s cls_bpf: Slides [http://borkmann.ch/talks/2016_netdev2.pdf], Video [https://www.youtube.com/watch?v=GwT9hRiqdUo]

	ContainerCon NA, Toronto, Aug 2016 - Fast IPv6 container networking with BPF & XDP: Slides [http://www.slideshare.net/ThomasGraf5/cilium-fast-ipv6-container-networking-with-bpf-and-xdp]

Podcasts

	Software Gone Wild by Ivan Pepelnjak, Oct 2016: Blog [http://blog.ipspace.net/2016/10/fast-linux-packet-forwarding-with.html], MP3 [http://media.blubrry.com/ipspace/stream.ipspace.net/nuggets/podcast/Show_64-Cilium_with_Thomas_Graf.mp3]

	OVS Orbit by Ben Pfaff, May 2016: Blog [https://ovsorbit.benpfaff.org/#e4], MP3 [https://ovsorbit.benpfaff.org/episode-4.mp3]

Community blog posts

	Cilium for Network and Application Security with BPF and XDP, Apr 2017 [https://blog.scottlowe.org/2017/04/18/black-belt-cilium/]

	Cilium, BPF and XDP, Google Open Source Blog, Nov 2016 [https://opensource.googleblog.com/2016/11/cilium-networking-and-security.html]

 Glossary

Glossary

Cilium has some terms with special meanings. These should all be covered
throughout the documentation but for convenience we have also listed some of
them below with short descriptions. If you need more information, please ask us
on Slack [https://cilium.herokuapp.com]. Feel free to extend this document
with words you expected to see here.

	CNI

	https://github.com/containernetworking/cni

	ConfigMap

	https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

	CustomResourceDefinition

	https://kubernetes.io/docs/concepts/api-extension/custom-resources/#customresourcedefinitions

	DaemonSet

	https://kubernetes.io/docs/admin/daemons/

	Endpoint

	Endpoint

	Geneve

	https://tools.ietf.org/html/draft-ietf-nvo3-geneve-04

	HeadlessServices

	https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

	Helm

	https://helm.sh/

	iproute2

	https://www.kernel.org/pub/linux/utils/net/iproute2/

	Linux kernel

	https://www.kernel.org/

	llvm

	http://releases.llvm.org/

	NodeSelector

	https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

	Pod	Pods

	https://kubernetes.io/docs/concepts/workloads/pods/pod/

	Policy

	A Cilium policy consists of a list of rules. The security policy can be
specified in The Kubernetes NetworkPolicy format or The Cilium policy
language.

	RBAC

	https://kubernetes.io/docs/admin/authorization/rbac/

	Service

	https://kubernetes.io/docs/concepts/services-networking/service/

	Slack channel

	Public community slack channel for everyone to ask questions
https://cilium.herokuapp.com

	Volumes

	https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/

	VXLAN

	https://tools.ietf.org/html/rfc7348

 HTTP Routing Table

 HTTP Routing Table

 /cluster |
 /config |
 /debuginfo |
 /endpoint |
 /fqdn |
 /healthz |
 /identity |
 /ipam |
 /map |
 /metrics |
 /policy |
 /prefilter |
 /service

 		 	

 		
 /cluster	

 	
 	
 GET /cluster/nodes	
 Get nodes information stored in the cilium-agent

 		 	

 		
 /config	

 	
 	
 GET /config	
 Get configuration of Cilium daemon

 	
 	
 PATCH /config	
 Modify daemon configuration

 		 	

 		
 /debuginfo	

 	
 	
 GET /debuginfo	
 Retrieve information about the agent and evironment for debugging

 		 	

 		
 /endpoint	

 	
 	
 GET /endpoint	
 Retrieves a list of endpoints that have metadata matching the provided parameters.

 	
 	
 GET /endpoint/{id}	
 Get endpoint by endpoint ID

 	
 	
 GET /endpoint/{id}/config	
 Retrieve endpoint configuration

 	
 	
 GET /endpoint/{id}/healthz	
 Retrieves the status logs associated with this endpoint.

 	
 	
 GET /endpoint/{id}/labels	
 Retrieves the list of labels associated with an endpoint.

 	
 	
 GET /endpoint/{id}/log	
 Retrieves the status logs associated with this endpoint.

 	
 	
 PUT /endpoint/{id}	
 Create endpoint

 	
 	
 DELETE /endpoint/{id}	
 Delete endpoint

 	
 	
 PATCH /endpoint/{id}	
 Modify existing endpoint

 	
 	
 PATCH /endpoint/{id}/config	
 Modify mutable endpoint configuration

 	
 	
 PATCH /endpoint/{id}/labels	
 Set label configuration of endpoint

 		 	

 		
 /fqdn	

 	
 	
 GET /fqdn/cache	
 Retrieves the list of DNS lookups intercepted from all endpoints.

 	
 	
 GET /fqdn/cache/{id}	
 Retrieves the list of DNS lookups intercepted from an endpoint.

 	
 	
 DELETE /fqdn/cache	
 Deletes matching DNS lookups from the policy-generation cache.

 		 	

 		
 /healthz	

 	
 	
 GET /healthz	
 Get health of Cilium daemon

 		 	

 		
 /identity	

 	
 	
 GET /identity	
 Retrieves a list of identities that have metadata matching the provided parameters.

 	
 	
 GET /identity/endpoints	
 Retrieve identities which are being used by local endpoints

 	
 	
 GET /identity/{id}	
 Retrieve identity

 		 	

 		
 /ipam	

 	
 	
 POST /ipam	
 Allocate an IP address

 	
 	
 POST /ipam/{ip}	
 Allocate an IP address

 	
 	
 DELETE /ipam/{ip}	
 Release an allocated IP address

 		 	

 		
 /map	

 	
 	
 GET /map	
 List all open maps

 	
 	
 GET /map/{name}	
 Retrieve contents of BPF map

 		 	

 		
 /metrics	

 	
 	
 GET /metrics/	
 Retrieve cilium metrics

 		 	

 		
 /policy	

 	
 	
 GET /policy	
 Retrieve entire policy tree

 	
 	
 GET /policy/resolve	
 Resolve policy for an identity context

 	
 	
 GET /policy/selectors	
 See what selectors match which identities

 	
 	
 PUT /policy	
 Create or update a policy (sub)tree

 	
 	
 DELETE /policy	
 Delete a policy (sub)tree

 		 	

 		
 /prefilter	

 	
 	
 GET /prefilter	
 Retrieve list of CIDRs

 	
 	
 DELETE /prefilter	
 Delete list of CIDRs

 	
 	
 PATCH /prefilter	
 Update list of CIDRs

 		 	

 		
 /service	

 	
 	
 GET /service	
 Retrieve list of all services

 	
 	
 GET /service/{id}	
 Retrieve configuration of a service

 	
 	
 PUT /service/{id}	
 Create or update service

 	
 	
 DELETE /service/{id}	
 Delete a service

 Index

Index

 C
 | D
 | E
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | V

C

 	
 	CNI

 	
 	ConfigMap

 	CustomResourceDefinition

D

 	
 	DaemonSet

E

 	
 	Endpoint

G

 	
 	Geneve

H

 	
 	HeadlessServices

 	
 	Helm

I

 	
 	iproute2

L

 	
 	Linux kernel

 	
 	llvm

N

 	
 	NodeSelector

P

 	
 	Pod

 	
 	Pods

 	Policy

R

 	
 	RBAC

S

 	
 	Service

 	
 	Slack channel

V

 	
 	Volumes

 	
 	VXLAN

 Setup Cilium

 If you haven’t read the Introduction to Cilium yet, we’d encourage you to do that first.

The best way to get help if you get stuck is to ask a question on the Cilium
Slack channel [https://cilium.herokuapp.com]. With Cilium contributors
across the globe, there is almost always someone available to help.

Setup Cilium

If you have not set up Cilium yet, pick any installation method as described in
section Installation to set up Cilium for your Kubernetes environment. If
in doubt, pick Getting Started Using Minikube as the simplest way to set up a Kubernetes
cluster with Cilium:

minikube start --network-plugin=cni --memory=4096
minikube ssh -- sudo mount bpffs -t bpf /sys/fs/bpf
kubectl create -f https://raw.githubusercontent.com/cilium/cilium/v1.6/install/kubernetes/quick-install.yaml

 Create an AKS + Cilium CNI configuration

Create an AKS + Cilium CNI configuration

Create a chaining.yaml file based on the following template to specify the
desired CNI chaining configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cni-configuration
 namespace: cilium
data:
 cni-config: |-
 {
 "cniVersion": "0.3.0",
 "name": "azure",
 "plugins": [
 {
 "type": "azure-vnet",
 "mode": "transparent",
 "bridge": "azure0",
 "ipam": {
 "type": "azure-vnet-ipam"
 }
 },
 {
 "type": "portmap",
 "capabilities": {"portMappings": true},
 "snat": true
 },
 {
 "name": "cilium",
 "type": "cilium-cni"
 }
]
 }

Create the cilium namespace:

kubectl create namespace cilium

Deploy the ConfigMap:

kubectl apply -f chaining.yaml

Prepare & Deploy Cilium

Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

Generate the required YAML file and deploy it:

helm template cilium \
 --namespace cilium \
 --set global.cni.chainingMode=generic-veth \
 --set global.cni.customConf=true \
 --set global.nodeinit.enabled=true \
 --set nodeinit.azure=true \
 --set global.cni.configMap=cni-configuration \
 --set global.tunnel=disabled \
 --set global.masquerade=false \
 > cilium.yaml
kubectl create -f cilium.yaml

This will create both the main cilium daemonset, as well as the cilium-node-init daemonset, which handles tasks like mounting the BPF filesystem and updating the
existing Azure CNI plugin to run in ‘transparent’ mode.

 <no title>

 Download the Cilium release tarball and change to the kubernetes install directory:

curl -LO https://github.com/cilium/cilium/archive/v1.6.tar.gz
tar xzvf v1.6.tar.gz
cd cilium-1.6/install/kubernetes

Install Helm [https://helm.sh/docs/using_helm/#install-helm] to prepare generating the deployment artifacts based on the
Helm templates.

 Validate the Installation

Validate the Installation

You can monitor as Cilium and all required components are being installed:

kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

It may take a couple of minutes for all components to come up:

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Deploy the connectivity test

You can deploy the “connectivity-check” to test connectivity between pods.

kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.6/examples/kubernetes/connectivity-check/connectivity-check.yaml

It will deploy a simple probe and echo server running with multiple replicas.
The probe will only report readiness while it can successfully reach the echo
server:

kubectl get pods
NAME READY STATUS RESTARTS AGE
echo-585798dd9d-ck5xc 1/1 Running 0 75s
echo-585798dd9d-jkdjx 1/1 Running 0 75s
echo-585798dd9d-mk5q8 1/1 Running 0 75s
echo-585798dd9d-tn9t4 1/1 Running 0 75s
echo-585798dd9d-xmr4p 1/1 Running 0 75s
probe-866bb6f696-9lhfw 1/1 Running 0 75s
probe-866bb6f696-br4dr 1/1 Running 0 75s
probe-866bb6f696-gv5kf 1/1 Running 0 75s
probe-866bb6f696-qg2b7 1/1 Running 0 75s
probe-866bb6f696-tb926 1/1 Running 0 75s

 Requirements

Requirements

Make sure your Kubernetes environment is meeting the requirements:

	Kubernetes >= 1.9

	Linux kernel >= 4.9

	Kubernetes in CNI mode

	Mounted BPF filesystem mounted on all worker nodes

	Recommended: Enable PodCIDR allocation (--allocate-node-cidrs) in the kube-controller-manager (recommended)

Refer to the section Requirements for detailed instruction on how to
prepare your Kubernetes environment.

_static/cilium-quayio-tag-2.png
Toggle Trigger

Are you sure you want to enable this trigger?

3. Toggle Trigger Cancel

_static/cilium-quayio-tag-3.png
(5) Repository Builds

> E Build History Recent Builds Last 48 Hours Last 30 days
BUILD ID TRIGGERED BY DATE STARTED | TAGS
9 Makefile: remove docker-image push
instructions ...
[x] Oe7chd71 Todayat1:12PM @ fix-docker-image-dependencies

Authored 18 minutes ago by |l aanm O
735de85 P fix-docker-image-dependencies

Last Sund t
O cfelf662 & aanm ast Sunday a

fix-docker-i -d denci
3:37 PM @ fix-docker-image-dependencies

DOCKERFILE CONTEXT s L PULL
TRIGGER NAME N N BRANCHES/TAGS
LOCATION LOCATION ROBOT
Push to GitHub reposito
Q . P "y /envoy/Dockerfile /envoy All (None) 4. 'n'
cilium/cilium

& View Credentials
5. > RunTrigger Now
@ Disable Trigger

% Delete Trigger
[—

_static/cilium-quayio-tag-10.png
Repository Tags Expanded

18. Filter Tags...

TAG D View Tags History e | SECURITY SCAN SIZE IMAGE
% DeleteTags 19.

2018-C @ Change Tags Expiration 1ds ago & 1High 133.0MB SHA256 57ab670f4504

17. « fix-docker-image-depe... 18 minutes ago 1lHigh 133.0MB SHA256 89fd8al56b1d

_static/cilium-quayio-tag-11.png
Delete Tag

Are you sure you want to delete tag g Lo n L

_static/cilium-quayio-tag-4.png
Manually Start Build Trigger

) Push to GitHub repository cilium/cilium

Branch/Tag: Enter or select Branch/Tag

P envoy-http2-only-upstream
C: P envoy-only-repush-2
'V envoy-rebase-2018-03-30
P etcd-quorum
4 fix-docker—image-dependenciei 7.
P fix-endpoint-manager-datarace
P fix-ginkgo-vms
P fix-misspell-documentation
P fix-monitor-17-sidecar
P fix-policy-comments
P fix-sed-in-node-config

P gee-example

P geneve

P gingko-metal
P ginkgo-migration-branch

_static/cilium-quayio-tag-5.png
Manually Start Build Trigger

) Push to GitHub repository cilium/cilium

Branch/Tag: P fix-docker-image-dependencies

N

_static/cilium-quayio-tag-0.png
O Repository Builds

» = Build History

BUILD ID

() a284c416

() da268105

o ® er792533

TRIGGERED BY

Makefile: remove docker-image push
instructions ...

Authored 26 minutes ago by |l aanm O
7e59813 P fix-docker-image-dependencies

-

Makefile: remove docker-image push
instructions ...

Authored 38 minutes ago by |l aanm O
735de85 P fix-docker-image-dependencies

Dockerfile: point dockerfile to quay.io base
images ...

Authored an hour ago by [aanm -O- 7be2826
P fix-docker-image-dependencies

examples/kubernetes: Generate daemon

P Start New Build

Recent Builds Last 48 Hours Last 30 days

DATE STARTED |

Today at 1:34 PM

Today at 1:12 PM

Today at 1:02 PM

TAGS

@ fix-docker-image-dependencies

@ fix-docker-image-dependencies

@ fix-docker-image-dependencies

_static/cilium-quayio-tag-1.png
(5) Repository Builds

E Build History Recent Builds Last 48 Hours Last 30 days

BUILD ID TRIGGERED BY DATE STARTED | TAGS

Makefile: remove docker-image push

instructions ...
[x] Oe7chd71 Todayat1:12PM @ fix-docker-image-dependencies

Authored 14 minutes ago by [l aanm O
735de85 P fix-docker-image-dependencies

Last Sunday at
3:37PM

& aanm @ fix-docker-image-dependencies

? Build Triggers Create Build Trigger ~

DOCKERFILE CONTEXT . -
TRIGGER NAME N N BRANCHES/TAGS
LOCATION LOCATION

1.8

& View Credentials

cilium/cilium

/. This build trigger is user disabled and will not build: Re-enable this trigger > Run Trigger Now
2.0 Enable Trigger

% Delete Trigger

_static/cilium-arch.png
Orchestration systems

gicilium Layer

= | | BT | | €D | | &=

Cilium CLI Policy Repository Plugins Cilium Monitor

CILIUM DAEMON

Code Generation

Bytecode

. injection .

BPF Program BPF Program

BPF Program

I

CONTAINER CONTAINER

Kernel

_static/cilium-endpoint-lifecycle.png
restoring waiting-for-identity

(] O

Cwaiting-to-regenerate

C > disconnecting)
C regenerating
C disconnected)

(@

_images/cilium_kafka_gsg_terminal_layout.png
empire-backup Terminal

Primary Terminal
(kubectl, etc.)

empire-outpost-8888 Terminal

empire-hqg Terminal empire-outpost-9999 Terminal

_images/cilium_kafka_gsg_topology.png
Produce: empire-announce
Produce: deathstar-plans

p
HQ

app=empire-hq

Empire
Backup

app=empire-backup

ost Outpost
8888 9999

app=empire-outpost

Consume: deathstar-plans

Kafka

Broker

Consume: empire-announce

_images/cilium_http_l3_l4_l7_gsg.png
Ingress Network Policy:
tiefighter — deathstar
allow tcp/80

http POST /v1/request-landing

org=empire
class=tiefighter

http POST
Iv1/request-landing

http PUT) (

Iv1/exhaust-port

org=alliance
class=xwing

org=empire
class=deathstar

namespace=default

_images/cilium_kafka_gsg_attack.png
From app=empire-outpost:
Allow “consume: empire-announce”
From app=....

tpost Outpost
8888 9999

app=empire-outpost

o

68

cilium

Kafka

Broker

_images/cilium_mesos_demo_l3-l4-policy-170817.png
Cilium Policy:
goodclient -> web-server
allow tcp/8181

id=goodclient

id=web-server

id=badclient

networkName=cilium

_images/cilium_mesos_demo_l7-policy-230817.png
Cilium Policy:

goodclient -> web-server

allow tcp/8181

http GET /public

id=goodclient

—
GET /public

Gi /pEnvate

id=web-server

id=badclient

networkName=cilium

_images/cilium_memcd_gsg_attack.png
GET awing-coord
SET awing-coord

app=a-wing

GET xwing-coord
. SET xwing-coord

GET awing-coord
GET xwing-coord

Alliance-Tracker

name=fleet-tracker

SET awing-coord
SET xwing-coord

From app=a-wing:
Allow “get/set awing-coord”

From name=fleet-tracker

Allow “get awing-coord”

Allow “get xwing-coord”

TCP11211

memcached-
server

app=memcd-server

_images/cilium_memcd_gsg_topology.png
GET awing-coord

SET awing-coord
A-wing

app=a-wing

TCP 11211

memcached-
GET xwing-coord
app=x-wing SET xwing-coord _
app—memcd-server

GET awing-coord
GET xwing-coord

Alliance-Tracker

name=fleet-tracker

_images/crd_arch.png
$ node1

B pod

19216811

B pod

19216814

- Use IPs

Report used IPs

CiliumNode CRD

netadata:
nane: nodel
spec
Span:
available: <
192.168.1.1
1921168112
192.168.1.3
1921681,
status:
Span:
> used:
“92.168.1.1
Zae216814

Make IPs
available

/(B operater)

_static/cilium_gsg_k8s_l7.png
Cilium Kubernetes Demo — L3/L4/L7 Policy Example

Network Policy:
Namespace: Default App2 > App1
Allow port 80:

HITP GET /public

_images/eni_arch.png
e [EC2
Read ENI —
parameters

node1

9 pod T pod Init
19216811 | | 19216814 _

security-groups
- so1
- sq2
1pan:
‘available
e Make IPs
Use IPs 1921168 available
1921168
192168
status:
1pan
To2.168.1.1
> 192016814

Report used IPs

_static/comment-bright.png

_static/cilium_gsg_k8s_topo.png
Cilium Kubernetes Demo - Application Topology

Namespace: Default

_static/comment.png

_static/comment-close.png

_static/cilium_gsg_docker_l3l4.png
Cilium Docker Demo - L3/L4 Policy Example

Network: cliumnet Cillam Policy:
App1 > Aop2
‘Allow port 80

.

_static/cilium_gsg_k8s_l3l4.png
Cilium Kubernetes Demo - L3/L4 Policy Example

Namespace: Default Network Policy:
App2 > Appl
‘Allow port 80

.

_static/cilium_gsg_docker_l7.png
Cilium Docker Demo - L3/L4/L7 Policy Example

Network: cliumnet Cillam Policy:
App1 > Aop2
‘Allow port 80

\ HITP GET putiic

_images/grafana_k8s.png
£ -
PPPPPPP
0000000
555555

~ « - -

PPPPPPP
000000

w o . o 1, o
22222

_images/grafana_network.png
Cilium network information ~

Forwarded Packets
6 kpps
4 kpps
L WWWMWMWWMW
0pps
16:00 1610 16:20 16:30 16:40 16:50 17:00 1710 1720 17:30 1740 17:50 18:00 1870 18:20 18:30 18:40 18:50
— EGRESS = INGRESS
Conntrack_GC
50K 20K
40K 15K
30K
10K
20K
10K Bl
0 0
16:00 1610 16:220 16:30 16:40 16:50 17.00 17:10 17:20 17:30 17:40 17:50 18:00 1810 18:20 18:30 18:40 18:50
= Alive ipv4 = Alive ipv6 == Deleted ipv6 == Deleted ipv4
Allocated Addresses
L min max avg current
— ipva 79.00 80.00 8000 80.00
80 T ipvé 7200 7300 7300 73.00
75
70
16:00 16:30 17:00 17:30 18:00 18:30
Service Updates
0.20 ops
0.150ps
0.10 ops
0.05 ops
oo LA NN AAANAAANAAANANADDAAAANANANDN D ma
1600 1610 16:20 16:30 16:40 16:50 17:00 1710 1720 17:30 17:40 17:50 1800 1810 18:20 18:30 18:40 18:50

== add == delete == update

Forwarded Traffic

150 Mbps

100 Mbps

50 Mbps /

0bps
16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50
== EGRESS == INGRESS
Datapath Errors
1.0
0.5
0
-0.5
-1.0
16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50
== dump_interrupts conntrack ipv4 dump_interrupts conntrack ipvé
Connectivity Health
10.0
7.5
5.0
25 H
. A
16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50
== unreachable nodes == unreachable health endpoints
Nodes Node Events
9 10.0 opm
7 5.0 opm [
6 2.50pm
5 0opm
16:00 16:30 17:00 17:30 18:00 18:30 16:00 16:30 17:00 17:30 18:00 18:30

== Average Nodes == Min Nodes == Max Nodes = add == delete == update

_images/grafana_endpoints.png
Endpoints

Endpoint regeneration time (90th percentile)
500 ms

400 ms T ‘

300ms

il | G

200 ms m“ \ w |

W] “m J ke \“HU “W ‘ I :
|

‘ i et
ll
WW W HMH HHN HHH\ HMH HMH HH N HMH NH\ ‘HH\ T

1600 16:30 17:00 17:30 18:00 18:30

== bpfCompilation Avg: == mapSync Avg: 14 ms == policyCalculation Avg: 90 ms == prepareBuild Avg: 27 ms == proxyConfiguration Avg: 7 ms
== proxyPolicyCalculation Avg: 15ms == proxyWaitForAck Avg: 5 ms == waitingForCTClean Avg: 5ms == waitingForLock Avg:5ms

Endpoint regenerations
150pm

:::: uL\ HMMM H‘ h“‘“\u‘\h“h saaduia st ol ‘Mm‘m i s \lm H;.M L il i ;nMJthJH{l.hLLMI

16:00 16:30 17:00 17:30 18:00 18:30

. JI i | M

bt 1 it b

== success Max: 10.89 opm Avg: 1.37 opm

Endpoint regeneration time (99th percentile)
20s

1.5s

1.0s

500 ms

16:00 16:30 17:00 17:30 18:00 18:30

Ons

== bpfCompilation Avg: == mapSync Avg: 60 ms == policyCalculation Avg:397 ms == prepareBuild Avg: 88 ms
== proxyConfiguration Avg:35ms == proxyPolicyCalculation Avg: 56 ms == proxyWaitForAck Avg: 5ms == waitingForCTClean Avg: 11 ms
== waitingForLock Avg: 16 ms

Cilium endpoint state
100
75 + I I I | |
so JATHA TN AT AT IR T N AT
B A AT TR SIS ED SISO
916:00 16:30 17:00 17:30 18:00 18:30

== disconnecting Current: 0 == ready Current: 66 == regenerating Current: 0 == restoring Current: 0 == waiting-for-identity Current: 0
~= waiting-to-regenerate Current: 0

_images/grafana_generic.png
Resident memory status

191 MiB
167 MiB

143MB [1 ——

Generic

119 MiB ~ T

95 MiB
16:00 16:30 17:00 17:30 18:00

== AVG_resident_memory_bytes == MAX_resident_memory_bytes_max == MIN_resident_memory_bytes_min

Virtual Memory Bytes
3.3GiB
2.8 GiB

18:30

2.3GiB
1.9GiB
1.4GiB

954 MiB
16:00 16:30 17:00 17:30 18:00

== Min Virtual Memory == Average Virtual Memory - Max Virtual Memory

Errors & Warnings
40 opm

30 opm
20 opm
10 opm
o,,meMMWM L A e a L A

16:00 16:30 17:00 17:30 18:00

== warning

18:30

60 opm

40 opm

20 opm

0 opm
18:30

- error

CPU Usage per node
1.5%
1.0%
0.5%
0% “—methh, Mo rnrn A Smnae Y WY A Y A
16:00 16:30 17:00 17:30 18:00 18:30
== min == avg == max
Open file descriptors
430
425
420
415
410
== min/node == avg/node == max/node == all nodes

17:30 18:00

== identities/v1 CreateOnly == identities/v1 Delete == ip/v1 Delete == cilium-net/o DeletePrefix == identities/v1 Get == identities/v1 GetPrefix
== identities/v1 ListPrefix == identities/v1 Update == ip/v1Update == nodes/v1 Update

_images/identity.png
T —————

‘—————————————~

role=frontend role=Ffrontend

role=frontend

————————’

role=frontend
4

N -

~~

Identity
“frontends”

l

’—----

allow

4

role=backend

role=backend

~---------’

~~

Identity
“backends”

‘————————-\

\-________’

_images/identity_store.png
[“role=frontend”] 10
[“role=backend”] 20
[“role=backend”, "user=joe"] 30

Response:
role=backend

Key-Value has identity 20

Store

Request:
Who has
role=backend?

Node A Node B Node C

5 Identity
20

role=backend

i Identity
10

role=frontend

10

role=frontend

_images/grafana_policy.png
Policy

Dropped Egress Packets
0.4 ops
0.3 ops
0.2 ops
o o [}
vop atlA N N sa Al oI ofeV A AR A o A JMNmal s D © s [
16:00 16:30 17:00 17:30 18:00 18:30
== |nvalid destination mac == Invalid sourceip == Missed tail call == Policy denied (L3) == Service backend not found
== Unknown L3 target address
Dropped Egress Traffic
30 kbps
20 kbps
10 kbps
0 bps
16:00 16:30 17:00 17:30 18:00 18:30

== |nvalid destination mac == Invalid sourceip == Missed tail call == Policy denied (L3) == Service backend not found
== Unknown L3 target address

L7 forwarded request
150 reqps 1.0 regps
100 regps m DS
0 regps
50 regps
: it <
0 regps -1.0 regps
16:00 16:30 17:00 17:30 18:00 18:30
== L7 forwarded request == L7 denied request
Proxy response time (Avg)
300 ms 0.30
200 ms 0.20
100 ms 0.10
Ons | R S I i. L O MO R U i i l A I e @
16:00 16:30 17:00 17:30 18:00 18:30

== processingTime Avg:1ms == upstreamTime Avg:7 ms ~ parse errors Avg: 0

Cilium drops Ingress

0.25 ops
0.20 ops
0.150ps
0.10 ops
0.05 ops
0ops

16:00 16:30 17:00 17:30 18:00

== Invalid packet == Not a local target address == Policy denied (L3)

Dropped Ingress Traffic
400 bps

300 bps
200 bps
100 bps

0 bps

18:

30

16:00 16:30 17:00 17:30 18:00

== Invalid packet == Not a local target address == Policy denied (L3)

Policies Per Node
35
30

18:

25

30

1.0

20
15

10

16:00 16:30 17:00 17:30 18:00

== min Current: 16.00 == avg Current: 16.00 == max Current: 16.00

Proxy response time (Max)
1.00s

750 ms
500 ms

250 ms

il “H“L N H‘J Fa B m»lm ,I — l Y N

:30 17:00 17:30 1

ons e Lo i sd
16:00 1

0

== Max processingTime Avg: 13 ms == Max upstreamTime Avg: 28 ms

o

18:30

«= policy import errors Current: 0

18:

30

~ parse errors Avg: 0 ns

_images/grafana_policy2.png
Policy Trigger Duration Policy Trigger Runs

500 ms 150 opm
400 ms I I I I I
300ms | [| | | | 100 opm T T T T
200ms I I W J J I J I L I 50 0pm | | | | |
100 ms ‘NNM‘ ‘“d“ L T T H T T
Ons — — 1 — — 1 — — 1 — 4“_ 1 _E_ —t 00opm oandioa M e M NNy A A | Lo
16:00 16:30 17:00 17:30 18:00 18:30 16:00 16:30 17:00 17:30 18:00 18:30
== min Avg:67ns ==avg Avg:9ms -~ max Avg: 73 ms == min trigger == average trigger == max trigger
g g Avg g .
Endpoints policy enforcement status Proxy Redirects Policy Revision
40 15 T - 1.5K -

== both Current: 30.00

30 | | == egress Current: 0 10 10K | !
== ingress Current: 0
20 T T == none Current: 36.00 5 500
10 - - 0 = 0
16:00 17:00 18:00 16:00 16:30 17:00 17:30 18:00 18:30
0

both egress ingress none == min == avg max == min == avg == max

_images/istio-bookinfo-productpage-v2-kafka.png
productpage
Service - NodePort

logs

productpage-v2 authaudit-logger-v1
Deployment Deployment
Kafka
protocol
details reviews kafka
Service Service Service
details-v1 reviews-v2 kafka-v1
Deployment Deployment StatefulSet
ratings
Service
ratings-v1

Deployment

_static/cilium-quayio-tag-7.png
Toggle Trigger

Are you sure you want to disable this trigger?

A Toggle Trigger Cancel

_static/cilium-quayio-tag-6.png
Last Sund t
[v] cfelf662 & aanm ;;7 PlI:/In aa @ fix-docker-image-dependencies

? Build Triggers Create Build Trigger ~

) 8 |
TRIGGER NAME DOFKERF‘LE LOTTEXT BRANCHES/TAGS PULL
LOCATION LOCATION ROBOT
Push to GitHub reposito! .
O P "y /envoy/Dockerfile /envoy All (None) 9. 'n'

cilium/cilium
& View Credentials
> Run Trigger Now

10. O Disable‘l’rigger

% Delete Trigger

_static/cilium-quayio-tag-9.png
Add Tag to Image e9ae3821c7b6

2018-04-10 15.

16. IREUCECRET Cancel

_static/cilium-quayio-tag-8.png
O Repository Tags

Filter Tags...

TAG LAST MODIFIED SECURITY SCAN SIZE IMAGE

fix-docker-image-depe... 14 minutes ago # lHigh 133.0MB SHA256 89fd8al56b1d

14. <+ AddNew Tag
W Edit Labels

-

X Delete Tag

@ Change Expiration

_images/grafana_controllers.png
Controllers

Controllers Controller Durations
17.5 opm 1.0 opm 300 ms 1.60s
15.0 opm 0.5 opm 200 ms 155s
12.5 opm 0 opm 150s
100 ms
10.0 opm -0.5 opm ‘ 145s
7.50pm 1.0 0pm 0ns il “\HH““\HH\Hwﬂ“mhmum\mmuhmmmuHhm\Hﬂ“\m\h‘um\H\mhmu\Hh“mﬂhmuﬂM\m\\h il .ol o, .t ..o i m\‘mmhmu ol Al ol . 1 40

16:00 16:30 17:00 17:30 18:00 18:30 16:00 16:30 17:00 17:30 18:00 18:30

== Runs Max: 17.27 opm Avg: 11.90 opm ~~ Failed Max: 0 opm Avg: 0 opm == success Min:2ms Max: 255 ms Avg: 22 ms - failure Min:1.436 s Max: 1.577 s Avg: 1.530 s

_images/istio-bookinfo-reviews-v2.png
Book Reviews

An extremely entertaining play by Shakespeare. The slapstick
humour is refreshing!

— Reviewer1

* %k kK ok

Absolutely fun and entertaining. The play lacks thematic depth
when compared to other plays by Shakespeare.

— Reviewer2

* Kk kK K

_images/istio-bookinfo-v1.png
)

productpage
Service - NodePort

[

productpage-vi
Deployment

e

~

details reviews
Service Service

details-v1 reviews-v1

Deployment Deployment

_images/istio-bookinfo-reviews-v2-route-to-v1.png
productpage
Service - NodePort

[

reviews-default

productpage-vi
Deployment

details
Service

RouteRule
100% to reviews vi
0% to reviews v2

reviews
Service

details-v1
Deployment

reviews-v1 reviews-v2
Deployment Deployment

ratings
Service

ratings-v1
Deployment

_images/istio-bookinfo-reviews-v2-route-to-v2.png
productpage
Service - NodePort

[

productpage-vi
Deployment

details
Service

reviews-default
RouteRule
0% to reviews v1
100% to reviews v2

reviews
Service

details-v1
Deployment

reviews-v1
Deployment

reviews-v2
Deployment

ratings
Service

ratings-v1
Deployment

_images/proxylib_logical_flow.png
TCP Connection
to port 9999

Cilium-agent

Redirect
Config

Policy 1 ! Access
Config | Logging

<NewProto>Parser

Allow/Drop request
Envoy

{
"endpointSelector": {"matchLabels":{"app": “newproto-server"}},

app=newproto-server

_images/troubleshooting_policy.png
“proxy-statistic
“realized

_images/proxylib_key_functions.png
Envoy

Downstream
Socket (w/Client)
recv() send()

Proxylib
Connection

Request Data
Buffer

|1

Matches()
Test whether a
request matches
any rules in the
Policy Map

licy Map

List of parsed
<NewProto>Rules

Cilium Agent

Upstream
Socket (w/Server)

send|() ,e(:)j

Inject()
Insert
Error msg
on DROP

Reply Data
Buffer

1l

Access

Log
Log()
Insert entry into
Cilium Access Log

wlioliic;/'
Database

=Rt
Updates Envoy
when new policy
is loaded

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/troubleshooting_policy.png
“proxy-statistic
“realized

_images/istio-bookinfo-reviews-v1.png
Book Reviews
An extremely entertaining play by Shakespeare. The slapstick

humour is refreshing!

— Reviewer1

Absolutely fun and entertaining. The play lacks thematic depth
when compared to other plays by Shakespeare.

— Reviewer2

_images/istio-bookinfo-reviews-v2-route-to-v1-and-v2.png
productpage
Service - NodePort

[

reviews-default

productpage-vi
Deployment

details
Service

RouteRule
50% to reviews vi1
50% to reviews v2

reviews
Service

details-v1
Deployment

reviews-v1 reviews-v2
Deployment Deployment

ratings
Service

ratings-v1
Deployment

_static/bpf_fs.png
Process A

fd = bpf(BPF_MAP_CREATE)
bpf(BPF_OBJ_PIN, fd)

Process B

fd = bpf(BPF_OBJ_GET)
[

bpf fs: /sys/fs/bpf/

Process C

fd = bpf(BPF_MAP_CREATE)
bpf(BPF_OBJ_PIN, fd)

|8}

close(fd)

_static/bpf_jit.png
BPF program

0:(18)12 = ffBa3cE0010
27113 = (08)2 42

3 (63)" (032)11 +164) =13

4 (o7)r1 = 680997

51(63) (432)110-8) =11 JT
6:(18) 1 = 0x2078253060726 164

8 (7b) (064 *}10-16) =1 ----
9 (18) 1 = ffBadcbe001s

push %rbp

mov. %rsp %ibp

sub S0638%rsp.

sub $0:28.%bp
81D X0(%rb)
%4r13,0xB(%bp)

%414, 0x10(%1dp)

%415, 0x18(%r0p)

Sheax oo

Shra Ox20(hrop)
movabs S0x(fBa3ciibe0010 %rsi

_static/bpf_call.png
Entry point
BPF program A

_static/bpf_dot.png
DOTTY x

e
LR —
T
e
e
e
R

CER

s
T

95
7<h gota pord

10: (55) if 12 1= Oxfea gato pe+5

11 (69) 22 = *(ul6)l +150)
e arl
T3 (68) *(ul6 ") (A +150) = 2

(77 B>>=16
.07 -8

16.07)

17 (15) 7 == 00 goto porl

18:(87) 9 =6

o
19:(07) 20
TN T

_static/bpf_tailcall.png
Entry point
BPF program A BPF program D
BPF program B BPF program C BPF program D

_static/bpf_map.png
Process 1

user space

kernel space

BPF program A
BPF program B

BPF map
(KIV store)

BPF program C

_static/bpf_offload.png
BPF program

01 (18) 2 = (82360010
2.(71)13 = *(uB "2 +2)
3:(63) (032 11 +164

4 (o7) 1 = 680907
5:(63) (432 *Y110-8) =11
61 (18) 1 = 0x2076253366726 160
8: (7b) *(u64 *)r10-16) =11

9 (18)r1

_static/identity_store.png
[“role=frontend”] 10
[“role=backend”] 20
[“role=backend”, "user=joe"] 30

Response:
role=backend

Key-Value has identity 20

Store

Request:
Who has
role=backend?

Node A Node B Node C

5 Identity
20

role=backend

i Identity
10

role=frontend

10

role=frontend

_static/identity.png
T —————

‘—————————————~

role=frontend role=Ffrontend

role=frontend

————————’

role=frontend
4

N -

~~

Identity
“frontends”

l

’—----

allow

4

role=backend

role=backend

~---------’

~~

Identity
“backends”

‘————————-\

\-________’

_static/minus.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/bpf-overview.png
Userspace

Source Code LLVM / clang

000 CA FE BA

Q 001 54 65 72
[Q& I 002 61 2F 4C

004 3B 17 6A

add eax, edx add eax, edx
shl eax, 2 shl eax, 2

TC
Egress

TC
Ingress

netdevice

Kernel

_static/ajax-loader.gif

_images/bpf_call.png
Entry point
BPF program A

_images/bpf_dot.png
DOTTY x

e
LR —
T
e
e
e
R

CER

s
T

95
7<h gota pord

10: (55) if 12 1= Oxfea gato pe+5

11 (69) 22 = *(ul6)l +150)
e arl
T3 (68) *(ul6 ") (A +150) = 2

(77 B>>=16
.07 -8

16.07)

17 (15) 7 == 00 goto porl

18:(87) 9 =6

o
19:(07) 20
TN T

_images/aws-cni-architecture.png
Worker Node
AWS-CNI:

7 pod 9 pod - Device plumbing
19216811 19216812 - IPAM (ENI)
(Bagen) - paie

Cilium

- Load-balancing
- Network policy
- Encryption

- Multi-cluster

- Visibility

19216811/32 via eni11
1921681.2/32 via enizz

_images/bpf_fs.png
Process A

fd = bpf(BPF_MAP_CREATE)
bpf(BPF_OBJ_PIN, fd)

Process B

fd = bpf(BPF_OBJ_GET)
[

bpf fs: /sys/fs/bpf/

Process C

fd = bpf(BPF_MAP_CREATE)
bpf(BPF_OBJ_PIN, fd)

|8}

close(fd)

_images/bpf_jit.png
BPF program

0:(18)12 = ffBa3cE0010
27113 = (08)2 42

3 (63)" (032)11 +164) =13

4 (o7)r1 = 680997

51(63) (432)110-8) =11 JT
6:(18) 1 = 0x2078253060726 164

8 (7b) (064 *}10-16) =1 ----
9 (18) 1 = ffBadcbe001s

push %rbp

mov. %rsp %ibp

sub S0638%rsp.

sub $0:28.%bp
81D X0(%rb)
%4r13,0xB(%bp)

%414, 0x10(%1dp)

%415, 0x18(%r0p)

Sheax oo

Shra Ox20(hrop)
movabs S0x(fBa3ciibe0010 %rsi

_images/bpf_map.png
Process 1

user space

kernel space

BPF program A
BPF program B

BPF map
(KIV store)

BPF program C

nav.xhtml

 Table of Contents

 		
 Welcome to Cilium’s documentation!

 		
 Introduction to Cilium

 		
 What is Cilium?

 		
 Why Cilium?

 		
 Functionality Overview

 		
 Protect and secure APIs transparently

 		
 Secure service to service communication based on identities

 		
 Secure access to and from external services

 		
 Simple Networking

 		
 Load balancing

 		
 Monitoring and Troubleshooting

 		
 Integrations

 		
 Getting Started Guides

 		
 Installation

 		
 Creating a Sandbox environment

 		
 Self-Managed Kubernetes

 		
 Managed Kubernetes

 		
 Installer Integrations

 		
 CNI Chaining

 		
 Security Tutorials

 		
 HTTP/REST API call authorization

 		
 Locking down external access with DNS-based policies

 		
 Securing a Kafka cluster

 		
 How to secure gRPC

 		
 Getting Started Securing Elasticsearch

 		
 How to Secure a Cassandra Database

 		
 Getting Started Securing Memcached

 		
 Locking down external access using AWS metadata

 		
 Advanced Networking

 		
 Setting up Cilium in AWS ENI mode

 		
 Using kube-router to run BGP

 		
 Setting up Cluster Mesh

 		
 Cilium integration with Flannel (beta)

 		
 IPVLAN based Networking (beta)

 		
 Transparent Encryption (beta)

 		
 Host-Reachable Services (beta)

 		
 Kubernetes NodePort (beta)

 		
 Kubernetes without kube-proxy (beta)

 		
 Kata with Cilium on Google GCE

 		
 Configuring IPAM modes

 		
 Operations

 		
 Running Prometheus & Grafana

 		
 Limiting Identity-Relevant Labels

 		
 Istio

 		
 Getting Started Using Istio

 		
 Other Orchestrators

 		
 Cilium with Docker & libnetwork

 		
 Cilium with Mesos/Marathon

 		
 Concepts

 		
 Component Overview

 		
 Cilium Agent

 		
 Cilium CLI Client

 		
 Linux Kernel BPF

 		
 Key-Value Store

 		
 Cilium Operator

 		
 Terminology

 		
 Labels

 		
 Endpoint

 		
 Identity

 		
 Node

 		
 Address Management

 		
 Host Scope (default)

 		
 CRD-Backed (Kubernetes)

 		
 AWS ENI

 		
 Multi Host Networking

 		
 Overlay Network Mode

 		
 Direct / Native Routing Mode

 		
 Cluster Mesh

 		
 Container Communication with External Hosts

 		
 External Network Connectivity

 		
 Public Endpoint Exposure

 		
 Security

 		
 Identity based Connectivity Access Control

 		
 Policy Enforcement

 		
 Orchestration System Specifics

 		
 Datapath

 		
 AWS ENI

 		
 Failure Behavior

 		
 Architecture

 		
 Datapath

 		
 Endpoint to Endpoint

 		
 Egress from Endpoint

 		
 Ingress to Endpoint

 		
 veth-based versus ipvlan-based datapath

 		
 Scale

 		
 BPF Map Limitations

 		
 Kubernetes Integration

 		
 Getting Help

 		
 FAQ

 		
 Slack

 		
 GitHub

 		
 Security Bugs

 		
 Kubernetes

 		
 Introduction

 		
 What does Cilium provide in your Kubernetes Cluster?

 		
 Pod-to-Pod Connectivity

 		
 Service Load-balancing

 		
 Further Reading

 		
 Concepts

 		
 Deployment

 		
 Networking For Existing Pods

 		
 Default Ingress Allow from Local Host

 		
 Requirements

 		
 Kubernetes Version

 		
 System Requirements

 		
 Enable CNI in Kubernetes

 		
 Mounted BPF filesystem

 		
 kube-dns

 		
 Enable automatic node CIDR allocation (Recommended)

 		
 Configuration

 		
 ConfigMap Options

 		
 Manually installing CNI

 		
 Adjusting CNI configuration

 		
 CRIO

 		
 Disable container runtime

 		
 Network Policy

 		
 NetworkPolicy

 		
 CiliumNetworkPolicy

 		
 Examples

 		
 Endpoint CRD

 		
 Kubernetes Compatibility

 		
 Troubleshooting

 		
 Verifying the installation

 		
 Apiserver outside of cluster

 		
 Istio

 		
 Getting Started Using Istio

 		
 Setup Cilium

 		
 Step 2: Install cilium-istioctl

 		
 Step 3: Deploy the Bookinfo Application V1

 		
 Step 4: Canary and Deploy the Reviews Service V2

 		
 Step 5: Deploy the Product Page Service V2

 		
 Step 6: Clean Up

 		
 Docker

 		
 Cilium with Docker & libnetwork

 		
 Step 0: Install Vagrant

 		
 Step 1: Download the Cilium Source Code

 		
 Step 2: Starting the Docker + Cilium VM

 		
 Step 3: Accessing the VM

 		
 Step 4: Confirm that Cilium is Running

 		
 Step 5: Create a Docker Network of Type Cilium

 		
 Step 6: Start an Example Service with Docker

 		
 Step 7: Apply an L3/L4 Policy With Cilium

 		
 Step 8: Test L3/L4 Policy

 		
 Step 9: Apply and Test an L7 Policy with Cilium

 		
 Step 10: Clean-Up

 		
 Mesos

 		
 Cilium with Mesos/Marathon

 		
 Step 0: Install Vagrant

 		
 Step 1: Download the Cilium Source Code

 		
 Step 2: Starting a VM with Cilium

 		
 Step 3: Accessing the VM

 		
 Step 4: Confirm that Cilium is Running

 		
 Step 5: Run Script to Start Marathon

 		
 Step 6: Simulate a Web-Server and Clients

 		
 Step 7: Apply L3/L4 Policy with Cilium

 		
 Step 8: Apply L7 Policy with Cilium

 		
 Step 9: Clean-Up

 		
 Troubleshooting

 		
 Envoy

 		
 Envoy Go Extensions

 		
 Step 1: Decide on a Basic Policy Model

 		
 Step 2: Understand Protocol, Encoding, Framing and Types

 		
 Step 3: Search for Existing Parser Code / Libraries

 		
 Step 4: Follow the Cilium Developer Guide

 		
 Step 5: Create New Proxy Skeleton

 		
 Step 6: Update OnData Method

 		
 Step 7: Use Unit Testing To Drive Development

 		
 Step 8: Add More Advanced Parsing

 		
 Step 9: Add Policy Loading and Matching

 		
 Step 10: Inject Error Response

 		
 Step 11: Add Access Logging

 		
 Step 12: Manual Testing

 		
 Step 13: Add Runtime Tests

 		
 Step 14: Review Spec for Corner Cases

 		
 Step 15: Write Docs or Getting Started Guide (optional)

 		
 System Requirements

 		
 Summary

 		
 Linux Distribution Compatibility Matrix

 		
 Linux Kernel

 		
 Advanced Features and Required Kernel Version

 		
 Key-Value store

 		
 clang+LLVM

 		
 iproute2

 		
 Firewall Rules

 		
 Privileges

 		
 Upgrade Guide

 		
 Running pre-flight check (Required)

 		
 Clean up pre-flight check

 		
 Upgrading Micro Versions

 		
 Upgrading Minor Versions

 		
 Step 1: Upgrade to latest micro version (Recommended)

 		
 Step 2: Option A: Generate YAML using Helm (Recommended)

 		
 Step 2: Option B: Preserve ConfigMap

 		
 Step 3: Rolling Back

 		
 Version Specific Notes

 		
 1.6 Upgrade Notes

 		
 1.5 Upgrade Notes

 		
 Advanced

 		
 Upgrade Impact

 		
 Rebasing a ConfigMap

 		
 Restrictions on unique prefix lengths for CIDR policy rules

 		
 Upgrading DNS Polling deployments to DNS Proxy

 		
 Migrating from kvstore-backed identities to kubernetes CRD-backed identities

 		
 CNP Validation

 		
 Network Policy

 		
 Policy Enforcement Modes

 		
 Rule Basics

 		
 Endpoint Selector

 		
 Layer 3 Examples

 		
 Labels Based

 		
 Services based

 		
 Entities Based

 		
 IP/CIDR based

 		
 DNS based

 		
 Layer 4 Examples

 		
 Limit ingress/egress ports

 		
 Layer 7 Examples

 		
 HTTP

 		
 Kafka (beta)

 		
 DNS Policy and IP Discovery

 		
 Kubernetes

 		
 Namespaces

 		
 ServiceAccounts

 		
 Multi-Cluster

 		
 Endpoint Lifecycle

 		
 Troubleshooting

 		
 Policy Tracing

 		
 Policy Rule to Endpoint Mapping

 		
 Troubleshooting toFQDNs rules

 		
 Monitoring & Metrics

 		
 Installation

 		
 Example Prometheus & Grafana Deployment

 		
 cilium-agent

 		
 Exported Metrics

 		
 cilium-operator

 		
 Exported Metrics

 		
 Troubleshooting

 		
 Component & Cluster Health

 		
 Kubernetes

 		
 Generic

 		
 Connectivity Problems

 		
 Checking cluster connectivity health

 		
 Monitoring Packet Drops

 		
 Policy Troubleshooting

 		
 Ensure pod is managed by Cilium

 		
 Understand the rendering of your policy

 		
 Symptom Library

 		
 Node to node traffic is being dropped

 		
 Useful Scripts

 		
 Retrieve Cilium pod managing a particular pod

 		
 Execute a command in all Kubernetes Cilium pods

 		
 List unmanaged Kubernetes pods

 		
 Reporting a problem

 		
 Automatic log & state collection

 		
 Slack Assistance

 		
 Report an issue via GitHub

 		
 Special Interest Groups

 		
 All SIGs

 		
 How to create a SIG

 		
 Slack

 		
 Slack channels

 		
 Developer / Contributor Guide

 		
 Setting up the development environment

 		
 Requirements

 		
 Vagrant Setup

 		
 Development process

 		
 Local Development in Vagrant Box

 		
 Making Changes

 		
 Unit Testing

 		
 Add/update a golang dependency

 		
 Debugging

 		
 End-To-End Testing Framework

 		
 Introduction

 		
 Running End-To-End Tests

 		
 Test Reports

 		
 Best Practices for Writing Tests

 		
 Ginkgo Extensions

 		
 Debugging:

 		
 Running End-To-End Tests In Other Environments

 		
 VMs for Testing

 		
 Further Assistance

 		
 How to contribute

 		
 Getting Started

 		
 Submitting a pull request

 		
 Getting a pull request merged

 		
 Pull request review process

 		
 Building Container Images

 		
 Developer images

 		
 Official release images

 		
 Documentation

 		
 Building

 		
 Update cilium-builder and cilium-runtime images

 		
 Nightly Docker image

 		
 Developer’s Certificate of Origin

 		
 Cilium Committer Grant/Revocation Policy

 		
 Template Emails

 		
 Release Management

 		
 Release Cadence

 		
 Stable releases

 		
 Backport criteria for X.Y.Z+n

 		
 Backport criteria for X.Y-1.Z

 		
 LTS

 		
 Current LTS releases

 		
 Generic Release Process

 		
 GitHub template process

 		
 Reference steps for the template

 		
 Minor Release Process

 		
 On Freeze date

 		
 For the final release

 		
 Backporting process

 		
 CI / Jenkins

 		
 Jobs Overview

 		
 Cilium-PR-Ginkgo-Tests-Validated

 		
 Cilium-PR-Ginkgo-Tests-k8s

 		
 Ginkgo-CI-Tests-Pipeline

 		
 Cilium-Nightly-Tests-PR

 		
 Triggering Pull-Request Builds With Jenkins

 		
 Using Jenkins for testing

 		
 CI Failure Triage

 		
 Pipelines subject to triage

 		
 Triage process

 		
 Infrastructure details

 		
 Logging into VM running tests

 		
 Jenkinsfiles Extensions

 		
 BPF and XDP Reference Guide

 		
 BPF Architecture

 		
 Instruction Set

 		
 Helper Functions

 		
 Maps

 		
 Object Pinning

 		
 Tail Calls

 		
 BPF to BPF Calls

 		
 JIT

 		
 Hardening

 		
 Offloads

 		
 Toolchain

 		
 Development Environment

 		
 LLVM

 		
 iproute2

 		
 bpftool

 		
 BPF sysctls

 		
 Kernel Testing

 		
 JIT Debugging

 		
 Introspection

 		
 Miscellaneous

 		
 Program Types

 		
 XDP

 		
 tc (traffic control)

 		
 Further Reading

 		
 Kernel Developer FAQ

 		
 Projects using BPF

 		
 XDP Newbies

 		
 BPF Newsletter

 		
 Podcasts

 		
 Blog posts

 		
 Talks

 		
 Further Documents

 		
 API Reference

 		
 Introduction

 		
 How to access the API

 		
 CLI Client

 		
 Golang Package

 		
 Compatibility Guarantees

 		
 API Reference

 		
 Command Cheatsheet

 		
 Command utilities:

 		
 JSON Output

 		
 Shell Tab-completion

 		
 Command examples:

 		
 Basics

 		
 Policy management

 		
 Connectivity

 		
 Endpoints

 		
 Loadbalancing

 		
 BPF

 		
 Kubernetes examples:

 		
 Policies

 		
 Endpoints

 		
 Microscope

 		
 Command Reference

 		
 cilium-agent

 		
 Synopsis

 		
 Options

 		
 cilium

 		
 cilium

 		
 cilium bpf

 		
 cilium bpf config

 		
 cilium bpf config get

 		
 cilium bpf ct

 		
 cilium bpf ct flush

 		
 cilium bpf ct list

 		
 cilium bpf endpoint

 		
 cilium bpf endpoint delete

 		
 cilium bpf endpoint list

 		
 cilium bpf ipcache

 		
 cilium bpf ipcache get

 		
 cilium bpf ipcache list

 		
 cilium bpf lb

 		
 cilium bpf lb list

 		
 cilium bpf metrics

 		
 cilium bpf metrics list

 		
 cilium bpf nat

 		
 cilium bpf nat flush

 		
 cilium bpf nat list

 		
 cilium bpf policy

 		
 cilium bpf policy add

 		
 cilium bpf policy delete

 		
 cilium bpf policy get

 		
 cilium bpf proxy

 		
 cilium bpf proxy flush

 		
 cilium bpf proxy list

 		
 cilium bpf sha

 		
 cilium bpf sha get

 		
 cilium bpf sha list

 		
 cilium bpf tunnel

 		
 cilium bpf tunnel list

 		
 cilium cleanup

 		
 cilium completion

 		
 cilium config

 		
 cilium debuginfo

 		
 cilium endpoint

 		
 cilium endpoint config

 		
 cilium endpoint disconnect

 		
 cilium endpoint get

 		
 cilium endpoint health

 		
 cilium endpoint labels

 		
 cilium endpoint list

 		
 cilium endpoint log

 		
 cilium endpoint regenerate

 		
 cilium fqdn

 		
 cilium fqdn cache

 		
 cilium fqdn cache clean

 		
 cilium fqdn cache list

 		
 cilium identity

 		
 cilium identity get

 		
 cilium identity list

 		
 cilium kvstore

 		
 cilium kvstore delete

 		
 cilium kvstore get

 		
 cilium kvstore set

 		
 cilium map

 		
 cilium map get

 		
 cilium map list

 		
 cilium metrics

 		
 cilium metrics list

 		
 cilium monitor

 		
 cilium node

 		
 cilium node list

 		
 cilium policy

 		
 cilium policy delete

 		
 cilium policy get

 		
 cilium policy import

 		
 cilium policy selectors

 		
 cilium policy trace

 		
 cilium policy validate

 		
 cilium policy wait

 		
 cilium prefilter

 		
 cilium prefilter delete

 		
 cilium prefilter list

 		
 cilium prefilter update

 		
 cilium preflight

 		
 cilium preflight fqdn-poller

 		
 cilium preflight migrate-identity

 		
 cilium preflight validate-cnp

 		
 cilium service

 		
 cilium service delete

 		
 cilium service get

 		
 cilium service list

 		
 cilium service update

 		
 cilium status

 		
 cilium version

 		
 cilium-bugtool

 		
 cilium-health get

 		
 cilium-health ping

 		
 cilium-health status

 		
 cilium-health

 		
 Synopsis

 		
 Options

 		
 SEE ALSO

 		
 cilium-operator

 		
 Synopsis

 		
 Options

 		
 Key-Value Store

 		
 consul

 		
 etcd

 		
 Key-Value Store

 		
 Layout

 		
 Cluster Nodes

 		
 Services

 		
 Identities

 		
 Endpoints

 		
 Leases

 		
 Debugging

 		
 Further Reading

 		
 Related Material

 		
 Presentations

 		
 Podcasts

 		
 Community blog posts

 		
 Glossary

_images/cilium-arch.png
Orchestration systems

gicilium Layer

= | | BT | | €D | | &=

Cilium CLI Policy Repository Plugins Cilium Monitor

CILIUM DAEMON

Code Generation

Bytecode

. injection .

BPF Program BPF Program

BPF Program

I

CONTAINER CONTAINER

Kernel

_images/cilium-endpoint-lifecycle.png
restoring waiting-for-identity

(] O

Cwaiting-to-regenerate

C > disconnecting)
C regenerating
C disconnected)

(@

_images/bpf_offload.png
BPF program

01 (18) 2 = (82360010
2.(71)13 = *(uB "2 +2)
3:(63) (032 11 +164

4 (o7) 1 = 680907
5:(63) (432 *Y110-8) =11
61 (18) 1 = 0x2076253366726 160
8: (7b) *(u64 *)r10-16) =11

9 (18)r1

_images/bpf_tailcall.png
Entry point
BPF program A BPF program D
BPF program B BPF program C BPF program D

_images/cilium-quayio-tag-10.png
Repository Tags Expanded

18. Filter Tags...

TAG D View Tags History e | SECURITY SCAN SIZE IMAGE
% DeleteTags 19.

2018-C @ Change Tags Expiration 1ds ago & 1High 133.0MB SHA256 57ab670f4504

17. « fix-docker-image-depe... 18 minutes ago 1lHigh 133.0MB SHA256 89fd8al56b1d

_images/cilium-quayio-tag-11.png
Delete Tag

Are you sure you want to delete tag g Lo n L

_images/cilium-quayio-tag-0.png
O Repository Builds

» = Build History

BUILD ID

() a284c416

() da268105

o ® er792533

TRIGGERED BY

Makefile: remove docker-image push
instructions ...

Authored 26 minutes ago by |l aanm O
7e59813 P fix-docker-image-dependencies

-

Makefile: remove docker-image push
instructions ...

Authored 38 minutes ago by |l aanm O
735de85 P fix-docker-image-dependencies

Dockerfile: point dockerfile to quay.io base
images ...

Authored an hour ago by [aanm -O- 7be2826
P fix-docker-image-dependencies

examples/kubernetes: Generate daemon

P Start New Build

Recent Builds Last 48 Hours Last 30 days

DATE STARTED |

Today at 1:34 PM

Today at 1:12 PM

Today at 1:02 PM

TAGS

@ fix-docker-image-dependencies

@ fix-docker-image-dependencies

@ fix-docker-image-dependencies

_images/cilium-quayio-tag-1.png
(5) Repository Builds

E Build History Recent Builds Last 48 Hours Last 30 days

BUILD ID TRIGGERED BY DATE STARTED | TAGS

Makefile: remove docker-image push

instructions ...
[x] Oe7chd71 Todayat1:12PM @ fix-docker-image-dependencies

Authored 14 minutes ago by [l aanm O
735de85 P fix-docker-image-dependencies

Last Sunday at
3:37PM

& aanm @ fix-docker-image-dependencies

? Build Triggers Create Build Trigger ~

DOCKERFILE CONTEXT . -
TRIGGER NAME N N BRANCHES/TAGS
LOCATION LOCATION

1.8

& View Credentials

cilium/cilium

/. This build trigger is user disabled and will not build: Re-enable this trigger > Run Trigger Now
2.0 Enable Trigger

% Delete Trigger

_images/cilium-quayio-tag-2.png
Toggle Trigger

Are you sure you want to enable this trigger?

3. Toggle Trigger Cancel

_images/cilium-quayio-tag-3.png
(5) Repository Builds

> E Build History Recent Builds Last 48 Hours Last 30 days
BUILD ID TRIGGERED BY DATE STARTED | TAGS
9 Makefile: remove docker-image push
instructions ...
[x] Oe7chd71 Todayat1:12PM @ fix-docker-image-dependencies

Authored 18 minutes ago by |l aanm O
735de85 P fix-docker-image-dependencies

Last Sund t
O cfelf662 & aanm ast Sunday a

fix-docker-i -d denci
3:37 PM @ fix-docker-image-dependencies

DOCKERFILE CONTEXT s L PULL
TRIGGER NAME N N BRANCHES/TAGS
LOCATION LOCATION ROBOT
Push to GitHub reposito
Q . P "y /envoy/Dockerfile /envoy All (None) 4. 'n'
cilium/cilium

& View Credentials
5. > RunTrigger Now
@ Disable Trigger

% Delete Trigger
[—

_images/cilium-quayio-tag-4.png
Manually Start Build Trigger

) Push to GitHub repository cilium/cilium

Branch/Tag: Enter or select Branch/Tag

P envoy-http2-only-upstream
C: P envoy-only-repush-2
'V envoy-rebase-2018-03-30
P etcd-quorum
4 fix-docker—image-dependenciei 7.
P fix-endpoint-manager-datarace
P fix-ginkgo-vms
P fix-misspell-documentation
P fix-monitor-17-sidecar
P fix-policy-comments
P fix-sed-in-node-config

P gee-example

P geneve

P gingko-metal
P ginkgo-migration-branch

_images/cilium-quayio-tag-7.png
Toggle Trigger

Are you sure you want to disable this trigger?

A Toggle Trigger Cancel

_images/cilium-quayio-tag-8.png
O Repository Tags

Filter Tags...

TAG LAST MODIFIED SECURITY SCAN SIZE IMAGE

fix-docker-image-depe... 14 minutes ago # lHigh 133.0MB SHA256 89fd8al56b1d

14. <+ AddNew Tag
W Edit Labels

-

X Delete Tag

@ Change Expiration

_images/cilium-quayio-tag-5.png
Manually Start Build Trigger

) Push to GitHub repository cilium/cilium

Branch/Tag: P fix-docker-image-dependencies

N

_images/cilium-quayio-tag-6.png
Last Sund t
[v] cfelf662 & aanm ;;7 PlI:/In aa @ fix-docker-image-dependencies

? Build Triggers Create Build Trigger ~

) 8 |
TRIGGER NAME DOFKERF‘LE LOTTEXT BRANCHES/TAGS PULL
LOCATION LOCATION ROBOT
Push to GitHub reposito! .
O P "y /envoy/Dockerfile /envoy All (None) 9. 'n'

cilium/cilium
& View Credentials
> Run Trigger Now

10. O Disable‘l’rigger

% Delete Trigger

_images/cilium-quayio-tag-9.png
Add Tag to Image e9ae3821c7b6

2018-04-10 15.

16. IREUCECRET Cancel

_images/cilium_cass_gsg_topology.png
Select/Insert: attendance.daily_records
Select/Insert: deathstar.scrum_notes

Empi
HQ

app=empire-hq

Cassandra

Server

app=cass-server

Empire
Outpost

app=empire-outpost

Insert-only: attendance.daily_records

_images/cilium_dkr_demo_l3-l4-policy-170817.png
Cilium Policy:

app2 -> app1
allow tcp/80

network=cilium-net

_images/cilium_cass_gsg_attack.png
From app=empire-outpost:
Allow Insert: attendance.daily_records”
From app=....

app=empire-outpost

°

8

cilium

Cassandra

Server

app=cass-server

_images/cilium_grpc_gsg_policy.png
Terminal-87

app=public-terminal

cilium

GetName
Getlocation
GetStatus

RequestMaint..

SetAccessCode

TCP 50051

Mgr

App=cc-door-mgr

_images/cilium_grpc_gsg_r2d2_terminal.png

_images/cilium_dkr_demo_l7-policy-230817.png
Cilium Policy:
app2 -> app1
allow tcp/80
http GET /public

—
GET /public | id=app1

Gi /pEnvate

network=cilium-net

_images/cilium_es_gsg_topology.png
app = outpost

NO

Least Privilege Access For
The Empire Elasticsearch Service

ACCESS

app