

Chewbacca - A Toolkit for COI Analysis

Chewbacca is a bioinformatics toolkit for COI analysis, meshing commonly used programs together to create a framework for automated analysis.
Chewbacca currently supports the cleaning, assembly, demultiplexing, clustering, aligning, and Identification of COI data sequences.
Chewbacca also allows users to build OTU tables and offer some basic functionality to visualize their data.

Quick Start

	Grab the Docker image version x.x.x.

	In your docker shell:

$ docker load -it chewbacca_vx.x.x
$ docker run -it chewbacca_vx.x.x /bin/bash
cd ~/ARMS/testARMS
python ~/ARMS/src/ARMS/chewbacca.py --help

A complete example is available in:

$~/ARMS/test/commands.sh

This file describes the typical analysis steps.

FAQ

What is Chewbacca?

Chewbacca is a command line bioinformatics toolkit for COI analysis, meshing commonly used programs together to create a framework for automated analysis.
Chewbacca currently supports the cleaning, assembly, demultiplexing, clustering, Aligning, and Identification of COI data.
Chewbacca also allows users to build OTU tables, as well as basic functionality to visualize their data. Chewbacca is under active development.

What does it do?

Chewbacca is wrapper for a number functions required for handling COI data (see available Available Commands). It is conceptually similar to mothur and Qiime, but focuses on modularity and parallelism.

Who should use Chewbacca?

Anyone who need to analyze COI data (at any stage of processing) for abundance/distribution questions.

I have some fasta files. I need to clean them. Can you help?

Yes! Chewbacca comes with a ‘default’ set of steps that will take in raw reads (or reads at varying levels of assembly/cleaning) and give you back an OTU table and some nice graphs.

What makes Chewbacca Different?

	Chewbacca is a toolkit designed with run_parallel processing in mind. Chewbacca’s operations are as run_parallel as possible.

	Chewbacca is modular. Chewbacca’s subprograms are each designed to tackle one small problem. Odds are good that you’ll find some parts of the toolkit useful.

	Chewbacca remembers. Did you mess up in one of your steps? Chewbacca saves the output of each step to a directory, meaning you don’t have to start from scratch if you change part of your pipeline.

	With the constant addition of tools to hadle short read data, chewbacca is easily extensible. In fact, most commands are preconfigured with multiple options. For instance, clustering can be carried out using `crop https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042185/`_, `cd-hit http://weizhongli-lab.org/cd-hit/`_, v-search or `SWARM http://weizhongli-lab.org/cd-hit/`_.

Don’t like what you see?

Adding new processes/programs to Chewbacca is easy! Take a look at our Developer’s Guide. Alternatively, please contact us for any functionality suggestions.

Reference

	file_types

	Available Commands

	API

	Developer’s Guide

Index

 A
 | B
 | C
 | D
 | E
 | G
 | M
 | P
 | Q
 | R
 | U

A

 	
 	Annotate_OTU_Table_Command (class in otu.Annotate_OTU_Table_Command)

 	
 	Assemble_Command (class in assemble.Assemble_Command)

B

 	
 	Build_OTU_Table_Command (class in otu.Build_OTU_Table_Command)

C

 	
 	ChewbaccaCommand (class in classes.ChewbaccaCommand)

 	ChewbaccaProgram (class in classes.ChewbaccaProgram)

 	Clean_Adapters_Command (class in clean.Clean_Adapters_Command)

 	Clean_Deep_Command (class in clean.Clean_Deep_Command)

 	
 	Clean_Deep_Repair_Command (class in clean.Clean_Deep_Repair_Command)

 	Clean_Quality_Command (class in clean.Clean_Quality_Command)

 	Cluster_Command (class in cluster.Cluster_Command)

 	Convert_Fastq_Fasta_Command (class in util.Convert_Fastq_Fasta_Command)

D

 	
 	default_program (assemble.Assemble_Command.Assemble_Command attribute)

 	(clean.Clean_Adapters_Command.Clean_Adapters_Command attribute)

 	(clean.Clean_Deep_Command.Clean_Deep_Command attribute)

 	(clean.Clean_Deep_Repair_Command.Clean_Deep_Repair_Command attribute)

 	(clean.Clean_Quality_Command.Clean_Quality_Command attribute)

 	(demux.Demux_Barcode_Command.Demux_Barcode_Command attribute)

 	(demux.Demux_Name_Command.Demux_Name_Command attribute)

 	(dereplicate.Dereplicate_Command.Dereplicate_Command attribute)

 	
 	Demux_Barcode_Command (class in demux.Demux_Barcode_Command)

 	Demux_Name_Command (class in demux.Demux_Name_Command)

 	Dereplicate_Command (class in dereplicate.Dereplicate_Command)

E

 	
 	execute_command() (classes.ChewbaccaCommand.ChewbaccaCommand method)

 	
 	execute_program() (classes.ChewbaccaProgram.ChewbaccaProgram method)

G

 	
 	get_program() (classes.ChewbaccaCommand.ChewbaccaCommand method)

M

 	
 	Merge_Command (class in util.Merge_Command)

P

 	
 	Partition_Command (class in util.Partition_Command)

 	
 	ProgramRunner (class in classes.ProgramRunner)

Q

 	
 	Query_OTU_DB_Command (class in otu.Query_OTU_DB_Command)

 	
 	Query_OTU_Fasta_Command (class in otu.Query_OTU_Fasta_Command)

R

 	
 	Rename_Command (class in rename.Rename_Command)

 	
 	run() (classes.ProgramRunner.ProgramRunner method)

U

 	
 	Ungap_Command (class in util.Ungap_Command)

Developer’s Guide

Chewbacca Design Philosophies:

	
	Make everything parallel!

	The goal of Chewbacca is to be a high-throughput pipeline, capable of scaling from 1 to 1000 processors. As such, everything should be as parallel as possible. Run multiple processes! Run mulitple threads! Split files into chunks if you have to!

	
	Output goes in folders! (Keep the working directory clean)

	Every Chewbacca command should make an output folder. If that folder already exists, die. Don’t overwrite results. If a Command writes files that will be neeed downstream,
make a new folder for them (separately).
* *_aux folders are for files that we don’t need downstream, but someone might want to inspect.
* .groups files go in a *_groups directory
* .samples go in a *_samples directory

	Commands do one thing.

To make Chewbacca as useful as possible, keep the work units small. Do one thing (split, merge, cluster, dereplicate, etc.).

	Programs do all the work.

Commands represent high-level operations (cluster, dereplicate, rename). If you need to move a file, rename a file, parse a file, or whatever, do it within the program class (Program classes inherit from ChewbaccaProgram). side scripts and helpers are encouraged).

Chewbacca Design Pattern:

ChewbaccaCommands (classes/ChewbaccaCommand.py)

ChewbaccaCommands represent high-level commands like “cluster” (Cluster_Command), “partition” (Partition_Command), “dereplicate” (Dereplicate_Command), and know which programs are supported (ChewbaccaCommand.supported_programs), but otherwise oblivious as to HOW those programs operate (they do not know whether we are clustering CROP or vsearch).

ChewbaccaPrograms (classes/ChewbaccaPrograms.py)

ChewbaccaPrograms contain implementation-specific functionality required to complete a ChewbaccaCommand using a particular program. For example, Assemble_Program_Pear implements the functionality requried to complete the Assemble_Command using the program Pear.

ProgramRunner (classes/ProgramRunner.py)

ProgramRunner objects handle the execution of a command line program (like Pear). The class contains a dictionary of unformatted command line strings, into which arguments are inserted.

argparse

Chewbacca uses argparse to take in all command line options.

Chewbacca Naming Conventions:

	Command classes should end in “_Command”. Ex, assemble or cluster.

	
	Program classes should end in “<Command_Name>_Program_<X>”, where:

	
<Command_Name> is the name of the Command your program implements (conceptually, not programatically), and

<X> is the sub program name you’re using (mothur, Qiime, PEAR, etc), or ‘Chewbacca’ if you’re using a custom script.

Adding New Programs:

TODO: Add example for on how ot add a new program

	
	Add your command line invocation to ProgramRunner

	
	1.1. Add a ProgramRunnerProgram enum.

	This allows users to define paths to the executable.

	1.2. Add the executable path to ProgramRunner.program_paths.

	This provides a default path to the executable.

	1.3. Add a ProgramRunnerCommand enum.

	This exposes your command to the world.

	1.4. Add your command string to the ProgramRunner.commandTemplates dictionary

	This makes your command actually do something.

	
	Add a parser for your command.

	
	Add a subparser to the argparse object, and fill in the variables and help messages you’ll expose to users.

	NOTE: Make sure you include a -p ‘program’ flag for your parser if you have more than one program for that command

	
	Create a Command class.

	Copy one of the other Command classes and rename it with your new command!

	
	Create a Program class

	Create a program class and fill in implementation details (this is where your custom code goes).
The classes/Helpers module provides some useful functions for selecting, moving, and creating files and folders.
NOTE: If you create a multiprocessing.pool object, make sure you call classes/Helpers.cleanup_pool() on it.

	
	Add your new Program Class to your Command class.

	Add your Program class to the list of supported programs.
Choose a default Program for your Command (probably your new Program Class).

	
	Test it!

	Run chewbacca.py with your command name and see how it goes! Diagnose errors as appropriate.

File Types

Chewbacca uses several common file types and a couple of unique ones. Those are described below.

Fasta File

common extensions: .fa, .fasta, .FASTA

Read more here: https://en.wikipedia.org/wiki/FASTA_format

FastQ File

extensions: .fq, .fastq, .FASTQ

Read more here: https://en.wikipedia.org/wiki/FASTQ_format

Groups File

Common Extensions: .groups

Groups files are used by Chewbacca to keep track of groups, or clusters, of relatively similar sequences.
Group files are generated or updated after each dereplication or clustering step.
A Groups file consists of one or more lines in the following format:

GROUPID <tab> SequenceID (<space> SequenceID) ...

As an example:

Honolulu_site1_0_ID111 Honolulu_site1_0_ID111 Honolulu_site1_0_ID112 Honolulu_site1_0_ID113
Indonedia_site1_0_ID115 Indonedia_site1_0_ID115 Indonedia_site1_0_ID117
Philippines_site1_0_ID1 Philippines_site1_0_ID1 Philippines_site1_0_ID2

Notes:

	The GROUPID for a group/cluster is a representative sequence from that cluster. This means that a sequenceId will likely appear twice on a line (once as a GROUPID, and once in the sequence SequenceIds list).

	See the “naming conventions” section for more info on chewbacca sequence naming standards. SequenceId are created using the a combination of sameple name, file offset,and the sequential number
ex. Honolulu_site1_0_ID119.
- Hawaii_site1: This sequence is from the Hawaii_site1 sample.
- 0 file offset. When more than one sequence file is used, the files are annotated using different offesets. This makes it easy to track which sequences came from which file, which could potentially represent different sequencing runs, or other things of interest.

Samples File

Common Extensions: .samples

Samples files are used by Chewbacca to map sequence names to the the name of their respective sample names.
This file is generally written once, early on in the anylitical process, at the time of sequence renaming.
The primary purposes for writing this file are for annotation and construction of an OTU table at the end of the analysis.

A Samples file consists of one or more lines in the following format:

CC*SequenceID <tab> SampleID*

Example

Hawaii_site1_0_ID111 GUT_SAMPLE_21
Hawaii_site1_0_ID112 GUT_SAMPLE_21
Rodent_gutID113 GUT_SAMPLE_22
Rodent_noseID115 NOSE_SAMPLE_1
Rodent_stomachID115 STOMACH_SAMPLE_2

Note that more than one sample file is generated when sequences form asample are present in more than one files. In such case,
Each file is assigned the a different offet. Ex.: Rodent_gut_0.samples, Rodent_gut_1.samples, etc...

Barcodes file

Common Extensions: .barcodes, .txt

Barcodes files map the nucleotide prefixes used for multiplexing, to the samples they code for.

A Samples file consists of one or more lines in the following format:

<Sample_name> <tab> <barcode_sequence>

Example

BALI_site_1 agacgc
BALI_site_2 agtgta
Hawaii_site_1 actagc

Adapters file

Common Extensions: .adapters, .txt, .fa, .fasta

Adapters files are fasta files that contain the sequencing adapters.
An Adapters file should be paired with an RC Adapters file, and should contain the same number of entries as its paired RC Adapters file.

Example

>adapter1
GGWACWGGWTGAACWGTWTAYCCYCC
>adapter2
TANACYTCNGGRTGNCCRAARAAYCA

RC Adapters file

Common Extensions: .adapters, .txt, .fa, .fasta

RC Adapters files are fasta files that contain the Reverse-read adapters (Reverse-Complemented forward-read adapters) pyrosequencing adapters.
An RC Adapters file should be paired with an Adapters file, and should contain the same number of entries as its paired Adapters file.

Example

>adapter1_RC
TGRTTYTTYGGNCAYCCNGARGTNTA
>adapter2_RC
GGRGGRTAWACWGTTCAWCCWGTWCC

Tax file

Common Extensions: .tax, .out, .txt

Tax files are condensed versions of blast6 [http://www.drive5.com/usearch/manual/blast6out.html] output files,
detailing the match between a query sequence and a possible
identification. These files are generated by the :ref`id_OTU` command,
and ingested by the :ref`annotate_OTU` command.

Given the blast6 output format, a Tax file consists of one or more
lines in the following format:

<query> <tab> <target> <tab> <id> <tab> <alnlen> <tab> <qcov>

Example

BALI4606_0_ID1264_2 GBMAA1117-14 90.6 265 84.7 Animalia;Porifera;Demospongiae;Haplosclerida;Phloeodictyidae;;Calyx;Calyx podatypa
BALI4462_0_ID921_1 GBCI5234-15 98.8 258 82.4 Animalia;Cnidaria;Anthozoa;Alcyonacea;Xeniidae;;Xenia;Xenia sp. 1 CSM2014
BALI4673_0_ID837_1 KHA237-14 96.1 279 100.0 Animalia;Cnidaria;Anthozoa;Actiniaria;;;;

OTU Table

Common Extensions: .txt

OTU tables are commonly used in Biological surveys to list OTU abundances in different samples.

OTU tables consist of a header line in the following format:

OTU <tab> <Samplename1> <tab> <Samplename2> <tab> <Samplename3> ...

followed by one or more lines (one per OTU) in the follwing format:

<OTU_name> <tab> <Abundance at Samplename1> <tab> <Abundance at Samplename2> <tab> <Abundance at Samplename3>

Example

OTU Hawaii_site1 Indonesia_site2 ...
Rat_Gut_ID3 3 0 ...
Rat_Gut_ID25 1 1 ...

Mapping file

Common Extensions: .mapping, .txt

Mapping files are artifacts of renaming (via the Sequence Renaming
command), and map old sequence ids to new sequence ids. This allows
users to use shorter and meaningful sequence ids, while still having
access to the original sequence names.

A Mapping file consists of one or more lines in the following format:

<old_sequence_name> <tab> <new_sequence_name>

Example

M03292:26:000000000-AH6AG:1:1101:16896:1196 BALI4462_0_ID1
M03292:26:000000000-AH6AG:1:1101:12506:1361 BALI4462_0_ID2
M03292:26:000000000-AH6AG:1:1101:15278:1402 BALI4462_0_ID3
M03292:26:000000000-AH6AG:1:1101:16930:1429 BALI4462_0_ID4

Core Classes

ChewbaccaCommand

	
class classes.ChewbaccaCommand.ChewbaccaCommand(args_)

	Represents a portable, executable Command. ChewbaccaCommands have a list of supported_programs, a
default_program, and an args object (object with parameters as attributes). Chewbacca Commands read the
program attribute from the args object, and call the appropriate program (if supported), falling back to the
default if no match is found.

	
execute_command()

	Executes the command.

	Returns:	Results of execution.

	
get_program(program)

	Given a program name, searches for that Program in the list of supported_programs, and returns an instance
of that Program initalized with the parameter object. If not found, returns an instance of the default_program
initalized with the parameter object.

	Parameters:	program – String name of the desired program. This should match the .name attribute of a ChewbaccaProgram

	Returns:	An instance of a ChewbaccaProgram, initalized with the argparse object.

ChewbaccaProgram

	
class classes.ChewbaccaProgram.ChewbaccaProgram(args_)

	Represents a way of completing a ChewbaccaCommand using a particular program (with some combination of external
programs, and custom Chewbacca scripts. ChewbaccaPrograms are responsbile for carrying out their associated
ChewbaccaCommand. The name attribute denotes the primary external program used, e.g. “vsearch” if VSearch is
used, or “chewbacca” if a custom script is used.

	
execute_program()

	Completes the representative ChewbaccaCommand using the specified program.

ProgramRunner

	
class classes.ProgramRunner.ProgramRunner(program_, params, conditions_={}, custom_arg_string='', dryrun=False)

	A class to interact with external command line programs. The class contains a dictionary of formatted command strings for external programs. The class supports validation, sanitization, and debugging of user-supplied parameters.

	Attributes:

	self.DEFAULT_CONFIG_FILEPATH: The filepath to a config file containing user-specified overrides (such as file paths to exectuables.
self.program_paths: Specifies the default location of executables used in the commandTemplates dictionary.
self.commandTemplates: A dictionary mapping chewbacca commands to un-paramaterized command line strings. Used as templates for commands.

	
run()

	Validates conditions (or prints them for a verbose/dry run) and then executes the command.

API

	Core Classes
	ChewbaccaCommand

	ChewbaccaProgram

	ProgramRunner

	Available Commands
	Error Correction

	Assembling Sequences

	Demultiplexing by Barcode

	Demultiplexing by Name

	Sequence Renaming

	Adapter Removal

	Quality Cleaning

	File Conversion

	Dereplication

	File Splitting

	File Merging

	File Cleaning

	Deep Cleaning

	Deep Cleaning Repair

	Sequence Clustering

	OTU Table Construction

	OTU Identification

	OTU Annotation

Available Commands

Below is a list of the available Chewbacca commands.

preclean

Error Correction

Note: This functionality is still untested and can over correct legitimate variation
.. autoclass:: preclean.Preclean_Command.Preclean_Command

	members:	

Assembling Sequences

	
class assemble.Assemble_Command.Assemble_Command(args_)

	Assembles reads from two (forward and reverse) fastq files/directories. For a set of k forward read files, and k
reverse read files, return k assembled files. Matching forward and reverse files should be identically named,
except for a <forward>/<reverse> suffix that indicates the read orientation. The two suffix conventions below are supported. Choose ONE suffix style and stick to it! Mixed suffixes are not supported.

_forwards/_reverse
and
_R1/_R2

	Inputs:

	
	fastq file(s) with left reads

	fastq file(s) with right reads

	Outputs:

	
	fastq File(s) with assembled reads

	Notes:

	
	Choose ONE suffix style and stick to it! Mixed suffixes are not supported. e.g. Sample_100_forwards.fq and Sample_100_reverse.fq will be assembled into Sample_100_assembled.fq. Simmilarly, Sample_100_R1.fq and Sample_100_R2.fq will be assembled into Sample_100_assembled.fq. However, Sample_100_forwards.fq and Sample_100_R2.fq are not guaranteed to be matched.

	You can provide as many pairs of files as you wish as long as they follow exactly one of the above naming conventions. If a ‘name’ parameter is provided, it will be used as a filename (not path) prefix for all assembled sequence files.

Example

Assuming a forwards read file ‘Data_R1.fq’ and a reverse reads file ‘Data_R1.fq’,

./
 Data_R1.fq
 Data_R2.fq

$ python chewbacca.py assemble -n BALI -f Data_R1.fq -r Data_R2.fq -o rslt

rslt/
 BALI_DATA.assembled.fq

	
default_program

	alias of Assemble_Program_Pear

Demultiplexing by Barcode

	
class demux.Demux_Barcode_Command.Demux_Barcode_Command(args_)

	
	Given a set of files, each file is assigned a file offeset (value between sampleId and sequenceId). Each file is then split into separate child files where

	each file holds only sequences belonging to a single sample. These child files are named using the sample name
for the sequences it lists, and the file offset of the file it came from. Demuxing is based on the nucleotide
barcode prefixing each sequence.

	Inputs:

	
	One or more fasta/fastq files to demux.

	A single .barcodes file: A .barcodes.

	Outputs:

	
	<sample_name>_<file_id#>_ demux.<ext> file(s) - <fasta/fastq> files, containing all the sequences from file <file_id#>, which had a barcode corresponding to sample <sample_name>.

	unmatched_<file_id#>_ demux.<ext> file(s) - <fasta/fastq> files, containing sequences from file <file_id#>, whose barcode did not match any of those listed in the .barcodes file.

	Notes:

	
	The assignment of the offset to file should be treated as an arbitrary process and should not used for record keeping.

	Each input file will generate its own unmatched_* file (if applicable).

Example:

data/
 Data1.fasta:
 @Seq4
 AGACGCAAAAAA
 @Seq5
 AGTGTAAAAAAT

 Data2.fasta:
 @Seq6
 AGACGCAAAAAC
 @Seq7
 AGTGTAAAAAAG
 @Seq8
 CGTGTAAAAAAG
./
 Data.barcodes:
 SampleA AGACGC
 SampleB AGTGTA

$ python chewbacca.py demux_samples -i data/ -b Data.barcodes -o rslt

Here, we see that Data1.fasta was assigned ‘0’ as an offset, while Data2.fasta was assigned ‘1’ as an offset. Because both files had sequences from SampleA, the sequences from Data1.fasta were written to SampleA_0_demux.fastq, and those sequences from Data2.fasta were written to SampleA_1_demux.fastq. The same is true for SampleB.

rslt/
 SampleA_0_demux.fastq:
 @Seq4
 AGACGCAAAAAA

 SampleB_0_demux.fastq:
 @Seq5
 AGTGTAAAAAAT

 SampleA_1_demux.fastq:
 @Seq6
 AGACGCAAAAAC

 SampleB_1_demux.fastq:
 @Seq7
 AGTGTAAAAAAG

rslt_aux/
 unmatched_0_demux.fastq:
 @Seq8
 CGTGTAAAAAAG

	
default_program

	alias of Demux_Program_Fastx

Demultiplexing by Name

	
class demux.Demux_Name_Command.Demux_Name_Command(args_)

	
	Given a set of files, each file is assigned a file offset. Each file is then split into separate child files where

	each file holds only sequences belonging to a single sample. These child files are named using the sample name
for the sequences it lists, and the file offset of the file it came from. Demuxing is based on unique
sample names contained in sequence names.

	Inputs:

	
	One or more fasta/fastq files to demux. Sequences in these files should contain as a prefix the sample they came from. (This is untested)

	A single .barcodes file: A .barcodes, listing samples as they appear in sequence names, but actual barcode sequences can be made up. This command will only make use of barcode names.

	Outputs:

	
	<sample_name>_<offset>_ demux.<ext> file(s) - <fasta/fastq> files, containing all the sequences from file <file_id#>, which had a sequence name containing sample <sample_name>.

	unmatched_<offset>_ demux.<ext> file(s) - <fasta/fastq> files, containing sequences from file <file_id#>, whose barcode did not match any of those listed in the .barcodes file.

	Notes:

	
	The assignment of offset to file should be treated as an arbitrary process and should not used for record keeping.

	Each input file will generate its own unmatched_* file (if applicable).

Example:

data/
 Data1.fasta:
 @SampleA:001
 AAAAAAAAAAAA
 @SampleAA:002
 AAAAAAAAAAAT
 @SampleA1:003
 AAAAAAAAAAAC
 @Sample_B:001
 AAAAAAAAAAAG

 Data2.fasta:
 @SampleAA:001
 GAAAAAAAAAAA
 @SampleA:002
 TAAAAAAAAAAA
 @Seq8
 CAAAAAAAAAAA
./
 Data.barcodes:
 SampleA AAA
 SampleAA AAA
 Sample_B AAA

$ python chewbacca.py demux_names -i data/ -b Data.barcodes -o rslt

Here, we see that Data1.fasta was assigned ‘0’ as an offset, while Data2.fasta was assigned ‘1’ as an offset. Because both files had sequences from SampleA, the sequences from Data1.fasta were written to SampleA_0_demux.fastq, and those sequences from Data2.fasta were written to SampleA_1_demux.fastq. The same is true for SampleB.

rslt/
 SampleA_0_demux.fastq:
 @SampleA:001
 AAAAAAAAAAAA
 @SampleA1:003
 AAAAAAAAAAAC

 SampleAA_0_demux.fastq:
 @SampleAA:002
 AAAAAAAAAAAT

 SampleB_0_demux.fastq:
 @Sample_B:001
 AAAAAAAAAAAG

 SampleA_1_demux.fastq:
 @SampleA:002
 TAAAAAAAAAAA

 SampleAA_1_demux.fastq:
 @SampleAA:001
 GAAAAAAAAAAA

rslt_aux/
 unmatched_1_demux.fastq:
 @Seq8
 CGTGTAAAAAAG

	
default_program

	alias of Demux_Program_Chewbacca

Sequence Renaming

	
class rename.Rename_Command.Rename_Command(args_)

	Renames sequences in a file with their sampleID and a serial ID#. Useful for simplifying complex naming systems into human-readable sequence names. In order to ensure the correct sample names are preserved, it is reccomended that this command be run immediately after the Demux Command.

	Inputs:

	
	A single fasta/fastq file or a directory containing multiple fasta/fastq files.

	Outputs:

	
	_renamed.<ext> file - A <fasta/fastq> file with the renamed sequences.

	.samples file - A .samples.

	.mapping file - A .mapping.

	Notes:

	
	In order for the .samples file to correctly list the sample name of the sequences in a file, this command should be run immediately after the Demux Command.

	The –clip parameter tells Chewbacca that trailing _<offset numebr> (from the demuxing command) should not be considered part of the sample name when naming sequences. By default this is set to True, and should be fine. If you notice parts of your sample names getting clipped off in your .samples file, you should explicitly set this parameter to False.

	Each input file will have a corresponding .samples, .mapping, and _renamed file.

	The .samples file is needed by downstream Chewbacca processes (Building the OTU Table).

	The .mapping file is purely for user convenience and record-keeping.

Example:

SampleA_0.fasta:
 @M03292:26:000000000-AH6AG:1:1101:22127:1256
 AAAA
 @M03292:26:000000000-AH6AG:1:1101:22127:1257
 AAAT

$ python chewbacca.py rename -i SampleA_0.fasta -o rslt

rslt/SampleA_0_renamed.fasta:
 @SampleA_ID0
 AAAA
 @SampleA_ID1
 AAAT

rslt_samples/SampleA_0_renamed.samples:
 SampleA_ID0 SampleA
 SampleA_ID1 SampleA

rslt_aux/SampleA_0_renamed.mapping:
 M03292:26:000000000-AH6AG:1:1101:22127:1256 SampleA_ID0
 M03292:26:000000000-AH6AG:1:1101:22127:1257 SampleA_ID1

Adapter Removal

	
class clean.Clean_Adapters_Command.Clean_Adapters_Command(args_)

	Removes sequencing adapters (and preceeding barcodes) from sequences in input file(s). Sequences should be in
the following format:

<BARCODE><ADAPTER><SEQUENCE><RC_ADAPTER>.

Valid ADAPTER sequences, and their
reverse-complements (ADAPTER_RC) should be defined separately in a pair of fasta-formatted files. Sequences
passed to this command should have already been demultiplexed, as this process will remove the identifying
barcode sequences.

	Inputs:

	
	One or more fasta/fastq files to clean.

	A single .adapters file

	A single .adapters_RC file

	Outputs:

	
	<filename>_debarcoded.<ext> file(s) - <fasta/fastq> files, containing sequences with their leading adapters, trailing adapters, and barcodes removed.

	Notes:

	
	Be aware of the program-specific details around ‘N’ nucleotide characters.

Example:

Given Data_ID#1 with barcode=AGACGC:

./
 Data.fasta:
 @Data_ID#1
 AGACGCGGWACWGGWTGAACWGTWTAYCCYCCATCGATCGATCGTGRTTYTTYGGNCAYCCNGARGTNTA

 Data.adapters:
 >1
 GGWACWGGWTGAACWGTWTAYCCYCC

 Data.adaptersRC:
 >first
 TGRTTYTTYGGNCAYCCNGARGTNTA

$ python chewbacca.py trim_adapters -i Data.fasta -o rslt -a Data.adapters -arc Data.adapters_RC

rslt/
 Data_debarcoded.fastq:
 @Data_ID#1
 CATCGATCGATCG

	
default_program

	alias of Clean_Adapters_Program_Flexbar

Quality Cleaning

	
class clean.Clean_Quality_Command.Clean_Quality_Command(args_)

	Removes regions of low quality from fastq-formatted reads. These regions are likely sources of error, and would
be detrimental to other analytical processes. Input sequences to this command should have already been
demultiplexed, and had their barcodes/adapters removed. Otherwise, the partial removal of these markers would
leave behind invalid partial fragments that would be difficult to detect demux or trim form barcode.

	Inputs:

	
	One or more fastq files to clean.

	Outputs:

	
	<filename>_cleaned.fastq file(s) - Fastq files, containing sequences with areas of low quality removed.

	Notes:

	
	Be aware of the program-specific details around ‘N’ nucleotide characters.

	Be aware of the program-specific defaults for minimum surviving sequence lengths.

Example:

./
 Data.fasta:
 @Data_ID#1
 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCTTTACAG
 +
 !zz%%%zzzz

The command below asks Chewbacca to trim away any section of length 3 NT in Data_ID#1 that has quality lower than 20, keeping the longer of the remaining ends. If the remaining sequence at the end of this process is shorter than 15 NT, discard the whole sequence (these values are chosen for illustrative purposes).

$ python chewbacca.py clean_seqs -i Data.fasta -o rslt -m 15 -w 3 -q 20

Note that the ‘TTT’ subsequence has been cut, because its average quality (5) is less than the threshold (20). After this cut, the longest remaining subsequence (the subsequence to the left of the cut) was kept, and the shorter subsequence (to the right of the cut) was discarded. Because the final sequence is longer than 15NT, it is kept and written to the output file.

rslt/
 Data_cleaned.fastq:
 @Data_ID#1
 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
 +
 !zz

	
default_program

	alias of Clean_Quality_Program_Trimmomatic

File Conversion

	
class util.Convert_Fastq_Fasta_Command.Convert_Fastq_Fasta_Command(args_)

	Converts a Fastq-formatted file to a Fasta-formatted file. Useful for reducing data size and preparing for
fasta-only operations.

	Inputs:

	
	A fastq file or a director conataining multiple fastq files .

	Outputs:

	
	<filename>.fasta file(s) - Converted fasta files.

Example:

./
 Data.fastq:
 @Data_ID#1
 AGACGCGGWACWGGWTGAACWGTWTAYCCYCCATCGATCGATCGTGRTTYTTYGGNCAYCCNGARGTNTA

``$ python chewbacca.py trim_adapters -i Data.fasta -o rslt ``

rslt/
 Data.fasta:
 >Data_ID#1
 AGACGCGGWACWGGWTGAACWGTWTAYCCYCCATCGATCGATCGTGRTTYTTYGGNCAYCCNGARGTNTA

Dereplication

	
class dereplicate.Dereplicate_Command.Dereplicate_Command(args_)

	Dereplicates a fasta file by grouping identical reads together under one representative sequence. The
number of duplicate/seed sequences each representative sequence represents is given by a ‘replication count’ at
the end of
the sequence name in output fasta file. If a .groups file is provided, then previous replication counts will
be take in into account (e.g. Imagine a representative sequence X that represents 3 sequences. If X is found to be

identical to Y (no a seed for any other sequence) then the new cardinality, or replication count, of X becomes 4. Cardinality are denoted with a

suffix of ‘_K’ on the sequence name, where K is the cardinality for the group that sequence represents.

	Inputs:

	
	One or more fasta files to dereplicate.

	Optional: .groups - A list of representative names and the names of their seed sequences. You likely have one of these files if you’ve previously run a clustering or dereplication command.

	Outputs:

	
	_counts.fasta file - A fasta file with unique sequences and their replication counts.

	_derep:ref:.groups - A list of representative names and the names of their seed sequences.

	Notes:

	
	This command only dereplicates within each fasta file (not across all files). This means a sequence in one file will be unique within that file, but might exist in another file. To ensure sequences are uniqe across an entire dataset, merge all fasta files into one file, then dereplicate that fasta file. It the fasta files each have group files, then make sure you merge those as well.

	Each input file will generate a corresponding _count file.

	If an input .groups file is not provided, then each input fasta file will generate a new groups file named <file_name>_derep.groups. If an input .groups file IS provided, then a single groups file named ‘dereplicated_updated.groups’ will be generated.

	The output .groups file is needed by downstream Chewbacca processes (Dereplication, Clustering, Building the OTU Table).

	The order of sequence names in the *_counts.fasta and .groups file is arbitrary.

Example:

./
 Data.fasta
 >seq1
 AAA
 >seq2
 AAA
 >seq3
 AAAG
 >seq4_3
 AAAGT
 >seq7
 AAAGT

 test.groups
 seq4 seq4 seq5 seq6

In the above example, test.groups indicates that seq4 is a sequence that has previously been identified as a
representative (in some earlier round of clustering or dereplication).

$ python chewbacca.py dereplicate_fasta -i Data.fasta -o rslt -g test.groups

rslt/Data_counts.fasta:
 >seq4_4
 AAAGT
 >seq1_2
 AAA
 >seq3_1
 AAAG

rslt_groups_files/*.groups:
 seq3 seq3
 seq1 seq2 seq1
 seq4 seq7 seq6 seq5 seq4

Notice that Data_counts.fasta lists the unique sequences from Data.fasta, and their replication counts. Also
notice that seq4 had previous replication data (stored in the Data.groups file).

	
default_program

	alias of Dereplicate_Program_Vsearch

File Splitting

	
class util.Partition_Command.Partition_Command(args_)

	A utility command that partitions a fasta/fastq file into a set of files (of the same file format), with a user-specified (maximum) number of sequences per file. Allows users to partition a large file into segments, and perform discrete operations in run_parallel over those segments.

	Inputs:

	
	One or more fasta/fastq files to partition.

	C: An integer defining the maximum number of sequences per file

	Outputs:

	
	<filename>_part_<part_#>.<ext> file(s) - <fasta/fastq> files, with at most C sequences per file.

Example:

./
 Data.fq:
 @Data_ID1
 GATTTGGGG
 +
 !zzzzzzzzz
 @Data_ID2
 GATTTGGGG
 +
 !zzzzzzzzz
 @Data_ID3
 GATTTGGGG
 +
 !zzzzzzzzz

$ python chewbacca.py convert_fastq_to_fasta -i Data.fq -o rslt/

rslt/
 Data.fasta:
 @Data_ID1
 GATTTGGGG
 @Data_ID2
 GATTTGGGG
 @Data_ID3
 GATTTGGGG

File Merging

	
class util.Merge_Command.Merge_Command(args_)

	Concatenates multiple files into a single file. Useful for combining the results of a run_parallel operation, or when preparing for cross-sample derepication.

	Inputs:

	
	A set of files to merge.

	An <output_filename>.

	An <output_prefix>.

	Outputs:

	
	<output_filename>.<output_prefix> - A file consisting of all the input files concatenated together.

	Notes:

	
	The order of the content in the concatenated files is not guaranteed.

Example:

targets/
 Data.fq:
 @Data_ID1
 GATTTGGGG
 +
 !zzzzzzzzz

 Data2.fa:
 @Data_ID1
 GATTTGGGG

 Blah.txt
 Hello World!

$ python chewbacca.py merge_files -i targets/ -o rslt/ -f txt -n Merged

rslt/
 Merged.txt:
 Hello World!
 @Data_ID1
 GATTTGGGG
 +
 !zzzzzzzzz
 @Data_ID1
 GATTTGGGG

File Cleaning

	
class util.Ungap_Command.Ungap_Command(args_)

	Removes target characters from a fasta/fastq file. Useful for removing gap characters from sequence alignments.

	Inputs:

	
	One or more fasta/fastq files to clean.

	A string of one or more gap characters to remove.

	Outputs:

	
	*_cleaned.<ext> file - A <fasta/fastq> file with gap characters removed from its sequences.

Example:

Data.fasta:
 >seq1
 AAAAA.A*A-A

$ python chewbacca.py ungap_fasta -i Data.fasta -o rslt -f fasta -g ".*-"

rslt/Data.fasta:
 >seq1
 AAAAAAAA

Deep Cleaning

	
class clean.Clean_Deep_Command.Clean_Deep_Command(args_)

	Performs an intensive deep-cleaning of sequences to eliminate frameshifts, detect chimeras,
and determine sequence orientation. Input files to this command should first be dereplicated. Doing so will
reduce the total number of alignments required, and reduce computation time.

	Inputs:

	
	One or more fasta/fastq files to deep clean (nucleotide sequences).

	One reference fasta (nucleotide sequences).

	Outputs:

	
	*_AA - Amino Acid Alignment file, including reference sequences.

	*_log.csv - A log listing each input sequence, and deep cleaning results for each sequence.

	*_NT - Nucleotide Alignment file, including reference sequences.

	Notes:

	
	Sequences that do not meet quality cleaning standards are dropped.

	The output files contain reference sequences, and odd alignment characters. Both of these need to be removed by running the Clean_Deep_Repair Command.

Example:

Data.fasta
BIOCODE.fa

$ python chewbacca.py macseAlign -i Data.fasta -o rslt -d BIOCODE.fa

rslt/Data_AA
rslt/Data_NT
rslt/Data_log.csv

	
default_program

	alias of Clean_Deep_Program_Macse

Deep Cleaning Repair

	
class clean.Clean_Deep_Repair_Command.Clean_Deep_Repair_Command(args_)

	
	Cleans aligned files by removing gap characters and reference sequences from the file. Sequences passed to this

	command should have previously been aligned.

	Inputs:

	
	*_AA - Amino Acid Alignment file, including reference sequences.

	*_log.csv - A log listing each input sequence, and deep cleaning results for each sequence.

	*_NT - Nucleotide Alignment file, including reference sequences.

	Nucleotide reference fasta.

	* The original fasta files that were passed in to the Clean_Deep Command

	* The Nucleotide reference fasta that was passed to the Clean_Deep Command

	Outputs:

	
	*_MERGED.fasta - A clean fasta file with all the surviving sequences from deep cleaning.

	Notes:

	
	A single *_MERGED.fasta is generated regardless of the number of input files.

Example:

BIOCODE.fa

originalData/Data.fasta

input/
 Data_AA
 Data_NT
 Data_log.csv

$ python chewbacca.py -i input/ -o out/ -d BIOCODE.fa -s originalData/

out/
 MACSE_OUT_MERGED.fasta

	
default_program

	alias of Clean_Deep_Repair_Program_Macse

Sequence Clustering

	
class cluster.Cluster_Command.Cluster_Command(args_)

	Clusters a set of fasta files. This command generates a fasta file of unique sequences
(each representing a cluster) and a .groups file. This command also takes an optional .groups file containing
replication data from previous commands. If a .groups file is supplied, only one output .groups file is generated
(regardless of the number of inputs).

	Inputs:

	
	One or more fasta files to cluster.

	Optional: .groups - A list of representative names and the names of their seed sequences. You likely have one of these files if you’ve previously run a clustering or dereplication command.

	Outputs:

	
	*.fasta file - A fasta file with unique sequences and their replication counts.

	*.groups - A .groups

	Notes:

	
	The input fasta file(s) should have been dereplicated before clustering. * For a single experiment with multiple fasta files, it is best to merge all input fasta files, dereplicate them, then cluster the single merged and dereplicated fasta file. This provides the best OTU groupings.

Example:

./
 Data.fasta:
 >seq1_3
 AAAAAAAAAA
 >seq2_1
 ATAAAAAAAA
 >seq3_1
 TTTTTTTTTT
 >seq4_1
 TTTTTTATTT
 >seq5_1
 TTTTTTATCT

 Data.groups:
 seq1 seq6 seq1 seq7

$ python chewbacca.py cluster_seqs -i Data.fasta -o rslt -g Data.groups

rslt/
 Data_clustered_seeds.fasta:
 >seq1_4
 AAAAAAAAAA
 >seq3_3
 TTTTTTTTTT

rslt_groups_files/
 postcluster_updated.groups:
 seq3 seq3 seq5 seq4
 seq1 seq2 seq1 seq7 seq6

OTU Table Construction

	
class otu.Build_OTU_Table_Command.Build_OTU_Table_Command(args_)

	Builds an OTU table using a .groups, .samples, and .barcodes file. The OTU table shows OTU (group) abundance by
sample.

	Inputs:

	
	One or more .samples.

	One or more .barcodes.

	one or more .groups.

	Outputs:

	
	matrix.txt - A tab-delimited table mapping OTUs (groups) to their abundance in each sample.

	Notes:

	
	A sequence name may not appear in more than one group file (or more than one line in a gropus file for that matter!).

Example:

./
 test.barcodes
 Sample1 aaaaaa
 Sample2 aaaaat
 Sample3 aaaaac
 Sample4 aaaaag

 test.groups
 seq3 seq3 seq5 seq4
 seq1 seq2 seq1 seq7 seq6

 test.samples
 seq1 Sample1
 seq2 Sample1
 seq3 Sample1
 seq4 Sample2
 seq5 Sample2
 seq6 Sample2
 seq7 Sample3

$ python chewbacca.py build_matrix -b test.barcodes -g test.groups -s test.samples -o rslt/

rslt/
 matrix.txt
 OTU Sample1 Sample2 Sample3 Sample4
 seq3 1 2 0 0
 seq1 2 1 1 0

OTU Identification

	
class otu.Query_OTU_DB_Command.Query_OTU_DB_Command(args_)

	Aligns sequences in a fasta file against those in a reference database in order to determine OTU identity.

Only alignment based identification using vsearch is currenty available

	Inputs:

	
	One or more fasta files containing sequences to identify.

	A curated fasta file of high quality sequences and known species.

	A database containing taxonomic identifiers for sequences in the curated fasta file.

	Outputs:

	
	A .tax.

	Notes:

	
	The files COI.fasta and ncbi.db are included in the Chewbacca Docker distributions.

Example:

~/ARMS/refs/

 COI.fasta # A precompiled fasta file of COI data from NCBI.
 >94483305
 AGGACGGATCAGACGAAGAGGGGCGTTTGGTATTGGGTTATGGCAGGGGGTTTTATATTGATAATTGTTGTGATGAAATT
 GATGGCCCCTAAGATAGAGGAGACACCTGCTAGGTGTAAGGAGAAGATGGTTAGGTCTACGGAGGCTCCAGGGTGGGAGT

 ncbi.db # A precompiled database of (Taxa) for the entries in 'COI.fasta'.

data/
 Data.fasta:
 >seq1
 GAATAGGTGTTGGTATAGAATGGGGTCTCCTCCTCCGGCGGGGTCGAAGAAGGTGGTGTTGAGGTTGCGGTCTGTTAGTAGTATAGTGATGCCAGCAG
 CTAGGACTGGGAGAGATAGGAGAAGTAGGACTGCTGTGATTAGGACGGATCAGACGAAGAGGGGCGTTTGGTATTGGGTTATGGCAGGGGGTTTTATA
 TTGATAATTGTTGTGAGGAAATTGATGGCCCCTAAGATAGAGGAGACACCTGCTAGGTGTAAGGAGAAGATGGTTAGGTCTACGGAGGCTCCAGGGTG
 GGAGTAGTTCCCTGCTAA

$ python chewbacca.py query_db -i Data.fasta -o out/ -r ~/ARMS/refs/COI.fasta -d ~/ARMS/refs/ncbi.db

rslt/
 Data_result.out
 seq1 94483305 99.4 173 55.4 Chordata:Mammalia:Primates:Hominidae:Homo:Homo sapiens

	
class otu.Query_OTU_Fasta_Command.Query_OTU_Fasta_Command(args_)

	Aligns sequences in a fasta file against those in a reference fasta in order to determine OTU identity.

	Inputs:

	
	One or more fasta files containing sequences to identify.

	A curated fasta file of high quality sequences and known species.

	A two-column, tab-delimited text file mapping sequence names in the curated fasta file to taxonomic identifiers.

	Outputs:

	
	A .tax.

	Notes:

	
	The files ‘bold.fna’ and ‘seq_lin.mapping’ are included in the Chewbacca Docker distributions.

Example:

~/ARMS/data/
 bold.fna # A precompiled fasta file of data from BOLD.
 >GBMAA1117-14
 GGGCTTTTGCGGGTATGATAGGAACAGCATTTAGTATGCTTATTAGGTTAGAACTATCTTCCCCAGGGTCTATGTTAGGAGATGATCATTTATATAAT
 GTTATAGTAACAGCTCATGCATTTGTAATGATATTTTTTTTAGTTATGCCAGTAATGATTGGGGGTTTTGGTAATTGGTTAGTACCTTTATATATTGG
 TGCCCCGGATATGGCTTTTCCTAGATTAAATAATATTAGTTTTTGGTTATTACCTCCGGCGCTTACTTTATTATTAGGTTCGGCTTTTGTAGAACAAG
 GGGCTGGGACAGGTTGGACAGTTTATCCGCCTTTATTTAGTATTCAAACTCATTCTGGGGGGTCTGTGGATATGGTAATATTTAGTTTACATTTAGCT
 GGAATATCTTCTATATTAGGGGCTATGAATTTTATAACAACAATCTTTAATATGAGGTCTCCGGGAGTAACTATGGATAGAATGCCTTTATTTGTTTG
 ATCTGTTTTAGTAACTGCTTTTTTATTATTATTATCATTGCCAGTATTAGCTGGTGCCATAACAAGTCTTTTAACCGATCGAGATTTTAATACTACAT
 TT

 seq_lin.mapping # A precompiled two-column tab file of (Taxa) for the entries in 'bold.fna'.
 GBMAA1117-14 Animalia;Porifera;Demospongiae;Haplosclerida;Phloeodictyidae;;Calyx;Calyx podatypa

./
 Data.fasta:
 >seq1
 ACTATCAGGCATTCAAGCCCATTCAGGGGGAGCAGTAGATATGGCTATATTTAGTCTACATCTAGCTGGTGTATCCTCTATTTTAAGTTCTATAAACT
 TTATAACTACTATAATTAATATGAGGGTTCCTGGGATGAGTATGCATAGATTACCTCTATTCGTATGGTCTGTATTAGTTACTACAATATTATTGTTG
 TTATCTTTACCAGTATTAGCTGGTGGAATTACAATGTTATTGACAGATAGAAATTTTAATACAACATTCTTTGACCCTGCGGGAGGAGGAGATCCTAT
 TTTATTCCAGCACTTATTT

$ python chewbacca.py query_fasta -i Data.fasta -o rslt -r ~/ARMS/data/bold.fna -x ~/ARMS/data/seq_lin.mapping

rslt/
 Data_result.out
 seq1 GBMAA1117-14 90.6 265 84.7 Animalia;Porifera;Demospongiae;Haplosclerida;Phloeodictyidae;;Calyx;Calyx podatypa

OTU Annotation

	
class otu.Annotate_OTU_Table_Command.Annotate_OTU_Table_Command(args_)

	Annotates an OTU table with taxonomic names by replacing sequence names in the OTU table with their identified taxonomies. Multiple OTU can annotated with the same taxonomic name – those are not combined.

	Inputs:

	

	An OTU_table to annotate.

	One or more .tax files to read annotations from.

	Outputs:

	
	An OTU_table with sequence names replaced by taxonomic names in the input .tax file.

	Notes:

	
	The input annotation file(s) should list only one identification per sequence name. If you find more than one taxonomic identity for a sequence, choose only one to include in the input .tax file(s).

Example:

./
 matrix.txt
 OTU Sample1 Sample2 Sample3 Sample4
 seq3 1 2 0 0
 seq1 2 1 1 0

 data.tax:
 seq1 94483305 99.4 173 55.4 Chordata:Mammalia:Primates:Hominidae:Homo:Homo sapiens

$ python chewbacca.py annotate_matrix -i matrix.txt -a data.tax -o rslt

rslt/
 matrix.txt
 OTU Sample1 Sample2 Sample3 Sample4
 seq3 1 2 0 0
 Chordata:Mammalia:Primates:Hominidae:Homo:Homo sapiens 2 1 1 0

 nav.xhtml

 Table of Contents

 		Chewbacca - A Toolkit for COI Analysis

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

