

Welcome to Chicken Turtle Util’s documentation!

Chicken Turtle Util (CTU) is a Python utility library.

The API reference starts with an overview of all the features and then gets
down to the nitty gritty details of each of them. Most of the reference
provides examples. For a full overview of features see the module contents
overview of the API reference and the table of contents of the user guide (in
the sidebar) as they are complementary.

The API reference makes heavy use of a type language; for
example, to describe exactly what arguments can
be passed to a function.

Dependencies are grouped by module. For example, when using
chicken_turtle_util.data_frame, you should pip install
'chicken_turtle_util[data_frame]'. To install dependencies of all modules, use
pip install 'chicken_turtle_util[all]'. If you are not familiar with pip,
see pip’s quickstart guide [https://pip.pypa.io/en/stable/quickstart/].

While all features are documented and tested, the API is changed frequently.
When doing so, the major version [http://semver.org/spec/v2.0.0.html] is bumped and a changelog is kept
to help upgrade. Fixes will not be backported. It is recommended to pin the
major version in your setup.py, e.g. for 2.x.y:

install_requires = ['chicken_turtle_util==2.*', ...]

Contents:

	API reference
	Modules

	Module contents overview

	Python type language

	Developer documentation
	Project decisions

	Changelog
	4.1.1

	4.1.0

	v4.0.1

	v4.0.0

	v3.0.1

	v3.0.0

	v2.0.4

Indices and tables

	Index

	Module Index

	Search Page

API reference

See modules for a short description of each modules. For a full listing of the
contents of all modules, see the module contents overview.

The API reference makes heavy use of a type language; for
example, to describe exactly what arguments can
be passed to a function.

Modules

	algorithms
	

	asyncio
	Extensions to asyncio.

	click
	click utilities

	configuration
	

	data_frame
	

	debug
	

	dict
	

	exceptions
	Exception classes: UserException and InvalidOperationError.

	function
	Function manipulation, like functools.

	hashlib
	hashlib additions

	http
	HTTP utilities.

	inspect
	Similar to inspect module.

	iterable
	Utility functions for working with iterables.

	logging
	Logging utilities.

	multi_dict
	multi-dict utilities. Multi-dicts can map keys to multiple values.

	observable
	Observable collections.

	path
	Extensions to pathlib.

	pymysql
	

	series
	

	set
	Set utilities.

	sqlalchemy
	

	test
	Test utilities.

Module contents overview

algorithms

	multi_way_partitioning
	

	spread_points_in_hypercube
	

	toset_from_tosets
	

asyncio

	stubborn_gather
	Stubbornly wait for awaitables, despite some of them raising

click

	argument
	Like click.argument, but by default required=True

	assert_runs
	Invoke click command and assert it completes successfully

	option
	Like click.option, but by default show_default=True, required=True

	password_option
	Like click.option, but by default prompt=True, hide_input=True, show_default=False, required=True.

configuration

	ConfigurationLoader
	

data_frame

	assert_equals
	

	equals
	

	replace_na_with_none
	

	split_array_like
	

debug

	pretty_memory_info
	

dict

	pretty_print_head
	

	DefaultDict
	

	invert
	

	assign
	

exceptions

	exc_info
	Get exc_info tuple from exception

	UserException
	Exception with message to show the user.

	InvalidOperationError
	When an operation is illegal/invalid (in the current state), regardless of what arguments you throw at it.

function

	compose
	Compose functions

hashlib

	base85_digest
	Get base 85 encoded digest of hash

http

	download
	Download an HTTP resource to a file

inspect

	call_args
	Get function call arguments as a single dict

iterable

	sliding_window
	Iterate using a sliding window

	partition
	Split iterable into partitions

	is_sorted
	Get whether iterable is sorted ascendingly

	flatten
	Flatten shallowly zero or more times

logging

	configure
	Configure root logger to log INFO to stderr and DEBUG to log file.

	set_level
	Temporarily change log level of logger

multi_dict

	MultiDict
	A multi-dict view of a {hashable => {hashable}} dict.

observable

	Set
	Observable set

path

	assert_equals
	Assert 2 files are equal

	assert_mode
	Assert last 3 octal mode digits match given mode exactly

	chmod
	Change file mode bits

	hash
	Hash file or directory

	read
	Get file contents

	remove
	Remove file or directory (recursively), unless it’s missing

	write
	Create or overwrite file with contents

pymysql

	patch
	

series

	assert_equals
	

	equals
	

	invert
	

	split
	

set

	merge_by_overlap
	Of a list of sets, merge those that overlap, in place.

sqlalchemy

	log_sql
	

	pretty_sql
	

test

	assert_text_contains
	Assert long string contains given string

	assert_text_equals
	Assert long strings are equal

	assert_matches
	

	assert_search_matches
	

	temp_dir_cwd
	pytest fixture that sets current working directory to a temporary directory

chicken_turtle_util.asyncio

Extensions to asyncio.

Requires Python >=3.5

	stubborn_gather
	Stubbornly wait for awaitables, despite some of them raising

	
chicken_turtle_util.asyncio.stubborn_gather(*awaitables)

	Stubbornly wait for awaitables, despite some of them raising

Like a more stubborn version of asyncio.gather.

Continue until all awaitables have finished or have raised. If one or more
awaitables raise, a new Exception is raised with the traceback and message
of each exception as message. However, if all exceptions raised are
asyncio.CancelledError, asyncio.CancelledError is raised instead.

If cancelled, cancels the (futures associated with the) awaitables.

	Parameters:	awaitables : iterable(awaitable)

Awaitables to await

	Returns:	results :: (any, ...)

Return of each awaitable. The return of awaitables[i] is results[i].

chicken_turtle_util.click

click utilities

	argument
	Like click.argument, but by default required=True

	assert_runs
	Invoke click command and assert it completes successfully

	option
	Like click.option, but by default show_default=True, required=True

	password_option
	Like click.option, but by default prompt=True, hide_input=True, show_default=False, required=True.

	
chicken_turtle_util.click.assert_runs(*args, **kwargs)

	Invoke click command and assert it completes successfully

	Parameters:	*args, **kwargs

CliRunner.invoke arguments, excluding catch_exceptions

	Returns:	result : click.testing.Result

chicken_turtle_util.exceptions

Exception classes: UserException and InvalidOperationError.

If you miss the ability to pass args to any of these exceptions, note that you actually can. For example:

>>> ex = Exception(1, 2, 3)
>>> ex.args
(1, 2, 3)

You can only use positional arguments though.

	exc_info
	Get exc_info tuple from exception

	InvalidOperationError
	When an operation is illegal/invalid (in the current state), regardless of what arguments you throw at it.

	UserException
	Exception with message to show the user.

	
exception chicken_turtle_util.exceptions.InvalidOperationError

	When an operation is illegal/invalid (in the current state), regardless of
what arguments you throw at it.

An operation is a method/function call, the getting or setting of an attribute.

When the issue is with an argument, use ValueError, not this.

	
exception chicken_turtle_util.exceptions.UserException(message, *args)

	Exception with message to show the user.

	Parameters:	message : str

User-friendly message

chicken_turtle_util.function

Function manipulation, like functools. Contains only compose, compose functions.

	compose
	Compose functions

	
chicken_turtle_util.function.compose(*functions)

	Compose functions

Like the o operator in math.

	Parameters:	functions : collection(any -> any)

Collection of one or more functions to compose.

	Returns:	any -> any

Function composed of functions

	Raises:	ValueError

When len(functions) < 1

Examples

compose(f1, f2) is equivalent to f1 o f2, or to lambda x: f1(f2(x))

chicken_turtle_util.hashlib

hashlib additions

	base85_digest
	Get base 85 encoded digest of hash

	
chicken_turtle_util.hashlib.base85_digest(hash_)

	Get base 85 encoded digest of hash

	Parameters:	hash_ : hash

hashlib hash object. E.g. the return of hashlib.sha512()

	Returns:	str

base 85 encoded digest

chicken_turtle_util.http

HTTP utilities. Contains only download, download a http resource.

	download
	Download an HTTP resource to a file

	
chicken_turtle_util.http.download(url, destination)

	Download an HTTP resource to a file

	Parameters:	url : str

HTTP resource to download

destination : pathlib.Path

Location at which to store downloaded resource. If destination does
not exist, it’s assumed to be a file path. If destination exists and
is a file, it is overwritten. If destination exists and is a
directory, the file will be saved inside the directory with as name the
file name suggested by a server, if any, or the last part of the URL
otherwise (excluding query and fragment parts).

	Returns:	path : pathlib.Path

Path to the downloaded file.

name : str or None

File name suggested by the server or None if none was suggested.

chicken_turtle_util.inspect

Similar to inspect module. Contains only function call inspect utilities

	call_args
	Get function call arguments as a single dict

	
chicken_turtle_util.inspect.call_args(f, args=(), kwargs={})

	Get function call arguments as a single dict

	Parameters:	f : function

The function of the function call

args : iterable(any)

Arguments of the function call

kwargs : {str => any}

Keyword arguments of the function call

	Returns:	{arg_name :: str => arg_value :: any}

Dict of arguments including args, kwargs and any missing optional
arguments of f.

Examples

>>> def f(a=1, *my_args, k=None, **kwargs):
... pass
...
>>> call_args(f)
{'a': 1, 'k': None, '*args': ()}
>>> call_args(f, [3])
{'a': 3, 'k': None, '*args': ()}
>>> call_args(f, [3], dict(k='some'))
{'a': 3, 'k': 'some', '*args': ()}
>>> call_args(f, [3, 4])
{'a': 3, 'k': None, '*args': (4,)}
>>> call_args(f, dict(other='some'))
{'a': 1, 'k': None, 'other': 'some', '*args': ()}
>>> def g():
... pass
...
>>> call_args(g)
{}

chicken_turtle_util.iterable

Utility functions for working with iterables. sliding_window, ...

See also

itertools
more_itertools

	flatten
	Flatten shallowly zero or more times

	is_sorted
	Get whether iterable is sorted ascendingly

	partition
	Split iterable into partitions

	sliding_window
	Iterate using a sliding window

	
chicken_turtle_util.iterable.flatten(iterable, times=1)

	Flatten shallowly zero or more times

Does not flatten str and bytes. Order is stably maintained (i.e. no 2
items swap places, even if they’re equal).

	Parameters:	iterable : iterable(any) except str or bytes

Iterable to flatten. May be any iterable other than str or bytes. May have irregular depth.

times : int, optional

The number of times to flatten shallowly or, equivalently, the number of
levels of depth to remove. Should be 0 or more.

	Yields:	any

Items of iterable flattened to depth depth(iterable) - times

	Raises:	ValueError

If input is invalid.

Examples

>>> list(flatten([[2, 3], 1, [5, [7, 8]]]))
[2, 3, 1, 5, [7, 8]]

>>> list(flatten([[2, 3], 1, [5, [7, 8]]], times=2))
[2, 3, 1, 5, 7, 8]

>>> list(flatten([[2, 3], 1, [5, [7, 8]]], times=3))
[2, 3, 1, 5, 7, 8]

>>> flatten([iter([2, 3]), 1, [5, iter([7, 8])]])
iter([2, 3, 1, 5, iter([7, 8])])

>>> list(flatten([[2, 3], 1, [5, [7, 8]]], times=0))
[[2, 3], 1, [5, [7, 8]]]

	
chicken_turtle_util.iterable.is_sorted(iterable)

	Get whether iterable is sorted ascendingly

	Parameters:	iterable : iterable(comparable)

Iterable whose ordering to check

	Returns:	bool

Whether iterable is sorted

	
chicken_turtle_util.iterable.partition(iterable, key)

	Split iterable into partitions

	Parameters:	iterable : iterable(item :: any)

Iterable to split into partitions

key : (item :: any) -> (partition_id :: any)

Function that assigns an item of the iterable to a partition

	Returns:	partitioning : {(partition_id :: any)

Partitioning. Ordering of items is maintained within each partition.
I.e. each partition is a subsequence of iterable.

	
chicken_turtle_util.iterable.sliding_window(iterable, size=2)

	Iterate using a sliding window

	Parameters:	iterable : iterable(any)

Iterable to slide a window across

size : int, optional

Window size

	Yields:	(any, ...)

Iterator slices of size size, taken from start to end through the iterator.

	Raises:	ValueError

When ilen(iterable) < size or size < 1

See also

	more_itertools.chunked

	Divide iterable into (non-overlapping) chunks of given size

Examples

>>> list(sliding_window(range(4)))
[(0,1), (1,2), (2,3)]

>>> list(sliding_window(range(4), size=3))
[(0,1,2), (1,2,3)]

>>> list(sliding_window(range(1)))
[]

chicken_turtle_util.logging

Logging utilities.

	configure
	Configure root logger to log INFO to stderr and DEBUG to log file.

	set_level
	Temporarily change log level of logger

	
chicken_turtle_util.logging.configure(log_file)

	Configure root logger to log INFO to stderr and DEBUG to log file.

The log file is appended to. Stderr uses a terse format, while the log file
uses a verbose unambiguous format.

Root level is set to INFO.

	Parameters:	log_file : Path

File to log to

	Returns:	stderr_handler : logging.StreamHandler

Handler that logs to stderr

file_handler : logging.FileHandler

Handler that logs to log_file

	
chicken_turtle_util.logging.set_level(logger, level)

	Temporarily change log level of logger

	Parameters:	logger : str or Logger

Logger name

level

Log level to set

Examples

>>> with set_level('sqlalchemy.engine', logging.INFO):
... pass # sqlalchemy log level is set to INFO in this block

chicken_turtle_util.multi_dict

multi-dict utilities. Multi-dicts can map keys to multiple values.

A multi-dict (or multi map) is a dict that maps each key to one or more values.

	MultiDict
	A multi-dict view of a {hashable => {hashable}} dict.

	
class chicken_turtle_util.multi_dict.MultiDict(dict_)

	A multi-dict view of a {hashable => {hashable}} dict.

A light wrapper offering a few methods for working with multi-dicts.

	Parameters:	dict_ : {hashable => {hashable}}

Dict to access as a multi-dict

Notes

A multi-dict (or multi map) is a dict that maps each key to one or more values.

MultiDicts provided by other libraries tend to be more feature rich, while
this interface is far more conservative. Instead of wrapping, they provide
an interface that mixes regular and multi-dict access. Additionally, other
MultiDict‘s map keys to lists of values, allowing a key to map to the same
value multiple times.

chicken_turtle_util.observable

Observable collections. Only contains Set currently.

	Set
	Observable set

	
class chicken_turtle_util.observable.Set(*args, **kwargs)

	Observable set

chicken_turtle_util.path

Extensions to pathlib.

	assert_equals
	Assert 2 files are equal

	assert_mode
	Assert last 3 octal mode digits match given mode exactly

	chmod
	Change file mode bits

	hash
	Hash file or directory

	read
	Get file contents

	remove
	Remove file or directory (recursively), unless it’s missing

	write
	Create or overwrite file with contents

	
chicken_turtle_util.path.assert_mode(path, mode)

	Assert last 3 octal mode digits match given mode exactly

	Parameters:	path : pathlib.Path

Path whose mode to assert

mode : int

Expected mode

	
chicken_turtle_util.path.chmod(path, mode, operator='=', recursive=False)

	Change file mode bits

When recursively chmodding a directory, executable bits in mode are
ignored when applying to a regular file. E.g. chmod(path, mode=0o777,
recursive=True) would apply mode=0o666 to regular files.

Symlinks are ignored.

	Parameters:	path : Path

Path to chmod

mode : int

Mode bits to apply, e.g. 0o777.

operator : ‘+’ or ‘-‘ or ‘=’

How to apply the mode bits to the file. If ‘=’, assign mode, if ‘+’, add to current
mode, if ‘-‘, subtract from current mode.

recursive : bool

Whether to chmod recursively. If recursive, applies modes in a top-down
fashion, like the chmod command.

	
chicken_turtle_util.path.hash(path, hash_function=<built-in function openssl_sha512>)

	Hash file or directory

	Parameters:	path : pathlib.Path

File or directory to hash

hash_function : () -> hash

Function which returns hashlib hash objects

	Returns:	hash

hashlib hash object of file/directory contents. File/directory stat data
is ignored. The directory digest covers file/directory contents and
their location relative to the directory being digested. The directory
name itself is ignored.

	
chicken_turtle_util.path.read(path)

	Get file contents

	Parameters:	path : pathlib.Path

Path of file to read

	Returns:	str

File contents

	
chicken_turtle_util.path.remove(path, force=False)

	Remove file or directory (recursively), unless it’s missing

On NFS file systems, if a directory contains .nfs* temporary files
(sometimes created when deleting a file), it waits for them to go away.

	Parameters:	path : Path

Path to remove

force : bool

If True, will remove files and directories even if they are read-only
(as if first doing chmod -R +w)

	
chicken_turtle_util.path.write(path, contents, mode=None)

	Create or overwrite file with contents

Missing parent directories of path will be created.

	Parameters:	path : pathlib.Path

Path to file to write to

contents : str

Contents to write to file

mode : int or None

If set, also chmod file

chicken_turtle_util.set

Set utilities. Contains only merge_by_overlap, merges overlapping sets in place.

	merge_by_overlap
	Of a list of sets, merge those that overlap, in place.

	
chicken_turtle_util.set.merge_by_overlap(sets)

	Of a list of sets, merge those that overlap, in place.

The result isn’t necessarily a subsequence of the original sets.

	Parameters:	sets : [{any}]

Sets of which to merge those that overlap. Empty sets are ignored.

Notes

Implementation is based on this StackOverflow answer [http://stackoverflow.com/a/9453249/1031434]. It outperforms all
other algorithms in the thread (visited at dec 2015) on python3.4 using a
wide range of inputs.

Examples

>>> merge_by_overlap([{1,2}, set(), {2,3}, {4,5,6}, {6,7}])
[{1,2,3}, {4,5,6,7}]

chicken_turtle_util.test

Test utilities.

	assert_text_contains
	Assert long string contains given string

	assert_text_equals
	Assert long strings are equal

	assert_matches
	

	assert_search_matches
	

	temp_dir_cwd
	pytest fixture that sets current working directory to a temporary directory

	
chicken_turtle_util.test.temp_dir_cwd(tmpdir)

	pytest fixture that sets current working directory to a temporary directory

	
chicken_turtle_util.test.assert_text_contains(whole, part)

	Assert long string contains given string

	
chicken_turtle_util.test.assert_text_equals(actual, expected)

	Assert long strings are equal

	
chicken_turtle_util.test.assert_matches(actual, pattern, flags=0)

	

	
chicken_turtle_util.test.assert_search_matches(actual, pattern, flags=0)

	

Python type language

When documenting code, it is often necessary to refer to the type of an
argument or a return. Here, I introduce a language for doing so in a
semi-formal manner.

First off, I define these pseudo-types:

	iterable: something you can iterate over once (or more) using iter

	iterator: something you can call next on

	collection: something you can iterate over multiple times

I define the rest of the type language through examples:

pathlib.Path

Expects a pathlib.Path-like, i.e. anything that looks like a pathlib.Path
(duck typing [http://stackoverflow.com/a/4205163/1031434]) is allowed. None is not allowed.

exact(pathlib.Path)

Expects a Path or derived class instance, so no duck typing (and no None).

pathlib.Path or None

Expect a pathlib.Path-like or None. When None is allowed it must be
explicitly specified like this.

bool or int

Expect a boolean or an int.

{bool}

A set of booleans.

{any}

A set of anything.

{'apples' => bool, 'name' => str}

A dictionary with keys ‘apples’ and ‘name’ which respectively have a boolean
and a string as value. (Note that the : token is already used by Sphinx, and
-> is usually used for lambdas, so we use => instead).

dict(apples=bool, name=str)

Equivalent to the previous example.

Parameters

field : str
dict_ : {field => bool}

A dictionary with one key, specified by the value of field, another parameter (but can be any expression, e.g. a global).

{apples => bool, name => str}

Not equivalent to the apples dict earlier. apples and name are references to the value used as a key.

(bool,)

Tuple of a single bool.

[bool]

List of 0 or more booleans.

[(bool, bool)]

List of tuples of boolean pairs.

[(first :: bool, second :: bool)]

Equivalent type compared to the previous example, but you can more easily refer
to the first and second bool in your parameter description this way.

{item :: int}

Set of int. We can refer to the set elements as item.

iterable(bool)

Iterable of bool. Something you can call iter on.

iterator(bool)

Iterator of bool. Something you can call next on.

type_of(expression)

Type of expression, avoid when possible in order to be as specific as
possible.

Parameters

a : SomeType
b : type_of(a.nodes[0].key_function)

b has the type of the retrieved function.

(int, str, k=int) -> bool

Function that takes an int and a str as positional args, an int as keyword arg
named ‘k’ and returns a bool.

func :: int -> bool

Function that takes an int and returns a bool. We can refer to it as func.

Developer documentation

Documentation for developers/contributors of Chicken Turtle Util.

The project follows a simple project [http://python-project.readthedocs.io/en/1.1.1/simple.html] structure and associated workflow. Please
read its documentation [http://python-project.readthedocs.io/en/1.1.1/simple.html].

Project decisions

API design

If it’s a path, expect a pathlib.Path, not a str.

If extending a module from another project, e.g. pandas, use the same name
as the module. While a from pandas import * would allow the user to access
functions of the real pandas module through the extended module, we have no
control over additions to the real pandas, which could lead to name clashes
later on, so don’t.

Decorators and context managers should not be provided directly but should be
returned by a function. This avoids confusion over whether or not parentheses
should be used @f vs @f(), and parameters can easily be added in the
future.

If a module is a collection of instances of something, give it a plural name,
else make it singular. E.g. exceptions for a collection of Exception
classes, but function for a set of related functions operating on functions.

API implementation

Do not prefix imports with underscore. When importing things, they also are
exported, but help or Sphinx documentation will not include them and thus a
user should realise they should not be used. E.g. import numpy as np in
module.py can be accessed with module.np, but it isn’t mentioned in
help(module) or Sphinx documentation.

Changelog

Semantic versioning [http://semver.org/spec/v2.0.0.html] is used (starting with v3.0.0).

4.1.1

	Fixes:
	add missing keys to extras_require: hashlib, multi_dict,
test

4.1.0

	Backwards incompatible changes: None

	Enhancements/additions:
	click.assert_runs: pass on extra args to click’s invoke()

	path.chmod, path.remove: ignore disappearing children instead of
raising

	Add exceptions.exc_info: exc_info tuple as seen in function parameters
in the traceback standard module

	Add extras_require['all'] to setup.py: union of all extra
dependencies

	Fixes:
	path.chmod: do not follow symlinks

	iterable.flatten: removed debug prints: +, -

	Internal / implementation details:
	use simple project structure instead of Chicken Turtle Project

	pytest-catchlog instead of pytest-capturelog

	extras_require['dev']: test dependencies were missing

	test_http created existing_file in working dir instead of in test
dir

v4.0.1

	Fixed: README formatting error

v4.0.0

	Major:
	path.digest renamed to path.hash (and added hash_function parameter)

	renamed cli to click

	require Python 3.5 or newer

	Changed: asyncio.stubborn_gather:
	raise CancelledError if all its awaitables raised CancelledError.

	raise summary exception if any awaitable raises exception other than
CancelledError

	log exceptions, as soon as they are raised

	Minor:
	Added:
	click.assert_runs

	hashlib.base85_digest

	logging.configure

	path.assert_equals

	path.assert_mode

	test.assert_matches

	test.assert_search_matches

	test.assert_text_contains

	test.assert_text_equals

	Fixes:
	path.remove: raised when path.is_symlink() or contains a symlink

	path.digest/hash: directory hash collisions were more likely than necessary

	pymysql.patch: change was not picked up in recent pymysql versions

v3.0.1

	Fixed: README formatting error

v3.0.0

	Removed:
	cli.Context, cli.BasicsMixin, cli.DatabaseMixin,
cli.OutputDirectoryMixin

	pyqt module

	URL_MAX_LENGTH

	various module: Object, PATH_MAX_LENGTH

	Enhanced:
	data_frame.split_array_like: columns defaults to df.columns

	sqlalchemy.pretty_sql: much better formatting

	Added:
	algorithms.toset_from_tosets: Create totally ordered set (toset) from
tosets

	configuration.ConfigurationLoader: loads a single configuration from one
or more files directory according to XDG standards

	data_frame.assert_equals: Assert 2 data frames are equal

	data_frame.equals: Get whether 2 data frames are equal

	dict.assign: assign one dict to the other through mutations

	exceptions.InvalidOperationError: raise when an operation is
illegal/invalid, regardless of the arguments you throw at it (in the
current state).

	inspect.call_args: Get function call arguments as a single dict

	observable.Set: set which can be observed for changes

	path.chmod: change file or directory mode bits (optionally recursively)

	path.digest: Get SHA512 checksum of file or directory

	path.read: get file contents

	path.remove: remove file or directory (recursively), unless it’s missing

	path.write: create or overwrite file with contents

	series.assert_equals: Assert 2 series are equal

	series.equals: Get whether 2 series are equal

	series.split: Split values

	test.temp_dir_cwd: pytest fixture that sets current working directory to
a temporary directory

v2.0.4

No changelog

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chicken_turtle_util	

 	
 	
 chicken_turtle_util.asyncio	

 	
 	
 chicken_turtle_util.click	

 	
 	
 chicken_turtle_util.exceptions	

 	
 	
 chicken_turtle_util.function	

 	
 	
 chicken_turtle_util.hashlib	

 	
 	
 chicken_turtle_util.http	

 	
 	
 chicken_turtle_util.inspect	

 	
 	
 chicken_turtle_util.iterable	

 	
 	
 chicken_turtle_util.logging	

 	
 	
 chicken_turtle_util.multi_dict	

 	
 	
 chicken_turtle_util.observable	

 	
 	
 chicken_turtle_util.path	

 	
 	
 chicken_turtle_util.set	

 	
 	
 chicken_turtle_util.test	

Index

 A
 | B
 | C
 | D
 | F
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	assert_matches() (in module chicken_turtle_util.test)

 	assert_mode() (in module chicken_turtle_util.path)

 	assert_runs() (in module chicken_turtle_util.click)

 	
 	assert_search_matches() (in module chicken_turtle_util.test)

 	assert_text_contains() (in module chicken_turtle_util.test)

 	assert_text_equals() (in module chicken_turtle_util.test)

B

 	
 	base85_digest() (in module chicken_turtle_util.hashlib)

C

 	
 	call_args() (in module chicken_turtle_util.inspect)

 	chicken_turtle_util.asyncio (module)

 	chicken_turtle_util.click (module)

 	chicken_turtle_util.exceptions (module)

 	chicken_turtle_util.function (module)

 	chicken_turtle_util.hashlib (module)

 	chicken_turtle_util.http (module)

 	chicken_turtle_util.inspect (module)

 	chicken_turtle_util.iterable (module)

 	
 	chicken_turtle_util.logging (module)

 	chicken_turtle_util.multi_dict (module)

 	chicken_turtle_util.observable (module)

 	chicken_turtle_util.path (module)

 	chicken_turtle_util.set (module)

 	chicken_turtle_util.test (module)

 	chmod() (in module chicken_turtle_util.path)

 	compose() (in module chicken_turtle_util.function)

 	configure() (in module chicken_turtle_util.logging)

D

 	
 	download() (in module chicken_turtle_util.http)

F

 	
 	flatten() (in module chicken_turtle_util.iterable)

H

 	
 	hash() (in module chicken_turtle_util.path)

I

 	
 	InvalidOperationError

 	
 	is_sorted() (in module chicken_turtle_util.iterable)

M

 	
 	merge_by_overlap() (in module chicken_turtle_util.set)

 	
 	MultiDict (class in chicken_turtle_util.multi_dict)

P

 	
 	partition() (in module chicken_turtle_util.iterable)

R

 	
 	read() (in module chicken_turtle_util.path)

 	
 	remove() (in module chicken_turtle_util.path)

S

 	
 	Set (class in chicken_turtle_util.observable)

 	set_level() (in module chicken_turtle_util.logging)

 	
 	sliding_window() (in module chicken_turtle_util.iterable)

 	stubborn_gather() (in module chicken_turtle_util.asyncio)

T

 	
 	temp_dir_cwd() (in module chicken_turtle_util.test)

U

 	
 	UserException

W

 	
 	write() (in module chicken_turtle_util.path)

chicken_turtle_util.pymysql

	patch
	

chicken_turtle_util.dict

	assign
	

	DefaultDict
	

	invert
	

	pretty_print_head
	

chicken_turtle_util.data_frame

	assert_equals
	

	equals
	

	replace_na_with_none
	

	split_array_like
	

chicken_turtle_util.series

	assert_equals
	

	equals
	

	invert
	

	split
	

chicken_turtle_util.configuration

	ConfigurationLoader
	

chicken_turtle_util.sqlalchemy

	log_sql
	

	pretty_sql
	

chicken_turtle_util.debug

	pretty_memory_info
	

chicken_turtle_util.algorithms

	multi_way_partitioning
	

	spread_points_in_hypercube
	

	toset_from_tosets
	

 _static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to Chicken Turtle Util's documentation!

 		API reference

 		Modules

 		chicken_turtle_util.asyncio

 		chicken_turtle_util.click

 		chicken_turtle_util.exceptions

 		chicken_turtle_util.function

 		chicken_turtle_util.hashlib

 		chicken_turtle_util.http

 		chicken_turtle_util.inspect

 		chicken_turtle_util.iterable

 		chicken_turtle_util.logging

 		chicken_turtle_util.multi_dict

 		chicken_turtle_util.observable

 		chicken_turtle_util.path

 		chicken_turtle_util.set

 		chicken_turtle_util.test

 		Module contents overview

 		Python type language

 		Developer documentation

 		Project decisions

 		API design

 		API implementation

 		Changelog

 		4.1.1

 		4.1.0

 		v4.0.1

 		v4.0.0

 		v3.0.1

 		v3.0.0

 		v2.0.4

