

    
      
          
            
  
Charm Tools documentation

The charm command includes several subcommands used to build, maintain,
and release Juju Charms [https://docs.jujucharms.com/], which are Open Source encapsulated operations
logic for managing software in the cloud or bare-metal servers using
cloud-like APIs.

Installation is easy with snaps:

snap install --classic charm





Reference for the various available commands can be found below, or via
the command-line with:

charm help






Reference


	Available Commands

	Build Tactics
	Built-in Tactics

	Custom Tactics












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Available Commands

The following subcommands are available and can be invoked as charm <command>
(for example, charm build).  Details for each command, including the supported
options and parameters, can be output with either charm help <command> or
charm <command> --help.







	Command

	Description





	add

	add icon, readme, or tests to a charm



	attach

	upload a file as a resource for a charm



	attach-plan

	associates the charm with the plan



	build

	build a charm from layers and interfaces



	create

	create a new charm



	grant

	grant charm or bundle permissions



	help

	Show help on a command or other topic.



	layers

	Show a colored breakdown of what layers each file came from



	list

	list charms for the given users.



	list-plans

	list plans



	list-resources

	display the resources for a charm in the charm store



	login

	login to the charm store



	logout

	logout from the charm store



	proof

	perform static analysis on a charm or bundle



	pull

	download a charm or bundle from the charm store



	pull-resource

	pull a charm resource to the local machine



	push

	push a charm or bundle into the charm store



	push-plan

	push new plan



	push-term

	create new Terms and Conditions document (revision)



	release

	release a charm or bundle



	release-term

	releases the given terms document



	resume-plan

	resumes plan for specified charms



	revoke

	revoke charm or bundle permissions



	set

	set charm or bundle extra-info, home page or bugs URL



	show

	print information on a charm or bundle



	show-plan

	show plan details



	show-plan-revisions

	show all revision of a plan



	show-term

	shows the specified term



	suspend-plan

	suspends plan for specified charms



	terms

	list terms owned by the current user



	terms-used

	list terms required by current user’s charms



	version

	display tooling version information



	whoami

	display jaas user id and group membership










          

      

      

    

  

    
      
          
            
  
Build Tactics

When building charms, multiple layers are brought together in an ordered,
depth-first recursive fashion.  The individual files of each layer are merged
according to a list of merge tactics.  These tactics determine whether the file
from a higher layer will replace or be merged with the copy from the lower
layer, with the details of how the merge happens being implemented by the
tactic.  Each file is tested against each tactic in a specific order (as
determined by the DEFAULT_TACTICS list), with the first one to match being
applied to the file and all other tactics disregarded.


Built-in Tactics







	ActionsYAML

	Tactic for processing and combining the actions.yaml file from each layer.



	ConfigYAML

	Tactic for processing and combining the config.yaml file from each layer.



	CopyTactic

	Tactic to copy a file without modification or merging.



	CopyrightTactic

	Tactic to combine the copyright info from all layers into a final machine-readable format.



	DistYAML

	Tactic for processing and combining the dist.yaml file from each layer.



	DynamicHookBind

	Base class for process hooks dynamically generated from the hook template.



	ExactMatch

	Mixin to match a file with an exact name.



	ExcludeTactic

	Tactic to handle per-layer excludes.



	IgnoreTactic

	Tactic to handle per-layer ignores.



	InstallerTactic

	Tactic to process any .pypi files and install Python packages directly into the charm’s lib/ directory.



	InterfaceBind

	Tactic to copy the hook template into place for all relation hooks.



	InterfaceCopy

	Tactic to process a relation endpoint using an interface layer.



	JSONTactic

	Base class for tactics dealing with JSON data.



	LayerYAML

	Tactic for processing and combining the layer.yaml file from each layer.



	ManifestTactic

	Tactic to avoid copying a build manifest file from a base layer.



	MetadataYAML

	Tactic for processing and combining the metadata.yaml file from each layer.



	ResourcesYAML

	Tactic for processing and combining the resources.yaml file from each layer.



	SerializedTactic

	Base class for tactics which deal with serialized data, such as YAML or JSON.



	StandardHooksBind

	Tactic to copy the hook template into place for all standard hooks.



	StorageBind

	Tactic to copy the hook template into place for all storage hooks.



	Tactic

	Base class for all tactics.



	VersionTactic

	Tactic to generate the version file with VCS revision info to be displayed in juju status.



	WheelhouseTactic

	Tactic to process the wheelhouse.txt file and build a source-only wheelhouse of Python packages in the charm’s wheelhouse/ directory.



	YAMLTactic

	Base class for tactics dealing with YAML data.



	extend_with_default

	Extend a jsonschema validator to propagate default values prior to validating.



	load_tactic

	Load a tactic from the current layer using a dotted path.







	
class charmtools.build.tactics.ActionsYAML(*args, **kwargs)

	Tactic for processing and combining the actions.yaml file from
each layer.






	
class charmtools.build.tactics.ConfigYAML(*args, **kwargs)

	Tactic for processing and combining the config.yaml file from
each layer.






	
class charmtools.build.tactics.CopyTactic(entity, target, layer, next_config)

	Tactic to copy a file without modification or merging.

The last version of the file “wins” (e.g., from the charm layer).

This is the final fallback tactic if nothing else matches.






	
class charmtools.build.tactics.CopyrightTactic(*args, **kwargs)

	Tactic to combine the copyright info from all layers into a final
machine-readable format.






	
class charmtools.build.tactics.DistYAML(*args, **kwargs)

	Tactic for processing and combining the dist.yaml file from
each layer.






	
class charmtools.build.tactics.DynamicHookBind(name, owner, target, config, output_files, template_file)

	Base class for process hooks dynamically generated from the hook template.

This tactic is not used directly, but serves as a base for the
type-specific dynamic hook tactics, like
StandardHooksBind, or
InterfaceBind.


	
HOOKS = []

	List of all hooks to populate.






	
sign()

	Sign all hook files generated by this tactic.










	
class charmtools.build.tactics.ExactMatch

	Mixin to match a file with an exact name.


	
FILENAME = None

	The filename to be matched






	
classmethod trigger(entity, target, layer, next_config)

	Match if the current entity’s filename is what we’re looking for.










	
class charmtools.build.tactics.ExcludeTactic(entity, target, layer, next_config)

	Tactic to handle per-layer excludes.

If a given layer’s layer.yaml has an exclude list, then any file
or directory included in that list that is provided by the current layer
will be ignored, though any matching file or directory provided by base
layers or any higher level layers will be included.

The exclude list uses the same format as a .gitignore file.






	
class charmtools.build.tactics.IgnoreTactic(entity, target, layer, next_config)

	Tactic to handle per-layer ignores.

If a given layer’s layer.yaml has an ignore list, then any file
or directory included in that list that is provided by base layers will
be ignored, though any matching file or directory provided by the current
or any higher level layers will be included.

The ignore list uses the same format as a .gitignore file.






	
class charmtools.build.tactics.InstallerTactic(entity, target, layer, next_config)

	Tactic to process any .pypi files and install Python packages directly
into the charm’s lib/ directory.

This is used in Kubernetes type charms due to the lack of a proper install
or bootstrap phase.






	
class charmtools.build.tactics.InterfaceBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all relation hooks.

This tactic is not part of the normal set of tactics that are matched
against files.  Instead, it is manually called to fill in the set of
relation hooks needed by this charm.






	
class charmtools.build.tactics.InterfaceCopy(interface, relation_name, role, target, config)

	Tactic to process a relation endpoint using an interface layer.

This tactic is not part of the normal set of tactics that are matched
against files.  Instead, it is manually called for each relation endpoint
that has a corresponding interface layer.






	
class charmtools.build.tactics.JSONTactic(*args, **kwargs)

	Base class for tactics dealing with JSON data.


	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.






	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.










	
class charmtools.build.tactics.LayerYAML(*args, **kwargs)

	Tactic for processing and combining the layer.yaml file from
each layer.

The input layer.yaml files can contain the following sections:



	includes This is the heart of layering.  Layers and interface
layers referenced in this list value are pulled in during charm
build and combined with each other to produce the final layer.


	config, metadata, dist, or resources These objects can
contain a deletes object to list keys that should be deleted from
the resulting <section>.yaml.


	defines This object can contain a jsonschema used to defined and
validate options passed to this layer from another layer.  The options
and schema will be namespaced by the current layer name.  For example,
layer “foo” defining bar: {type: string} will accept
options: {foo: {bar: "foo"}} in the final layer.yaml.


	options This object can contain option name/value sections for
other layers. For example, if the current layer includes the previously
referenced “foo” layer, it could include foo: {bar: "foo"} in its
options section.












	
class charmtools.build.tactics.ManifestTactic(entity, target, layer, next_config)

	Tactic to avoid copying a build manifest file from a base layer.






	
class charmtools.build.tactics.MetadataYAML(*args, **kwargs)

	Tactic for processing and combining the metadata.yaml file from
each layer.






	
class charmtools.build.tactics.ResourcesYAML(*args, **kwargs)

	Tactic for processing and combining the resources.yaml file from
each layer.






	
class charmtools.build.tactics.SerializedTactic(*args, **kwargs)

	Base class for tactics which deal with serialized data, such as YAML or
JSON.


	
apply_edits()

	Apply any edits defined in the final layer.yaml file to the data.

An example edit definition:

metadata:
  deletes:
    - requires.http










	
combine(existing)

	Merge the deserialized data from two layers using deepmerge.






	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.






	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.






	
process()

	Now that the tactics for the current entity have been combined for
all layers, process the entity to produce the final output file.

Must be implemented by a subclass.






	
read()

	Read and cache the data into memory, using self.load().










	
class charmtools.build.tactics.StandardHooksBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all standard hooks.

This tactic is not part of the normal set of tactics that are matched
against files.  Instead, it is manually called to fill in the standard
set of hook implementations.






	
class charmtools.build.tactics.StorageBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all storage hooks.

This tactic is not part of the normal set of tactics that are matched
against files.  Instead, it is manually called to fill in the set of
storage hooks needed by this charm.






	
class charmtools.build.tactics.Tactic(entity, target, layer, next_config)

	Base class for all tactics.

Subclasses must implement at least trigger and process, and
probably also want to implement combine.


	
combine(existing)

	Produce a tactic informed by the existing tactic for an entry.

This is when a rule in a higher level charm overrode something in
one of its bases for example.

Should be implemented by a subclass if any sort of merging behavior is
desired.






	
config

	Return the combined config from the layer above this (if any), this,
and all lower layers.

Note that it includes one layer higher so that the tactic can make
decisions based on the upcoming layer.






	
current

	Alias for Tactic.layer






	
entity

	The current entity (a.k.a. file) being processed.






	
classmethod get(entity, target, layer, next_config, current_config, existing_tactic)

	Factory method to get an instance of the correct Tactic to handle the
given entity.






	
layer

	The current layer under consideration






	
layer_name

	Name of the current layer being processed.






	
lint()

	Test the resulting file to ensure that it is valid.

Return True if valid.  If invalid, return False or raise a
BuildError

Should be implemented by a subclass.






	
process()

	Now that the tactics for the current entity have been combined for
all layers, process the entity to produce the final output file.

Must be implemented by a subclass.






	
read()

	Read the contents of the file to be processed.

Can be implemented by a subclass.  By default, returns None.






	
relpath

	The path to the file relative to the layer.






	
sign()

	Return signature in the form {relpath: (origin layer, SHA256)}

Can be overridden by a subclass, but the default implementation will
usually be fine.






	
target

	The target (final) layer.






	
target_file

	The location where the processed file will be written to.






	
classmethod trigger(entity, target, layer, next_config)

	Determine whether the rule should apply to a given entity (file).

Generally, this should check the entity name, but could conceivably
also inspect the contents of the file.

Must be implemented by a subclass or the tactic will never match.










	
class charmtools.build.tactics.VersionTactic(charm, target, layer, next_config)

	Tactic to generate the version file with VCS revision info to be
displayed in juju status.

This tactic is not part of the normal set of tactics that are matched
against files.  Instead, it is manually called to generate the version
file.






	
class charmtools.build.tactics.WheelhouseTactic(*args, **kwargs)

	Tactic to process the wheelhouse.txt file and build a source-only
wheelhouse of Python packages in the charm’s wheelhouse/ directory.






	
class charmtools.build.tactics.YAMLTactic(*args, **kwargs)

	Base class for tactics dealing with YAML data.

Tries to ensure that the order of keys is preserved.


	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.






	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.










	
charmtools.build.tactics.extend_with_default(validator_class)

	Extend a jsonschema validator to propagate default values prior
to validating.

Used internally to ensure validation of layer options supports
default values.






	
charmtools.build.tactics.load_tactic(dpath, basedir)

	Load a tactic from the current layer using a dotted path.

The final element in the path should be a
Tactic subclass.








Custom Tactics

A charm or layer can also define one or more custom tactics in its layer.yaml
file.  The file can contain a top-level tactics key, whose value is a list of
dotted Python module names, relative to the layer’s base directory.  For
example, a layer could include this in its layer.yaml:

tactics:
  - tactics.my_layer.READMETactic





This would cause the build command to look for a module tactics/my_layer.py
with a class of READMETactic in it, which must inherit from
Tactic.

Custom tactics are tested before the built-in tactics, so they can override
the behavior of built-in tactics if desired.  Care should be taken if doing
this because changing the behavior of built-in tactics can end up breaking
other layers or charms.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       charmtools	
       

     
       	
       	   
       charmtools.build.tactics	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W
 | Y
 


A


  	
      	ActionsYAML (class in charmtools.build.tactics)


  

  	
      	apply_edits() (charmtools.build.tactics.SerializedTactic method)


  





C


  	
      	charmtools.build.tactics (module)


      	combine() (charmtools.build.tactics.SerializedTactic method)

      
        	(charmtools.build.tactics.Tactic method)


      


      	config (charmtools.build.tactics.Tactic attribute)


  

  	
      	ConfigYAML (class in charmtools.build.tactics)


      	CopyrightTactic (class in charmtools.build.tactics)


      	CopyTactic (class in charmtools.build.tactics)


      	current (charmtools.build.tactics.Tactic attribute)


  





D


  	
      	DistYAML (class in charmtools.build.tactics)


      	dump() (charmtools.build.tactics.JSONTactic method)

      
        	(charmtools.build.tactics.SerializedTactic method)


        	(charmtools.build.tactics.YAMLTactic method)


      


  

  	
      	DynamicHookBind (class in charmtools.build.tactics)


  





E


  	
      	entity (charmtools.build.tactics.Tactic attribute)


      	ExactMatch (class in charmtools.build.tactics)


  

  	
      	ExcludeTactic (class in charmtools.build.tactics)


      	extend_with_default() (in module charmtools.build.tactics)


  





F


  	
      	FILENAME (charmtools.build.tactics.ExactMatch attribute)


  





G


  	
      	get() (charmtools.build.tactics.Tactic class method)


  





H


  	
      	HOOKS (charmtools.build.tactics.DynamicHookBind attribute)


  





I


  	
      	IgnoreTactic (class in charmtools.build.tactics)


      	InstallerTactic (class in charmtools.build.tactics)


  

  	
      	InterfaceBind (class in charmtools.build.tactics)


      	InterfaceCopy (class in charmtools.build.tactics)


  





J


  	
      	JSONTactic (class in charmtools.build.tactics)


  





L


  	
      	layer (charmtools.build.tactics.Tactic attribute)


      	layer_name (charmtools.build.tactics.Tactic attribute)


      	LayerYAML (class in charmtools.build.tactics)


      	lint() (charmtools.build.tactics.Tactic method)


  

  	
      	load() (charmtools.build.tactics.JSONTactic method)

      
        	(charmtools.build.tactics.SerializedTactic method)


        	(charmtools.build.tactics.YAMLTactic method)


      


      	load_tactic() (in module charmtools.build.tactics)


  





M


  	
      	ManifestTactic (class in charmtools.build.tactics)


  

  	
      	MetadataYAML (class in charmtools.build.tactics)


  





P


  	
      	process() (charmtools.build.tactics.SerializedTactic method)

      
        	(charmtools.build.tactics.Tactic method)


      


  





R


  	
      	read() (charmtools.build.tactics.SerializedTactic method)

      
        	(charmtools.build.tactics.Tactic method)


      


  

  	
      	relpath (charmtools.build.tactics.Tactic attribute)


      	ResourcesYAML (class in charmtools.build.tactics)


  





S


  	
      	SerializedTactic (class in charmtools.build.tactics)


      	sign() (charmtools.build.tactics.DynamicHookBind method)

      
        	(charmtools.build.tactics.Tactic method)


      


  

  	
      	StandardHooksBind (class in charmtools.build.tactics)


      	StorageBind (class in charmtools.build.tactics)


  





T


  	
      	Tactic (class in charmtools.build.tactics)


      	target (charmtools.build.tactics.Tactic attribute)


  

  	
      	target_file (charmtools.build.tactics.Tactic attribute)


      	trigger() (charmtools.build.tactics.ExactMatch class method)

      
        	(charmtools.build.tactics.Tactic class method)


      


  





V


  	
      	VersionTactic (class in charmtools.build.tactics)


  





W


  	
      	WheelhouseTactic (class in charmtools.build.tactics)


  





Y


  	
      	YAMLTactic (class in charmtools.build.tactics)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Charm Tools documentation
        


        		
          Available Commands
        


        		
          Build Tactics
          
            		
              Built-in Tactics
            


            		
              Custom Tactics
            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





