
Chapel for Python Programmers
Documentation

Release 0.1

Simon A. F. Lund

Jun 07, 2018

Contents

1 Getting Started 3
1.1 Compiling . 4

2 Language Basics 5
2.1 Variables and Types . 5
2.2 Comments . 5
2.3 Console input / output . 6
2.4 Conditionals and Blocks . 7
2.5 Ranges . 9
2.6 Loops . 11
2.7 Functions and Types . 11
2.8 Lists, Arrays, Tuples, and Dicts . 12
2.9 Classes and Objects . 15
2.10 Organizing Code . 16

3 Parallelism 17
3.1 Task Parallelism . 17
3.2 Data Parallelism . 19

4 NumPy 21

5 Batteries 23
5.1 argparse . 23
5.2 multiprocessing . 23
5.3 threading . 23
5.4 time . 23

6 Keywords 25

7 Pythonic Module 27

8 Python and Chapel 29
8.1 Chapel for Python/NumPy Users . 29
8.2 npbackend / Hidden Chapel . 29
8.3 pyChapel . 30

9 Miscellaneous Notes 31
9.1 Development . 31

i

9.2 Introspection . 31

10 Indices and tables 33

11 Appendix 35
11.1 If Chapel had a band . 35

12 Links 37

ii

Chapel for Python Programmers Documentation, Release 0.1

Subtitle: How I Learned to Stop Worrying and Love the Curlybracket.

So, what is Chapel and why should you care? We all know that Python is the best thing since sliced bread. Python
comes with batteries included and there is nothing that can’t be expressed with Python in a short, concise, elegant, and
easily readable manner. But, if you find yourself using any of these packages - Bohrium, Cython, distarray, mpi4py,
threading, multiprocessing, NumPy, Numba, and/or NumExpr - you might have done so because you felt that Python’s
batteries needed a recharge.

You might also have started venturing deeper into the world of curlybrackets. Implementing low-level methods in
C/C++ and binding them to Python. In the process you might have felt that you gained performance but lost your
productivity. However, there is an alternative, it does have curlybrackets, but you won’t get cut on the corners.

The alternative is Chapel, and it comes with a set of turbo-charged batteries for expressing parallelism, communication,
and thereby providing performance! If such matters are important to you, and you enjoy a nice clean syntax, then you
might start caring about Chapel.

Contents 1

http://www.bh107.org/
http://www.cython.org
https://github.com/enthought/distarray
http://mpi4py.scipy.org/
https://docs.python.org/2/library/threading.html
https://docs.python.org/2/library/multiprocessing.html
http://www.numpy.org/
http://numba.pydata.org/
https://github.com/pydata/numexpr/
http://chapel.cray.com/

Chapel for Python Programmers Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

As a Python user, you are accustomed to running and having Python readily available on almost every machine you
use. Chapel is equivalently portable (and more so). However, since Chapel is an emerging technology, it is not quite
part of the standard software stack that comes bundled with your operating system. You therefore need to go ahead
and download and install Chapel on your system.

If you are using a popular Linux-based operating system you will most likely be successful by running these com-
mands:

Download and unpack
cd /tmp
curl -L -O http://sourceforge.net/projects/chapel/files/chapel/1.9.0/chapel-1.9.0.tar.
→˓gz
tar xzf chapel-1.9.0.tar.gz
mv /tmp/chapel-1.9.0 ~/chapel

Build Chapel
cd ~/chapel
make

Setup your environment, add this command to ~/.bashrc for permanent installation.
source ~/chapel/util/setchplenv.bash

After doing the above you should be able to:

Compile an example program
chpl -o hello ~/examples/hello.chpl
Run it
./hello

Running “./hello” should output:

Hello, world!

If you are running MacOSX, Windows, or for some other the reason the above commands does not work for you then
consult the official quick start instructions.

3

http://chapel.cray.com/docs/master/usingchapel/QUICKSTART.html

Chapel for Python Programmers Documentation, Release 0.1

1.1 Compiling

What is that!? A binary! Ohh my. . .

Chapel is currently a compiled language. However, it lets you write and compile very simple programs. There is no
annoying boiler-plate needed to get going.

Python Chapel

print "Hello, World!" writeln("Hello, World!");

And if you like to structure your code, Chapel has neat means for doing so.

Python Chapel

def main():
print "Hello, World!"

if __name__ == "__main__":
main()

module Hello {
proc main() {

writeln(
→˓"Hello, World!");

}
}

All examples in this tutorial / reference guide are compilable. Which means that you can take any snippet and put it
into a file like exploring.chpl and compile it:

chpl -o exploring exploring.chpl

Which will create a binary named exploring to execute whatever you have written in exploring.chpl.

4 Chapter 1. Getting Started

CHAPTER 2

Language Basics

This section provides an informal language reference. It takes you through the base language features of Python and
provides an example of how an equivalent program would be expressed in Chapel.

2.1 Variables and Types

In Python, variables are implicitly declared and their type determined when they are assigned to. In Chapel, variable
declaration is explicit, but the type of the variable can be inferred from its use in a manner equivalent to that of Python.

Python Chapel

answer = 42
distance = 123.45
computer = "Earth"

var answer = 42;
var distance = 123.45;
var computer = "Earth";

Types in Python are dynamic, meaning that a variable can change type during its lifetime. The type of a variable in
Chapel is static and inferred at compile-time, which means that a type is assigned and cannot be changed at runtime.

2.2 Comments

Python Chapel

Single-line comment

"""
Multi-line comments

"""

// Single-line comment

/*
Multi-line comment

*/

5

Chapel for Python Programmers Documentation, Release 0.1

2.2.1 Literals

These work in much the same way that you are used to. A brief overview is provided below.

Python Chapel

bl = True #
→˓Booleans
bl = False

ud = 42 #
→˓Unsigned digits
sd = -42 # Signed
→˓digits

hd = 0x2A # Hex-
→˓Digits
hd = 0X2A

bd = 0b101010 # Binary-
→˓Digits
bd = 0B101010

r = 42.0 # Reals

s = '42' # Strings

s = "42"

Complex / imaginary
z = 1 + 2.0j

Complex accessors
z.real # For the real
→˓part
z.imag # For for
→˓imaginary part

var bl = true; //
→˓Booleans

bl = false;

var ud = 42; //
→˓Unsigned digits
var sd = -42; //
→˓Signed digits

var hd = 0x2A; //
→˓Hex-Digits

hd = 0X2A;

var bd = 0b101010; //
→˓Binary-Digits

bd = 0B101010;

var r = 42.0; //
→˓Reals

var s = '42'; //
→˓Strings

s = "42";

// Complex / imaginary
var z = 1 + 2.0i;
→˓ // Common

z = (1.0, 2.
→˓0):complex; //
→˓Alternative syntax

// Complex accessors
z.re; // For the
→˓real part
z.im; // For the
→˓imaginary part

2.3 Console input / output

You can write to the console (standard output) using write and writeln:

Python Chapel

print "Hello, you." #
→˓With a newline
print "Hello, you.", #
→˓Without a newline

writeln("Hello, you."); //
→˓ With a newline
write("Hello, you."); //
→˓ Without a newline

6 Chapter 2. Language Basics

Chapel for Python Programmers Documentation, Release 0.1

You can read input from the console (standard input) using read and readln:

Python Chapel

first_answer = raw_input(
"The Answer to the

→˓ultimate question is?\n"
)
print "That is",
→˓int(first_answer) == 42

second_answer = raw_input(
"What is the largest

→˓biological computer?\n"
)
print "That is",
→˓str(second_answer) ==
→˓"Earth"

writeln("The Answer to
→˓the Ultimate Question
→˓is?");
var first_answer =
→˓read(int);

writeln("That is ", first_
→˓answer == 42);

writeln("What is the
→˓largest biological
→˓computer?");
var second_answer =
→˓read(string);

writeln("That is ",
→˓second_answer == "Earth
→˓");

Note: Notice that the interface for reading input is quite different, though equally simple. In Python you need to
explicitly cast the input, whereas in Chapel the type of the input is provided to the read/readln functions directly.

2.4 Conditionals and Blocks

Python is famous for using an indentation guided block-structure, thereby arguably improving readability and increas-
ing consistency of code-style. Chapel uses curly-brackets to denote the start and end of a block.

2.4. Conditionals and Blocks 7

Chapel for Python Programmers Documentation, Release 0.1

Python Chapel

#
light = raw_input("Which
→˓color is the traffic
→˓light?\n")

if light == "green":
print "You can cross

→˓the street now."

if light == "green":
print "You can cross

→˓the street now."
else:

print "Wait for the
→˓green light."

if light == "green":
print "You can cross

→˓the street now."
elif light == "yellow":

print "CAUTION!"

if light == "green":
print "You can cross

→˓the street now."
elif light == "yellow":

print "CAUTION!"
else:

print "Do not cross!"

writeln("Which color is
→˓the traffic light?");
var light = read(string);

if light == "green" {
writeln("You can

→˓cross the street now.");
}

if light == "green" {
writeln("You can

→˓cross the street now.");
} else {

writeln("Wait for the
→˓green light.");
}

if light == "green" {
writeln("You can

→˓cross the street now.");
} else if light == "yellow
→˓" {

writeln("CAUTION!");
}

if light == "green" {
writeln("You can

→˓cross the street now.");
} else if light == "yellow
→˓" {

writeln("CAUTION!");
} else {

writeln("Do not cross!
→˓");
}

2.4.1 Switch / Case

Python does not support switch-statements and instead relies on chaining if-elif-else statements.

Chapel, on the other hand, does have switch-statements, specifically select-when-otherwise state-
ments:

8 Chapter 2. Language Basics

Chapel for Python Programmers Documentation, Release 0.1

Python Chapel

#
light = raw_input("Which
→˓color is the traffic
→˓light?\n")

if light=="green":
print "You can cross

→˓the street now."
elif light=="yellow":

print "CAUTION!"
elif light=="red":

print "Do not cross!"
else:

print "WARNING!
→˓Traffic-light is broken!
→˓"

writeln("Which color is
→˓the traffic light?");
var light = read(string);

select(light) {
when "green" {

writeln("You can
→˓cross the street now.");

}
when "yellow" {

writeln("CAUTION!
→˓");

}
when "red" {

writeln("Do not
→˓cross!");

}
otherwise {

writeln("WARNING!
→˓Traffic-light is broken!
→˓");

}
}

Note: Notice that in both Python and Chapel these forms of switch-statements do not fall through, meaning
that one and only one case will be executed. Coming from Python, this might not surpise you; however, if you have
ever written a switch-statement in other languages then this may be slightly surprising.

2.5 Ranges

In Python range is a list-constructor often used for driving for-loops or list comprehensions. For lowered memory
consumption, Python provides the generator equivalent of range namely xrange.

In Chapel a range is a language construct which behaves and is used in much the same way as lists are used in Python.
Where you would think about lists and slicing operations in Python, think of ranges in Chapel.

Python Chapel

r1 = xrange(1, 10) #
→˓yields 1, 2, 3, 4, 5, 6,
→˓ 7, 8, 9
r2 = xrange(10, 1) #
→˓yields nothing

var ns = 1..9; // yields
→˓1, 2, 3, 4, 5, 6, 7, 8,
→˓9

ns = 9..1; // yields
→˓nothing

Note: Difference in bounds!

• In Python, range return values in the interval [start, stop[.

2.5. Ranges 9

Chapel for Python Programmers Documentation, Release 0.1

• In Chapel a range-expression yields values the interval [start, stop].

For both languages the above is a shorthand of the wider form: start, stop, step.

Python Chapel

Values in ascending
→˓order
r1 = xrange(1, 10, 1) #
→˓yields 1, 2, 3, 4, 5, 6,
→˓ 7, 8, 9
r2 = xrange(1, 10, 2) #
→˓yields 1, 3, 5, 7, 9

Values in descending
→˓order
r3 = xrange(9, 0, -1) #
→˓yields 9, 8, 7, 6, 5, 4,
→˓ 3, 2, 1
r4 = xrange(9, 0, -2) #
→˓yields 9, 7, 5, 3, 1

// Values in ascending
→˓order
var ns = 1..9 by 1; //
→˓yields 1, 2, 3, 4, 5, 6,
→˓ 7, 8, 9

ns = 1..9 by 2; //
→˓yields 1, 3, 5, 7, 9

// Values in descending
→˓order

ns = 1..9 by -1; //
→˓yields 9, 8, 7, 6, 5, 4,
→˓ 3, 2, 1

ns = 1..9 by -2; //
→˓yields 9, 7, 5, 3, 1

. . .

Python Chapel

No equivalent in Python // Infinite ranges
var one_to_inf = 1..; //
→˓yields from one to
→˓infinity: 1, 2, 3, 4, 5,
→˓ ...
var inf_to_one = ..1; //
→˓yields from infinity to
→˓one: ..., -5, -4, -3 , -
→˓2, -1, 0, 1
var inf_to_inf = .. ; //
→˓yields from infinity to
→˓infinity: ... , ...

. . .

Python Chapel

yields 10 values: 0, 1,
→˓2, 3, 4, 5, 6, 7, 8, 9
ns = xrange(10)

// yields 10 values: 0, 1,
→˓ 2, 3, 4, 5, 6, 7, 8, 9
var ns = 0.. # 10;

10 Chapter 2. Language Basics

Chapel for Python Programmers Documentation, Release 0.1

2.6 Loops

Python Chapel

Using generators
for i in xrange(1, 10):

print i

// Using ranges
for i in 1..10 {

writeln(i);
}

Python Chapel

for i, v in enumerate([
→˓'running', 'with',
→˓'scissors']):

print i, v

for (i, v) in zip(1.. , [
→˓"running", "with",
→˓"scissors"]) {

writeln(i, ' ', v);
}

Python Chapel

i = 0
while i<10: # while loop

i += 1
print i

i = 0 # do-while
→˓look-a-like loop
cond = True
while cond:

i += 1
print i
cond = i<10

var i = 0; // while loop
while i<10 {

i += 1;
writeln(i);

}

i = 0; // do-while
→˓loop
do {

i += 1;
writeln(i);

} while(i<10);

2.7 Functions and Types

Python Chapel

def abs(x):
if x < 0:

return -x
else:

return x

proc abs(x) {
if (x < 0) then

return -x;
else

return x;
}

Variable arguments? Argument unpacking? Return values? Return type declaration?

2.6. Loops 11

Chapel for Python Programmers Documentation, Release 0.1

2.8 Lists, Arrays, Tuples, and Dicts

In Python, lists are an essential built-in datastructure. You might be frightened to learn that lists are not particularly
useful in Chapel. However, fear not. Many of the uses of lists in Python are handled by ranges, such as driving loops.
So if that is your primary concern, then take another look at the description of ranges above.

If you need the ability to have elements of different types in a container such as:

stuff = ['a string', 42, ['another', 'list', 'with', 'strings']]

Then take a look at tuples in the following section.

If you use lists for processing various forms of data of the same type, then what you need are Chapel arrays. Yes,
that is correct, Chapel actually has arrays as first-class citizens in the language. Chapel is, to a great extent, all about
arrays.

2.8.1 Tuples

Tuples work in ways quite familiar to a Python programmer. Tuples are among other things useful for packing and
unpacking return-values from functions and having sequences of varying types.

Python Chapel

coord = ('47.606165', '-
→˓122.332233'); #
→˓Assignment
print "coord =", coord

→˓ ## Tuple item
→˓access

→˓ # - Indexing
print "Latitude =",
→˓coord[0], \

", Longitude =",
→˓coord[1]

(latitude, longitude) =
→˓coord; # -
→˓Unpacking

print "Latitude =",
→˓latitude, \

", Longitude =",
→˓longitude

var coord = (47.606165, -
→˓122.332233); //
→˓Assignment
writeln("coord = ",
→˓coord);

→˓ /// Tuple
→˓item access

→˓ // - Indexing
writeln(

"Latitude = ",
→˓coord(1),
", Longitude = ",

→˓coord(2)
);

var (latitude, longitude)
→˓= coord; // -
→˓Unpacking

writeln(
"Latitude = ",

→˓latitude,
", Longitude = ",

→˓longitude
);

Note: Indexing scheme of tuples.

• In Python, tuple-indexing is 0-based.

12 Chapter 2. Language Basics

Chapel for Python Programmers Documentation, Release 0.1

• In Chapel, tuple-indexing is 1-based.

Note: Mutability of tuples.

• In Python, tuples are immutable.

• In Chapel, tuples are mutable.

2.8.2 Arrays

This section only scratches the surface of Arrays in Chapel. The use of arrays and concepts related to them are
described in greater detail in the section on data parallelism.

Since Python does not support arrays within the language, a comparison to the widespread and popular array-library
NumPy is used as a reference instead. The first example below illustrates the creation and iteration over a 10x10
array containing 64-bit floating point numbers.

Python Chapel

import numpy as np

A = np.zeros((10, 10),
→˓dtype=np.float64)

for a in np.nditer(A): #
→˓Element iteration

print a

for i in xrange(0, 10): #
→˓Index iteration

for j in xrange(0,
→˓10):

print "(%d,%d) =
→˓%f" % (i, j, A[i,j])

// No need to import,
→˓arrays are built-in

var A: [0..9, 0..9] real;

for a in A { //
→˓ Element iteration

writeln(a);
}

//
→˓ Index iteration
for (i, j) in A.domain {

writeln("(",i,",",j,
→˓") = ",A[i,j]);
}

Note: Domains an unfamiliar concept!

The array syntax and semantics should be easy to follow. The interesting thing to notice is the use of .domain when
doing indexed iteration. A domain is a powerful concept and you will be very pleased with it once you get to know
it. However, it does require an introduction.

A domain defines a set of indexes. When iterating over the domain associated with an array, as in the example above,
you effectively iterate over all the indexes of all elements in the array. You might be accustomed to 0-based indexing
from Python when using lists and tuples. With Chapel you can define whether you want your arrays to be 0-based
or 1-based. In the example above, the array is 0-based since the indexes are defined by the range 0..9. If you
would prefer 1-based arrays you would define it using the range 1..10 instead.

This is quite a powerful feature. When using arrays as abstractions for matrices, you might find it useful to use
1-based indexing and in other situations a different indexing scheme. With Chapel you can define the index-set and
scheme that is most convenient for the domain you are working within.

2.8. Lists, Arrays, Tuples, and Dicts 13

Chapel for Python Programmers Documentation, Release 0.1

Initialization

Python Chapel

import numpy as np

A = np.arange(1, 11,
→˓dtype=np.float64)

print A

// No need to import,
→˓arrays are built-in

var A: [1..10] real = 1..
→˓10;

writeln(A);

Whole-array operations.

Python Chapel

import numpy as np

B = np.random.random((10,
→˓10))
C = np.random.random((10,
→˓10))

A = B + 2.0 * C

for a in np.nditer(A):
print a

use Random;

config const mySeed =
→˓SeedGenerator.
→˓currentTime; // Allow
→˓caller to set seed

var A, B, C: [1..10, 1..
→˓10] real;
fillRandom(B, mySeed);
→˓ // Fill with random
→˓values
fillRandom(C, mySeed);

A = B + 2.0 * C; //
→˓Whole-array operations

for a in A { //
→˓Print the result

writeln(a);
}

Reductions and scans

Python Chapel

import numpy as np

A = np.arange(1, 11,
→˓dtype=np.float64)

print np.sum(A) #
→˓Reduction

print np.cumsum(A) #
→˓Scan

// No need to import,
→˓arrays are built-in

var A: [1..10] real = 1..
→˓10;

writeln(+reduce(A)); //
→˓ Reduction

writeln(+scan(A)); //
→˓ Scan

14 Chapter 2. Language Basics

Chapel for Python Programmers Documentation, Release 0.1

Function promotion

Python Chapel

import numpy as np

def unary(element):
return element*3

def binary(e1, e2):
return (e1+e2)*3

A = np.arange(1, 11,
→˓dtype=np.float64)
B = np.arange(1, 11,
→˓dtype=np.float64)

print np.sqrt(A) #
→˓Rely on NumPy ufuncs
print map(unary, A) #
→˓Or mapping functions
print map(binary, A, B) #
→˓Or mapping functions

// No need to import,
→˓arrays are built-in

proc unary(element) {
→˓ // User-defined
→˓functions

return element*3;
}

proc binary(e1, e2) {
return (e1+e2)*3;

}

var A, B: [1..10] real =
→˓1..10;

writeln(sqrt(A));
→˓ // Promotion of built-
→˓in
writeln(unary(A));
→˓ // Promotion of
→˓userdef unary
writeln(binary(A, B));
→˓ // Promotion of
→˓userdef binary

2.8.3 Dictionaries (Associative Arrays)

Dict-comprehension?

2.9 Classes and Objects

In Python, everything is an object and all objects have a textual representation defined by the object.str(), etc. is there
equivalent functionality in Chapel?

2.9. Classes and Objects 15

Chapel for Python Programmers Documentation, Release 0.1

Python Chapel

class Stoplight:

def __init__(self,
→˓color):

self.color = color

sl = Stoplight("Green")

print sl.color

class Stoplight {
var color: string;

proc Stoplight(color:
→˓string) {

this.color =
→˓color;

}
}

var sl = new Stoplight(
→˓"Green");

writeln(sl.color);

2.10 Organizing Code

Python names modules implicitly via the filename convention. Chapel allows you to use the filename, but also allows
you to define it explicitly through the “module” directive. You can also define and use submodules, or modules defined
within the scope of another module.

Python Chapel

def main():
pass

if __name__ == "__main__":
main()

module Hello {
proc main() {

}
}

Python Chapel

from random import *

Other means of importing
import random
assert random.Random
from random import Random

use Random;

// There are no
→˓equivalent means of
// of importing where the
→˓namespaces
// are maintained.

16 Chapter 2. Language Basics

CHAPTER 3

Parallelism

Parallelism in Chapel is provided by the language itself in contrast to Python, which relies on modules and libraries.
This section contains fewer side-by-side examples, as most of these features are harder to come by in Python. Instead,
reference to libraries will be provided.

3.1 Task Parallelism

In Chapel, orchestration of parallel execution is provided by the built-in keywords: begin, sync, cobegin, and atomic
variables (atomic). Task parallelism in Python is provided through libraries such as: multiprocessing, threading,
thread, Queue, queue, Mutex, and mutex.

If you are used to the multiprocessing and threading libraries, then think of a Chapel task as either a multiprocess-
ing.Process or a threading.Thread.

3.1.1 begin and sync

The examples below implement equivalent programs in Python and Chapel: a function is executed in parallel, argu-
ments are passed to the function and the main program waits for the function to finish.

17

Chapel for Python Programmers Documentation, Release 0.1

Python Chapel

from multiprocessing
→˓import Process

def f(name):
print('Hello, '+ name)

if __name__ == '__main__':
p = Process(target=f,

→˓args=('bob',))
p.start()
p.join()

proc f(name) {
writeln("Hello, ",

→˓name);
}

proc main() {
sync begin f("bob");

}

In Chapel, the spawning of a task is done by using the begin statement, while Python requires the instantiation of a
Process targeting a function and invoking the start method. Waiting for the parallel execution to finish is done by
applying the sync statement in Chapel and invoking the join method in Python.

Spawning a task in Chapel does not require specifying a target function, blocks of code can be used:

Chapel

var name = "Bob";
writeln("Let us make ", name, " feel welcome.");
begin {

writeln("Hi ", name);
writeln("Pleased to meet you.");

}
writeln("Done welcoming ", name);

Which also illustrates how you can share data between tasks. Data within scope is available to the task and it is
therefore not nescesarry to pass it argument via a function-call.

If you try to execute the example above you might notice that the spawning task prints out “Done welcoming . . . ”
prematurely (prior to the spawned task printing “Welcome, . . . ”.

This is just to emphasize the use of the sync statement which blocks until the parallel execution finishes. So to ensure
the correct ordering, apply the sync statement as done below:

Chapel

var name = "Bob";
writeln("Let us make ", name, " feel welcome.");
sync begin {

writeln("Hi ", name);
writeln("Pleased to meet you.");

}
writeln("Done welcoming ", name);

18 Chapter 3. Parallelism

Chapel for Python Programmers Documentation, Release 0.1

3.1.2 cobegin

begin spawns off given statement as a single task, the cobegin statement spawns off multiple tasks; one for each
statement in the given block of statements.

Chapel

var name = "Bob";
writeln("Let us all say hi. ");
cobegin {

writeln("Hi ", name, "i am Alice");
writeln("Hi ", name, "i am John.");
writeln("Hi ", name, "i am Jane.");
writeln("Hi ", name, "i am Richard.");
writeln("Hi ", name, "i am Norma.");

}
writeln("Done welcoming ", name);

In addition to spawning a task for each statement within the block, the cobegin also implicitly syncs. That is, it waits
for all the statements within the block to finish executing. The above could also be expressed in terms of begin and
sync by:

Chapel

var name = "Bob";
writeln("Let us all say hi. ");
sync {

begin writeln("Hi ", name, "i am Alice");
begin writeln("Hi ", name, "i am John.");
begin writeln("Hi ", name, "i am Jane.");
begin writeln("Hi ", name, "i am Richard.");
begin writeln("Hi ", name, "i am Norma.");

}
writeln("Done welcoming ", name);

3.1.3 Synchronization Variables

sync, single, and atomic

3.2 Data Parallelism

forall, domains, arrays, reduce, scan . . .

3.2.1 Locality

locale, on

3.2.2 Domain Maps

3.2. Data Parallelism 19

Chapel for Python Programmers Documentation, Release 0.1

20 Chapter 3. Parallelism

CHAPTER 4

NumPy

21

Chapel for Python Programmers Documentation, Release 0.1

22 Chapter 4. NumPy

CHAPTER 5

Batteries

Python is well-known for having “batteries-included”. The cPython interpreter comes packaged with a rich standard
library for functionality. This section gives a brief overview of how a subset of the Python standard library maps to
Chapel language features and libraries.

What is the equivalent of “https://docs.python.org/2/library/” ?

5.1 argparse

Config variables. Param and config.

5.2 multiprocessing

. . .

5.3 threading

See multiprocessing.

5.4 time

23

https://docs.python.org/2/library/

Chapel for Python Programmers Documentation, Release 0.1

24 Chapter 5. Batteries

CHAPTER 6

Keywords

You might stumble over keywords in Chapel that you did not see coming. The following code might look harmless for
a Python programmer:

var begin = 1;
var end = 10;
for n in begin..end {

write(n);
}
writeln(".");

However, in Chapel begin is a keyword for one of the task-parallelism features of the language. The above will
therefore produce an error along the lines of syntax error: near 'begin'. Chapel uses the following
keywords:

_ align atomic begin break
by class cobegin coforall config
const continue delete dmapped do
domain else enum export extern
for forall if in index
inline inout iter label let
local module new nil on
otherwise out param proc record
reduce ref return scan select
serial single sparse subdomain sync
then type union use var
when where while yield zip

25

Chapel for Python Programmers Documentation, Release 0.1

26 Chapter 6. Keywords

CHAPTER 7

Pythonic Module

For those transitioning from Python, curious about Chapel, the Pythonic module might be nice to take a look at.
It contains a set of helper functions mimicing the functionality of some of the functions built into Python such as
enumerate, xrange, range, among others.

If it is useful it should probably be made available in a more convenient form, than this.

module Pythonic {

iter enumerate(iterable) {
for zipped in zip(1.. , iterable) {

yield zipped;
}

}

iter xrange(nelements: int) {
for i in 0..nelements-1 by 1 {

yield i;
}

}

iter xrange(start: int, stop: int) {
for i in start..stop-1 by 1 {

yield i;
}

}

iter xrange(start: int, stop: int, step: int) {
for i in start..stop-1 by step {

yield i;
}

}

//
// Python equivalents

(continues on next page)

27

Chapel for Python Programmers Documentation, Release 0.1

(continued from previous page)

//

// These should return 1D arrays?
proc range(nelements) {

}

proc range(start, stop) {

}

proc range(start, stop, step) {

}

//
// NumPy Equivalents
//
iter arange(start, stop, step) {

yield 1;
}

//
// Hmmm how about parallel iterators? Should the above instead be forall?
// How about parallel zipped iterators?

}

28 Chapter 7. Pythonic Module

CHAPTER 8

Python and Chapel

SciPy and its accompanying software stack[2] provides a powerful environment for scientific computing in Python.
The fundamental building block of SciPy is the multidimensional arrays provided by NumPy[1]. NumPy expands
Python by providing a means of doing array-oriented programming using array-notation with slicing and whole-array
operations.

The high-level abstractions, however, fails the user in the quest for high performance. In which case the user must take
control and choose between porting to another language or integrate with low-level APIs.

The following project ideas seek to cover some ground when choosing to port a Python/NumPy application to Chapel,
or use Chapel as a backend for Python/NumPy both implicitly and explicitly.

8.1 Chapel for Python/NumPy Users

The output of this project is an introduction to the Chapel language and concepts from the perspective of a NumPy
user. The introduction is written to answer the question “I am used to doing X in NumPy, how would I express X in
Chapel?”.

8.2 npbackend / Hidden Chapel

The strong suits of Python/NumPy are high-level abstractions, convenient array-notation and a rich environ-
ment/software stack. It would be interesting to explore how to treat NumPy as a DSL and map array operations
transparently to Chapel.

Thereby maintaining abstractions, environment, existing Python/NumPy sourcecode but somehow transparently del-
egating parallelization to Chapel. Using and possibly expanding upon the experiences gained from the previously
described project and applying sensible default strategies for mapping to domains and locales. Strategies which would
to a great extent rely on implicit data-parallelism of array operations.

The work can build upon experiences from our integration of Bohrium and NumPy and would involve factoring out
the glue between NumPy and Bohrium into a self-contained component which could be retargeted to Chapel.

29

Chapel for Python Programmers Documentation, Release 0.1

8.3 pyChapel

The pyChapel implementation is now deprecated in favor of an approach utilizing Cython. This is a work in progress
effort, but should hopefully come online shortly.

30 Chapter 8. Python and Chapel

CHAPTER 9

Miscellaneous Notes

This documentation is hosted on readthedocs.org.

9.1 Development

For development, install the Python packages listed in the requirements.txt file.

From the root of the git repo:
pip install -r requirements.txt

9.2 Introspection

writeln(typeToString(something.type))

CompilerWarning

31

Chapel for Python Programmers Documentation, Release 0.1

32 Chapter 9. Miscellaneous Notes

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

33

Chapel for Python Programmers Documentation, Release 0.1

34 Chapter 10. Indices and tables

CHAPTER 11

Appendix

11.1 If Chapel had a band

One of their songs might be a cover of “Hot Chocolate - Every 1’s a Winner”:

"Every 1's An Iterator"

Never could believe the things you do to me
Never could believe the way you are
Every day I bless the day that you got through to me
'Cause baby, I believe that you're a star

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)
Let's do it again

[Instrumental]

Never could explain just what was happening to me
Just one yield from you and I'm a flame
Baby, it's amazing just how wonderful it is
That the things we like to do are just the same

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)

[Instrumental]

Let's do it again

(continues on next page)

35

Chapel for Python Programmers Documentation, Release 0.1

(continued from previous page)

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)

Oh, baby
Oh, baby
Oh, baby...

TODO: Example of implementing the above as an iterator. . .

36 Chapter 11. Appendix

CHAPTER 12

Links

37

	Getting Started
	Compiling

	Language Basics
	Variables and Types
	Comments
	Console input / output
	Conditionals and Blocks
	Ranges
	Loops
	Functions and Types
	Lists, Arrays, Tuples, and Dicts
	Classes and Objects
	Organizing Code

	Parallelism
	Task Parallelism
	Data Parallelism

	NumPy
	Batteries
	argparse
	multiprocessing
	threading
	time

	Keywords
	Pythonic Module
	Python and Chapel
	Chapel for Python/NumPy Users
	npbackend / Hidden Chapel
	pyChapel

	Miscellaneous Notes
	Development
	Introspection

	Indices and tables
	Appendix
	If Chapel had a band

	Links

