
Chanterelle Documentation
Release v0.8.2.1

Martin Allen, Ilya Ostrovskiy

May 01, 2018

Contents:

1 chanterelle.json 1
1.1 Specification . 2

2 Modules 5

3 Dependencies 7

4 Compiling 9
4.1 Invoking the compiler . 9
4.2 Compiler arguments . 10

5 Genesis Blocks 11

6 Libraries 13
6.1 Overview . 13
6.2 Fixed Libraries . 13
6.3 Autocompiled Libraries . 13
6.4 Injected Libraries . 13
6.5 Fetched Libraries . 14

7 Deployments 15
7.1 Configuration . 15
7.2 Deploy Scripts . 17
7.3 Deployment Example . 17
7.4 Invocation . 18
7.5 Deployer arguments . 18

8 Testing 19
8.1 Configuration . 19
8.2 Example Test Suite . 19

i

ii

CHAPTER 1

chanterelle.json

A Chanterelle project is primarily described in chanterelle.json, which should be placed in the root of your
project. A sample project is defined below, based on the parking-dao application.

{ "name": "parking-dao",
"version": "0.0.1",
"source-dir": "contracts",
"artifacts-dir": "build/contracts",
"modules": ["FoamCSR"

, "ParkingAuthority"
, "SimpleStorage"
, "User"
, "ParkingAnchor"
, "Nested.SimpleStorage"
],

"dependencies": ["zeppelin-solidity"],
"libraries": {

"FixedLib": "0x1337133713371337133713371337133713371337",
"AutocompiledLib": {

"address": "0xf00dcafe0ea7beef808080801234567890ABCDEF",
"code": {

"file": "src/MyLibraries/AutocompiledLib.sol"
}

},
"InjectedLib": {

"address": "0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef",
"code": {

"bytecode": "0x73deadbeefdeadbeefdeadbeefdeadbeefdeadbeef301460606040...
→˓"

}
},
"FetchedLib": {

"address": "0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4",
"via": ["mainnet", "rinkeby"]

}
},

1

https://github.com/f-o-a-m/parking-dao

Chanterelle Documentation, Release v0.8.2.1

"networks": {
"some-private-net": {

"url": "http://chain-1924-or-1925.roll-the-dice-see-what-you-get.com:8545/
→˓",

"chains": "1924,1925",
},
"a-different-net": {

"url": "http://mystery-chain.whose-id-always-chang.es:8545/",
"chains": "*",

}
},
"solc-output-selection": [],
"purescript-generator": {

"output-path": "src",
"module-prefix": "Contracts",
"expression-prefix": ""

}
}

1.1 Specification

Note: All filepaths are relative to the chanterelle.json file, which is considered the project root.

chanterelle.json - specification:

• name - Required: The name of your project (currently unused, for future use with package management)

• version - Required: The currrent version of your project (currently unused, for future use with package
management)

• source-dir - Required: Where your Solidity contracts are located.

• artifacts-dir - Optional: The directory where the contract artifacts (ABI, bytecode, deployment info,
etc) will be written. Defaults to build.

• modules - Required: A list of all solidity contracts you wish to compile (see Modules)

• dependencies - Optional: External Solidity (source-code) libraries/dependencies to use when compiling
(see Dependencies).

• libraries - Optional: Solidity libraries to link against when compiling.

– A library may be defined as just an address. This is known as a “Fixed Library”. In this case, that
address will be fed to solc when compiling contracts that depend on it. However, generating genesis
blocks will be unavailable as there is no means to get the code for the given library.

– A library may alternatively be defined as an address and a means to fetch the library. The address will
be fed into solc as with a Fixed Library, however, when generating a genesis block, Chanterelle will
attempt to compile the library or fetch it from any specified networks.

– If a library is injected as raw bytecode or fetched from a network, that code must begin with a library
guard (0x73<addr>3014). Chanterelle uses this to automagically inject the correct library address
into the Genesis block.

– Supported networks to fetch from include: "mainnet", "ropsten", "rinkeby", "kovan",
and "localhost", as well as any networks defined in the "networks" field of your project spec.

• networks - Optional: Additional networks to fetch libraries from.

– Each network has a required "url" field, which tells Chanterelle how to reach a node on that network

2 Chapter 1. chanterelle.json

Chanterelle Documentation, Release v0.8.2.1

– Each network has a required "chains" field, which tells Chanterelle which network IDs to accept
from that node. The value may either be a comma-separated list of network ID numbers (still has to
be a string for just one network), or "*" to accept any network ID.

• solc-output-selection - Additional outputs to request from solc (currently unsupported, but see solc
documentation)

• purescript-generator - Required: Options for purescript-web3-generator (see below)

purescript-generator - options:

• output-path - Required: Where to place generated PureScript source files, for example this is your
PureScript project source directory.

• module-prefix - Optional: What module name to prefix to your generated PureScript bindings. Note
that the generated files will be stored relative to the output path (e.g. if set to Contracts as above, code will
be generated into src/Contracts). Defaults to Contracts.

• expression-prefix - Optional: Prefix all generated functions with the specified prefix. This is useful
if you are depending on external smart contract libraries that name their solidity events or functions that are
invalid purescript names.

1.1. Specification 3

Chanterelle Documentation, Release v0.8.2.1

4 Chapter 1. chanterelle.json

CHAPTER 2

Modules

Chanterelle uses a notion of modules to determine which units of Solidity code to compile and create PureScript
bindings for. Those coming from a Haskell background may notice the parallel to Cabal’s exposed-modules. Simply
adding a contract file within the source-dir does not mean it will be compiled, nor will there be a generate PureScript
file. Instead, one must explicitly specify it in the project’s chanterelle.json.

Chanterelle uses module namespacing for Solidity files similar to what’s found in PureScript or Haskell, though
here we enforce that the module name must mirror the filepath. A module named Some.Modular.Contract is
expected to be in contracts/Some/Modular/Contract.sol, and its PureScript binding will have the same
module name as well.

Solidity build artifacts are put into the build/ directory by default (see artifacts-dir in chanterelle.json). The
full artifact filepath corresponds to the its relative location in the source-dir. For example, in the parking-dao the
ParkingAuthority Solidity module is located at contracts/ParkingAuthority.sol. Thus the build
artifact will be written to build/ParkingAuthority.json.

If a module-prefix is specified in the purescript-generator section, that module prefix will be prepended to the gen-
erated PureScript modules’ names. In the parking-dao example, the module FoamCSR is expected to be located in
contracts/FoamCSR.sol and will generate a PureScript module Contracts.FoamCSR with filepath src/
Contracts/FoamCSR.purs. Likewise, Nested.SimpleStorage is expected to be located in contracts/
Nested/SimpleStorage.sol and the generated PureScript module name will be Contracts.Nested.
SimpleStorage with filepath src/Contracts/Nested/SimpleStorage.purs.

5

https://github.com/f-o-a-m/parking-dao

Chanterelle Documentation, Release v0.8.2.1

6 Chapter 2. Modules

CHAPTER 3

Dependencies

As the Ethereum ecosystem has not conclusively settled on a Solidity package management structure yet, we support
referencing any modules installed in node_modules as additional include paths for use in your Solidity imports.

In the parking-dao example project, we have zeppelin-solidity as a listed dependency. By listing this depen-
dency, chanterelle will format the solc input so that any imports starting with zeppelin-solidity/ will be
fetched from /path/to/project/node_modules/zeppelin-solidity/.

In the future we aim to have a more clever system in place for handling this usage scenario.

7

https://github.com/f-o-a-m/parking-dao

Chanterelle Documentation, Release v0.8.2.1

8 Chapter 3. Dependencies

CHAPTER 4

Compiling

Currently, Chanterelle does not have a dedicated command line tool for invoking its functionality. Instead, one writes
a brief PureScript program to invoke the various features of Chanterelle.

Generally, you’d want to have at least two subprojects, one for compiling and one for deploying/testing. This is
because the deployer and test suite will surely depend on PureScript bindings generated during the compilation phase,
and thus cannot be part of the same project. An example of this can be seen in the Parking DAO example.

4.1 Invoking the compiler

A sample application to invoke the compiler is presented below. This is nearly identical to the Parking DAO com-
pile script, with the exception that this script also invokes the Genesis block generator. One may leave out the
runGenesisGenerator bit if this functionality is not required. One may want to store this script in a direc-
tory outside where their PureScript build system (such as Pulp) would keep code. One such location is compile/
Compile.purs (as opposed to say, src/compile/Compile.purs).

module CompileMain where

import Prelude
import Chanterelle (compileMain)
import Chanterelle.Genesis (runGenesisGenerator)
import Control.Monad.Aff.Console (CONSOLE)
import Control.Monad.Eff (Eff)
import Control.Monad.Eff.Exception (EXCEPTION)
import Control.Monad.Eff.Now (NOW)
import Node.FS.Aff (FS)
import Node.Process (PROCESS)
import Network.Ethereum.Web3 (ETH)

main :: forall eff.
Eff

(console :: CONSOLE
, fs :: FS

9

https://github.com/f-o-a-m/parking-dao

Chanterelle Documentation, Release v0.8.2.1

, process :: PROCESS
, exception :: EXCEPTION
, now :: NOW
, eth :: ETH
| eff
)
Unit

main = do
compileMain
runGenesisGenerator "./base-genesis-block.json" "./injected-genesis-block.json"

We can then invoke this script as follows

pulp build --src-path compile -m CompileMain --to compile.js && \
node compile.js --log-level info; \
rm -f compile.js

This will compile and purescript-web3 codegen all the modules specified in chanterelle.json as well as gener-
ate a genesis block whose contents are those of ./base-genesis-block.json with injected libraries appended
into allocs and written out to ./injected-genesis-block.json.

Note that we do not use pulp run as we then have no means to pass command line arguments to the compiler.

4.2 Compiler arguments

Currently the following command line arguments are supported for the compiler phase when ran with compileMain:

• --log-level: One of debug, info, warn, or error. Defaults to info. This option changes the level of
logging to the console.

10 Chapter 4. Compiling

CHAPTER 5

Genesis Blocks

Chanterelle supports generating genesis blocks for use with custom blockchains which depend on externally deployed
libraries on other chains. It utilizes the libraries field in the chanterelle.json.

The genesis generator takes the path to a geth-compatible genesis block as input (relative to the project root or
absolute), and writes the filled-in block to the output path specified, overwriting it if it exists.

As was seen in the compilation example, the genesis generator is invoked with runGeneratorMain, customarialy
as part of your compilation phase.

As will be noted in the libraries chapter, the genesis generator is unable to run if any Fixed libraries are specified in
the project spec.

We typically recommend using the genesis generator in conjunction with Cliquebait.

11

https://github.com/f-o-a-m/cliquebait

Chanterelle Documentation, Release v0.8.2.1

12 Chapter 5. Genesis Blocks

CHAPTER 6

Libraries

Chanterelle supports supplying Solidity libraries to solc during compile-time. Future versions will support injecting
libraries during the Deployment phase.

6.1 Overview

Each library is a mapping of a library name to one or more parameters describing it. These parameters are utilized
during the compilation of contracts as well as when generating genesis blocks. Each library specified will have its
address passed into solc so that it may automatically be linked into the compiled bytecode.

6.2 Fixed Libraries

The most basic form of library descriptor is simply a library name and an address. This is seldom used in practice, and
will prevent the genesis generator from running.

6.3 Autocompiled Libraries

These are the most common form of library you’ll likely use. In this case, rather than a string representing the library
address, one specified an object containing the library’s address as well as where to find the Solidity code for that
library.

When generating genesis blocks, the generator will compile the library and use the resulting bytecode.

6.4 Injected Libraries

Injected libraries consist of raw EVM bytecode that represents the code that should exist at the library’s address (i.e., as
would be received from eth.getCode("0xaddress"). Note that most Solidity libraries have checks to ensure

13

Chanterelle Documentation, Release v0.8.2.1

that they are not called directly, and have this written as part of their deployment address when they are first deployed
to the blockchain. To handle this, Chanterelle will automatically substitute that section of the bytecode to ensure the
library behaves as expected. If a library does implement this check in the standard manner (by having the first bytes
be 0x73<addr>3014), the genesis generator will fail.

6.5 Fetched Libraries

Chanterelle may be configured to attempt to fetch the code for a library from an existing network. Should the code be
unavailable on all the specified networks, the genesis generator will fail.

The "via" field may be one of:

• "*": Attempt to fetch the library from all networks defined in the project spec

• "**": Attempt to fetch the library from both the networks defined in the project spec as well as from the
predefined networks: mainnet, ropsten, rinkeby, kovan, or localhost.

• ["net_name", ...]: Attempt to fetch the library from any of the named networks. These may include
both the project-specific networks as well as the predefined networks. Note that this must be an array even if
only one network is specified.

14 Chapter 6. Libraries

CHAPTER 7

Deployments

7.1 Configuration

Every contract deployment requires an explicit configuration. Specifically, the configuration is an object of the follow-
ing type:

type ContractConfig args =
{ filepath :: String
, name :: String
, constructor :: Constructor args
, unvalidatedArgs :: V (Array String) (Record args)
}

The filepath field is the filepath to the solc build artifact relative the the chanterelle.json file.

The name field is there to name the deployment throughout the logging. (This could dissappear assuming its suffient
to name the deployment according to the build artifact filename.)

The type Constructor args is a type synonym:

type Constructor args = forall eff. TransactionOptions NoPay -> HexString -> Record
→˓args -> Web3 eff HexString

In other words, Constructor args is the type a function taking in some TransactionOptions NoPay
(constructors are not payable transactions), the deployment bytepurescriptcode, and a record of type Record args.
It will format the transaction and submit it via an eth_sendTransaction RPC call, returning the transaction hash
as a HexString.

The unvalidatedArgs field has type V (Array String) (Record args) where V is a type coming from
the purescript-validation library. This effectively represents either a type of Record args or a list of error messages
for all arguments which failed to validate.

It’s possible that your contract requires no arguments for deployment, and in that case chanterelle offers some
default values. For example, if the filepath of the build artifact for VerySimpleContract.sol is build/
VerySimpleContract.json, you might end up with something like

15

https://github.com/purescript/purescript-validation

Chanterelle Documentation, Release v0.8.2.1

verySimpleContractConfig :: ContractConfig NoArgs
verySimpleContractConfig =

{ filepath: "build/VerySimpleContract.json"
, name: "VerySimpleContract"
, constructor: constructorNoArgs
, unvalidatedArgs: noArgs
}

Let’s consider the simplest example of a contract configuration requiring a constructor with arguments. Consider the
following smart contract:

contract SimpleStorage {

uint256 count public;

event CountSet(uint256 _count);

function SimpleStorage(uint256 initialCount) {
count = initialCount;

}

function setCount(uint256 newCount)) {
count = newCount;
emit CountSet(newCount));

}

}

Depending on your project configuration, when running chanterelle compile you should end up with some-
thing like the following artifacts:

1. The solc artifact build/SimpleStorage.json

2. The generated PureScript file src/Contracts/SimpleStorage.purs

In the PureScript module Contracts.SimpleStorage, you will find a function

constructor :: forall e. TransactionOptions NoPay -> HexString -> {initialCount ::
→˓UIntN (D2 :& D5 :& DOne D6)} -> Web3 e HexString

Blurring your eyes a little bit, it’s easy to see that this indeed matches up to the constructor defined in the Solidity file.
We could then define the deployment configuration for SimpleStorage as

import Contracts.SimpleStorage as SimpleStorage

simpleStorageConfig :: ContractConfig (initialCount :: UIntN (D2 :& D5 :& DOne D6))
simpleStorageConfig =

{ filepath: "build/SimpleStorage.json"
, name: "SimpleStorage"
, constructor: SimpleStorage.constructor
, unvalidatedArgs: validCount
}

where
validCount = uIntNFromBigNumber s256 (embed 1234) ?? "SimpleStorage: initialCount

→˓must be valid uint256"

Here you can see where validation is important. Clearly 1234 represents a valid uint, but you can easily imagine
scenarios where this might save us a lot of trouble– too many characters in an address, an improperly formatted string,
an integer is out of a bounds, etc.

16 Chapter 7. Deployments

Chanterelle Documentation, Release v0.8.2.1

7.2 Deploy Scripts

Deploy scripts are written inside the DeployM monad, which is a monad that gives you access to a web3 connection,
controlled error handling, and whatever effects you want. The primary workhorse is the deployContract function:

deployContract :: TransactionOptions NoPay -> ContractConfig args -> DeployM
→˓{deployAddress :: Address, deployArgs :: Record args}

This function takes your contract deployment configuration as defined above and sends the transaction. If no errors are
thrown, it will return the address where the contract as deployed as well as the deploy arguments that were validated
before the transaction was sent. It will also automatically write to the solc artifact in the artifacts-dir, updating
the networks object with a key value pair mapping the networkId to the deployed address.

Error hanlding is built in to the DeployM monad. Unless you want to customize your deployment with any attempt
to use some variant of try/catch, any error encountered before or after a contract deployment will safely terminate the
script and you should get an informative message in the logs. It will not terminate while waiting for transactions to go
through unless the timeout threshold is reached. You can configure the duration as a command line argument.

7.3 Deployment Example

Consider this example take from the parking-dao example project:

module MyDeployScript where

import ContractConfig (simpleStorageConfig, foamCSRConfig, parkingAuthorityConfig)

type DeployResults = (foamCSR :: Address, simpleStorage :: Address, parkingAuthority
→˓:: Address)

deployScript :: forall eff. DeployM eff (Record DeployResults)
deployScript = do

deployCfg@(DeployConfig {primaryAccount}) <- ask
let bigGasLimit = unsafePartial fromJust $ parseBigNumber decimal "4712388"

txOpts = defaultTransactionOptions # _from ?~ primaryAccount
_gas ?~ bigGasLimit

simpleStorage <- deployContract txOpts simpleStorageConfig
foamCSR <- deployContract txOpts foamCSRConfig
let parkingAuthorityConfig = makeParkingAuthorityConfig {foamCSR: foamCSR.

→˓deployAddress}
parkingAuthority <- deployContract txOpts parkingAuthorityConfig
pure { foamCSR: foamCSR.deployAddress

, simpleStorage: simpleStorage.deployAddress
, parkingAuthority: parkingAuthority.deployAddress
}

After setting up the TransactionOptions, the script first deploys the SimpleStorage contract and then
the FoamCSR contract using their configuration. The ParkingAuthority contract requires the address of the
FoamCSR contract as one of it’s deployment arguments, so you can see us threading it in before deploying. Finally,
we simple return all the addresses of the recently deployed contracts to the caller.

Note that if we simply wanted to terminate the deployment script after the contract deployments there then there’s
no point in returning anything at all. However, deployment scripts are useful outside of the context of a standalone
script. For example you can run a deployment script before a test suite and then pass the deployment results as an
environment to the tests. See the section on testing for an example.

7.2. Deploy Scripts 17

Chanterelle Documentation, Release v0.8.2.1

7.4 Invocation

Much like with the compilation phase, the deployment phase is invoked with a minimal PureScript boilerplate. This
script, however, invokes the deployScript you defined previously, and may either reside with the rest of your
source or more methodically in a separate deploy/ subproject. The latter is demonstrated below

module DeployMain (main) where

import Prelude

import Chanterelle (deployMain)
import Control.Monad.Eff (Eff)
import Control.Monad.Eff.Console (CONSOLE)
import Control.Monad.Eff.Exception (EXCEPTION)
import Control.Monad.Eff.Now (NOW)
import Network.Ethereum.Web3 (ETH)
import Node.FS.Aff (FS)
import Node.Process (PROCESS)
import MyDeployScript (deployScript) as MyDeployScript

main :: forall e. Eff (now :: NOW, console :: CONSOLE, eth :: ETH, fs :: FS, process
→˓:: PROCESS, exception :: EXCEPTION | e) Unit
main = deployMain MyDeployScript.deployScript

We can then invoke this script as follows:

pulp build --src-path deploy -I src -m DeployMain --to deploy.js && \
node deploy.js --log-level info; \
rm -f deploy.js

One may note the similarities to the invocation of the compiler script, however the build has an additional -I src as
your deploy script will mostly likely depend on artifacts that are codegen’d into your main source root as well.

7.5 Deployer arguments

Currently the following command line arguments are supported for the deployment phase when ran with
deployMain:

• --log-level: One of debug, info, warn, or error. Defaults to info. This option changes the level of
logging to the console.

18 Chapter 7. Deployments

CHAPTER 8

Testing

8.1 Configuration

You can use whatever purescript testing framework you want, but for illustrative purposes we will use purescript-spec.

There are various testing utility functions in Chanterelle.Test, probably the most important is
buildTestConfig.

type TestConfig r =
{ accounts :: Array Address
, provider :: Provider
| r
}

buildTestConfig
:: String
-> Int
-> DeployM eff (Record r)
-> Aff (console :: CONSOLE, eth :: ETH, fs :: FS | eff) (TestConfig r)

This function takes in some test configuration options and a deploy script, and outputs a record containing all of the
unlocked accounts on the test node, a connection to the node, and whatever the output of your deployment script is.
This output is then meant to be threaded through as an environment to the rest of your test suites.

Note, unlike the deploy process meant for actual deployments, buildTestConfig will not write anything to the
file system about the result of your deployment. In other words, test deployments are ephemeral.

8.2 Example Test Suite

Here’s an example test suite for our SimpleStorage contract:

19

https://github.com/owickstrom/purescript-spec

Chanterelle Documentation, Release v0.8.2.1

simpleStorageSpec
:: forall e r.

TestConfig (simpleStorage :: Address | r)
-> Spec (fs :: FS

, eth :: ETH
, avar :: AVAR
, console :: CONSOLE
| e
) Unit

simpleStorageSpec {provider, accounts, simpleStorage} = do

describe "Setting the value of a SimpleStorage Contract" do

it "can set the value of simple storage" $ do
var <- makeEmptyVar
let filterCountSet = eventFilter (Proxy :: Proxy SimpleStorage.CountSet)

→˓simpleStorage
_ <- forkWeb3 provider $

event filterCountSet $ \e@(SimpleStorage.CountSet cs) -> do
liftEff $ log $ "Received Event: " <> show e
_ <- liftAff $ putVar cs._count var
pure TerminateEvent

let primaryAccount = unsafePartialBecause "Accounts list has at least one
→˓account" $ fromJust (accounts !! 0)

n = unsafePartial fromJust <<< uIntNFromBigNumber s256 <<< embed $ 42
txOptions = defaultTransactionOptions # _from ?~ primaryAccount

_to ?~ simpleStorage
_gas ?~ embed 90000

hx <- assertWeb3 provider $ SimpleStorage.setCount txOptions {_count: n}
liftEff <<< log $ "setCount tx hash: " <> show hx
val <- takeVar var
val `shouldEqual` n

The flow of the test is as follows:

1. We create an AVar to communicate between the testing thread and the event monitoring thread.

2. We then fork an event monitoring thread for our CountSet event, placing the first received value in the AVar
and terminating the monitor. Notice that the address for the filter is taken from the supplied TestConfig.

3. We create then our TransactionOptions and submit a transaction to change the count using the
setCount function from the generated PureScript module.

4. We call takeVar which blocks until the var is filled, then make sure the value we received is the one we put
in.

Admittingly this example is pretty trivial– of course we’re going to get back the value we put in. However, this pattern
is pretty universal, namely take the supplied test config to help you template the transactions, call some functions,
monitor for some event, then make sure the values are what you want.

20 Chapter 8. Testing

	chanterelle.json
	Specification

	Modules
	Dependencies
	Compiling
	Invoking the compiler
	Compiler arguments

	Genesis Blocks
	Libraries
	Overview
	Fixed Libraries
	Autocompiled Libraries
	Injected Libraries
	Fetched Libraries

	Deployments
	Configuration
	Deploy Scripts
	Deployment Example
	Invocation
	Deployer arguments

	Testing
	Configuration
	Example Test Suite

