

 Navigation

 	
 index

 	
 next |

 	Chiminey 1.00 documentation

Welcome to the Chiminey Documentation

Note

This documentation is under construction!

Contents:

	Chiminey Installation Guide
	Requirements
	Mac OS X and Windows

	Linux

	Installation

	Configuration

	Smart Connectors Activation

	Enduser Manual
	Chiminey Account
	Login

	Logout

	Resources
	Registering Compute Resources
	Cloud Compute Resource

	HPC Compute Resource

	Analytics Compute Resource

	Registering Storage Resources
	Remote File System

	MyTardis Storage Resource

	Updating Resources

	Removing Resources

	Smart connector jobs
	The Job Submission UI
	1. Presets

	2. Compute Resource

	3. Locations

	4. Optional Parameter Sections
	Reliability

	Sweep

	Data curation resource

	Domain-specific parameters

	Job Submission

	Job Monitoring

	Job Termination

	Presets
	Adding Preset

	Retrieving Preset

	Updating Preset

	Deleting Preset

	Developer Manual
	Smart Connectors
	Stage

	The relationship between smart connectors and stages

	Creating a smart connector
	The Core Function

	Attaching resources and non-functional properties

	Registration

	Food for Thought

	Parameter Sweep
	External Parameter Sweep

	Internal Parameter Sweep

	Sweep Map
	Imapct of unknown parameters in a sweep map

	Payload

	Chiminey User Interface
	Constructing Smart Connector Input Fields
	Including domain-specific input fields

	Examples
	1. Quick Example: Random Number Smart Connector

	2. Word Count on Hadoop

	3. HRMCLite

	4. Hidden Reverse Monte Carlo Smart connector
	4.1. Hybrid Reverse Monte Carlo - Source Code Version 2.0 (Oct 2012)

	4.2. HRMC Core Function

	4.3. Attaching Resources and Non-functional properties

	4.4. Registering the HRMC SC
	4.4.1. Setup

	4.4.2. The Input Directory

	4.4.3. Complex Internal Sweeps

	4.4.4. Use of Iterations

	4.4.5. Complex Mytardis Interactions

	API Reference
	Chiminey Stage APIs
	mytardis – MyTardis APIS
	Datastructures

	Module Functions and Constants

	storage – Storage APIS
	Datastructures

	Module Functions and Constants

	sshconnection – Manipulation of Remote Resources
	Datastructures

	Module Functions and Constants

	compute – Execution Of Remote Commands
	Datastructures

	Module Functions and Constants

	messages – Logging communication for Chiminey
	Datastructures

	Module Functions and Constants

	run_settings – Contextual Namespace for Chiminey
	Datastructures

	Module Functions and Constants

	cloudconnection – Cloud Connection
	Datastructures

	Module Functions and Constants

	corestages – Processing Steps in a directive
	Datastructures

	Module Functions and Constants

	simpleui – UI view members

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

Chiminey Installation Guide

This document describes how to install a Chiminey platform via Docker [https://www.docker.com], which is an automatic software deployment tool.

Requirements

Docker 1.7+ is needed. Follow the links below to install docker on your machine.

	Mac OS X and Windows

	Linux

Mac OS X and Windows

Here, we create a virtual machine that runs docker.

	Download Docker Toolbox from https://www.docker.com/toolbox.

	When the download is complete, open the installation dialog box by double-clicking the downloaded file.

	Follow the on-screen prompts to install the Docker toolbox. You may be prompted for password just before the installation begins. You need to enter your password to continue.

	When the installation is completed, press Close to exit.

	Verify that docker-engine and docker-compose are installed correctly.

	Open Docker Quickstart Terminal from your application folder. The resulting output looks like the following:

[image: Docker Terminal on Mac OS X or Windows]
Figure. Docker Virtual Machine on Mac OS X or Windows

	Run docker engine:

$ docker run hello-world

	You will see a message similar to the one below:

Unable to find image ’hello-world:latest’ locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb92...
Status: Downloaded newer image for hello-world:latest
Hello from Docker.
This message shows that your installation appears to be
 working correctly.
...

	Run docker-compose:

$ docker-compose --version

	The output will be docker-compose version x.x.x, build xxxxxxx

	For users with an older Mac, you will get Illegal instruction: 4. This error can be fixed by upgrading docker-compose:

$ pip install --upgrade docker-compose

Linux

Docker, specifically docker-engine and docker-compose, needs to be installed directly on your linux-based OS. Refer to the Docker online documentation to install the two packages:

	Install docker-engine [https://docs.docker.com/engine/installation/]

	Install docker-compose [https://docs.docker.com/compose/install/]

Installation

	For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

	Check if git is installed. Type git on your terminal.

	If git is installed, the following message will be shown:

usage: git [--version] [--help] [-C <path>] ..
 [--exec-path[=<path>]] [--html-path] [...
 [-p|--paginate|--no-pager] [--no- ...
 [--git-dir=<path>] [--work-tree=<path>]...
 <command> [<args>]
 ...

	If git is not installed, you will see git: command not found. Download and install git from http://git-scm.com/download

	Clone the docker-chiminey source code from http://github.com.au:

$ git clone https://github.com/chiminey/docker-chiminey.git

	Change your working directory:

$ cd docker-chiminey

	Setup a self-signed certificate. You will be prompted to enter country code, state, city, and etc:

$ sh makecert

	Deploy the Chiminey platform:

$ docker-compose up -d

	Verify Chiminey was deployed successfully.

	Retrieve the IP address of your machine

	For Mac and Windows users, type env | grep DOCKER_HOST. The expected output has a format DOCKER_HOST=tcp://IP:port, for example. DOCKER_HOST=tcp://192.168.99.100:2376. Thus, your IP address is 192.168.99.100.

	For linux users, the command ifconfig prints your our machine’s IP address.

	Open a browser and visit the Chiminey portal at IP, in our example, http://192.168.99.100. After a while, the Chiminey portal will be shown.

[image: Chiminey Portal]
Figure. Chiminey Portal

Configuration

Here, we will configure the Chiminey deployment by creating a superuser, initialising the database, and signing up a regular user.

	For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

	Change to docker-chiminey directory:

$ cd docker-chiminey

	Create a superuser:

$./createsuper

	Initialise the database:

$./init

	Create a regular user:

$./createuser

	Verify the Chiminey platform is configured correctly.

	Open a browser and visit the Chiminey portal.

	Login with your regular username and password. After successful login, you will be redirected to a webpage that displays a list of jobs. Since no jobs are run yet, the list is empty.

Smart Connectors Activation

When a Chiminey platform is deployed, each smart connector <smart_connector_desc>, which is the core concept within Chiminey that enables endusers to perform complex computations on distributed computing facilities with minimal effort, needs to be explicitly activated.

	For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

	Change to docker-chiminey directory:

$ cd docker-chiminey

	List all available smart connectors:

$./listsc

NAME: DESCRIPTION
hrmclite: Hybrid Reverse Monte Carlo without PSD
randnum: Randnum generator, with timestamp
wordcount: Counting words via Hadoop

	Activate a smart connector. The syntax to activate a smart connector is ./activatesc smart-connector-name. Thus, activate randnum smart connector as follows:

$./activatesc randnum

	Verify the smart connector is successfully activated.

	Open a browser and visit the Chiminey portal.

	Login with your regular username and password.

	Click Create Job. randnum will appear under the Smart Connectors list.

See also

	https://www.djangoproject.com/

	The Django Project

	https://docs.djangoproject.com/en/1.4/intro/install/

	Django Quick Install Guide

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

Enduser Manual

An end-user submits a smart connector job, monitors the job, visualises
and curates job results.
In this documentation, following topics are covered:

	Chiminey Account

	Resources

	Smart connector jobs

	Presets

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Enduser Manual

Getting Chiminey Account

Chiminey accounts are managed by admin users. Therefore, in order to get
access to a specific Chiminey deployment, the end-user should contact the
admin of the deployed Chiminey platform.

Login

End-users login via the web interface of the Chiminey platform

	Click login on the home page

	Enter Chiminey credentials

	Click Login

[image: _images/login.png]

Logout

	click Logout

[image: _images/logout.png]

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Enduser Manual

Resource Management

A Chiminey platform supports access to computation and
storage resources. A computation resource is where the core functionality of a
smart connector is executed while a storage resource is used to retrieve input files and store output files.
Prior to submitting a job, end-users need to register at least one computation and one storage resources. In this section, following topics are covered:

	Registering Compute Resources

	Registering Storage Resources

	Updating Resources

	Removing Resources

Registering Compute Resources

Various computing infrastructure and tools can be registered as compute resources. These resources are broadly categorised under cloud, high performance computing (HPC),
analytics, and continuous integration resources.

Cloud Compute Resource

	Navigate to the Chiminey portal.

	Log in with your credentials.

	Click Settings.

	Click Compute Resource from the Settings menu.

	Click Register Compute Resource

	Click the Cloud tab.

	Select the resource type from the drop down menu. You may have access to more than one type of cloud service, e.g., NeCTAR and Amazon.

	Enter a unique resource name.

	Enter credentials such as EC2 access key and EC2 secret key

	Click Register. The newly registered cloud-based compute resource will be displayed under Cloud - NeCTAR/CSRack/Amazon EC2.

[image: Registering a cloud-based compute resource]
Figure. Registering a cloud-based compute resource

HPC Compute Resource

	Navigate to the Chiminey portal.

	Log in with your credentials.

	Click Settings.

	Click Compute Resource from the Settings menu.

	Click Register Compute Resource

	Click the HPC tab.

	Enter a unique resource name.

	Enter IP address or hostname of the HPC cluster head node or the standalone server.

	Enter credentials, i.e. username and password. Password is not stored in the Chiminey platform. It is temporarily kept in memory to establish a private/public key authentication from the Chiminey platform to the resource.

	Click Register. The newly registered resource will be displayed under HPC - Cluster or Standalone Server list.

[image: Registering a HPC compute resource]
Figure. Registering a HPC compute resource

Analytics Compute Resource

	Navigate to the Chiminey portal.

	Log in with your credentials.

	Click Settings.

	Click Compute Resource from the Settings menu.

	Click Register Compute Resource

	Click the Analytics tab.

	Select Hadoop MapReduce as the resource type from the drop down menu.

	Enter a unique resource name.

	Enter IP address or hostname of the Hadoop MapReduce resource.

	Enter username and password. Password is not stored in the Chiminey platform. It is temporarily kept in memory to establish a private/public key authentication from the Chiminey platform to the resource.

	Click Register. The newly registered resource will be displayed under Analytics - Hadoop MapReduce list.

[image: Registering an analytics compute resource (Hadoop MapReduce)]
Figure. Registering an analytics compute resource (Hadoop MapReduce)

Registering Storage Resources

Remote file systems and data curation services like Mytardis mytardis_storage are used as a storage resources.

Remote File System

	Navigate to the Chiminey portal.

	Log in with your credentials.

	Click Settings.

	Click Storage Resource from the Settings menu.

	Click Register Storage Resource

	Click the Remote File System tab.

	Enter a unique resource name.

	Enter IP address or hostname of the remote file system.

	Enter credentials, i.e. username and password. Password is not stored in the Chiminey platform. It is temporarily kept in memory to establish a private/public key authentication from the Chiminey platform to the resource.

	Click Register. The newly registered resource will be displayed under Remote File System list.

[image: Registering a remote file system as a storage resource]
Figure. Registering a remote file system as a storage resource

MyTardis Storage Resource

	Navigate to the Chiminey portal.

	Log in with credentials

	Click Settings

	Click Storage Resource from the Settings menu

	Click Register Storage Resource

	Click the MyTardis tab.

	Enter a unique resource name.

	Enter IP address or hostname of the MyTardis instance.

	Enter credentials, i.e. username and password. Username and password are stored on the Chiminey platform.

	Click Register. The newly registered storage resource will be displayed under MyTardis list.

[image: Registering MyTardis, a data curation service]
Figure. Registering MyTardis, a data curation service.

Updating Resources

Follow the steps below to change he details of registered resources.

	Navigate to the Chiminey portal.

	Log in with credentials

	Click Settings

	From the Settings menu, depending on which resource you wish to update, click either Compute Resource or Storage Resource. All registered resources will be listed.

	Locate the resource you wish to update, then click Update.

	Make the changes, and when finished click Update

Removing Resources

In order to remove a registered resource, follow all the steps from Updating Resources but click Remove instead of Update. The resource will be removed from the resources’ list.

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Enduser Manual

Job Management

The end-user submits, monitors, and terminates jobs via the Chiminey portal. Before going into details about job management, we first discuss the Chiminey UI for submitting jobs.

The Job Submission UI

[image: Job Submission UI for wordcount smart connector]
Figure. Job Submission UI for wordcount smart connector

The aim of the following discussion is to understand the job submission UI, and therefore be able to run any smart connector job without difficulty.
The job submission UI is accessed by clicking Create Job tab. The above figure shows the job submission UI of wordcount smart connector.
The Chiminey job submission UI is composed of a list of activated smart connectors, and the submission form of the selected smart connector.
The submission form is divided into various sections. In general, each submission form has at least three sections: 1. Presets, 2. Compute Resource and 3. Locations.

1. Presets

The end-user can save the set of parameters values of a job as a preset. Each preset must have a unique name. Using the unique preset name, the end-user can retrieve, update and delete saved presets.

2. Compute Resource

This section includes the parameters that are needed to utilise the compute resource associated with the given smart connector. For instance, hadoop compute resources need only the name of the registered hadoop cluster (see Analytics Compute Resource), while the cloud compute resource needs the resource name as well as the total VMs that can be used for the computation. Note that the names of all registered compute resources are automatically populated to a dropdown menu on the submission form.

3. Locations

These parameters are used to specify either input or output directories on a registered storage resource. Each location consists of two parameters: a storage location and a relative path. Storage location
is a drop-down menu that lists the name of all registered storages and, their corresponding root path. A root path is an absolute path to the directory on the storage resource onto which all
input and output files will be saved. Relative path is the name of a subdirectory of the root path that contains input and/or output files. In the case of input locations, Chiminey retrieves the input files that
are needed to run the smart connector job from this subdirectory. In the case of output location, Chiminey will save the output of the smart connector job to the subdirectory.

4. Optional Parameter Sections

Some job submission forms include one or more of the following sections:

Reliability

Fault tolerance support is provided to each smart connector job. How- ever, the enduser can limit the degree of such support using the reliability parameters: reschedule failed processes and maximum retries.

Sweep

Sweep allows end-users to run multiple jobs simultaneously from a single submission. The sweep allows end-users to provide ranges of input values for parameters,
and the resulting set of jobs produced span all possible values within that parameter space. These ranges of parameters are defined at job submission time, rather than being hard-coded in the definition of the smart connector. The common use- cases for this feature are to generate multiple results across one or more variation ranges for later comparison, and to quickly perform experi- mental or ad-hoc variations on existing connectors. Endusers specify the parameter(s) and their possible values via the sweep parameter.

Data curation resource

This section provides the parameters that are needed to curate the output of a smart connector job. The section includes a drop- down menu that is populated with the name registered data curation services like MyTardis.

Domain-specific parameters

These parameters are needed to guide the execution of the domain-specific payload of a given smart connector. wordcount smart connector has Word Pattern while hrmclite has pottype, error threshold, and others.

Job Submission

Follow the steps below

	Navigate to the Chiminey portal

	Log in with your credentials

	Click Create Job from the menu bar

	Select the smart connector from the list of smart connectors

	Enter the values for the parameters of the selected smart connector.

	Click Submit Job button, then OK

Job Monitoring

Once a job is submitted, the end-user can monitor the status of the job by clicking Jobs tab. A job status summary of all jobs will be displayed.
The most recently submitted job is displayed at the top. Click Info button next to each job to view a detailed status report.

[image: Monitoring a job]
Figure. Monitoring a job

Job Termination

The Jobs page also allows to terminate submitted jobs. To terminate a job, check the box at the end of the status summary of the job,
click Terminate selected jobs button at the end of the page. The termination of the selected jobs will be scheduled.
Depending on the current activity of each job, terminating one job may take longer than the other.

[image: Terminating a job]
Figure. Terminating a job

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Enduser Manual

Presets Management

The end-user can save the set of parameters values of a job as a preset.
Each preset must have a unique name. Using the unique preset name, the
end-user can retrieve, update and delete saved presets.

[image: Managing presets]
Figure. Managing presets

Adding Preset

	Fill the parameter values for the job you are about to submit

	Click + button next to the Preset Name drop down menu

	Enter a unique name for the new preset

	Click Add

Retrieving Preset

	Select the preset name from the Preset Name drop down menu. The
parameters on the submit job will be filled using parameters
values that are retrieved from the selected preset.

Updating Preset

	Select the preset name from the ‘Preset Name’ drop down menu.

	Change the value of parameters as needed

	Save your changes by clicking the save button next to the Preset Name drop down menu.

Deleting Preset

	Select the preset name from the Preset Name drop down menu.

	Click - button next to the ‘Preset Name’ drop down
menu. Then, confirmation box appears.

	Click OK to confirm.

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

Developer Manual

	Smart Connectors
	Stage

	The relationship between smart connectors and stages

	Creating a smart connector
	The Core Function

	Attaching resources and non-functional properties

	Registration

	Food for Thought

	Parameter Sweep
	External Parameter Sweep

	Internal Parameter Sweep

	Sweep Map
	Imapct of unknown parameters in a sweep map

	Payload

	Chiminey User Interface
	Constructing Smart Connector Input Fields
	Including domain-specific input fields

	Examples
	1. Quick Example: Random Number Smart Connector

	2. Word Count on Hadoop

	3. HRMCLite

	4. Hidden Reverse Monte Carlo Smart connector
	4.1. Hybrid Reverse Monte Carlo - Source Code Version 2.0 (Oct 2012)

	4.2. HRMC Core Function

	4.3. Attaching Resources and Non-functional properties

	4.4. Registering the HRMC SC
	4.4.1. Setup

	4.4.2. The Input Directory

	4.4.3. Complex Internal Sweeps

	4.4.4. Use of Iterations

	4.4.5. Complex Mytardis Interactions

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

Smart Connector: the core concept within Chiminey

A smart connector is the core concept within Chiminey that enables endusers to
perform complex computations on distributed computing facilities with minimal effort.
It uses the abstractions provided by Chiminey to define transparent automation and error handling of
complex computations on the cloud and traditional HPC infrastructure.

Stage

A stage is a unit of computation within Chiminey. Each stage hast at least the following elements:

	
	validation:

	Before the execution of a smart connector starts, the Chiminey server checks whether the constraints of all stages of the smart connector are met. This is done by invoking input_valid(self, ...) method of each stage of the smart connector.

	
	pre-condition:

	The Chiminey platform uses pre-conditions to determine the stage that should be executed next. The Chiminey platform invokes the method is_triggerred(self, ...) in order to check whether the pre-condition of a particular stage is met.

	
	action:

	This is the main functionality of a stage. Such functionality includes creating virtual machines, waiting for computations to complete, and the like. Once the Chiminey platform determines the next stage to execute, the server executes the stage via the process(self, ...) method.

	
	post-condition:

	This is where the new state of the smart connector job is written to a persistent storage upon the successful completion of a stage execution. During the execution of a stage, the state of a smart connector job changes. This change is saved via the output(self, ...) method.

The relationship between smart connectors and stages

A smart connector is composed of stages,
each stage with a unique functionality.
Following are the predefined stages that make up a smart connector (the predefined stages are located at chiminey/corestages):

	
	parent:

	Provides a handle to which all stages are within a smart connector are attached when a smart connector is registered within Chiminey. Contains methods that are needed by two or more stages.

	
	configure:

	Prepares scratch spaces, creates MyTardis experiments, ...

	
	create:

	Creates virtual machines on cloud-based infrastructure.

	
	bootstrap:

	Sets up the execution environment for the entire job, e.g. installs dependencies.

	
	schedule:

	Sets up the execution environment for individual task, and schedules tasks to available resources. A job is composed of one or more tasks. This stage is especially important when the job has more than one task.

	
	execute:

	Starts the execution of each task.

	
	wait:

	Checks whether a task is completed or not. Collects the output of completed tasks.

	
	transform:

	Prepares the input to the computation in the next iteration. Some smart connector jobs, for example Hybrid Reverse Monte Carlo simulations, have more than one iterations. When all tasks in the current iteration are completed and their corresponding output is collected, the transform stage prepares the input to the upcoming tasks in the next iteration.

	
	converge:

	Checks whether convergence is reached, where a job has more than one iteration. A convergence is assumed to be reached when either some criterion or the maximum number of iterations is reached.

	
	destroy:

	Terminates previously created virtual machines.

Creating a smart connector

Creating a smart connector involves completing three tasks:

	providing the core functionality of the smart connector,

	attaching resources and optional non-functional properties, and

	registering the new smart connector with the Chiminey platform.

Each of the three tasks is discussed below by creating an example smart connector. This smart connector generates a random number with a timestamp, and then writes the output to a file.

NB: Login to the Chiminey docker container.

	For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

	Login to the chiminey docker container:

$ cd docker-chiminey
$./chimineyterm

The Core Function

The core functionality of a smart connector is provided either via a payload or by overriding the run_task method of chiminey.corestages.execute.Execute class.
In this example, we use a minimal payload to provide the core functionality of this smart connector. Thus, we will prepare the following payload.

payload_randnum/
|--- process_payload
│ |--- main.sh

Below is the content of main.sh:

#!/bin/sh
OUTPUT_DIR=$1
echo $RANDOM > $OUTPUT_DIR/signed_randnum date > $OUTPUT_DIR/signed_randnum
--- EOF ---

Notice OUTPUT_DIR. This is the path to the output directory, and thus Chiminey expects all outputs to be redirected to that location.
The contents of OUTPUT_DIR will be transferred to the output location at the end of each computation.

Attaching resources and non-functional properties

Resources and non-functional properties are attached to a smart connector by overriding get_ui_schema_namespace method of chiminey.initialisation.coreinitial.CoreInitial class.
New domain-specific variables can be introduced via get_domain_specific_schemas method. In this example, we will need to attached a unix compute resource for the computation, and
a storage resource for the output location. However, we will not add a non-functional property.

Under chiminey/, we create a python package randnum, and add initialise.py with the following content

from chiminey.initialisation import CoreInitial
from django.conf import settings
class RandNumInitial(CoreInitial):
def get_ui_schema_namespace(self):
 schemas = [
 settings.INPUT_FIELDS[’unix’],
 settings.INPUT_FIELDS[’output_location’],
] return schemas
---EOF ---

NB: The list of available resources and non-functional properties is given by INPUT_FIELDS parameter in chiminey/settings_changeme.py

Registration

The final step is registering the smart connector with the Chiminey platform. The details of this smart connector will be added to the dictionary SMART CONNECTORS in chiminey/settings changeme.py.
The details include a unique name (with no spaces), a python path to RandNumInitial class, the description of the smart connector, and the absolute path to the payload.

"randnum": {
 "name": "randnum",
 "init": "chiminey.randnum.initialise.RandNumInitial",
 "description": "Randnum generator, with timestamp",
 "payload": "/opt/chiminey/current/payload_randnum"
},

Finally, restart the Chiminey platform and then activate randnum smart connector. You need to exit the docker container in order to restart:

$ exit
$ sh restart
$./activatesc randnum

Food for Thought

In the example above, we created a smart connector that generates a random number on a unix-based machines. Even though the random number generator a simple
smart connector, the tasks that are involved in creating a smart connector for complex programs is similar. If your program can be executed on a cloud, HPC cluster, hadoop cluster, then this program can be packaged as a smart connector. The huge benefit of using the Chiminey platform to run your program is you don’t need to worry about how to
manage the execution of your program on any of the provided compute resources.
You can run your program on different types of compute resources with minimal effort. For instance, to generate random on a cloud-based virtual machine, we need
to change only one word in get_ui_schema_namespace method. Replace unix by cloud. Then, restart Chiminey, and activate your cloud-based random number generator.

Check the various examples are given in this documentation. These examples discuss the different types of compute and storage resources, and non-functional properties like reliability and parameter sweep.

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

Parameter Sweep

The Chiminey platform provides two types of parameter sweeps:

	External parameter sweep

	Internal parameter sweep

External Parameter Sweep

External parameter sweep allows end-users to simultaneously submit and run multiple jobs.
The external sweep gives power to the end-users to provide a range of input values
for a set of parameters of their choice,
and the resulting set of jobs span all possible values from that parameter space.

The set of parameters are defined as part of input data preparation,
rather than being “hard-coded” to the definition of the smart connector.
This is done using templating language [https://docs.djangoproject.com/en/dev/ref/templates/api/].
Here are the steps:

	Identify the input files that contain the parameters of your choice.

	Surround each parameter name with double curly brackets. Suppose an input file entry is var1 15. Replace this line by {{var1}} 15; where 15 is the default value.

	Save each input file as filename_template.

The end-user provides the range of values of these parameters via a sweep map during job submission.

The common usecases for the external parameter sweep are to generate multiple results across one or more variation ranges
for later comparison, and to quickly perform experimental or ad-hoc variations on existing smart connectors.

Internal Parameter Sweep

Internal parameter sweep allows developers to create
a smart connector that spawns multiple independent tasks
during the smart connector’s job execution.
When a smart connector is created, the developer includes a set of parameters
that will determine the number of tasks spawned during the execution
of the smart connector.

The developer uses a sweep map to specify a range of
values for the selected set of parameters during a smart connector definition. This is done by
subclassing Parent, which is located at chiminey/corestages/parent.py, and
overwriting the method get_internal_sweep_map(self, ...) to include the new sweep map.
The default sweep map generates one task.

def get_internal_sweep_map(self, settings, **kwargs):
 rand_index = 42
 map = {'val': [1]}
 return map, rand_index

NB: A smart connector job that is composed of multiple tasks, due to an internal parameter sweep, is considered to be complete when
each task either finishes successfully or fails beyond recovery.

Sweep Map

	A sweep map is a JSON dictionary [http://www.json.org/] that is used to specify a range of values for a set of parameters.

	
	The key of the dictionary corresponds to a parameter name.

	The value of the dictionary is a list of possible values for that parameter.

Below is an example of a sweep map.

sweep_map = {"var1": [7,9], "var2": [42]}

The cross-product of the values of the parameters in a sweep map is used to determine the minimum [*]
number of tasks or jobs generated during job submission. The above sweep map, for example, generates

	two jobs if used for external parameter sweep, or

	two tasks per job if used for internal parameter sweep

Imapct of unknown parameters in a sweep map

An unknown parameter is a parameter that is not needed during the execution of a smart
connector. A known parameter, on the other hand, is a parameter whose value is needed
for the correct functioning of a smart connector.

Including an unknown parameter in a sweep map does not have
any ill-effect during execution. However,
this parameter causes an increase in the number of generated
tasks/jobs, provided that
the number of the values of the unknown parameter is more than one.

Suppose var1 and var2 are known parameters, and x is an unknown parameter of a specific
smart connector; and the sweep map is {"var1": [7,9], "var2": [42], "x": [1,2]}.

	If the sweep map is used for external parameter sweep, the number of jobs doubles due to the
inclusion of parameter x with two values. If the sweep map is used for internal sweep, the number of tasks
doubles as well. If the value of x is changed to [1,2,3], the number of jobs/tasks
triples, and so on.

The additional jobs or tasks waste computing, storage and network resources. However,
there are cases where such feature is useful.

	The end-user can use this feature to run jobs with identical inputs, and then compare
whether the jobs produce the same output.

	If each task has unpredictable output irrespective of other variables being constant,
the developer can use the feature to run many of these tasks per job, each task with different output.
For example, generating a random number without fixing the seed almost always guarantees a new number.

	[*]	The total number of tasks that are generated per job depends on the type of the smart connector. In addition to the sweep map, domain-specific variables or constraints play a role in determining the number of tasks per job.

See also

	External parameter sweep:

	
	Unix-based smart connector with external parameter sweep

	Internal parameter sweep:

	
	Cloud-based smart connector with internal parameter sweep

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

Payload

A payload is a set of system and optionally domain-specific files that are needed for the correct
execution of a smart connector. The system files are composed of bash scripts
while the domain-specific files are developer provided executables.
The system files enable the Chiminey platform to
setup the execution environment, execute domain-specific programs, and monitor the progress
of setup and execution.

NB: All smart connectors that are executed on a cloud and a cluster infrastructure must have a payload. However, smart connectors that are executed on unix servers do not need a payload unless the execution is asynchronous.

Below is the structure of a payload.

payload_name/
|--- bootstrap.sh
|--- process_payload
│ |--- main.sh
│ |--- schedule.sh
│ |--- domain-specific executable

The names of the files and the directories under payload_name, except the domain specific ones, cannot be changed.

	bootstrap.sh includes instructions to install packages, which are needed by the smart connector job, on the compute resource.

	schedule.sh is needed to add process-specific configurations. Some smart connectors spawn multiple processes to complete a single job. If each process needs to be configured differently, the instruction on how to configure each process should be recorded in schedule.sh.

	main.sh runs the core functionality of the smart connector, and writes the output to a file. Chiminey sends the path to input and output directories via command-line arguments:

the first argument for input and the second for output. The smart connector developer can read inputs from the input directory, and redirect outputs of the job to the output directory.
Upon the completion of the smart connector job, Chiminey will transfer the content of the output directory to the end-user’s designated location.

	domain-specific executables are additional files that may be needed by main.sh.

Not all smart connector jobs require new packages to be installed, process-level configuration or additional domain-specific executables. On such cases, the minimal payload, as shown below, can be used.

payload_name/
|--- process_payload
│ |--- main.sh

NB: Sample payloads are available under each example smart connector, at the Chiminey Github Repository [https://github.com/chiminey/chiminey/tree/master/chiminey/examples].

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

Chiminey User Interface

The Chiminey platform automatically generates a job submission web page for each smart connector.
However, this web page contains only a drop down menu of presets. The web page
will also
contain a parameter sweep
input field for smart connectors with a sweep feature.
Since these two input fields are not sufficient to submit a job,
the developer should specify the input fields that are needed to submit
a particular smart connector job.
This is done during the definition of the smart connector.

Within the Chiminey platform, there are various input field types, organised in groups like
compute resource variables, location variables and domain-specific variables.
The input fields, except the domain-specific ones, are provided via INPUT_FIELDS parameter in chiminey/settings_changeme.py.
The following table shows the list of input field types and their description.

	Input Field Type
	Description

	unix
	
Dropdown menu containing the registered

HPC compute resources.

	cloud
	
Dropdown menu of registered cloud resources,

number of VMs to be used for the job.

	hadoop
	
Dropdown menu of registered hadoop clusters.

	output_location
	
Dropdown menu of registered storage resources

(i.e. remote file system) with root path,

and a text field for specifying directories

under the root path.

	input_location
	
Same as output location.

	location
	
Input and output location.

	reliability
	
Set of fields to control the degree of the

provided fault tolerance support.

	mytardis
	
Set of fields to enable end users to curate

the input and output of their smart connector

job on MyTardis [http://mytardis.org].

	hrmclite
	
Domain-specific input fields needed

to run HRMCLite jobs.

	hrmc
	
Domain-specific input fields needed

to run HRMC jobs.

	wordcount
	
Domain-specific input fields needed to run

wordcount jobs.

Constructing Smart Connector Input Fields

Here, we see how to include the input fields that are needed for submitting a smart connector job.
When a smart connector is created, one of the tasks is attaching resources and non-functional properties via input field types.
This task is done by overriding get_ui_schema_namespace(self) of the CoreInitial class.
The CoreInitial class is available at chiminey/initialisation/coreinitial.

Suppose the new smart connector is cloud-based and writes its output to a unix server.
Therefore, the job submission page of this smart connector must include two input field types that
enables end-users to provide a)
a cloud-based compute resource and b) an output location. Suppose CloudSCInitial extends the CoreInitial class:

from chiminey.initialisation import CoreInitial
from django.conf import settings
class CloudSCInitial(CoreInitial):
def get_ui_schema_namespace(self):
 schemas = [
 settings.INPUT_FIELDS['cloud'],
 settings.INPUT_FIELDS['output_location'],
] return schemas

---EOF ---

Including domain-specific input fields

Input field types that are included within the Chiminey platform are generic and are included within the platform. However
domain-specific input fields must be defined when needed. A domain-specific input field type is provided by overriding get_domain_specific_schemas(self)
of the CoreInitial class. This method will return a list of two elements:

	The description of the input field type e.g. HRMCLite Smart Connector

	A dictionary whose keys are the names of domain-specific input fields, their values are dictionaries with the following keys:

	type: There are three types of input fields: numeric (models.ParameterName.NUMERIC), string (models.ParameterName.STRING), list of strings (models.ParameterName.STRLIST). numeric and string inputs have a text field while a list of strings has a drop-down menu. Enduser inputs are validated against the type of the input field.

	subtype: Subtypes are used for additional validations: numeric fields can be validated for containing whole and natural numbers.

	description: The label of the input field.

	choices: If the type is list of strings, the values of the dropdown menu is provided via choices.

	ranking: Ranking sets the ordering of input fields when the fields are displayed.

	initial: The default value of the field.

	help_text: The text displayed when a mouse hovers over the question mark next to the field.

Below are two examples of domain-specific input field types: wordcount and HRMCLite smart connector.

	WordCount smart connector input field type

def get_domain_specific_schemas(self):
 schema_data = [u'Word Count Smart Connector',
 {
 u'word_pattern': {'type': models.ParameterName.STRING,
 'subtype': 'string',
 'description': 'Word Pattern',
 'ranking': 0,
 'initial': "'[a-z.]+'",
 'help_text': 'Regular expression of filtered words'},
 }
]
 return schema_data

	HRMCLite smart connector input field type

def get_domain_specific_schemas(self):
 schema_data = [u'HRMCLite Smart Connector',
 {
 u'iseed': {'type': models.ParameterName.NUMERIC,
 'subtype': 'natural',
 'description': 'Random Number Seed',
 'ranking': 0,
 'initial': 42,
 'help_text': 'Initial seed for random numbers'},
 u'pottype': {'type': models.ParameterName.NUMERIC,
 'subtype': 'natural',
 'description': 'Pottype',
 'ranking': 10,
 'help_text': '',
 'initial': 1},
 u'error_threshold': {'type': models.ParameterName.STRING,
 'subtype': 'float',
 'description': 'Error Threshold',
 'ranking': 23,
 'initial': '0.03',
 'help_text': 'Delta for iteration convergence'},
 u'optimisation_scheme': {'type': models.ParameterName.STRLIST,
 'subtype': 'choicefield',
 'description': 'No. varying parameters',
 'ranking': 45,
 'choices': '[("MC","Monte Carlo"), ("MCSA", "Monte Carlo with Simulated Annealing")]',
 'initial': 'MC', 'help_text': '',
 'hidefield': 'http://rmit.edu.au/schemas/input/hrmc/fanout_per_kept_result',
 'hidecondition': '== "MCSA"'},
 u'fanout_per_kept_result': {'type': models.ParameterName.NUMERIC,
 'subtype': 'natural',
 'description': 'No. fanout kept per result',
 'initial': 1,
 'ranking': 52,
 'help_text': ''},
 u'threshold': {'type': models.ParameterName.STRING,
 'subtype': 'string',
 'description': 'No. results kept per iteration',
 'ranking': 60,
 'initial': '[1]',
 'help_text': 'Number of outputs to keep between iterations. eg. [2] would keep the top 2 results.'},
 u'max_iteration': {'type': models.ParameterName.NUMERIC,
 'subtype': 'whole',
 'description': 'Maximum no. iterations',
 'ranking': 72,
 'initial': 10,
 'help_text': 'Computation ends when either convergence or maximum iteration reached'},
 }
]

 return schema_data

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

Examples

Here, we use the following examples to show the different features of a smart connector
and how a smart connector is defined and registered within a Chiminey server.

	1. Quick Example: Random Number Smart Connector

	2. Word Count on Hadoop

	3. HRMCLite

	4. Hidden Reverse Monte Carlo Smart connector

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

 	Examples

1. Quick Example: Random Number Smart Connector

In this example, we create a basic smart connector that generates two
random numbers on a unix machine, saves the numbers to a file, and then transfers the file
to a provided output location. The unix machine must have ssh service enabled.

This smart connector has already been discussed in section Creating a smart connector.

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

 	Examples

2. Word Count Smart Connector

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

 	Examples

3. HRMCLite Smart Connector

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Chiminey 1.00 documentation

 	Developer Manual

 	Examples

4. The Hybrid Reverse Monte Carlo (HRMC) Smart Connector

Note

This example is significantly more complicated than the previous examples. Therefore we describe here the unique features of this connector and invite the reader to read the source code for this connector in detail. It combines a number of features from the previous examples and uses the same overall architecture.

The Hybrid Reverse Monte Carlo Smart Connector, hereafter HRMC SC, is designed to run the implementation of
an HRMC simulation by George Opletal. The HRMC SC runs HRMC simulations on a cloud compute resource.
It reads inputs from a remote file system, and then writes output to a remote file system and a data curation service, i.e. MyTardis.
The HRMC SC enables end-users to control the degree of the provided fault tolerance support. Furthermore, this smart connector includes
a sweep functionality to enable end-users to simultaneously execute multiple HRMC jobs from a single submission.

The HRMC SC and related topics will be discussed as follows:

	HRMC source code

	The Core function

	Attaching resources and non-functional properties

	Registering the HRMC SC

4.1. Hybrid Reverse Monte Carlo - Source Code Version 2.0 (Oct 2012)

Code development by:

Dr. George Opletal

g.opletal@gmail.com

Applied Physics RMIT, Melbourne Australia.

Contributions to code development:

Dr. Brendan O’Malley

Dr. Tim Petersen

Published in:

	Opletal, T. C. Petersen, I. K. Snook, S. P. Russo, HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials, Com. Phys. Comm., 184(8), 1946-1957 (2013).

License: CPC License: http://cpc.cs.qub.ac.uk/licence/licence.html

4.2. HRMC Core Function

The core functionality of the HRMC SC is provided through a payload. The HRMC payload is similar to the following.

payload_hrmc/
|--- bootstrap.sh
|--- process_payload
│ |--- HRMC2.tar.gz
| |--- PSDCOde.tar.gz
│ |--- schedule.sh
│ |--- main.sh

The HRMC SC requires packages like dos2unix, fortran compiler. Thus, all the required dependancies are specified in bootstrap.sh.
The content of bootstrap.sh is as follows:

#!/bin/bash

 yum -y install dos2unix gcc-gfortran compat-libgfortran-41 gcc-gfortran.x86_64

The payload includes domain-specific executables, i.e. HRMC2.tar.gz and PSDCOde.tar.gz.
The schedule.sh of HRMC SC contains process-specific configurations. schedule.sh is responsible to extract
the executables for each HRMC process. Below shows the content of schedule.sh.

#!/bin/bash
version 2.0

INPUT_DIR=$1
OUTPUT_DIR=$2

tar --extract --gunzip --verbose --file=HRMC2.tar.gz
f95 HRMC2/hrmc.f90 -fno-align-commons -o HRMC

tar --extract --gunzip --verbose --file=PSDCode.tar.gz
gfortran PSDCode/PSD.f -o PSDCode/PSD

main.sh is the core of HRMC SC. Recall that Chiminey sends the path to input (``INPUT_DIR`) and output (OUTPUT_DIR) directories
via command-line arguments<payload>`. Here, the SC developer moves the HRMC executable, which was extracted by schedule.sh, to
the input directory. The SC developer changes its working directory to INPUT_DIR, run HRMC, and redirect the execution output
to OUTPUT_DIR. When HRMC is completed, the SC developer moves additional files to OUTPUT_DIR. As the
next major step, the SC developer runs the PSD executable, which was extracted by schedule.sh. Once the execution is
completed, the necessary files are moved to OUTPUT_DIR.

NB: Running HRMC and PSD takes a long time. However, the SC developer should not be concerned about this as Chiminey
will ensure that all tasks are run asynchronously.

#!/bin/bash
version 2.0

INPUT_DIR=$1
OUTPUT_DIR=$2

cp HRMC $INPUT_DIR/HRMC
cd $INPUT_DIR
./HRMC >& ../$OUTPUT_DIR/hrmc_output
cp input_bo.dat ../$OUTPUT_DIR/input_bo.dat
cp input_gr.dat ../$OUTPUT_DIR/input_gr.dat
cp input_sq.dat ../$OUTPUT_DIR/input_sq.dat
cp xyz_final.xyz ../$OUTPUT_DIR/xyz_final.xyz
cp HRMC.inp_template ../$OUTPUT_DIR/HRMC.inp_template
cp data_errors.dat ../$OUTPUT_DIR/data_errors.dat

cp -f xyz_final.xyz ../PSDCode/xyz_final.xyz
cd ../PSDCode; ./PSD >& ../$OUTPUT_DIR/psd_output
cp PSD_exp.dat ../$OUTPUT_DIR/
cp psd.dat ../$OUTPUT_DIR/

4.3. Attaching Resources and Non-functional properties

4.4. Registering the HRMC SC

4.4.1. Setup

As with the previous examples, we setup the new connector payload:

mkdir -p /var/chiminey/remotesys/my_payloads
cp -r /opt/chiminey/current/chiminey/examples/hrmc2/payload_hrmc /var/chiminey/remotesys/my_payloads/

Then register the new connector within chiminey:

sudo su bdphpc
cd /opt/chiminey/current
bin/django hrmc
Yes

This example is significantly more complicated than the previous random number examples. Therefore we describe here the unique features of this connector and invite the reader to read the source code for this connector in detail. It combines a number of features from the previous examples and uses the same overall architecture.

4.4.2. The Input Directory

As described earlier, each connector in Chiminey system can elect to specify a payload directory that is loaded to each VM for cloud execution. This payload is fixed for each type of connector.

However, if practice you would likely want to vary the behaviour of different runs of the same connector, to change the way a process is executed or perform exploratory analysis.

This is accomplished in Chiminey by the use of a special input directory. This is one of the most powerful features of a smart connector as it allows individual runs to be fully parameterised on the initial input environment and environment during execution.

Ideally the payload directory would contains source or code for the application, and the input directory would contain configuration or input files to that application.

The input directory is a remote filesystem location (like the output directory) defined and populated before execution, which contains files that will be loaded into the remote copy of the payload after it has been transferred to the cloud node, for every run. Furthermore the contents of input files in that directory can be varied at run time.

Any files within the input directory can be made into a template by adding the suffix _template to the filename. Then, this file is interpreted by the system as a Django template file.

Consider the application ``foo` has its source code in a payload, but requires a ``foo.inp``file containing configuraiton information. For example:

foo input file
iseed 10
range1 45
range2 54
fudgefactor 12

is an example input for one run. To parameterise this file you rename it to foo.inp_template and replace the values that need to vary with equivalent template tags:

foo input file
iseed {{iseed}}
range1 {{range1}}
range2 {{range2}}
fudgefactor 12

The actual values to be used are substituted at runtime by the system.
THe values can come from the external sweep map, the internal sweep map, domain-specific values in the submission page, and constant values set within the input directory.

For example, the iseed value may be an input field on the submission page, the range1 value may be predefined to be constant during all runs, and the range2 has to go between the values 50--52.

This parameterisation is performed using a values file, which is a special file at the top of the input directory. This JSON dictionary contains values to be instantiated into template files at run time. The values files included in the original input directory can contain constant values that would then apply generally to any connector using that input directory.

For this example, we the directory would include a file values containing:

{
 "range1": 45
}

Then initially, all runs of foo will include:

range1 45

in the foo.inp file

However, Chiminey also automatically populates the values directory with other key/value s representing the data typed into the job submission page form fields, the specific values from the sweep map for that run. All these values can be used in instantiation of the template files.

For this example, if at jobs submission time the user entered iseed as 10, and the sweep map values as {"range2": [50, 51]} then external sweep will produce multiple processes each with a values file across the range range2. For example:

{
 "iseed": 10
 "range1": 45,
 "range2": 50,

}

or:

{
 "iseed": 10
 "range1": 45,
 "range2": 51,
}

The foo.inp_template file is matched against the appropriate values file, to create the required input file. For example:

foo input file
iseed 10
range1 45
range2 50
fudgefactor 12

or:

foo input file
iseed 10
range1 45
range2 51
fudgefactor 12

Hence these are are the foo.inp files for each run.

The use case for such a connector:

	Prepare a payload containing all source code and instructions to compile as before.

	Prepare a remote input directory containing all the input files needed by the computation. If the contents of any of these files need to vary, then rename the files and add {{name}} directives to identify the points of variation. Names are:

	keys from the input schemas within the submission page.

	constant values for the whole computation.

	Optionally add a ./values file containing a JSON dictionary of mappings between variables and values. These entries are constant values for the whole computation.

	During execution, Chiminey will load up values files and propagate them in input and output directories, will put values corresponding to all input values, individual values from the space of sweep variables. These variables will be substituted into the template to make an original input file suitable for the actual execution.

In the HRMC connector, the HRMC.inp file is templated to allows substitution of values from both the job submission page and from the sweep variable. See input_hrmc/initial directory and the inluded HRMC.inp_template and values files.

4.4.3. Complex Internal Sweeps

The randnuminternalsweep connector defined a simple map in the parent stage that maps an input into two variations based on a variable var. While that value was not used in that example, we can see that if a input directory was used then each of the two variations would get different values for the var variable in the values file and could be used in any input template file.

For the HRMC smart connector, the mapping is significantly more complicated. In the
get_internal_sweep_map method of hrmcparent.py, the map is definedin stages using existing variables (in the values file), the values in the original form, plus new variables based on random numbers and on the current iteration of the calculation. Thus the number of processes and their starting variables can be specialised and context sensitive and then instantiated into template files for execution.

4.4.4. Use of Iterations

In the random numbers the standard behaviour was to execute stages sequentially from Configure through to Teardown. However, in the HRMC example, we support an run_setting variable system/id which allows a set of stages to be repeated multiple times and two new core stages, Transform and Converge. These stages are specialised in the HRMC example:

	After the results are generated during the execution phase, the HRMCTransform stages calculates a criterion value (the compute_psd_criterion method). The execution results are then prepared to become input for a next iteration (the process_outputs method)

	In the HRMCConverge stage, the new criterion value is then compared a previous iterations’ value and if the difference is less than a threshold, then the smart connector execution is stopped. Otherwise, the value system/id is incremented and the triggering state for the execution phase is created which causes these stages to be re-executed. Finally, to handle the situation where the criterion will diverges or is converging too slowly, the HRMCConverge stage also halts the computation is the system/id variable exceeds a fixed number of iterations.

See the hrmctransform.py and hrmcconverge.py modules for more details.

4.4.5. Complex Mytardis Interactions

The HRMC example, expands on the MyTardis experiment created in the randonnumber example.

As before the HRMCConverage defines a curate_data method, and the HRMCTransform and HRMCConverge define a curate_dataset method. However, the later methods are significantly more complicated than the previous example.

The mytardis/create_datadata method takes a function for the dataset_name as before, which has a more complicated implementation. However, this example also uses the dfile_extract_func argument which is a dict from datafile names to functions.
For all contained datafiles within the dataset, their names are matched to this dictionary, and when found, the associated function is executed with a file pointer to that files contents. The function then results the graph metadata required.

For example,
HRMCTransform includes as an argument for mytardis.create_dataset:

dfile_extract_func= {'psd.dat': extract_psd_func,
'PSD_exp.dat': extract_psdexp_func,
'data_grfinal.dat': extract_grfinal_func,
'input_gr.dat': extract_inputgr_func}

Here for any datafile in the new dataset named psd.dat chiminey will run:

def extract_psd_func(fp):
 res = []
 xs = []
 ys = []
 for i, line in enumerate(fp):
 columns = line.split()
 xs.append(float(columns[0]))
 ys.append(float(columns[1]))
 res = {"hrmcdfile/r1": xs, "hrmcdfile/g1": ys}
 return res

Here the function returns a directionry containing mappings to two lists of floats extracted from the datafile psd.dat. This value is then added as a metadata field attached to that datafile. For example:

graph_info {}
name hrmcdfile
value_dict {"hrmcdfile/r1": [10000.0, 20000.0, 30000.0, 40000.0, 50000.0, 60000.0, 70000.0, 80000.0, 90000.0, 100000.0, 10000.0, 20000.0], "hrmcdfile/g1": [21.399999999999999, 24.27, 27.27, 25.649999999999999, 22.91, 20.48, 18.649999999999999, 17.16, 16.34, 16.219999999999999, 15.91, 15.460000000000001]}
value_keys []

This can then be data to be used by the dataset level graph hrmcdset described in the dataset_paramset argument of the create_dataset method.

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Chiminey 1.00 documentation

API Reference

Chiminey Stage APIs

mytardis – MyTardis APIS

The MyTardis module provides functions that allow publishing Chiminey results to a connected MyTardis System, allowing the online storing, access and sharing capabilities of data and metadata.

Datastructures

paramset

Module Functions and Constants

Example:

def _get_exp_name_for_make(settings, url, path):
 return str(os.sep.join(path.split(os.sep)[-2:-1]))

 def _get_dataset_name_for_make(settings, url, path):
 return str(os.sep.join(path.split(os.sep)[-1:]))

 self.experiment_id = mytardis.create_dataset(
 settings=mytardis_settings,
 source_url=encoded_d_url,
 exp_id=self.experiment_id,
 exp_name=_get_exp_name_for_make,
 dataset_name=_get_dataset_name_for_make,
 experiment_paramset=[],
 dataset_paramset=[
 mytardis.create_paramset("remotemake/output", [])]
)

storage – Storage APIS

This package provides a file-like api for manipulating local and remote files and functions at locations specified by platform instances.

Datastructures

Module Functions and Constants

sshconnection – Manipulation of Remote Resources

Datastructures

ssh_client

Module Functions and Constants

compute – Execution Of Remote Commands

Using an open ssh_client connector from sshconnector, these commands execute commands remotely on the target server.

Datastructures

Module Functions and Constants

messages – Logging communication for Chiminey

This package, modelled off the django logging module, posts status messages for the BDP system. There are two classes of context for the user of this API:

	Within stage implementation, messages will be displayed within the status field in the job list UI.

	During job submission, messages will be displayed on the redirected page as a header banner.

Messages are processed by a separate high-priority queue in the celery configuration. Note that message delivery may be delayed due to celery priority or db exclusion on the appropriate context, so this function should not be used for real-time or urgent messages.

Datastructures

By convention, error messages are final messages in job execution to indicate fatal error (though job might be restarted via admin tool) and success is used to describe final successful execution of the job.

Module Functions and Constants

Send a msg at the required priority level, as per the django logging module.

Uses contextid field of settings to determine which running context to assign messages.

run_settings – Contextual Namespace for Chiminey

The current state of any BDP calculation is represented as a context model instance, with an associated run_settings instance. This run_setting serves as input, output and scratch symbol table for all job execution.

The contextual namespace is used for numerous purposes in the BDP, including:

	Input parameters for Directive submission UI dialog

	Single source of truth for building settings dicts for BDP API modules.

	Job execution state

	Diagnostics and visualisation of job progress

	Stage triggering and scheduling during directive execution

Conceptually run_settings is a set of parameter sets each of which is conformant to a predefined schemas, that are defined in the admin tool.

run_settings is a two-level dictionary, internally serialised to models as needed.

Datastructures

context

A two level dictionary made up of schema keys and values. Conceptually, this structure is equivalent to a two-level python dictionary, but should be accessed via the API below. For example,

{ http://acme.edu.au/schemas/stages : { “key”: id, “id”: 3} }

Keys are concatenation of schema namespace and name, for example:
http://acme.edu.au/schemas/stages/key

Module Functions and Constants

	
chiminey.runsettings.getval(context, key)

	Retrieves the current value of the key within the run setttings context.

	Parameters:	
	context – current context

	key – the key to search

	Raises:	SettingNotFoundException if the schema part of the key is not in the context

	Returns:	the value for the key

	
chiminey.runsettings.setval(context, key, value)

	Sets the value of the key within the run settings context.

	Parameters:	
	context – current context

	key – the key to search

	Throws:	runsettings.SettingNotFoundException if the schema part of key is not in the context.

	Throws:	runsettings.IncompatibleTypeException if the value is not compatible with the type of the key, according to the associated schema definition.

cloudconnection – Cloud Connection

Datastructures

Module Functions and Constants

corestages – Processing Steps in a directive

This is an abstract class that forms the interface for all directives, both smart connectors and utilties to provides steps in a calcuation.

Datastructures

Module Functions and Constants

simpleui – UI view members

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Chiminey 1.00 documentation

Index

 G
 | S

G

 	

 	getval() (in module chiminey.runsettings)

S

 	

 	setval() (in module chiminey.runsettings)

 Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

 _images/completed_randnumcloud.png
Jobs

JoblD <

217

214w

215

216

Directive

randnum_cloud

sweep_rand_nn_unix
?

rand_nn_unix

rand_nn_unix

Created

March 21,2014 4:41
p.m. (10 minutes ago)

March 19,2014 10:16
a.m. (2 days, 6 hours

ago)

March 19,2014 10:16
a.m. (2 days, é hours

ago)

March 19,2014 10:16
a.m. (2 days, é hours

ago)

Iteration: Curr
task

1: finished

0: sweep completed

1: finished

1: finished

Completed Job

State

Info

Info

Info

Info

_images/create_connector.png
Create Job unique name

Smart Connectors ran d nu m_i ntern a I_Sweep

RandNum Cloud

RandNum Unix Smart RandNum Internal Sweep
Connector

RandNum Internal
Sweep

description

Preset Name Most Recent Values — .n

Computation Platform

Computation Platform nectar_home v ©
Name

Cloud Resources

Number of VM 2 f) ©
instances
Minimum No. VMs 1 (2,
Locations
Output Location unix_home/output ©

_images/wordcount.png
wordcount
Counting words via Hadoop

Preset Name

Hadoop Cluster Resource

Compute Resource
Name

Input Location
Storage location
Relative path
Output Location
Storage location
Relative path

Word Count Smart Connector

Word Pattern

Most Recent Values (ilE -

myhadoop fo
stor/root/chiminey_home fo
oo

stor/root/chiminey_home fo
°

_images/create_randnumcloud.png
Create Job

Smart Connectors

RandNum Cloud

description

unique name

randnum’ cloud
RandNum Cloud

Preset Name

Computation Platform

Computation Platform
Name

Cloud Resources

Number of VM
instances

Minimum No. VMs

Locations

Qutput Location

Most Recent Values

nectar_home

unix_home/output

G ©

_images/monitor.png
Job 585 Created
Iteration: Current
JoblD < Directive Created task State
585 sweep_hrmc Feb. 25,2014 3:28 pm. jobstarted RUNNING Info
(a second ago)
584 sweep_hrmc Feb. 25,2014 3:28 p.m. jobstarted RUNNING Info
(a second ago)
582w sweep_hrmc Feb. 25,2014 3:28 p.m. 0: completed Info
(25 seconds ago)
583 hrmc Feb.25,2014 3:28 p.m. 1: configure RUNNING Info
(14 seconds ago)
579w sweep_random_numbe Feb.24,20145:31 p.m. 0:completed Info
r first (21 hours ago)
580 random_number _first Feb.24,2014 5:32 p.m. 1:waiting 1 processes Info
© (21 hours ago) (1 completed, O failed)
581 random_number_first Feb. 24,2014 5:32 pm. 1:waiting 1 processes Info
© (21 hours ago) (1 completed, O failed)
576w sweep_hrmc Feb.24,2014 11:53 0: completed Info
a.m. (1 day, 3 hours
ago)
577 hrmc Feb.24,2014 11:53 3: finished Info

a.m. (1 day, 3 hours
ago)

_images/cloud_register.png
Chiminey Register Compute Resource

HPC Analytics

("W Continuous Integration

Settings

Resourcetype Amazon EC2 sje

Account
Settings

Compute
Resource

Storage
Resource

Resourcename my_aws cloud

EC2AccessKey 123456

abcdEFGhijk

“Thnectar
‘The Bioscience Data Platform acknowledges funding from the

_images/login.png
e ()

Chiminey:

The Cloud and Cluster Computing Platform

‘énect.ar'

The Bioscience Data Platform acknowledees fundine fromthe 0 -0 o000 o0

changes.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

_images/terminate.png
Jobs

Iteration: Current
JoblID < Directive Created task State

563 random_number Feb.21,2014 4:28 pm. 1:waiting 1 processes Info LJ
(3 days, 22 hours ago) (1 completed, O failed)

560 random_number Feb.21,2014 4:11 p.m. 1:waiting 1 processes Info CJ
(3 days, 23 hours ago) (1 completed, O failed)

_images/preset.png
Create Job

Smart Connectors ra ndom_nu m ber

Random Number Smart Connector

Preset Name expl

Computation Platform

Computation Platform nectar_second vl ©
Name

_images/completed.png
Chiminey

Jobs

JoblD <

226
221w
222

223

logout

Create Job Jobs

Directive

randnum_internal_swe

ep

sweep_vasp_update

vasp

vasp

Created

April 3,2014 3:03 p.m.
(7 minutes ago)

March 24,2014 12:09
p.m. (1 week, 3 days
ago)

March 24,2014 12:09
p.m. (1 week, 3 days
ago)

March 24,2014 12:10
p.m. (1 week, 3 days

Iteration: Current
task

1: finished

0: sweep completed

1: finished

1: finished

Completed Job

State

Info

Info

Info

Info

types_of_input_form_fields.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

 Parameters of any smart connector fall into either of the following
input form field types: * Computation
platform * Cloud
resource * Location *
Reliability * MyTardis * Parameter
Sweep * Domain-specific

###Computation platform The names of previously registered computation

platforms (see Registering Computation
Platforms)
are populated into a drop down menu, labeled as Computation Platform
Name. The enduser selects the platform name that represent the
computation platform for the current job.

Cloud resource Cloud resource parameters enable the enduser to

specify the maximum and the minimum number of virtual machines (VMs)
that the Chiminey server can create for the current job. The maximum
number is used to bound the number of VMs created for the current job
while the minimum number is used to specify the smallest number of VMs
that are needed for the job. The Chiminey server will terminate the job
if the number of VMs that are created by the server is less than the
minimum number requirement. The default values of both parameters is
1.

Location A location is a storage platform path to/from which

files are transferred. There are input and output locations:

		Input location is a storage platform path from which the input
files of the current job are retrieved.

		Output location is a storage platform path to which the results of
the current job are transferred.

Location parameters are used to specify the input location and the
output location of the current job. A location is generally represented
as storage_platform_name/offset: storage_platform_name
represents the name of a previously registered storage platform, and
offset represents the location of the files relative to the root path
of the platform (see Registering Storage
Platform
for details about storage platform, in particular platform name and root
path).

For instance, a unix-based storage platform is registered with platform
name unix_home and root path /home/enduser.

		If the input location is unix_home/hrmc, then the input files are
located at unix_home platform under /home/enduser/hrmc
directory.

		If the input location is unix_home, then the input files are
located at unix_home platform under /home/enduser directory.

Reliability

Fault tolerance support is provided to each job. However, the enduser
can limit the degree of such support using the reliability parameters:
reschedule failed processes and maximum retries:

		Reschedule failed processes: The Chiminey server reschedule failed
processes. However, the enduser can choose to prevent the
rescheduling of failed processes. In cases where a job is composed of
a many processes, failure of some processes here and there may not
have a significant impact on the overall outcome of the job. On such
scenarios, the enduser may ignore failed processes. By doing this,
the job completes relatively quickly as no time is spent on executing
recovery measures, rescheduling the failed process, and waiting for
the failed process to complete.

		Maximum retries: The maximum number of times attempts to recover a
failed process before the process is flagged as failed beyond
recovery.

MyTardis The Chiminey server uses

MyTardis [https://github.com/mytardis/mytardis/] to curate the
output of a given job. The MyTardis parameters are therfore used to

		opt in to curation services, and

		specify the MyTardis instance to which the output of the job is sent
for curation. The names of previously registered MyTardis-based
storage platforms (see Registering Storage Platforms,
MyTardis)
are populated into a drop down menu, labeled as MyTardis Platform.

Parameter Sweep

Sweep allows end-users to simultaneously submit and run multiple jobs.
The sweep gives power to the end-users to provide range of input values
for parameters of their choice, and the resulting set of jobs span all
possible values from that parameter space. These ranges of parameters
are defined at job submission time, rather than being “hard-coded” to
the definition of the smart connector. The common usecases for this
feature are to generate multiple results across one or more variation
ranges for later comparison, and to quickly perform experimental or
ad-hoc variations on existing connectors.

Endusers specify the parameter(s) and their possible values through the
sweep parameter.

Domain-specific

Domain-specific parameters are needed to guide the execution of the core
functionality of a specific smart connector. Unlike the parameters
above, these parameters are unlikely to be shared among smart
connectors. For example, the reliability parameter maximum retries is
needed in all smart connectors to which reliability is incorporated;
however, the domain-specific parameter pottype is needed in HRMC smart
connector but not in the other existing smart connectors.

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

loginterm.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

 NB: Login to the Chiminey docker container.

		For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

		
		Login to the chiminey docker container::

		$./chimineyterm

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

randnummytardis.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

The MyTardis Random Number Smart Connector

In this example, we create a smart connector that uses the MyTardis data curation system.

In this example, we create a smart connector that generates a pair of random numbers on the cloud_.
This smart
connector creates a virtual machine (VM),
executes a number generator on the VM to produce two random numbers, transfers the file that contains the random numbers to a user-designated
location, and pushes the results into MyTardis for visualisation.

We call this smart connector the mytardis random number smart connector.

		The purpose of this example is to create a smart connector that executes programs on the cloud and sends execution results to the mytardis system.

		The source code for this example is available at chiminey/examples/randnummytardis.

		To add external parameter sweep to this smart connector, see quick example.

Requirements

		Installation and configuration of the Chiminey server on a virtual machine,
according to the Installation Guide.

		Registration of a cloud computation platform, which is where the core
functionality of a smart connector is executed within the Chiminey
UI (see registering Cloud Computation Platform).

		Registration of a storage platform, which is the destination of the
smart connector output within the Chiminey UI. As with other storage
platforms, the platform could be any unix server, again
including the Chiminey server itself (see registering Unix Storage Platform).

		Registration of a Mytardis storage platform, which is the destination of the smart
connector output within the Chiminey UI (see registering MyTardis Storage).

Creating the MyTardis Random Number Smart Connector

Here, we create the MyTardis random number smart connector.
For this, we need to carry out the following steps, in order:

		prepare a payload

		define the smart connector using the pre-defined core stages, and

		register the smart connector within Chiminey so it can be executed.

Preparing a Payload

We now discuss how to prepare a payload for the MyTardis random number smart connector.
This step is required because the computation platform of this smart connector is
a cloud infrastructure and all cloud-based smart connectors must include their domain-specific executables in a payload.

NB: The payload for the MyTardis random number smart connector is available at chiminey/examples/randnummytardis/payload_randnum.

		The Chiminey server expects payloads to be under LOCAL_FILESYS_ROOT_PATH, which is /var/chiminey/remotesys by default. A subdirectory can be created under LOCAL_FILESYS_ROOT_PATH to better organise payloads. On such occasions, the Chiminey server must be configured to point to the subdirectory. Let’s now create a subdirectory my_payloads, and then put payload_randnum under it.

mkdir -p /var/chiminey/remotesys/my_payloads
cp -r /opt/chiminey/current/chiminey/examples/randnummytardis/payload_randnum /var/chiminey/remotesys/my_payloads/

		As recommended in payload, payload_template is used as the starting point to prepare payload_randnum. In order to satisfy the requirements of this smart connector, start_running_process.sh will be changed.

		start_running_process.sh includes the logic for generating the random numbers.
As expected by the Chiminey server, the output of the program is redirected to
chiminey. Since this random generator is synchronous, the process ID is not saved. Here is the content
of start_running_process.sh:

#!/bin/sh
python -c 'import random; print random.random(); print random.random()' >& chiminey/rand

		process_running_done.sh remains the same because the random number generating program is synchronous.

		start_bootstrap.sh and bootstrap_done.sh remain the same. This is because the random number
generation depends only on python, and the included python in linux-based OS fulfills the requirement.

		start_process_schedule.sh and start_running_process.sh remain the same because there is
no process-level configuration requirement.

Customizing the Configure Stage

The customised configure stages, i.e., RandConfigure, is available at chiminey/examples/randnummytardis/randconfigure.py.

		RandConfigure subclasses the core execute stage Configure, which is located at chiminey/corestages/configure.py.
RandConfigure overwrites curate_data(self,) to include the code that generates an initial experiment in mytardis (it does nothing by default)

def curate_data(self, run_settings, output_location, experiment_id):
 '''
 Creates experiment in MyTardis
 '''
 # Loading MyTardis credentials
 bdp_username = getval(run_settings, '%s/bdp_userprofile/username' % SCHEMA_PREFIX)
 mytardis_url = getval(run_settings, '%s/input/mytardis/mytardis_platform' % SCHEMA_PREFIX)
 mytardis_settings = manage.get_platform_settings(mytardis_url, bdp_username)
 logger.debug("mytardis_settings=%s" % mytardis_settings)

 def _get_experiment_name(path):
 '''
 Return the name for MyTardis experiment
 e.g., if path='x/y/z', returns 'y/z'
 '''
 return str(os.sep.join(path.split(os.sep)[-2:]))

 # Creates new experiment if experiment_id=0
 # If experiment_id is non-zero, the experiment is updated
 experiment_id = mytardis.create_experiment(
 settings=mytardis_settings, # MyTardis credentials
 exp_id=experiment_id,
 expname=_get_experiment_name(output_location), # name of the experiment in MyTardis
 # metadata associated with the experiment
 # a list of parameter sets
 experiment_paramset=[
 # a new blank parameter set conforming to schema 'remotemake'
 mytardis.create_paramset("remotemake", []),
 # a graph parameter set
 mytardis.create_graph_paramset("expgraph", # name of schema
 name="randexp1", # unique graph name
 graph_info={"axes":["x", "y"], "legends":["Random points"]}, # information about the graph
 value_dict={}, # values to be used in parent graphs if appropriate
 value_keys=[["randdset/x", "randdset/y"]]), # values from datasets to produce points in the graph
])
 return experiment_id

The create_experiment command creates or updates and experiment in a mytardis platform. In this case, we either update the experiment with the experiment_id key, or creates a new experiment and returns in the new experiment_id.

The experiment takes an ``exp-name’ for the name of the experiment and optionally has the metadata that will be associated with the MyTardis experiment.

The experiment_paramset parameter is a list of parameter sets. A parameterset either:

		create_paramset
Creates a parameter set with an associated name and a specified set of parameter values (in this example useful for mytardis to indicate that the data in this experiment comes from a specific source).

		create_graph_paramset

Creates a parameter set with a special fixed format that allows mytardis to create graphs in its output.

Below is the content of the RandConfigure class:

import os
import logging
from chiminey.platform import manage
from chiminey.corestages import Configure
from chiminey import mytardis
from chiminey.runsettings import getval

logger = logging.getLogger(__name__)
SCHEMA_PREFIX = "http://rmit.edu.au/schemas"

class RandConfigure(Configure):
 '''
 Sets up output locations and credentials, MyTardis credentials,
 and creates experiment in MyTardis
 '''
 def curate_data(self, run_settings, output_location, experiment_id):
 '''
 Creates experiment in MyTardis
 '''
 # Loading MyTardis credentials
 bdp_username = getval(run_settings, '%s/bdp_userprofile/username' % SCHEMA_PREFIX)
 mytardis_url = getval(run_settings, '%s/input/mytardis/mytardis_platform' % SCHEMA_PREFIX)
 mytardis_settings = manage.get_platform_settings(mytardis_url, bdp_username)
 logger.debug("mytardis_settings=%s" % mytardis_settings)

 def _get_experiment_name(path):
 '''
 Return the name for MyTardis experiment
 e.g., if path='x/y/z', returns 'y/z'
 '''
 return str(os.sep.join(path.split(os.sep)[-2:]))

 # Creates new experiment if experiment_id=0
 # If experiment_id is non-zero, the experiment is updated
 experiment_id = mytardis.create_experiment(
 settings=mytardis_settings, # MyTardis credentials
 exp_id=experiment_id,
 expname=_get_experiment_name(output_location), # name of the experiment in MyTardis
 # metadata associated with the experiment
 # a list of parameter sets
 experiment_paramset=[
 # a new blank parameter set conforming to schema 'remotemake'
 mytardis.create_paramset("remotemake", []),
 # a graph parameter set
 mytardis.create_graph_paramset("expgraph", # name of schema
 name="randexp1", # unique graph name
 graph_info={"axes":["x", "y"], "legends":["Random points"]}, # information about the graph
 value_dict={}, # values to be used in parent graphs if appropriate
 value_keys=[["randdset/x", "randdset/y"]]), # values from datasets to produce points in the graph
])
 return experiment_id

Customizing the Transform Stage

The customised configure stages, i.e., RandTransform, is available at chiminey/examples/randnummytardis/randtransform.py.

		RandTransform subclasses the core transform stage transform, which is located at chiminey/corestages/transform.py.
RandTransform overwrites def curate_dataset(self,)
to include the code that generates an new dataset in an existing experiment in mytardis (it does nothing by default)

		It takes experiment_id as the parameter which is the experiment id created in the RandExecute Stage.

		After an initial preamble, the method traverses the directories of output to extract key data values from the datafiles (in this case the two random numbers from the rand file). These are then passed into the mytardis create_datset method:

experiment_id = mytardis.create_dataset(
 settings=all_settings, # MyTardis credentials
 source_url=process_output_url_with_cred,
 exp_id=experiment_id,
 dataset_name=_get_dataset_name, # the function that defines dataset name
 dataset_paramset=[
 # a new blank parameter set conforming to schema 'remotemake/output'
 mytardis.create_paramset("remotemake/output", []),
 mytardis.create_graph_paramset("dsetgraph", # name of schema
 name="randdset", # a unique dataset name
 graph_info={},
 value_dict={"randdset/x": x, "randdset/y": y}, # values to be used in experiment graphs
 value_keys=[]
),
]
)

As with create_experiment this method takes an existing experiment_id and takes a dataset_name, however this is a function not a string, as it must be called after the initial setup of the dataset is complete. Otherwise, as before, we use a set of dataset parameters, using the same methods, but we send the new x and y data points along as well to be interpreted by MyTardis.

Below is the content of the RandTransform class:

import os
import logging
from chiminey.corestages import Transform
from chiminey import mytardis
from chiminey import storage
from chiminey.runsettings import getval
from chiminey.storage import get_url_with_credentials

logger = logging.getLogger(__name__)
SCHEMA_PREFIX = "http://rmit.edu.au/schemas"
OUTPUT_FILE = "output"

class RandTransform(Transform):
 '''
 Curates dataset into existing MyTardis experiment
 '''
 def curate_dataset(self, run_settings, experiment_id,
 base_url, output_url, all_settings):
 '''
 Curates dataset
 '''
 # Retrieves process directories below the current output location
 iteration = int(getval(run_settings, '%s/system/id' % SCHEMA_PREFIX))
 output_prefix = '%s://%s@' % (all_settings['scheme'],
 all_settings['type'])
 current_output_url = "%s%s" % (output_prefix, os.path.join(os.path.join(
 base_url, "output_%s" % iteration)))
 (scheme, host, current_output_path, location, query_settings) = storage.parse_bdpurl(output_url)
 output_fsys = storage.get_filesystem(output_url)
 process_output_dirs, _ = output_fsys.listdir(current_output_path)

 # Curates a dataset with metadata per process
 for i, process_output_dir in enumerate(process_output_dirs):
 # Expand the process output directory and add credentials for access
 process_output_url = '/'.join([current_output_url, process_output_dir])
 process_output_url_with_cred = get_url_with_credentials(
 all_settings,
 process_output_url,
 is_relative_path=False)
 # Expand the process output file and add credentials for access
 output_file_url_with_cred = storage.get_url_with_credentials(
 all_settings, '/'.join([process_output_url, OUTPUT_FILE]),
 is_relative_path=False)
 try:
 output_content = storage.get_file(output_file_url_with_cred)
 val1, val2 = output_content.split()
 except (IndexError, IOError) as e:
 logger.warn(e)
 continue
 try:
 x = float(val1)
 y = float(val2)
 except (ValueError, IndexError) as e:
 logger.warn(e)
 continue

 # Returns the process id as MyTardis dataset name
 all_settings['graph_point_id'] = str(i)
 def _get_dataset_name(settings, url, path):
 return all_settings['graph_point_id']

 # Creates new dataset and adds to experiment
 # If experiment_id==0, creates new experiment
 experiment_id = mytardis.create_dataset(
 settings=all_settings, # MyTardis credentials
 source_url=process_output_url_with_cred,
 exp_id=experiment_id,
 dataset_name=_get_dataset_name, # the function that defines dataset name
 dataset_paramset=[
 # a new blank parameter set conforming to schema 'remotemake/output'
 mytardis.create_paramset("remotemake/output", []),
 mytardis.create_graph_paramset("dsetgraph", # name of schema
 name="randdset", # a unique dataset name
 graph_info={},
 value_dict={"randdset/x": x, "randdset/y": y}, # values to be used in experiment graphs
 value_keys=[]
),
]
)
 return experiment_id

Defining the MyTardis Random Number Smart Connector

The definition of this smart connector, i.e., RandNumMyTardisInitial, is available at chiminey/examples/randnummytardis/initialise.py.

		RandNumMyTardisInitial subclasses CoreInitial, which is located at chiminey/initialise/coreinitial.py.
RandNumMyTardisInitial overwrites get_updated_configure_params(self), get_updated_bootstrap_params(self), get_updated_transform_params(self) and get_ui_schema_namespace(self).

		get_updated_configure_params(self) configures a subclass of the Configure corestage for specifying initial experiments for mytardis.

		get_updated_bootstrap_params(self) updates settings to point the Chiminey server to the location of
the new payload. The location of any payload is given relative to LOCAL_FILESYS_ROOT_PATH. Since we previously copied payload_randnum to LOCAL_FILESYS_ROOT_PATH/my_payloads/payload_randnum, the location of the payload is my_payloads/payload_randnum.

		get_updated_transform_params(self) configures a subclass of the Transform corestage for specifying datasets for mytardis.

		The new get_ui_schema_namespace(self) contains four schema namespaces that represent four types
of input fields for specifying the name of a cloud-based computation platform, the maximum and minimum number of VMs
needed for the job, the name for the mytardis platform and an output location (see The Job Submission UI).

Below is the content of RandNumMyTardisInitial.

from chiminey.initialisation import CoreInitial

class RandNumMyTardisInitial(CoreInitial):
 def get_updated_configure_params(self):
 package = "chiminey.examples.randnummytardis.randconfigure.RandConfigure"
 settings = {
 u'http://rmit.edu.au/schemas/system':
 {
 u'random_numbers': 'file://127.0.0.1/randomnums.txt'
 },
 }
 return {'package': package, 'settings': settings}

 def get_updated_bootstrap_params(self):
 settings = {
 u'http://rmit.edu.au/schemas/stages/setup':
 {
 u'payload_source': 'local/payload_randnum',

 },
 }
 return {'settings': settings}

 def get_updated_transform_params(self):
 return {'package': "chiminey.examples.randnummytardis.randtransform.RandTransform"}

 def get_ui_schema_namespace(self):
 RMIT_SCHEMA = "http://rmit.edu.au/schemas"
 schemas = [
 RMIT_SCHEMA + "/input/system/compplatform/cloud",
 RMIT_SCHEMA + "/input/system/cloud",
 RMIT_SCHEMA + "/input/location/output",
 RMIT_SCHEMA + "/input/mytardis"
]
 return schemas

Registering the MyTardis Random Number Smart Connector within Chiminey

A smart connector can be registered within the Chiminey server in various ways. Here,
a Django management command [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/#management-commands-and-locales] is used.
chiminey/smartconnectorscheduler/management/commands/randnummytardis.py contains the Django management command for registering the cloud
random number smart connector. Below is the full content.

from django.core.management.base import BaseCommand
from chiminey.smartconnectorscheduler import models
from chiminey.examples.randnummytardis.initialise import RandNumMyTardisInitial

logger = logging.getLogger(__name__)

MESSAGE = "This will add a new directive to the catalogue of available connectors. Are you sure [Yes/No]?"

class Command(BaseCommand):
 """
 Load up the initial state of the database (replaces use of
 fixtures). Assumes specific structure.
 """

 args = ''
 help = 'Setup an initial task structure.'

 def setup(self):
 confirm = raw_input(MESSAGE)
 if confirm != "Yes":
 print "action aborted by user"
 return

 directive = RandNumMyTardisInitial()
 directive.define_directive(
 'randnum_mytardis', description='RandNum MyTardis')
 print "done"

 def handle(self, *args, **options):
 self.setup()
 print "done"

		When registering a smart connector, a unique name must be provided. In this case, randnum_mytardis. If a smart connector exists with the same name, the command will be ignored.

		A short description is also needed. In this case, RandNum MyTardis. Both the unique name and the description will be displayed on the Chiminey UI.

		Execute the following commands on the Chiminey server terminal

sudo su bdphpc
cd /opt/chiminey/current
bin/django randnummytardis
Yes

		Visit your Chiminey web page; click Create Job. You should see RandNum MyTardis under Smart Connectors menu.

Testing the MyTardis Random Number Smart Connector

Now, test the correct definition and registration of the
MyTardis random number smart connector. For this, you will submit a MyTardis random number smart connector job,
monitor the job,
and view the output of the job.

Submit a MyTardis random number smart connector job

See Job Submission for details.

Monitor the progress of the job

See Job Monitoring for details.

View job output

When the job is completed, view the two generated random numbers

		Login to your storage platform

		Change directory to the root path of your storage platform

		The output is located under smart_connector_uniquenameJOBID, e.g. randnum_mytardis217

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

ref/views.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

views – View level functions and utilities

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

randnuminternalsweep.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

The Internal Sweep Random Number Smart Connector

In this example, we create a smart connector with an internal parameter sweep.
When this smart connector is executed, it spawns two tasks, each task generating a pair of random numbers.
We assume the computation platform for this connector to be a cloud-based infrastructure.
If two virtual machines (VMs) are available, each task will run on its own VM.
When both tasks complete execution, their output
will be transferred to a user-designated
location.
We call this smart connect the internal sweep random number smart connector.

		The purpose of this example is to create a smart connector with an internal parameter sweep.

		The source code for this example is available at chiminey/examples/randnuminternalsweep.

Requirements

		Installation and configuration of the Chiminey server on a virtual machine,
according to the Installation Guide.

		Registration of a cloud computation platform, which is where the core
functionality of a smart connector is executed within the Chiminey
UI (see registering Cloud Computation Platform).

		Registration of a storage platform, which is the destination of the
smart connector output within the Chiminey UI. As with other storage
platforms, the platform could be any unix server, again
including the Chiminey server itself (see registering Unix Storage Platform).

Creating the Internal Sweep Random Number Smart Connector

Here, we a create the internal sweep random number smart connector.
For this, we need to carry out the following steps, in order:

		customise the parent stage to update the sweep map,

		prepare a payload

		define the smart connector with the new
parent stage and the pre-defined core stages, and

		register the smart connector within Chiminey so it can be executed.

Customizing the Parent Stage

The customised parent stage, i.e., RandParent, is available at chiminey/examples/randnuminternalsweep/randparent.py.

		RandParent subclasses the core parent stage Parent,
which is located at chiminey/corestages/parent.py. RandParent overwrites
get_internal_sweep_map(self,) to
include a new sweep map; the cross-product of the values of the parameters in the new sweep map is two.

		Here is the new sweep map that enables the execution of two tasks within a single job submission, {'var': [1, 2]}.
var is an unknown parameter.

Below is the content of the RandParent class:

from chiminey.corestages import Parent

class RandParent(Parent):
 def get_internal_sweep_map(self, settings, **kwargs):
 rand_index = 42
 map = {'var': [1, 2]}
 return map, rand_index

Preparing a Payload

We now discuss how to prepare a payload for the internal sweep random number smart connector.
This step is required because the computation platform of this smart connector is
a cloud infrastructure and all cloud-based smart connectors must include their domain-specific executables in a payload.

NB: The payload for the internal sweep random number smart connector is available at chiminey/examples/randnuminternalsweep/payload_randnum.

		The Chiminey server expects payloads to be under LOCAL_FILESYS_ROOT_PATH,
which is /var/chiminey/remotesys by default. A subdirectory can be created under LOCAL_FILESYS_ROOT_PATH
to better organise payloads. On such occasions,
the Chiminey server must be configured to point to the subdirectory.
Let’s now create a subdirectory my_payloads, and then put payload_randnum under it.

mkdir -p /var/chiminey/remotesys/my_payloads
cp -r /opt/chiminey/current/chiminey/examples/randnuminternalsweep/payload_randnum /var/chiminey/remotesys/my_payloads/

		As recommended in payload, payload_template is used as the starting point to prepare payload_randnum.
In order to satisfy the requirements of this smart connector, start_running_process.sh will be changed.

		start_running_process.sh includes the logic for generating the random numbers. As expected by the Chiminey server,
the output of the program is redirected to chiminey. Since this random generator is synchronous,
the process ID is not saved. Here is the content of start_running_process.sh:

#!/bin/sh
python -c 'import random; print random.random(); print random.random()' >& chiminey/rand

		process_running_done.sh remains the same because the random number generating program is synchronous.

		start_bootstrap.sh and bootstrap_done.sh remain the same. This is because the random number
generation depends only on python, and the included python in linux-based OS fulfills the requirement.

		start_process_schedule.sh and start_running_process.sh remain the same because there is no process-level
configuration requirement.

Defining the Internal Random Number Smart Connector

The definition of this smart connector, i.e., RandNumInternaSweepInitial, is available at chiminey/examples/randnuminternalsweep/initialise.py.

		RandNumInternaSweepInitial subclasses CoreInitial, which is located at chiminey/initialise/coreinitial.py.
RandNumInternaSweepInitial overwrites get_updated_parent_params(self), get_updated_bootstrap_params(self) and
get_ui_schema_namespace(self).

		In the previous step, the parent stage is customised. Therefore, get_updated_parent_params(self)
updates the package path to point to the customised parent stage class, which is
chiminey.examples.randnuminternalsweep.randparent.RandParent.

		get_updated_bootstrap_params(self) updates settings to point the Chiminey server to the location of the new payload.
The location of any payload is given relative to LOCAL_FILESYS_ROOT_PATH. Since we previously
copied payload_randnum to LOCAL_FILESYS_ROOT_PATH/my_payloads/payload_randnum, the location of the payload is
my_payloads/payload_randnum.

		The new get_ui_schema_namespace(self) contains three schema namespaces that represent three types of input fields
for specifying the name of a cloud-based computation platform, the maximum and minimum number of VMs needed for the job,
and an output location (see The Job Submission UI).

Below is the content of RandNumInternaSweepInitial.

from chiminey.initialisation import CoreInitial

class RandNumInternaSweepInitial(CoreInitial):
 def get_updated_parent_params(self):
 return {'package': "chiminey.examples.randnuminternalsweep.randparent.RandParent"}

 def get_updated_bootstrap_params(self):
 settings = {
 u'http://rmit.edu.au/schemas/stages/setup':
 {
 u'payload_source': 'my_payloads/payload_randnum',
 },
 }
 return {'settings': settings}

 def get_ui_schema_namespace(self):
 RMIT_SCHEMA = "http://rmit.edu.au/schemas"
 schemas = [
 RMIT_SCHEMA + "/input/system/compplatform/cloud",
 RMIT_SCHEMA + "/input/system/cloud",
 RMIT_SCHEMA + "/input/location/output",
]
 return schemas

Registering the Internal Sweep Random Number Smart Connector within Chiminey

A smart connector can be registered within the Chiminey server in various ways. Here,
a Django management command [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/#management-commands-and-locales] is used.
chiminey/smartconnectorscheduler/management/commands/randnuminternalsweep.py contains the Django management command for registering the
internal sweep
random number smart connector. Below is the full content.

from django.core.management.base import BaseCommand
from chiminey.examples.randnuminternalsweep.initialise import RandNumInternaSweepInitial

MESSAGE = "This will add a new directive to the catalogue of" \
 " available connectors. Are you sure [Yes/No]?"

class Command(BaseCommand):
 """
 Load up the initial state of the database (replaces use of
 fixtures). Assumes specific structure.
 """

 args = ''
 help = 'Setup an initial task structure.'

 def setup(self):
 confirm = raw_input(MESSAGE)
 if confirm != "Yes":
 print "action aborted by user"
 return

 directive = RandNumInternaSweepInitial()
 directive.define_directive(
 'randnum_internal_sweep', description='RandNum Internal Sweep')
 print "done"

 def handle(self, *args, **options):
 self.setup()
 print "done"

		When registering a smart connector, a unique name must be provided. In this case, randnum_internal_sweep.
If a smart connector exists with the same name, the command will be ignored.

		A short description is also needed. In this case, RandNum Internal Sweep.
Both the unique name and the description will be displayed on the Chiminey UI.

		Execute the following commands on the Chiminey server terminal.

sudo su bdphpc
cd /opt/chiminey/current
bin/django randnuminternalsweep
Yes

		Visit your Chiminey web page; click Create Job. You should see RandNum Internal Sweep under Smart Connectors menu.

[image: The Internal Sweep Random Number Smart Connector]
Figure. The Internal Sweep Random Number Smart Connector

Testing the Internal Sweep Random Number Smart Connector

Now, test the correct definition and registration of the
internal sweep random number smart connector. For this, you will submit
a cloud random number smart connector job,
monitor the job,
and view the output of the job.

Submit an internal sweep random number smart connector job

See Job Submission for details.

[image: An internal sweep random number smart connector job is submitted]
Figure. An internal sweep random number smart connector job is submitted

Monitor the progress of the job

See Job Monitoring for details.

NB: Since the two tasks are internal to the job, they are not shown on the monitoring page.

[image: An internal sweep random number smart connector job is completed]
Figure. An internal sweep random number smart connector job is completed

View job output

Since this smart connector has two internal tasks, there will be two sets of outputs when the job is completed.

		Login to your storage platform

		Change directory to the root path of your storage platform

		The output is located under smart_connector_uniquenameJOBID, e.g. randnum_internal_sweep226

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

usermanual.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

User Manual

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

_static/up.png

randnumcloud.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

The Cloud Random Number Smart Connector

In this example, we create a smart connector that generates a pair of random numbers on the cloud_.
This smart
connector creates a virtual machine (VM),
executes a number generator on the VM to produce two random numbers,
and then transfers the file that contains the random numbers to a user-designated
location.
We call this smart connector the cloud random number smart connector.

		The purpose of this example is to create a smart connector that executes programs on the cloud_.

		The source code for this example is available at chiminey/examples/randnumcloud.

		To add external parameter sweep to this smart connector, see quick example.

Requirements

		Installation and configuration of the Chiminey server on a virtual machine,
according to the Installation Guide.

		Registration of a cloud computation platform, which is where the core
functionality of a smart connector is executed within the Chiminey
UI (see registering Cloud Computation Platform).

		Registration of a storage platform, which is the destination of the
smart connector output within the Chiminey UI. As with other storage
platforms, the platform could be any unix server, again
including the Chiminey server itself (see registering Unix Storage Platform).

Creating the Cloud Random Number Smart Connector

Here, we a create the cloud random number smart connector.
For this, we need to carry out the following steps, in order:

		prepare a payload

		define the smart connector using the pre-defined core stages, and

		register the smart connector within Chiminey so it can be executed.

Preparing a Payload

We now discuss how to prepare a payload for the cloud random number smart connector.
This step is required because the computation platform of this smart connector is
a cloud infrastructure and all cloud-based smart connectors must include their domain-specific executables in a payload.

NB: The payload for the cloud random number smart connector is available at chiminey/examples/randnumcloud/payload_randnum.

		The Chiminey server expects payloads to be under LOCAL_FILESYS_ROOT_PATH, which is /var/chiminey/remotesys by default. A subdirectory can be created under LOCAL_FILESYS_ROOT_PATH to better organise payloads. On such occasions, the Chiminey server must be configured to point to the subdirectory. Let’s now create a subdirectory my_payloads, and then put payload_randnum under it.

mkdir -p /var/chiminey/remotesys/my_payloads
cp -r /opt/chiminey/current/chiminey/examples/randnumcloud/payload_randnum /var/chiminey/remotesys/my_payloads/

		As recommended in payload, payload_template is used as the starting point to prepare payload_randnum. In order to satisfy the requirements of this smart connector, start_running_process.sh will be changed.

		start_running_process.sh includes the logic for generating the random numbers.
As expected by the Chiminey server, the output of the program is redirected to
chiminey. Since this random generator is synchronous, the process ID is not saved. Here is the content
of start_running_process.sh:

#!/bin/sh
python -c 'import random; print random.random(); print random.random()' >& chiminey/rand

		process_running_done.sh remains the same because the random number generating program is synchronous.

		start_bootstrap.sh and bootstrap_done.sh remain the same. This is because the random number
generation depends only on python, and the included python in linux-based OS fulfills the requirement.

		start_process_schedule.sh and start_running_process.sh remain the same because there is
no process-level configuration requirement.

Defining the Cloud Random Number Smart Connector

The definition of this smart connector, i.e., RandNumCloudInitial, is available at chiminey/examples/randnumcloud/initialise.py.

		RandNumCloudInitial subclasses CoreInitial, which is located at chiminey/initialise/coreinitial.py.
RandNumCloudInitial overwrites get_updated_bootstrap_params(self) and get_ui_schema_namespace(self).

		get_updated_bootstrap_params(self) updates settings to point the Chiminey server to the location of
the new payload. The location of any payload is given relative to LOCAL_FILESYS_ROOT_PATH. Since we previously copied payload_randnum to LOCAL_FILESYS_ROOT_PATH/my_payloads/payload_randnum, the location of the payload is my_payloads/payload_randnum.

		The new get_ui_schema_namespace(self) contains three schema namespaces that represent three types
of input fields for specifying the name of a cloud-based computation platform, the maximum and minimum number of VMs
needed for the job, and an output location (see The Job Submission UI).

Below is the content of RandNumCloudInitial.

from chiminey.initialisation import CoreInitial

class RandNumCloudInitial(CoreInitial):
 def get_updated_bootstrap_params(self):
 settings = {
 u'http://rmit.edu.au/schemas/stages/setup':
 {
 u'payload_source': 'my_payloads/payload_randnum',
 },
 }
 return {'settings': settings}

 def get_ui_schema_namespace(self):
 RMIT_SCHEMA = "http://rmit.edu.au/schemas"
 schemas = [
 RMIT_SCHEMA + "/input/system/compplatform/cloud",
 RMIT_SCHEMA + "/input/system/cloud",
 RMIT_SCHEMA + "/input/location/output",
]
 return schemas

Registering the Cloud Random Number Smart Connector within Chiminey

A smart connector can be registered within the Chiminey server in various ways. Here,
a Django management command [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/#management-commands-and-locales] is used.
chiminey/smartconnectorscheduler/management/commands/randnumcloud.py contains the Django management command for registering the cloud
random number smart connector. Below is the full content.

from django.core.management.base import BaseCommand
from chiminey.examples.randnumcloud.initialise import RandNumCloudInitial

MESSAGE = "This will add a new directive to the catalogue of available connectors. Are you sure [Yes/No]?"

class Command(BaseCommand):
 """
 Load up the initial state of the database (replaces use of
 fixtures). Assumes specific structure.
 """

 args = ''
 help = 'Setup an initial task structure.'

 def setup(self):
 confirm = raw_input(MESSAGE)
 if confirm != "Yes":
 print "action aborted by user"
 return

 directive = RandNumCloudInitial()
 directive.define_directive(
 'randnum_cloud', description='RandNum Cloud')
 print "done"

 def handle(self, *args, **options):
 self.setup()
 print "done"

		When registering a smart connector, a unique name must be provided. In this case, randnum_cloud. If a smart connector exists with the same name, the command will be ignored.

		A short description is also needed. In this case, RandNum Cloud. Both the unique name and the description will be displayed on the Chiminey UI.

		Execute the following commands on the Chiminey server terminal

sudo su bdphpc
cd /opt/chiminey/current
bin/django randnumcloud
Yes

		Visit your Chiminey web page; click Create Job. You should see RandNum Cloud under Smart Connectors menu.

[image: The Cloud Random Number Smart Connector]
Figure. The Cloud Random Number Smart Connector

Testing the Cloud Random Number Smart Connector

Now, test the correct definition and registration of the
cloud random number smart connector. For this, you will submit a cloud random number smart connector job,
monitor the job,
and view the output of the job.

Submit a cloud random number smart connector job

See Job Submission for details.

[image: A cloud random number smart connector job is submitted]
Figure. A cloud random number smart connector job is submitted

Monitor the progress of the job

See Job Monitoring for details.

[image: A cloud random number smart connector job is completed]
Figure. A cloud random number smart connector job is completed

View job output

When the job is completed, view the two generated random numbers

		Login to your storage platform

		Change directory to the root path of your storage platform

		The output is located under smart_connector_uniquenameJOBID, e.g. randnum_cloud217

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

sc_create.html

 Navigation

 		
 index

 		Chiminey 1.00 documentation »

Creating a smart connector

Creating a smart connector involves completing three tasks:

		providing the core functionality of the smart connector,

		attaching resources and optional non-functional properties, and

		registering the new smart connector with the Chiminey platform.

Each tasks are discussed below by creating an example smart connector. This smart connector generates a random number with a timestamp, and then writes the output to a file.

NB: Login to the Chiminey docker container.

		For Mac OS X and Windows users, open Docker Quickstart Terminal. For linux-based OS users, login to your machine and open a terminal.

		Login to the chiminey docker container:

$ cd docker-chiminey
$./chimineyterm

The Core Function

The core functionality of a smart connector is provided either via a payload or by overriding the run_task method of chiminey.corestages.execute.Execute class.
In this example, we use a minimal payload to provide the core functionality of this smart connector. Thus, we will prepare the following payload.

payload_randnum/
|--- process_payload
│ |--- main.sh

Below is the content of main.sh:

#!/bin/sh
OUTPUT_DIR=$1
echo $RANDOM > $OUTPUT_DIR/signed_randnum date > $OUTPUT_DIR/signed_randnum
--- EOF ---

Notice OUTPUT_DIR. This is the path to the output directory, and thus Chiminey expects all outputs to be redirected to that location.
The contents of OUTPUT_DIR will be transferred to the output location at the end of each computation.

Attaching resources and non-functional properties

Resources and non-functional properties are attached to a smart connector by overriding get_ui_schema_namespace method of chiminey.initialisation.coreinitial.CoreInitial class.
New domain-specific variables can be introduced via get_domain_specific_schemas method. In this example, we will need to attached a unix compute resource for the computation, and
a storage resource for the output location. However, we will not add a non-functional property.

Under chiminey/, we create a python package randnum, and add initialise.py with the following content

from chiminey.initialisation import CoreInitial from django.conf import settings
class RandNumInitial(CoreInitial):
def get_ui_schema_namespace(self):
 schemas = [
 settings.INPUT_FIELDS[’unix’],
 settings.INPUT_FIELDS[’output_location’],
] return schemas
---EOF ---

Registration

The final step is registering the smart connector with the Chiminey platform. The details of this smart connector will be added to the dictionary SMART CONNECTORS in chiminey/settings changeme.py.
The details include a unique name (with no spaces), a python path to RandNumInitial class, the description of the smart connector, and the absolute path to the payload.

"randnum": {
 "name": "randnum",
 "init": "chiminey.randnum.initialise.RandNumInitial",
 "description": "Randnum generator, with timestamp",
 "payload": "/opt/chiminey/current/payload_randnum"
},

Finally, restart the Chiminey platform and then activate randnum smart connector. You need to exit the docker container and execute the following:

$ sh restart
$./activatesc randnum

		The list

		of available resources and non-functional properties is given by INPUT_FIELDS parameter in chiminey/settings_changeme.py

Various examples are given to show how a smart connector is created.

 © Copyright 2014, Ian Thomas, Iman Yusuf, Heinz Schmidt, Daniel Drumm, George Opletal.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_images/dockerengine.png
ece - docker-chiminey — bash — 124,

bash ec2-user@chiminey-tutorial:tmp.

docker is configured to use the default machine with IP 192.168.99.18
For help getting started, check out the docs at https://docs.docker.con

8031047 docker—chininey inans ||

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/hpc_register.png
Chiminey Register Compute Resource

Analytics Cloud ~ Continuous Integration

Settings

Resourcetype Cluster or Standalone Server § @

Account Resourcename my_hpc server)
Settings

Compute IPaddress or Hostname ~ 192.168.0.1
Resource

Storage

Username chimi
Resource

Password

<3 nects Show advanced options...

‘The Bioscienc

_static/comment-bright.png

_images/chimineyportal.png
Chiminey:

Connecting Scientists to HPC, Cloud and Big Data

nectar
‘The Bioscience Data Platform acknowledges funding from the 1= 147 project.

_images/mytardis_register.png
Chiminey Register Storage Resource

(29 L Remote File System

mytardis_uni

Settings

Resource name

Account
Settings
Compute
Resource

IPaddress or Hostname ~ 192.1680.5

Username

Storage
Resource

“Thnectar
‘The Bioscience Data Platform acknowledges funding from the

_images/rfs_register.png
m Register Storage Resource I

O MyTardis Remote File System
Settings =3

Resourcename school_mnt.)
Account 1P addressor Hostname ~ 192.168.0.5)
Settings

ST Username user [}
Resource

= -

‘Show advanced options...

-

i |

_images/submit_randnumcloud.png
Jobs

JoblD <

217
214w
215

216

Job 217 Created

New Job

Directive

randnum_cloud

sweep_rand_nn_unix
©

rand_nn_unix

rand_nn_unix

Created

March 21,2014 4:41
p.m. (now)

March 19,2014 10:16
a.m. (2 days, é hours
ago)

March 19,2014 10:16
a.m. (2 days, é hours
ago)

March 19,2014 10:16
a.m. (2 days, 6 hours

ago)

Iteration: Current
task

job started

0: sweep completed

1: finished

1: finished

State

RUNNING

Info

Info

Info

Info

_images/submit.png
Jobs

JoblD <

226
221w
222

223

Job 226 Created

New Job

Directive

randnum_internal_swe

ep

sweep_vasp_update

vasp

vasp

Created

April 3,2014 3:03 p.m.
(now)

March 24,2014 12:09
p.m. (1 week, 3 days
ago)

March 24,2014 12:09
p.m. (1 week, 3 days
ago)

March 24,2014 12:10
p.m. (1 week, 3 days
ago)

Iteration: Current
task State

job started RUNNING

0: sweep completed

1: finished

1: finished

Info

Info

Info

Info

_images/logout.png
Jobs

JoblD <

576w

+ 577

Directive

sweep_hrmc

hrmec

Iteration: Current
task State

0: completed

3: waiting 4 processes RUNNING
(O completed, O failed)

Info

Info

_images/analytics_register.png
Settings

Account
Settings

Compute
Resource

Storage
Resource

6 necter|

‘The Biosciencq

Register Compute Resource

HPC Cloud Continuous Integration
Resourcetype Hadoop MapReduce o
Resourcename my_hadoop server)
1P addressor Hostname ~ 192.168.05)
Username user]
Password
Hadoop home path

‘Show advanced options...

