
Charm Tools Documentation

Cory Johns, Marco Ceppi, Kapil Thangavelu

Feb 25, 2019

Reference

1 Available Commands 3

2 Build Tactics 5
2.1 Built-in Tactics . 5
2.2 Custom Tactics . 10

3 Indices and tables 13

Python Module Index 15

i

ii

Charm Tools Documentation

The charm command includes several subcommands used to build, maintain, and release Juju Charms, which are Open
Source encapsulated operations logic for managing software in the cloud or bare-metal servers using cloud-like APIs.

Installation is easy with snaps:

snap install --classic charm

Reference for the various available commands can be found below, or via the command-line with:

charm help

Reference 1

https://docs.jujucharms.com/

Charm Tools Documentation

2 Reference

CHAPTER 1

Available Commands

The following subcommands are available and can be invoked as charm <command> (for example, charm
build). Details for each command, including the supported options and parameters, can be output with either charm
help <command> or charm <command> --help.

Command Description
add add icon, readme, or tests to a charm
attach upload a file as a resource for a charm
attach-plan associates the charm with the plan
build build a charm from layers and interfaces
create create a new charm
grant grant charm or bundle permissions
help Show help on a command or other topic.
layers Show a colored breakdown of what layers each file came from
list list charms for the given users.
list-plans list plans
list-resources display the resources for a charm in the charm store
login login to the charm store
logout logout from the charm store
proof perform static analysis on a charm or bundle
pull download a charm or bundle from the charm store
pull-resource pull a charm resource to the local machine
push push a charm or bundle into the charm store
push-plan push new plan
push-term create new Terms and Conditions document (revision)
release release a charm or bundle
release-term releases the given terms document
resume-plan resumes plan for specified charms
revoke revoke charm or bundle permissions
set set charm or bundle extra-info, home page or bugs URL
show print information on a charm or bundle

Continued on next page

3

Charm Tools Documentation

Table 1 – continued from previous page
Command Description
show-plan show plan details
show-plan-revisions show all revision of a plan
show-term shows the specified term
suspend-plan suspends plan for specified charms
terms list terms owned by the current user
terms-used list terms required by current user’s charms
version display tooling version information
whoami display jaas user id and group membership

4 Chapter 1. Available Commands

CHAPTER 2

Build Tactics

When building charms, multiple layers are brought together in an ordered, depth-first recursive fashion. The individual
files of each layer are merged according to a list of merge tactics. These tactics determine whether the file from a
higher layer will replace or be merged with the copy from the lower layer, with the details of how the merge happens
being implemented by the tactic. Each file is tested against each tactic in a specific order (as determined by the
DEFAULT_TACTICS list), with the first one to match being applied to the file and all other tactics disregarded.

2.1 Built-in Tactics

ActionsYAML Tactic for processing and combining the actions.
yaml file from each layer.

ConfigYAML Tactic for processing and combining the config.
yaml file from each layer.

CopyTactic Tactic to copy a file without modification or merging.
CopyrightTactic Tactic to combine the copyright info from all layers into

a final machine-readable format.
DistYAML Tactic for processing and combining the dist.yaml

file from each layer.
DynamicHookBind Base class for process hooks dynamically generated

from the hook template.
ExactMatch Mixin to match a file with an exact name.
ExcludeTactic Tactic to handle per-layer excludes.
IgnoreTactic Tactic to handle per-layer ignores.
InstallerTactic Tactic to process any .pypi files and install Python

packages directly into the charm’s lib/ directory.
InterfaceBind Tactic to copy the hook template into place for all rela-

tion hooks.
InterfaceCopy Tactic to process a relation endpoint using an interface

layer.
Continued on next page

5

Charm Tools Documentation

Table 1 – continued from previous page
JSONTactic Base class for tactics dealing with JSON data.
LayerYAML Tactic for processing and combining the layer.yaml

file from each layer.
ManifestTactic Tactic to avoid copying a build manifest file from a base

layer.
MetadataYAML Tactic for processing and combining the metadata.

yaml file from each layer.
ResourcesYAML Tactic for processing and combining the resources.

yaml file from each layer.
SerializedTactic Base class for tactics which deal with serialized data,

such as YAML or JSON.
StandardHooksBind Tactic to copy the hook template into place for all stan-

dard hooks.
StorageBind Tactic to copy the hook template into place for all stor-

age hooks.
Tactic Base class for all tactics.
VersionTactic Tactic to generate the version file with VCS revision

info to be displayed in juju status.
WheelhouseTactic Tactic to process the wheelhouse.txt file and build

a source-only wheelhouse of Python packages in the
charm’s wheelhouse/ directory.

YAMLTactic Base class for tactics dealing with YAML data.
extend_with_default Extend a jsonschema validator to propagate default val-

ues prior to validating.
load_tactic Load a tactic from the current layer using a dotted path.

class charmtools.build.tactics.ActionsYAML(*args, **kwargs)
Tactic for processing and combining the actions.yaml file from each layer.

class charmtools.build.tactics.ConfigYAML(*args, **kwargs)
Tactic for processing and combining the config.yaml file from each layer.

class charmtools.build.tactics.CopyTactic(entity, target, layer, next_config)
Tactic to copy a file without modification or merging.

The last version of the file “wins” (e.g., from the charm layer).

This is the final fallback tactic if nothing else matches.

class charmtools.build.tactics.CopyrightTactic(*args, **kwargs)
Tactic to combine the copyright info from all layers into a final machine-readable format.

class charmtools.build.tactics.DistYAML(*args, **kwargs)
Tactic for processing and combining the dist.yaml file from each layer.

class charmtools.build.tactics.DynamicHookBind(name, owner, target, config, output_files,
template_file)

Base class for process hooks dynamically generated from the hook template.

This tactic is not used directly, but serves as a base for the type-specific dynamic hook tactics, like
StandardHooksBind, or InterfaceBind.

HOOKS = []
List of all hooks to populate.

sign()
Sign all hook files generated by this tactic.

6 Chapter 2. Build Tactics

Charm Tools Documentation

class charmtools.build.tactics.ExactMatch
Mixin to match a file with an exact name.

FILENAME = None
The filename to be matched

classmethod trigger(entity, target, layer, next_config)
Match if the current entity’s filename is what we’re looking for.

class charmtools.build.tactics.ExcludeTactic(entity, target, layer, next_config)
Tactic to handle per-layer excludes.

If a given layer’s layer.yaml has an exclude list, then any file or directory included in that list that is
provided by the current layer will be ignored, though any matching file or directory provided by base layers or
any higher level layers will be included.

The exclude list uses the same format as a .gitignore file.

class charmtools.build.tactics.IgnoreTactic(entity, target, layer, next_config)
Tactic to handle per-layer ignores.

If a given layer’s layer.yaml has an ignore list, then any file or directory included in that list that is
provided by base layers will be ignored, though any matching file or directory provided by the current or any
higher level layers will be included.

The ignore list uses the same format as a .gitignore file.

class charmtools.build.tactics.InstallerTactic(entity, target, layer, next_config)
Tactic to process any .pypi files and install Python packages directly into the charm’s lib/ directory.

This is used in Kubernetes type charms due to the lack of a proper install or bootstrap phase.

class charmtools.build.tactics.InterfaceBind(name, owner, target, config, output_files,
template_file)

Tactic to copy the hook template into place for all relation hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the set of relation hooks needed by this charm.

class charmtools.build.tactics.InterfaceCopy(interface, relation_name, role, target, con-
fig)

Tactic to process a relation endpoint using an interface layer.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called for
each relation endpoint that has a corresponding interface layer.

class charmtools.build.tactics.JSONTactic(*args, **kwargs)
Base class for tactics dealing with JSON data.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

class charmtools.build.tactics.LayerYAML(*args, **kwargs)
Tactic for processing and combining the layer.yaml file from each layer.

The input layer.yaml files can contain the following sections:

2.1. Built-in Tactics 7

Charm Tools Documentation

• includes This is the heart of layering. Layers and interface layers referenced in this list value are pulled
in during charm build and combined with each other to produce the final layer.

• config, metadata, dist, or resources These objects can contain a deletes object to list keys
that should be deleted from the resulting <section>.yaml.

• defines This object can contain a jsonschema used to defined and validate options passed to this layer
from another layer. The options and schema will be namespaced by the current layer name. For ex-
ample, layer “foo” defining bar: {type: string} will accept options: {foo: {bar:
"foo"}} in the final layer.yaml.

• options This object can contain option name/value sections for other layers. For example, if the current
layer includes the previously referenced “foo” layer, it could include foo: {bar: "foo"} in its
options section.

class charmtools.build.tactics.ManifestTactic(entity, target, layer, next_config)
Tactic to avoid copying a build manifest file from a base layer.

class charmtools.build.tactics.MetadataYAML(*args, **kwargs)
Tactic for processing and combining the metadata.yaml file from each layer.

class charmtools.build.tactics.ResourcesYAML(*args, **kwargs)
Tactic for processing and combining the resources.yaml file from each layer.

class charmtools.build.tactics.SerializedTactic(*args, **kwargs)
Base class for tactics which deal with serialized data, such as YAML or JSON.

apply_edits()
Apply any edits defined in the final layer.yaml file to the data.

An example edit definition:

metadata:
deletes:
- requires.http

combine(existing)
Merge the deserialized data from two layers using deepmerge.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

process()
Now that the tactics for the current entity have been combined for all layers, process the entity to produce
the final output file.

Must be implemented by a subclass.

read()
Read and cache the data into memory, using self.load().

class charmtools.build.tactics.StandardHooksBind(name, owner, target, config, out-
put_files, template_file)

Tactic to copy the hook template into place for all standard hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the standard set of hook implementations.

8 Chapter 2. Build Tactics

Charm Tools Documentation

class charmtools.build.tactics.StorageBind(name, owner, target, config, output_files, tem-
plate_file)

Tactic to copy the hook template into place for all storage hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the set of storage hooks needed by this charm.

class charmtools.build.tactics.Tactic(entity, target, layer, next_config)
Base class for all tactics.

Subclasses must implement at least trigger and process, and probably also want to implement combine.

combine(existing)
Produce a tactic informed by the existing tactic for an entry.

This is when a rule in a higher level charm overrode something in one of its bases for example.

Should be implemented by a subclass if any sort of merging behavior is desired.

config
Return the combined config from the layer above this (if any), this, and all lower layers.

Note that it includes one layer higher so that the tactic can make decisions based on the upcoming layer.

current
Alias for Tactic.layer

entity
The current entity (a.k.a. file) being processed.

classmethod get(entity, target, layer, next_config, current_config, existing_tactic)
Factory method to get an instance of the correct Tactic to handle the given entity.

layer
The current layer under consideration

layer_name
Name of the current layer being processed.

lint()
Test the resulting file to ensure that it is valid.

Return True if valid. If invalid, return False or raise a BuildError

Should be implemented by a subclass.

process()
Now that the tactics for the current entity have been combined for all layers, process the entity to produce
the final output file.

Must be implemented by a subclass.

read()
Read the contents of the file to be processed.

Can be implemented by a subclass. By default, returns None.

relpath
The path to the file relative to the layer.

sign()
Return signature in the form {relpath: (origin layer, SHA256)}

Can be overridden by a subclass, but the default implementation will usually be fine.

2.1. Built-in Tactics 9

Charm Tools Documentation

target
The target (final) layer.

target_file
The location where the processed file will be written to.

classmethod trigger(entity, target, layer, next_config)
Determine whether the rule should apply to a given entity (file).

Generally, this should check the entity name, but could conceivably also inspect the contents of the file.

Must be implemented by a subclass or the tactic will never match.

class charmtools.build.tactics.VersionTactic(charm, target, layer, next_config)
Tactic to generate the version file with VCS revision info to be displayed in juju status.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
generate the version file.

class charmtools.build.tactics.WheelhouseTactic(*args, **kwargs)
Tactic to process the wheelhouse.txt file and build a source-only wheelhouse of Python packages in the
charm’s wheelhouse/ directory.

class charmtools.build.tactics.YAMLTactic(*args, **kwargs)
Base class for tactics dealing with YAML data.

Tries to ensure that the order of keys is preserved.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

charmtools.build.tactics.extend_with_default(validator_class)
Extend a jsonschema validator to propagate default values prior to validating.

Used internally to ensure validation of layer options supports default values.

charmtools.build.tactics.load_tactic(dpath, basedir)
Load a tactic from the current layer using a dotted path.

The final element in the path should be a Tactic subclass.

2.2 Custom Tactics

A charm or layer can also define one or more custom tactics in its layer.yaml file. The file can contain a top-level
tactics key, whose value is a list of dotted Python module names, relative to the layer’s base directory. For example,
a layer could include this in its layer.yaml:

tactics:
- tactics.my_layer.READMETactic

This would cause the build command to look for a module tactics/my_layer.py with a class of
READMETactic in it, which must inherit from Tactic.

10 Chapter 2. Build Tactics

Charm Tools Documentation

Custom tactics are tested before the built-in tactics, so they can override the behavior of built-in tactics if desired. Care
should be taken if doing this because changing the behavior of built-in tactics can end up breaking other layers or
charms.

2.2. Custom Tactics 11

Charm Tools Documentation

12 Chapter 2. Build Tactics

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

Charm Tools Documentation

14 Chapter 3. Indices and tables

Python Module Index

c
charmtools.build.tactics, 6

15

Charm Tools Documentation

16 Python Module Index

Index

A
ActionsYAML (class in charmtools.build.tactics), 6
apply_edits() (charmtools.build.tactics.SerializedTactic

method), 8

C
charmtools.build.tactics (module), 6
combine() (charmtools.build.tactics.SerializedTactic

method), 8
combine() (charmtools.build.tactics.Tactic method), 9
config (charmtools.build.tactics.Tactic attribute), 9
ConfigYAML (class in charmtools.build.tactics), 6
CopyrightTactic (class in charmtools.build.tactics), 6
CopyTactic (class in charmtools.build.tactics), 6
current (charmtools.build.tactics.Tactic attribute), 9

D
DistYAML (class in charmtools.build.tactics), 6
dump() (charmtools.build.tactics.JSONTactic method), 7
dump() (charmtools.build.tactics.SerializedTactic

method), 8
dump() (charmtools.build.tactics.YAMLTactic method),

10
DynamicHookBind (class in charmtools.build.tactics), 6

E
entity (charmtools.build.tactics.Tactic attribute), 9
ExactMatch (class in charmtools.build.tactics), 6
ExcludeTactic (class in charmtools.build.tactics), 7
extend_with_default() (in module charm-

tools.build.tactics), 10

F
FILENAME (charmtools.build.tactics.ExactMatch

attribute), 7

G
get() (charmtools.build.tactics.Tactic class method), 9

H
HOOKS (charmtools.build.tactics.DynamicHookBind at-

tribute), 6

I
IgnoreTactic (class in charmtools.build.tactics), 7
InstallerTactic (class in charmtools.build.tactics), 7
InterfaceBind (class in charmtools.build.tactics), 7
InterfaceCopy (class in charmtools.build.tactics), 7

J
JSONTactic (class in charmtools.build.tactics), 7

L
layer (charmtools.build.tactics.Tactic attribute), 9
layer_name (charmtools.build.tactics.Tactic attribute), 9
LayerYAML (class in charmtools.build.tactics), 7
lint() (charmtools.build.tactics.Tactic method), 9
load() (charmtools.build.tactics.JSONTactic method), 7
load() (charmtools.build.tactics.SerializedTactic method),

8
load() (charmtools.build.tactics.YAMLTactic method), 10
load_tactic() (in module charmtools.build.tactics), 10

M
ManifestTactic (class in charmtools.build.tactics), 8
MetadataYAML (class in charmtools.build.tactics), 8

P
process() (charmtools.build.tactics.SerializedTactic

method), 8
process() (charmtools.build.tactics.Tactic method), 9

R
read() (charmtools.build.tactics.SerializedTactic method),

8
read() (charmtools.build.tactics.Tactic method), 9
relpath (charmtools.build.tactics.Tactic attribute), 9
ResourcesYAML (class in charmtools.build.tactics), 8

17

Charm Tools Documentation

S
SerializedTactic (class in charmtools.build.tactics), 8
sign() (charmtools.build.tactics.DynamicHookBind

method), 6
sign() (charmtools.build.tactics.Tactic method), 9
StandardHooksBind (class in charmtools.build.tactics), 8
StorageBind (class in charmtools.build.tactics), 9

T
Tactic (class in charmtools.build.tactics), 9
target (charmtools.build.tactics.Tactic attribute), 9
target_file (charmtools.build.tactics.Tactic attribute), 10
trigger() (charmtools.build.tactics.ExactMatch class

method), 7
trigger() (charmtools.build.tactics.Tactic class method),

10

V
VersionTactic (class in charmtools.build.tactics), 10

W
WheelhouseTactic (class in charmtools.build.tactics), 10

Y
YAMLTactic (class in charmtools.build.tactics), 10

18 Index

	Available Commands
	Build Tactics
	Built-in Tactics
	Custom Tactics

	Indices and tables
	Python Module Index

