

charms.reactive

This module serves as the basis for creating charms and relation
implementations using the reactive pattern.

Overview

Juju is an open source tool for modelling a connected set of applications in a
way that allows for that model to be deployed repeatably and consistently
across different clouds and substrates. Juju Charms implement the model for
individual applications, their configuration, and the relations between them
and other applications.

In order for the charm to know what actions to take, Juju informs it of
life-cycle events in the form of hooks. These hooks inform the charm of things
like the initial installation event, changes to charm config, attachment of
storage, and adding and removing of units of related applications. Because
managing distributed software is difficult and the exact action to take in
response to a life-cycle event can depend on which events have happened in the
past, charms.reactive represents a system for setting flags with semantic
meaning to the charm and then driving behavior off of the combination of those
flags.

The pattern is called “reactive” because you use @when
and similar decorators to indicate that blocks of code “react” to certain conditions,
such as a relation reaching a specific state, certain config values being set, etc.
More importantly, you can react to not just individual conditions, but meaningful
combinations of conditions that can span multiple hook invocations, in a natural way.

For example, the following would update a config file when both a database
and admin password were available, and, if and only if that file was changed,
the appropriate service would be restarted:

from charms.reactive import set_flag, clear_flag, when
from charms.reactive.helpers import any_file_changed
from charmhelpers.core import templating, hookenv

@when('db.database.available', 'config.set.admin-pass')
def render_config(pgsql):
 templating.render('app-config.j2', '/etc/app.conf', {
 'db_conn': pgsql.connection_string(),
 'admin_pass': hookenv.config('admin-pass'),
 })
 if any_file_changed(['/etc/app.conf']):
 set_flag('myapp.restart')

@when('myapp.restart')
def restart_service():
 hookenv.service_restart('myapp')
 clear_flag('myapp.restart')

Table of Contents

	Structure of a Reactive Charm
	Charm Layer

	Base Layers

	Interface Layers

	Automatic Flags

	The base layer: layer-basic
	Usage

	Hooks

	Reactive flags for Charm config

	Layer Configuration

	Wheelhouse.txt for Charm Python dependencies

	Exec.d Support

	General layer info
	Layer Namespace

	Layer Options

	Reactive with Bash or Other Languages

	Frequently Asked Questions
	How do I run and debug reactive charm?

	Why doesn’t my Charm do anything? Why are there no hooks in the hooks directory?

	How can I react to configuration changes?

	How to remove a flag immediately when a config changes?

	How to run a handler even if the flag it reacts to has since been cleared?

	Patterns
	Request / Response

	Reactive API Documentation

	Internals and Advanced
	Discovery and Dispatch of Reactive Handlers

	Reactive Triggers
	Coupling Flags with Triggers

	Example uses of triggers

	OS Series Upgrades

	charms.reactive.bus

Changelog

	1.5.1

	1.5.0

	1.4.1

	1.4.0

	1.3.2

	1.3.1

	1.3.0

	1.2.1

	1.2.0

	1.1.2

	1.1.1

	1.1.0

	1.0.0

	0.6.3

	0.6.2

	0.6.1

	0.6.0

	0.5.0

	0.4.7

	0.4.6

Structure of a Reactive Charm

A reactive charm is built using layers, with the “top” layer being called
the “charm layer.” The charm layer would then reference other layers that it
builds upon, which are generally thought of in two types: base layers, and
interface layers. The charm indicates which layers it builds upon via its
layer.yaml, which might look like this:

includes:
 - 'layer:apache'
 - 'interface:mysql'
options:
 basic:
 # apt packages required by charm code
 packages:
 - 'unzip'

This includes one base layer, apache2, and an interface layer, mysql.
The apache2 layer itself builds upon two other base layers and another
interface layer, so the total hierarchy of the charm would look like this:

 ┌────────┐
 │ my_app │
 └────┬───┘
 ┌─────────┴─────────┐
 ┌──────┴────────┐ ┌────────┴────────┐
 │ layer:apache2 │ │ interface:mysql │
 └──────┬────────┘ └─────────────────┘
 ┌───────────────┼────────────────┐
┌──────┴──────┐ ┌──────┴────┐ ┌─────────┴──────┐
│ layer:basic │ │ layer:apt │ │ interface:http │
└─────────────┘ └───────────┘ └────────────────┘

The options section in the layer.yaml allows the charm to set
configuration for other layers. In this case, specifying to the basic layer
that the charm needs the unzip package in order to function.

Charm Layer

The charm layer is what most charm authors will be writing, and allows the charm
author to focus on just the information and code which is relevant to the
charm itself. By including other layers, the charm layer can then rely on those
layer to provide common behavior, using documented flags and method calls to
communicate with those layers.

A charm layer consists, at a bare minimum, of the following files:

	metadata.yaml: This file contains information about the charm, such as the
charm name, summary, description, maintainer, and what relations the charm
supports.

	layer.yaml: This file indicates what other layers this charm builds upon.

	reactive/<charm_name>.py: This file, where <charm_name> is replaced by the
name of the charm (using underscores in place of dashes), is the reactive
entry point for the charm. It should contain or import files containing all
of the handlers provided by this charm layer.

The charm layer should also contain a few additional files, though some may be
optional depending on what features the charm supports:

	README.md: This file should document your charm in detail, and is required
for the charm to be listed in the Charm Store [https://charmhub.io/].

	copyright: This file should document what copyright your charm is available
under.

	config.yaml: For adding configuration [https://web.archive.org/web/20160319143647/https://jujucharms.com/docs/stable/charms-config] options to the charm.

	icon.svg: For providing a nice icon for the charm.

	actions.yaml and actions/<action-name> scripts: For supporting actions [https://web.archive.org/web/20160319143647/https://jujucharms.com/docs/stable/developer-actions]
in the charm.

	metrics.yaml: For collecting metrics [https://web.archive.org/web/20160319143647/https://jujucharms.com/docs/stable/developer-metrics] about the deployment.

An example tree for a charm layer might thus look like this:

.
├── README.md
├── metadata.yaml
├── icon.svg
├── config.yaml
├── layer.yaml
├── reactive/
│ └── my_app.py
├── actions.yaml
├── actions/
│ └── do-something
└── copyright

Base Layers

Base layers provide functionality that is common across several charms. These
layers should provide a set of handlers in reactive/<layer_name>.py which
will set additional flags that will drive behavior in the charm layer. They may
also include a Python module in lib/charms/layer/<layer_name>.py which can
be imported from the charm layer to provide functions or classes to be used by
the charm layer.

Base layers are otherwise identical to charm layers, and can provide things such
as actions, config options, metrics, etc. for the charm layer. For example, a
base layer might provide an action script, as well as the corresponding defition
in the actions.yaml file. The actions.yaml file from the charm layer
will then be merged onto the one provided by the base layer, and both sets of
actions will be available.

layer:basic is a useful base layer:

	It provides hooks for other layers to react to such as install,
config-changed, upgrade-charm, and update-status.

	It provides a set of useful flags to react to changing config.

	You can tell it to install python and apt dependencies of your handlers.

Interface Layers

Interface layers encapsulate the communication protocol over a Juju interface
when two applications are related together. These layers will react to
applications being related to the charm, and will handle the transfer of data to
and from the units of the related application. This ensures that all charms using
that interface protocol can effectively communicate with one another.

As with base layers, an interface layer will provide a set of flags to inform
the charm layer of the signficant points in the relationship conversation. The
interface layer will also provide a class with well-documented methods to use to
interact with that relation. Instances of these classes will be automatically
created by the framework.

More information about interface layers can be found in the docs [https://web.archive.org/web/20160319143647/https://jujucharms.com/docs/stable/developer-layers-interfaces].

Automatic Flags

The reactive framework will automatically set some flags for your charm,
based on lifecycle events from Juju. These flags can inform your charm
of things such as upgrades, config changes, relation activity, etc.

With a few exceptions, noted below, these flags will be set by the framework
but it is up to your charm to clear them, if need be. To avoid conflicts
between layers, it is recommended that only the top-level charm layer (or
interface layer, in the case of endpoint flags) use any of the automatic flags
directly; any base layer should instead use
register_trigger() to “wrap” the automatic flag
with a layer-specific flag that can be safely used within that layer.

The flags that are set by the framework are:

	upgrade.series.in-progress
	This is set when the operator is about to start an OS
upgrade, and removed after the operator has completed the
upgrade. See OS Series Upgrades for more information.

	config.changed
	This is set when any config option has changed. [1]

	config.changed.{option_name}
	This is set for each config option that has changed. [1]

	config.set.{option_name}
	This is set for each config option whose value is not
None, False, or an empty string. [1]

	config.default.{option_name}
	This is set for each config option whose value is equal to
its default value, and cleared if it has been changed. [1]

	leadership.is_leader
	This is set when the unit is the leader. The unit will
remain the leader for the remainder of the hook, but
may not be leader in future hooks. [2]

	leadership.changed
	This is set when any leadership setting has changed. [2]

	leadership.changed.{setting_name}
	This is set for each leadership setting that has
changed. [2]

	leadership.set.{setting_name}
	This is set for each leadership setting that has been
to set to a value other than None. [2]

	endpoint.{endpoint_name}.joined
	This is set when a relation is joined on an endpoint. [3]

	endpoint.{endpoint_name}.changed
	This is set when relation data has changed. [3]

	endpoint.{endpoint_name}.changed.{field}
	This is set for each field of relation data which has
changed. [3]

	endpoint.{endpoint_name}.departed
	This is set when a unit leaves a relation. [3]

	[1]	(1, 2, 3, 4)

The config.* flags are currently managed by the base layer and are automatically cleared a the end of the hook context in
which they were set. However, this is expected to change in the future, with
the flags being set by this library instead and the automatic clearing behavior
changed or removed.

	[2]	(1, 2, 3, 4)

The leadership.* flags are currently managed by the leadership layer [https://git.launchpad.net/layer-leadership/] and the leadership.changed*
flags are automatically cleared at the end of the hook context in which they
were set. If this layer is not included by the charm or one of its base
layers, these flags will not be set. However, this is expected to change in
the future, with the flags being managed by this library instead and the
automatic clearing behavior changed or removed.

	[3]	(1, 2, 3, 4)

See Endpoint for more information
on the endpoint.{endpoint_name}.* flags. The
endpoint.{endpoint_name}.joined flag is automatically cleared when
appropriate.

The base layer: layer-basic

[image: Apache 2.0 License]

 Reactive with Bash or Other Languages

Reactive with Bash or Other Languages

Reactive handlers can be written in any language, provided they conform to
the ExternalHandler protocol. In short, they
must accept a --test and --invoke argument and do the appropriate
thing when called with each.

There are helpers for writing handlers in bash, which allow you to write
handlers using a decorator-like syntax similar to Python handlers.
For example:

#!/bin/bash
source charms.reactive.sh

@when 'db.database.available' 'admin-pass'
function render_config() {
 db_conn=$(relation_call --flag 'db.database.available' connection_string)
 admin_pass=$(config-get 'admin-pass')
 charms.reactive render_template 'app-config.j2' '/etc/app.conf'
}

@when_not 'db.database.available'
function no_db() {
 status-set waiting 'Waiting on database'
}

@when_not 'admin-pass'
function no_db() {
 status-set blocked 'Missing admin password'
}

@when_file_changed '/etc/app.conf'
function restart_service() {
 service myapp restart
}

reactive_handler_main

 Frequently Asked Questions

Frequently Asked Questions

How do I run and debug reactive charm?

You run a reactive charm by running a hook in the hooks/ directory. That hook
will start the reactive framework and initiate the “cascade of flags”.

The hook files in the hooks/ directory are created by layer:basic and by
charm build. Make sure to include layer:basic in your layer.yaml file if
the hook files aren’t present in the hooks/ directory.

You can find more information about debugging reactive charms in
the Juju docs [https://docs.jujucharms.com/charm-writing/hook-debug].

Note

Changes to flags are reset when a handler crashes. Changes to
flags happen immediately, but they are only persisted at the end of a
complete and successful run of the reactive framework. All unpersisted
changes are discarded when a hook crashes.

Why doesn’t my Charm do anything? Why are there no hooks in the hooks directory?

You probably forgot to include layer-basic in your
layer.yaml file. This layer creates the hook files so that the reactive
framework starts when a hook runs.

How can I react to configuration changes?

The base layer provides a set of easy flags
to react to configuration changes. These flags will be automatically
managed when you include layer:basic in your layer.yaml file.

How to remove a flag immediately when a config changes?

You can use triggers for this, see Reactive Triggers for more info.

Example: clear the flag apt.sources_configured immediately when the
install_sources config option changes.

register_trigger(when='config.changed.install_sources',
 clear_flag='apt.sources_configured')

How to run a handler even if the flag it reacts to has since been cleared?

Take the following case:

@when('service.stopped')
def restart_service():
 restart_my_service()
 clear_flag('service.stopped')

@when_all('service.stopped',
 'endpoint.clients.connected')
def notify_related_units():
 clients = from_flag('endpoint.clients.connected')
 clients.notify_service_stopped()

The notify_related_units handler will never get invoked because the
restart_handler will get invoked first and it removes the
service.stopped state. If this is not the desired behavior, if you need to
notify the clients even when the service has been restarted by another handler,
then you can use a trigger to create a new state specifically for the
notify_related_units handler:

register_trigger(when='service.stopped',
 set_flag='clients.need_notification')

@when('service.stopped')
def restart_service():
 restart_my_service()
 clear_flag('service.stopped')

@when_all('clients.need_notification',
 'endpoint.clients.connected')
def notify_related_units():
 clients = from_flag('endpoint.clients.connected')
 clients.notify_service_stopped()
 clear_flag('clients.need_notification')

See Reactive Triggers for more information.

 Patterns

Patterns

When creating charms, layers, or interface layers with reactive, some common
patterns can come up. This page documents some of them.

Request / Response

A common pattern in interface layers is for one charm to generate individual
requests, which then need to be paired with a specific response from the other
charm. This can be tricky to accomplish with relation data, due to the fact
that a given unit can only publish its data for the entire relation, rather
than a specific remote unit, plus the fact that a given unit may want to submit
multiple requests. The framework provides some base classes to assist with
this pattern.

An interface layer would first define a request and response type, which
inherit from
BaseRequest and
BaseResponse respectively,
and which each define a set of
Field attributes to hold
the data for the request and response. Each field can provide a description,
for documentation purposes.

Note

The request class must explicitly point to the class which implements
the associated response, via the RESPONSE_CLASS attribute, so that the
correct class can be used when creating responses to requests.

For example:

from charms.reactive import BaseRequest, BaseResponse, Field

class CertResponse(BaseResponse):
 signed_cert = Field(description="""
 The text of the public certificate signed by the CA.
 """)

class CertRequest(BaseRequest):
 RESPONSE_CLASS = CertResponse # point to response implementation

 csr_data = Field(description="""
 The text of the generated Certificate Signing Request.
 """)

Then, the interface layer would define endpoint classes which inherit from
RequesterEndpoint
and
ResponderEndpoint
rather than directly from Endpoint.
These classes would point to the appropriate request implementation to use via
the REQUEST_CLASS attribute, and they would inherit various properties and
methods for interacting with the requests and responses (although it may make
sense for them to wrap some of these with methods of their own more specialized
for their specific needs).

For example:

from charms.reactive import RequesterEndpoint, ResponderEndpoint

class CertRequester(RequesterEndpoint):
 REQUEST_CLASS = CertRequest # point to request implementation

 @property
 def related_cas(self):
 """
 A list of the related CAs which can sign certs.
 """
 return self.relations

 def send_csr(self, related_ca, csr_data):
 """
 Send a CSR to the specified related CA.

 Returns the created request.
 """
 return CertRequest.create(relation=related_ca,
 csr_data=csr_data)

class CertResponder(ResponderEndpoint):
 REQUEST_CLASS = CertRequest # point to request implementation

 # no additional implementation needed beyond the inherited properties / methods

Charms using this interface layer could then submit requests and provide responses.

For example, a client charm might look something like:

@when('endpoint.certs.joined')
@when_not('charm.cert_requested')
def request_cert():
 cert_provider = endpoint_from_name('certs')
 if len(cert_provider.related_cas) == 0:
 return
 if len(cert_provider.related_cas) > 1:
 status.blocked('Too many CAs')
 return
 ca = cert_provider.related_cas[0]
 csr_data = generate_csr()
 request = cert_provider.send_csr(ca, csr_data)
 unitdata.kv().set('current_cert_request', request.request_id) # for reissues
 set_flag('charm.cert_requested')

@when('endpoint.certs.all_responses')
def write_cert():
 cert_provider = endpoint_from_name('certs')
 current_request = unitdata.kv().get('current_cert_request') # handle reissues
 response = cert_provider.response_by_field(request_id=current_request)
 CERT_PATH.write_text(response.signed_cert)

And the corresponding provider charm might look something like:

@when('endpoint.cert_clients.new_requests')
def sign_certs():
 cert_clients = endpoint_from_name('cert_clients')
 for request in cert_clients.new_requests:
 signed_cert = sign_cert(request.csr_data)
 request.respond(signed_cert=signed_cert)

 Reactive API Documentation

Reactive API Documentation

	BaseRequest
	Base class for requests using the request / response pattern.

	BaseResponse
	Base class for responses using the request / response pattern.

	Endpoint
	New base class for creating interface layers.

	Field
	Defines a Field property for a Request or Response object.

	RelationBase
	A base class for relation implementations.

	RequesterEndpoint
	Base class for Endpoints that create requests in the request / response pattern.

	ResponderEndpoint
	Base class for Endpoints that respond to requests in the request / response pattern.

	all_flags_set
	Assert that all desired_flags are set

	any_file_changed
	Check if any of the given files have changed since the last time this was called.

	any_flags_set
	Assert that any of the desired_flags are set

	clear_flag
	Clear / deactivate a flag.

	collect_metrics
	Register the decorated function to run for the collect_metrics hook.

	data_changed
	Check if the given set of data has changed since the previous call.

	endpoint_from_flag
	The object used for interacting with relations tied to a flag, or None.

	endpoint_from_name
	The object used for interacting with the named relations, or None.

	get_flags
	Return a list of all flags which are set.

	get_unset_flags
	Check if any of the provided flags missing and return them if so.

	hook
	Register the decorated function to run when the current hook matches any of the hook_patterns.

	is_data_changed
	Check if the given set of data has changed since the last time data_changed was called.

	is_flag_set
	Assert that a flag is set

	main
	This is the main entry point for the reactive framework.

	meter_status_changed
	Register the decorated function to run when a meter status change has been detected.

	not_unless
	Assert that the decorated function can only be called if the desired_flags are active.

	register_trigger
	Register a trigger to set or clear a flag when a given flag is set.

	scopes
	These are the recommended scope values for relation implementations.

	set_flag
	Set the given flag as active.

	toggle_flag
	Helper that calls either set_flag() or clear_flag(), depending on the value of should_set.

	when
	Alias for when_all().

	when_all
	Register the decorated function to run when all of desired_flags are active.

	when_any
	Register the decorated function to run when any of desired_flags are active.

	when_file_changed
	Register the decorated function to run when one or more files have changed.

	when_none
	Register the decorated function to run when none of desired_flags are active.

	when_not
	Alias for when_none().

	when_not_all
	Register the decorated function to run when one or more of the desired_flags are not active.

 Internals and Advanced

Internals and Advanced

	Discovery and Dispatch of Reactive Handlers

	Reactive Triggers
	Coupling Flags with Triggers

	Example uses of triggers

	OS Series Upgrades

	charms.reactive.bus

 Discovery and Dispatch of Reactive Handlers

Discovery and Dispatch of Reactive Handlers

Reactive handlers are loaded from any file under the reactive directory,
as well as any interface layers you are using. Handlers can be decorated blocks
in Python, or executable files following the ExternalHandler
protocol. Handlers can be split amongst several files, which is particularly
useful for layers, as each layer can define its own file containing handlers
so as not to conflict with files from other layers.

Once all of the handlers are loaded, all @hook
handlers will be executed, in a non-determined order. In general, only one layer
or relation stub should have a matching @hook
block for each hook, which should then set appropriate semantically meaningful
flags that the other layers can react to. If there are multiple handlers that
match for a given hook, there is no guarantee which order they will execute in.
Hook handlers should live in the layer that is most appropriate for them. The
base or runtime layer will probably handle the install and upgrade hooks, relation
stubs will handle all of the relation hooks, etc.

After all of the hook handlers have run, other handlers are dispatched based
on the flags set by the hook handlers and any flags from previous runs.
Various hook invocations can each set their appropriate flags, and the reactive
handlers will be triggered when all of the appropriate flags are set,
regardless of when and in which order they are each set.

All handlers are tested and matching handlers queued before invoking the
first handler. Thus, flags set by a handler will not trigger new matching
handlers until after all of the current set of matching handlers are done.
This allows you to ensure some ordering of otherwise non-determined handler
invocation by chaining flags (e.g., handler_A sets flag_B, which triggers
handler_B which then sets flag_C, which triggers handler_C, and so on).

Note, however, that removing a flag causes the remaining set of matched handlers
to be re-tested. This ensures that a handler is never invoked when the flag is
no longer active.

 Reactive Triggers

Reactive Triggers

Coupling Flags with Triggers

In general, it is best to be explicit about setting or clearing a flag. This
makes the code more maintainable and easier to follow and reason about.
However, rarely, due to the fact that handlers for a given flag are
independent and thus there are no guarantees about the order in which they may
execute, it is sometimes necessary to enforce that two flags must be set at
the same time or that one must be cleared if the other is set.

As an example of when this might be necessary, consider a charm which provides
two config values, one that determines the location from which resources should
be fetched, with a default location provided by the charm, and another which
indicates that a particular feature be installed and enabled. If the charm is
deployed and fetches all of the resources, it might set a flag that indicates
that all resources are available and any installation can proceed. However, if
both resource location and feature flag config options are changed at the same
time, the handlers might be invoked in an order that causes the feature
installation to happen before the resource change has been observed, leading to
the feature using the wrong resource. This problem is particularly intractable
if the layer managing the resource location and readiness options is different
than the layer managing the feature option, such as with the apt layer.

Triggers provide a mechanism for a flag to indicate that when a particular flag
is set, another specific flag should be either set or cleared. To use a
trigger, you simply have to register it, which can be done from inside a
handler, or at the top level of your handlers file:

from charms.reactive.flags import register_trigger
from charms.reactive.flags import set_flag
from charms.reactive.decorators import when

register_trigger(when='flag_a',
 set_flag='flag_b')

@when('flag_b')
def handler():
 do_something()
 register_trigger(when='flag_a',
 clear_flag='flag_c')
 set_flag('flag_c')

When a trigger is registered, then as soon as the flag given by when is
set, the other flag is set or cleared at the same time. Thus, there is no
chance that another handler will run in between.

Keep in mind that since triggers are implicit, they should be used sparingly.
Most use cases can be better modeled by explicitly setting and clearing flags.

Example uses of triggers

Remove flags immediately when config changes

In the apt layer, the install_sources config option specifies which
repositories and ppa’s to use for installing a package, so these need to be
added before installing any package. This is easy to do with flags: you create
a handler that adds the sources and then sets the flag
apt.sources_configured. The handler that installs the packages reacts to
that flag with @when('apt.sources_configured'). This works perfectly the
first time but what happens if the install_sources config option gets
changed after they are first configured? Then the apt.sources_configured
flag needs to be cleared immediately before any new packages are installed.
This is where triggers come in: You create a trigger that unsets the
apt.sources_configured flag when the install_sources config changes.

register_trigger(when='config.changed.install_sources',
 clear_flag='apt.sources_configured')

@when_not('apt.sources_configured')
def sources_handler():
 configure_sources()
 set_state('apt.sources_configured')

@when_all('apt.needs_update',
 'apt.sources_configured')
def update():
 charms.apt.update()
 clear_flag('apt.sources_configured')

@when('apt.queued_installs')
@when_not('apt.needs_update')
def install_queued():
 charms.apt.install_queued()
 clear_flag('apt.queued_installs')

@when_not('apt.queued_installs')
def ensure_package_status():
 charms.apt.ensure_package_status()

 OS Series Upgrades

OS Series Upgrades

Upgrades of the operating system’s series, or version, are difficult to
automate in a general fashion, so most of the work is done manually by the
operator and the role that the charm plays is somewhat limited. However, the
charm does need to ensure that during the upgrade, all of the application
services on the unit are disabled and stopped so that nothing runs while the
operator is making changes that could break the application, even if the
machine is rebooted one or more times.

When the operator is about to initiate an OS upgrade, they will run:

juju upgrade-series <machine> prepare <target-series>

The framework will then set the upgrade.series.in-progress flag, which
will give the charm one and only one chance to disable and stop its application
services in preparation for the upgrade. Once that flag is set and the charm’s
handlers have had a chance to respond, Juju will no longer run any charm code
for the duration of the upgrade.

Once the operator has completed the upgrade, they will run:

juju upgrade-series <machine> complete

Juju will once again enable the charm code to run, and the framework will
re-bootstrap the charm environment to ensure that it is setup properly for the
new OS series. it will then remove the upgrade.series.in-progress flag.
At this point, the charm should check the new OS series and perform any
necessary migration the application may require to run on the new OS (unless
that was to be performed manually by the operator). Finally, the charm should
re-enable and start its application services.

Note that it is likely that the charm will need an additional self-managed flag
to track whether the application services were disabled. The handlers might
look something along the lines of:

@when('charm.application.started')
@when('upgrade.series.in-progress')
def disable_application():
 stop_app_services()
 disable_app_services()
 set_flag('charm.application.disabled')

@when('charm.application.disabled')
@when_not('upgrade.series.in-progress')
def enable_application():
 enable_app_services()
 start_app_services()
 clear_flag('charm.application.disabled')

 charms.reactive.bus

charms.reactive.bus

Summary

	BrokenHandlerException
	

	ExternalHandler
	A variant Handler for external executable actions (such as bash scripts).

	FlagWatch
	

	Handler
	Class representing a reactive flag handler.

	discover
	Discover handlers based on convention.

	dispatch
	Dispatch registered handlers.

Reference

	
exception charms.reactive.bus.BrokenHandlerException(path)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class charms.reactive.bus.ExternalHandler(filepath)

	Bases: charms.reactive.bus.Handler

A variant Handler for external executable actions (such as bash scripts).

External handlers must adhere to the following protocol:

	The handler can be any executable

	When invoked with the --test command-line flag, it should exit with
an exit code of zero to indicate that the handler should be invoked, and
a non-zero exit code to indicate that it need not be invoked. It can
also provide a line of output to be passed to the --invoke call, e.g.,
to indicate which sub-handlers should be invoked. The handler should
not perform its action when given this flag.

	When invoked with the --invoke command-line flag (which will be
followed by any output returned by the --test call), the handler
should perform its action(s).

	
id()

	

	
invoke()

	Call the external handler to be invoked.

	
classmethod register(filepath)

	

	
test()

	Call the external handler to test whether it should be invoked.

	
class charms.reactive.bus.FlagWatch

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
classmethod change(flag)

	

	
classmethod commit()

	

	
classmethod iteration(i)

	

	
key = 'reactive.state_watch'

	

	
classmethod reset()

	

	
classmethod watch(watcher, flags)

	

	
class charms.reactive.bus.Handler(action, suffix=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class representing a reactive flag handler.

	
add_args(args)

	Add arguments to be passed to the action when invoked.

	Parameters:	args – Any sequence or iterable, which will be lazily evaluated
to provide args. Subsequent calls to add_args() can be used
to add additional arguments.

	
add_post_callback(callback)

	Add a callback to be run after the action is invoked.

	
add_predicate(predicate)

	Add a new predicate callback to this handler.

	
classmethod clear()

	Clear all registered handlers.

	
classmethod get(action, suffix=None)

	Get or register a handler for the given action.

	Parameters:	
	action (func) – Callback that is called when invoking the Handler

	suffix (func) – Optional suffix for the handler’s ID

	
classmethod get_handlers()

	Get all registered handlers.

	
has_args

	Whether or not this Handler has had any args added via add_args().

	
id()

	

	
invoke()

	Invoke this handler.

	
register_flags(flags)

	Register flags as being relevant to this handler.

Relevant flags will be used to determine if the handler should
be re-invoked due to changes in the set of active flags. If this
handler has already been invoked during this dispatch() run
and none of its relevant flags have been set or removed since then,
then the handler will be skipped.

This is also used for linting and composition purposes, to determine
if a layer has unhandled flags.

	
test()

	Check the predicate(s) and return True if this handler should be invoked.

	
charms.reactive.bus.discover()

	Discover handlers based on convention.

Handlers will be loaded from the following directories and their subdirectories:

	$CHARM_DIR/reactive/

	$CHARM_DIR/hooks/reactive/

	$CHARM_DIR/hooks/relations/

They can be Python files, in which case they will be imported and decorated
functions registered. Or they can be executables, in which case they must
adhere to the ExternalHandler protocol.

	
charms.reactive.bus.dispatch(restricted=False)

	Dispatch registered handlers.

When dispatching in restricted mode, only matching hook handlers are executed.

Handlers are dispatched according to the following rules:

	Handlers are repeatedly tested and invoked in iterations, until the system
settles into quiescence (that is, until no new handlers match to be invoked).

	In the first iteration, @hook
and @action handlers will
be invoked, if they match.

	In subsequent iterations, other handlers are invoked, if they match.

	Added flags will not trigger new handlers until the next iteration,
to ensure that chained flags are invoked in a predictable order.

	Removed flags will cause the current set of matched handlers to be
re-tested, to ensure that no handler is invoked after its matching
flag has been removed.

	Other than the guarantees mentioned above, the order in which matching
handlers are invoked is undefined.

	Flags are preserved between hook and action invocations, and all matching
handlers are re-invoked for every hook and action. There are
decorators and
helpers
to prevent unnecessary reinvocations, such as
only_once().

 1.5.1

 Changelog

1.5.1

Tuesday Sep 20 2022

	Fixing wrong reference (#235)

1.5.0

Tuesday Nov 30 2021

	Support app level relation data on Endpoint (#232)

1.4.1

Friday Feb 19 2021

	Add set_flag and other aliases to RelationBase (#233)

1.4.0

Tuesday Jan 5 2021

	Switch to GitHub Workflows for PR tests (#229)

	Fix config.default.foo automatic flag doc (#223)

	Up-port get_unset_flags from lp:1836063 (#228)

	Add relation factory discovery and trigger callbacks (#227)

1.3.2

Friday July 17 2020

	Drop blacklist in favor of shebang and binary check (#225)

1.3.1

Thursday July 16 2020

	Exclude .pyc and __pycache__ files from discovery (#224)

	Fix typo and update link to action params definition (#220)

	Fix link to charm-helpers in layer-basic docs (#219)

	Reverse diagram to match text (#216)

1.3.0

Monday Aug 26 2019

	Add pattern for request / response Endpoints (#215)

	Update link to the juju docs on debugging (#214)

	Separate layer-options sidenote from the main text (#211)

1.2.1

Wednesday Apr 3 2019

	Fix errant str.format handling of flags in expand_name (#210)

	Remove departed flag when joined (#209)

1.2.0

Wednesday Feb 6 2019

	Add ability to trigger on flag being cleared (#205)

	Add documentation for python_packages layer option (#204)

	Fix docs on upgrade series for final syntax (#203)

	Add OS Series Upgrades to main index (#202)

	Turn on flag and handler log tracing for all charms (#200)

	Update docs around hook.template and call out removing apt package (#199)

1.1.2

Thursday Oct 4 2018

	Adjust imports to work with Python 3.4 (#194)

	Adjust tests to work with older Ubuntu 14.04 (trusty) packages

	Update CI for charm-tools snap confinement change.

1.1.1

Friday Sep 28 2018

	Add is_data_changed to export list (#193)

1.1.0

Friday Sep 28 2018

	Flag and handler trace logging (#191)

	Add non-destructive version of data_changed (#188)

1.0.0

Wednesday Aug 8 2018

	Preliminary support for operating system series upgrades (#183)

	Hotfix for Python 3.4 incompatibility (#181)

	Hotfix adding missed backwards compatibility alias (#176)

	Documentation updates, including merging in core layer docs (#186)

	Acknowledgment by version number that this is mature software
(and has been for quite some time).

0.6.3

Tuesday Apr 24 2018

	Export endpoint_from_name as well (#174)

	Rename Endpoint.joined to Endpoint.is_joined (#168)

	Only pass one copy of self to Endpoint method handlers (#172)

	Make Endpoint.from_flag return None for unset flags (#173)

	Fix hard-coded version in docs config (#167)

	Fix documentation of unit_name and application_name on RelatedUnit (#165)

	Fix setdefault on Endpoint data collections (#163)

0.6.2

Friday Feb 23 2018

	Hotfix for issue #161 (#162)

	Add diagram showing endpoint workflow and all_departed_units example to docs (#157)

	Fix doc builds on RTD (#156)

0.6.1

	Separate departed units from joined in Endpoint (#153)

	Add deprecated placeholder for RelationBase.from_state (#148)

0.6.0

	Endpoint base for easier interface layers (#123)

	Public API is now only documented via the top level charms.reactive namespace.
The internal organization of the library is not part of the public API.

	Added layer-basic docs (#144)

	Fix test error from juju-wait snap (#143)

	More doc fixes (#140)

	Update help output in charms.reactive.sh (#136)

	Multiple docs fixes (#134)

	Fix import in triggers.rst (#133)

	Update README (#132)

	Fixed test, order doesn’t matter (#131)

	Added FAQ section to docs (#129)

	Deprecations:
	relation_from_name (renamed to endpoint_from_name)

	relation_from_flag (renamed to endpoint_from_flag)

	RelationBase.from_state (use endpoint_from_flag instead)

0.5.0

	Add flag triggers (#121)

	Add integration test to Travis to build and deploy a reactive charm (#120)

	Only execute matching hooks in restricted context. (#119)

	Rename “state” to “flag” and deprecate “state” name (#112)

	Allow pluggable alternatives to RelationBase (#111)

	Deprecations:
	State

	StateList

	set_state (renamed to set_flag)

	remove_state (renamed to clear_flag)

	toggle_state (renamed to toggle_flag)

	is_state (renamed to is_flag_set)

	all_states (renamed to all_flags)

	any_states (renamed to any_flags)

	get_states (renamed to get_flags)

	get_state

	only_once

	relation_from_state (renamed to relation_from_flag)

0.4.7

	Move docs to ReadTheDocs because PythonHosted is deprecated

	Fix cold loading of relation instances (#106)

0.4.6

	Correct use of templating.render (fixes #93)

	Add comments to bash reactive wrappers

	Use the standard import mechanism with module discovery

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 charms	

 	
 	
 charms.reactive.bus	

 	
 	
 charms.reactive.cli	

 	
 	
 charms.reactive.decorators	

 	
 	
 charms.reactive.endpoints	

 	
 	
 charms.reactive.flags	

 	
 	
 charms.reactive.helpers	

 	
 	
 charms.reactive.patterns.request_response	

 	
 	
 charms.reactive.relations	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_args() (charms.reactive.bus.Handler method)

 	add_post_callback() (charms.reactive.bus.Handler method)

 	add_predicate() (charms.reactive.bus.Handler method)

 	all_departed_units (charms.reactive.endpoints.Endpoint attribute)

 	all_flags_set() (in module charms.reactive.flags)

 	all_joined_units (charms.reactive.endpoints.Endpoint attribute)

 	all_requests (charms.reactive.patterns.request_response.ResponderEndpoint attribute)

 	all_states() (in module charms.reactive.flags)

 	
 	all_units (charms.reactive.endpoints.Endpoint attribute)

 	any_file_changed() (in module charms.reactive.helpers)

 	any_flags_set() (in module charms.reactive.flags)

 	any_states() (in module charms.reactive.flags)

 	append() (charms.reactive.endpoints.CachedKeyList method)

 	application_name (charms.reactive.endpoints.RelatedUnit attribute)

 	(charms.reactive.endpoints.Relation attribute)

 	auto_accessors (charms.reactive.relations.RelationBase attribute)

B

 	
 	BaseRequest (class in charms.reactive.patterns.request_response)

 	
 	BaseResponse (class in charms.reactive.patterns.request_response)

 	BrokenHandlerException

C

 	
 	CachedKeyList (class in charms.reactive.endpoints)

 	change() (charms.reactive.bus.FlagWatch class method)

 	charms.reactive.bus (module)

 	charms.reactive.cli (module)

 	charms.reactive.decorators (module)

 	charms.reactive.endpoints (module)

 	charms.reactive.flags (module)

 	charms.reactive.helpers (module)

 	charms.reactive.patterns.request_response (module)

 	charms.reactive.relations (module)

 	clear() (charms.reactive.bus.Handler class method)

 	(charms.reactive.endpoints.CachedKeyList method)

 	
 	clear_flag() (in module charms.reactive.flags)

 	collect_metrics() (in module charms.reactive.decorators)

 	CombinedUnitsView (class in charms.reactive.endpoints)

 	commit() (charms.reactive.bus.FlagWatch class method)

 	conversation() (charms.reactive.relations.RelationBase method)

 	conversations() (charms.reactive.relations.RelationBase method)

 	create() (charms.reactive.patterns.request_response.BaseRequest class method)

 	(charms.reactive.patterns.request_response.BaseResponse class method)

 	create_or_update() (charms.reactive.patterns.request_response.BaseRequest class method)

 	create_response() (charms.reactive.patterns.request_response.BaseRequest method)

D

 	
 	data_changed() (in module charms.reactive.helpers)

 	
 	discover() (in module charms.reactive.bus)

 	dispatch() (in module charms.reactive.bus)

E

 	
 	egress_subnets (charms.reactive.patterns.request_response.BaseRequest attribute)

 	endpoint (charms.reactive.endpoints.Relation attribute)

 	Endpoint (class in charms.reactive.endpoints)

 	endpoint_from_flag() (in module charms.reactive.relations)

 	endpoint_from_name() (in module charms.reactive.relations)

 	
 	endpoint_name (charms.reactive.endpoints.Endpoint attribute)

 	(charms.reactive.endpoints.Relation attribute)

 	expand_name() (charms.reactive.endpoints.Endpoint method)

 	extend() (charms.reactive.endpoints.CachedKeyList method)

 	ExternalHandler (class in charms.reactive.bus)

F

 	
 	Field (class in charms.reactive.patterns.request_response)

 	FieldFinders (class in charms.reactive.patterns.request_response)

 	FieldHolderDictProxy (class in charms.reactive.patterns.request_response)

 	find() (charms.reactive.patterns.request_response.BaseRequest class method)

 	find_all() (charms.reactive.patterns.request_response.BaseRequest class method)

 	
 	FlagWatch (class in charms.reactive.bus)

 	from_flag() (charms.reactive.endpoints.Endpoint class method)

 	(charms.reactive.relations.RelationBase class method)

 	from_name() (charms.reactive.endpoints.Endpoint class method)

 	(charms.reactive.relations.RelationBase class method)

 	from_state() (charms.reactive.relations.RelationBase class method)

G

 	
 	get() (charms.reactive.bus.Handler class method)

 	(charms.reactive.endpoints.JSONUnitDataView method)

 	(charms.reactive.endpoints.UnitDataView method)

 	(charms.reactive.patterns.request_response.BaseRequest class method)

 	get_all() (charms.reactive.patterns.request_response.BaseRequest class method)

 	get_flags() (in module charms.reactive.flags)

 	
 	get_handlers() (charms.reactive.bus.Handler class method)

 	get_local() (charms.reactive.relations.RelationBase method)

 	get_remote() (charms.reactive.relations.RelationBase method)

 	get_states() (in module charms.reactive.flags)

 	get_unset_flags() (in module charms.reactive.flags)

 	GLOBAL (charms.reactive.relations.scopes attribute)

H

 	
 	Handler (class in charms.reactive.bus)

 	
 	has_args (charms.reactive.bus.Handler attribute)

 	hook() (in module charms.reactive.decorators)

I

 	
 	id() (charms.reactive.bus.ExternalHandler method)

 	(charms.reactive.bus.Handler method)

 	ingress_address (charms.reactive.patterns.request_response.BaseRequest attribute)

 	invoke() (charms.reactive.bus.ExternalHandler method)

 	(charms.reactive.bus.Handler method)

 	is_created (charms.reactive.patterns.request_response.BaseRequest attribute)

 	is_data_changed() (in module charms.reactive.helpers)

 	is_flag_set() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	
 	is_joined (charms.reactive.endpoints.Endpoint attribute)

 	is_received (charms.reactive.patterns.request_response.BaseRequest attribute)

 	(charms.reactive.patterns.request_response.BaseResponse attribute)

 	is_state() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	items() (charms.reactive.endpoints.KeyList method)

 	iteration() (charms.reactive.bus.FlagWatch class method)

J

 	
 	joined (charms.reactive.endpoints.Endpoint attribute)

 	
 	joined_units (charms.reactive.endpoints.Relation attribute)

 	JSONUnitDataView (class in charms.reactive.endpoints)

K

 	
 	key (charms.reactive.bus.FlagWatch attribute)

 	
 	KeyList (class in charms.reactive.endpoints)

 	keys() (charms.reactive.endpoints.KeyList method)

L

 	
 	load() (charms.reactive.endpoints.CachedKeyList class method)

M

 	
 	manage_flags() (charms.reactive.endpoints.Endpoint method)

 	meter_status_changed() (in module charms.reactive.decorators)

 	
 	modified (charms.reactive.endpoints.JSONUnitDataView attribute)

 	(charms.reactive.endpoints.UnitDataView attribute)

N

 	
 	new_requests (charms.reactive.patterns.request_response.ResponderEndpoint attribute)

 	
 	not_unless() (in module charms.reactive.decorators)

O

 	
 	only_once() (in module charms.reactive.decorators)

P

 	
 	pop() (charms.reactive.endpoints.CachedKeyList method)

 	(charms.reactive.endpoints.KeyList method)

R

 	
 	raw_data (charms.reactive.endpoints.JSONUnitDataView attribute)

 	received (charms.reactive.endpoints.CombinedUnitsView attribute)

 	(charms.reactive.endpoints.RelatedUnit attribute)

 	received_app (charms.reactive.endpoints.Relation attribute)

 	received_app_raw (charms.reactive.endpoints.Relation attribute)

 	received_raw (charms.reactive.endpoints.CombinedUnitsView attribute)

 	(charms.reactive.endpoints.RelatedUnit attribute)

 	register() (charms.reactive.bus.ExternalHandler class method)

 	register_flags() (charms.reactive.bus.Handler method)

 	register_trigger() (in module charms.reactive.flags)

 	register_triggers() (charms.reactive.endpoints.Endpoint method)

 	RelatedUnit (class in charms.reactive.endpoints)

 	relation (charms.reactive.endpoints.RelatedUnit attribute)

 	Relation (class in charms.reactive.endpoints)

 	relation_from_flag() (in module charms.reactive.relations)

 	relation_from_state() (in module charms.reactive.relations)

 	relation_id (charms.reactive.endpoints.Relation attribute)

 	relation_name (charms.reactive.relations.RelationBase attribute)

 	
 	RelationBase (class in charms.reactive.relations)

 	RelationBase.states (class in charms.reactive.relations)

 	relations (charms.reactive.endpoints.Endpoint attribute)

 	remove() (charms.reactive.endpoints.CachedKeyList method)

 	remove_flag() (charms.reactive.relations.RelationBase method)

 	remove_state() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	REQUEST_CLASS (charms.reactive.patterns.request_response.RequesterEndpoint attribute)

 	(charms.reactive.patterns.request_response.ResponderEndpoint attribute)

 	request_id (charms.reactive.patterns.request_response.BaseRequest attribute)

 	RequesterEndpoint (class in charms.reactive.patterns.request_response)

 	requests (charms.reactive.patterns.request_response.RequesterEndpoint attribute)

 	reset() (charms.reactive.bus.FlagWatch class method)

 	respond() (charms.reactive.patterns.request_response.BaseRequest method)

 	ResponderEndpoint (class in charms.reactive.patterns.request_response)

 	response_by_field() (charms.reactive.patterns.request_response.RequesterEndpoint method)

 	RESPONSE_CLASS (charms.reactive.patterns.request_response.BaseRequest attribute)

 	responses (charms.reactive.patterns.request_response.RequesterEndpoint attribute)

S

 	
 	scope (charms.reactive.relations.RelationBase attribute)

 	scopes (class in charms.reactive.relations)

 	SERVICE (charms.reactive.relations.scopes attribute)

 	set_flag() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	set_local() (charms.reactive.relations.RelationBase method)

 	
 	set_remote() (charms.reactive.relations.RelationBase method)

 	set_state() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	setdefault() (charms.reactive.endpoints.JSONUnitDataView method)

 	(charms.reactive.endpoints.UnitDataView method)

 	SetNameBackport (class in charms.reactive.patterns.request_response)

T

 	
 	test() (charms.reactive.bus.ExternalHandler method)

 	(charms.reactive.bus.Handler method)

 	to_publish (charms.reactive.endpoints.Relation attribute)

 	to_publish_app (charms.reactive.endpoints.Relation attribute)

 	to_publish_app_raw (charms.reactive.endpoints.Relation attribute)

 	
 	to_publish_raw (charms.reactive.endpoints.Relation attribute)

 	toggle_flag() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

 	toggle_state() (charms.reactive.relations.RelationBase method)

 	(in module charms.reactive.flags)

U

 	
 	UNIT (charms.reactive.relations.scopes attribute)

 	unit_name (charms.reactive.endpoints.RelatedUnit attribute)

 	
 	UnitDataView (class in charms.reactive.endpoints)

 	units (charms.reactive.endpoints.Relation attribute)

V

 	
 	values() (charms.reactive.endpoints.KeyList method)

W

 	
 	watch() (charms.reactive.bus.FlagWatch class method)

 	when() (in module charms.reactive.decorators)

 	when_all() (in module charms.reactive.decorators)

 	when_any() (in module charms.reactive.decorators)

 	when_file_changed() (in module charms.reactive.decorators)

 	
 	when_none() (in module charms.reactive.decorators)

 	when_not() (in module charms.reactive.decorators)

 	when_not_all() (in module charms.reactive.decorators)

 	writeable (charms.reactive.endpoints.JSONUnitDataView attribute)

 	(charms.reactive.endpoints.UnitDataView attribute)

 charms.reactive.cli

charms.reactive.cli

Commands

charms.reactive hook [-h] [hook_patterns [hook_patterns …]]

Check if the current hook matches one of the patterns.

charms.reactive mark_invoked [-h] [handler_ids [handler_ids …]]

Record that the handler has been invoked, for use with only_once.

charms.reactive only_once [-h] handler_id

Check if handler has already been run in the past.

charms.reactive render_template [-h] source target

Render a Jinja2 template from $CHARM_DIR/templates using the current
environment variables as the template context.

charms.reactive test [-h] [handlers [handlers …]]

Combined test function to apply one or more tests to multiple handlers.

Each handler spec given should be a single argument but can contain shell
quotes to group the parts, and should follow the form:

‘HANDLER_NAME HANDLER_ID [TEST_NAME TEST_ARGS]…’

Each TEST_ARGS value can have further shell quoting. For example:

charms.reactive test ‘foo foo_id when “foo.connected foo.available” when_not foo.disabled’

charms.reactive when [-h] [desired_flags [desired_flags …]]

Alias of when_all.

charms.reactive when_all [-h] [desired_flags [desired_flags …]]

Check if all of the desired_flags are active and have changed.

charms.reactive when_any [-h] [desired_flags [desired_flags …]]

Check if any of the desired_flags are active and have changed.

charms.reactive when_file_changed [-h] [filenames [filenames …]]

Check if files have changed since the last time they were checked.

charms.reactive when_none [-h] [desired_flags [desired_flags …]]

Check if none of the desired_flags are active and have changed.

charms.reactive when_not [-h] [desired_flags [desired_flags …]]

Alias of when_none.

charms.reactive when_not_all [-h] [desired_flags [desired_flags …]]

Check if at least one of the desired_flags is not active.

 charms.reactive.decorators

charms.reactive.decorators

Summary

These decorators turn a regular function into a reactive handler so that it will
be invoked if the conditions in the decorators are met. These decorators are
also called the preconditions of the handlers. If a handler has multiple
decorators, they will be ANDed together: the handler will only be invoked if
all of the individual decorators match.

Handlers are currently re-invoked for every hook execution, even if their
predicate flags have not changed. However, this may well change in the future,
and it is highly recommended that you not rely on this behavior. If you need to
ensure that a particular handler runs again, you should set or remove one of its
predicate flags.

Regular handlers should not accept any arguments. When a handler needs to use a
(relationship) Endpoint, it can access
the endpoint object via endpoint_from_flag().
The only exceptions to this are endpoint handlers, handlers that are instance
methods of Endpoint: they get the
endpoint object as the self argment.

For backwards compatibility, some decorators will pass endpoint instances if
the handler function specifies them as arguments. However, explicit instance
access using endpoint_from_flag is recommended, because ensuring proper
argument order can be confusing: they are passed in bottom-up, left-to-right,
and no negative or ambiguous decorators, such as
when_not() or
when_any() will ever pass arguments. Note
that a handler function that doesn’t take arguments will never receive these
instances.

	collect_metrics
	Register the decorated function to run for the collect_metrics hook.

	hook
	Register the decorated function to run when the current hook matches any of the hook_patterns.

	meter_status_changed
	Register the decorated function to run when a meter status change has been detected.

	not_unless
	Assert that the decorated function can only be called if the desired_flags are active.

	when
	Alias for when_all().

	when_all
	Register the decorated function to run when all of desired_flags are active.

	when_any
	Register the decorated function to run when any of desired_flags are active.

	when_file_changed
	Register the decorated function to run when one or more files have changed.

	when_none
	Register the decorated function to run when none of desired_flags are active.

	when_not
	Alias for when_none().

	when_not_all
	Register the decorated function to run when one or more of the desired_flags are not active.

Reference

	
charms.reactive.decorators.when(*desired_flags)

	Alias for when_all().

	
charms.reactive.decorators.when_all(*desired_flags)

	Register the decorated function to run when all of desired_flags are active.

Note that handlers whose conditions match are triggered at least once per
hook invocation.

For backwards compatibility, this decorator can pass arguments, but it is
recommended to use argument-less handlers. See
the summary for more information.

	
charms.reactive.decorators.when_any(*desired_flags)

	Register the decorated function to run when any of desired_flags are active.

This decorator will never cause arguments to be passed to the handler.

Note that handlers whose conditions match are triggered at least once per
hook invocation.

	
charms.reactive.decorators.when_not(*desired_flags)

	Alias for when_none().

	
charms.reactive.decorators.when_none(*desired_flags)

	Register the decorated function to run when none of desired_flags are
active.

This decorator will never cause arguments to be passed to the handler.

Note that handlers whose conditions match are triggered at least once per
hook invocation.

	
charms.reactive.decorators.when_not_all(*desired_flags)

	Register the decorated function to run when one or more of the
desired_flags are not active.

This decorator will never cause arguments to be passed to the handler.

Note that handlers whose conditions match are triggered at least once per
hook invocation.

	
charms.reactive.decorators.not_unless(*desired_flags)

	Assert that the decorated function can only be called if the desired_flags
are active.

Note that, unlike when(), this does not trigger the decorated
function if the flags match. It only raises an exception if the
function is called when the flags do not match.

This is primarily for informational purposes and as a guard clause.

	
charms.reactive.decorators.when_file_changed(*filenames, **kwargs)

	Register the decorated function to run when one or more files have changed.

	Parameters:	
	filenames (list [https://docs.python.org/3/library/stdtypes.html#list]) – The names of one or more files to check for changes
(a callable returning the name is also accepted).

	hash_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of hash to use for determining if a file has
changed. Defaults to ‘md5’. Must be given as a kwarg.

	
charms.reactive.decorators.collect_metrics()

	Register the decorated function to run for the collect_metrics hook.

	
charms.reactive.decorators.meter_status_changed()

	Register the decorated function to run when a meter status change has been detected.

	
charms.reactive.decorators.only_once(action=None)

	
Deprecated since version 0.5.0: Use when_not() in combination with set_state() instead. This
handler is deprecated because it might actually be
called multiple times [https://github.com/juju-solutions/charms.reactive/issues/22].

Register the decorated function to be run once, and only once.

This decorator will never cause arguments to be passed to the handler.

	
charms.reactive.decorators.hook(*hook_patterns)

	Register the decorated function to run when the current hook matches any of
the hook_patterns.

This decorator is generally deprecated and should only be used when
absolutely necessary.

The hook patterns can use the {interface:...} and {A,B,...} syntax
supported by any_hook().

Note that hook decorators cannot be combined with when() or
when_not() decorators.

 charms.reactive.flags

charms.reactive.flags

Summary

	all_flags_set
	Assert that all desired_flags are set

	any_flags_set
	Assert that any of the desired_flags are set

	clear_flag
	Clear / deactivate a flag.

	get_flags
	Return a list of all flags which are set.

	get_unset_flags
	Check if any of the provided flags missing and return them if so.

	is_flag_set
	Assert that a flag is set

	register_trigger
	Register a trigger to set or clear a flag when a given flag is set.

	set_flag
	Set the given flag as active.

	toggle_flag
	Helper that calls either set_flag() or clear_flag(), depending on the value of should_set.

Reference

	
charms.reactive.flags.set_flag(flag)

	Set the given flag as active.

	Parameters:	flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of flag to set.

Note

Changes to flags are reset when a handler crashes. Changes to
flags happen immediately, but they are only persisted at the end of a
complete and successful run of the reactive framework. All unpersisted
changes are discarded when a hook crashes.

	
charms.reactive.flags.clear_flag(flag)

	Clear / deactivate a flag.

	Parameters:	flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of flag to set.

Note

Changes to flags are reset when a handler crashes. Changes to
flags happen immediately, but they are only persisted at the end of a
complete and successful run of the reactive framework. All unpersisted
changes are discarded when a hook crashes.

	
charms.reactive.flags.toggle_flag(flag, should_set)

	Helper that calls either set_flag() or clear_flag(),
depending on the value of should_set.

Equivalent to:

if should_set:
 set_flag(flag)
else:
 clear_flag(flag)

	Parameters:	
	flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of flag to toggle.

	should_set (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to set the flag, or clear it.

Note

Changes to flags are reset when a handler crashes. Changes to
flags happen immediately, but they are only persisted at the end of a
complete and successful run of the reactive framework. All unpersisted
changes are discarded when a hook crashes.

	
charms.reactive.flags.register_trigger(when=None, when_not=None, set_flag=None, clear_flag=None, callback=None)

	Register a trigger to set or clear a flag when a given flag is set.

Note: Flag triggers are handled at the same time that the given flag is set.

	Parameters:	
	when (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Flag to trigger on when it is set.

	when_not (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Flag to trigger on when it is cleared.

	set_flag (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If given, this flag will be set when the relevant flag is changed.

	clear_flag (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If given, this flag will be cleared when the relevant flag is changed.

	Any]] callback (Optional[Callable[[],) – If given, this callback will be invoked when the relevant flag is changed.

Note: Exactly one of either when or when_not, and at least one of
set_flag, clear_flag, or callback must be provided.

	
charms.reactive.flags.is_flag_set(flag)

	Assert that a flag is set

	
charms.reactive.flags.all_flags_set(*desired_flags)

	Assert that all desired_flags are set

	
charms.reactive.flags.any_flags_set(*desired_flags)

	Assert that any of the desired_flags are set

	
charms.reactive.flags.get_flags()

	Return a list of all flags which are set.

	
charms.reactive.flags.get_unset_flags(*desired_flags)

	Check if any of the provided flags missing and return them if so.

	Parameters:	desired_flags (non-keyword args, str [https://docs.python.org/3/library/stdtypes.html#str]) – list of reactive flags

	Returns:	list of unset flags filtered from the parameters shared

	Return type:	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
charms.reactive.flags.set_state(state, value=None)

	
Deprecated since version 0.5.0: Alias of set_flag().

	
charms.reactive.flags.remove_state(state)

	
Deprecated since version 0.5.0: Alias of clear_flag()

	
charms.reactive.flags.toggle_state(state, should_set)

	
Deprecated since version 0.5.0: Alias of toggle_flag()

	
charms.reactive.flags.is_state(state)

	
Deprecated since version 0.5.0: Alias for is_flag_set()

	
charms.reactive.flags.all_states(*desired_states)

	
Deprecated since version 0.5.0: Alias for all_flags_set()

	
charms.reactive.flags.get_states()

	
Deprecated since version 0.5.0: Use get_flags() instead.

Return a mapping of all active states to their values.

	
charms.reactive.flags.any_states(*desired_states)

	
Deprecated since version 0.5.0: Alias for any_flags_set()

 charms.reactive.helpers

charms.reactive.helpers

Summary

	any_file_changed
	Check if any of the given files have changed since the last time this was called.

	any_hook
	Assert that the currently executing hook matches one of the given patterns.

	data_changed
	Check if the given set of data has changed since the previous call.

	is_data_changed
	Check if the given set of data has changed since the last time data_changed was called.

	mark_invoked
	Mark the given ID as having been invoked, for use with was_invoked().

	was_invoked
	Returns whether the given ID has been invoked before, as per mark_invoked().

Reference

	
charms.reactive.helpers.data_changed(data_id, data, hash_type='md5')

	Check if the given set of data has changed since the previous call.

This works by hashing the JSON-serialization of the data. Note that,
while the data will be serialized using sort_keys=True, some types
of data structures, such as sets, may lead to false positivies.

	Parameters:	
	data_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique identifier for this set of data.

	data – JSON-serializable data.

	hash_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any hash algorithm supported by hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib].

	
charms.reactive.helpers.is_data_changed(data_id, data, hash_type='md5')

	Check if the given set of data has changed since the last time
data_changed was called.

That is, this is a non-destructive way to check if the data has changed.

	Parameters:	
	data_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique identifier for this set of data.

	data – JSON-serializable data.

	hash_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any hash algorithm supported by hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib].

	
charms.reactive.helpers.any_file_changed(filenames, hash_type='md5')

	Check if any of the given files have changed since the last time this
was called.

	Parameters:	
	filenames (list [https://docs.python.org/3/library/stdtypes.html#list]) – Names of files to check. Accepts callables returning
the filename.

	hash_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Algorithm to use to check the files.

 charms.reactive.patterns

charms.reactive.patterns

	BaseRequest
	Base class for requests using the request / response pattern.

	BaseResponse
	Base class for responses using the request / response pattern.

	Field
	Defines a Field property for a Request or Response object.

	FieldFinders
	Metaclass for defining response_by_FIELD methods on RequesterEndpoint classes.

	FieldHolderDictProxy
	Base class for field holders that makes it act like a dict for easy serialization.

	RequesterEndpoint
	Base class for Endpoints that create requests in the request / response pattern.

	ResponderEndpoint
	Base class for Endpoints that respond to requests in the request / response pattern.

	SetNameBackport
	Metaclass to backport the __set_name__ behavior for data descriptors, which was added in Python 3.6, to earlier versions.

Reference

	
class charms.reactive.patterns.request_response.BaseRequest(source, request_id)

	Bases: charms.reactive.patterns.request_response.FieldHolderDictProxy

Base class for requests using the request / response pattern.

Subclasses must set the RESPONSE_CLASS attribute to a subclass of
the BaseResponse which defines the fields that the response will
use. They must also define additional attributes as :class:`Field`s.

For example:

class TLSResponse(BaseResponse):
 key = Field('Private key for the cert')
 cert = Field('Public cert info')

class TLSRequest(BaseRequest):
 RESPONSE_CLASS = TLSResponse

 common_name = Field('Common Name (CN) for the cert to be created')
 sans = Field('List of Subject Alternative Names (SANs)')

	
RESPONSE_CLASS = None

	

	
classmethod create(relation, **fields)

	Create a new request.

Fields and their values can be passed in to pre-populate the request as
keyword arguments, or can be set individually on the resulting request.

	
classmethod create_or_update(match_fields, relation, **fields)

	Find a request and update it, or create a new one.

If multiple requests match, only the first one is updated.

	Parameters:	
	match_fields – List of the field names to match by.

	relation – Relation to find or create the request on.

	**fields – Name / value pairs to match by and update to.

	Returns:	The new or updated request.

Example:

for relation in self.relations:
 JobRequest.create_or_update(match_fields=['job_name'],
 relation=relation,
 job_name='foo',
 job_data=job_data)

	
create_response(**fields)

	Create a response to this request.

Fields and their values can be passed in to pre-populate the response
as keyword arguments, or can be set individually on the resulting
response.

Returns the response object (which can also be accessed as
request.response).

	
egress_subnets

	Subnets over which network traffic to the requester will flow.

	
classmethod find(relation=None, **fields)

	Find the first request whose fields match the given values.

	Parameters:	
	relation – If given, look for the request on a specific relation.

	**fields – Name / value pairs to match by.

	
classmethod find_all(**fields)

	Find all requests whose fields match the given values.

	Parameters:	**fields – Name / value pairs to match by.

	
classmethod get(request_id)

	Get a specific request by ID.

	
classmethod get_all()

	Get a list of all requests (in order of their ID).

	
ingress_address

	Address to use if a connection to the requester is required.

	
is_created

	Whether this request was created by this side of the relation.

	
is_received

	Whether this request was received by the other side of the relation.

	
request_id

	UUID for this request. Will be automatically generated.

	
respond(**fields)

	Respond to this request. (Alias of create_response().)

Fields and their values can be passed in to pre-populate the response
as keyword arguments, or can be set individually on the resulting
response.

Returns the response object (which can also be accessed as
request.response).

	
class charms.reactive.patterns.request_response.BaseResponse(request)

	Bases: charms.reactive.patterns.request_response.FieldHolderDictProxy

Base class for responses using the request / response pattern.

	
classmethod create(request, **fields)

	Create a response to the given request.

Fields and their values can be passed in to pre-populate the response
as keyword arguments, or can be set individually on the resulting
response.

	
is_received

	

	
class charms.reactive.patterns.request_response.Field(description)

	Bases: property [https://docs.python.org/3/library/functions.html#property]

Defines a Field property for a Request or Response object.

Can be set or retrieved like a normal attribute, and will be automatically
serialized over the relation using JSON.

	
class charms.reactive.patterns.request_response.FieldFinders(name, bases, namespace)

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for defining response_by_FIELD methods on
RequesterEndpoint classes.

This is done as a metaclass to handle fields on derived classes but
to still allow the methods to show up in the class’s documentation.

	
class charms.reactive.patterns.request_response.FieldHolderDictProxy

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Base class for field holders that makes it act like a dict for easy
serialization.

	
class charms.reactive.patterns.request_response.RequesterEndpoint(*args, **kwargs)

	Bases: charms.reactive.endpoints.Endpoint

Base class for Endpoints that create requests in the request / response
pattern.

Subclasses must set the REQUEST_CLASS attribute to a subclass
of BaseRequest which defines the fields the request will use.

Will automatically manage the following flags:

	endpoint.{endpoint_name}.has_responses Set if any responses are
available

	endpoint.{endpoint_name}.all_responses Set if all requests have
responses.

	
REQUEST_CLASS = None

	

	
requests

	A list of all requests which have been submitted.

	
response_by_field(relation=None, **fields)

	Find a response by the value(s) of fields on its request.

	Parameters:	
	relation – If given, limit the search to that relation.

	**fields – Name / value pairs to match by.

	
responses

	A list of all responses which have been received.

	
class charms.reactive.patterns.request_response.ResponderEndpoint(*args, **kwargs)

	Bases: charms.reactive.endpoints.Endpoint

Base class for Endpoints that respond to requests in the request / response
pattern.

Subclasses must set the REQUEST_CLASS attribute to a subclass
of BaseRequest which defines the fields the request will use.

Will automatically manage the following flags:

	endpoint.{endpoint_name}.has_requests Set if any requests are
available

	endpoint.{endpoint_name}.new_requests Set if any unhandled requests
are available.

	
REQUEST_CLASS = None

	

	
all_requests

	A list of all requests, including ones which have been responded to.

	
new_requests

	A list of requests which have not been responded.

Requests should be handled by the charm and then responded to by
calling request.respond(...).

	
class charms.reactive.patterns.request_response.SetNameBackport

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass to backport the __set_name__ behavior for data descriptors,
which was added in Python 3.6, to earlier versions.

 charms.reactive.endpoints

charms.reactive.endpoints

Summary

This is the transitional location of the new Endpoint
base for writing interface layers. Eventually, this should be moved in to charms.reactive.relations.

	CachedKeyList
	Variant of KeyList where items are serialized and persisted or removed from the persisted copy, whenever the list is modified.

	CombinedUnitsView
	A KeyList view of RelatedUnit items, with properties to access a merged view of all of the units’ data.

	Endpoint
	New base class for creating interface layers.

	JSONUnitDataView
	View of a dict that performs automatic JSON en/decoding of items.

	KeyList
	List that also allows accessing items keyed by an attribute on the items.

	RelatedUnit
	Class representing a remote unit on a relation.

	Relation
	

	UnitDataView
	View of a dict containing a unit’s data.

Reference

	
class charms.reactive.endpoints.CachedKeyList(cache_key, items, key_attr)

	Bases: charms.reactive.endpoints.KeyList

Variant of KeyList where items are serialized and persisted
or removed from the persisted copy, whenever the list is modified.

	
append(value)

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
extend(values)

	Extend list by appending elements from the iterable.

	
classmethod load(cache_key, deserializer, key_attr)

	Load the persisted cache and return a new instance of this class.

	
pop(key)

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove(value)

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
class charms.reactive.endpoints.CombinedUnitsView(items)

	Bases: charms.reactive.endpoints.KeyList

A KeyList view of
RelatedUnit items, with properties to
access a merged view of all of the units’ data.

You can iterate over this view like any other list, or you can look up units
by their unit_name. Units will be in order by relation ID and unit
name. If a given unit name occurs more than once, accessing it by
unit_name will return the one from the lowest relation ID:

given the following relations...
{
 'endpoint:1': {
 'unit/1': {
 'key0': 'value0_1_1',
 'key1': 'value1_1_1',
 },
 'unit/0': {
 'key0': 'value0_1_0',
 'key1': 'value1_1_0',
 },
 },
 'endpoint:0': {
 'unit/1': {
 'key0': 'value0_0_1',
 'key2': 'value2_0_1',
 },
 },
}

from_all = endpoint.all_units['unit/1']
by_rel = endpoint.relations['endpoint:0'].units['unit/1']
by_index = endpoint.relations[0].units[1]
assert from_all is by_rel
assert by_rel is by_index

You can also use the
received or
received_raw
properties just like you would on a single unit. The data in these
collections will have all of the data from every unit, with units with the
lowest relation ID and unit name taking precedence if multiple units have
set a given field. For example:

given the same relations as above...

the values across all relations would be:
assert endpoint.all_units.received['key0'] == 'value0_0_0'
assert endpoint.all_units.received['key1'] == 'value1_1_0'
assert endpoint.all_units.received['key2'] == 'value2_0_1'

across individual relations:
assert endpoint.relations[0].units.received['key0'] == 'value0_0_1'
assert endpoint.relations[0].units.received['key1'] == None
assert endpoint.relations[0].units.received['key2'] == 'value2_0_1'
assert endpoint.relations[1].units.received['key0'] == 'value0_1_0'
assert endpoint.relations[1].units.received['key1'] == 'value1_1_0'
assert endpoint.relations[1].units.received['key2'] == None

and of course you an access them by individual unit
assert endpoint.relations['endpoint:1'].units['unit/1'].received['key0'] == 'value0_1_1'

	
received

	Combined JSONUnitDataView of the
data of all units in this list, with automatic JSON decoding.

	
received_raw

	Combined UnitDataView of the raw data
of all units in this list, as raw strings.

	
class charms.reactive.endpoints.Endpoint(endpoint_name, relation_ids=None)

	Bases: charms.reactive.relations.RelationFactory

New base class for creating interface layers.

This class is intended to create drop-in, backwards-compatible replacements
for interface layers previously written using the old
RelationBase base class. With the
advantages of: having commonly used internal flags managed automatically,
providing a cleaner, more easily understood pattern for interacting with
relation data, and being able to use @when rather than @hook so
that interface layers are more similar to charm layers and to remove one
of the biggest barriers to upgrading from a non-reactive version of a
charm to a reactive version.

Four flags are automatically managed for each endpoint. Endpoint handlers
can react to these flags using the decorators.

	endpoint.{endpoint_name}.joined is set when the endpoint is
joined(): when the first remote unit from any relationship
connected to this endpoint joins. It is cleared when the last unit
from all relationships connected to this endpoint departs.

	endpoint.{endpoint_name}.changed when any relation data has
changed. It isn’t automatically cleared.

	endpoint.{endpoint_name}.changed.{field} when a specific field
has changed. It isn’t automatically cleared.

	
	endpoint.{endpoint_name}.departed when a remote unit is leaving.

	It isn’t automatically cleared.

For the flags that are not automatically cleared, it is up to the interface
author to clear the flag when it is “handled”. The following diagram shows
how these flags relate. In summary, the joined flag represents the state
of the relationship and will be automatically cleared when all units are
gone. changed and departed represents relationship events and have to
be cleared manually by the handler.

[image: _images/endpoints-workflow.svg]These flags should only be used by the decorators of the endpoint handlers.
While it is possible to use them with any decorators in any layer, these
flags should be considered internal, private implementation details. It is
the interface layers responsibility to manage and document the public flags
that make up part of its API.

Endpoint handlers can iterate over the list of joined relations for an
endpoint via the relations
collection.

	
all_departed_units

	Collection of all units that were previously part of any relation on
this endpoint but which have since departed.

This collection is persistent and mutable. The departed units will
be kept until they are explicitly removed, to allow for reasonable
cleanup of units that have left.

Example: You need to run a command each time a unit departs the relation.

@when('endpoint.{endpoint_name}.departed')
def handle_departed_unit(self):
 for name, unit in self.all_departed_units.items():
 # run the command to remove `unit` from the cluster
 # ..
 self.all_departed_units.clear()
 clear_flag(self.expand_name('departed'))

Once a unit is departed, it will no longer show up in
all_joined_units. Note that units are considered departed as
soon as the departed hook is entered, which differs slightly from how
the Juju primitives behave (departing units are still returned from
related-units until after the departed hook is complete).

This collection is a KeyList, so can be used as a mapping to
look up units by their unit name, or iterated or accessed by index.

	
all_joined_units

	A list view of all the units of all relations attached to this
Endpoint.

This is actually a
CombinedUnitsView, so the units
will be in order by relation ID and then unit name, and you can access a
merged view of all the units’ data as a single mapping. You should be
very careful when using the merged data collections, however, and
consider carefully what will happen when the endpoint has multiple
relations and multiple remote units on each. It is probably better to
iterate over each unit and handle its data individually. See
CombinedUnitsView for an
explanation of how the merged data collections work.

Note that, because a given application might be related multiple times
on a given endpoint, units may show up in this collection more than
once.

	
all_units

	
Deprecated since version 0.6.1: Use all_joined_units instead

	
endpoint_name

	Relation name of this endpoint.

	
expand_name(flag)

	Complete a flag for this endpoint by expanding the endpoint name.

If the flag does not already contain {endpoint_name}, it will be
prefixed with endpoint.{endpoint_name}.. Then, any occurance of
{endpoint_name} will be replaced with self.endpoint_name.

	
classmethod from_flag(flag)

	Return an Endpoint subclass instance based on the given flag.

The instance that is returned depends on the endpoint name embedded
in the flag. Flags should be of the form endpoint.{name}.extra...,
though for legacy purposes, the endpoint. prefix can be omitted.
The {name}} portion will be passed to
from_name().

If the flag is not set, an appropriate Endpoint subclass cannot be
found, or the flag name can’t be parsed, None will be returned.

	
classmethod from_name(endpoint_name)

	Return an Endpoint subclass instance based on the name of the endpoint.

	
is_joined

	Whether this endpoint has remote applications attached to it.

	
joined

	
Deprecated since version 0.6.3: Use is_joined instead

	
manage_flags()

	Method that subclasses can override to perform any flag management
needed during startup.

This will be called automatically after the framework-managed automatic
flags have been updated.

	
register_triggers()

	Called once and only once for each named instance of this endpoint,
before the endpoint’s automatic flags are updated.

This gives the endpoint implementation a chance to register triggers
that will honor changes to the automatically managed flags.

	
relations

	Collection of Relation instances that are established for
this Endpoint.

This is a KeyList, so it can be iterated and indexed as a list,
or you can look up relations by their ID. For example:

rel0 = endpoint.relations[0]
assert rel0 is endpoint.relations[rel0.relation_id]
assert all(rel is endpoint.relations[rel.relation_id]
 for rel in endpoint.relations)
print(', '.join(endpoint.relations.keys()))

	
class charms.reactive.endpoints.JSONUnitDataView(data, writeable=False)

	Bases: collections.UserDict [https://docs.python.org/3/library/collections.html#collections.UserDict]

View of a dict that performs automatic JSON en/decoding of items.

Like UnitDataView, this is like a
defaultdict(lambda: None) which cannot be modified by default.

When decoding, if a value fails to decode, it will just return the raw value
as a string.

When encoding, it ensures that keys are sorted to maintain stable and
consistent encoded representations.

The original data, without automatic encoding / decoding, can be accessed as
raw_data.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
modified

	Whether this collection has been modified.

	
raw_data

	The data for this collection without automatic encoding / decoding.

This is an UnitDataView instance.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
writeable

	Whether this collection can be modified.

	
class charms.reactive.endpoints.KeyList(items, key_attr)

	Bases: list [https://docs.python.org/3/library/stdtypes.html#list]

List that also allows accessing items keyed by an attribute on the items.

Unlike dicts, the keys don’t need to be unique.

	
items()

	

	
keys()

	Return the keys for all items in this
KeyList.

Unlike a dict, the keys are not necessarily unique, so this list may
contain duplicate values. The keys will be returned in the order of the
items in the list.

	
pop(key)

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
values()

	Return just the values of this list.

This is equivalent to list(keylist).

	
class charms.reactive.endpoints.RelatedUnit(relation, unit_name, data=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class representing a remote unit on a relation.

	
application_name

	The name of the application to which this unit belongs.

	
received

	A JSONUnitDataView of the data
received from this remote unit over the relation, with values being
automatically decoded as JSON.

	
received_raw

	A UnitDataView of the raw data
received from this remote unit over the relation.

	
relation

	The relation to which this unit belongs.

	
unit_name

	The name of this unit.

	
class charms.reactive.endpoints.Relation(relation_id)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
application_name

	The name of the remote application for this relation, or None.

This is equivalent to:

relation.units[0].unit_name.split('/')[0]

	
endpoint

	This relation’s Endpoint instance.

	
endpoint_name

	This relation’s endpoint name.

This will be the same as the
Endpoint’s endpoint name.

	
joined_units

	A list view of all the units joined on this relation.

This is actually a
CombinedUnitsView, so the units
will be in order by unit name, and you can access a merged view of all
of the units’ data with self.units.received and
self.units.received. You should be very careful when using the
merged data collections, however, and consider carefully what will
happen when there are multiple remote units. It is probabaly better to
iterate over each unit and handle its data individually. See
CombinedUnitsView for an
explanation of how the merged data collections work.

The view can be iterated and indexed as a list, or you can look up units
by their unit name. For example:

by_index = relation.units[0]
by_name = relation.units['unit/0']
assert by_index is by_name
assert all(unit is relation.units[unit.unit_name]
 for unit in relation.units)
print(', '.join(relation.units.keys()))

	
received_app

	A JSONUnitDataView of the app-level
data received from this remote unit over the relation, with values
being automatically decoded as JSON.

	
received_app_raw

	A UnitDataView of the raw app-level
data received from this remote unit over the relation.

	
relation_id

	This relation’s relation ID.

	
to_publish

	This is the relation data that the local unit publishes so it is
visible to all related units. Use this to communicate with related
units. It is a writeable
JSONUnitDataView.

All values stored in this collection will be automatically JSON
encoded when they are published. This means that they need to be JSON
serializable! Mappings stored in this collection will be encoded with
sorted keys, to ensure that the encoded representation will only change
if the actual data changes.

Changes to this data are published at the end of a succesfull hook. The
data is reset when a hook fails.

	
to_publish_app

	This is the relation data that the local app publishes so it is
visible to all related units. Use this to communicate with related
apps. It is a writeable
JSONUnitDataView.

Only the leader can set the app-level relation data.

All values stored in this collection will be automatically JSON
encoded when they are published. This means that they need to be JSON
serializable! Mappings stored in this collection will be encoded with
sorted keys, to ensure that the encoded representation will only change
if the actual data changes.

Changes to this data are published at the end of a succesfull hook. The
data is reset when a hook fails.

	
to_publish_app_raw

	This is the raw relation data that the app publishes so it is
visible to all related units. It is a writeable (by the leader only)
UnitDataView. Only use this
for backwards compatibility with interfaces that do not use JSON
encoding. Use
to_publish instead.

Changes to this data are published at the end of a succesfull hook. The
data is reset when a hook fails.

	
to_publish_raw

	This is the raw relation data that the local unit publishes so it is
visible to all related units. It is a writeable
UnitDataView. Only use this
for backwards compatibility with interfaces that do not use JSON
encoding. Use
to_publish instead.

Changes to this data are published at the end of a succesfull hook. The
data is reset when a hook fails.

	
units

	
Deprecated since version 0.6.1: Use joined_units instead

	
class charms.reactive.endpoints.UnitDataView(data, writeable=False)

	Bases: collections.UserDict [https://docs.python.org/3/library/collections.html#collections.UserDict]

View of a dict containing a unit’s data.

This is like a defaultdict(lambda: None) which cannot be modified by
default.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
modified

	Whether this collection has been modified.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
writeable

	Whether this collection can be modified.

charms.reactive.relations

Summary

This is the older API for interface layers that are based on
RelationBase. It is recommended that you
try using Endpoint instead.

	AutoAccessors
	Metaclass that converts fields referenced by auto_accessors into accessor methods with very basic doc strings.

	Conversation
	Converations are the persistent, evolving, two-way communication between this service and one or more remote services.

	RelationBase
	A base class for relation implementations.

	RelationFactory
	Produce objects for interacting with a relation.

	endpoint_from_flag
	The object used for interacting with relations tied to a flag, or None.

	endpoint_from_name
	The object used for interacting with the named relations, or None.

	entry_points
	

	relation_call
	Invoke a method on the class implementing a relation via the CLI

	relation_factory
	Get the RelationFactory for the given relation name.

	scopes
	These are the recommended scope values for relation implementations.

Reference

	
charms.reactive.relations.endpoint_from_name(endpoint_name)

	The object used for interacting with the named relations, or None.

	
charms.reactive.relations.endpoint_from_flag(flag)

	The object used for interacting with relations tied to a flag, or None.

	
charms.reactive.relations.relation_from_flag(flag)

	
Deprecated since version 0.6.0: Alias for endpoint_from_flag()

	
class charms.reactive.relations.scopes

	Bases: object [https://docs.python.org/3/library/functions.html#object]

These are the recommended scope values for relation implementations.

To use, simply set the scope class variable to one of these:

class MyRelationClient(RelationBase):
 scope = scopes.SERVICE

	
GLOBAL = 'global'

	All connected services and units for this relation will share a single
conversation. The same data will be broadcast to every remote unit, and
retrieved data will be aggregated across all remote units and is expected
to either eventually agree or be set by a single leader.

	
SERVICE = 'service'

	Each connected service for this relation will have its own conversation.
The same data will be broadcast to every unit of each service’s conversation,
and data from all units of each service will be aggregated and is expected
to either eventually agree or be set by a single leader.

	
UNIT = 'unit'

	Each connected unit for this relation will have its own conversation. This
is the default scope. Each unit’s data will be retrieved individually, but
note that due to how Juju works, the same data is still broadcast to all
units of a single service.

	
class charms.reactive.relations.RelationBase(relation_name, conversations=None)

	Bases: charms.reactive.relations.RelationFactory

A base class for relation implementations.

	
auto_accessors = []

	Remote field names to be automatically converted into accessors with
basic documentation.

These accessors will just call get_remote() using the
default conversation. Note that it is highly
recommended that this be used only with scopes.GLOBAL scope.

	
conversation(scope=None)

	Get a single conversation, by scope, that this relation is currently handling.

If the scope is not given, the correct scope is inferred by the current
hook execution context. If there is no current hook execution context, it
is assume that there is only a single global conversation scope for this
relation. If this relation’s scope is not global and there is no current
hook execution context, then an error is raised.

	
conversations()

	Return a list of the conversations that this relation is currently handling.

Note that “currently handling” means for the current state or hook context,
and not all conversations that might be active for this relation for other
states.

	
classmethod from_flag(flag)

	Find relation implementation in the current charm, based on the
name of an active flag.

You should not use this method directly.
Use endpoint_from_flag() instead.

	
classmethod from_name(relation_name, conversations=None)

	Find relation implementation in the current charm, based on the
name of the relation.

	Returns:	A Relation instance, or None

	
classmethod from_state(state)

	
Deprecated since version 0.6.1: use endpoint_from_flag() instead

	
get_local(key, default=None, scope=None)

	Retrieve some data previously set via set_local().

In Python, this is equivalent to:

relation.conversation(scope).get_local(key, default)

See conversation() and Conversation.get_local().

	
get_remote(key, default=None, scope=None)

	Get data from the remote end(s) of the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).get_remote(key, default)

See conversation() and Conversation.get_remote().

	
is_flag_set(state, scope=None)

	Test the state for the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).is_state(state)

See conversation() and Conversation.is_state().

	
is_state(state, scope=None)

	Test the state for the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).is_state(state)

See conversation() and Conversation.is_state().

	
relation_name

	Name of the relation this instance is handling.

	
remove_flag(state, scope=None)

	Remove the state for the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).remove_state(state)

See conversation() and Conversation.remove_state().

	
remove_state(state, scope=None)

	Remove the state for the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).remove_state(state)

See conversation() and Conversation.remove_state().

	
scope = 'unit'

	Conversation scope for this relation.

The conversation scope controls how communication with connected units
is aggregated into related Conversations, and
can be any of the predefined scopes, or any arbitrary string.
Connected units which share the same scope will be considered part of
the same conversation. Data sent to a conversation is sent to all units
that are a part of that conversation, and units that are part of a
conversation are expected to agree on the data that they send, whether
via eventual consistency or by having a single leader set the data.

The default scope is scopes.UNIT.

	
set_flag(state, scope=None)

	Set the state for the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).set_state(state)

See conversation() and Conversation.set_state().

	
set_local(key=None, value=None, data=None, scope=None, **kwdata)

	Locally store some data, namespaced by the current or given Conversation scope.

In Python, this is equivalent to:

relation.conversation(scope).set_local(data, scope, **kwdata)

See conversation() and Conversation.set_local().

	
set_remote(key=None, value=None, data=None, scope=None, **kwdata)

	Set data for the remote end(s) of the Conversation with the given scope.

In Python, this is equivalent to:

relation.conversation(scope).set_remote(key, value, data, scope, **kwdata)

See conversation() and Conversation.set_remote().

	
set_state(state, scope=None)

	Set the state for the Conversation with the given sco