

Welcome to ChemFlow’s documentation!

Contents:

	ChemFlow

	Installation

	Tutorial

	Credits

ChemFlow [image: Logo]

[image: Documentation Status]
 [https://chemflow-docs.readthedocs.io/en/latest/?badge=latest]ChemFlow is a series of computational chemistry workflows designed to automatize and simplify the drug discovery pipeline and scoring function benchmarking.

The workflows allow the user to spend more time thinking, i.e. running benchmarks or experiments, analyzing the data, and taking decisions, rather than programming/testing/debugging their own scripts.

It consists of BASH and PYTHON scripts that can be launched locally (serial or with GNU parallel) or on a compute cluster via PBS.

	LigFlow : Prepare the compound to dock/to score. Normalize the mol2 files and/or compute charges

	DockFlow : Docking and Virtual Screening

	ScoreFlow : Rescoring using PLANTS, Vina, or MM(PB,GB)SA

Requirements for ChemFlow

We do not provide any of the licensed softwares used by ChemFlow. It is up to the user to acquire and install PLANTS, Vina, Amber and the other softwares that might be added in future releases of ChemFlow.

PLANTS [http://www.uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/pharmazie-und-biochemie/pharmazie/pharmazeutische-chemie/pd-dr-t-exner/research/plants.html] and SPORES [http://www.mnf.uni-tuebingen.de/fachbereiche/pharmazie-und-biochemie/pharmazie/pharmazeutische-chemie/pd-dr-t-exner/research/spores.html] are both available under a free academic license.

Installation

From sources

The sources for ChemFlow can be downloaded from the Github repo [https://github.com/IFMlab/ChemFlow.git].

You can either clone the public repository:

git clone https://github.com/IFMlab/ChemFlow.git

Required software

	Program

	Link to Download - Licencing may apply

	PLANTS

	http://www.mnf.uni-tuebingen.de/fachbereiche/pharmazie-und-biochemie/pharmazie/pharmazeutische-chemie/pd-dr-t-exner/research/plants.html

	AmberTools & Amber

	http://ambermd.org/GetAmber.php (An Amber licence is needed for CUDA)

	Anaconda

	https://www.anaconda.com/download/#linux

After installing Anaconda, add some packages packages:

conda install -c rdkit rdkit

conda install -c schrodinger pymol

Additional configuration

In addition to downloading the required software, you must be able to run then flawlessly.
Please set up the PATHS to the their install locations. (modify to your own)

	ChemFlow

	export CHEMFLOW_HOME=/home/USER/software/ChemFlow/ChemFlow/
export PATH=${PATH}:${CHEMFLOW_HOME}/bin/

	PLANTS

	export PATH=${PATH}:/home/USER/software/plants/

	Autodock Vina
(qvina2, smina…)

	export PATH=${PATH}:/home/USER/software/autodock_vina_1_1_2_linux_x86/bin/
export mgltools_folder=/home/USER/software/mgltools_x86_64Linux2_1.5.6/
export PATH=${mgltools_folder}/bin:$PATH

	Gaussian
(required for RESP)

	# Setup some variables
g09root=”/home/USER/software/”
GAUSS_SCRDIR=”${HOME}/scratch/”
export g09root GAUSS_SCRDIR
. $g09root/g09/bsd/g09.profile

	AmberTools18

	source /home/USERdgomes/software/amber18/amber.sh

Tutorial

ChemFlow - alpha-Thrombin

Provided files

	1DWC.pdb

	Original PDB

	receptor.pdb

	Receptor prepared with pdb4amber and –reduce.

	receptor.mol2

	Receptor prepared using SPORES.

	reference_ligand.pdb

	Ligand from 1DWC crystal structure.

	reference_ligand.mol2

	converted with openbabel.

	ligands.smi

	b1-b7 ligands.

	ligands_crystal.smi

	1D3D 1D3P 1D3Q 1D3T 1DWB 1DWC 1DWD

	decoys.smi

	decoys for a-thrombin, from DUD-E

LigFlow

Step 1: Convert SMILES into 3D structure

To go from smiles to 3D structures use the script bellow. The default method for Bioactive structure generation is the state-of-the-art ETKDG.
In sequence you should make a .mol2 file using babel or your favorite program.

First for the b1-b7 from an undisclosed article (b1 = 1DWC crystal. b2-7 = Build up manually by dgomes), we do have the affinities.

python $(which SmilesTo3D.py) -i ligands.smi -o ligands.sdf --hydrogen -v
babel -isdf ligands.sdf -omol2 ligands.mol2

The second set, with ligands from crystal structures, we also have the affinities.
We superimposed 1DWC 1DWB 1DWD 1D3D 1D3P 1D3Q 1D3T (1DWC as reference) and saved all ligands as .mol2.
Hydrogens were added using SPORES (from PLANTS). (SPORES_64bit --mode complete)

Now the Decoys from DUD-E database [http://dude.docking.org/targets/thrb].
Download, and get the first 14.
wget http://dude.docking.org/targets/thrb/decoys_final.ism
head -n 14 decoys_final.ism > decoys.smi
[WARNING] On DUD-E the “field separator” is a SPACE instead of “t”, so you MUST specify it in SmilesTo3D.py.

python $(which SmilesTo3D.py) -i decoys.smi -o decoys.sdf --hydrogen -v -d " "
babel -isdf decoys.sdf -omol2 decoys.mol2

To keep it simple, let’s merge all compounds into a single mol2 file.

cat ligands.mol2 ligands_crystal.mol2 decoys.mol2 > compounds.mol2

Step 2: Run LigFlow to prepare the ligands.

Before running unknown compounds within ChemFlow we need to prepare the .mol2 to comply with the used standards using LigFlow,
our workflow to handle ligands and general compounds.

LigFlow takes multimol2 files as input, then organizes them individually into your project folder while normalizing the .mol2 files.
To perform this action run:

LigFlow -p tutorial -l compounds.mol2

In addition LigFlow can be used to build up a compound database with advanced charges such as AM1-BCC and RESP and their associated
optimized structures, we’ll see it’s use latter to compute appropriate charges for the free energy calculations.
Since these calculations are computationally expensive we recomend the users to use a cluster/supercomputer. In the examples bellow
we demonstrate how to derive the AM1-BCC and RESP charges using the two most widespread queueing systems in supercomputers (PBS and SLURM)

LigFlow -p tutorial -l compounds.mol2 --bcc --pbs
LigFlow -p tutorial -l compounds.mol2 --resp --slurm

If a compound already exists in the ChemBase (ChemFlow database), LigFlow won’t compute the charges for this compound.

For each of these commands you will be asked:

	Continue? > y

DockFlow

Step 3: Set the center coordinates for the binding pocket

You may skip this step if you want to provide the coordinates manually.

Use the reference ligand to compute the center for docking.
For PLANTS it’s enough to have only the center.

python $CHEMFLOW_HOME/bin/bounding_shape.py reference_ligand.mol2 --sphere 8.0

For VINA you need the center AND the lenghts of X, Y and Z.

python $CHEMFLOW_HOME/bin/bounding_shape.py reference_ligand.mol2 --box 8.0

Step 4: Run DockFlow to predict the docking poses.

To demonstrate DockFlow we’ll run it with three sets of ligands, some of which we only know the binding
affinity (7 compounds), second we know both the affinity and crystal structure (7 compounds)_ and third a set of decoys (14 compounds)
All these scenarios will be used in the report different features. In the first place, we’ll confront the 14 actives with the 14 decoys
and evaluate the classification (active/inactive) done by the scoring function from each docking program. Then using the crystal structures
we’ll evaluate the accuracy of each docking program to produce docking poses near the native one (docking power), finally.

Then we’ll evaluate the quality of the scoring functions to rank the docking poses (ranking power) which will be latter compared with ScoreFlow
results together with the scoring power which will measure how well it will rank compounds against each other.

Run DockFlow for each set of ligands.

	Using plants:

DockFlow -p tutorial --protocol plants -r receptor.mol2 -l compounds.mol2 --center 31.50 13.74 24.36 --radius 20

	Using vina:

DockFlow -p tutorial --protocol vina -r receptor.mol2 -l compounds.mol2 --center 31.50 13.74 24.36 --size 11.83 14.96 12.71 -sf vina

For each of these commands you will be asked:

	Continue? > y

Step 5: Postprocess all the results

When tou are done, you can postprocess (--postprocess) the results. Here, we decided to keep only the best 3 poses for each ligand (-n 3)

echo n | DockFlow -p tutorial --protocol plants -r receptor.mol2 -l compounds.mol2 --postprocess -n 3
echo n | DockFlow -p tutorial --protocol vina -r receptor.mol2 -l compounds.mol2 --postprocess -sf vina -n 3

ScoreFlow

Step 6: Run ScoreFlow to rescore the previous docking poses (best 3 for each ligand)

Here, we only keep on with plants results (tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2).

Rescoring through the MMGBSA method, using two protocols in implicit solvent first just minimization, then 1ns md simulation :

ScoreFlow -p tutorial --protocol mmgbsa -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 -sf mmgbsa
ScoreFlow -p tutorial --protocol mmgbsa_md -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 -sf mmgbsa --md

For each of these commands you will be asked:

	Continue? > y

Note: You can turn on explicit solvation using the flag --water.

Step 7: Postprocess the results

When you are done, you can postprocess (--postprocess) the results:

ScoreFlow -p tutorial --protocol mmgbsa -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 -sf mmgbsa --postprocess
ScoreFlow -p tutorial --protocol mmgbsa_md -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 -sf mmgbsa --postprocess

Advanced

Using the --write-only flag, all input files will be written in tutorial.chemflow/ScoreFlow/mmgbsa_md/receptor/:

	System Setup: You can modify the system setup (tleap.in file) inside your job.

	Simulation protocol: The procedures for each protocol can also be modified, the user must review “ScoreFlow.run.template”.

	Run input files (Amber and MMGBSA): Namely min1.in, heat.in, equil.in, md.in … can also be manually modified at wish :)

	After the modifications, rerun ScoreFlow using --run-only.

To run DockFlow and ScoreFlow on a super computer

If you have access to a cluster, you may profit from the HPC resources using --slurm or --pbs flags. :)

To run it properly, you should provide a template for your scheduler using the --header FILE option. Here are examples for this header file.

	Example for pbs:

#! /bin/bash
1 noeud 8 coeurs
#PBS -q route
#PBS -N
#PBS -l nodes=1:ppn=1
#PBS -l walltime=0:30:00
#PBS -V

source ~/software/amber16/amber.sh``

	Example for slurm:

#! /bin/bash
#SBATCH -p publicgpu
#SBATCH -n 1
#SBATCH -t 2:00:00
#SBATCH --gres=gpu:1
#SBATCH --job-name=
#SBATCH -o slurm.out
#SBATCH -e slurm.err

#
Configuration
#
Make sure you load all the necessary modules for your AMBER installation.
Don't forget the CUDA modules
module load compilers/intel15
module load libs/zlib-1.2.8
module load mpi/openmpi-1.8.3.i15
module load compilers/cuda-8.0

Path to amber.sh replace with your own
source ~/software/amber16_publicgpu/amber.sh

You must always provide the HEADER for SLURM and PBS, because this template may not work for you.

DockFlow:

Connect to your pbs cluster.

	Using plants:

DockFlow -p tutorial --protocol plants -r receptor.mol2 -l compounds.mol2 --center 31.50 13.74 24.36 --radius 20 --pbs

	Using vina:

DockFlow -p tutorial --protocol vina -r receptor.mol2 -l compounds.mol2 --center 31.50 13.74 24.36 --size 11.83 14.96 12.71 -sf vina --pbs

ScoreFlow:

ScoreFlow -p tutorial --protocol mmgbsa -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 --pbs -sf mmgbsa
ScoreFlow -p tutorial --protocol mmgbsa_md -r receptor.pdb -l tutorial.chemflow/DockFlow/plants/receptor/docked_ligands.mol2 --pbs -sf mmgbsa --md``

For each of these commands you will be asked:

	Continue? > y

For DockFlow, you also will have to answer how many compounds should be treated per job.

Credits

Manager

	Marco Cecchini <mcecchini@unistra.fr>

Development Lead

	Diego Enry Barreto Gomes <dgomes@pq.cnpq.br>

	Dona de Francquen <donat.defrancquen@gmail.com>

	Cedric Bouysset <bouysset.cedric@gmail.com>

Contributors

None yet. Why not be the first?

Index

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/IFMlab/ChemFlow.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Double Decoupling Method (DDM) could always use more documentation, whether as part of the
official Double Decoupling Method (DDM) docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/IFMlab/ChemFlow/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ChemFlow for local development.

	Fork the CHemFlow repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:IFMlab/ChemFlow.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ddm
$ cd ChemFlow/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ cd tests
$./tests.bash

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

History

0.9 (2018-07-27)

	First release.

Usage

To use ChemFlow

Check our awesome wiki [https://github.com/IFMlab/ChemFlow/wiki] for a complete documentation and tutorials.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/9f417914f593695ba2d46ab723747e160055fc36.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ChemFlow’s documentation!

 		
 ChemFlow

 		
 Requirements for ChemFlow

 		
 Installation

 		
 From sources

 		
 Required software

 		
 Additional configuration

 		
 Tutorial

 		
 ChemFlow - alpha-Thrombin

 		
 Provided files

 		
 LigFlow

 		
 DockFlow

 		
 ScoreFlow

 		
 To run DockFlow and ScoreFlow on a super computer

 		
 Credits

 		
 Manager

 		
 Development Lead

 		
 Contributors

_static/up-pressed.png

_static/up.png

_static/plus.png

