

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cherish-docs/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cherish-docs/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Software overview

Cherish is the CAD software for cultural heritage 3D representation by means of image manipulation and sketching. Implementation-wise, it is built using Qt library for GUI functionality and OpenSceneGraph as an OpenGL wrap-up library. Broadly speaking, the main idea of Cherish is to provide an interface so that the user can create, arrange and manipulate data in 3D space.

Every time when a new scene is created, the following graph is built within Cherish:

[image: Cherish scene graph]

Within the software we need to make sure all the GUI and graphics reflect the current state of the graph, and the opposite - whenever user changes parameters using UI or interactions, it is reflected correctly within the graph.

Code structure

The code is located in the folder src and is divided between several folders:

	cherish contains main.cpp, settings file, utilities and resources (images, shaders).

	libGUI contains UI classes and their associated files such as delegates and actions.

	libNumerics contains numerical algorithms, e.g., curve fitting, mesh generation, homography calculation. Most of them are git submodules.

	libSGControls contains utility classes that are used to control the scene graph, e.g., geometry intersectors, scene graph callbacks, scene manipulator, shader programs.

	libSGEntities contains all the classes of geometry entities that appear on the scene, e.g., strokes, photos, polygons, canvases, bookmarks, tools, etc.

	tests contains unit tests for GUI, scene graph elements and interactions of the two.

	third_party contains third party libraries (as git submodule). At the moment only Eigen is used.

Improvement suggestions

The following non-exhaustive list is to provide a sense of possible changes and improvements within the code:

	There are few occurrences when an abstract class API should have been used instead of the inherited class API. For example, when selecting a stroke or a polygon (which both derive from entity class), it should be: setEntityCurrent(entity::Entity2D* entity) instead of having two functions setPolygonCurrent() and setStrokeCurrent() performing the same thing to the stroke or polygon entities.

	Class RootScene to have unified interface to the whole scene graph as in Facade design pattern (currently the interface is split between RootScene, UserScene and Canvas interfaces). It would decrease the dependencies on the sub-graph nodes and also make scene graph manipulation easier (using one class API vs. three).

	The management of mouse modes is complicated and difficult to extend (i.e., certain mouse mode dependent classes are tightly coupled). Every time the mouse goes from one state to another (e.g., from sketching to manipulator’s zoom), the changed mode has to be reflected upon certain UI elements (change of mouse cursor) and internal scene graph structure (e.g., setting up traversal masks for graph nodes). The more optimal way to do it would be creating a mouse mode class based off OpenSceneGraph Object class (so that to be able to use OSG smart pointers), and make the classes that rely / change mouse mode information to observe the mode instead.

	Some bad naming conventions of the classes, files and certain methods are present; their editing would improve code readability.

	For some UI elements, create the corresponding *.ui form and put all the elements there, and then connect the form with the implementation file. This would make code readability easier since the final look of the UI form will be viewable from Qt Designer.

Quick start

	User interface: window anatomy, toolbars, viewing axes, dialogue boxes

	Using the Wacom pen

	Using the mouse

	Sketching in 3D

	View a model in 3D space

	Creating geometry with push strokes tool

	Draw 2D and 3D shapes

	Import and work with photographs

	Import and trace the diagrams

	Other features: importing meshed 3D data, incorporation of geo data, navigation and data manipulation, annotations.

User manual on how to use dura-europos-insitu: a heterogeneous framework for modeling of archaeological sites in 3D

Content

	Files: input and output
	Opening and saving files (osg and osgt file formats - standard formats of OpenSceneGraph)

	Import and export (import images like jpg, bmp, png and tif; export as other 3d formats: 3ds and obj)

	Print camera view (user has to specify the camera id, for example they can chose it from a camera list)

	Inputs: project files, stroke model files, photographs, raster diagrams, simplified 3D models (meshes), SfM (future), geo data - Google-map-like data (future)

	Outputs: project files

	Window multiplication tool (like tmux)
	Create new viewing window

	Switch between windows (is done by a mouse, no GUI here)

	Remove the window (mouse controller)

	Deactivate window (GUI option, for example, in Tools menu there will be Windows list where user can chose a window by id and chose to deactivate it)

	Change window type (e.g., photos, strokes, diagrams, view windows, bookmarks)

	Create sub-window of specific type (raw data: photographs, raw data: 3D meshes, raw data: diagrams, etc.)

	(ideas): hide/show dialogue, bookmarks window, outline mode, full screen mode, preview mode, switch window and duplicate window (when using 2 screens or more)

	Principal tools
	Select tool: add and subtract from a selection set, expanding the selection set using mouse, selecting multiple entities, selecting or deselecting all geometry, selecting a single entity (it should be implemented as a window where you can view the scene graph info and where each entity has its own id)

	Select within a canvas

	Select a canvas

	Eraser tool: for pen and for mouse

	Paint bucket tool: transparency

	Drawing tools - Geometric shapes and paths
	Rectangles

	3D Objects: boxes (future)

	Ellipses and arcs

	Polygons and polylines

	Bezier curve pen: strokes

	Modification tools (2D and 3D transformations for a selected canvas)
	Move tool (translation): making copies, moving groups, moving precisely, moving several entities, moving a single entity (e.g., strokes only)

	Rotate tool: making rotated copies, folding along an axis of rotation (future), rotating precisely

	Scale tool: scaling photographs, scaling about the geometry center, scaling components, scaling precisely, scaling uniformly

	Offset tool: like translation but along one dimension

	Using: mouse, keyboard, tool controls bar, object drop-down menu, transform dialogue (e.g. to push strokes)

	Camera tools
	Standard views: perspective mode, isometric view, current-previous view

	Orbit tool: with mouse and with pen

	Pan tool: panning while in other tools, panning

	Zoom tool: change focal length with zoom tool, centering the point of view, zooming with mouse or pen, zooming in on portion of the model

	Bookmark tool (saving camera coordinates): taking the bookmark of the current scene, navigating through the taken bookmarks, opening the saved bookmark

	Walkthrough window
	Open a walkthrough canvas

	Draw the walking trajectory on the map

	Look at the canvas

	Turn left / right

	Editing tools
	Undo and redo

	Selecting objects (mouse, keyboard, find dialogue)

	Copying, pasting and deleting objects

	Cloning

	Groups: unite and split operators

	Layers (future)

	Entities: raw data, user input and exported data
	Photographs

	Diagrams

	3D models

	Annotations

	Canvases with strokes by user

	2D and 3D geometrical shapes by user: opacity, color

	Photograph organization window
	Open image data window

	View only images on a scene

	Import an image

	Import set of images

	SfM from set of images (future)

	Select a representative image for an image cluster

	Drag an image from image viewer to a specific 3D space

	Change image opacity

	Diagram window
	Open diagram data window

	Import as an image

	Import as a set of strokes (potrace algorithm)

	Mesh window
	Open mesh data window

	Import a simplified mesh model

	View only mesh data on scene

	Annotation tool
	Open annotations window / show only annotations

	Creating text

	Selecting text

	Editing text

	Formatting text: font size, font color, orientations

	Tying text to an object (canvas better)

	Canvas tool
	Select a canvas

	Select canvases

	Change opacity

	Change color

	Contruction tools
	Axes tool

	Dimension tool

	Display properties: perspective grid, canvas intersections

	Customization
	Preference dialogue

	Configuration files

	Common tasks

	Appendix A: Wacom Pen gestures list

	Appendix AA: Keyboard hotkeys list

	Appendix B: Glossary

	Appendix C: Input and output file formats

	Appendix D: SfM from a set of images, etc.

Scene graph structure and elements

This is a generic scene / frame graph that is generated every time the Cherish application is run:

[image: MD format]

If the scene graph is not visible, you can see it directly at github [https://github.com/vicrucann/cherish/blob/master/docs/images/cherish-SG.png].

Scene graph

The RootScene class is a member of the MainWindow - the main UI element of Cherish.

To understand the nature of each node and for better visual separation, each node at the above diagram is assigned a specific color which is explained below. The node color is only used within the diagram for better visibility and has no meaning withing the code.

Note the yellow color nodes are not saved to a disc when the commands “Save” or “Save As...” are used since those nodes are the tools and they are auto generated each time the application is run, or a file is read. It is possible to save the whole scene only in case when performing an “Export” operation.

The green color nodes define grouping nodes. They can contain more than one child of the same type, for example, a list of bookmarks - entity::Bookmarks, or a list of user data - GroupData that contains user input such as strokes, photos, etc.

The red colored nodes are the visual scene entities: entity::Canvas, entity::Stroke and entity::Photo.

The gray colored nodes are the functional nodes that allow different types of control over the entities such as visibility and transformations.

Other sub-scene graphs

Certain node’s scene graphs are not present on the image in order to keep it more readable. For example, the SVMData has an underlining scene graph:

[image: scene graph figure]

View it directly on github [https://github.com/vicrucann/cherish/blob/master/docs/images/SVMData-SG.png], if the image is not displayed.

The other scene graphs that are not explicitly shown are the tools’ scenes. Normally, they are the descendants of the ToolGlobal node. Refer to the code source for their underlying scene graphs.

Frame graph

The “frame graph” is responsible for rendering settings along the scene graph. At the main scene graph figure [https://github.com/vicrucann/cherish/blob/master/docs/images/cherish-SG.png] some rendering settings are displayed in light blue color. For example, Stroke node has Bezier and depth cue shaders attached. The Canvas node has settings such as line width, blend function, smoothing and lightning turned on. And so on.

Note, the presented frame graph contains only key settings. For more details it is safer to check with the source code.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

