

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ChainerMN 1.0.0 documentation »

Welcome to ChainerMN’s documentation!

Contents:

	Installation
	Installation Guide

	Step-by-Step Troubleshooting

	Tutorial
	Overview

	Step 1: Communicators and Optimizers

	Step 2: Datasets and Evaluators

	Tips and FAQs

	API Reference
	Communicators

	Optimizers and Evaluators

	Dataset Utilities

	Links

	Functions

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

Installation

	Installation Guide
	Requirements

	Installation

	Step-by-Step Troubleshooting
	Single-node environment

	Multi-node environment

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Installation »

Installation Guide

Requirements

In addition to Chainer, ChainerMN depends on the following software libraries:
CUDA-Aware MPI, NVIDIA NCCL, and a few Python packages including MPI4py.

Chainer

ChainerMN adds distributed training features to Chainer;
thus it naturally requires Chainer.
Please refer to the official instructions [http://docs.chainer.org/en/latest/install.html] to install.

CUDA-Aware MPI

ChainerMN relies on MPI.
In particular, for efficient communication between GPUs, it uses CUDA-aware MPI.
For details about CUDA-aware MPI, see this introduction article [https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/].
(If you use only the CPU mode, MPI does not need to be CUDA-Aware. See Non-GPU environments for more details.)

The CUDA-aware features depend on several MPI packages, which need to be configured and built properly.
The following are examples of Open MPI and MVAPICH.

Open MPI (for details, see the official instructions [https://www.open-mpi.org/faq/?category=building#build-cuda]):

$./configure --with-cuda
$ make -j4
$ sudo make install

MVAPICH (for details, see the official instructions [http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-120004.5]):

$./configure --enable-cuda
$ make -j4
$ sudo make install
$ export MV2_USE_CUDA=1 # Should be set all the time when using ChainerMN

NCCL

To enable efficient intra-node GPU-to-GPU communication,
we use NVIDIA Collective Communications Library (NCCL) [https://developer.nvidia.com/nccl].
See the official instructions [http://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/index.html#downloadnccl] for installation.

ChainerMN requires NCCL even if you have only one GPU per node. The
only exception is when you run ChainerMN on CPU-only environments. See
Non-GPU environments for more details.

Note

We reccomend NCCL 2 but NCCL 1 can be used.
When you use CUDA 7.0 and 7.5, please install NCCL 1 because NCCL 2 is not supported with CUDA 7.0 and 7.5.
However, for NCCL 1, PureNcclCommunicator is not supported in ChainerMN.
If you use NCCL 1, please properly configure environment variables to expose NCCL both when you install and use ChainerMN.
Typical configurations should look like the following:

export NCCL_ROOT=<path to NCCL directory>
export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH

MPI4py

ChainerMN depends on a few Python packages, which are
automatically installed when you install ChainerMN.

However, among them, we need to be a little careful about MPI4py.
It links to MPI at installation time, so please be sure
to properly configure environment variables
so that MPI is available at installation time.
In particular, if you have multiple MPI implementations in your environment,
please expose the implementation that you want to use
both when you install and use ChainerMN.

In addition, Cython may not be installed automatically.
It can be installed manually via pip:

$ pip install cython

Tested Environments

We tested ChainerMN on all the following environments.

	OS
	Ubuntu 14.04 LTS 64bit

	Python 2.7.13 3.5.1 3.6.1

	Chainer 1.24.0 2.0.2

	MPI
	openmpi 1.6.5 1.10.3 2.1.1

	mvapich 2.2

	MPI4py 2.0.0

	NCCL 1.3.4 2.0.4

Installation

Install via pip

We recommend to install ChainerMN via pip:

$ pip install chainermn

NOTE: If you need sudo to use pip, you should be careful
about environment variables. The sudo command DOES NOT
inherit the environment, and thus you need to specify the variables
explicitly.

$ sudo CPATH=${CPATH} LIBRARY_PATH=${LIBRARY_PATH} pip install chainermn

Install from Source

You can use setup.py to install ChainerMN from source:

$ tar zxf chainermn-x.y.z.tar.gz
$ cd chainermn-x.y.z
$ python setup.py install

Non-GPU environments

For users who want to try ChainerMN in a CPU-only environment,
typically for testing for debugging purpose, ChainerMN can be built
with the --no-nccl flag.:

$ python setup.py install --no-nccl

In this case, the MPI does not have to be CUDA-aware.
Only naive communicator works with the CPU mode.

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Installation »

Step-by-Step Troubleshooting

This section is a step-by-step troubleshooting guide for ChainerMN.
Please follow these steps to identify and fix your problem.

We assume that you are using Linux or another Unix-like environment.

Single-node environment

Basic MPI installation

Although ChainerMN stands for “Chainer MultiNode,” it is good to start
from single-node execution. First of all, you need MPI. If MPI is
correctly installed, you will see the mpicc and
mpiexec commands in your PATH.

Below is an example of the output from Mvapich on Linux.:

$ which mpicc
/usr/local/bin/mpicc

$ mpicc -show
gcc -I/usr/local/include ...(snip)... -lmpi

$ which mpiexec
/usr/local/bin/mpiexec

$ mpiexec --version
HYDRA build details:
Version: 3.1.4
Release Date: Wed Sep 7 14:33:43 EDT 2016
CC: gcc
CXX: g++
F77:
F90:
Configure options: (snip)
Process Manager: pmi
Launchers available: ssh rsh fork slurm ll lsf sge manual persist
Topology libraries available: hwloc
Resource management kernels available: user slurm ll lsf sge pbs cobalt
Checkpointing libraries available:
Demux engines available: poll select

If you see any error in above commands, please go back to the
CUDA-Aware MPI and check your MPI installation.

Check what MPI you are using

In CUDA-Aware MPI, we mention both of Open MPI and
Mvapich. If the MPI is provided by the system administrator and
you are not really sure which MPI you are using, check the output of
mpiexec –version.

	If the output contains HYDRA, then it’s MVAPICH (or possibly MPICH).

	If the output contains OpenRTE, then it’s Open MPI.

However, in such a case, you should make sure that the MPI is
CUDA-aware, as mentioned below. We recommend to build your own MPI.

Check if MPI is CUDA-aware

Your MPI must be configured as CUDA-aware. You can use the following
C program to check it.

/* check_cuda_aware.c */
#include <assert.h>
#include <stdio.h>
#include <mpi.h>
#include <cuda_runtime.h>

#define CUDA_CALL(expr) do { \
 cudaError_t err; \
 err = expr; \
 assert(err == cudaSuccess); \
} while(0)

int main(int argc, char **argv) {
 int rank, size;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int *sendbuf_d = NULL;
 int *recvbuf_d = NULL;

 CUDA_CALL(cudaMalloc((void**)&sendbuf_d, sizeof(int)));
 CUDA_CALL(cudaMalloc((void**)&recvbuf_d, sizeof(int)));
 CUDA_CALL(cudaMemcpy(sendbuf_d, &rank, sizeof(int), cudaMemcpyDefault));

 MPI_Reduce(sendbuf_d, recvbuf_d, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

 if (rank == 0) {
 int sum = -1;
 CUDA_CALL(cudaMemcpy(&sum, recvbuf_d, sizeof(int), cudaMemcpyDefault));
 if (sum == (size-1) * size / 2) {
 printf("OK.\n");
 } else {
 printf("Error.\n");
 }
 }

 cudaFree(sendbuf_d);
 cudaFree(recvbuf_d);

 MPI_Finalize();
}

Save the code to a file named check_cuda_aware.c. You can compile
and run it with the following command.:

$ export MPICH_CC=nvcc # if you use Mvapich
$ export OMPI_CC=nvcc # if you use Open MPI
$ $(mpicc -show check_cuda_aware.c -arch sm_53 | sed -e 's/-Wl,/-Xlinker /g' | sed -e 's/-pthread/-Xcompiler -pthread/')
$./a.out
OK.

If the proglam prints OK., your MPI is correctly configured.

Check mpi4py

Next, let’s check that mpi4py is correctly installed. You can use the following script to check it:

coding: utf-8
import os
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
 if i == rank:
 print("{} {}".format(os.uname()[1], i))
 comm.Barrier()

Save the script into a file named check_mpi4py.py and run it.
The output from the script should look like this.:

$ mpiexec -np 4 python check_mpi4py.py
host00 0
host00 1
host00 2
host00 3

The script prints hostnames and ranks (process id in MPI) from
each MPI process in a sequential manner.
host00 is the host name of the machine your are running the process.
If you get an output like below, it indicates something is wrong with
your installation.:

Wrong output !
$ mpiexec -n 4 python check_mpi4py.py
host00 0
host00 0
host00 0
host00 0

A common problem is that the mpicc used to build
mpi4py and mpiexec used to run the script are from
different MPI installations.

Finally, run nosetests to check the single-node
configuration is ready.:

$ nosetests
......S.S...S.S...S.S...S.S.........SS
--
Ran 38 tests in 63.083s

OK (SKIP=10)

Multi-node environment

Check SSH connection and environment variables

To use ChainerMN on multiple hosts, you need to connect to computing hosts,
including the one you are currently logged into, via ssh without
password authentication (and preferably without username).:

$ ssh host00 'hostname'
host00 # without hitting the password

$ ssh host01 'hostname'
host01 # without hitting the password

...

You may get a message like this:

The authenticity of host 'host01 (xxx.xxx.xxx.xxx)' can't be established.
ECDSA key fingerprint is SHA256:haGUMcCeC5A8lGh1lpjpwL5dF4xCglZArhhxxxxxxxxx.
Are you sure you want to continue connecting (yes/no)?

This message appears when you log in a host for the first time. Just
type yes and the message won’t appear again. You need to repeat this
process on all computing hosts.

Also, you need to pay attention to the environment variables on remote
hosts. The MPI runtime connects to the remote hosts in non-interactive
mode, and environment variables may differ from your interactive login
sessions.:

$ ssh host00 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

$ ssh host01 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

...

In particular, check the following variables, which are critical to
executing MPI programs:

	PATH

	LD_LIBRARY_PATH

	MV2_USE_CUDA (if you use MVAPICH)

	MV2_SMP_USE_CMA (if you use MVAPICH)

Besides, you need to make sure the same mpiexec binary is
used to run MPI programs.:

$ ssh host00 'which mpiexec'
/usr/local/bin/mpiexec

$ ssh host01 'which mpiexec'
/usr/local/bin/mpiexec

All the commands should give the same mpiexec binary path.

Program files and data

When you run MPI programs, all hosts must have the same Python binary
and script files in the same path. First, check that the python binary and
version are identical among hosts. Be careful if you are using pyenv
or Anaconda.:

$ ssh host00 'which python; python --version'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

$ ssh host01 'which python'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

...

Also, the script file (and possibly data files) must be in the same
path on each host.

$ ls yourscript.py # in the current directory
yourscript.py

$ ssh host00 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

$ ssh host01 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

...

If you are using NFS, everything should be okay. If not, you need
to transfer all the necessary files manually.

In particular, when you run the ImageNet example in ChainerMN
repository, all data files must be available on all computing hosts.

hostfile

The next step is to create a hostfile. A hostfile is a list of hosts on
which MPI processes run.:

$ vi hostfile
$ cat hostfile
host00
host01
host02
host03

Then, you can run your MPI program using the hostfile. To check if
the MPI processes run over multiple hosts, save the following script
to a file and run it via mpiexec:

print_rank.py
import os

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
 if i == rank:
 print("{} {}".format(os.uname()[1], i))
 comm.Barrier()

If you get an output like below, it is working correctly.:

$ mpiexec -n 4 --hostfile hostfile python print_rank.py
host00 0
host01 1
host02 2
host03 3

If you have multiple GPUs, you may want to run multiple processes on
each host. You can modify hostfile and specify the number of
processes to run on each host.:

If you are using Mvapich:
$ cat hostfile
host00:4
host01:4
host02:4
host03:4

If you are using Open MPI
$ cat hostfile
host00 cpu=4
host01 cpu=4
host02 cpu=4
host03 cpu=4

With this hostfile, try running mpiexec again.:

$ mpiexec -n 8 --hostfile hostfile python print_rank.py
host00 0
host00 1
host00 2
host00 3
host01 4
host01 5
host01 6
host01 7

You will find that the first 4 processes run on host00 and the latter
4 on host01.

You can also specify computing hosts and resource mapping/binding
using command line options of mpiexec. Please refer to the MPI manual
for the more advanced use of mpiexec command.

If you get runtime error:

If you get the following error messages, please check the specified
section of the troubleshooting or installation guide.

[hostxxx:mpi_rank_0][MPIDI_CH3I_SMP_init] CMA is not available. Set MV2_SMP_USE_CMA=0 to disable CMA.
[cli_0]: aborting job:
Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
MPIR_Init_thread(514)....:
MPID_Init(365)...........: channel initialization failed
MPIDI_CH3_Init(404)......:
MPIDI_CH3I_SMP_Init(2132): process_vm_readv: Operation not permitted

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20327 RUNNING AT hostxxx
= EXIT CODE: 1
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===

-> Check the value of MV2_SMP_USE_CMA (see CUDA-Aware MPI and
Check SSH connection and environment variables).

[hostxx:mpi_rank_0][error_sighandler] Caught error: Segmentation fault (signal 11)

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20643 RUNNING AT hostxx
= EXIT CODE: 11
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===
YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)
This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions

-> Check the value of MV2_USE_CUDA (see CUDA-Aware MPI and Check SSH connection and environment variables)

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

Tutorial

	Overview
	Data Parallelism

	Training Iterations

	MPI

	Step 1: Communicators and Optimizers
	Creating a Communicator

	Creating a Multi-Node Optimizer

	Run

	Multi-node execution

	Copying datasets

	If you have trouble

	Next Steps

	Step 2: Datasets and Evaluators
	Scattering Datasets

	Creating A Multi-Node Evaluator

	Suppressing Unnecessary Extensions

	Tips and FAQs
	Using MultiprocessIterator

	Using Your Own Evaluator

	Using MPI4py Communicator

	Using FP16

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Tutorial »

Overview

Data Parallelism

ChainerMN employs the data parallel approach for distributed training.
In the data parallel approach, each worker has a model copy,
and computes a gradient against a batch.
Then, the workers collaborate to update the model using the gradients of all workers.

[image: ../_images/parallelism.png]

Training Iterations

What ChainerMN does for distributed training is actually quite simple.
Let us look at what we do in each iteration.
The following figure illustrates an iteration of standard training using Chainer (without ChainerMN).
It consists of three steps: forward, backward and optimize.

[image: ../_images/iteration_chainer.png]

When using ChainerMN, an additional step all-reduce is inserted after the backward step.
In this step, workers communicate to obtain the averaged gradient over gradients of all workers.
Then, the aggregated gradient is used to improve the model in the optimization step.

[image: ../_images/iteration_chainermn.png]

MPI

ChainerMN is built on MPI.
MPI invokes our training script in the SPMD (single program, multiple data) way.
ChainerMN is designed to create a process on each GPU.
For example, let us suppose you have two nodes with four GPUs each,
and want to run train_imagenet.py.
Then, you will invoke eight Python processes running train_imagenet.py
by using mpiexec or mpirun.

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Tutorial »

Step 1: Communicators and Optimizers

In the following, we explain how to modify your code using Chainer
to enable distributed training with ChainerMN.
We take Chainer’s MNIST example [https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py]
and modify it in a step-by-step manner
to see the standard way of using ChainerMN.

Creating a Communicator

We first need to create a communicator.
A communicator is in charge of communication between workers.
A communicator can be created as follows:

comm = chainermn.create_communicator()

Workers in a node have to use different GPUs.
For this purpose, intra_rank property of communicators is useful.
Each worker in a node is assigned a unique intra_rank starting from zero.
Therefore, it is often convenient to use the intra_rank-th GPU.

The following line of code is found in the original MNIST example:

chainer.cuda.get_device(args.gpu).use()

which we modify as follows:

device = comm.intra_rank
chainer.cuda.get_device(device).use()

Creating a Multi-Node Optimizer

This is the most important step.
We need to insert the communication right after backprop
and right before optimization.
In ChainerMN, it is done by creating a multi-node optimizer.

Method create_multi_node_optimizer receives a standard Chainer optimizer,
and it returns a new optimizer. The returned optimizer is called multi-node optimizer.
It behaves exactly same as the supplied original standard optimizer
(e.g., you can add hooks such as WeightDecay),
except that it communicates model parameters and gradients properly in a multi-node setting.

The following is the code line found in the original MNIST example:

optimizer = chainer.optimizers.Adam()

To obtain a multi-node optimizer, we modify that part as follows:

optimizer = chainermn.create_multi_node_optimizer(
 chainer.optimizers.Adam(), comm)

Run

With the above two changes, your script is ready for distributed
training. Invoke your script with mpiexec or mpirun (see your
MPI’s manual for details). The following is an example of executing the
training with four processes at localhost:

$ mpiexec -n 4 python train_mnist.py

In the non-GPU mode, you may see a warning like shown below,
but this message is harmless, and you can ignore it for now

Warning: using naive communicator because only naive supports CPU-only execution

If you have multiple GPUs on the localhost, 4 for example, you
may also want to try:

$ mpiexec -n 4 python train_mnist.py --gpu

Multi-node execution

If you can successfully run the multi-process version of the MNIST
example, you are almost ready for multi-node execution. The simplest
way is to specify the --host argument to the mpiexec
command. Let’s suppose you have two GPU-equipped computing nodes:
host00 and host01, each of which has 4 GPUs, and so you have 8 GPUs
in total:

$ mpiexec -n 8 -host host00,host01 python train_mnist.py

The script should print similar results to the previous intra-node execution.

Copying datasets

In the MNIST example, the rank 0 process reads the entire portion of
the dataset and scatters it to other processes. In some applications,
such as the ImageNet ChainerMN exmaple, however, only the pathes to
each data file are scattered and each process reads the actual data
files. In such cases, all datasets must be readable on all computing
nodes in the same location. You don’t need to worry about this if you
use NFS (Network File System) or any other similar data synchronizing
system. Otherwise, you need to manually copy data files between nodes
using scp or rsync.

If you have trouble

If you have any trouble running the sample programs in your
environment, go to the Step-by-Step Troubleshooting page and follow the
steps to check your environment and configuration.

Next Steps

With only the above two changes
distributed training is already performed.
Thus,
the model parameters are updated
by using gradients that are aggregated over all the workers.
However,
this MNIST example still has a few areas in need of improvment.
In the next page, we will see how to address the following problems:

	Training period is wrong; ‘one epoch’ is not one epoch.

	Evaluation is not parallelized.

	Status outputs to stdout are repeated and annoying.

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Tutorial »

Step 2: Datasets and Evaluators

Following from the previous step, we continue to
explain general steps to modify your code for ChainerMN
through the MNIST example.
All of the steps below are optional,
although useful for many cases.

Scattering Datasets

If you want to keep the definition of ‘one epoch’ correct,
we need to scatter the dataset to all workers.

For this purpose, ChainerMN provides a method scatter_dataset.
It scatters the dataset of worker 0 (i.e., the worker whose comm.rank is 0)
to all workers. The given dataset of other workers are ignored.
The dataset is split into sub datasets of almost equal sizes and scattered
to the workers. To create a sub dataset, chainer.datasets.SubDataset is
used.

The following line of code from the original MNIST example loads the dataset:

train, test = chainer.datasets.get_mnist()

We modify it as follows. Only worker 0 loads the dataset, and then it is scattered to all the workers:

if comm.rank == 0:
 train, test = chainer.datasets.get_mnist()
else:
 train, test = None, None

train = chainermn.scatter_dataset(train, comm)
test = chainermn.scatter_dataset(test, comm)

Creating A Multi-Node Evaluator

This step is also an optional step, but useful when validation is
taking a considerable amount of time.
In this case, you can also parallelize the validation by using multi-node evaluators.

Similarly to multi-node optimizers, you can create a multi-node evaluator
from a standard evaluator by using method create_multi_node_evaluator.
It behaves exactly the same as the given original evaluator
except that it reports the average of results over all workers.

The following line from the original MNIST example adds an evalautor extension to the trainer:

trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))

To create and use a multi-node evaluator, we modify that part as follows:

evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)

Suppressing Unnecessary Extensions

Some of extensions should be invoked only by one of the workers.
For example, if the PrintReport extension is invoked by all of the workers,
many redundant lines will appear in your console.
Therefore, it is convenient to register these extensions
only at workers of rank zero as follows:

if comm.rank == 0:
 trainer.extend(extensions.dump_graph('main/loss'))
 trainer.extend(extensions.LogReport())
 trainer.extend(extensions.PrintReport(
 ['epoch', 'main/loss', 'validation/main/loss',
 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
 trainer.extend(extensions.ProgressBar())

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

 	Tutorial »

Tips and FAQs

Using MultiprocessIterator

If you are using MultiprocessIterator and communication goes through InfiniBand,
you would probably face crashing problems.
This is because MultiprocessIterator creates child processes by the fork system call,
which has incompatibilities with the design of MPI and InfiniBand [https://www.open-mpi.org/faq/?category=tuning#fork-warning].
To cope with this issue, we can use multiprocessing.set_start_method
to change the way to start child processes:

multiprocessing.set_start_method('forkserver')

Both forkserver mode and spawn mode should work.
Please also refer to our ImageNet example, where MultiprocessIterator is used.
Unfortunately, multiprocessing.set_start_method is only available in Python 3.4+.
Therefore you need those recent Python versions to use MultiprocessIterator.

Using Your Own Evaluator

Method create_multi_node_evaluator can also be used for customized evaluator classes
that inherit from chainer.training.extensions.Evaluator.
Specifically, it wraps the evaluate method and returns the averaged values over all workers.
Please also refer to our ImageNet example, where a customized evaluator is used.

Using MPI4py Communicator

ChainerMN is based on MPI4py. For advanced users
(e.g., those who want to parallelize preprocessing, create custom extension, etc.),
we encourage you to make use of MPI4py communicators.
Let comm be a ChainerMN communicator,
then you can obtain MPI4py communicator by comm.mpi_comm.
Please refer to MPI4py API reference [http://pythonhosted.org/mpi4py/apiref/mpi4py.MPI.Comm-class.html].

Using FP16

FP16 (16-bit half precision floating point values) is not supported in ChainerMN as of now.

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ChainerMN 1.0.0 documentation »

API Reference

Communicators

	
chainermn.create_communicator(communicator_name='hierarchical', mpi_comm=None)

	Create a ChainerMN communicator.

Different communicators provide different approaches of communication, so
they have different performance charasteristics. The default communicator
hierarchical is expected to generally perform well on a variety of
environments, so one need not to change communicators in most cases.
However, choosing proper communicator may give better performance.
The following communicators are available.

	Name
	CPU
	GPU
	NCCL
	Recommended Use Cases

	naive
	OK
	OK
	
	Testing on CPU mode

	hierarchical
	
	OK
	Required
	Each node has a single NIC or HCA

	two_dimensional
	
	OK
	Required
	Each node has multiple NICs or HCAs

	single_node
	
	OK
	Required
	Single node with multiple GPUs

	flat
	
	OK
	
	N/A

	pure_nccl
	
	OK
	Required
(>= v2)
	pure_nccl is recommended when
NCCL2 is available in the environment,

but it’sstill experimental support.

	Parameters:	
	communicator_name – The name of communicator (naive, flat,
hierarchical, two_dimensional, pure_nccl, or
single_node)

	mpi_comm – MPI4py communicator

	Returns:	ChainerMN communicator

Optimizers and Evaluators

	
chainermn.create_multi_node_optimizer(actual_optimizer, communicator)

	Create a multi node optimizer from a Chainer optimizer.

	Parameters:	
	actual_optimizer – Chainer optimizer
(e.g., chainer.optimizers.Adam).

	communicator – ChainerMN communicator.

	Returns:	The multi node optimizer based on actual_optimizer.

	
chainermn.create_multi_node_evaluator(actual_evaluator, communicator)

	Create a multi node evaluator from a normal evaluator.

	Parameters:	
	actual_evaluator – evaluator
(e.g., chainer.training.extensions.Evaluator)

	communicator – ChainerMN communicator

	Returns:	The multi node evaluator based on actual_evaluator.

Dataset Utilities

	
chainermn.scatter_dataset(dataset, comm, root=0, shuffle=False, seed=None)

	Scatter the given dataset to the workers in the communicator.

The dataset of worker 0 (i.e., the worker whose comm.rank is 0) is
scattered to all workers. The given dataset of other workers are ignored.
The dataset is split to sub datasets of almost equal sizes and scattered
to workers. To create a sub dataset, chainer.datasets.SubDataset is
used.

	Parameters:	
	dataset – A dataset (e.g., list, numpy.ndarray,
chainer.datasets.TupleDataset, ...).

	comm – ChainerMN communicator or MPI4py communicator.

	shuffle (bool) – If True, the order of examples is shuffled
before being scattered.

	root (int) – The root process of the scatter operation.

	seed (int) – Seed the generator used for the permutation of indexes.
If an integer being convertible to 32 bit unsigned integers is
specified, it is guaranteed that each sample
in the given dataset always belongs to a specific subset.
If None, the permutation is changed randomly.

	Returns:	Scattered dataset.

	
chainermn.datasets.create_empty_dataset(dataset)

	Creates an empty dataset for models with no inputs and outputs.

This function generates an empty dataset, i.e., __getitem__() only
returns None. Its dataset is compatible with the original one.
Such datasets used for models which do not take any inputs,
neither return any outputs. We expect models, e.g., whose forward()
is starting with chainermn.functions.recv() and ending with
chainermn.functions.send().

	Parameters:	dataset – Dataset to convert.

	Returns:	Dataset consists of only patterns in the original one.

	Return type:	TransformDataset

Links

	
class chainermn.MultiNodeChainList(comm)

	Combining multiple non-connected components of computational graph.

This class combines each chainer.Chain, which represents one of the
non-connected component in compuational graph. In __call__(),
the returned object of chainer.Chain (which represents pointer)
are passed to the next chainer.Chain, in order to retain the
computational graph connected and make backprop work properly.

Users add each chainer.Chain by add_link() method. Each chain
is invoked in forward computation according to the order they are added,
and in backward computation according to the reversed order.

Example

This is a simple example of the model which sends its outputs to
rank=1 machine:

import chainer
import chainer.functions as F
import chainermn

class SimpleModelSub(chainer.Chain):

 def __init__(self, n_in, n_hidden, n_out):
 super(SimpleModelSub, self).__init__(
 l1=L.Linear(n_in, n_hidden),
 l2=L.Linear(n_hidden, n_out))

 def __call__(self, x):
 h1 = F.relu(self.l1(x))
 return self.l2(h1)

class SimpleModel(chainermn.MultiNodeChainList):

 def __init__(self, comm, n_in, n_hidden, n_out):
 super(SimpleModel, self).__init__(comm)
 self.add_link(
 SimpleModelSub(n_in, n_hidden, n_out),
 rank_in=None,
 rank_out=1)

Example

This is the other example of two models interacting each other:

import chainer
import chainer.functions as F
import chainermn

class MLP(chainer.Chain):

 def __init__(self, n_in, n_hidden, n_out):
 super(MLP, self).__init__(
 l1=L.Linear(n_in, n_hidden),
 l2=L.Linear(n_hidden, n_hidden),
 l3=L.Linear(n_hidden, n_out))

 def __call__(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 return self.l3(h2)

class Model0(chainermn.MultiNodeChainList):

 def __init__(self, comm):
 super(Model0, self).__init__(comm)
 self.add_link(
 MLP(10000, 5000, 2000),
 rank_in=None,
 rank_out=1)
 self.add_link(
 MLP(100, 50, 10),
 rank_in=1,
 rank_out=None)

class Model1(chainermn.MultiNodeChainList):

 def __init__(self, comm):
 super(Model1, self).__init__(comm)
 self.add_link(MLP(2000, 500, 100), rank_in=0, rank_out=0)

Model0 is expected to be on rank=0, and Model1 is expected to
be on rank=1. The first MLP in Model0 will send its outputs
to Model1, then MLP in Model1 will receive it and send
its outputs to the second MLP in Model0.

	Parameters:	comm (chainermn.communicators._base.CommunicatorBase) – ChainerMN communicator.

	
add_link(link, rank_in=None, rank_out=None)

	Register one connected link with its inout rank.

	Parameters:	
	link (chainer.Link) – The link object to be registered.

	rank_in (int, list, or None) – Ranks from which it receives data. If None is specified,
the model does not receive from any machines.

	rank_out (int, list, or None) – Ranks to which it sends data. If None is specified,
the model will not send to any machine.

	
class chainermn.links.MultiNodeBatchNormalization(size, comm, decay=0.9, eps=2e-05, dtype=<type 'numpy.float32'>, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None)

	Batch normalization layer that can use the whole batch stats.

When using chainer.link.BatchNormalization, batch mean and std are
computed independently for the local batch in each worker. When local
batch size is too small, training is unstable due to unreliable batch
stats.

In contrast, when using this MultiNodeBatchNormalization, workers
communicate to conduct ‘correct’ batch normalization (e.g., obtaining
mean and std for the whole global batch).

This link works only with Chainer >= 2.0.0.

	Parameters:	
	size (int or tuple of ints) – Size (or shape) of channel
dimensions.

	comm (ChainerMN communicator) – communicator to share
the batch stats.

	decay (float) – Decay rate of moving average. It is used on training.

	eps (float) – Epsilon value for numerical stability.

	dtype (numpy.dtype) – Type to use in computing.

	use_gamma (bool) – If True, use scaling parameter. Otherwise, use
unit(1) which makes no effect.

	use_beta (bool) – If True, use shifting parameter. Otherwise, use
unit(0) which makes no effect.

Functions

	
chainermn.functions.send(x, communicator, rank, tag=0)

	Send elements to target process.

This function returns a dummy variable only holding the computational
graph. If backward() is invoked by this dummy variable, it will
try to receive gradients from the target process and send them back
to the parent nodes.

	Parameters:	
	x (Variable) – Variable holding a matrix which you would like to send.

	communicator (chainer.communicators.CommunicatorBase) – ChainerMN communicator.

	rank (int) – Target process specifier.

	tag (int) – Optional message ID (MPI feature).

	Returns:	A dummy variable with no actual data, only holding the
computational graph. Please refer
chainermn.functions.pseudo_connect for detail.

	Return type:	Variable

	
chainermn.functions.recv(communicator, rank, delegate_variable=None, tag=0, device=-1)

	Receive elements from target process.

This function returns data received from target process. If backward()
is invoked, it will try to send gradients to the target process.

Note

If you define non-connected computational graph on one process,
you have to use delegate_variable to specify the output of
previous computational graph component.
Otherwise backward() does not work well.
Please refer chainermn.functions.pseudo_connect for detail.

	Parameters:	
	communicator (chainer.communicators.CommunicatorBase) – ChainerMN communicator.

	rank (int) – Target process specifier.

	delegate_variable (chainer.Variable) – Pointer to the other non-connected component.

	tag (int) – Optional message ID (MPI feature).

	device (int) – Target device specifier.

	Returns:	Data received from target process. If backward() is invoked
by this variable, it will send gradients to the target process.

	Return type:	Variable

	
chainermn.functions.pseudo_connect(delegate_variable, *actual_variables)

	Connect independent connected graph component.

This function is implemented to return received arguments directly,
except the first delegate_variable.
In backward computation, it returns received gradients directly,
adding a zero grad corresponding to delegate_variable.
The detail of delegate_variable is described in the following notes.

Note

In model-parallel framework, models on each process might have many
non-connected components. Here we call a given graph non-connected
when multiple inter-process communications are needed for its
computation. For example, consider the following example:

class ConnectedGraph(chainermn.MultiNodeChainList):

 def __init__(self, comm):
 super(ConnectedGraph, self).__init__(comm)
 self.add_link(ConnectedGraphSub(), rank_in=3, rank_out=1)

This model receives inputs from rank=3 process and sends its outputs
to rank=1 process. The entire graph can be seen as one connected
component ConnectedGraphSub. Please refer the document of
MultiNodeChainList for detail.

On the other hand, see the next example:

class NonConnectedGraph(chainermn.MultiNodeChainList):

 def __init__(self, comm):
 super(NonConnectedGraph, self).__init__(comm)
 self.add_link(NonConnectedGraphSubA(), rank_in=3, rank_out=1)
 self.add_link(NonConnectedGraphSubB(), rank_in=1, rank_out=2)

This model consists of two components: at first,
NonConnectedGraphSubA receives inputs from rank=3 process and
sends its outputs to rank=1 process, and then
NonConnectedGraphSubB receives inputs from rank=1 process and
sends its outputs to rank=2 process. Here multiple inter-process
communications are invoked between NonConnectedGraphSubA and
NonConnectedGraphSubB, so it is regarded as non-connected.

Such kind of non-connected models can be problematic in backward
computation. Chainer traces back the computational graph from the
output variable, however naive implementation of
chainermn.functions.recv does not take any inputs rather receives
inputs by MPI_Recv, where backward path vanishes.

To prevent this, dummy variables what we call delegate_variable
are used. In principle, chainermn.functions.send does not return
any outputs because it sends data to the other process by MPI_Send.
However, chainermn.functions.send returns a dummy / empty variable
in our implementation, which is called delegate_variable. This
variable does not hold any data, just used for retaining backward
computation path. We can guarantee the backward computation just by
putting delegate_variable to the next chainermn.functions.recv
(chainermn.functions.recv has an optional argument to receive
delegate_variable).

Note

In some cases the intermediate graph component returns model outputs.
See the next example:

class NonConnectedGraph2(chainermn.MultiNodeChainList):

 def __init__(self, comm):
 super(NonConnectedGraph2, self).__init__(comm)
 self.add_link(NonConnectedGraphSubA(), rank_in=1, rank_out=None)
 self.add_link(NonConnectedGraphSubB(), rank_in=None, rank_out=1)

This model first receives inputs from rank=1 process and make model
outputs (specified by rank_out=None) in NonConnectedGraphSubA.
Then using model inputs (specified by rank_in=None),
NonConnectedGraphSubB sends its outputs to rank=1 process. Since
MultiNodeChainList.__call__ returns outputs of the last component
(in this case, outputs of NonConnectedGraphSubB), naive
implementation cannot output the returned value of
NonConnectedGraphSubA as the model outputs. In this case,
pseudo_connect should be used.

pseudo_connect takes two arguments. The first one
delegate_variable is what we explained in above note. In this
case, returned value of NonConnectedGraphSubB corresponds to
delegate_variable. The second one actual_variables is
“what we want delegate_variable to imitate”. In
NonConnectedGraph2, we obtain returned value of
NonConnectedGraphSubB as the model outputs, but what we actually
want is returned value of NonConnectedGraphSubA. At the same time
we want to trace back this resulted variable in backward computation.
Using pseudo_connect, we can make a variable whose data is the
same as the returned value of NonConnectedGraphSubA, and which
traces back NonConnectedGraphSubB first.

pseudo_connect should also be used in some pathological cases,
for example, where multiple chainermn.functions.send occurs
sequentially.

	Parameters:	
	delegate_variable (chainer.Variable) – Pointer to the previous non-connected graph component.

	actual_variables (tuple of chainer.Variable) – Actual values which delegate_variable imitate.

	Returns:	A variable with the given values combined with delegating variable.

	Return type:	Variable

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	ChainerMN 1.0.0 documentation »

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 chainermn	

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	ChainerMN 1.0.0 documentation »

Index

 A
 | C
 | E
 | L
 | M
 | P
 | R
 | S

A

 	

 	add_link() (chainermn.MultiNodeChainList method)

C

 	

 	chainermn (module), [1], [2]

 	create_communicator() (in module chainermn)

 	

 	create_empty_dataset() (in module chainermn.datasets)

 	create_multi_node_evaluator() (in module chainermn)

 	create_multi_node_optimizer() (in module chainermn)

E

 	

 	
 environment variable

 	

 	LD_LIBRARY_PATH

 	MV2_SMP_USE_CMA, [1]

 	MV2_USE_CUDA, [1]

 	PATH

L

 	

 	LD_LIBRARY_PATH

M

 	

 	MultiNodeBatchNormalization (class in chainermn.links)

 	MultiNodeChainList (class in chainermn)

 	

 	MV2_SMP_USE_CMA, [1]

 	MV2_USE_CUDA, [1]

P

 	

 	PATH

 	

 	pseudo_connect() (in module chainermn.functions)

R

 	

 	recv() (in module chainermn.functions)

S

 	

 	scatter_dataset() (in module chainermn)

 	

 	send() (in module chainermn.functions)

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	ChainerMN 1.0.0 documentation »

 All modules for which code is available

	chainermn.communicators

	chainermn.datasets.empty_dataset

	chainermn.datasets.scatter_dataset

	chainermn.extensions.multi_node_evaluator

	chainermn.functions.point_to_point_communication

	chainermn.functions.pseudo_connect

	chainermn.links.batch_normalization

	chainermn.links.multi_node_chain_list

	chainermn.optimizers

 © Copyright 2017, Preferred Networks, inc..
 Created using Sphinx 1.4.9.

 _images/parallelism.png
Data Parallel Model Parallel

_images/iteration_chainer.png
Forward Optimize

_static/up-pressed.png

_static/comment-bright.png

_images/iteration_chainermn.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

