
ci-management Documentation
Release 0.0.1

Ramesh Babu Thoomu

May 09, 2018

CI Process

1 Summary 1

2 Finding Help on Hyperledger CI 3

3 Common Job Types 5

4 Verify Jobs 7

5 Merge Jobs 9

6 Release Jobs 11

7 Supported Architectures 13

8 Supports varying test types 15

9 Writing Jenkins Job Definitions 17

10 Contributing to Fabric CI 19
10.1 Fabric . 19
10.2 Fabric-CA . 24
10.3 Fabric-SDK-Java . 27
10.4 Fabric-SDK-Node . 30
10.5 Publish Docker Images to Nexus3 . 33

i

ii

CHAPTER 1

Summary

Welcome to the Hyperledger Fabric community! The Hyperledger Fabric (and associated) projects will utilize various
tools and workflows for the continuous project development.This documentation will assist you in using these tools
and understanding the workflow(s) for our contributors while working with the Fabric CI infrastructure.

1

ci-management Documentation, Release 0.0.1

2 Chapter 1. Summary

CHAPTER 2

Finding Help on Hyperledger CI

We are excited that you want to contribute to the Continuous Integration/Release Engineering efforts. You’re in the
right place to get started.In this event that you need additional assistance, we encourage you to engage with our CI
contributors via the following channels:

• #ci-pipeline channel on Rocket.Chat (For general continuous integration discussions)

• #fabric-ci channel on Rocket.Chat (For fabric continuous integration discussions)

• #infra-support channel on Rocket.Chat (For general infrastructure discussions)

• Send an email to the fabric@lists.hyperledger.org mailing list

• Contact helpdesk@hyperledger.org for any infrastructure support

3

mailto:fabric@lists.hyperledger.org
mailto:helpdesk@hyperledger.org

ci-management Documentation, Release 0.0.1

4 Chapter 2. Finding Help on Hyperledger CI

CHAPTER 3

Common Job Types

There are several Jenkins job types that are common across most Hyperledger Fabric projects. In some cases, you
may/may not see all the common job types in every project. This heavily depends on the needs of the Hyperledger
Fabric project. Let’s have a look at the common job types.

5

ci-management Documentation, Release 0.0.1

6 Chapter 3. Common Job Types

CHAPTER 4

Verify Jobs

Verify jobs get triggers when a “patchset-created-event” is triggered. This usually happens when a patchset is submit-
ted to Gerrit repo. All verify jobs will depend on the patchset’s parent commit (not the latest commit of the repo) and
patchset commit. Developers have to rebase his patchset to build the patchset on latest commit of the repo.

7

ci-management Documentation, Release 0.0.1

8 Chapter 4. Verify Jobs

CHAPTER 5

Merge Jobs

Merge jobs get triggers when a “change-merged-event” event is triggered. This usually happens when a patchset is
merged in Gerrit repo. In all the merge jobs, Jenkins clones the latest code and perform the tests unlike verify jobs.

9

ci-management Documentation, Release 0.0.1

10 Chapter 5. Merge Jobs

CHAPTER 6

Release Jobs

Release jobs get triggers when a “ref-updated-event” is triggered. This usally happens when a release tag is created in
the repository. Release jobs are intended to create to publish docker images, binaries and npm modules.

For more information regarding the release process, you can refer the Release Process Document. # TODO

11

ci-management Documentation, Release 0.0.1

12 Chapter 6. Release Jobs

CHAPTER 7

Supported Architectures

Most of the job types, the jobs are broken down further to build, test, and release the Hyperledger Fabric projects with
support for varying CPU architectures. They include:

• x86_x64 (Open stack minions)

• s390x

13

ci-management Documentation, Release 0.0.1

14 Chapter 7. Supported Architectures

CHAPTER 8

Supports varying test types

Additionally with most job types, you will notice the Jenkins jobs are further isolated to include a number of test types.
Those include:

• End-to-End tests (e2e_cli, java sdk e2e, node sdk e2e)

• BYFN tests (fabca-samples, byfn, eyfn with default, custom channels, couchdb, node lang chaincode)

• Unit tests (linter, spelling, license etc..)

• Smoke/Functional/Performance/Release tests (More functional tests from fabric-test repository)

• Multihost tests

15

ci-management Documentation, Release 0.0.1

16 Chapter 8. Supports varying test types

CHAPTER 9

Writing Jenkins Job Definitions

Most of the CI work involves the creation and modification of Jenkins job definitions. To get a better understand-
ing of how to write Jenkins job definitions, start with reading through the JJB Job definitions documentation. ##
Sandbox_Setup

17

ci-management Documentation, Release 0.0.1

18 Chapter 9. Writing Jenkins Job Definitions

CHAPTER 10

Contributing to Fabric CI

Contributing to the Fabric CI process starts with identifying tasks to work on, and bugs to be fixed. The JIRA site
provided by the Hyperledger Community is where to find these items. To narrow down tasks and bugs that are directly
related to Fabric CI, use the following URLs:

https://jira.hyperledger.org/issues/?filter=11500

Note: If you have questions not addressed by this documentation, or run into issues with any of build jobs, please
post your question in https://chat.hyperledger.org/channel/ci-pipeline or https://chat.hyperledger.org/channel/fabric-ci
channels.

10.1 Fabric

This document explains the CI process for the Fabric repository. The below steps explains what CI follows or executes
when a patch set is submited to the Fabric repository.

Whenever a patchset is submitted to the Fabric repository, Jenkins triggers the CI build process to test and validate the
patchset. Fabric CI verify and merge jobs are configured to test the patchset in the below environment.

The Hyperledger Fabric (and associated) projects utilize various tools and workflows for continuous project develop-
ment. The Fabric CI is currently utilizing the following versions in the Master and Release-1.1, Release-1.0 branches.

Master:

• GO version:(e.g. v1.10) https://github.com/hyperledger/fabric/blob/master/ci.properties

• DOCKER version: 17.12.0-ce

• baseimage version:(e.g. 0.4.6) https://github.com/hyperledger/fabric/blob/196c0de7c1618952a8f342e406a1021203845eba/Makefile#L46

Release-1.0:

• GO version:(e.g. v1.7.5) https://github.com/hyperledger/fabric/blob/release-1.0/ci.properties

• DOCKER version: 17.12.0-ce

19

https://jira.hyperledger.org/issues/?filter=11500
https://chat.hyperledger.org/channel/ci-pipeline
https://chat.hyperledger.org/channel/fabric-ci

ci-management Documentation, Release 0.0.1

• baseimage version:(e.g. 0.4.6)

Release-1.1:

• GO version:(e.g. v1.9.2) https://github.com/hyperledger/fabric/blob/release-1.1/ci.properties

• DOCKER version: 17.12.0-ce

• baseimage version:(e.g. 0.4.6) https://github.com/hyperledger/fabric/blob/da14b6bae4a843dfb3fcece5a08ae0ea18488a7a/Makefile#L39

If you would like to know more details on the tool versions, you can refer from any of the Fabric jobs listed over here
Fabric, select one of the jobs, Click on any build number in the bottom left and view the output for details.

There are several job types that are common across Hyperledger Fabric projects. In some cases, you may or may
not see all of the common job types in every project. This depends on the specific needs of that Hyperledger Fabric
project. The CI configuration is prepared in Jenkins Job Builder to create, update and modify the Jenkins Jobs.

As part of the CI process, we create JJBs (Jenkins Job Builder) in YAML format to configure Jenkins jobs. JJB has
a flexible template system, so creating multiple jobs with a common configuration which is easy. More details about
Jenkins Job Builder are available in the JJB webpage.

The following steps explains, what happens when a developer submits a patchset to the Fabric repository.

When a patchset is submitted to the Fabric repository, the Hyperledger Community CI server (Jenkins) triggers Verify
jobs on x86_64 platform using the patchset’s parent commit which may or may not be the latest commit on Fabric.

10.1.1 Build Process

The Fabric verify build process is split up into multiple jobs. The initial job (fabric-verify-build-checks-x86_64) is to
build and publish docker images and binaries to Nexus3 and Nexus2. These images are later pulled/downloaded in the
downstream jobs, when the triggered conditions meets in fabric-verify-build-checks-x86_64 CI job.

Below are the conditions to trigger relevant jobs based on the patchset:

• fabric-verify-build-checks-x86_64 job triggers when a patchset is created and it validates the
patchsets git commit message.

– If the commit message has a WIP, the above build job ignores to build the patchset and will not post a
voting back to Fabric patchset. That means, this job skips the build process. You can see “WIP - No build”
in the patchset’s result.

– If the patchset has a non WIP in the commit message or if it is a documentation change with these
file extensions (.rst, .md, .py, .png,.css,.html and .ini), the above job posts Run DocBuild comment and
sends Fabric voting as F1-VerifyBuild=+1 F2-SmokeTest=+1 F3-UnitTest=+1 against the
patchset.

* Run DocBuild
- This comment triggers `fabric-docs-build-x86_64` CI job. Once the doc

→˓build is
successfully executed, Jenkins sends Fabric vote as `F2-DocsBuild=+1`

→˓otherwise as
`F2-DocsBuild=-1`

– If the patchset has non WIP in the commit message or a code and documentation changes (see the above
file extensions), fabric-verify-build-checks-x86_64 executes the below flow. The below flow also applies
to the code only patchset excluding documentation build process.

* Executes `make basic-checks`, `make docker` (builds, re-tag and publish
→˓images to nexus3),
`make dist` (builds binaries) and publishes to nexus2. If any of these make

→˓targets (continues on next page)

20 Chapter 10. Contributing to Fabric CI

https://jenkins.hyperledger.org/view/fabric/
https://docs.openstack.org/infra/jenkins-job-builder/
https://jenkins.hyperledger.org/view/fabric/

ci-management Documentation, Release 0.0.1

(continued from previous page)

fails, fabric-verify-build-checks-x86_64 sends `F1-VerifyBuild=-1` to the
→˓Fabric
patchset otherwise it sends `F1-VerifyBuild=+1` and triggers **DocsBuild**

→˓and

SmokeTest jobs parallely by posting below comments to the patchset.

* Run DocsBuild
- This comment triggers `fabric-docs-build-x86_64` job and posts `F2-

→˓DocsBuild=+1`
if successful, otherwise `F2-DocsBuild=-1`. See the doc RTD output in

→˓the nexus
log server.

What happens in **fabric-docs-build-x86_64** job

Step1: Builds the documentation changes:
- Extracts the documentation files(.md, .rst, .txt, .py,
.png, .css, .html & .ini) from the patchset submitted and builds

→˓the
documentation after verification checks like syntax, and tox

→˓verification.
This job is triggered only when a patchset contains

→˓documentation files.

Step2: Documented output is published to Nexus:
- Once the documentation build is successful, it is archived, and

→˓the archives
built are published to Nexus.

* Run SmokeTest
- This comment triggers `fabric-smoke-tests-x86_64` job and posts `F2-

→˓SmokeTest=+1`
to the patchset and triggers Unit-Test job by posting `Run UnitTest`

→˓comment if
successful, otherwise posts `F2-SmokeTest=-1` which doesn't trigger

→˓Unit-Test job.

* Run UnitTest
- This comment triggers `fabric-verify-unit-tests-x86_64` job and posts
`F3-UnitTest=+1` vote against the patchset if successful, otherwise `F3-

→˓UnitTest=-1`.

10.1.2 Conditions to merge the patch set

Maintainers have to look for +1 on all the labels before they merge the patchsets. The votes on the patchset should
look like below.

F1-VerifyBuild +1 Hyperledger Jobbuilder
F2-DocBuild +1 Hyperledger Jobbuilder
F2-SmokeTest +1 Hyperledger Jobbuilder
F3-UnitTest +1 Hyperledger Jobbuilder

patchset is not elible to merge, if it even gets one -1.

10.1. Fabric 21

ci-management Documentation, Release 0.0.1

Fig. 1: Views

10.1.3 Merge process for Fabric

Once the patchset is approved by CI and the maintainers, they will merge the patchset which triggers below Merge
jobs on the latest Fabric commit (doesn’t use the patchset’s parent commit).

fabric-merge-end-2-end-x86_64: https://jenkins.hyperledger.org/view/fabric/job/fabric-merge-end-2-end-x86_64/

Step1: Clones the fabric-ca repository:

• Clones the latest commit from the Fabric fabric-ca repository and then checksout to the Branch. If the patchset
is triggered on fabric-ca release-1.1 branch, script will checkout to release-1.1 branch.

• After the fabric-ca repository is cloned in the above step, CI script executes to build docker images to kick off
the e2e tests.

Step 2: Executes the e2e tests:

Below are the tests triggers in Fabric e2e job:

• 1. e2e-cli - Runs fabric/examples/e2e_cli tests.

– Executes the network_setup.sh that spins up the network with docker-compose file from fab-
ric/examples/e2e_cli folder.

• 2. e2e-node - Runs the sdk-node e2e tests (Executes gulp test command).

– Clones fabric-sdk-node repository and will checkout to Branch

– Spins up network using the docker-compose file from test/fixtures folder

– Install nodejs 8.9.4 version

– RUN istanbul cover --report cobertura test/integration/e2e.js

• 3. e2e-java - Runs e2e java integration tests.

– If the patchset is on release-1.0 branch, we ignore java e2e tests for now.

– If not, run the java e2e tests by executing source cirun.sh

fabric-merge-x86_64: https://jenkins.hyperledger.org/view/fabric/job/fabric-merge-x86_64

Step1: Pulls the third party docker images:

22 Chapter 10. Contributing to Fabric CI

https://jenkins.hyperledger.org/view/fabric/job/fabric-merge-end-2-end-x86_64/
https://jenkins.hyperledger.org/view/fabric/job/fabric-merge-x86_64

ci-management Documentation, Release 0.0.1

• Pulls the fabric baseimage version third party docker images(kafka, zookeeper, couchdb). The image name is
appended with ‘hyperledger’ and tagged with the latest tag.

Step2: Executes Fabric tests using below two commands:

make linter make unit-test

After the verify or merge tests are executed, It is time to archive the logs (artifacts). CI publishes the logs(artifacts) on
Jenkins console.

Fig. 2: ConsoleOutPut

10.1.4 Build Notifications

The build results can be viewed on the Jenkins console, where depending on the result it displays with a colored bubble
(green for success, red for failure).

10.1.5 Trigger failed jobs through Gerrit comments

Re-trigger of builds is possible in Jenkins by entering a comment to the Gerrit change that re-triggers a specific verify
job. To do so, follow the below process:

Step 1: Open the Gerrit patchset for which you want to reverify the build

Step 2: Click on Reply, then type one of the below comments and click Post

VerifyBuild – Triggers fabric-verify-build-checks-x86_64 CI job, developers have to check the result
of this job before posting the below comments on the patchset. As mentioned above, this job publishes
images and binaries to nexus which further downloaded by SmokeTest and UnitTest jobs. Please make
sure, images and binaries are published for that sepecific commit.

Run SmokeTest – Triggers fabric-smoke-tests-x86_64.

Run UnitTest – Triggers fabric-verify-unit-tests-x86_64.

Run DocsBuild – Triggers fabric-docs-build-x86_64

This kicks off the specified Fabric verify jobs. Once the build is triggered, verify the Jenkins console output and go
through the log messages if you are interested to know how the build is making progress.

10.1. Fabric 23

ci-management Documentation, Release 0.0.1

10.1.6 Questions

Please reach out to us in https://chat.hyperledger.org/channel/ci-pipeline or https://chat.hyperledger.org/channel/
fabric-ci RC channels for any questions.

10.2 Fabric-CA

This document explains the Fabric-ca CI process. The below steps explains what CI follows or executes when a
patchset is submited to the fabric-ca repository.

Whenever a patchset is submitted to the fabric-ca repository, Jenkins triggers the CI build process to test and validate
the patchset. Fabric-ca CI verify and merge jobs are configured to test the patchset in the below environment.

The Hyperledger Fabric (and associated) projects utilize various tools and workflows for continuous project devel-
opment. The FABRIC-CA is currently utilizing the following versions in the Master , Release-1.0 and Release-1.1
branches.

Master:

• GO version(e.g. v1.9.2): https://github.com/hyperledger/fabric-ca/blob/master/ci.properties

• DOCKER version: 17.12.0-ce

• baseimage version(e.g. 0.4.6): https://github.com/hyperledger/fabric-ca/blob/
be7180447ce9b47a4d3ae33210b5cf00d67ff6d9/Makefile#L55

Release1.0:

• GO version(e.g. 1.7.5): https://github.com/hyperledger/fabric-ca/blob/release-1.0/ci.properties

• DOCKER version: 17.12.0-ce

• baseimage version(e.g. 0.3.1): https://github.com/hyperledger/fabric-ca/blob/
d5aa9afd6044201acd225494ee8c7537cd5a6673/Makefile#L47

Release1.1:

• GO version(e.g. 1.9.2): https://github.com/hyperledger/fabric-ca/blob/release-1.1/ci.properties

• DOCKER version: 17.12.0-ce

• baseimage version(e.g. 0.4.6): https://github.com/hyperledger/fabric-ca/blob/
d536f5a4b9dbfe057af16dd5ae2ab87841b80f9c/Makefile#L62

If you would like to know more details on the tool versions, you can refer from any FABRIC-CA jobs listed here
fabric-ca, select one of the jobs, click on any build number in the bottom left and view the output for details.

10.2.1 Build Process

There are several Jenkins job types that are common across Hyperledger Fabric projects. In some cases, you may or
may not see all of the common job types in every project. This depends on the specific needs of that Hyperledger
Fabric project. The CI configuration is prepared in Jenkins Job Builder to create, update and modify the Jenkins Jobs.

As part of the CI process, we create JJBs (Jenkins Job Builder) in YAML format to configure Jenkins jobs. JJB has
a flexible template system, so creating multiple jobs with a common configuration which is easy. More details about
Jenkins Job Builder are available in the JJB webpage.

The following steps explains, what happens when we submit a patch to the fabric-ca repository.

24 Chapter 10. Contributing to Fabric CI

https://chat.hyperledger.org/channel/ci-pipeline
https://chat.hyperledger.org/channel/fabric-ci
https://chat.hyperledger.org/channel/fabric-ci
https://github.com/hyperledger/fabric-ca/blob/master/ci.properties
https://github.com/hyperledger/fabric-ca/blob/be7180447ce9b47a4d3ae33210b5cf00d67ff6d9/Makefile#L55
https://github.com/hyperledger/fabric-ca/blob/be7180447ce9b47a4d3ae33210b5cf00d67ff6d9/Makefile#L55
https://github.com/hyperledger/fabric-ca/blob/release-1.0/ci.properties
https://github.com/hyperledger/fabric-ca/blob/d5aa9afd6044201acd225494ee8c7537cd5a6673/Makefile#L47
https://github.com/hyperledger/fabric-ca/blob/d5aa9afd6044201acd225494ee8c7537cd5a6673/Makefile#L47
https://github.com/hyperledger/fabric-ca/blob/release-1.1/ci.properties
https://github.com/hyperledger/fabric-ca/blob/d536f5a4b9dbfe057af16dd5ae2ab87841b80f9c/Makefile#L62
https://github.com/hyperledger/fabric-ca/blob/d536f5a4b9dbfe057af16dd5ae2ab87841b80f9c/Makefile#L62
https://jenkins.hyperledger.org/view/fabric-ca/
https://docs.openstack.org/infra/jenkins-job-builder/

ci-management Documentation, Release 0.0.1

When a patchset is submitted to the fabric-ca repository, the Hyperledger Community CI server (Jenkins) triggers
Verify jobs on x86_64 and s390x platforms using the patchset’s parent commit which may or may not be the latest
commit on fabric-ca. The following verify jobs are triggered.

• fabric-ca-verify-x86_64

• fabric-ca-verify-s390x

• fabric-ca-verify-end-2-end-x86_64

Fig. 3: Views

Below are steps CI executes on Verify and Merge jobs:

fabric-ca-verify-end-2-end-x86_64

Step1: Clones the Fabric repository:

• Clones the latest commit from the Gerrit Fabric repository and then checkout to the Branch. If the patchset is
triggered on Fabric release-1.0 branch, script will checkout to release-1.0 branch.

• After the Fabric and Fabric-ca repositories afre cloned in the above step, CI script executes to build DOCKER
images to kick off the e2e tests.

Step 2: Executes the e2e tests:

Below are the tests triggers in Fabric-ca e2e job:

• 1. e2e-cli - Runs fabric/examples/e2e_cli tests.

– Executes the network_setup.sh that spins up the network with docker-compose file from fab-
ric/examples/e2e_cli folder.

• 2. e2e-node - Runs the sdk-node e2e tests (Executes gulp test command).

– Clones fabric-sdk-node repository and will checkout to Branch

– Spins up network using the docker-compose file from test/fixtures folder

– Install nodejs 8.9.4 version

– run istanbul cover --report cobertura test/integration/e2e.js

• 3. e2e-java - Runs e2e java integration tests.

– If the patchset is on release-1.0 branch, we ignore java e2e tests for now.

– If not, run the java e2e tests by executing source cirun.sh

fabric-ca-verify-x86_64 & fabric-ca-verify-s390x

Step1: Clones the Fabric repository:

10.2. Fabric-CA 25

https://jenkins.hyperledger.org/view/fabric-ca/
https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-verify-x86_64/
https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-verify-s390x/
https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-verify-end-2-end-x86_64/

ci-management Documentation, Release 0.0.1

• Clones the latest commit from the Gerrit fabric-ca and then checkout to the Branch. If the patchset is triggered
on fabric-ca release-1.0 branch, script will checkout to the release-1.0 branch.

Step2: Executes fabric-ca tests using below two commands:

make ci-tests

make docker-fvt

Once the tests are completed, Jenkins posts +1 vote to the patchset +1 –> Hyperledger Jobbuilder upon successful
completion and -1 -1 –> Hyperledger Jobbuilder in case of failure.

Once the patchset is approved by CI and the maintainers, they will merge the patchset which triggers below Merge
jobs and runs the above mentioned tests on the latest fabric-ca commit (doesn’t use the patchset’s parent commit).

• fabric-ca-merge-x86_64

• fabric-ca-merge-s390x

• fabric-ca-merge-end-2-end-x86_64

After the tests are executed, It is time to archive the logs (artifacts) and publish the code coverage. CI publishes the
logs(artifacts) and the Code Coverage report(Cobertura Coverage Report)on Jenkins console.

Fig. 4: ConsoleOutPut

10.2.2 Build Notifications

The build results can be viewed on the Jenkins console, where depending on the result it displays with a colored bubble
(green for success, red for failure) and a vote from the CI (+1 or -1) on the Gerrit commit/change.

Also, it sends out an email notification to all the Fabric-ca maintainers in case of merge job failure.

10.2.3 Trigger failed jobs through Gerrit comments

Re-trigger of builds is possible in Jenkins by entering reverify in a comment to the Gerrit change that retriggers all the
verify jobs. To do so, follow the below process:

Step 1: Open the Gerrit patchset for which you want to reverify the build

26 Chapter 10. Contributing to Fabric CI

https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-merge-x86_64/
https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-merge-s390x/
https://jenkins.hyperledger.org/view/fabric-ca/job/fabric-ca-merge-end-2-end-x86_64/

ci-management Documentation, Release 0.0.1

Step 2: Click on Reply, then type reverify and click Post

This kicks off all the Fabric-ca verify jobs. Once the build is triggered, verify the Jenkins console output and go
through the log messages if you are interested to know how the build is making progress.

In some cases, Jenkins may fail only in one or two CI jobs due to which network issues. In such cases, restarting all
the fabric-ca jobs through reverify comment is not necessary. Instead, the developer can post below comment to
trigger the particular failed build:

reverify-e2e - re-triggers fabric-ca-merge-end-2-end-x86_64 CI job.

reverify-x - re-triggers fabric-ca-verify-x86_64 on x86_64 platform.

reverify-z - re-triggers fabric-ca-verify-s390x on s390x platform.

10.2.4 Questions

Please reach out to us in https://chat.hyperledger.org/channel/ci-pipeline or https://chat.hyperledger.org/channel/
fabric-ci RC channels for Questions or concerns related to fabric-ca CI process.

10.3 Fabric-SDK-Java

This document explains about the fabric-sdk-java CI process. The below steps explain what CI follows or executes
when a patch set is submit to the fabric-sdk-java repository.

Whenever a patchset is submitted to the fabric-sdk-java repository, Jenkins triggers the CI build process to test and
validate the patchset. Fabric-sdk-java CI verify and merge jobs are configured to test the patchset in the below
environment.

The Hyperledger Fabric (and associated) projects utilize various tools and workflows for continuous project develop-
ment. Thefabric-sdk-java is currently utilizing the following versions in the Master and Release-1.0 branches.

Master

• go version: v1.9.2

• docker version: 17.12.0-ce

Release-1.0

• go version: v1.9.2

• docker version: 17.12.0-ce

If you would like to know more details on the tool versions, you can refer from any fabric-sdk-java jobs listed here
fabric-sdk-java, Select one of the jobs, Click on any build number in the bottom left and view the output for details.

10.3.1 Build Process

There are several Jenkins job types that are common across Hyperledger Fabric projects. In some cases, you may or
may not see all of the common job types in every project. This depends on the specific needs of that Hyperledger
Fabric project. The CI configuration is prepared in Jenkins Job Builder to create, update and modify the Jenkins Jobs.

As part of the CI process, we create JJB’s (Jenkins Job Builder) in YAML format to configure Jenkins jobs. JJB has a
flexible template system, so creating many similar jobs with a common configuration is easy. More about Jenkins Job
Builder is available on the JJB webpage.

The following explains what happens when we submit a patch to the fabric-sdk-java repository.

10.3. Fabric-SDK-Java 27

https://chat.hyperledger.org/channel/ci-pipeline
https://chat.hyperledger.org/channel/fabric-ci
https://chat.hyperledger.org/channel/fabric-ci
https://jenkins.hyperledger.org/view/fabric-sdk-java/
https://docs.openstack.org/infra/jenkins-job-builder/

ci-management Documentation, Release 0.0.1

When a patchset is submitted to fabric-sdk-java repository, the Hyperledger Community CI server (Jenkins) triggers
Verify and jobs on x86_64 platform using the patchset’s parent commit which may or may not be the latest commit
on fabric-sdk-java.

fabric-sdk-java-verify-x86_64

fabric-sdk-java-verify-1.0.0-x86_64

As part of the CI process on fabric-sdk-java repository, the following tests are executed on x86_64(x) platform, see
the arch value at the end of the job name to know on which platform we run this job.

Fig. 5: Views

Below is the process we execute in CI on fabric-sdk-java verify and merge jobs:

Step 1: - Clone Fabric & Fabric-ca repositories:

• Clone the latest commit from the Gerrit for Fabric and Fabric-ca repositories.

• Check if the repositories are on the latest commit and the specified branch the tests must execute on. Checkout to
the branch that is specified. Build the images with make docker command to build the latest docker images
for Fabric & Fabric-ca.

Step 2: - When the images are ready, execute the cirun.sh script in the /src/test directory of fabric-sdk-java

• Export environment settings, wait time for SDK test integration.

• With the latest JSDK version, now that we have the latest images for Fabric and Fabric-ca, run the java integra-
tion tests.

For the fabric-sdk-java-verify-1.0.0-x86_64 or fabric-sdk-java-merge-1.0.0-x86_64 jobs,

• This job is to run the integration tests using the latest JSDK version with Fabric & Fabric-ca 1.0.0 version. A
check is made to verify if the tests have to execute on Fabric & Fabric-ca 1.0.0 docker images.

• The version for Fabric and Fabric-ca is set to 1.0.0. The 1.0.0 version docker images are fetched for Fabric and
Fabric-ca. The Fabric generated configuration version is set to v1.0

Step 3: - Execute the docker compose file from the /src/test/fixture/sdkintegration/fabric.sh

• Clean up the unnecessary containers/images if any with the clean() function.

• Bring the network up with function up() , this executes the docker-compose up and creates the docker containers.

• Bring down the network and start it again, wait till the containers are started, and execute the java integration
tests.

Above process is applicable to both verify and merge jobs.

After the builds are executed successfully, it sends a voting to Gerrit patch set with a +1, or -1 if the build fails.

28 Chapter 10. Contributing to Fabric CI

https://jenkins.hyperledger.org/view/fabric-sdk-java/
https://jenkins.hyperledger.org/view/fabric-sdk-java/job/fabric-sdk-java-verify-x86_64/
https://jenkins.hyperledger.org/view/fabric-sdk-java/job/fabric-sdk-java-verify-1.0.0-x86_64/

ci-management Documentation, Release 0.0.1

Once the patchset is approved by CI and the maintainers, they will merge the patchset which triggers the Merge jobs
and runs the above mentioned tests on the latest fabric-sdk-java commit (doesn’t use the patchset’s parent commit).

After the tests are executed, It is time to archive the logs (artifacts) and publish the code coverage. CI publishes the
logs(artifacts) and the Code Coverage report(JaCoCo Coverage Report)on Jenkins console.

Fig. 6: ConsoleOutPut

10.3.2 Build Notifications

The build results can be viewed on the Jenkins console, where depending on the result it displays with a colored bubble
(green for success, red for failure) and a vote from the CI (+1 or -1) on the Gerrit commit/change.

Also, it sends out an email notification to all the fabric-sdk-java maintainers in case of merge job failure.

10.3.3 Trigger failed jobs through Gerrit comments

Re-trigger of builds is possible in Jenkins by entering reverify in a comment to the Gerrit change that re-triggers all
the verify jobs. To do so, follow the below process:

Step 1: Open the Gerrit patchset for which you want to reverify the build

Step 2: Click on Reply, then type reverify and click Post

This kicks off all the fabric-sdk-java verify jobs. Once the build is triggered, verify the Jenkins console output and go
through the log messages if you are interested to know how the build is making progress.

In some cases, Jenkins may fail only in one or two CI jobs due to which network issues. In such cases, restarting all the
fabric-sdk-java jobs through reverify comment is not necessary. Instead, the developer can post below comment
to trigger the particular failed build:

• reverify-x - to retrigger the build on fabric-sdk-java-verify-x86_64.

• reverify-1.1.0 - to retrigger the build on fabric-sdk-java-verify-1.0.0-x86_64.

10.3.4 Questions

Please reach out to us in https://chat.hyperledger.org/channel/ci-pipeline or https://chat.hyperledger.org/channel/
fabric-ci RC channels for Questions or concerns related to fabric-sdk-java CI process.

10.3. Fabric-SDK-Java 29

https://chat.hyperledger.org/channel/ci-pipeline
https://chat.hyperledger.org/channel/fabric-ci
https://chat.hyperledger.org/channel/fabric-ci

ci-management Documentation, Release 0.0.1

10.4 Fabric-SDK-Node

This document explains about the fabric-sdk-node CI process. The below steps explain what CI follows or executes
when a patchset is submits to the fabric-sdk-node repository.

Whenever a patchset is submitted to the fabric-sdk-node repository, Jenkins triggers the CI build process to test and
validate the patchset. Fabric-sdk-node CI verify and merge jobs are configured to test the patchset in the below
environment.

The Hyperledger Fabric (and associated) projects utilize various tools and workflows for continuous project develop-
ment. The fabric-sdk-node is currently utilizing the following versions in the Master and Release-1.0 and Release-1.1
branches.

Master:

• go version: v1.9.2

• docker version: 17.12.0-ce

• npm version: 8.9.4

Release-1.0:

• go version: v1.9

• docker version: 17.12.0-ce

• npm version: 6.9.5

Release-1.1:

• go version: v1.9.2

• docker version: 17.12.0-ce

• npm version: 8.9.4

If you would like to know more details on the tool versions, you can refer from any fabric-sdk-node jobs listed here
fabric-sdk-node. Select one of the jobs, Click on any build number in the bottom left and view the output for details.

10.4.1 Build Process

There are several Jenkins job types that are common across Hyperledger Fabric projects. In some cases, you may or
may not see all of the common job types in every project. This depends on the specific needs of that Hyperledger
Fabric project. The CI configuration is prepared in Jenkins Job Builder to create, update and modify the Jenkins Jobs.

As part of the CI process, we create JJB’s (Jenkins Job Builder) in YAML format to configure Jenkins jobs. JJB has a
flexible template system, so creating many similar jobs with a common configuration is easy. More about Jenkins Job
Builder is available on the JJB webpage.

The following explains what happens when we submit a patch to the fabric-sdk-node repository.

When a patchset is submitted to fabric-sdk-node repository, the Hyperledger Community CI server (Jenkins) triggers
Verify and jobs on x86_64 ans s390x platforms using the patchset’s parent commit which may or may not be the latest
commit on fabric-sdk-node.

The following verify jobs are triggered.

fabric-sdk-node6-verify-x86_64

fabric-sdk-node8-verify-x86_64

fabric-sdk-node6-verify-s390x

30 Chapter 10. Contributing to Fabric CI

https://jenkins.hyperledger.org/view/fabric-sdk-node/
https://docs.openstack.org/infra/jenkins-job-builder/
https://gerrit.hyperledger.org/r/fabric-sdk-node
https://jenkins.hyperledger.org/view/fabric-sdk-node/job/fabric-sdk-node6-verify-x86_64/
https://jenkins.hyperledger.org/view/fabric-sdk-node/job/fabric-sdk-node8-verify-x86_64/
https://jenkins.hyperledger.org/view/fabric-sdk-node/job/fabric-sdk-node6-verify-s390x/

ci-management Documentation, Release 0.0.1

fabric-sdk-node8-verify-s390x

As part of the CI process on fabric-sdk-node repository, the following tests are executed on x86_64(x) and s390x(z)
platforms, see the arch value at the end of the job name to know on which platform we run this job.

Fig. 7: Views

Below is the process we execute in CI on fabric-sdk-node verify and merge jobs: Step 1: - Clone fabric & fabric-ca
repositories:

• Clone the latest commit from the gerrit fabric repository and then check for the Branch Name, if the patch is
triggered on fabric-sdk-node release-1.0 branch, we checkout to fabric release-1.0 branch.

• Build Docker Images:

– fabric-sdk-node makes use of just the peer and orderer images, we build only peer-docker and order-docker
docker images using make peer-docker & make orderer-docker to reduce the build time.

The same proceess applies to fabric-ca repository too.

Step 2: - Once the images are ready, CI script execute docker-compose file to spinup the network from /test/fixures
directory. docker-compose up >> dockerlogfile.log

Step 3: - After the network is up, install the nodejs version based on the Job we are running. If the job name says
fabric-sdk-node8-verify-x86_64, script installs nodejs version 8.9.4 in x86_64 build machine

Step 4: - After the nodjs version installed, CI script executes npm install , gulp & gulp ca commands to
download all the dependent packages.

Step 5: - Once the environment is ready, CI script executes gulp test command which executes [‘clean-up’, ‘lint’,
‘pre-test’, ‘docker-ready’, ‘ca’] build tasks.

Above process is applicable to both ** verify ** and ** merge ** jobs.

After the builds are executed successfully, it sends a voting to gerrit patch set with a +1, or -1 if the build fails.

Next, on a successful code review(+1) and merge by the maintainers, Jenkins triggers the Merge jobs. The merge jobs
for fabric-sdk-java perform all steps detailed above and also publish node modules to NPM Open Source Registry.

• An initial validation is made to check the version of the npm modules created. The version of the created npm
modules is compared with the version specified in package.json file. The package.json file holds the current
npm details that include the version number too.

10.4. Fabric-SDK-Node 31

https://jenkins.hyperledger.org/view/fabric-sdk-node/job/fabric-sdk-node8-verify-s390x/

ci-management Documentation, Release 0.0.1

• When the npm version matches with the current specified version in package.json file, this fabric client/fabric-
ca client npm version is not published in Merge jobs.

• If the npm module version does not match the current version in the package.json and it has a ‘snapshot’ in it’s
version tag, it is published as the next unstable version of npm.

If the npm module matches the current existing npm version in the package.json file and it has a snapshot in
it’s version tag, it is incremented and published as the next unstable version for the existing npm version. For
example, if the existing unstable npm version with the snapshot tag ends with number 84, the next unstable
version is incremented by +1 and is stored with the snapshot tag ending with 85. The folowing are two
unstable npm versions.

fabric-client@1.1.0-snapshot.85
fabric-client@1.1.0-snapshot.84

The same process is followed in fabric-ca Merge jobs.If you wish to look at npm packages for fabric-client or fabric-
ca-client, you can select the following links.

• fabric-client npm

• fabric-ca-client npm

Once the tests are executed, Jenkins performs some pre-defined tasks to project the progress of each of the tests from
beginning to end, also known as Post Build actions, In this case for the fabric-sdk-node.

• Jenkins publishes and displays the code coverage report on console output.

• The CI team configured one of Jenkins feature/plugin, the Cobertura code coverage report to publish the code
coverage in a well presented format.

• Archive the build artifacts and display these build logs on the Jenkins console.

Fig. 8: ConsoleOutPut

10.4.2 Build Notifications

The build results can be viewed on the Jenkins console, where depending on the result it displays with a colored bubble
(green for success, red for failure) and a vote from the CI (+1 or -1) on the gerrit commit/change.

32 Chapter 10. Contributing to Fabric CI

https://www.npmjs.com/package/fabric-client
https://www.npmjs.com/package/fabric-ca-client

ci-management Documentation, Release 0.0.1

10.4.3 Trigger failed jobs through gerrit comments

Re-trigger of builds is possible in Jenkins by entering reverify in a comment to the gerrit change that retriggers all the
verify jobs. To do so, follow the below process:

Step 1: Open the gerrit patchset for which you want to reverify the build

Step 2: Click on Reply, then type reverify and click Post

This kicks off all the fabric-sdk-node verify jobs. Once the build is triggered, verify the Jenkins console output and go
through the log messages if you are interested in knowing how the build is making progress.

In somecases, Jenkins may fail only in one or two CI jobs due to which network issues. In such cases, restarting all the
fabric-sdk-node jobs through reverify comment is not necessary. Instead, the developer can post below comment
to trigger the particular failed build:

reverify-node8z - to restart the build on sdk-node8-verify s390x platform.

reverify-node8x - to restart the build on sdk-node8-verify x86_64 platform.

reverify-node6z - to restart the build on sdk-node6-verify s390x platform.

reverify-node6x - to restart the build on sdk-node6-verify x86_64 platform.

10.4.4 Questions

Please reachout to us in #fabric-ci or #ci-pipeline RC channels for Questions or concerns related to fabric-sdk-node
CI process.

10.5 Publish Docker Images to Nexus3

We publish v1.0 docker images to Nexus repository for quicker and better usage of docker images and this also reduces
time to build images manually. Once the images are stable, we publish them to docker.release component based on
the release plan. Below is the process we follow in CI and instructions are provided to pull these images.

We have a script to pull all these images, re-tag it to Hyperledger images then delete Nexus Docker images from
machine.

Jenkins CI publishes below listed Docker images to [Daily Snapshots] (https://nexus3.hyperledger.org) after every
successful end-to-end tests of CLI, NODE, JAVA. Example:

Fig. 9: nexus

Daily snapshots are pushed to Nexus3 from port 10003 into docker.snapshot.

nexus-docker CI job executes below steps:

10.5. Publish Docker Images to Nexus3 33

https://nexus3.hyperledger.org

ci-management Documentation, Release 0.0.1

10.5.1 Build & Push Docker images

• Clone latest commit from Fabric repository git clone ssh://hyperledger-jobbuilder@gerrit.
hyperledger.org:29418/fabric

• Run make docker to build v1.0 Docker images

• Tag hyperledger/fabric-$IMAGE_NAME to Nexus as mentioned below

docker tag ORG_NAME-IMAGE_NAME:latest $NEXUS_URL/$ORG_NAME-$IMAGE_NAME:$FABRIC_
→˓SNAPSHOT_TAG

• Push Docker images to Nexus as mentioned below

docker push $NEXUS_URL/$ORG_NAME-$IMAGE_NAME:$FABRIC_SNAPSHOT_TAG

After images are published to docker.snapshot component, developers has to pull Docker images from nexus reposi-
tory. Follow the below steps to download Docker images from NEXUS repository.

You can see image references here

Fig. 10: Docker Images

10.5.2 Pull Docker Images

To pull Docker images from Nexus repository, follow below steps

• Login as docker user

– docker login -u docker -p docker nexus3.hyperledger.org:10001

– docker pull nexus3.hyperledger.org:10001/:math:‘ORG_NAME-‘IMAGE_NAME:$FABRIC_SNAPSHOT_TAG

Example:

docker pull nexus3.hyperledger.org:10001/hyperledger/fabric-peer:x86_64-0.7.
0-snapshot-6e9229b

Use 10001 for any read/pull requests. Port 10002 and 10003 are used strictly for pushing images and not pulling.

34 Chapter 10. Contributing to Fabric CI

ci-management Documentation, Release 0.0.1

10.5.3 Re-Tag Docker Images

After pulling the Docker images, follow below steps to re-tag Nexus tag to hyperledger

• Re-Tag

– docker tag $NEXUS_URL/$ORG_NAME-$IMAGE_NAME:$FABRIC_SNAPSHOT_TAG
hyperledger/fabric-$IMAGE_NAME:$SNAPSHOT_TAG

– docker tag $NEXUS_URL/$ORG_NAME-$IMAGE_NAME:latest hyperledger/
fabric-$IMAGE_NAME:latest

Example:

docker tag nexus3.hyperledger.org:10001/hyperledger/fabric-peer:x86_64-0.7.0-snapshot-
→˓6e9229b
hyperledger/fabric-peer:latest

Above process applies to fabric-ca Docker images as well.

10.5. Publish Docker Images to Nexus3 35

	Summary
	Finding Help on Hyperledger CI
	Common Job Types
	Verify Jobs
	Merge Jobs
	Release Jobs
	Supported Architectures
	Supports varying test types
	Writing Jenkins Job Definitions
	Contributing to Fabric CI
	Fabric
	Fabric-CA
	Fabric-SDK-Java
	Fabric-SDK-Node
	Publish Docker Images to Nexus3

