<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>Serializers</td>
<td>1032</td>
</tr>
<tr>
<td>4.12</td>
<td>Backends and Devices</td>
<td>1043</td>
</tr>
<tr>
<td>4.13</td>
<td>Utilities</td>
<td>1059</td>
</tr>
<tr>
<td>4.14</td>
<td>Configuring Chainer</td>
<td>1072</td>
</tr>
<tr>
<td>4.15</td>
<td>Debug Mode</td>
<td>1080</td>
</tr>
<tr>
<td>4.16</td>
<td>Visualization of Computational Graph</td>
<td>1081</td>
</tr>
<tr>
<td>4.17</td>
<td>Static Subgraph Optimizations: Usage</td>
<td>1085</td>
</tr>
<tr>
<td>4.18</td>
<td>Static Subgraph Optimizations: Design Notes</td>
<td>1089</td>
</tr>
<tr>
<td>4.19</td>
<td>Caffe Model Support</td>
<td>1092</td>
</tr>
<tr>
<td>4.20</td>
<td>Assertion and Testing</td>
<td>1094</td>
</tr>
<tr>
<td>5</td>
<td>Installation</td>
<td>1137</td>
</tr>
<tr>
<td>5.1</td>
<td>Recommended Environments</td>
<td>1137</td>
</tr>
<tr>
<td>5.2</td>
<td>Requirements</td>
<td>1137</td>
</tr>
<tr>
<td>5.3</td>
<td>Install Chainer</td>
<td>1138</td>
</tr>
<tr>
<td>5.4</td>
<td>Uninstall Chainer</td>
<td>1139</td>
</tr>
<tr>
<td>5.5</td>
<td>Upgrade Chainer</td>
<td>1139</td>
</tr>
<tr>
<td>5.6</td>
<td>Reinstall Chainer</td>
<td>1139</td>
</tr>
<tr>
<td>5.7</td>
<td>Run Chainer with Docker</td>
<td>1140</td>
</tr>
<tr>
<td>5.8</td>
<td>FAQ</td>
<td>1140</td>
</tr>
<tr>
<td>6</td>
<td>ChainerX Documentation</td>
<td>1141</td>
</tr>
<tr>
<td>6.1</td>
<td>Installation</td>
<td>1141</td>
</tr>
<tr>
<td>6.2</td>
<td>ChainerX Tutorial</td>
<td>1142</td>
</tr>
<tr>
<td>6.3</td>
<td>Limitations</td>
<td>1145</td>
</tr>
<tr>
<td>6.4</td>
<td>Reference</td>
<td>1146</td>
</tr>
<tr>
<td>6.5</td>
<td>Contribution Guide</td>
<td>1197</td>
</tr>
<tr>
<td>6.6</td>
<td>Tips and FAQs</td>
<td>1199</td>
</tr>
<tr>
<td>7</td>
<td>Distributed Deep Learning with ChainerMN</td>
<td>1201</td>
</tr>
<tr>
<td>7.1</td>
<td>Installation</td>
<td>1201</td>
</tr>
<tr>
<td>7.2</td>
<td>Tutorial</td>
<td>1211</td>
</tr>
<tr>
<td>7.3</td>
<td>Model Parallel</td>
<td>1217</td>
</tr>
<tr>
<td>7.4</td>
<td>API Reference</td>
<td>1236</td>
</tr>
<tr>
<td>8</td>
<td>API Compatibility Policy</td>
<td>1253</td>
</tr>
<tr>
<td>8.1</td>
<td>Versioning and Backward Compatibility</td>
<td>1253</td>
</tr>
<tr>
<td>8.2</td>
<td>Breaking the Compatibility</td>
<td>1253</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental APIs</td>
<td>1254</td>
</tr>
<tr>
<td>8.4</td>
<td>Supported Backward Compatibility</td>
<td>1254</td>
</tr>
<tr>
<td>8.5</td>
<td>Model Format Compatibility</td>
<td>1255</td>
</tr>
<tr>
<td>8.6</td>
<td>Installation Compatibility</td>
<td>1256</td>
</tr>
<tr>
<td>9</td>
<td>Contribution Guide</td>
<td>1257</td>
</tr>
<tr>
<td>9.1</td>
<td>Classification of Contributions</td>
<td>1257</td>
</tr>
<tr>
<td>9.2</td>
<td>Development Cycle</td>
<td>1257</td>
</tr>
<tr>
<td>9.3</td>
<td>Issues and Pull Requests</td>
<td>1259</td>
</tr>
<tr>
<td>9.4</td>
<td>Coding Guidelines</td>
<td>1261</td>
</tr>
<tr>
<td>9.5</td>
<td>Unit Testing</td>
<td>1262</td>
</tr>
<tr>
<td>9.6</td>
<td>Documentation</td>
<td>1264</td>
</tr>
<tr>
<td>10</td>
<td>Tips and FAQs</td>
<td>1267</td>
</tr>
<tr>
<td>10.1</td>
<td>It takes too long time to compile a computational graph. Can I skip it?</td>
<td>1267</td>
</tr>
<tr>
<td>10.2</td>
<td>MNIST example does not converge in CPU mode on Mac OS X</td>
<td>1267</td>
</tr>
<tr>
<td>10.3</td>
<td>How do I fix InvalidType error?</td>
<td>1268</td>
</tr>
</tbody>
</table>
Chainer is a powerful, flexible and intuitive deep learning framework.

- Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.

- Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures.

- Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug.
Welcome to Chainer!

Chainer is a rapidly growing neural network platform. The strengths of Chainer are:

- Python-based – Chainer is developed in Python, allowing for inspection and customization of all code in python and understandable python messages at run time
- Define by Run – neural networks definitions are defined on-the-fly at run time, allowing for dynamic network changes
- NumPy based syntax for working with arrays, thanks to CuPy implementation
- Fully customizable – since Chainer is pure python, all classes and methods can be adapted to allow for the latest cutting edge or specialized approaches
- Broad and deep support – Chainer is actively used for most of the current approaches for neural nets (CNN, RNN, RL, etc.), aggressively adds new approaches as they’re developed, and provides support for many kinds of hardware as well as parallelization for multiple GPUs

1.1 Mushrooms – tasty or deadly?

Let’s take a look at a basic program of Chainer to see how it works. For a dataset, we’ll work with Kaggle’s edible vs. poisonous mushroom dataset, which has over 8,000 examples of mushrooms, labelled by 22 categories including odor, cap color, habitat, etc., in a mushrooms.csv file.

How will Chainer learn which mushrooms are edible and which mushrooms will kill you? Let’s see!

The code below is from the glance example in the examples/glance directory.

1.2 Code Breakdown

1.2.1 Initialization

Let’s start the program. Here are the typical imports for a Chainer program. `chainer.links` contain trainable parameters and `chainer.functions` do not.

```python
import chainer as ch
from chainer import datasets
import chainer.functions as F
import chainer.links as L
from chainer import training
```
from chainer.training import extensions

import numpy as np

We’ll use Matplotlib for the graphs to show training progress.

import matplotlib

matplotlib.use('Agg')

1.2.2 Trainer Structure

A trainer is used to set up our neural network and data for training. The components of the trainer are generally hierarchical, and are organized as follows:

Each of the components is fed information from the components within it. Setting up the trainer starts at the inner components, and moves outward, with the exception of extensions, which are added after the trainer is defined.

1.2.3 Dataset

Our first step is to format the dataset. From the raw mushrooms.csv, we format the data into a Chainer TupleDataset.
mushroomsfile = 'mushrooms.csv'
data_array = np.genfromtxt(mushroomsfile, delimiter=',', dtype=str, skip_header=1)
for col in range(data_array.shape[1]):
 data_array[:, col] = np.unique(data_array[:, col], return_inverse=True)[1]
X = data_array[:, 1:].astype(np.float32)
Y = data_array[:, 0].astype(np.int32)[:, None]
train, test = datasets.split_dataset_random(
 datasets.TupleDataset(X, Y), int(data_array.shape[0] * .7))

1.2.4 Iterator

Configure *iterators* to step through batches of the data for training and for testing validation. In this case, we’ll use a batch size of 100. For the training iterator, repeating and shuffling are implicitly enabled, while they are explicitly disabled for the testing iterator.

train_iter = ch.iterators.SerialIterator(train, 100)
test_iter = ch.iterators.SerialIterator(
 test, 100, repeat=False, shuffle=False)

1.2.5 Model

Next, we need to define the neural network for inclusion in our model. For our mushrooms, we’ll chain together two fully-connected, *Linear*, hidden layers between the input and output layers.

As an activation function, we’ll use standard Rectified Linear Units (*relu()*).

Using *Sequential* allows us to define the neural network model in a compact format.
Network definition

```python
def MLP(n_units, n_out):
    layer = ch.Sequential(L.Linear(n_units), F.relu)
    model = layer.repeat(2)
    model.append(L.Linear(n_out))
    return model
```

Since mushrooms are either edible or poisonous (no information on psychedelic effects!) in the dataset, we’ll use a Link Classifier for the output, with 44 units (double the features of the data) in the hidden layers and a single edible/poisonous category for classification.

```python
model = L.Classifier(
    MLP(44, 1), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy)
```

Note that in the two code snippets above we have not specified the size of the input layer. Once we start feeding the neural network with samples, Chainer will recognize the dimensionality of the input automatically and initialize the matrix for each layer with the appropriate shape. In the example above, that is 44×22 for the first hidden layer, 44×44 for the second hidden layer, and 1×44 for the output layer.

1.2.6 Optimizer

Pick an optimizer, and set up the model to use it.

```python
# Setup an optimizer
optimizer = ch.optimizers.SGD().setup(model)
```

1.2.7 Updater
Now that we have the training iterator and optimizer set up, we link them both together into the updater. The updater uses the minibatches from the iterator, does the forward and backward processing of the model, and updates the parameters of the model according to the optimizer. Setting the device=-1 sets the device as the CPU. To use a GPU, set device equal to the number of the GPU, usually device=0.

```python
# Create the updater, using the optimizer
updater = training.StandardUpdater(train_iter, optimizer, device=-1)
```

Finally we create a Trainer object. The trainer processes minibatches using the updater defined above until a certain stop condition is met and allows the use of extensions during the training. We set it to run for 50 epochs and store all files created by the extensions (see below) in the result directory.

```python
# Set up a trainer
trainer = training.Trainer(updater, (50, 'epoch'), out='result')
```

1.2.8 Extensions

Extensions can be used to execute code at certain events during the training, such as every epoch or every 1000 iterations. This mechanism is used in Chainer to evaluate models during training, print progress messages, or dump intermediate model files.

First, use the testing iterator defined above for an Evaluator extension to the trainer to provide test scores. If using a GPU instead of the CPU, set device to the ID of the GPU, usually 0.

```python
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=-1))
```

Save a computational graph from loss variable at the first iteration. main refers to the target link of the main optimizer. The graph is saved in the Graphviz’s dot format. The output location (directory) to save the graph is set by the out argument of trainer.

```python
# Dump a computational graph from 'loss' variable at the first iteration
# The "main" refers to the target link of the "main" optimizer.
trainer.extend(extensions.DumpGraph('main/loss'))
```

Take a snapshot of the trainer object every 20 epochs.

```python
trainer.extend(extensions.snapshot(), trigger=(20, 'epoch'))
```

Write a log of evaluation statistics for each epoch.

```python
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport())
```
Save two plot images to the result directory.

```python
# Save two plot images to the result dir
if extensions.PlotReport.available():
    trainer.extend(
        extensions.PlotReport(['main/loss', 'validation/main/loss'],
                              'epoch', file_name='loss.png'))

    trainer.extend(
        extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                              'epoch', file_name='accuracy.png'))
```

Print selected entries of the log to standard output.

```python
# Print selected entries of the log to stdout
                                        'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
```

1.2.9 Main Loop

Finally, with the `trainer` and all the extensions set up, we can add the line that actually starts the main loop:

```python
# Run the training
trainer.run()
```

1.2.10 Inference

Once the training is complete, only the model is necessary to make predictions. Let’s check that a random line from the test data set and see if the inference is correct:

```python
x, t = test[np.random.randint(len(test))]
predict = model.predictor(x[None]).array
predict = predict[0][0]
if predict >= 0:
    print('Predicted Poisonous, Actual ' + ['Edible', 'Poisonous'][t[0]])
else:
    print('Predicted Edible, Actual ' + ['Edible', 'Poisonous'][t[0]])
```

1.3 Output

Output for this instance will look like:

```
<table>
<thead>
<tr>
<th>epoch</th>
<th>main/loss</th>
<th>validation/main/loss</th>
<th>main/accuracy</th>
<th>validation/main/accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.550724</td>
<td>0.502818</td>
<td>0.733509</td>
<td>0.752821</td>
</tr>
<tr>
<td></td>
<td>0.215426</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.454206</td>
<td>0.446234</td>
<td>0.805439</td>
<td>0.786926</td>
</tr>
<tr>
<td></td>
<td>0.902108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.402783</td>
<td>0.395893</td>
<td>0.838421</td>
<td>0.835979</td>
</tr>
<tr>
<td></td>
<td>1.50414</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

(continues on next page)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.362979</td>
<td>0.359988</td>
<td>0.862807</td>
<td>0.852632</td>
</tr>
<tr>
<td>5</td>
<td>0.327132</td>
<td>0.329881</td>
<td>0.88</td>
<td>0.874232</td>
</tr>
<tr>
<td>6</td>
<td>0.303469</td>
<td>0.31104</td>
<td>0.92456</td>
<td>0.887284</td>
</tr>
<tr>
<td>7</td>
<td>0.284755</td>
<td>0.288553</td>
<td>0.901754</td>
<td>0.903284</td>
</tr>
<tr>
<td>8</td>
<td>0.26801</td>
<td>0.272033</td>
<td>0.9125</td>
<td>0.907137</td>
</tr>
<tr>
<td>9</td>
<td>0.25669</td>
<td>0.261355</td>
<td>0.920175</td>
<td>0.917937</td>
</tr>
<tr>
<td>10</td>
<td>0.241789</td>
<td>0.251821</td>
<td>0.927193</td>
<td>0.917937</td>
</tr>
<tr>
<td>11</td>
<td>0.232291</td>
<td>0.238022</td>
<td>0.93</td>
<td>0.925389</td>
</tr>
<tr>
<td>12</td>
<td>0.222805</td>
<td>0.22895</td>
<td>0.934035</td>
<td>0.923389</td>
</tr>
<tr>
<td>13</td>
<td>0.217267</td>
<td>0.219291</td>
<td>0.93614</td>
<td>0.928189</td>
</tr>
<tr>
<td>14</td>
<td>0.21482</td>
<td>0.220736</td>
<td>0.938596</td>
<td>0.922589</td>
</tr>
<tr>
<td>15</td>
<td>0.197671</td>
<td>0.207017</td>
<td>0.938393</td>
<td>0.936042</td>
</tr>
<tr>
<td>16</td>
<td>0.190285</td>
<td>0.199129</td>
<td>0.941053</td>
<td>0.934842</td>
</tr>
<tr>
<td>17</td>
<td>0.182827</td>
<td>0.193303</td>
<td>0.944386</td>
<td>0.942695</td>
</tr>
<tr>
<td>18</td>
<td>0.176776</td>
<td>0.194284</td>
<td>0.94614</td>
<td>0.934042</td>
</tr>
<tr>
<td>19</td>
<td>0.16964</td>
<td>0.177684</td>
<td>0.945789</td>
<td>0.945242</td>
</tr>
<tr>
<td>20</td>
<td>0.164831</td>
<td>0.171988</td>
<td>0.949825</td>
<td>0.947347</td>
</tr>
<tr>
<td>21</td>
<td>0.158394</td>
<td>0.167459</td>
<td>0.952982</td>
<td>0.949747</td>
</tr>
<tr>
<td>22</td>
<td>0.153353</td>
<td>0.161774</td>
<td>0.956964</td>
<td>0.949347</td>
</tr>
<tr>
<td>23</td>
<td>0.148209</td>
<td>0.156644</td>
<td>0.957368</td>
<td>0.951747</td>
</tr>
<tr>
<td>24</td>
<td>0.144814</td>
<td>0.15322</td>
<td>0.957018</td>
<td>0.955495</td>
</tr>
<tr>
<td>25</td>
<td>0.138782</td>
<td>0.148277</td>
<td>0.958947</td>
<td>0.954147</td>
</tr>
<tr>
<td>26</td>
<td>0.135333</td>
<td>0.145225</td>
<td>0.961228</td>
<td>0.956695</td>
</tr>
<tr>
<td>27</td>
<td>0.129593</td>
<td>0.141144</td>
<td>0.964561</td>
<td>0.958295</td>
</tr>
<tr>
<td>28</td>
<td>0.128265</td>
<td>0.138666</td>
<td>0.962632</td>
<td>0.960547</td>
</tr>
<tr>
<td>29</td>
<td>0.123848</td>
<td>0.133444</td>
<td>0.966071</td>
<td>0.961347</td>
</tr>
<tr>
<td>30</td>
<td>0.119687</td>
<td>0.129579</td>
<td>0.967193</td>
<td>0.964547</td>
</tr>
<tr>
<td>31</td>
<td>0.115857</td>
<td>0.126606</td>
<td>0.968596</td>
<td>0.966547</td>
</tr>
<tr>
<td>32</td>
<td>0.113911</td>
<td>0.124272</td>
<td>0.968772</td>
<td>0.962547</td>
</tr>
</tbody>
</table>

(continues on next page)
<table>
<thead>
<tr>
<th></th>
<th>Predicted Edible</th>
<th>Actual Edible</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0.111502</td>
<td>0.122548</td>
<td>0.968596 0.965095</td>
</tr>
<tr>
<td>34</td>
<td>0.107427</td>
<td>0.116724</td>
<td>0.970526 0.969747</td>
</tr>
<tr>
<td>35</td>
<td>0.104536</td>
<td>0.114517</td>
<td>0.970877 0.969095</td>
</tr>
<tr>
<td>36</td>
<td>0.099408</td>
<td>0.112128</td>
<td>0.971786 0.970547</td>
</tr>
<tr>
<td>37</td>
<td>0.0972982</td>
<td>0.107618</td>
<td>0.973158 0.970947</td>
</tr>
<tr>
<td>38</td>
<td>0.0927064</td>
<td>0.104918</td>
<td>0.973158 0.969347</td>
</tr>
<tr>
<td>39</td>
<td>0.0904702</td>
<td>0.101141</td>
<td>0.973333 0.969747</td>
</tr>
<tr>
<td>40</td>
<td>0.0860733</td>
<td>0.0984015</td>
<td>0.975263 0.971747</td>
</tr>
<tr>
<td>41</td>
<td>0.0829282</td>
<td>0.0942095</td>
<td>0.977544 0.974947</td>
</tr>
<tr>
<td>42</td>
<td>0.082219</td>
<td>0.0947418</td>
<td>0.975965 0.969347</td>
</tr>
<tr>
<td>43</td>
<td>0.0773362</td>
<td>0.0906804</td>
<td>0.977857 0.977747</td>
</tr>
<tr>
<td>44</td>
<td>0.0751769</td>
<td>0.0886449</td>
<td>0.977895 0.972147</td>
</tr>
<tr>
<td>45</td>
<td>0.072056</td>
<td>0.0916797</td>
<td>0.978246 0.977495</td>
</tr>
<tr>
<td>46</td>
<td>0.0708111</td>
<td>0.0811359</td>
<td>0.98 0.979347</td>
</tr>
<tr>
<td>47</td>
<td>0.0671919</td>
<td>0.0783265</td>
<td>0.982456 0.978947</td>
</tr>
<tr>
<td>48</td>
<td>0.0658817</td>
<td>0.0772342</td>
<td>0.981754 0.977747</td>
</tr>
<tr>
<td>49</td>
<td>0.0634615</td>
<td>0.0762576</td>
<td>0.983333 0.974947</td>
</tr>
<tr>
<td>50</td>
<td>0.0622394</td>
<td>0.0710278</td>
<td>0.982321 0.981747</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 28.9067</td>
</tr>
</tbody>
</table>

Our prediction was correct. Success!

The loss function:
And the accuracy
CONCEPTS WALKTHROUGH

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically defined before any forward/backward computation, all the logic must be embedded into the network architecture as data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined dynamically via the actual forward computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation. We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```
As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network. In order to start forward computation, we have to set the input array to a `chainer.Variable` object. Here we start with a simple `ndarray` with only one element:

```python
global x_data np.array([5], dtype=np.float32) global x Variable(x_data)
```

A Variable object supports basic arithmetic operators. In order to compute \(y = x^2 - 2x + 1 \), just write:

```python
>> y = x**2 - 2 * x + 1
```

The resulting \(y \) is also a Variable object, whose value can be extracted by accessing the `array` attribute:

```python
>> y.array
array([16.], dtype=float32)
```

Note: `Variable` has two attributes to represent the underlying array: `array` and `data`. There is no difference between the two; both refer to exactly the same object. However it is not recommended that you use `.data` because it might be confused with `numpy.ndarray.data` attribute.

What \(y \) holds is not only the result value. It also holds the history of computation (or computational graph), which enables us to compute its derivative. This is done by calling its `backward()` method:

```python
>> y.backward()
```

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is computed and stored in the `grad` attribute of the input variable \(x \):

```python
>> x.grad
array([8.], dtype=float32)
```

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays of intermediate variables for memory efficiency. In order to preserve gradient information, pass the `retain_grad` argument to the backward method:

```python
>> z = 2*x
>> y = x**2 - z + 1
>> y.backward(retain_grad=True)
>> z.grad
array([-1.], dtype=float32)
```

All these computations can be generalized to a multi-element array input. While single-element arrays are automatically initialized to [1], to start backward computation from a variable holding a multi-element array, we must set the initial error manually. This is done simply by setting the `grad` attribute of the output variable:

```python
>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>> y = x**2 - 2*x + 1
>> y.grad = np.ones((2, 3), dtype=np.float32)
>> y.backward()
>> x.grad
array([[ 0.,  2.,  4.],
       [ 6.,  8., 10.]], dtype=float32)
```

Note: Many functions taking `Variable` object(s) are defined in the `chainer.functions` module. You can
combine them to realize complicated functions with automatic backward computation.

Note: Instead of using `backward()`, you can also calculate gradients of any variables in a computational graph w.r.t. any other variables in the graph using the `chainer.grad()` function.

2.2.1 Higher-Order Derivatives

`Variable` also supports higher-order derivatives (a.k.a. double backpropagation).

Let's see a simple example. First calculate the first-order derivative. Note that `enable_double_backprop=True` is passed to `y.backward()`.

```python
>>> x = chainer.Variable(np.array([[0, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x ** 3
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward(enable_double_backprop=True)
>>> x.grad_var
variable([[ 0., 12., 27.], [48., 75., 108.]])
>>> assert x.grad_var.array is x.grad
>>> assert (x.grad == (3 * x**2).array).all()
```

`chainer.Variable.grad_var` is a `Variable` for `chainer.Variable.grad` (which is an `ndarray`). By passing `enable_double_backprop=True` to `backward()`, a computational graph for the backward calculation is recorded. So, you can start backpropagation from `x.grad_var` to calculate the second-order derivative.

```python
>>> gx = x.grad_var
>>> x.cleargrad()
>>> gx.grad = np.ones((2, 3), dtype=np.float32)
>>> gx.backward()
>>> x.grad
array([[ 0., 12., 18.], [24., 30., 36.]], dtype=float32)
>>> assert (x.grad == (6 * x).array).all()
```

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You can use the class `Link` to do this. A `Link` is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the `Linear` link (a.k.a. fully-connected layer or affine transformation). It represents a mathematical function \(f(x) = Wx + b \), where the matrix \(W \) and the vector \(b \) are parameters. This link corresponds to its pure counterpart `linear()`, which accepts \(x, W, b \) as arguments. A linear link from three-dimensional space to two-dimensional space is defined by the following line:

```python
>>> f = L.Linear(3, 2)
```
Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered as the *batch dimension*. In the above Linear link case, input must have shape of \((N, 3)\), where \(N\) is the mini-batch size.

The parameters of a link are stored as attributes. Each parameter is an instance of `Variable`. In the case of the Linear link, two parameters, \(W\) and \(b\), are stored. By default, the matrix \(W\) is initialized randomly, while the vector \(b\) is initialized with zeros. This is the preferred way to initialize these parameters.

```python
>>> f.W.array
array([[ 1.0184761 , 0.23103087, 0.5650746 ],
       [ 1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.array
array([0., 0.], dtype=float32)
```

An instance of the Linear link acts like a usual function:

```python
>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.array
array([[3.1757617, 1.7575557],
       [8.619507 , 7.1809077]], dtype=float32)
```

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of (de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch. For example, the following line creates a linear link whose output dimension is two:

```python
>>> f = L.Linear(2)
```

If we feed a mini-batch of shape \((2, M)\), the input dimension will be inferred as \(M\), which means \(l.W\) will be a \(2 \times M\) matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, \(l\) does not have \(W\) attribute if no data is put to the link.

Gradients of parameters are computed by the `backward()` method. Note that gradients are accumulated by the method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by calling the `cleargrads()` method.

```python
>>> f.cleargrads()
```

Now we can compute the gradients of parameters by simply calling the backward method and access them via the `grad` property.

```python
>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],
       [5., 7., 9.]], dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)
```
2.4 Define your own function

In this section, you will learn about the following things:

• How to define a function on variables
• Useful tools to write a function using a GPU
• How to test the function definition

After reading this section, you will be able to:

• Write your own functions
• Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils, Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the `chainer.functions` module. It covers typical use cases in deep learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own functions.

2.4.2 New-Style v.s. Old-Style Functions

In Chainer, you can define a function in two ways: new-style and old-style.

• New-style functions inherit from `chainer.FunctionNode` class (introduced in Chainer v3). Forward computation can be implemented using NumPy/CuPy. Backward computation needs to be implemented by using (possibly a composition of) other new-style functions.

• Old-style functions inherit from `chainer.Function` class. Forward and backward computation can be implemented using NumPy/CuPy.

The primary advantage of using new-style functions is that they support computation of higher-order gradients (a.k.a. higher-order derivative or double backpropagation). Higher-order gradients are used in some models e.g., recently-proposed GAN architectures. New-style functions are also better in terms of performance of backward, as the interface allows an implementation to skip the computation of unneeded input gradients.
Currently, most of built-in functions are implemented in new-style (with a few exceptions listed in #4449). Basically, we recommend you use new-style when implementing new functions. However, you can still continue to use existing old-style functions for the foreseeable future.

In the following sections, we describe steps to implement user-defined functions in new-style. You can also refer to Implementing Old-Style Functions and Migrating From Old-Style Functions To New-Style Functions if you have interest.

2.4.3 Implementing New-Style Functions

First, suppose we want to define an elementwise function \(f(x, y, z) = x \cdot y + z \). While it is possible to implement this equation using a combination of the \(\ast \) and \(+ \) functions, defining it as a single function may reduce memory consumption, so it is not only a toy example. Here we call this function \(\text{MulAdd} \).

Let’s start with defining \(\text{MulAdd} \) working on the CPU. New-style functions must inherit the \texttt{chainer.FunctionNode} class. The skeleton of a function looks like:

```
class MulAdd(FunctionNode):
    def forward_cpu(self, inputs):
        # do forward computation on CPU
        return some_tuple
    def backward(self, target_input_indexes, grad_outputs):
        # do backward computation
        return some_tuple
```

We must implement \texttt{forward_cpu()} and \texttt{backward()} methods.

- In \texttt{forward_cpu()} function, \texttt{inputs} is a tuple of array(s). You need to return a tuple of array(s), which is a result of forward computation.

- In \texttt{backward()} function, \texttt{grad_outputs} is a tuple of \texttt{Variable}(s) which are gradients with regard to each output(s), i.e., the length of \texttt{grad_outputs} tuple equals to the number of outputs returned by \texttt{forward_cpu}(). You need to return a tuple of \texttt{Variable}(s) which are gradients with regard to each input(s), i.e., the length of returned tuple equals to the number of inputs to \texttt{forward_cpu}. You can optionally use \texttt{target_input_indexes} (a tuple of indices required to compute gradients) to omit computing unnecessary gradients. We will show you the usage of \texttt{target_input_indexes} later.

Warning: Be careful to return a tuple even if you have just one array or Variable to return.

Note: Unlike old-style functions, inputs and outputs of backward method in new-style functions are \texttt{Variables}. In other words, the backward method is device agnostic; there are no \texttt{backward_cpu} or \texttt{backward_gpu} in \texttt{FunctionNode}.

\(\text{MulAdd} \) is simple and can be implemented as follows:

```
class MulAdd(FunctionNode):
    def forward_cpu(self, inputs):
        # Unpack input arrays ('numpy.ndarray').
        x, y, z = inputs
        # Mark inputs ('x' and 'y') as retained so that it can be
        # accessed during the backward process.
```
As per the warning above, the `forward_cpu()` method returns a tuple of single element. Note that all arrays appearing in `forward_cpu` are `numpy.ndarray`. The forward function is straightforward; it unpacks the input tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, `FunctionNode` class provides a chaining logic on it (i.e., storing the history of computation, etc.).

Note: Assuming we implement a (forward) function \(y = f(x) \) which takes as input the vector \(x \in \mathbb{R}^n \) and produces as output a vector \(y \in \mathbb{R}^m \). Then the `backward` method has to compute

\[
\lambda_i = \sum_{j=1}^m \frac{\partial y_j}{\partial x_i} \gamma_j \quad \text{for} \quad i = 1 \ldots n
\]

where \(\gamma \) is the `grad_outputs`. Note, that the resulting vector \(\lambda \) must have the same shape as the arguments of the `forward` method.

Now let’s define the corresponding GPU method. You can easily predict that the method we have to write is named `forward_gpu()`:

```python
class MulAdd(FunctionNode):
    def forward_cpu(self, inputs):
        ...

    def forward_gpu(self, inputs):
        # Unpack input arrays (`cupy.ndarray`).
        x, y, z = inputs

        # Mark inputs (`'x'` and `'y'`) as retained so that it can be
        # accessed during the backward process.
```


In `forward_gpu` method, arrays are of type `cupy.ndarray`. We use arithmetic operators defined for this class. These operators implement the basic elementwise arithmetics.

You may find that the definitions of `forward_gpu` is exactly same as `forward_cpu`. In that case, we can reduce them into `forward()`.

```python
In [forward_gpu] method, arrays are of type `cupy.ndarray`. We use arithmetic operators defined for this class. These operators implement the basic elementwise arithmetics.

You may find that the definitions of `forward_gpu` is exactly same as `forward_cpu`. In that case, we can reduce them into `forward()`.

```python
class MulAdd(FunctionNode):
 def forward(self, inputs):
 # Unpack input arrays ('numpy.ndarray' or 'cupy.ndarray').
 x, y, z = inputs

 # Mark inputs ('x' and 'y') as retained so that it can be
 # accessed during the backward process.
 self.retain_inputs((0, 1))

 # Compute results.
 w = x * y + z

 # Return the result as a tuple.
 return w,

 def backward(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz

Since the `cupy.ndarray` class implements many methods of `numpy.ndarray`, we can write these unified methods in most cases.

The MulAdd function can be used as follows:

```python
x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w, = MulAdd().apply((x, y, z))

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In Chainer, we often define a thin wrapper Python function that hide the instantiation:

```python
def muladd(x, y, z):
 return MulAdd().apply((x, y, z))
```

(continues on next page)
w = muladd(x, y, z)

All functions under `chainer.functions` are implemented as wrapper functions like this.

**Unified forward/backward methods with NumPy/CuPy functions**

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward methods with them. Consider that we want to write a backprop-able function $f(x, y) = \exp(x) + \exp(y)$. We name it `ExpAdd` here. It can be written straight-forward as follows:

```python
from chainer.backends import cuda

class ExpAdd(FunctionNode):
 def forward_cpu(self, inputs):
 self.retain_inputs((0, 1))
 x, y = inputs
 z = np.exp(x) + np.exp(y)
 return z,

 def forward_gpu(self, inputs):
 self.retain_inputs((0, 1))
 cupy = cuda.cupy
 x, y = inputs
 z = cupy.exp(x) + cupy.exp(y)
 return z,

 def backward(self, target_input_indexes, grad_outputs):
 x, y = self.get_retained_inputs()
 gz, = grad_outputs
 gx = gz * F.exp(x)
 gy = gz * F.exp(y)
 return gx, gy

def expadd(x, y):
 z, = ExpAdd().apply((x, y))
 return z
```

**Note:** Here we used `chainer.backends.cuda.cupy` instead of directly accessing `cupy`. This is because the `cupy` module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have to defer the access to the `cupy` module. Note that the `chainer.backends.cuda` module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that `numpy` is replaced by `cupy` in `forward_gpu`. We can unify these functions using the `chainer.backend.get_array_module()` function. This function accepts arbitrary number of arrays, and returns an appropriate module for them. See the following code:

```python
class ExpAdd(FunctionNode):
 def forward(self, inputs):
 self.retain_inputs((0, 1))
```

2.4. Define your own function 21
xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs
gx = gz * F.exp(x)
gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd().apply((x, y))
return z

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found, `get_array_module()` function always returns `numpy`. We often use the name `xp` for the variadic module name, which is analogous to the abbreviation `np` for NumPy and `cp` for CuPy.

**Write an Elementwise Kernel Function**

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it invokes two kernels during each of forward \((w = x \times y + z)\) and backward \((gx = y \times gw\) and \(gy = x \times gw\)) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

CuPy provides a useful tool to define elementwise kernels, the `cupy.ElementwiseKernel` class, and Chainer wraps it by `chainer.backends.cuda.elementwise()` function. Our MulAdd implementation can be improved as follows:

```python
class MulAdd(FunctionNode):
def forward_cpu(self, inputs):
 self.retain_inputs((0, 1))
x, y, z = inputs
w = x * y + z
return w,
def forward_gpu(self, inputs):
 self.retain_inputs((0, 1))
x, y, z = inputs
w = cuda.cupy.elementwise(
 'float32 x, float32 y, float32 z',
 'float32 w',
 'w = x * y + z',
 'muladd_fwd')(x, y, z)
return w,
def backward(self, target_input_indexes, grad_outputs):
x, y, z = self.get_retained_inputs()
gw, = grad_outputs
```
return MulAddGrad().apply((x, y, z, gw))

class MulAddGrad(FunctionNode):
    def forward_cpu(self, inputs):
        x, y, z, gw = inputs
        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz

    def forward_gpu(self, inputs):
        x, y, z, gw = inputs
        gx, gy = cuda.elementwise(
            'float32 x, float32 y, float32 gw',
            'float32 gx, float32 gy',
            '''
gx = y * gw;
gy = x * gw;
''',
            'muladd_bwd')(x, y, gw)
        gz = gw
        return gx, gy, gz

    def backward(self, target_input_indexes, grad_outputs):
        # You can leave this unimplemented unless you need to compute
        # higher-order derivative using this function.
        raise NotImplementedError()

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel function, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable). In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and an argument name.
2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.
4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by chainer.backends.cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single character as type specifier:

class MulAdd(Function):
    def forward_cpu(self, inputs):
       (continues on next page)
The type placeholder \( T \) indicates an arbitrary data type that CuPy supports.
There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels for more details.

**2.4.4 Advanced Topics**

**Write a function with training/test mode**

We sometimes want to make a function behave differently in training and test modes. The training/test mode in Chainer is configured by \texttt{chainer.config}. This is a thread-local configuration object, and users can substitute True or False to its \texttt{train} attribute. You can refer to \textit{Configuring Chainer} to see how to configure this flag as well as other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the value of the boolean flag \texttt{chainer.config.train} and branch appropriately.

For example, consider the following simple dropout function:

```python
def dropout(x):
 xp = backend.get_array_module(x.array)
 mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
 return x * mask
```
This function applies dropout to each element and doubles survived elements to preserve the scale. The above implementation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

```python
def dropout(x):
 if not chainer.config.train:
 return x

 xp = backend.get_array_module(x.array)
 mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
 return x * mask
```

The function now supports test mode. Note that you usually do not have to implement your own dropout function because `dropout()` is officially provided.

**Testing Functions**

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implementations. Chainer provides simple utilities to help writing unit tests. They are defined in the `gradient_check` module.

The most important test utility is the `numerical_grad()` function. This function computes the numerical gradient of given function using finite differences. It can be used as follows:

```python
x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))
```

`f` is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of `numerical_grad()` are tuples of input arrays and output gradient arrays, respectively. The code above computes the numerical gradients of `sum(f(x))`, where `sum` indicates the summation over all elements. The summation can be weighted by changing `gy`. `numerical_grad()` function also accepts additional `eps` argument, which indicates the quantization width of finite differences.

**Note:** `numerical_grad()` function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU arrays.

Another utility is `chainer.testing.assert_allclose()` function. This is similar to `numpy.testing.assert_allclose()` function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We can mix them in one invocation of `chainer.testing.assert_allclose()`. The default values of optional arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of `functions.relu()` function:

```python
import unittest
from chainer import testing

class TestReLU(unittest.TestCase):
 def test_backward_cpu(self):
 x = Variable(np.random.randn(3, 2).astype(np.float32))
 y = F.relu(x)
 y.grad = np.random.randn(3, 2).astype(np.float32)
 y.backward(retain_grad=True)
```

(continues on next page)
The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines compute numerical gradient using the same forward function without backward routine. And at last, we compare these two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function `chainer.gradient_check.check_backward()` that follows this procedure.

```
import unittest
from chainer import gradient_check

class TestReLU(unittest.TestCase):
 def test_backward_cpu(self):
 def f(x):
 return F.relu(x)

 x = np.random.randn(3, 2).astype(np.float32)
 y_grad = np.random.randn(3, 2).astype(np.float32)
 gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)
```

You can find many examples of function tests under `tests/chainer_tests/functions_tests` directory.

You can use `chainer.gradient_check.check_double_backward()` to run gradient check for the second order gradient computed by new-style functions. This function runs two backpropagations; first to compute the gradient `gx` of `y` w.r.t. `x`, and second to compute the gradient of `gx` w.r.t. `x`. It can be used like `check_backward()`, but `check_double_backward()` expects an additional argument `x_grad_grad`, which is an array or a tuple of arrays used for initializing the gradient array of each gradient w.r.t. an input. In other words, this argument is used to initialize `gx.grad` for the second backprop.

### 2.4.5 Implementing User-Defined Links

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the function. We have already seen how to define a chain that wraps other links (by inheriting `Chain` class) in *Creating Models*. Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and the parameter array. It can be defined as follows:

```
class EltwiseParamProduct(Chain):
 def __init__(self, shape):
 super(EltwiseParamProduct, self).__init__()
 self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

 def __call__(self, x):
 return self.W * x
```
For another example, assume we want to define a simple linear layer. It is already defined as `chainer.links.Linear`, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link. First, we have to define a function on variables:

```python
class LinearFunction(FunctionNode):
 def forward(self, inputs):
 x, W, b = inputs
 return x.dot(W.T) + b,

 def backward(self, inputs, grad_outputs):
 x, W, b = inputs
 gy, = grad_outputs
 gx = gy.dot(W)
 gW = gy.T.dot(x)
 gb = gy.sum(axis=0)
 return gx, gW, gb

def linear(x, W, b):
 return LinearFunction()(x, W, b)
```

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient module, let’s wrap it into a link:

```python
class Linear(Link):
 def __init__(self, in_size, out_size):
 super(Linear, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(
 initializers.Normal(1. / math.sqrt(in_size)),
 (out_size, in_size))
 self.b = chainer.Parameter(0, (out_size,))

 def __call__(self, x):
 return linear(x, self.W, self.b)
```

This link hides the parameters of the linear layer.

**Note:** An advanced tip to implement functions: if you want to preserve some information between forward and backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the memory consumption during the whole forward-backward computation. If you want to train very large networks on a GPU with limited memory, it is not recommended that you cache arrays between forward and backward. There is one exception for this: caching the output arrays does not change the memory consumption, because they are also held by the output Variable objects.

**Warning:** You should not assume a one-to-one match of calls of forward and backward. Some users may call backward more than once after one forward call.
2.4.6 Migrating From Old-Style Functions To New-Style Functions

Here are the key differences between Function and FunctionNode.

- Implementing forward computation (difference between `chainer.Function.forward()` and `chainer.FunctionNode.forward()`)
  - There are no difference between Function and FunctionNode except that the input arrays are NOT retained by default.
  
  If you want the inputs to be retained to use them in backward, call `retain_inputs()` explicitly. In other words, `self.retain_inputs()` has no effect in FunctionNode.

- Implementing backward computation (difference between `chainer.Function.backward()` and `chainer.FunctionNode.backward()`)
  - Arguments to the method has been changed.
    * `inputs` argument is no longer passed.
      
      You can use `get_retained_inputs()` and `get_retained_outputs()` to retrieve the inputs/outputs retained in the forward method. Note that `grad_outputs` and these retained inputs/outputs are all given as `Variable` objects, and backward method must return a tuple of `Variable` objects.
    * `target_input_indexes` argument has been added.
      
      It contains a sorted indices of the input variables w.r.t. which the gradients are required. You can use it to skip calculation of unneeded gradients. The use of `target_input_indexes` is optional; it is acceptable to calculate and return all gradients.

  - All inputs (`grad_outputs`) and retained values are given in `Variable` in FunctionNode, whereas `ndarray` in Function.

- Invoking forward computation

  - `Function` is a callable, whereas `FunctionNode` is not.

    You need to use `f.apply((x,))` instead of `f(x)`. Note that `apply()` always returns outputs as `tuple` even if the function generates only one output value.

When migrating from old-style to new-style, typically you will need to write a new function class that implements the first-order gradient of the original function. Here is an example of rewriting old-style `MyOldFunc` unary function to new-style `MyFunc` function.

```python
class MyOldFunc(chainer.Function):
 def forward(self, inputs):
 x, = inputs
 # forward computation code
 return y,

 def backward(self, inputs, grad_outputs):
 x, = inputs
 gy, = grad_outputs
 # backward computation code
 return gx,

class MyFunc(chainer.FunctionNode):
 def forward(self, inputs):
```

(continues on next page)
self.retain_inputs((0,))
x, = inputs
...
# forward computation code in MyOldFunc
return y,

def backward(self, target_input_indexes, grad_outputs):
x, = self.get_retained_inputs()
gy, = grad_outputs
gx, = MyFuncGrad().apply((x, gy))
return gx,

class MyFuncGrad(chainer.FunctionNode):

    def forward(self, inputs):
x, gy = inputs
...
# backward computation code in MyOldFunc
return gx,

    def backward(self, target_input_indexes, grad_outputs):
# You can leave this unimplemented unless you need to compute
# higher-order derivative using this function.
raise NotImplementedError()

2.4.7 Implementing Old-Style Functions

Note: As noted in the New-Style v.s. Old-Style Functions, we recommend that you use new-style for newly implemented functions. This section uses the same example as in Implementing New-Style Functions but using old-style.

First, suppose we want to define an elementwise function \( f(x, y, z) = x * y + z \). While it is possible to implement this equation using a combination of the \(*\) and \(+\) functions, defining it as a single function may reduce memory consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Old-style functions must inherit the Function class. The skeleton of a function looks like:

class MulAdd(Function):

    def forward_cpu(self, inputs):
        # do forward computation on CPU
        return some_tuple

    def backward_cpu(self, inputs, grad_outputs):
        # do backward computation on CPU
        return some_tuple

We must implement forward_cpu() and backward_cpu() methods. The non-self arguments of these functions are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:
As per the warning above, the `forward_cpu` method returns a tuple of single element. Note that all arrays appearing in CPU functions are `numpy.ndarray`. The forward function is straightforward; it unpacks the input tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, `Function` class provides a chaining logic on it (i.e., storing the history of computation, etc.).

**Note:** Assuming we implement a (forward) function $y = f(x)$ which takes as input the vector $x \in \mathbb{R}^n$ and produces as output a vector $y \in \mathbb{R}^m$. Then the backward method has to compute

$$
\lambda_i = \sum_{j=1}^{m} \frac{\partial y_i}{\partial x_j} \gamma_j \text{ for } i = 1 \ldots n
$$

where $\gamma$ is the `grad_outputs`. Note, that the resulting vector $\lambda$ must have the same shape as the arguments of the `forward` method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named `forward_gpu()` and `backward_gpu()`:

```python
class MulAdd(Function):

 def forward_cpu(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,

 def backward_cpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs

 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz

class MulAdd(Function):

 def forward_cpu(self, inputs):
 ...

 def backward_cpu(self, inputs, grad_outputs):
 ...

 def forward_gpu(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,

 def backward_gpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs

 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz
```
In GPU methods, arrays are of type `cupy.ndarray`. We use arithmetic operators defined for this class. These operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can reduce them to `forward()` and `backward()` methods.

```python
class MulAdd(Function):
 def forward(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,

 def backward(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz
```

Since the `cupy.ndarray` class implements many methods of `numpy.ndarray`, we can write these unified methods in most cases.

The MulAdd function can be used as follows:

```python
x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)
```

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In Chainer, we often define a thin wrapper Python function that hide the instantiation:

```python
def muladd(x, y, z):
 return MulAdd()(x, y, z)

w = muladd(x, y, z)
```

All functions under `chainer.functions` are implemented as wrapper functions like this.

### Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward methods with them. Consider that we want to write a backprop-able function $f(x, y) = \exp(x) + \exp(y)$. We name it `ExpAdd` here. It can be written straight-forward as follows:

```python
from chainer.backends import cuda

class ExpAdd(Function):
 def forward_cpu(self, inputs):
 x, y = inputs
 z = np.exp(x) + np.exp(y)
 return z,

 def backward_cpu(self, inputs, grad_outputs):
 (continues on next page)
```

---

2.4. Define your own function

31
```python
x, y = inputs
gz, = grad_outputs

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, y = inputs
gz, = grad_outputs

gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
return gx, gy

def expadd(x, y):
 return ExpAdd()(x, y)
```

**Note:** Here we used `chainer.backends.cuda.cupy` instead of directly accessing `cupy`. This is because the `cupy` module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have to defer the access to the `cupy` module. Note that the `chainer.backends.cuda` module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that `numpy` is replaced by `cupy` in GPU methods. We can unify these functions using the `chainer.backend.get_array_module()` function. This function accepts arbitrary number of arrays, and returns an appropriate module for them. See the following code:

```python
class ExpAdd(Function):
 def forward(self, inputs):
 xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
 xp = backend.get_array_module(*inputs)
x, y = inputs
gz, = grad_outputs

gx = gz * xp.exp(x)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
 return ExpAdd()(x, y)
```
Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found, `get_array_module()` function always returns `numpy`. We often use the name `xp` for the variadic module name, which is analogous to the abbreviation `np` for NumPy and `cp` for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it invokes two kernels during each of forward \( w = x \ast y + z \) and backward \( gx = y \ast gw \) and \( gy = x \ast gw \) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elementwise kernels, the `cupy.ElementwiseKernel` class, and Chainer wraps it by `chainer.backends.cuda.elementwise()` function. Our MulAdd implementation can be improved as follows:

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 ...

 def backward_cpu(self, inputs, grad_outputs):
 ...

 def forward_gpu(self, inputs):
 cupy = cuda.cupy
 x, y, z = inputs
 w = cupy.Elementwise(
 'float32 x, float32 y, float32 z',
 'float32 w',
 'w = x * y + z',
 'muladd_fwd')(x, y, z)
 return w,

 def backward_gpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx, gy = cupy.Elementwise(
 'float32 x, float32 y, float32 gw',
 'float32 gx, float32 gy',
 'gx = y * gw;
 gy = x * gw;
 muladd_bwd')(x, y, gw)
 gz = gw
 return gx, gy, gz
```

`chainer.backends.cuda.elementwise()` function accepts the essential implementation of the kernel function, and returns a kernel invocation function (actually, it returns `ElementwiseKernel` object, which is callable). In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and an argument name.
2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.
4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by `chainer.backends.cuda.elementwise()`.

The first one is **binary caching**: `chainer.backends.cuda.elementwise()` function caches the compiled binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is **upload caching**: Given a compiled binary code, we have to upload it to the current GPU in order to execute it. `chainer.backends.cuda.elementwise()` function memoizes the arguments and the current device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The `ElementwiseKernel` also supports the type-variadic kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single character as type specifier:

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 ...

 def backward_cpu(self, inputs, grad_outputs):
 ...

 def forward_gpu(self, inputs):
 cupy = cuda.cupy
 x, y, z = inputs
 w = cuda.elementwise(
 'T x, T y, T z',
 'T w',
 'w = x * y + z',
 'muladd_fwd')(x, y, z)
 return w,

 def backward_gpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx, gy = cuda.elementwise(
 'T x, T y, T gw',
 'T gx, T gy',
 'gx = y * gw;
 gy = x * gw;
 ',
 'muladd_bwd')(x, y, gw)
 gz = gw
 return gx, gy, gz
```

The type placeholder `T` indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels for more details.
2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```
import math
import numpy as np
import chainer
from chainer import backend
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils, Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple linear layers. We can write complex procedures with parameters by combining multiple links like this:

```python
>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)

>>> def my_forward(x):
... h = l1(x)
... return l2(h)
```

Here the `L` indicates the `links` module. A procedure with parameters defined in this way is hard to reuse. More Pythonic way is combining the links and procedures into a class:

```python
>>> class MyProc(object):
... def __init__(self):
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)

... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)
```

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible save/load features, etc. These features are all supported by the `Chain` class in Chainer. Then, what we have to do here is just define the above class as a subclass of `Chain`:

```python
>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)

... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)
```

It shows how a complex chain is constructed by simpler links. Links like `l1` and `l2` are called `child links` of `MyChain`.

2.5. Creating Models 35
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as their child links.

Note: We often define a single forward method of a link by the `forward` operator. Such links and chains are callable and behave like regular functions of Variables.

Another way to define a chain is using the `ChainList` class, which behaves like a list of links:

```python
>>> class MyChain2(ChainList):
... def __init__(self):
... super(MyChain2, self).__init__(
... L.Linear(4, 3),
... L.Linear(3, 2),
...)
... def forward(self, x):
... h = self[0](x)
... return self[1](h)
```

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above case, the Chain class is recommended as a base class.

### 2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

From the previous guide on `Creating Models`, let’s use the MyChain class:

```python
>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)
```
To tune parameters values to minimize loss, etc., we have to optimize them by the `Optimizer` class. It runs a numerical optimization algorithm on a given link. Many algorithms are implemented in the `optimizers` module. Here we use the simplest one, called Stochastic Gradient Descent (SGD):

```python
>>> model = MyChain()
>>> optimizer = optimizers.SGD().setup(model)
```

The method `setup()` prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting `hook functions` to the optimizer. Hook functions are called after the gradient computation and right before the actual update of parameters. For example, we can set weight decay regularization by running the next line beforehand:

```python
>>> optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0005))
```

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via `Trainer`, which we will see in the following sections. The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see the `Trainer` guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the `update()` method with no arguments. Do not forget to clear the gradients beforehand!

```python
>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()
```

The other way is just passing a loss function to the `update()` method. In this case, `cleargrads()` is automatically called by the update method, so the user does not have to call it manually.

```python
>>> def lossfun(arg1, arg2):
... # calculate loss
... loss = F.sum(model(chainer.Variable(arg1) - arg1))
... return loss

>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))
```

See `chainer.Optimizer.update()` for the full specification.

## 2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A typical training loop consists of the following procedures:

1. Iterations over training datasets
2. Preprocessing of extracted mini-batches
3. Forward/backward computations of the neural networks
4. Parameter updates
5. Evaluations of the current parameters on validation datasets
6. Logging and printing of the intermediate results

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop abstraction mainly consists of two components:

- **Dataset abstraction.** It implements 1 and 2 in the above list. The core components are defined in the `dataset` module. There are also many implementations of datasets and iterators in `datasets` and `iterators` modules, respectively.

- **Trainer.** It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by `Trainer`. The way to update parameters (3 and 4) is defined by `Updater`, which can be freely customized. 5 and 6 are implemented by instances of `Extension`, which appends an extra procedure to the training loop. Users can freely customize the training procedure by adding extensions. Users can also implement their own extensions.

### 2.8 Trainer Extensions

In this section, you will learn about the following topics:

- How to create your own trainer extension
  - by defining a simple function
  - by defining a function decorated with `@make_extension`
  - by defining a class inherited from `Extension` class

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils, Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

#### 2.8.1 What is trainer Extension?

`Extension` is a callable object that takes a `Trainer` object as an argument. By adding an `Extension` to a `Trainer` using the `extend()` method, the `Extension` will be called according to the schedule specified by using a `trigger` object (See the details in `I. trigger`)

The `Trainer` object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.
## 2.8.2 Write a simple function

You can make a new *Extension* by writing a simple function which takes a *Trainer* object as its argument. For example, when you want to reduce the learning rate periodically during training, an *lr_drop* extension can be written as follows:

```python
def lr_drop(trainer):
 trainer.updater.get_optimizer('main').lr *= 0.1
```

Then you can add this function to a *Trainer* object via *extend()* method.

```python
trainer.extend(lr_drop, trigger=(10, 'epoch'))
```

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

### 2.8.3 Write a function decorated with @make_extension

*make_extension()* is a decorator that adds some attributes to a given function. For example, the simple extension we created above can be written in this form:

```python
@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):
 trainer.updater.get_optimizer('main').lr *= 0.1
```

The difference between the above example and this is whether it has a default *trigger* or not. In the latter case, *lr_drop()* has its default *trigger* so that unless another *trigger* is specified via *extend()* method, the *trigger* specified in *make_extension()* is used by default. The code below acts the same as the former example, i.e., it reduces the learning rate every 10 epochs.

```python
trainer.extend(lr_drop)
```

There are several attributes you can add using the *make_extension()* decorator.

#### 1. trigger

*trigger* is an object that takes a *Trainer* object as an argument and returns a boolean value. If a tuple in the form *(period, unit)* is given as a trigger, it will be considered as an *IntervalTrigger* that invokes the extension every *period* unit. For example, when the given tuple is *(10, 'epoch')*, the extension will run every 10 epochs.

*trigger* can also be given to the *extend()* method that adds an extension to a *Trainer* object. The priority of *triggers* is as follows:

- When both *extend()* and a given *Extension* have *triggers*, the *trigger* given to *extend()* is used.
- When *None* is given to *extend()* as the *trigger* argument and a given *Extension* has *trigger*, the *trigger* given to the *Extension* is used.
- When both *trigger* attributes in *extend()* and *Extension* are *None*, the *Extension* will be fired every iteration.

See the details in the documentation of *get_trigger()* for more information.
2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.

3. priority

As a Trainer object can be assigned multiple Extension objects, the execution order is defined according to the following three values:

- **PRIORITY_WRITER**: The priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the chainer.report() function to report values to the observation dictionary. Extensions which write something to reporter should go first because other Extensions which read those values may be added.

- **PRIORITY_EDITOR**: The priority for extensions that edit the observation dictionary based on already reported values. Extensions which edit some values of reported ones should go after the extensions which write values to reporter but before extensions which read the final values.

- **PRIORITY_READER**: The priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the reported values should be fired after all the extensions which have other priorities, e.g., PRIORITY_WRITER and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.

4. finalizer

You can specify a function to finalize the extension. It is called once at the end of the training loop, i.e., when run() has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once before the training loop begins.

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this equation:

\[ \eta = \eta_{\text{init}} \left(1 - \frac{t}{t_{\text{max}}}\right)^{\text{power}} \]

The learning rate will be dropped according to the curve below with power = 0.5:
class PolynomialShift(training.Extension):

    def __init__(self, attr, power, stop_trigger, batchsize=None, len_dataset=None):
        self._attr = attr
        self._power = power
        self._init = None
        self._t = 0
        self._last_value = 0
        if stop_trigger[1] == 'iteration':
            self._maxiter = stop_trigger[0]
        elif stop_trigger[1] == 'epoch':
            if batchsize is None or len_dataset is None:
                raise ValueError('When the unit of stop_trigger is epoch, '
                                 'batchsize and len_dataset should be '
                                 'specified to calculate the maximum iteration.')
            n_iter_per_epoch = len_dataset / float(batchsize)
            self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

    def initialize(self, trainer):
        optimizer = trainer.updater.get_optimizer('main')
        # ensure that _init is set
        if self._init is None:
            self._init = getattr(optimizer, self._attr)

    def __call__(self, trainer):
        (continues on next page)
self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
    self._t = serializer('_t', self._t)
    self._last_value = serializer('_last_value', self._last_value)
    if isinstance(self._last_value, np.ndarray):
        self._last_value = self._last_value.item()

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger))

This extension PolynomialShift takes five arguments.

- **attr**: The name of the optimizer property you want to update using this extension.
- **power**: The power of the above equation to calculate the learning rate.
- **stop_trigger**: The trigger given to the Trainer object to specify when to stop the training loop.
- **batchsize**: The training mini-batchsize.
- **len_dataset**: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger, batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the __call__() method to update the learning rate. The initialize() method obtains the initial learning rate from the optimizer given to the Trainer object. The serialize() method stores or recovers the properties, _t (number of iterations) and _last_value (the latest learning rate), belonging to this extension.

### 2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
go
import math
import numpy as np
import chainer
from chainer import backend
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, util,
 Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

In this section, you will learn about the following topics:

- Relationship between Chainer and CuPy
• Basics of CuPy
• Single-GPU usage of Chainer
• Multi-GPU usage of model-parallel computing
• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:
• Use Chainer on a CUDA-enabled GPU
• Write model-parallel computing in Chainer
• Write data-parallel computing in Chainer

### 2.9.1 Relationship between Chainer and CuPy

**Note:** Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See Working with Custom CUDA Installation for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the `cupy.ndarray` class is the GPU array implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which enables us to write fast implementations dedicated to GPU.

**Note:** The `chainer.backends.cuda` module imports many important symbols from CuPy. For example, the `cupy` namespace is referred as `cuda.cupy` in the Chainer code. Note that the `chainer.backends.cuda` module can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since memory allocation and release in CUDA (i.e. `cudaMalloc` and `cudaFree` functions) synchronize CPU and GPU computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation, Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

### 2.9.2 Basics of `cupy.ndarray`

See the documentation of CuPy for the basic usage of `cupy.ndarray`

CuPy is a GPU array backend that implements a subset of NumPy interface. The `cupy.ndarray` class is in its core, which is a compatible GPU alternative of `numpy.ndarray`. CuPy implements many functions on `cupy.ndarray` objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most features of CuPy. See the NumPy documentation for learning it.

The main difference of `cupy.ndarray` from `numpy.ndarray` is that the content is allocated on the device memory. The allocation takes place on the current device by default. The current device can be changed by `cupy.cuda.Device` object as follows:

```python
with cupy.cuda.Device(1):
 x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])
```
Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the `chainer.backends.cuda.to_gpu()` function copies a `numpy.ndarray` object to a specified device:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)
```

It is equivalent to the following code using CuPy:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):
 x_gpu = cupy.array(x_cpu)
```

Moving a device array to the host can be done by `chainer.backends.cuda.to_cpu()` as follows:

```python
x_cpu = cuda.to_cpu(x_gpu)
```

It is equivalent to the following code using CuPy:

```python
with x_gpu.device:
 x_cpu = x_gpu.get()
```

**Note:** The `with` statements in these codes are required to select the appropriate CUDA device. If user uses only one device, these device switching is not needed. `chainer.backends.cuda.to_gpu()` and `chainer.backends.cuda.to_cpu()` functions automatically switch the current device correctly.

Chainer also provides a convenient function `chainer.backends.cuda.get_device_from_id()` and `chainer.backends.cuda.get_device_from_array()` to select a device. The former function accepts an integer or `None`. When `None` is given, it returns a dummy device object. Otherwise, it returns a corresponding device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device object also supports `with` statements like the above example but does nothing. Here are some other examples:

```python
cuda.get_device_from_id(1).use()
x_gpu = cupy.empty((4, 3), dtype=cupy.float32)
with cuda.get_device_from_id(1):
 x_gpu = cupy.empty((4, 3), dtype=cupy.float32)
with cuda.get_device_from_array(x_gpu):
 y_gpu = x_gpu + 1
```

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device switching:

```python
def add1(x):
 with cuda.get_device_from_array(x):
 return x + 1
```

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the `chainer.backend.get_array_module()` function. This function returns the `numpy` or `cupy` module based on arguments. A CPU/GPU generic function is defined using it like follows:
```python
Stable implementation of log(1 + exp(x))
def softplus(x):
 xp = backend.get_array_module(x)
 return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))
```

### 2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring `Link` and input arrays to the GPU beforehand. In this subsection, the code is based on our first MNIST example in this tutorial.

A `Link` object can be transferred to the specified GPU using the `to_gpu()` method.

This time, we make the number of input, hidden, and output units configurable. The `to_gpu()` method also accepts a device ID like `model.to_gpu(0)`. In this case, the link object is transferred to the appropriate GPU device. The current device is used by default.

If we use `chainer.training.Trainer`, what we have to do is just let the updater know the device ID to send each mini-batch.

```python
updater = training.updaters.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')
```

We also have to specify the device ID for an evaluator extension as well.

```python
trainer.extend(extensions.Evaluator(test_iter, model, device=0))
```

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

```python
model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
 print('epoch %d' % epoch)
 indexes = np.random.permutation(datasize)
 for i in range(0, datasize, batchsize):
 x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]])
 t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]])
 optimizer.update(model, x, t)
```

### 2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”. Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means parallelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs in Chainer.

**Recall the MNIST example.** Now suppose that we want to modify this example by expanding the network to 6 layers with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

```
(GPU0) input ---+--> 11 --> 12 --+--> 13 --+--> 14 --> 15 --> 16 ---+--> output
 | | | |
(GPU1) +---> 11 --> 12 --+--> 13 --+--> 14 --> 15 --> 16 --+
```

We can use the above MLP chain as following diagram:
Let’s write a link for the whole network.

```python
class ParallelMLP(Chain):
 def __init__(self):
 super(ParallelMLP, self).__init__()
 with self.init_scope():
 # the input size, 784, is inferred
 self.mlp1_gpu0 = MLP(1000, 2000).to_gpu(0)
 self.mlp1_gpu1 = MLP(1000, 2000).to_gpu(1)

 # the input size, 2000, is inferred
 self.mlp2_gpu0 = MLP(1000, 10).to_gpu(0)
 self.mlp2_gpu1 = MLP(1000, 10).to_gpu(1)

 def forward(self, x):
 # assume x is on GPU 0
 z0 = self.mlp1_gpu0(x)
 z1 = F.copy(x, 1)

 # sync
 h0 = F.relu(z0 + F.copy(z1, 0))
 h1 = F.relu(z1 + F.copy(z0, 1))

 y0 = self.mlp2_gpu0(h0)
 y1 = self.mlp2_gpu1(h1)

 # sync
 y = y0 + F.copy(y1, 0)
 return y # output is on GPU0
```

Recall that the `Link.to_gpu()` method returns the link itself. The `copy()` function copies an input variable to specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely transfers an output gradient to the input device.

**Note:** Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the above code run asynchronously to the host CPU.

An almost identical example code can be found at `examples/mnist/train_mnist_model_parallel.py`.

### 2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it means that a different device does computation on a different subset of the input data. In this subsection, we review the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define a model and optimizer instances:
Recall that the `MLP` link implements the multi-layer perceptron, and the `Classifier` link wraps it to provide a classifier interface. We used `StandardUpdater` in the previous example. In order to enable data-parallel computation with multiple GPUs, we only have to replace it with `ParallelUpdater`.

```python
updater = training.updaters.ParallelUpdater(train_iter, optimizer,
 devices={'main': 0, 'second': 1})
```

The `devices` option specifies which devices to use in data-parallel learning. The device with name 'main' is used as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the updated parameters are sent to GPU 1 again.

See also the example code in `examples/mnist/train_mnist_data_parallel.py`.

### 2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip this section. If you are interested in how to write a data-parallel computation by yourself, this section should be informative. It is also helpful to, e.g., customize the `ParallelUpdater` class.

We again start from the MNIST example. At this time, we use a suffix like `_0` and `_1` to distinguish objects on each device. First, we define a model.

```python
model_0 = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
```

We want to make two copies of this instance on different GPUs. The `Link.to_gpu()` method runs in place, so we cannot use it to make a copy. In order to make a copy, we can use `Link.copy()` method.

```python
model_1 = model_0.copy()
model_0.to_gpu(0)
model_1.to_gpu(1)
```

The `Link.copy()` method copies the link into another instance. It just copies the link hierarchy, and does not copy the arrays it holds.

Then, set up an optimizer:

```python
optimizer = optimizers.SGD()
optimizer.setup(model_0)
```

Here we use the first copy of the model as the master model. Before its update, gradients of `model_1` must be aggregated to those of `model_0`.

Then, we can write a data-parallel learning loop as follows:

```python
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
 print('epoch %d' % epoch)
 indexes = np.random.permutation(datasize)
 for i in range(0, datasize, batchsize):
 # (continues on next page)
x_batch = x_train[indexes[i : i + batchsize]]

y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()

model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the other half to GPU 1. Then the gradients are accumulated by the `Link.addgrads()` method. This method adds the gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual way. Note that the update only modifies the parameters of `model_0`. So we must manually copy them to `model_1` using `Link.copyparams()` method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the number of models, when we aggregate gradients from all models by `chainer.Link.addgrads()`. So you need to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the `examples` directory support GPU computation, so please refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple (elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:

- Basic usage of type check
- Detail of type information
- Internal mechanism of type check
- More complicated cases
- Call functions
- Typical type check example

After reading this section, you will be able to:
• Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is called just before the forward() method of the Function class. You can override this method to check the condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

```python
def check_type_forward(self, in_types):
    ...
```

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for readability:

```python
x_type, y_type = in_types
```

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type equals to 2, write this code:

```python
utils.type_check.expect(x_type.ndim == 2)
```

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message like this:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2
```

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.

- .shape is a tuple of ints. Each value is size of each dimension.
- .ndim is int value representing the number of dimensions. Note that ndim == len(shape)
- .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

```python
utils.type_check.expect(x_type.shape[0] > 0)
```

You can also check data types with .dtype:
And an error is like this:

```python
Traceback (most recent call last):
...  
chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.float64'>
Actual: float32 != <class 'numpy.float64'>
```

You can also check kind of dtype. This code checks if the type is floating point:

```python
utils.type_check.expect(x_type.dtype.kind == 'f')
```

You can compare between variables. For example, the following code checks if the first argument and the second argument have the same length:

```python
utils.type_check.expect(x_type.shape[1] == y_type.shape[1])
```

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim member variable, we cannot show such an error message because this equation is evaluated as a boolean value by Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim').x_type.ndim == 2 makes an object like (eq, (getattr, x_type, 'ndim'), 2).expect() gets a Expr object and evaluates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error message.

If you want to evaluate a Expr object, call `eval()` method:

```python
actual_type = x_type.eval()
```

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.shape[0].eval() returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and *. You can write a condition that the first dimension of x_type is the first dimension of y_type times four:

```python
utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)
```

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

```python
Traceback (most recent call last):
...  
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4
Actual: 3 != 4
```

To compare a member variable of your function, wrap a value with Variable to show readable error message:

```python
```
This code can check the equivalent condition below:

```python
x_type.shape[0] == self.in_size
```

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter code shows unreadable error message:

```python
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4  # what does '4' mean?
Actual: 3 != 4
```

Note that the second argument of `utils.type_check.Variable` is only for readability. The former shows this message:

```python
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size  # OK, `in_size` is a value that is given to the constructor
Actual: 3 != 4  # You can also check actual value here
```

2.10.5 Call functions

How to check summation of all values of shape? `Expr` also supports function call:

```python
sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)
```

Why do we need to wrap the function `numpy.sum` with `utils.type_check.Variable`? `x_type.shape` is not a tuple but an object of `Expr` as we have seen before. Therefore, `numpy.sum(x_type.shape)` fails. We need to evaluate this function lazily.

The above example produces an error message like this:

```python
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10
```

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate `Expr` and get its result value with `eval()` method. Then check the condition and show warning message by hand:

```python
x_shape = x_type.shape.eval()  # get actual shape (int tuple)
if not more_complicated_condition(x_shape):
    expect_msg = 'Shape is expected to be ...'
    actual_msg = 'Shape is ...
    raise utils.type_check.InvalidType(expect_msg, actual_msg)
```

Please write a readable error message. This code generates the following error message:
2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

```python
utils.type_check.expect(in_types.size() == 2)
```

`in_types.size()` returns a `Expr` object representing the number of arguments. You can check it in the same way.

And then, get each type:

```python
x_type, y_type = in_types
```

Don’t get each value before checking `in_types.size()`. When the number of argument is illegal, `type_check.expect` might output unuseful error messages. For example, this code doesn’t work when the size of `in_types` is 0:

```python
utils.type_check.expect(
    in_types.size() == 2,
    in_types[0].ndim == 3,
)
```

After that, check each type:

```python
utils.type_check.expect(
    x_type.dtype == np.float32,
    x_type.ndim == 3,
    x_type.shape[1] == 2,
)
```

The above example works correctly even when `x_type.ndim == 0` as all conditions are evaluated lazily.

2.11 Serializers – saving and loading

Serializer is a simple interface to serialize or deserialize an object. `Link`, `Optimizer`, and `Trainer` support serialization.

Concrete serializers are defined in the `serializers` module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the `save_npz()` function:

```python
Assuming we have defined a model:
```

```python
>>> from chainer import serializers
>>> serializers.save_npz('my.model', model)
```

This saves the parameters of `model` into the file ‘my.model’ in NPZ format. The saved model can be read back from `my.model` back into `model` by the `load_npz()` function:
serializers.load_npz('my.model', model)

Note: Note that only the parameters and the **persistent values** are serialized by this serialization code. Other attributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values by the `add_persistent()` method. The registered values can be accessed by attributes of the name passed to the add_persistent method.

The state of an optimizer can also be saved by the same functions:

serializers.save_npz('my.state', optimizer)
serializers.load_npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to explicitly save the target link with the optimizer to resume the optimization from saved states. This can be done by saving the entire Trainer object, like this:

serializers.save_npz('my.state', trainer)

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the HDF5 format are almost identical to those with the NPZ format; just replace `save_npz()` and `load_npz()` by `save_hdf5()` and `load_hdf5()`, respectively.

2.12 Customize your own logging

In this section, you will learn about the following things:

- What is `chainer.Reporter`?
- How to report logging with `chainer.Reporter`?
- The naming rule for the reported values.

After reading this section, you will be able to:

- Write your own report.

2.12.1 What is Reporter?

`chainer.Reporter` is used to collect values that users want to watch. The reporter object manipulates a dictionary from value names to the actually observed values. We call this dictionary as `observation`.

See the following example:

```python
>>> from chainer import Reporter, report, report_scope
>>> reporter = Reporter()
>>> observer = object()  # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer:', observer)
>>> observation = {}
>>> with reporter.scope(observation):

(continues on next page)```
When a value is passed to the reporter, an object called observer can be optionally attached. In this case, the name of the observer is added as the prefix of the value name. The observer name should be registered beforehand. Using reporter.scope, you can select which observation to save the observed values.

There are also a global API chainer.report(), which reports observed values with the current reporter object. In this case, current means which with statement scope the current code line is in. This function calls the Reporter.report() method of the current reporter.

2.12.2 Use report in Chain or Link

The most important application of Reporter is to report observed values from each Link or Chain in the training and validation procedures.

But, how to report the observed values from each link or chain? Shold we prepare the Reporter? No, you only need to call report() in chain or link, because Trainer and some extensions prepare their own Reporter object with the hierarchy of the target link registered as observers. We can use report() function inside any links and chains to report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

See the following example:

If the link is named 'main' in the hierarchy (which is the default name of the target link in the StandardUpdater), these reported values are named 'main/loss' and 'main/accuracy'. If these values are reported inside the Evaluator extension, 'validation/' is added at the head of the link name, thus the item names are changed to 'validation/main/loss' and 'validation/main/accuracy' ('validation' is the default name of the Evaluator extension).
2.12.3 Naming rule for the reported values

So, you know almost everything about `Reporter`. However, there is one more thing. It is what is the naming rule for the reported values, especially when the values are reported from a link that is not the root of the link hierarchy.

As we explained in the previous section, the root of links is named as 'main' by the `StandardUpdater` and the names of reported values in the root have the prefix 'main/'. When the values are reported from a link that is not the root of the link hierarchy, the prefix of the names are determined by the link hierarchy, or `namedlinks()`.

See the following example:

```python
>>> class MLP(Chain):
... def __init__(self, n_units, n_out):
... super(MLP, self).__init__()
... with self.init_scope():
... # the size of the inputs to each layer will be inferred
... self.l1 = L.Linear(None, n_units) # n_in -> n_units
... self.l2 = L.Linear(None, n_units) # n_units -> n_units
... self.l3 = L.Linear(None, n_out) # n_units -> n_out
...
... def forward(self, x):
... h1 = F.relu(self.l1(x))
... h2 = F.relu(self.l2(h1))
... y = self.l3(h2)
... report({"sum_y": F.sum(y)}, self)
... return y
...
... model = Classifier(MLP(100, 10))
>>> for name, observer in model.namedlinks(skipself=True):
... print(name)
/predictor/l1
/predictor/l2
/predictor/l3
You can get the parameters of the link hierarchy by `namedlinks()`. In this example, we report 'loss' and 'accuracy' in the root of links, and 'sum_y' in the link of '/predictor'. So, you can access the reported values by 'main/accuracy', 'main/accuracy', and 'main/predictor/sum_y'.

See what we explained is correct:

```python
>>> train, test = datasets.get_mnist()
>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (1, 'epoch'), out='result')
>>> trainer.extend(extensions.Evaluator(test_iter, model))
>>> trainer.extend(extensions.LogReport())
>>> trainer.run()
epoch main/accuracy main/loss main/predictor/sum_y validation/main/accuracy
1 0.662317 1.38345 47.9927 0.8498
```
3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
...
Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check [MNIST with a Manual Training Loop](#) instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

```python
from chainer.datasets import mnist
train, test = mnist.get_mnist()
```

Note: You can use a Python list as a dataset. That's because Iterator can take any object as a dataset whose elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,
a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in `datasets`. It is recommended that you utilize them in the actual applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those data into a list like above. In that case, you can use `ImageDataset`, which just keeps the paths to image files. The actual image data will be loaded from the disk when the corresponding element is requested via `[]` accessor. Until then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

`Iterator` creates a mini-batch from the given dataset.

```python
batchsize = 128
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)
```

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in `MNIST with a Manual Training Loop`.

```python
class MLP(Chain):
    def __init__(self, n_mid_units=100, n_out=10):
        super(MLP, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_mid_units)
            self.l2 = L.Linear(None, n_mid_units)
            self.l3 = L.Linear(None, n_out)

    def forward(self, x):
        h1 = F.relu(self.l1(x))
        h2 = F.relu(self.l2(h1))
        return self.l3(h2)

gpu_id = 0  # Set to -1 if you use CPU
model = MLP()
if gpu_id >= 0:
    model.to_gpu(gpu_id)
```
3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown below.

Basically, all you need to pass to *Trainer* is an *Updater*. However, *Updater* contains an *Iterator* and *Optimizer*. Since *Iterator* can access the dataset and *Optimizer* has references to the model, *Updater* can access to the model to update its parameters.

So, *Updater* can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (*Iterator*)
2. Pass the mini-batch to the model and calculate the loss
3. Update the parameters of the model (*Optimizer*)

Now let’s create the *Updater* object!

```python
max_epoch = 10

# Wrap your model by Classifier and include the process of loss calculation within your model.
# Since we do not specify a loss function here, the default 'softmax_cross_entropy' is used.
model = L.Classifier(model)
```

(continues on next page)
selection of your optimizing method
optimizer = optimizers.MomentumSGD()

Give the optimizer a reference to the model
optimizer.setup(model)

Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater(train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier, which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you give the input data and the corresponding class labels to the model by the () operator,

1. forward() of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun argument in the constructor of Classifier.

3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like (length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will never be stopped.

```python
# Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')
```

The out argument specifies an output directory used to save the log files, the image files of plots to show the time progress of loss, accuracy, etc. when you use PlotReport extension. Next, we will explain how to display or save those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:

- Save log files automatically (LogReport)
- Display the training information to the terminal periodically (PrintReport)
- Visualize the loss progress by plotting a graph periodically and save it as an image file (PlotReport)
- Automatically serialize the state periodically (snapshot() / snapshot_object())
- Display a progress bar to the terminal to show the progress of training (ProgressBar)
• Save the model architecture as a Graphviz’s dot file (DumpGraph())

To use these wide variety of tools for your training task, pass Extension objects to the extend() method of your Trainer object.

```python
from chainer.training import extensions

trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key='epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.DumpGraph('main/loss'))
```

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log file in the directory specified by the out argument when you create a Trainer object.

snapshot()

The snapshot() method saves the Trainer object at the designated timing (default: every epoch) in the directory specified by out. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of the model. By using snapshot_object(), you can save the particular object (in this case, the model wrapped by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file. The log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot() This extension saves the Trainer object at the designated timing (default: every epoch) in the output directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make inferences using the previously trained model later.

snapshot_object() snapshot() extension above saves the whole Trainer object. However, in some cases, it is tedious to retrieve only the inside of the model. By using snapshot_object(), you can save the particular object (in the example above, the model wrapped by Classifier) as a separate snapshot. Taking the snapshot of predictor is enough to keep all the trained parameters, because Classifier (which is a subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.
DumpGraph() This extension saves the structure of the computational graph of the model. The graph is saved in Graphviz dot format under the output directory of the **Trainer**.

Evaluator Iterators that use the evaluation dataset and the model object are required to use **Evaluator** extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified timing interval.

PrintReport This extension outputs the specified values to the standard output.

PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at **Extensions** for more of them.

3.1.7 7. Start Training

Just call **run()** method from **Trainer** object to start training.

```
trainer.run()
```

<table>
<thead>
<tr>
<th>epoch</th>
<th>elapsed_time</th>
<th>main/loss</th>
<th>main/accuracy</th>
<th>validation/main/loss</th>
<th>validation/main/accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.93409</td>
<td>1.53241</td>
<td>0.638409</td>
<td>0.74935</td>
<td>0.835839</td>
</tr>
<tr>
<td>2</td>
<td>7.72883</td>
<td>0.578334</td>
<td>0.858059</td>
<td>0.444722</td>
<td>0.882812</td>
</tr>
<tr>
<td>3</td>
<td>10.4229</td>
<td>0.418569</td>
<td>0.886844</td>
<td>0.364943</td>
<td>0.899229</td>
</tr>
<tr>
<td>4</td>
<td>13.148</td>
<td>0.362342</td>
<td>0.899089</td>
<td>0.327569</td>
<td>0.905558</td>
</tr>
<tr>
<td>5</td>
<td>15.846</td>
<td>0.331067</td>
<td>0.906517</td>
<td>0.304399</td>
<td>0.911788</td>
</tr>
<tr>
<td>6</td>
<td>18.5395</td>
<td>0.309019</td>
<td>0.911964</td>
<td>0.288295</td>
<td>0.917722</td>
</tr>
<tr>
<td>7</td>
<td>21.2173</td>
<td>0.292312</td>
<td>0.916128</td>
<td>0.272073</td>
<td>0.921776</td>
</tr>
<tr>
<td>8</td>
<td>23.9211</td>
<td>0.278291</td>
<td>0.92059</td>
<td>0.261351</td>
<td>0.923457</td>
</tr>
<tr>
<td>9</td>
<td>26.6612</td>
<td>0.266266</td>
<td>0.923541</td>
<td>0.253195</td>
<td>0.927314</td>
</tr>
<tr>
<td>10</td>
<td>29.466</td>
<td>0.255489</td>
<td>0.926739</td>
<td>0.242415</td>
<td>0.929094</td>
</tr>
</tbody>
</table>

Let’s see the plot of loss progress saved in the **mnist_result** directory.
How about the accuracy?

Furthermore, let’s visualize the computational graph saved with `DumpGraph()` using Graphviz.

```bash
% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png
```
From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

```python
import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

# Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)

y = model(x[None, ...])
print('predicted_label:', y.array.argmax(axis=1)[0])

label: 7
predicted_label: 7
```

The prediction looks correct. Success!
3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
    Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
import chainer.training import extensions
```

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are 10 classes for the labels.

Chainer provides a feature called `Trainer` that can simplify the training procedure of your model. However, it is also good to know how the training works in Chainer before starting to use the useful `Trainer` class that hides the actual processes. Writing your own training loop can be useful for learning how `Trainer` works or for implementing features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. **Prepare a dataset**
2. **Create a dataset iterator**
3. **Define a network**
4. **Select an optimization algorithm**
5. **Write a training loop**
 a. Retrieve a set of examples (mini-batch) from the training dataset.
 b. Feed the mini-batch to your network.
 c. Run a forward pass of the network and compute the loss.
 d. Just call the `backward()` method from the loss `Variable` to compute the gradients for all trainable parameters.
 e. Run the optimizer to update those parameters.
6. **Save the trained model**
7. **Perform classification by the saved model** and check the network performance on validation/test sets.
3.2.1 1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to make sure the images are correctly obtained.

```python
from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

# Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

# Display an example from the MNIST dataset.
# `x` contains the input image array and `t` contains that target class
# label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)

label: 5
```

The saved image 5.png will look like:
3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the `Iterator` class that retrieves a set of data and labels from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use `SerialIterator`, which is also a subclass of `Iterator` in the example code below. The `SerialIterator` can provide mini-batches with or without shuffling the order of data in the given dataset.

All `Iterator`s produce a new mini-batch by calling its `next()` method. All `Iterator`s also have properties to know how many times we have taken all the data from the given dataset (`epoch`) and whether the next mini-batch will be the start of a new epoch (`is_new_epoch`), and so on.

The code below shows how to create a `SerialIterator` object from a dataset object.

```python
from chainer import iterators

# Choose the minibatch size.
batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
                                      repeat=False, shuffle=False)
```

Note: `Iterator`s can take a built-in Python list as a given dataset. It means that the example code below is able to work,

```python
train = [(x1, t1), (x2, t2), ...]  # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)
```

where `x1`, `x2`, ... denote the input data and `t1`, `t2`, ... denote the corresponding labels.

Details of SerialIterator

- `SerialIterator` is a built-in subclass of `Iterator` that can retrieve a mini-batch from a given dataset in either sequential or shuffled order.
- The `Iterator`’s constructor takes two arguments: a dataset object and a mini-batch size.
- If you want to use the same dataset repeatedly during the training process, set the `repeat` argument to `True` (default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.
- If you want to shuffle the training dataset every epoch, set the `shuffle` argument to `True`. Otherwise, the order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set `batchsize = 128` in both `train_iter` and `test_iter`. So, these iterators will provide 128 images and corresponding labels at a time.
3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be instantiated and assigned to a property in the scope specified by init_scope():

2. Define a forward() method that represents the actual forward computation of your network. This method takes one or more Variable, numpy.ndarray, or cupy.ndarray as its inputs and calculates the forward pass using them.

```python
class MyNetwork(Chain):
    def __init__(self, n_mid_units=100, n_out=10):
        super(MyNetwork, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_mid_units)
            self.l2 = L.Linear(n_mid_units, n_mid_units)
            self.l3 = L.Linear(n_mid_units, n_out)

    def forward(self, x):
        h = F.relu(self.l1(x))
        h = F.relu(self.l2(h))
        return self.l3(h)
```

model = MyNetwork()

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered to the model by assigning it as a property inside the init_scope(). For example, a FunctionNode does not contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want to use relu() in your network, using it as a function in forward() works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words, we can conceptually think of the computation graph for our network being constructed dynamically as this forward computation code executes. This allows Chainer to describe networks in which different computations can be performed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key feature of Chainer that we call Define-by-Run.
3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example, you could try to change MomentumSGD to Adam, RMSprop, etc.

```python
from chainer import optimizers

# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

# Give the optimizer a reference to the model so that it
# can locate the model’s parameters.
optimizer.setup(model)
```

Note: In the above example, we set \(lr \) to 0.01 in the constructor. This value is known as the “learning rate”, one of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems, such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.
2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute the forward-pass code that are written in the forward() method.
3. This will return the network output that represents class label predictions. We supply it to the loss function along with the true (that is, target) values. The loss function will output the loss as a Variable object.
4. We then clear any previous gradients in the network and perform the backward pass by calling the backward() method on the loss variable which computes the parameter gradients. We need to clear the gradients first because the backward() method accumulates gradients instead of overwriting the previous values.
5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed gradients so that we can now call the update() method of the optimizer which will update the model parameters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to the training data. The code below checks the performance on the test set at the end of each epoch. The code has the same structure as the training code except that no backpropagation is performed and we also compute the accuracy on the test data using the accuracy() function.
The training loop code is as follows:

```python
import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:
    # ---------- One iteration of the training loop ----------
    train_batch = train_iter.next()
    image_train, target_train = concat_examples(train_batch, gpu_id)

    # Calculate the prediction of the network
    prediction_train = model(image_train)

    # Calculate the loss with softmax_cross_entropy
    loss = F.softmax_cross_entropy(prediction_train, target_train)

    # Calculate the gradients in the network
    model.cleargrads()
    loss.backward()

    # Update all the trainable parameters
    optimizer.update()

    # --------------------- until here ---------------------

    # Check the validation accuracy of prediction after every epoch
    if train_iter.is_new_epoch:
        # If this iteration is the final iteration of the current epoch
        # Display the training loss
        print('epoch:{:02d} train_loss:{:.04f}'.format(
            train_iter.epoch, float(to_cpu(loss.array))), end=''
        )
        test_losses = []
        test_accuracies = []
        for test_batch in test_iter:
            image_test, target_test = concat_examples(test_batch, gpu_id)

            # Forward the test data
            prediction_test = model(image_test)

            # Calculate the loss
            loss_test = F.softmax_cross_entropy(prediction_test, target_test)
            test_losses.append(to_cpu(loss_test.array))

            # Calculate the accuracy
            accuracy = F.accuracy(prediction_test, target_test)
            accuracy.to_cpu()
            test_accuracies.append(accuracy.array)

        test_iter.reset()

        print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
            np.mean(test_losses), np.mean(test_accuracies)))
```

3.2. MNIST with a Manual Training Loop 71
3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

```
serializers.save_npz('my_mnist.model', model)
```

3.2.7 7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform the following two steps:

1. Instantiate the same network as what you trained.
2. Overwrite all parameters in the model instance with the saved weights using the `load_npz()` function.

Once the model is restored, it can be used to predict image labels on new input data.

```python
from chainer import serializers

# Create an instance of the network you trained
model = MyNetwork()

# Load the saved parameters into the instance
serializers.load_npz('my_mnist.model', model)

# Get a test image and label
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('7.png')
print('label:', t)

label: 7
```

The saved test image looks like:
Change the shape of the minibatch.
In this example, the size of minibatch is 1.
Inference using any mini-batch size can be performed.

```python
print(x.shape, end=' -> )
x = x[None, ...]
print(x.shape)

# Forward calculation of the model by sending X
y = model(x)

# The result is given as Variable, then we can take a look at the contents by the --attribute, .array.
y = y.array

# Look up the most probable digit number using argmax
pred_label = y.argmax(axis=1)
print('predicted label:', pred_label[0])
```

(784,) -> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!
3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

- A small convolutional network with a model class that is inherited from `Chain`,
- A large convolutional network that has several building block networks with `ChainList`.

After reading this section, you will be able to:

- Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmentation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is \((N, C, H, W) \), where

- \(N \) denotes the number of images in a mini-batch,
- \(C \) denotes the number of channels of those images,
- \(H \) and \(W \) denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes. It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task, etc.

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils, Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. In this example, we show a simplified version of LeNet5 introduced in Deep Learning Tutorials. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model can be written as follows:

```python
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_channels=1, out_channels=6, ksize=5, stride=1)
```

(continues on next page)
A typical way to write your network is creating a new class inherited from `Chain` class. When defining your model in this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects of `Link` as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors simply by calling the model object like a function, `forward()` is usually defined in the model class. This method performs the forward computation of the model. Chainer uses the powerful autograd system for any computational graphs written with `FunctionNodes` and `Links` (actually a `Link` calls a corresponding `FunctionNode` inside of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the data, then give it to the model. The way this works is the resulting output `Variable` from the forward computation has a `backward()` method to perform autograd. In the above model, `forward()` has a `if` statement at the end to switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as a global variable `chainer.config.train`. When it’s in training mode, `forward()` returns the output value of the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating `softmax()`.

It is recommended that you use the global configuration `chainer.config.train` to switch the running mode.

If you don’t want to write `conv1` and the other layers more than once, you can also write the same model like in this way:

```python
from functools import partial
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
        net += [('sigm1', F.sigmoid)]
        net += [('mpool1', partial(F.max_pooling_2d, ksize=2, stride=2))]
        net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
        net += [('sigm2', F.sigmoid)]
        net += [('mpool2', partial(F.max_pooling_2d, ksize=2, stride=2))]
        net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
        net += [('sigm3', F.sigmoid)]
        net += [('mpool3', partial(F.max_pooling_2d, ksize=2, stride=2))]
        net += [('fc4', L.Linear(None, 84))]
        net += [('sigm4', F.sigmoid)]
        net += [('fc5', L.Linear(84, 10))]
        net += [('sigm5', F.sigmoid)]
        with self.init_scope():
            self.conv2 = L.Convolution2D(
                in_channels=6, out_channels=16, ksize=5, stride=1)
            self.conv3 = L.Convolution2D(
                in_channels=16, out_channels=120, ksize=4, stride=1)
            self.fc4 = L.Linear(None, 84)
            self.fc5 = L.Linear(84, 10)

    def forward(self, x):
        h = F.sigmoid(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv3(h))
        h = F.sigmoid(self.fc4(h))
        if chainer.config.train:
            return self.fc5(h)
        return F.softmax(self.fc5(h))
```

3.3. Convolutional Network for Visual Recognition Tasks

75
for n in net:
 if not n[0].startswith('_'):
 setattr(self, n[0], n[1])
self.layers = net

def forward(self, x):
 for n, f in self.layers:
 if not n.startswith('_'):
 x = getattr(self, n)(x)
 else:
 x = f(x)
 if chainer.config.train:
 return x
 return F.softmax(x)

Note: You can also use Sequential to write the above model more simply. Please note that Sequential is an experimental feature introduced in Chainer v4 and its interface may be changed in the future versions.

This code creates a list of pairs of component name (e.g., conv1, _sigm1, etc.) and all Links and functions (e.g., F.sigmoid, which internally invokes FunctionNode) after calling its superclass's constructor. In this case, components whose name start with _ are functions (FunctionNode), which doesn’t have any trainable parameters, so that we don’t register (setattr) it to the model. Others (conv1, fc4, etc.) are Links, which are trainable layers that hold parameters. This operation can be freely replaced with many other ways because those component names are just designed to select Links only from the list net easily. The list net is stored as an attribute layers to refer it in forward(). In forward(), it retrieves all layers in the network from self.forward sequentially and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the forward() to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There also are several ways to calculate the loss:

```python
model = LeNet5()

# Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)

# Forward computation
y = model(x)

# Loss calculation
loss = F.softmax_cross_entropy(y, t)
```

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain. Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually, there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It can be used like this:
model = L.Classifier(LeNet5())

Forward & Loss calculation
loss = model(x, t)

This class takes a model object as an input argument and registers it to a `predictor` property as a trained parameter. As shown above, the returned object can then be called like a function in which we pass `x` and `t` as the input arguments and the resulting loss value (which we recall is a `Variable`) is returned.

See the detailed implementation of `Classifier` from here: `chainer.links.Classifier` and check the implementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block networks, `ChainList` is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

```python
class VGG16(chainer.ChainList):
    def __init__(self):
        super(VGG16, self).__init__(
            VGGBlock(64),
            VGGBlock(128),
            VGGBlock(256, 3),
            VGGBlock(512, 3),
            VGGBlock(512, 3, True))

    def forward(self, x):
        for f in self.children():
            x = f(x)
        if chainer.config.train:
            return x
        return F.softmax(x)

class VGGBlock(chainer.Chain):
    def __init__(self, n_channels, n_convs=2, fc=False):
        w = chainer.initializers.HeNormal()
        super(VGGBlock, self).__init__(
            self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
            self.conv2 = L.Convolution2D(
                n_channels, n_channels, 3, 1, 1, initialW=w)
            if n_convs == 3:
                self.conv3 = L.Convolution2D(
                    n_channels, n_channels, 3, 1, 1, initialW=w)
            if fc:
                self.fc4 = L.Linear(None, 4096, initialW=w)
                self.fc5 = L.Linear(4096, 4096, initialW=w)
                self.fc6 = L.Linear(4096, 1000, initialW=w)
        self.n_convs = n_convs
        self.fc = fc
```

(continues on next page)
That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists of several building blocks that have the same architecture, we can build the whole network by re-using the building block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu()) following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16, having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

```python
class ResNet152(chainer.Chain):
    def __init__(self, n_blocks=[3, 8, 36, 3]):
        w = chainer.initializers.HeNormal()
        super(ResNet152, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True)
            self.bn1 = L.BatchNormalization(64)
            self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
            self.res3 = ResBlock(n_blocks[1], 256, 128, 512)
            self.res4 = ResBlock(n_blocks[2], 512, 256, 1024)
            self.res5 = ResBlock(n_blocks[3], 1024, 512, 2048)
            self.fc6 = L.Linear(2048, 1000)

    def forward(self, x):
        h = self.bn1(self.conv1(x))
        h = F.max_pooling_2d(F.relu(h), 2, 2)
        h = self.res2(h)
        h = self.res3(h)
        h = self.res4(h)
        h = self.res5(h)
        h = F.average_pooling_2d(h, h.shape[2:], stride=1)
        h = self.fc6(h)
        if chainer.config.train:
            return h
        return F.softmax(h)
```

```python
class ResBlock(chainer.ChainList):
    def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):
        self.w = chainer.initializers.HeNormal()
        super(ResBlock, self).__init__()
        with self.init_scope():
            for i in range(n_layers):
                if i == 0:
                    n_prev = n_in
                else:
                    n_prev = n_out
                self.conv{i} = L.Convolution2D(n_prev, n_mid, stride=stride, initialW=self.w)
                self.bn{i} = L.BatchNormalization(n_mid)
                self.relu{i} = F.relu
        self.conv{0}.stride = stride
        self.conv{0}.initialW = self.w
        self.conv{0}.nobias = True
```

(continues on next page)
super(ResBlock, self).__init__()
self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):
 self.add_link(BottleNeck(n_out, n_mid, n_out))

def forward(self, x):
 for f in self.children():
 x = f(x)
 return x

class BottleNeck(chainer.Chain):
 def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):
 w = chainer.initializers.HeNormal()
 super(BottleNeck, self).__init__()
 with self.init_scope():
 self.conv1x1a = L.Convolution2D(n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)
 self.conv3x3b = L.Convolution2D(n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)
 self.conv1x1c = L.Convolution2D(n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)
 self.bn_a = L.BatchNormalization(n_mid)
 self.bn_b = L.BatchNormalization(n_mid)
 self.bn_c = L.BatchNormalization(n_out)
 if proj:
 self.conv1x1r = L.Convolution2D(n_in, n_out, 1, stride, 0, initialW=w, nobias=True)
 self.bn_r = L.BatchNormalization(n_out)
 self.proj = proj
 def forward(self, x):
 h = F.relu(self.bn_a(self.conv1x1a(x)))
 h = F.relu(self.bn_b(self.conv3x3b(h)))
 h = self.bn_c(self.conv1x1c(h))
 if self.proj:
 x = self.bn_r(self.conv1x1r(x))
 return F.relu(h + x)

In the BottleNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally compute a convolutional layer `conv1x1r` which will extend the number of channels of the input `x` to be equal to the number of channels of the output of `conv1x1c`, and followed by a batch normalization layer before the final ReLU layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in `__class__()` by flags but also the parameter registration. In this case, when `proj` is `False`, the BottleNeck doesn’t have `conv1x1r` and `bn_r` layers, so the memory usage would be efficient compared to the case when it registers both anyway and just ignore them if `proj` is `False`.

Using nested `Chains` and `ChainList` for sequential part enables us to write complex and very deep models easily.
3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these models as follows:

```python
from chainer.links import VGG16Layers
model = VGG16Layers()
```

When `VGG16Layers` is instantiated, the pre-trained parameters are automatically downloaded from the author’s server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the details of this model here: `chainer.links.VGG16Layers`.

In the case of ResNet models, there are three variations differing in the number of layers. We have `chainer.links.ResNet50Layers`, `chainer.links.ResNet101Layers`, and `chainer.links.ResNet152Layers` models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct downloading, so you need to download the weight from the author’s web page first, and then place it into the dir `$CHAINER_DATASET_ROOT/pfnet/chainer/models` or your favorite place. Once the preparation is finished, the usage is the same as VGG16:

```python
from chainer.links import ResNet152Layers
model = ResNet152Layers()
```

Traceback (most recent call last):
```
OSError: The pre-trained caffemodel does not exist. Please download it from 'https://github.com/KaimingHe/deep-residual-networks', and place it on ...
```

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: `chainer.links.ResNet50Layers`.

References

3.4 DCGAN: Generate images with Deep Convolutional GAN

3.4.1 0. Introduction

In this tutorial, we generate images with generative adversarial networks (GAN). GAN are kinds of deep neural network for generative modeling that are often applied to image generation. GAN-based models are also used in PaintsChainer, an automatic colorization service.

In this tutorial, you will learn the following things:

1. Generative Adversarial Networks (GAN)
2. Implementation of DCGAN in Chainer
3.4.2 1. Generative Adversarial Networks (GAN)

1.1 What are GAN?

As explained in GAN tutorial in NIPS 2016 [1], generative models can be classified into the categories as shown in the following figure:

![Diagram of generative models](image)

Besides GAN, other famous generative models include Fully visible belief networks (FVBNs) and Variational autoencoder (VAE). Unlike FVBNs and VAE, GAN do not explicitly model the probability distribution \(p(s) \) that generates training data. Instead, we model a generator \(G : z \rightarrow s \). The generator \(G \) samples \(s \sim p(s) \) from the latent variable \(z \). Apart from the generator \(G \), we create a discriminator \(D(x) \) which discriminates between samples from the generator \(G \) and examples from training data. While training the discriminator \(D \), the generator \(G \) tries to maximize the probability of the discriminator \(D \) making a mistake. So, the generator \(G \) tries to create samples that seem to be drawn from the same distribution as the training data.

The advantages of GAN are low sampling cost and its state-of-the-art performance in image generation. The disadvantage is that we cannot calculate the likelihood \(p_{\text{model}}(s) \) because we do not model any probability distribution, and we cannot infer the latent variable \(z \) from a sample.
1.2 How GAN work?

As explained above, GAN use the two models, the generator and the discriminator. When training the networks, we should match the data distribution \(p(s) \) with the distribution of the samples \(s = G(z) \) generated from the generator.

![Diagram showing the interaction between the generator, discriminator, and feature spaces.]

The generator \(G \) learns the target distribution, and ideally eventually reaches a Nash equilibrium [2] of game theory. In detail, while training the discriminator \(D \), the generator \(G \) is also trained, so that the discriminator \(D \) makes a mistake.

As an intuitive example, the relationship between counterfeiters of banknotes and the police is frequently used. The counterfeiters try to make counterfeit notes that look like real banknotes. The police try to distinguish real bank notes from counterfeit notes. It is supposed that the ability of the police gradually rises, so that real banknotes and counterfeit notes can be recognized well. Then, the counterfeiters will not be able to use counterfeit banknotes, so they will create counterfeit banknotes that appear more realistic. As the police improve their skill further, they can distinguish real and counterfeit notes... Eventually, the counterfeiter will be able to produce counterfeit banknotes look as real as genuine ones.

The training process is explained by the following mathematical expressions. First, since the discriminator \(D(s) \) is the probability that a sample \(s \) is generated from the data distribution at, it can be expressed as follows:

\[
D(s) = \frac{p(s)}{p(s) + p_{\text{model}}(s)}
\]

Then, when we match the data distribution \(s \sim p(s) \) and the distribution of generated samples by \(G \), it means that we should minimize the dissimilarity between the two distributions. It is common to use Jensen-Shannon Divergence \(D_{JS} \) to measure the dissimilarity between distributions[3].

82 Chapter 3. Neural Net Examples
The D_{JS} of $p_{model}(s)$ and $p(s)$ can be written as follows by using $D(s)$:

$$2D_{JS} = D_{KL}(p(s)||\bar{p}(s)) + D_{KL}(p_{model}(s)||\bar{p}(s)) =$$

$$= \mathbb{E}_{p(s)} \left[\log \frac{2p(s)}{p(s) + p_{model}(s)} \right] + \mathbb{E}_{p_{model}} \left[\log \frac{2p_{model}(s)}{p(s) + p_{model}(s)} \right]$$

$$= \mathbb{E}_{p(s)} \log D(s) + \mathbb{E}_{p_{model}} \log(1 - D(s)) + \log 4$$

$$= \mathbb{E}_{p(s)} \log D(s) + \mathbb{E}_{p_{data}} \log(1 - D(G(z))) + \log 4$$

where $\bar{p}(s) = \frac{p(s) + p_{model}(s)}{2}$. The D_{JS} will be maximized by the discriminator D and minimized by the generator G, namely, p_{model}. And the distribution $p_{model}(s)$ generated by $G(s)$ can match the data distribution $p(s)$.

$$\min_{G} \max_{D} \mathbb{E}_{p(s)} \log D(s) + \mathbb{E}_{p_{data}} \log(1 - D(G(z)))$$

When we actually train the model, the above min-max problem is solved by alternately updating the discriminator $D(s)$ and the generator $G(z)$ [4]. The actual training procedures are described as follows:

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

```
for number of training iterations do
  for $k$ steps do
    • Sample minibatch of $m$ noise samples \{z(1), \ldots, z(m)\} from noise prior $p_g(z)$.  
    • Sample minibatch of $m$ examples \{x(1), \ldots, x(m)\} from data generating distribution $p_{data}(x)$.  
    • Update the discriminator by ascending its stochastic gradient:
      $$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[ \log D \left( x^{(i)} \right) + \log \left( 1 - D \left( G \left( z^{(i)} \right) \right) \right) \right].$$
  end for
    • Sample minibatch of $m$ noise samples \{z(1), \ldots, z(m)\} from noise prior $p_g(z)$.  
    • Update the generator by descending its stochastic gradient:
      $$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 - D \left( G \left( z^{(i)} \right) \right) \right).$$
  end for
```

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Fig. 2: cited from [4]
1.3 What are DCGAN?

In this section, we will introduce the model called DCGAN (Deep Convolutional GAN) proposed by Radford et al. [5]. As shown below, it is a model using CNN (Convolutional Neural Network) as its name suggests.

![Diagram of DCGAN](image)

Fig. 3: cited from [5]

In addition, although GAN are known for its difficulty in training, this paper introduces various techniques for successful training:

1. Convert max-pooling layers to convolution layers with larger or fractional strides
2. Convert fully connected layers to global average pooling layers in the discriminator
3. Use batch normalization layers in the generator and the discriminator
4. Use leaky ReLU activation functions in the discriminator

3.4.3 2. Implementation of DCGAN in Chainer

There is an example of DCGAN in the official repository of Chainer, so we will explain how to implement DCGAN based on this: chainer/examples/dcgan

2.1 Define the generator model

First, let’s define a network for the generator.

```
Listing 1: train_dcgan.py

class Generator(chainer.Chain):
    def __init__(self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
        super(Generator, self).__init__()
        self.n_hidden = n_hidden
        self.ch = ch
        self.bottom_width = bottom_width
        with self.init_scope():
            ...
```

(continues on next page)
w = chainer.initializers.Normal(wscale)
self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,
 initialW=w)
self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
self.bn1 = L.BatchNormalization(ch // 2)
self.bn2 = L.BatchNormalization(ch // 4)
self.bn3 = L.BatchNormalization(ch // 8)

def make_hidden(self, batchsize):
 dtype = chainer.get_dtype()
 return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))
 .astype(dtype)

def forward(self, z):
 h = F.reshape(F.relu(self.bn0(self.l0(z))),
 (len(z), self.ch, self.bottom_width, self.bottom_width))
 h = F.relu(self.bn1(self.dc1(h)))
 h = F.relu(self.bn2(self.dc2(h)))
 h = F.relu(self.bn3(self.dc3(h)))
 x = F.sigmoid(self.dc4(h))
 return x

When we make a network in Chainer, there are some conventions:

1. Define a network class which inherits Chain.
2. Make chainer.links’s instances in the init_scope(): of the initializer __init__.
3. Define network connections in the __call__ operator by using the chainer.links’s instances and chainer.functions.

If you are not familiar with constructing a new network, please refer to this tutorial.

As we can see from the initializer __init__, the Generator uses deconvolution layers Deconvolution2D and batch normalization layers BatchNormalization. In __call__, each layer is called and followed by relu except the last layer.

Because the first argument of L.Deconvolution is the channel size of input and the second is the channel size of output, we can find that each layer halves the channel size. When we construct Generator with ch=1024, the network is same as the above image.

Note: Be careful when passing the output of a fully connected layer to a convolution layer, because the convolutional layer needs additional dimensions for inputs. As we can see the 1st line of __call__, the output of the fully connected layer is reshaped by reshape to add the dimensions of the channel, the width and the height of images.
2.2 Define the discriminator model

In addition, let’s define the network for the discriminator.

```python
Listing 2: train_dcgan.py

class Discriminator(chainer.Chain):
    def __init__(self, bottom_width=4, ch=512, wscale=0.02):
        w = chainer.initializers.Normal(wscale)
        super(Discriminator, self).__init__()
        with self.init_scope():
            self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w)
            self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w)
            self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w)
            self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w)
            self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w)
            self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w)
            self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w)
            self.l4 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w)
            self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False)
            self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False)

    def forward(self, x):
        device = self.device
        h = add_noise(device, x)
        h = F.leaky_relu(add_noise(device, self.c0_0(h)))
        h = F.leaky_relu(add_noise(device, self.bn0_1(self.c0_1(h))))
        h = F.leaky_relu(add_noise(device, self.bn1_0(self.c1_0(h))))
        h = F.leaky_relu(add_noise(device, self.bn1_1(self.c1_1(h))))
        h = F.leaky_relu(add_noise(device, self.bn2_0(self.c2_0(h))))
        h = F.leakyrelu(add_noise(device, self.bn2_1(self.c2_1(h))))
        h = F.leaky_relu(add_noise(device, self.bn3_0(self.c3_0(h))))
        return self.l4(h)
```

The Discriminator network is almost mirrors of the Generator network. However, there are minor different points:

1. Use `leaky_relu` as activation functions
2. Deeper than Generator
3. Add some noise to every intermediate outputs before giving them to the next layers

```python
Listing 3: train_dcgan.py

def add_noise(device, h, sigma=0.2):
    if chainer.config.train:
        xp = device.xp
        # TODO(niboshi): Support random.randn in ChainerX
        if device.xp is chainerx:
            fallback_device = device.fallback_device
            with chainer.using_device(fallback_device):
                randn = device.send(fallback_device.xp.random.randn(*h.shape))
        else:
```

(continues on next page)
2.3 Prepare dataset and iterator

Let’s retrieve the CIFAR-10 dataset by using Chainer’s dataset utility function `get_cifar10`. CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32. In the original images, each of R, G, B of pixels is represented by one-byte unsigned integer (i.e. from 0 to 255). This function changes the scale of pixel values into $[0, \text{scale}]$ float values.

```python
train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)
```

Listing 4: train_dcgan.py

```python
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
```

2.4 Prepare model and optimizer

Let’s make the instances of the generator and the discriminator.

```python
gen = Generator(n_hidden=args.n_hidden)
dis = Discriminator()

gen.to_device(device)  # Copy the model to the device
dis.to_device(device)

# Setup an optimizer
def make_optimizer(model, alpha=0.0002, beta1=0.5):
    optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
    return optimizer

opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)
```

Next, let’s make optimizers for the models created above.

```python
def make_optimizer(model, alpha=0.0002, beta1=0.5):
    optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
    return optimizer
```

3.4. DCGAN: Generate images with Deep Convolutional GAN
opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)

2.5 Prepare updater

GAN need the two models: the generator and the discriminator. Usually, the default updaters pre-defined in Chainer take only one model. So, we need to define a custom updater for GAN training.

The definition of DCGANUpdater is a little complicated. However, it just minimizes the loss of the discriminator and that of the generator alternately.

As you can see in the class definition, DCGANUpdater inherits StandardUpdater. In this case, almost all necessary functions are defined in StandardUpdater, we just override the functions of __init__ and update_core.

Note: We do not need to define loss_dis and loss_gen because the functions are called only in update_core. It aims at improving readability.

Listing 7: train_dcgan.py

class DCGANUpdater(chainer.training.updaters.StandardUpdater):
 def __init__(self, *args, **kwargs):
 self.gen, self.dis = kwargs.pop('models')
 super(DCGANUpdater, self).__init__(*args, **kwargs)

 def loss_dis(self, dis, y_fake, y_real):
 batchsize = len(y_fake)
 L1 = F.sum(F.softplus(-y_real)) / batchsize
 L2 = F.sum(F.softplus(y_fake)) / batchsize
 loss = L1 + L2
 chainer.report({'loss': loss}, dis)
 return loss

 def loss_gen(self, gen, y_fake):
 batchsize = len(y_fake)
 loss = F.sum(F.softplus(-y_fake)) / batchsize
 chainer.report({'loss': loss}, gen)
 return loss

 def update_core(self):
 gen_optimizer = self.get_optimizer('gen')
 dis_optimizer = self.get_optimizer('dis')

 batch = self.get_iterator('main').next()
 device = self.device
 x_real = Variable(self.converter(batch, device)) / 255.

 gen, dis = self.gen, self.dis
 batchsize = len(batch)
 y_real = dis(x_real)
In the initializer `__init__`, an additional keyword argument `models` is required as you can see the code below. Also, we use keyword arguments `iterator`, `optimizer` and `device`. It should be noted that the optimizer augment takes a dictionary. The two different models require two different optimizers. To specify the different optimizers for the models, we give a dictionary, `{'gen': opt_gen, 'dis': opt_dis}`, to the optimizer argument. We should input optimizer as a dictionary `{'gen': opt_gen, 'dis': opt_dis}`. In the DCGANUpdater, you can access the iterator with `self.get_iterator('main')`. Also, you can access the optimizers with `self.get_optimizer('gen')` and `self.get_optimizer('dis')`.

In `update_core`, the two loss functions `loss_dis` and `loss_gen` are minimized by the optimizers. At first two lines, we access the optimizers. Then, we create next minibatch of training data by `self.get_iterator('main').next()`, copy batch to the device by `self.converter`, and make it a `Variable` object. After that, we minimize the loss functions with the optimizers.

Note: When defining `update_core`, we may want to manipulate the underlying array of a `Variable` with `numpy` or `cupy` library. Note that the type of arrays on CPU is `numpy.ndarray`, while the type of arrays on GPU is `cupy.ndarray`. However, users do not need to write if condition explicitly, because the appropriate array module can be obtained by `xp = chainer.backend.get_array_module(variable.array)`. If `variable` is on GPU, `cupy` is assigned to `xp`, otherwise `numpy` is assigned to `xp`.

```python
z = Variable(device.xp.asarray(gen.make_hidden(batchsize)))
x_fake = gen(z)
y_fake = dis(x_fake)

dis_optimizer.update(self.loss_dis, dis, y_fake, y_real)
gen_optimizer.update(self.loss_gen, gen, y_fake)
```

Listing 8: train_dcgan.py

```python
updater = DCGANUpdater(
    models=(gen, dis),
    iterator=train_iter,
    optimizer={
        'gen': opt_gen, 'dis': opt_dis},
    device=device)
```

2.6 Prepare trainer and run

```python
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

snapshot_interval = (args.snapshot_interval, 'iteration')
display_interval = (args.display_interval, 'iteration')
trainer.extend(
    extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
    trigger=snapshot_interval)
trainer.extend(extensions.snapshot_object(gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
trainer.extend(extensions.snapshot_object(dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
```

3.4. DCGAN: Generate images with Deep Convolutional GAN
2.7 Start training

We can run the example as follows.

```
$ pwd
/root2chainer/chainer/examples/dcgan
$ python train_dcgan.py --gpu 0
GPU: 0
# Minibatch-size: 50
# n_hidden: 100
# epoch: 1000
epoch iteration gen/loss dis/loss ............... 0.01%
0 100 1.2292 1.76914
total [..................................................] 0.02%
this epoch [####################################] 19.00%
190 iter, 0 epoch / 1000 epochs
10.121 iters/sec. Estimated time to finish: 1 day, 3:26:26.372445.
```

The results will be saved in the directory `/root2chainer/chainer/examples/dcgan/`. The image is generated by the generator trained for 1000 epochs, and the GIF image on the top of this page shows generated images after every 10 epochs.
3.4.4 3. Reference

- [1] NIPS 2016 Tutorial: Generative Adversarial Networks
- [2] Nash equilibrium

3.5 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported.

```python
import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
    --Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
```
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn how to write

• recurrent nets with full backprop,
• recurrent nets with truncated backprop,
• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length
• Truncate upper stream of the network during forward computation
• Use no-backprop mode to prevent network construction

3.5.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an input stream $x_1, x_2, \ldots, x_t, \ldots$ and the initial state h_0, a recurrent net iteratively updates its state by $h_t = f(x_t, h_{t-1})$, and at some or every point in time t, it outputs $y_t = g(h_t)$. If we expand the procedure along the time axis, it looks like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence of words, we want to predict the next word at each position without peeking the successive words. Suppose there are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the `chainer.links.LSTM` link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-connected layer. On construction, you pass the input and output size to the constructor:

```python
>>> l = L.LSTM(100, 50)
```

Then, call on this instance $l(x)$ executes one step of LSTM layer:

```python
>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)
```

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the internal state. Then, the next input can be directly fed to the LSTM instance:

```python
>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)
```

Based on this LSTM link, let’s write our recurrent network as a new chain:

```python
class RNN(Chain):
    def __init__(self):
        super(RNN, self).__init__()
```
with self.init_scope():
 self.embed = L.EmbedID(1000, 100) # word embedding
 self.mid = L.LSTM(100, 50) # the first LSTM layer
 self.out = L.Linear(50, 1000) # the feed-forward output layer

def reset_state(self):
 self.mid.reset_state()

def forward(self, cur_word):
 # Given the current word ID, predict the next word.
 x = self.embed(cur_word)
 h = self.mid(x)
 y = self.out(h)
 return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)

Here EmbedID is a link for word embedding. It converts input integers into corresponding fixed-dimensional embedding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list. Then, we can compute loss values for the word sequence by simple for loop.

def compute_loss(x_list):
 loss = 0
 for cur_word, next_word in zip(x_list, x_list[1:]):
 loss += model(cur_word, next_word)
 return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its backward() method to compute gradients of the total loss according to the model parameters:

Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)
3.5.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This technique is called *truncated backprop*. It is heuristic, and it makes the gradients biased. However, this technique works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called **backward unchaining**. It is implemented in the `Variable.unchain_backward()` method. Backward unchaining starts from the Variable object, and it chops the computation history backwards from the variable. The chopped variables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are no longer a part of computation history, and are not involved in backprop anymore.

Let's write an example of truncated backprop. Here we use the same network as the one used in the previous subsection. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We can write truncated backprop using the model defined above:

```python
loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):
    loss += model(cur_word, next_word)
    count += 1
    if count % 30 == 0 or count == seqlen:
        model.cleargrads()
        loss.backward()
        loss.unchain_backward()
        optimizer.update()
```

State is updated at `model()`, and the losses are accumulated to `loss` variable. At each 30 steps, backprop takes place at the accumulated loss. Then, the `unchain_backward()` method is called, which deletes the computation history backward from the accumulated loss. Note that the last state of `model` is not lost, since the RNN instance holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize this method to different situations. For example, we can easily extend the above code to use different schedules between backprop timing and truncation length.

3.5.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation history. This is enabled by just calling `no_backprop_mode()` context:

```python
with chainer.no_backprop_mode():
    x_list = [Variable(...) for _ in range(100)]  # list of 100 words
    loss = compute_loss(x_list)
```

Note that we cannot call `loss.backward()` to compute the gradient here, since the variable created in the no-backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.
We can combine a fixed feature extractor network and a trainable predictor network using `no_backprop_mode()`. For example, suppose we want to train a feed-forward network `predictor_func`, which is located on top of another fixed pre-trained network `fixed_func`. We want to train `predictor_func` without storing the computation history for `fixed_func`. This is simply done by following code snippets (suppose `x_data` and `y_data` indicate input data and label, respectively):

```python
with chainer.no_backprop_mode():
    x = Variable(x_data)
    feat = fixed_func(x)
    y = predictor_func(feat)
    y.backward()
```

At first, the input variable `x` is in no-backprop mode, so `fixed_func` does not memorize the computation history. Then `predictor_func` is executed in backprop mode, i.e., with memorizing the history of computation. Since the history of computation is only memorized between variables `feat` and `y`, the backward computation stops at the `feat` variable.

3.5.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word sequence, in which each sentence is separated by a special word `<eos>`, which stands for “End of Sequence”. This dataset is easily obtained by `chainer.datasets.get_ptb_words()`. This function returns train, validation, and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different locations to form mini-batches. It means we maintain B indices pointing to different locations in the sequence, read from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

- **Iterator.** Built-in iterators do not support reading from different locations and aggregating them into a mini-batch.
- **Update function.** The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface is not fixed. On the other hand, the iterator must support the `Iterator` interface. The important methods and attributes to implement are `batch_size`, `epoch`, `epoch_detail`, `is_new_epoch`, `iteration`, `__next__`, and `serialize`. Following is a code from the official example in the examples/ptb directory.

```python
from __future__ import division
class ParallelSequentialIterator(chainer.dataset.Iterator):
    def __init__(self, dataset, batch_size, repeat=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.epoch = 0
        self.is_new_epoch = False
        self.repeat = repeat
        self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
        self.iteration = 0
```
def __next__(self):
 length = len(self.dataset)
 if not self.repeat and self.iteration * self.batch_size >= length:
 raise StopIteration
 cur_words = self.get_words()
 self.iteration += 1
 next_words = self.get_words()

 epoch = self.iteration * self.batch_size // length
 self.is_new_epoch = self.epoch < epoch
 if self.is_new_epoch:
 self.epoch = epoch

 return list(zip(cur_words, next_words))

@property
def epoch_detail(self):
 return self.iteration * self.batch_size / len(self.dataset)

def get_words(self):
 return [self.dataset[(offset + self.iteration) % len(self.dataset)]
 for offset in self.offsets]

def serialize(self, serializer):
 self.iteration = serializer('iteration', self.iteration)
 self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates offsets pointing to positions equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset. The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater(training.updaters.StandardUpdater):

 def __init__(self, train_iter, optimizer, bprop_len):
 super(BPTTUpdater, self).__init__(train_iter, optimizer)
 self.bprop_len = bprop_len

 # The core part of the update routine can be customized by overriding.
 def update_core(self):
 loss = 0
 # When we pass one iterator and optimizer to StandardUpdater.__init__,
 # they are automatically named 'main'.
 train_iter = self.get_iterator('main')
 optimizer = self.get_optimizer('main')

 # Progress the dataset iterator for bprop_len words at each iteration.
 for i in range(self.bprop_len):
 # Get the next batch (a list of tuples of two word IDs)
 batch = train_iter.__next__()

 # Concatenate the word IDs to matrices and send them to the device
In this case, we update the parameters on every \texttt{bprop_len} consecutive words. The call of \texttt{unchain_backward} cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to manage the history of computation (a.k.a. computational graph). The example in the \texttt{examples/ptb} directory implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will review how to use GPU(s) in Chainer.

3.6 RNN Language Models

3.6.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as \(X = (x_0, x_1, \ldots, x_T) \), in which \(x_t \) is a one-hot vector. Generally, \(x_0 \) is the one-hot vector of \texttt{BOS} (beginning of sentence), and \(x_T \) is that of \texttt{EOS} (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence. Let \(X_{[i,j]} \) be \((x_i, x_{i+1}, \ldots, x_j)\), the occurrence probability of sentence \(X \) can be represented as follows:

\[
P(X) = P(x_0) \prod_{t=1}^{T} P(x_t | X_{[0,t-1]})
\]

So, the language model \(P(X) \) can be decomposed into word probabilities conditioned with its previous words. In this tutorial, we model \(P(x_t | X_{[0,t-1]}) \) with a recurrent neural network to obtain a language model \(P(X) \).
3.6.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data such as sentences in natural language.

We show one layer of an RNNLM with these parameters.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_t</td>
<td>the one-hot vector of t-th word</td>
</tr>
<tr>
<td>y_t</td>
<td>the t-th output</td>
</tr>
<tr>
<td>$h_i^{(t)}$</td>
<td>the t-th hidden layer of i-th layer</td>
</tr>
<tr>
<td>p_t</td>
<td>the next word’s probability of t-th word</td>
</tr>
<tr>
<td>E</td>
<td>Embedding matrix</td>
</tr>
<tr>
<td>W_h</td>
<td>Hidden layer matrix</td>
</tr>
<tr>
<td>W_o</td>
<td>Output layer matrix</td>
</tr>
</tbody>
</table>

The process to get a next word prediction from i-th input word x_t

1. Get the embedding vector: $h_t^{(0)} = Ex_t$
2. Calculate the hidden layer: $h_t^{(1)} = \tanh \left(W_h \left[\begin{array}{c} h_t^{(0)} \\ h_{t-1}^{(1)} \end{array} \right] \right)$
3. Calculate the output layer: $y_t = W_o h_t^{(1)}$
4. Transform to probability: $p_t = \text{softmax}(y_t)$
Note:

- Note that \(\tanh \) in the above equation is applied to the input vector in element-wise manner.
- Note that \(\begin{bmatrix} a \\ b \end{bmatrix} \) denotes a concatenated vector of \(a \) and \(b \).
- Note that \(\text{softmax} \) in the above equation converts an arbitrary real vector to a probability vector which the summation over all elements is 1.

1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed probability model \(P_{\text{model}}(X) \) represents the target data \(P^*(X) \). Let a validation dataset be \(D = \{X^{(n)} \}^{D}_{n=1} \), which is a set of sentences, where the \(n \)-th sentence length is \(T^{(n)} \), and the vocabulary size of this dataset is \(|\mathcal{V}| \); the perplexity is represented as follows:

\[
\begin{aligned}
 b^z \quad & s.t. \quad z = -\frac{1}{|\mathcal{V}|} \sum_{n=1}^{D} \sum_{t=1}^{T^{(n)}} \log_b P_{\text{model}}(x^{(n)}_t, X^{(n)}_{[a,t-1]}) \\
\end{aligned}
\]

We usually use \(b = 2 \) or \(b = e \). The perplexity shows how much varied the predicted distribution for the next word is. When a language model represents the dataset well, it should show a high probability only for the correct next word, so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better model.

During training, we minimize the below cross entropy:

\[
\mathcal{H}(\hat{P}, P_{\text{model}}) = -\hat{P}(X) \log P_{\text{model}}(X)
\]

where \(\hat{P} \) is the empirical distribution of a sequence in the training dataset.

3.6.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

![RNN Language Model Diagram](image)
The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_t</td>
<td>the one-hot vector of t-th word</td>
</tr>
<tr>
<td>y_t</td>
<td>the t-th output</td>
</tr>
<tr>
<td>$h_t^{(i)}$</td>
<td>the t-th hidden layer of i-th layer</td>
</tr>
<tr>
<td>p_t</td>
<td>the next word’s probability of t-th word</td>
</tr>
<tr>
<td>E</td>
<td>Embedding matrix</td>
</tr>
<tr>
<td>W_h</td>
<td>Hidden layer matrix</td>
</tr>
<tr>
<td>W_o</td>
<td>Output layer matrix</td>
</tr>
</tbody>
</table>

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting on training dataset.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 11: train_ptb.py

```python
""
from __future__ import division
import argparse
import sys
import numpy as np
```

2.2.2 Define Training Settings

Define all training settings here.

Listing 12: train_ptb.py

```python
parser.add_argument('--batchsize', '-b', type=int, default=20,
                        help='Number of examples in each mini-batch')
parser.add_argument('--bproplen', '-l', type=int, default=35,
                        help='Number of words in each mini-batch
                             (= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=39,
                        help='Number of sweeps over the dataset to train')
parser.add_argument('--device', '-d', type=str, default='-1',
                        help='Device specifier. Either ChainerX device
                             specifier or an integer. If non-negative integer,
                             CuPy arrays with specified device id are used. If
                             negative integer, NumPy arrays are used')
```

(continues on next page)
2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

Listing 13: train_ptb.py

```python
class RNNForLM(chainer.Chain):
    def __init__(self, n_vocab, n_units):
        super(RNNForLM, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(n_vocab, n_units)
            self.l1 = L.LSTM(n_units, n_units)
            self.l2 = L.LSTM(n_units, n_units)
            self.l3 = L.Linear(n_units, n_vocab)

            for param in self.params():
                param.array[...] = np.random.uniform(-0.1, 0.1, param.shape)

    def reset_state(self):
        self.l1.reset_state()
        self.l2.reset_state()

    def forward(self, x):
        h0 = self.embed(x)
        h1 = self.l1(F.dropout(h0))
        h2 = self.l2(F.dropout(h1))
        y = self.l3(F.dropout(h2))
        return y
```

- When we instantiate this class for making a model, we give the vocabulary size to `n_vocab` and the size of hidden vectors to `n_units`.
- This network uses `chainer.links.LSTM`, `chainer.links.Linear`, and `chainer.functions.dropout` as its building blocks. All the layers are registered and initialized in the context with `self.init_scope()`.
- You can access all the parameters in those layers by calling `self.params()`.
- In the constructor, it initializes all parameters with values sampled from a uniform distribution $U(-1, 1)$.
- The `forward` method takes an word ID x, and calculates the word probability vector for the next word by forwarding it through the network, and returns the output.
• Note that the word ID \(x \) is automatically converted to a \(|V| \)-dimensional one-hot vector and then multiplied with the input embedding matrix in \(\text{self.embed}(x) \) to obtain an embed vector \(h_0 \) at the first line of \(\text{forward} \).

2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility function to obtain this dataset from server and convert it to a long single sequence of word IDs. \(\text{chainer.datasets.get_ptb_words()} \) actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 14: train_ptb.py

```python
# Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()
```

2.2.5 Define Iterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 15: train_ptb.py

```python
class ParallelSequentialIterator(chainer.dataset.Iterator):
    def __init__(self, dataset, batch_size, repeat=True):
        super(ParallelSequentialIterator, self).__init__()
        self.dataset = dataset
        self.batch_size = batch_size  # batch size
        self.repeat = repeat
        length = len(dataset)
        # Offsets maintain the position of each sequence in the mini-batch.
        self.offsets = [i * length // batch_size for i in range(batch_size)]
        self.reset()

    def reset(self):
        # Number of completed sweeps over the dataset. In this case, it is
        # incremented if every word is visited at least once after the last
        # increment.
        self.epoch = 0
        # True if the epoch is incremented at the last iteration.
        self.is_new_epoch = False
        # NOTE: this is not a count of parameter updates. It is just a count of
        # calls of `__next__`.  
        self.iteration = 0
        # use -1 instead of None internally
        self._previous_epoch_detail = -1.

    def __next__(self):
        # This iterator returns a list representing a mini-batch. Each item
        # indicates a different position in the original sequence. Each item is
        # represented by a pair of two word IDs. The first word is at the
        # "current" position, while the second word at the next position.
        # At each iteration, the iteration count is incremented, which pushes

(continues on next page)
# forward the "current" position.
length = len(self.dataset)

if not self.repeat and self.iteration * self.batch_size >= length:
    # If not self.repeat, this iterator stops at the end of the first
    # epoch (i.e., when all words are visited once).
    raise StopIteration

cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words()

epoch = self.iteration * self.batch_size // length

if self.is_new_epoch:
    self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):
    # Floating point version of epoch.
    return self.iteration * self.batch_size / len(self.dataset)

@property
def previous_epoch_detail(self):
    if self._previous_epoch_detail < 0:
        return None
    return self._previous_epoch_detail

def get_words(self):
    # It returns a list of current words.
    return [self.dataset[(offset + self.iteration) % len(self.dataset)]
        for offset in self.offsets]

def serialize(self, serializer):
    # It is important to serialize the state to be recovered on resume.
    self.iteration = serializer('iteration', self.iteration)
    self.epoch = serializer('epoch', self.epoch)
    try:
        self._previous_epoch_detail = serializer('previous_epoch_detail',
            self._previous_epoch_detail)
    except KeyError:
        # guess previous_epoch_detail for older version
        self._previous_epoch_detail = self.epoch + \
            (self.current_position - self.batch_size) / len(self.dataset)

        if self.epoch_detail > 0:
            self._previous_epoch_detail = max(
                self._previous_epoch_detail, 0.)
        else:
            self._previous_epoch_detail = -1.
2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overriding update_core() method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the length of sequence $T$ to calculate the loss:

$$
\mathcal{L} = - \sum_{t=0}^{T} \sum_{n=1}^{|V|} \hat{P}(x_{t+1}^{(n)}) \log P_{model}(x_{t+1}^{(n)} | x_t^{(n)})
$$

where $\hat{P}(x_t^{(n)})$ is a probability for $n$-th word in the vocabulary at the position $t$ in the training data sequence.

Listing 16: train_ptb.py

```python
class BPTTUpdater(training.updaters.StandardUpdater):
 def __init__(self, train_iter, optimizer, bprop_len, device):
 super(BPTTUpdater, self).__init__(train_iter, optimizer, device=device)
 self.bprop_len = bprop_len

 # The core part of the update routine can be customized by overriding.
 def update_core(self):
 loss = 0
 # When we pass one iterator and optimizer to StandardUpdater.__init__,
 # they are automatically named 'main'.
 train_iter = self.get_iterator('main')
 optimizer = self.get_optimizer('main')

 # Progress the dataset iterator for bprop_len words at each iteration.
 for i in range(self.bprop_len):
 # Get the next batch (a list of tuples of two word IDs)
 batch = train_iter.__next__()

 # Concatenate the word IDs to matrices and send them to the device
 x, t = self.converter(batch, self.device)

 # Compute the loss at this time step and accumulate it
 loss += optimizer.target(x, t)

 optimizer.target.cleargrads() # Clear the parameter gradients
 loss.backward() # Backprop
 loss.unchain_backward() # Truncate the graph
 optimizer.update() # Update the parameters
```
2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take $e$ as $b$ in the above definition of perplexity, calculating the perplexity is just to give the loss value to the power of $e$:

```
def compute_perplexity(result):
 result['perplexity'] = np.exp(result['main/loss'])
 if 'validation/main/loss' in result:
 result['val_perplexity'] = np.exp(result['validation/main/loss'])
```

2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

```
train_iter = ParallelSequentialIterator(train, args.batchsize)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, repeat=False)
```

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with `chainer.links.Classifier` because it calculates softmax cross entropy as the loss.

```
rnn = RNNForLM(n_vocab, args.unit)
model = L.Classifier(rnn)
```

Note that `Classifier` computes not only the loss but also accuracy based on a given input/label pair. To learn the RNN language model, we only need the loss (cross entropy) in the `Classifier` because we calculate the perplexity instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by giving `False` to `model.compute_accuracy` attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use `GradientClipping` to prevent gradient explosion. It automatically clips the gradient to be used to update the parameters in the model with given constant `gradclip`.

```
optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer_hooks.GradientClipping(args.gradclip))

3.6. RNN Language Models
2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an `eval_hook` to the `Evaluator` extension to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the model.

Listing 21: train_ptb.py

```python
updater = BPTTUpdater(train_iter, optimizer, args.bproplen, device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy()  # Model with shared params and distinct states
eval_rnn = eval_model.predictor
trainer.extend(extensions.Evaluator(
    val_iter, eval_model, device=device,
    # Reset the RNN state at the beginning of each evaluation
    eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend(extensions.LogReport(postprocess=compute_perplexity,
                                    trigger=(interval, 'iteration')))
trainer.extend(extensions.PrintReport(
    ['epoch', 'iteration', 'perplexity', 'val_perplexity']
    ), trigger=(interval, 'iteration'))
trainer.extend(extensions.ProgressBar(update_interval=1 if args.test else 10))
trainer.extend(extensions.snapshot_object(
    model, 'model_iter_{.updater.iteration}'))
if args.resume is not None:
    chainer.serializers.load_npz(args.resume, trainer)

trainer.run()
```

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. `Trainer`’s extension can be used as just a normal function outside of `Trainer`.
Listing 22: train_ptb.py

```python
print('test')
eval_rnn.reset_state()
evaluator = extensions.Evaluator(test_iter, eval_model, device=device)
result = evaluator()
print('test perplexity: {:.2f}'.format(np.exp(float(result['main/loss']))))
```

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: `examples/ptb/train_ptb.py`

```
$ pwd
/root2chainer/chainer/examples/ptb
$ python train_ptb.py --test  # run by test mode. If you want to use all data, remove --test.
---train.txt...
---valid.txt...
---test.txt...
#vocab = 10000
test
test perplexity: 29889.9857364
```

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sentence which starts with the word apple. We use the script in the PTB example of the official repository: `examples/ptb/gentxt.py`

```
$ pwd
/root2chainer/chainer/examples/ptb
$ python gentxt.py -m model.npz -p apple
apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who...
```

3.7 Word2Vec: Obtain word embeddings

3.7.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1]. When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity the vectors will indicate.
Distributed representation means assigning a real-valued vector for each word and representing the word by the vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and “dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other. How to know the features of those words automatically?

3.7.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it. This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context words. The window size C determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.

- All of the following figures consider “cat” as the center word.
- According to the window size C, you can see that the number of context words is changed.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[c=0 \quad \text{The cute } \boxed{\text{cat}} \text{ jumps over the lazy dog.}\]

\[c=1 \quad \text{The cute } \boxed{\text{cat}} \text{ jumps over the lazy dog.}\]

\[c=2 \quad \text{The cute } \boxed{\text{cat}} \text{ jumps over the lazy dog.}\]

3.7.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram and CBOW.

To explain the models with the figures below, we will use the following symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\mathcal{V}</td>
</tr>
<tr>
<td>D</td>
<td>The size of embedding vector</td>
</tr>
<tr>
<td>v_t</td>
<td>A one-hot center word vector</td>
</tr>
<tr>
<td>$V_{t\pm C}$</td>
<td>A set of $2C$ context vectors around v_t, namely, ${v_{t+c}}_{c=-C}^{C}\setminus v_t$</td>
</tr>
<tr>
<td>l_H</td>
<td>An embedding vector of an input word vector</td>
</tr>
<tr>
<td>l_O</td>
<td>An output vector of the network</td>
</tr>
<tr>
<td>W_H</td>
<td>The embedding matrix for inputs</td>
</tr>
<tr>
<td>W_O</td>
<td>The embedding matrix for outputs</td>
</tr>
</tbody>
</table>
Note: Using **negative sampling** or **hierarchical softmax** for the loss function is very common, however, in this tutorial, we will use the **softmax over all words** and skip the other variants for the sake of simplicity.

2.1 Skip-gram

This model learns to predict context words V_{t+C} when a center word v_t is given. In the model, each row of the embedding matrix for input W_H becomes a word embedding of each word.

When you input a center word v_t into the network, you can predict one of context words $\hat{v}_{t+c} \in V_{t+C}$ as follows:

1. Calculate an embedding vector of the input center word vector: $l_H = W_H v_t$
2. Calculate an output vector of the embedding vector: $l_O = W_O l_H$
3. Calculate a probability vector of a context word: $\hat{v}_{t+c} = \text{softmax}(l_O)$

Each element of the $|V|$-dimensional vector \hat{v}_{t+c} is a probability that a word in the vocabulary turns out to be a context word at position c. So, the probability $p(v_{t+c} | v_t)$ can be estimated by a dot product of the one-hot vector v_{t+c} which represents the actual word at the position c and the output vector \hat{v}_{t+c}.

$$p(v_{t+c} | v_t) = v_{t+c}^T \hat{v}_{t+c}$$

The loss function to predict all the context words V_{t+C} given a center word v_t is defined as follows:

$$L(V_{t+C} | v_t; W_H, W_O) = \sum_{V_{t+C}} - \log (p(v_{t+c} | v_t))$$

$$= \sum_{V_{t+C}} - \log (v_{t+c}^T \hat{v}_{t+c})$$

2.2 Continuous Bag of Words (CBoW)

This model learns to predict center word v_t when context words V_{t+C} is given. When you give a set of context words V_{t+C} to the network, you can estimate the probability of the center word \hat{v}_t as follows:

1. Calculate a mean embedding vector over all context words: $l_H = \frac{1}{2C} \sum_{V_{t+C}} W_H v_{t+c}$
2. Calculate an output vector of the embedding vector: $l_O = W_O l_H$
3. Calculate a probability vector of a center word: $\hat{v}_t = \text{softmax}(l_O)$

Each element of the $|V|$-dimensional vector \hat{v}_t is a probability that a word in the vocabulary turns out to be a center word. So, the probability $p(v_t | V_{t+C})$ can be estimated by a dot product of the one-hot vector v_t which represents the actual center word and the output vector \hat{v}_t.

$$p(v_t | V_{t+C}) = v_t^T \hat{v}_t$$

The loss function to predict the center word v_t given context words V_{t+C} is defined as follows:

$$L(v_t | V_{t+C}; W_H, W_O) = - \log (p(v_t | V_{t+C}))$$

$$= - \log (v_t^T \hat{v}_t)$$

3.7. Word2Vec: Obtain word embeddings
3.7.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because

1. It is easier to understand the algorithm than CBoW.
2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.

So, let’s think about a concrete example of calculating Skip-gram under this setup:

- The size of vocabulary $|\mathcal{V}|$ is 10.
- The size of embedding vector D is 2.
- Center word is “dog”.
- Context word is “animal”.

Since there should be more than one context word, repeat the following process for each context word.

1. The one-hot vector of “dog” is $[0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$ and you input it as the center word.
2. The third row of embedding matrix W_H is used for the word embedding of “dog” l_H.
3. Then, multiply W_O with l_H to obtain the output vector l_O.
4. Give l_O to the softmax function to make it a predicted probability vector \hat{v}_{t+c} for a context word at the position c.
5. Calculate the error between \hat{v}_{t+c} and the one-hot vector of “animal”; $[1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$.
6. Propagate the error back to the network to update the parameters.
3.7.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram based on this: examples/word2vec

4.1 Preparation

First, let’s import necessary packages:

Listing 23: train_word2vec.py

```python
import argparse
import collections
import os
import six
import warnings
import numpy as np
import chainer
from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L
import chainer.optimizers as O
from chainer import reporter
```

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.

Listing 24: train_word2vec.py

```python
class SkipGram(chainer.Chain):
    """Definition of Skip-gram Model""
    def __init__(self, n_vocab, n_units, loss_func):
        super(SkipGram, self).__init__()

        with self.init_scope():
            self.embed = L.EmbedID(n_vocab, n_units, initialW=I.Uniform(1. / n_units))
            self.loss_func = loss_func

    def forward(self, x, contexts):
        e = self.embed(contexts)
        batch_size, n_context, n_units = e.shape
        x = F.broadcast_to(x[:, None], (batch_size, n_context))
        e = F.reshape(e, (batch_size * n_context, n_units))
        x = F.reshape(x, (batch_size * n_context,))
        loss = self.loss_func(e, x)
        reporter.report({'loss': loss}, self)
        return loss
```
Listing 25: train_word2vec.py

```python
class SoftmaxCrossEntropyLoss(chainer.Chain):
    """Softmax cross entropy loss function preceded by linear transformation."
    ""

    def __init__(self, n_in, n_out):
        super(SoftmaxCrossEntropyLoss, self).__init__()
        with self.init_scope():
            self.out = L.Linear(n_in, n_out, initialW=0)

    def forward(self, x, t):
        return F.softmax_cross_entropy(self.out(x), t)
```

Note:

- The weight matrix `self.embed.W` is the embedding matrix for input vector `x`.
- The function call `forward` takes the word ID of a center word `x` and word IDs of context words `contexts` as inputs, and outputs the error calculated by the loss function `loss_func: SoftmaxCrossEntropyLoss`.
- Note that the initial shape of `x` and `contexts` are `(batch_size,)` and `(batch_size, n_context)`, respectively.
- The `batch_size` means the size of mini-batch, and `n_context` means the number of context words.

First, we obtain the embedding vectors of contexts by `e = self.embed(contexts)`. Then `F.broadcast_to(x[:, None], (batch_size, n_context))` performs broadcasting of `x` (its shape is `(batch_size,)`) to `(batch_size, n_context)` by copying the same value `n_context` time to fill the second axis, and then the broadcasted `x` is reshaped into 1-D vector `(batchsize * n_context,)` while `e` is reshaped to `(batch_size * n_context, n_units)`. In Skip-gram model, predicting a context word from the center word is the same as predicting the center word from a context word because the center word is always a context word when considering the context word as a center word. So, we create `batch_size * n_context` center word predictions by applying `self.out` linear layer to the embedding vectors of context words. Then, calculate softmax cross entropy between the broadcasted center word ID `x` and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility `get_ptb_words()` method.

```python
train, val, _ = chainer.datasets.get_ptb_words()
counts = collections.Counter(train)
```

Then define an iterator to make mini-batches that contain a set of center words with their context words. `train` and `val` means training data and validation data. Each data contains the list of Document IDs:

```python
>>> train
array([ 0,  1,  2, ..., 39, 26, 24], dtype=int32)
>>> val
array([2211, 396, 1129, ..., 108, 27, 24], dtype=int32)
```
Listing 26: train_word2vec.py

class WindowIterator(chainer.dataset.Iterator):
 """Dataset iterator to create a batch of sequences at different positions.

 This iterator returns a pair of the current words and the context words.
 """
 def __init__(self, dataset, window, batch_size, repeat=True):
 self.dataset = np.array(dataset, np.int32)
 self.window = window # size of context window
 self.batch_size = batch_size
 self._repeat = repeat
 # order is the array which is shuffled `[window, window + 1, ...,
 # len(dataset) - window - 1]`
 self.order = np.random.permutation(len(dataset) - window * 2).astype(np.int32)
 self.order += window
 self.current_position = 0
 # Number of completed sweeps over the dataset. In this case, it is
 # incremented if every word is visited at least once after the last
 # increment.
 self.epoch = 0
 # True if the epoch is incremented at the last iteration.
 self.is_new_epoch = False
 def __next__(self):
 """This iterator returns a list representing a mini-batch.
 Each item indicates a different position in the original sequence.
 """
 if not self._repeat and self.epoch > 0:
 raise StopIteration
 i = self.current_position
 i_end = i + self.batch_size
 position = self.order[i:i_end]
 w = np.random.randint(self.window - 1) + 1
 offset = np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)])
 pos = position[:, None] + offset[None, :]
 contexts = self.dataset.take(pos)
 center = self.dataset.take(position)
 if i_end >= len(self.order):
 np.random.shuffle(self.order)
 self.epoch += 1
 self.is_new_epoch = True
 self.current_position = 0
 else:
 self.is_new_epoch = False
 self.current_position = i_end
 return center, contexts

@property
 def epoch_detail(self):
 return self.epoch + float(self.current_position) / len(self.order)

(continues on next page)
```python
def serialize(self, serializer):
    self.current_position = serializer('current_position',
                                          self.current_position)
    self.epoch = serializer('epoch', self.epoch)
    self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)
    if self.order is not None:
        serializer('order', self.order)
```

- In the constructor, we create an array `self.order` which denotes shuffled indices of `[window, window + 1, ..., len(dataset) - window - 1]` in order to choose a center word randomly from dataset in a mini-batch.
- The iterator definition `__next__` returns `batch_size` sets of center word and context words.
- The code `self.order[i:i_end]` returns the indices for a set of center words from the random-ordered array `self.order`. The center word IDs center at the random indices are retrieved by `self.dataset.take`.
- `np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)])` creates a set of offsets to retrieve context words from the dataset.
- The code `position[:, None] + offset[None, :]` generates the indices of context words for each center word index in position. The context word IDs context are retrieved by `self.dataset.take`.

4.4 Prepare model, optimizer, and updater

Listing 27: train_word2vec.py

```python
model = SkipGram(n_vocab, args.unit, loss_func)
```

Listing 28: train_word2vec.py

```python
optimizer = O.Adam()
optimizer.setup(model)
```

Listing 29: train_word2vec.py

```python
train_iter = WindowIterator(train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

# Set up an updater
updater = training.updaters.StandardUpdater(
    train_iter, optimizer, converter=convert, device=device)
```

Listing 30: train_word2vec.py

```python
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.Evaluator(
    val_iter, model, converter=convert, device=device))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
```
4.5 Start training

```bash
$ pwd
/root2chainer/chainer/examples/word2vec
$ python train_word2vec.py --test  # run by test mode. If you want to use all data, remove "--test".
GPU: -1
# unit: 100
Window: 5
Minibatch-size: 1000
# epoch: 20
Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100
epoch main/loss validation/main/loss
1 4233.75 2495.33
2 1411.14 4990.66
3 4233.11 1247.66
4 2821.66 4990.65
5 4231.94 1247.66
6 5642.04 2495.3
7 5640.82 4990.64
8 5639.31 2495.28
9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66
```
4.5 Search the similar words

```bash
$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py
>> apple
query: apple
compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053
maker: 0.4684058427810669
computer: 0.4652436673641205
>> animal
query: animal
beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432
```

3.7.6 5. Reference

- [2] Distributional Hypothesis

3.8 Write a Sequence to Sequence (seq2seq) Model

3.8.1 0. Introduction

The **sequence to sequence (seq2seq) model**[1][2] is a learning model that converts an input sequence into an output sequence. In this context, the **sequence** is a list of symbols, corresponding to the words in a sentence. The seq2seq model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an output sequence.

3.8.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence be \(X \) and \(Y \). The \(i \)-th element of the input sequence is represented as \(x_i \), and the \(j \)-th element of the output sequence is also represented as \(y_j \). Generally, each of the \(x_i \) and the \(y_j \) is the one-hot vector of the symbols. For example, in natural language processing (NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be \(\mathcal{V}^{(s)} \) and \(\mathcal{V}^{(t)} \), all the elements \(x_i \) and \(y_j \) satisfy \(x_i \in \mathbb{R}^{\mathcal{V}^{(s)}} \) and \(y_i \in \mathbb{R}^{\mathcal{V}^{(t)}} \). The input sequence \(X \) and the output sequence...
The Notations of Conditional Probability $P(Y|X)$

Next, let’s think about the conditional probability $P(Y|X)$ generating the output sequence Y when the input sequence X is given. The purpose of seq2seq model is modeling the probability $P(Y|X)$. However, the seq2seq model does not model the probability $P(Y|X)$ directly. Actually, it models the probability $P(y_j|Y_{<j}, X)$, which is the probability of generating the j-th element of the output sequence y_j given the $Y_{<j}$ and X. $Y_{<j}$ means the output sequence from 1 to $j-1$, or $(y_j)_{j=1}^{j-1}$. In this notation, you can write the model $P_\theta(Y|X)$ with the product of $P_\theta(y_j|Y_{<j}, X)$:

$$P_\theta(Y|X) = \prod_{j=1}^{J+1} P_\theta(y_j|Y_{<j}, X)$$

Processing Steps in Seq2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the two processes:

1. The process that generates the fixed size vector z from the input sequence X
2. The process that generates the output sequence Y from z

In other words, the information of X is conveyed by z, and $P_\theta(y_j|Y_{<j}, X)$ is actually calculated by $P_\theta(y_j|Y_{<j}, z)$.

First, we represent the process which generating z from X by the function Λ:

$$z = \Lambda(X)$$

The function Λ may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

$$P_\theta(y_j|Y_{<j}, X) = \Upsilon(h_j^{(t)}, y_j)$$

$$h_j^{(t)} = \Psi(h_{j-1}^{(t)}, y_{j-1})$$

Ψ is the function to generate the hidden vectors $h_j^{(t)}$, and Υ is the function to calculate the generative probability of the one-hot vector y_j. When $j = 1$, $h_{j-1}^{(t)}$ or $h_0^{(t)}$ is z generated by $\Lambda(X)$, and y_{j-1} or y_0 is the one-hot vector of BOS.

3.8. Write a Sequence to Sequence (seq2seq) Model
1.2 Model Architecture of Seq2seq Model

In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer
2. Encoder Recurrent Layer
3. Decoder Embedding Layer
4. Decoder Recurrent Layer
5. Decoder Output Layer

The encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder consists of three layers: the embedding layer, the recurrent layer, and the output layer.

In the explanation, we use the following symbols:
1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts each word in the input sentence to the embedding vector. When processing the i-th word in the input sentence, the input and the output of the layer are the following:

- The input is x_i: the one-hot vector which represents i-th word
- The output is \bar{x}_i: the embedding vector which represents i-th word

Each embedding vector is calculated by the following equation:

$$ \bar{x}_i = E^{(s)} x_i $$

$E^{(s)} \in \mathbb{R}^{D \times |\mathcal{V}^{(s)}|}$ is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the i-th embedding vector, the input and the output of the layer are the following:

- The input is \bar{x}_i: the embedding vector which represents the i-th word
- The output is $h_i^{(s)}$: the hidden vector of the i-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function $\psi^{(s)}$:

$$ h_i^{(s)} = \psi^{(s)}(\bar{x}_i, h_{i-1}^{(s)}) $$

$$ = \tanh \left(W^{(s)} \begin{bmatrix} h_{i-1}^{(s)} \\ \bar{x}_i \end{bmatrix} + b^{(s)} \right) $$

In this case, we use the \tanh as the activation function.
1.2.3 Decoder Embedding Layer

The decoder embedding layer converts each word in the output sentence to the embedding vector. When processing the \(j \)-th word in the output sentence, the input and the output of the layer are the following:

- The input is \(y_{j-1} \): the one-hot vector which represents the \((j - 1)\)-th word generated by the decoder output layer
- The output is \(\bar{y}_j \): the embedding vector which represents the \((j - 1)\)-th word

Each embedding vector is calculated by the following equation:

\[
\bar{y}_j = E^{(t)} y_{j-1}
\]

\(E^{(t)} \in \mathbb{R}^{D \times |V^{(t)}|} \) is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the \(j \)-th embedding vector, the input and the output of the layer are the following:

- The input is \(\bar{y}_j \): the embedding vector
- The output is \(h^{(t)}_j \): the hidden vector of \(j \)-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function \(\Psi^{(t)} \):

\[
\begin{align*}
 h^{(t)}_j &= \Psi^{(t)}(\bar{y}_j, h^{(t)}_{j-1}) \\
 &= \tanh \left(W^{(t)} \begin{bmatrix} h^{(t)}_{j-1} \\ \bar{y}_j \end{bmatrix} + b^{(t)} \right)
\end{align*}
\]

In this case, we use the \(\tanh \) as the activation function. And we must use the encoder’s hidden vector of the last position as the decoder’s hidden vector of first position as following:

\[
h^{(t)}_0 = z = h^{(s)}_j
\]

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the \(j \)-th word of the output sentence from the hidden vector. When processing the \(j \)-th embedding vector, the input and the output of the layer are the following:

- The input is \(h^{(t)}_j \): the hidden vector of \(j \)-th position
- The output is \(p_j \): the probability of generating the one-hot vector \(y_j \) of the \(j \)-th word

\[
\begin{align*}
p_j &= P_o(y_j|Y_{<j}) = \text{softmax}(o_j) \cdot y_j \\
 &= \text{softmax}(W^{(o)} h^{(t)}_j + b^{(o)}) \cdot y_j
\end{align*}
\]

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directionality (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term Memory (LSTM), or a gated recurrent unit (GRU)), and (4) additional functionality (s.t. Attention Mechanism).
3.8.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq

2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory recurrent neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked LSTM-RNN. At decoding time, an output sequence is generated using argmax.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 31: seq2seq.py

```
import io
from nltk.translate import bleu_score
```

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model
2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

```python
import numpy
import progressbar
import six
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training

2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

```
'negative integer, NumPy arrays are used')
parser.add_argument('--out', '-o', default='result',
 help='directory to output the result')
group = parser.add_argument_group('deprecated arguments')
group.add_argument('--gpu', '-g', dest='device',
 type=int, nargs='?', const=0,
 help='GPU ID (negative value indicates CPU)')

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 33: seq2seq.py

class Seq2seq(chainer.Chain):
 def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
 super(Seq2seq, self).__init__()
 with self.init_scope():
 self.embed_x = L.EmbedID(n_source_vocab, n_units)
 self.embed_y = L.EmbedID(n_target_vocab, n_units)
 self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
 self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
 self.W = L.Linear(n_units, n_target_vocab)

 self.n_layers = n_layers
 self.n_units = n_units

 def forward(self, xs, ys):
 xs = [x[::-1] for x in xs]
 eos = self.xp.array([EOS], numpy.int32)
 ys_in = [F.concat([eos, y], axis=0) for y in ys]
 ys_out = [F.concat([y, eos], axis=0) for y in ys]

 exs = sequence_embed(self.embed_x, xs)
 eys = sequence_embed(self.embed_y, ys_in)

 batch = len(xs)
 # None represents a zero vector in an encoder.
 hx, cx, _ = self.encoder(None, None, exs)
 _, _, os = self.decoder(hx, cx, eys)

 # It is faster to concatenate data before calculating loss
 # because only one matrix multiplication is called.
 concat_os = F.concat(os, axis=0)
 concat_ys_out = F.concat(ys_out, axis=0)
 loss = F.sum(F.softmax_cross_entropy(self.W(concat_os), concat_ys_out, reduce='no')) / batch
 chainer.report({'loss': loss}, self)
 n_words = concat_ys_out.shape[0]
 perp = self.xp.exp(loss.array * batch / n_words)
 chainer.report({'perp': perp}, self)
return loss

def translate(self, xs, max_length=100):
 batch = len(xs)
 with chainer.no_backprop_mode(), chainer.using_config('train', False):
 xs = [x[::-1] for x in xs]
 exs = sequence_embed(self.embed_x, xs)
 h, c, _ = self.encoder(None, None, exs)
 ys = self.xp.full(batch, EOS, numpy.int32)
 result = []
 for i in range(max_length):
 eys = self.embed_y(ys)
 eys = F.split_axis(eys, batch, 0)
 h, c, ys = self.decoder(h, c, eys)
 cys = F.concat(ys, axis=0)
 wy = self.W(cys)
 ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
 result.append(ys)

 result = chainer.get_device('@numpy').send(chainer.get_device('@numpy').send(self.xp.concatenate([x[None, :] for x in result]).T))

 # Remove EOS taggs
 outs = []
 for y in result:
 inds = numpy.argwhere(y == EOS)
 if len(inds) > 0:
 y = y[:inds[0, 0]]
 outs.append(y)

 return outs

• In Seq2Seq, three functions are defined: the constructor __init__, the function call forward, and the function for translation translate.

Listing 34: seq2seq.py

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
 super(Seq2seq, self).__init__()
 with self.init_scope():
 self.embed_x = L.EmbedID(n_source_vocab, n_units)
 self.embed_y = L.EmbedID(n_target_vocab, n_units)
 self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
 self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
 self.W = L.Linear(n_units, n_target_vocab)

 self.n_layers = n_layers
 self.n_units = n_units

• When we instantiate this class for making a model, we give the number of stacked lstms to n_layers, the vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to n_target_vocab, and the size of hidden vectors to n_units.

• This network uses chainer.links.NStepLSTM, chainer.links.EmbedID, and chainer.links.Linear as its building blocks. All the layers are registered and initialized in the context with self.init_scope().
• You can access all the parameters in those layers by calling `self.params()`.

• In the constructor, it initializes all parameters with values sampled from a uniform distribution \(U(-1, 1)\).

Listing 35: seq2seq.py

```python
def forward(self, xs, ys):
    xs = [x[::-1] for x in xs]
    eos = self.xp.array([EOS], numpy.int32)
    ys_in = [F.concat([eos, y], axis=0) for y in ys]
    ys_out = [F.concat([y, eos], axis=0) for y in ys]

    # Both xs and ys_in are lists of arrays.
    exs = sequence_embed(self.embed_x, xs)
    eys = sequence_embed(self.embed_y, ys_in)

    batch = len(xs)
    # None represents a zero vector in an encoder.
    hx, cx, _ = self.encoder(None, None, exs)
    _, _, os = self.decoder(hx, cx, eys)

    # It is faster to concatenate data before calculating loss
    # because only one matrix multiplication is called.
    concat_os = F.concat(os, axis=0)
    concat_ys_out = F.concat(ys_out, axis=0)
    loss = F.sum(F.softmax_cross_entropy(self.W(concat_os), concat_ys_out, reduce='no')) / batch

    chainer.report({'loss': loss}, self)
    n_words = concat_ys_out.shape[0]
    perp = self.xp.exp(loss.array * batch / n_words)
    chainer.report({'perp': perp}, self)
    return loss
```

• The `forward` method takes sequences of source language’s word IDs `xs` and sequences of target language’s word IDs `ys`. Each sequence represents a sentence, and the size of `xs` is mini-batch size.

• Note that the sequences of word IDs `xs` and `ys` are converted to a vocabulary-size one-hot vectors and then multiplied with the embedding matrix in `sequence_embed` to obtain embedding vectors `exs` and `eys`.

Listing 36: seq2seq.py

```python
def sequence_embed(embed, xs):
    x_len = [len(x) for x in xs]
    x_section = numpy.cumsum(x_len[:-1])
    ex = embed(F.concat(xs, axis=0))
    exs = F.split_axis(ex, x_section, 0)
    return exs
```

• `self.encoder` and `self.decoder` are the encoder and the decoder of the seq2seq model. Each element of the decoder output `os` is \(h^{(t)}_{i:j}\) in the figure above.

• After calculating the recurrent layer output, the loss `loss` and the perplexity `perp` are calculated, and the values are logged by `chainer.report`.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased from 25.9 to 30.6.” So, at the first line in the forward, the input sentences are reversed \(xs = [x[::-1] \text{ for } x \text{ in } xs] \).

Listing 37: seq2seq.py

```python
def translate(self, xs, max_length=100):
    batch = len(xs)
    with chainer.no_backprop_mode(), chainer.using_config('train', False):
        xs = [x[::-1] for x in xs]
        exs = sequence_embed(self.embed_x, xs)
        h, c, _ = self.encoder(None, None, exs)
        ys = self.xp.full(batch, EOS, numpy.int32)
        result = []
        for i in range(max_length):
            eys = self.embed_y(ys)
            eys = F.split_axis(eys, batch, 0)
            h, c, ys = self.decoder(h, c, eys)
            cys = F.concat(ys, axis=0)
            wy = self.W(cys)
            ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
            result.append(ys)

        result = chainer.get_device('@numpy').send(  
            self.xp.concatenate([x[None, :] for x in result]).T)

        outs = []
        for y in result:
            inds = numpy.argwhere(y == EOS)
            if len(inds) > 0:
                y = y[:inds[0, 0]]
            outs.append(y)
    return outs
```

• After the model learned the parameters, the function `translate` is called to generate the translated sentences `outs` from the source sentences `xs`.

• So as not to change the parameters, the codes for the translation are nested in the scope `chainer.no_backprop_mode()` and `chainer.using_config('train', False)`.

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 [website](#) that contains \(10^9\) documents. We must prepare additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3.1 Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 38: seq2seq.py

```python
# Load pre-processed dataset
print('[//] Loading dataset... (this may take several minutes).format(
```

(continues on next page)
datetime.datetime.now()))
source_ids = load_vocabulary(args.SOURCE_VOCAB)
target_ids = load_vocabulary(args.TARGET_VOCAB)

if args.use_dataset_api:
 # By using TextDataset, you can avoid loading whole dataset on memory.
 # This significantly reduces the host memory usage.
 def _filter_func(s, t):
 sl = len(s.strip().split()) # number of words in source line
 tl = len(t.strip().split()) # number of words in target line
 return
 (args.min_source_sentence <= sl <= args.max_source_sentence and
 args.min_target_sentence <= tl <= args.max_target_sentence)

train_data = load_data_using_dataset_api(
 source_ids, args.SOURCE,
 target_ids, args.TARGET,
 _filter_func,
)
else:
 # Load all records on memory.
 train_source = load_data(source_ids, args.SOURCE)
 train_target = load_data(target_ids, args.TARGET)
 assert len(train_source) == len(train_target)

 train_data = [
 (s, t)
 for s, t in six.moves.zip(train_source, train_target)
 if (args.min_source_sentence <= len(s) <= args.max_source_sentence
 and
 args.min_target_sentence <= len(t) <= args.max_target_sentence)
]

print('{} Dataset loaded.'.format(datetime.datetime.now()))

if not args.use_dataset_api:
 # Skip printing statistics when using TextDataset API, as it is slow.
 train_source_unknown = calculate_unknown_ratio(
 [s for s, _ in train_data])
 train_target_unknown = calculate_unknown_ratio(
 [t for _, t in train_data])

 print('Source vocabulary size: %d' % len(source_ids))
 print('Target vocabulary size: %d' % len(target_ids))
 print('Train data size: %d' % len(train_data))
 print('Train source unknown ratio: %.2f%%' % (train_source_unknown * 100))
 print('Train target unknown ratio: %.2f%%' % (train_target_unknown * 100))

 target_words = {i: w for w, i in target_ids.items()}
 source_words = {i: w for w, i in source_ids.items()}

• This code uses utility functions below:

3.8. Write a Sequence to Sequence (seq2seq) Model
Listing 39: seq2seq.py

```python
def load_vocabulary(path):
    with io.open(path, encoding='utf-8') as f:
        # +2 for UNK and EOS
        word_ids = {line.strip(): i + 2 for i, line in enumerate(f)}
        word_ids['<UNK>'] = 0
        word_ids['<EOS>'] = 1
    return word_ids
```

Listing 40: seq2seq.py

```python
def load_data(vocabulary, path):
    n_lines = count_lines(path)
    bar = progressbar.ProgressBar()
    data = []
    print('loading...: %s' % path)
    with io.open(path, encoding='utf-8') as f:
        for line in bar(f, max_value=n_lines):
            words = line.strip().split()
            array = numpy.array([vocabulary.get(w, UNK) for w in words], numpy.int32)
            data.append(array)
    return data
```

Listing 41: seq2seq.py

```python
def calculate_unknown_ratio(data):
    unknown = sum((s == UNK).sum() for s in data)
    total = sum(s.size for s in data)
    return unknown / total
```

2.2.5 Define Evaluation Function (Bleu Score)

BLEU[3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-translated from one natural language to another.

Listing 42: seq2seq.py

```python
class CalculateBleu(chainer.training.Extension):
    trigger = 1, 'epoch'
    priority = chainer.training.PRIORITY_WRITER

    def __init__(self, model, test_data, key, device, batch=100, max_length=100):
        self.model = model
        self.test_data = test_data
        self.key = key
        self.batch = batch
        self.device = device
        self.max_length = max_length

    def __call__(self, trainer):
        ... (continues on next page)
```
device = self.device

 with chainer.no_backprop_mode():
 references = []
 hypotheses = []
 for i in range(0, len(self.test_data), self.batch):
 sources, targets = zip(*self.test_data[i:i + self.batch])
 references.extend([t.tolist() for t in targets])

 sources = [device.send(x) for x in sources]
 ys = [y.tolist() for y in self.model.translate(sources, self.max_length)]
 hypotheses.extend(ys)

 bleu = bleu_score.corpus_bleu(references, hypotheses, smoothing_function=bleu_score.SmoothingFunction().method1)
 chainer.report({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

Listing 43: seq2seq.py

train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 44: seq2seq.py

model = Seq2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.
Listing 45: seq2seq.py

```python
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
```

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 46: seq2seq.py

```python
updater = training.updaters.StandardUpdater(
    train_iter, optimizer, converter=convert, device=device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.LogReport(
    trigger=(args.log_interval, 'iteration')))
trainer.extend(extensions.PrintReport(
    ['epoch', 'iteration', 'main/loss', 'main/perp',
     'validation/main/bleu', 'elapsed_time']),
    trigger=(args.log_interval, 'iteration'))
trainer.extend(extensions.snapshot(filename='snapshot_epoch_{.updater.iteration}'),
    trigger=(args.validation_interval, 'iteration'))
```

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 47: seq2seq.py

```python
test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio([s for s, _ in test_data])
test_target_unknown = calculate_unknown_ratio([t for _, t in test_data])
print('Validation data: %d' % len(test_data))
print('Validation source unknown ratio: %.2f%%' % (test_source_unknown * 100))
print('Validation target unknown ratio: %.2f%%' % (test_target_unknown * 100))
@chainer.training.make_extension()
def translate(trainer):
    source, target = test_data[numpy.random.choice(len(test_data))]
    result = model.translate([model.xp.array(source)])[0]
    source_sentence = ' '.join(['source_words[x] for x in source])
target_sentence = ' '.join(['target_words[y] for y in target'])
result_sentence = ' '.join(['target_words[y] for y in result'])
```

(continues on next page)
print('# source : ' + source_sentence)
print('# result : ' + result_sentence)
print('# expect : ' + target_sentence)

trainer.extend(
 translate, trigger=(args.validation_interval, 'iteration'))
trainer.extend(
 CalculateBleu(
 model, test_data, 'validation/main/bleu', device),
 trigger=(args.validation_interval, 'iteration'))

if args.resume is not None:
 # Resume from a snapshot
 chainer.serializers.load_npz(args.resume, trainer)

Let's start the training!

Listing 48: seq2seq.py

trainer.run()

if args.save is not None:
 # Save a snapshot
 chainer.serializers.save_npz(args.save, trainer)

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

- See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd
/root2chainer/chainer/examples/seq2seq
$ python seq2seq.py --gpu=0 giga-fren.preprocess.en giga-fren.preprocess.fr \ vocab.en vocab.fr \ --validation-source newstest2013.preprocess.en \ --validation-target newstest2013.preprocess.fr > log
100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20
100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
epoch iteration main/loss validation/main/loss main/perp validation/main/
--perp validation/main/bleu elapsed_time
0 200 171.449 991.556 85.6739

(continues on next page)
Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8 encoding.

2.3.1 Validate the model

While you are training the model, you can get the validation results:

```plaintext
# source : We knew the Government had tried many things, like launching <UNK> with
→<UNK> or organising speed dating evenings.
# result : Nous savions que le gouvernement avait <UNK> plusieurs fois, comme le
→<UNK> <UNK>, le <UNK> ou le <UNK> <UNK>.
# expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer
→des parfums aux <UNK> ou organiser des soirées de <UNK>
```

3.8.4 3. Reference

- [1] Sequence to Sequence Learning with Neural Networks
- [3] BLEU
4.1 Variable and Parameter

4.1.1 Variable classes and utilities

<table>
<thead>
<tr>
<th>chainer.Variable</th>
<th>Array with a structure to keep track of computation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.as_variable</td>
<td>Converts an array or a variable into Variable.</td>
</tr>
<tr>
<td>chainer.Parameter</td>
<td>Parameter variable that can be registered to a link.</td>
</tr>
<tr>
<td>chainer.variable.VariableNode</td>
<td>Node in the backward computational graph representing a variable.</td>
</tr>
</tbody>
</table>

chainer.Variable

class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)

Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a FunctionNode object (i.e., by calling functions under chainer.functions or user-defined functions), or by using operators (see the list below), the node holds a reference to its parent called creator_node. This reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode() (resp. force_backprop_mode()). In the former context, a variable never creates a computational graph, whereas in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).

- **Indexing:** a[slices] (__getitem__())
- **Addition:** a + b (__add__(), __radd__())
- **Subtraction:** a - b (__sub__(), __rsub__())
- **Multiplication:** a * b (__mul__(), __rmul__())
- **Division:** a / b (__div__(), __rdiv__(), __truediv__(), __rtruediv__())
- **Floor Division:** a // b (__floordiv__(), __rfloordiv__())
- **Exponentiation:** a ** b (__pow__(), __rpow__())
• Matrix Multiplication: \(a \odot b (__matmul__(), __rmatmul__())\)
• Negation (Arithmetic): \(- a (__neg__())\)
• Absolute value: \(\text{abs}(a) (__abs__())\)

Parameters
- **data** *(N-dimensional array)* – Initial data array.
- **name** *(str)* – Name of the variable.
- **grad** *(N-dimensional array)* – Initial gradient array.
- **requires_grad** *(bool)* – Boolean indicating whether \(\text{grad}\) will be set in backward calculation.

Methods

__getitem___(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters
- **x** *(Variable or N-dimensional array)* – A variable to be sliced.
- **slices** *(int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them)* – An object to specify the selection of elements.

Returns
A Variable object which contains sliced array of \(x\).

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in \(\text{slices}\). The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64 and numpy.ulonglong.

Note: It does not support \(\text{slices}\) that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

```python
>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[ 0, 1, 2],
        [ 3, 4, 5]],
        [[ 6, 7, 8],
        [ 9, 10, 11]]])
>>> F.get_item(x, 0)
variable([[[0, 1, 2],
            [3, 4, 5]]])
```

(continues on next page)
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])

>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],
 [8, 11]])

>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__

Returns the first dimension of the data array.

 Returns Number of the first dimension of the data array.

 Return type int

__copy__

addgrad(var)

Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

 Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)

Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

 Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
 kept. Otherwise, grad of the intermediate variables are set to None on appropriate timing,
 which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
 of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a useful technique to mitigate
 vanishing gradient issue that tends to happen when low precision data type like float16

4.1. Variable and Parameter 135
is used during training. If you set loss scaling factor, gradients of loss values are to be multiplied by the factor before backprop starts. The factor is propagated to whole gradients in a computational graph along the backprop. The gradients of parameters are divided by the factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata (var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays reside on different devices, including across the host and a GPU device. If this variable has an uninitialized data array, this method initializes it by the data array of the given variable. Similarly, if the given variable has an uninitialized data array, this method initializes it by the data array of this variable (self). If both are uninitialized, this method does nothing.

Parameters

| var (Variable) – Source variable. |

debug_print ()
Display a summary of the stored data and location of the Variable

from_chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

item ()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.

Returns
The element of the array.

Return type
int or float

reshape (*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape () for full documentation,

retain_data ()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.

Parameters

| gen_func (Function) – Function object that creates this variable as one of its outputs. |

set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters

| fnode (FunctionNode) – Function node that has this variable as an output. |

summary ()
to_chx()
Converts the array and gradient to ChainerX arrays without copy.
This method converts the underlying array and gradient to `chainerx.ndarray` on the same physical device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array is a view of the original one.

to_cpu()
Copies the data and gradient arrays to CPU.

to_device(device)
Copies the data and gradient arrays to specified device.

Parameters device – Target device specifier. See `get_device()` for available values.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.
If the array is not suited for intel64, it will be converted to `numpy.ndarray`.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:
`chainer.functions.transpose()` for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike `unchain_backward()`, it does not backtrack the graph.

This method is equivalent to `self.creator_node = None`.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient `cleargrads()` instead.

__eq__(other)
This operator is not supported in Variables.

__ne__(other)
This operator is not supported in Variables.

__lt__(other)
This operator is not supported in Variables.
This operator is not supported in Variables.

This operator is not supported in Variables.

This operator is not supported in Variables.

This operator is not supported in Variables.

This operator is not supported in Variables.

Element-wise negation.

Element-wise absolute.

Element-wise addition.

Element-wise addition.

Element-wise subtraction.

Element-wise subtraction.

Element-wise multiplication.

Element-wise multiplication.
Returns: Output variable.

Return type: Variable

__div__\text{__}(\text{rhs})
Element-wise division

Returns: Output variable.

Return type: Variable

__truediv__\text{__}(\text{rhs})
Element-wise division

Returns: Output variable.

Return type: Variable

__rdiv__\text{__}(\text{rhs})
Element-wise division.

Returns: Output variable.

Return type: Variable

__rtruediv__\text{__}(\text{rhs})
Element-wise division.

Returns: Output variable.

Return type: Variable

__floordiv__\text{__}(\text{rhs})
Element-wise floor division.

Returns: Output variable.

Return type: Variable

__rfloordiv__\text{__}(\text{rhs})
Element-wise floor division.

Returns: Output variable.

Return type: Variable

__pow__\text{__}(\text{rhs})
Element-wise power function.

Returns: Output variable.

Return type: Variable

__rpow__\text{__}(\text{rhs})
Element-wise power function.

Returns: Output variable.

Return type: Variable

__matmul__\text{__}(\text{rhs})
Matrix multiplication.

Returns: Output variable.

Return type: Variable
__rmatmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array, you can find an error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute .array while it has .data.

device
Device on which the data array of this variable reside.

dtype
grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient will result in an error.

grad_var
Gradient variable.

label
Short text that represents the variable.

name
ndim
node
rank

requires_grad
It indicates that grad will be set in backward calculation.

shape
size
xp
Array module for the data array of this variable.

chainer.as_variable

chainer.as_variable(obj)
Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the gradient, you should use Variable directly.

Parameters obj (N-dimensional array or ~chainer.Variable) – An array or a variable that you want to convert to Variable.

Returns A variable converted from obj. If obj is a raw array, this is a new Variable object that wraps the array. If obj is already a Variable object, this function returns obj as is.

Return type Variable
chainer.Parameter

```python
class chainer.Parameter(initializer=None, shape=None, name=None)
```

Parameter variable that can be registered to a link.

Parameter is a subclass of `Variable`. It almost behaves as same as a usual variable except that a parameter can be registered to a `Link` object just by assigning it to an attribute of the link within an `init_scope()` context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to a `GradientMethod`, an update rule is set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient array.

Parameters

- `initializer (~chainer.Initializer or N-dimensional array)` – Initializer of the data array. If `shape` is given, this initializer is immediately used to initialize the data array. Otherwise, if it is an array, it is immediately used as the data array, and otherwise the data array is left uninitialized and will be initialized by this initializer in `initialize()`. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
- `shape (int or tuple of int or None)` – Shape of the parameter. If it is `None`, the initialization is deferred to the call of `initialize()`.
- `name (str)` – Name of the parameter.

Variables

- `initializer` – Initializer of the data array. It is used for initializing the data array of an uninitialized variable.
- `update_rule` – `UpdateRule` instance that updates this variable as a parameter. This argument is set to `update_rule`.

Methods

```python
__getitem__(slices)
```

Extract elements from array with specified shape, axes and offsets.

Parameters

- `x (Variable or N-dimensional array)` – A variable to be sliced.
- `slices (int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them)` – An object to specify the selection of elements.

Returns A `Variable` object which contains sliced array of `x`.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in `slices`. The supported types are `numpy.float32`, `numpy.int32`, `numpy.uint32`, `numpy.uint64` and `numpy.ulonglong`.
Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

```python
>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],
          [3, 4, 5]])

>>> F.get_item(x, (0, 0, slice(0, 2, 1)))  # equals x[0, 0, 0:2:1]
variable([0, 1])

>>> F.get_item(x, (Ellipsis, 2))  # equals x[... , 2]
variable([[ 2,  5],
          [ 8, 11]])

>>> F.get_item(x, (1, np.newaxis, 1, 0))  # equals x[1, None, 1, 0]
variable([9])
```

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even done across the host and different devices. If this variable has uninitialized data/grad arrays, this method initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, `FunctionNode.backward()` is called on each `FunctionNode` object appearing in the backward graph starting from this variable. The backward graph is represented by backward references from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop stops at all root nodes. Some function nodes set `None` as gradients of some inputs, where further backprop does not take place at such inputs.

This method uses `grad` as the initial error array. User can manually set a gradient array before calling this method. If the shape of `data` is () (i.e., it is scalar) and `grad` is `None`, then this method automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.
From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable it, pass `enable_double_backprop=True`.

Parameters

- **retain_grad (bool)** – If True, the gradient arrays of all intermediate variables are kept. Otherwise, `grad` of the intermediate variables are set to None on appropriate timing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of parameters, not of all variables, and therefore it is recommended that this flag be set to False.

- **enable_double_backprop (bool)** – (Added in v3.0) If True, computational trace of the whole backpropagation procedure is recorded to the computational graph so that one can further do backpropagation from the resulting gradients. Note that enabling it results in larger memory consumption needed to store the gradients w.r.t intermediate variables that are required for the second gradient computation.

- **loss_scale (float)** – Loss scaling factor. Loss scaling is a usefull technique to mitigate vanishing gradient issue that tends to happen when low precision data type like float16 is used during training. If you set loss scaling factor, gradients of loss values are to be multiplied by the factor before backprop starts. The factor is propagated to whole gradients in a computational graph along the backprop. The gradients of parameters are divided by the factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata (var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays reside on different devices, including across the host and a GPU device. If this variable has an uninitialized data array, this method initializes it by the data array of the given variable. Similarly, if the given variable has an uninitialized data array, this method initializes it by the data array of this variable (`self`). If both are uninitialized, this method does nothing.

Parameters **var (Variable)** – Source variable.

debug_print ()
Display a summary of the stored data and location of the Variable

from_chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

initialize (shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters **shape (tuple of int)** – Shape of the data array.

item ()
Converts the variable with one element to a Python scalar.
This will incur host-device synchronization.

Returns The element of the array.

Return type `int` or `float`

reshape(*shape*)

Returns a variable of a different shape and the same content.

See also:

`chainer.functions.reshape()` for full documentation.

retain_data()

Lets the corresponding variable node keep the underlying array.

set_creator(*gen_func*)

Notifies the variable that the given function is its creator.

Parameters

set_creator_node(*fnode*)

Notifies the variable that the given node is its creator.

Parameters

summary()

to_chx()

Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to `chainerx.ndarray` on the same physical device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array is a view of the original one.

to_cpu()

Copies the data and gradient arrays to CPU.

to_device(*device*)

Copies the data and gradient arrays to specified device.

Parameters

to_gpu(*device=None*)

Copies the data and gradient arrays to specified GPU.

Parameters

- *device* – Target device specifier. If omitted, the current device is used.

to_intel64()

Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to `numpy.ndarray`.

transpose(*axes*)

Permute the dimensions of an input variable without copy.

See also:

`chainer.functions.transpose()` for full documentation.

unchain()

Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike `unchain_backward()`, it does not backtrack the graph.
This method is equivalent to `self.creator_node = None`.

unchain_backward()

Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

update()

Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd()

Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient `cleargrads()` instead.

__eq__(other)

This operator is not supported in Variables.

__ne__(other)

This operator is not supported in Variables.

__lt__(other)

This operator is not supported in Variables.

__le__(other)

This operator is not supported in Variables.

__gt__(other)

This operator is not supported in Variables.

__ge__(other)

This operator is not supported in Variables.

__nonzero__()

This operator is not supported in Variables.

__bool__()

This operator is not supported in Variables.

__neg__()

Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()

Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()

Element-wise addition.

Returns Output variable.
Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.
Returns Output variable.
Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.
Returns Output variable.
Return type Variable

__pow__(rhs)
Element-wise power function.
Returns Output variable.
Return type Variable

__rpow__(rhs)
Element-wise power function.
Returns Output variable.
Return type Variable

__matmul__(rhs)
Matrix multiplication.
Returns Output variable.
Return type Variable

__rmatmul__(rhs)
Matrix multiplication.
Returns Output variable.
Return type Variable

Attributes

\textbf{T}
Transposition of this variable.

\textbf{array}
The underlying data array.

It is either \texttt{numpy.ndarray} or \texttt{cupy.ndarray} object, or \texttt{None} if the variable in in an uninitialized state.

\textbf{chx_array}
A view of the raw ChainerX array.

In contrary to \texttt{Variable.array} which is always disconnected, the array represented by this attribute may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a \texttt{Variable} with a non-ChainerX array, \texttt{ValueError} will be raised.

\textbf{creator}
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of \texttt{Function}), this property returns that \texttt{Function} object.
When this variable has been created by a new-style function (i.e., it is implemented as a subclass of `FunctionNode` class), this property returns that node object.

creator_node

`FunctionNode` object that created this variable.

This property has a setter to which `None` can be set. Setting `None` to this property is equivalent to call `unchain()`: it purges the variable from the function that created this variable.

The setter also accepts the original `FunctionNode` object that created this variable. For example, you can once set `None` to this property and then set the original value again.

Note: Setting an irrelevant `FunctionNode()` object does not emit any error immediately, whereas the behavior is undefined. Do not set a `FunctionNode()` object that did not create this variable object.

data

The underlying data array (equivalent to `array`).

Note that using this attribute directly is discouraged; use `array` instead. Using `array`, you can find an error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute `.array` while it has `.data`.

device

Device on which the data array of this variable reside.

dtype

Device on which the data array of this variable reside.

grad

Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable itself; to get/set gradient variable, use `grad_var` instead.

If the underlying array is a `chainerx.ndarray` and requires_grad is false, trying to access the gradient will results in and error.

grad_var

Gradient variable.

initializer = None

label

Short text that represents the variable.

name

ndim

node

rank

requires_grad

It indicates that `grad` will be set in backward calculation.

shape

size

xp

Array module for the data array of this variable.

4.1. Variable and Parameter
chainer.variable.VariableNode

class chainer.variable.VariableNode (variable, name, **kwargs)

Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation (a.k.a. backprop) to determine which gradient to be passed to each function.

A variable node is held by the corresponding Variable object, which is managed by users. FunctionNode objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a weak reference to the variable object, and thus the data array is accessible via the weak reference.
2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a function that needs the input or output data array in its backprop procedure. See FunctionNode. retain_inputs() and FunctionNode.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters

- **variable** (Variable) – The corresponding variable object.
- **name** (str) – Name of the variable node.

Variables

- **dtype** – Data type of the data array.
- **shape** – Shape of the data array.
- **name** (str) – Name of the variable node.

Methods

get_variable ()

Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by this property. Otherwise, this property creates a new Variable object from this node object and returns it.

Returns The variable object that refers this node.

Return type Variable

get_variable_or_none ()

Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by this property. Otherwise, returns None.

Returns The variable object that refers this node.

Return type Variable
retain_data()

 Lets the node hold a reference to the underlying data array.

 This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
 corresponding variable is dead, it raises an error.

 set_creator(creator)

 Sets a Function object that created this node.

 This method is equivalent to self.creator = creator. A FunctionNode object can also be
 passed.

 Parameters creator (Function or FunctionNode) – Function that has created this
 variable.

 set_creator_node(creator_node)

 Sets a FunctionNode object that created this node.

 This method is equivalent to self.creator_node = creator_node. A Function object can
 also be passed, in which case the Function.node attribute is used.

 Parameters creator_node (FunctionNode or Function) – Function node that has
 this variable as an output.

 unchain()

 Deletes the reference to the creator of this variable node.

 This method is equivalent to self.creator_node = None.

 __eq__()

 Return self==value.

 __ne__()

 Return self!=value.

 __lt__()

 Return self<value.

 __le__()

 Return self<=value.

 __gt__()

 Return self>value.

 __ge__()

 Return self>=value.

 Attributes

 creator

 Function object that created this variable node.

 When the function is implemented with the old-style API (i.e., it uses Function class), this property
 returns the Function object. The object is extracted from the FunctionAdapter object, so the
 returned object is not the function node, but instead the actual implementation of forward and backward
 procedures.

 When the function is implemented with the new-style API (i.e., it uses FunctionNode class), this prop-
 erty returns the function node object. In this case, the returned object is same as creator_node.
Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
...
v.creator = creator

The point is that `FunctionNode` objects are used as nodes in the computational graph instead of `Function`, and each `Function` object only holds a *weak reference* to the corresponding `FunctionNode`. Since `creator` returns the `Function` object, the `FunctionNode` object is not kept by preserving `creator`.

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
...
v.creator_node = creator_node

creator_node
Function node that has this variable as an output.

See `FunctionNode` for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns `None`.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns `None`.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return `None`.

label
Short text that represents the variable node.

rank

requires_grad
It indicates that `grad` will be set in backward calculation.

4.1.2 N-dimensional array

`chainer.Variable` holds its value as an n-dimensional array (ndarray). Chainer supports the following classes:

- `numpy.ndarray`, including `ideep4py.mdarray`
- `cupy.ndarray`
- `chainerx.ndarray`

Note: Python scalars (float, etc.) and NumPy scalars (`numpy.float16`, `numpy.float32`, etc.) cannot be used as `chainer.Variable.array`. See also `chainer.utils.force_array()`.
4.2 Functions

Chainer provides variety of built-in function implementations in `chainer.functions` package. These functions usually return a `Variable` object or a tuple of multiple `Variable` objects. For a `Variable` argument of a function, an N-dimensional array can be passed if you do not need its gradient. Some functions additionally supports scalar arguments.

Note: Functions implemented in Chainer consists of the following two parts:
- A class that inherits `FunctionNode`, which defines forward/backward computation.
- A “wrapper” function around the class.

APIs listed in this page are “wrapper” of `FunctionNode` implementations. In most cases, you don’t have to use `FunctionNode` classes directly.

For example, `chainer.functions.sum()` is a wrapper function defined as `def sum(...):` in `chainer/functions/math/sum.py`, and it calls its corresponding `FunctionNode` implementation, `Sum`. Some functions may not have the corresponding `FunctionNode` implementation; one example is `chainer.functions.average()`, which is defined in `chainer/functions/math/average.py`, which calls other wrapper functions to calculate average.

If you are implementing your own functions, please see Define your own function.

4.2.1 Arithmetic functions

Basic arithmetic operations for `Variable` are implemented as operators. Refer to the Notes section of `Variable` for details.

`chainer.functions.add()` provides better performance when accumulating three or more `Variables` at once.

<table>
<thead>
<tr>
<th><code>chainer.functions.add</code></th>
<th>Element-wise addition.</th>
</tr>
</thead>
</table>

`chainer.functions.add(*xs)`

- **Returns**: Output variable.
- **Return type**: `Variable`

4.2.2 Activation functions

<table>
<thead>
<tr>
<th><code>chainer.functions.clipped_relu</code></th>
<th>Clipped Rectifier Unit function.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.crelu</code></td>
<td>Concatenated Rectified Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.elu</code></td>
<td>Exponential Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.leaky_relu</code></td>
<td>Leaky Rectified Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.log_softmax</code></td>
<td>Channel-wise log-softmax function.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 3 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.lstm</td>
<td>Long Short-Term Memory units as an activation function.</td>
</tr>
<tr>
<td>chainer.functions.maxout</td>
<td>Maxout activation function.</td>
</tr>
<tr>
<td>chainer.functions.prelu</td>
<td>Parametric ReLU function.</td>
</tr>
<tr>
<td>chainer.functions.relu</td>
<td>Randomized Leaky Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.relu6</td>
<td>Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.relu6</td>
<td>Rectifier Unit function clipped at 6.</td>
</tr>
<tr>
<td>chainer.functions.sigmoid</td>
<td>Scaled Exponential Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.selu</td>
<td>S-LSTM units as an activation function.</td>
</tr>
<tr>
<td>chainer.functions.softmax</td>
<td>Softmax function.</td>
</tr>
<tr>
<td>chainer.functions.softplus</td>
<td>Element-wise softplus function.</td>
</tr>
<tr>
<td>chainer.functions.swish</td>
<td>Swish activation function.</td>
</tr>
<tr>
<td>chainer.functions.tree_lstm</td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
</tbody>
</table>

chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)

Clipped Rectifier Unit function.

For a clipping value $z (> 0)$, it computes

$$\text{ClippedReLU}(x, z) = \min(\max(0, x), z).$$

Parameters

- **x** (*Variable* or *N-dimensional array*) – Input variable. A $(s_1, s_2, ..., s_n)$-shaped float array.
- **z** (*float*) – Clipping value. (default = 20.0)

Returns Output variable. A $(s_1, s_2, ..., s_n)$-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.random.uniform(-100, 100, (10, 20)).astype(np.float32)
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.array < 0)
False
>>> np.any(y.array > z)
False
```
chainer.functions.crelu

`chainer.functions.crelu(x, axis=1)`
Concatenated Rectified Linear Unit function.
This function is expressed as follows

\[
f(x) = (\max(0, x), \max(0, -x)).
\]

Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201

Parameters

- `x` (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- `axis` (*int*) – Axis that the output values are concatenated along. Default is 1.

Returns Output variable of concatenated array. If the axis is 1, A \((s_1, s_2 \times 2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],
       [ 2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.array
array([[0., 0., 1., 0.],
       [2., 0., 0., 3.]], dtype=float32)
```

chainer.functions.elu

`chainer.functions.elu(x, alpha=1.0)`
Exponential Linear Unit function.

For a parameter \(\alpha\), it is expressed as

\[
f(x) = \begin{cases}
x & \text{if } x \geq 0 \\
\alpha(\exp(x) - 1) & \text{if } x < 0,
\end{cases}
\]

See: https://arxiv.org/abs/1511.07289

Parameters

- `x` (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- `alpha` (*float*) – Parameter \(\alpha\). Default is 1.0.

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

4.2. Functions 155
Return type `Variable`

Example

```python
>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1.,  0.],
       [ 2., -3.]], dtype=float32)

>>> y = F.elu(x, alpha=1.)
>>> y.array
array([[-0.63212055,  0.     ],
       [ 2.     , -0.95021296]], dtype=float32)
```

chainer.functions.hard_sigmoid

```python
chainer.functions.hard_sigmoid(x)
```

Element-wise hard-sigmoid function.

This function is defined as

\[
f(x) = \begin{cases}
0 & \text{if } x < -2.5 \\
0.2x + 0.5 & \text{if } -2.5 < x < 2.5 \\
1 & \text{if } 2.5 < x.
\end{cases}
\]

Parameters

- `x` *(Variable or N-dimensional array)* – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Returns

Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type `Variable`

Example

It maps the input values into the range of \([0, 1]\).

```python
>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. ,  0. ,  1. ,  2.6])

>>> F.hard_sigmoid(x).array
array([0. , 0.3, 0.5, 0.7, 1.0])
```

chainer.functions.leaky_relu

```python
chainer.functions.leaky_relu(x, slope=0.2)
```

Leaky Rectified Linear Unit function.

This function is expressed as

\[
f(x) = \begin{cases}
x & \text{if } x \geq 0 \\
ax & \text{if } x < 0,
\end{cases}
\]

where \(a\) is a configurable slope value.

Parameters
• **x** (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

• **slope** (*float*) – Slope value \(a\).

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.array([[[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],
       [ 2., -3.],
       [-2., 1.]], dtype=float32)

>>> F.leaky_relu(x, slope=0.2).array
array([[-0.2, 0. ],
       [ 2. , -0.6],
       [-0.4, 1. ]], dtype=float32)
```

chainer.functions.log_softmax

chainer.functions.*log_softmax* \((x, axis=1)\)

Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let \(c = (c_1, c_2, ..., c_D)\) be the slice of \(x\) along with the second axis. For each slice \(c\), it computes the logarithm of the function \(f(c)\) defined as

\[
f(c) = \frac{\exp(c)}{\sum_d \exp(c_d)}.
\]

This method is theoretically equivalent to \(\log(\text{softmax}(x))\) but is more stable.

Note: \(\log(\text{softmax}(x))\) may cause underflow when \(x\) is too small, because \(\text{softmax}(x)\) may returns 0. \(\log_{\text{softmax}}(x)\) method is more stable.

Parameters

• **x** (*Variable* or *N-dimensional array*) – Input variable. A \(n\)-dimensional \((n \geq 2)\) float array.

• **axis** (*int*) – The axis along which the softmax is to be computed.

Returns Output variable. A \(n\)-dimensional \((n \geq 2)\) float array, which is the same shape with \(x\).

Return type *Variable*

See also:

softmax()

Example

4.2. Functions

157
>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],
 [0., 2., 4.]], dtype=float32)

>>> F.log_softmax(x).array
array([[-2.407606 , -1.4076059, -0.4076059],
 [-4.1429315, -2.1429315, -0.14293146]], dtype=float32)

>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True

chainer.functions.lstm

chainer.functions.

lstm(c_prev, x)

Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev
and the input array x.

First, the input array x is split into four arrays a, i, f, o of the same shapes along the second axis. It means that
x’s second axis must have 4 times the c_prev’s second axis.

The split input arrays are corresponding to:
• a: sources of cell input
• i: sources of input gate
• f: sources of forget gate
• o: sources of output gate

Second, it computes the updated cell state c and the outgoing signal h as:

c = tanh(a)σ(i) + c_prevσ(f),

h = tanh(c)σ(o),

where σ is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c[0:len(x)] and doesn’t change the rest of c, c[len(x):]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

• c_prev (Variable or N-dimensional array) – Variable that holds the previous cell state.
The cell state should be a zero array or the output of the previous call of LSTM.

• x (Variable or N-dimensional array) – Variable that holds the sources of cell input, input
gate, forget gate and output gate. It must have the second dimension whose size is four times
of that of the cell state.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.
See also:

LSTM

Example

Assuming y is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal from an lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

```python
>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope():
...   model.w = L.Linear(n_units, 4 * n_units)
...   model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)
```

It corresponds to calculate the input array x, or the input sources a, i, f, o, from the current incoming signal y and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.

- **incoming signal** The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of lower RNN layer). The input of `chainer.links.LSTM` is the **incoming signal**.

- **input array** The array which is linear transformed from **incoming signal** and the previous outgoing signal. The **input array** contains four sources, the sources of cell input, input gate, forget gate and output gate. The input of `chainer.functions.activation.lstm.LSTM` is the **input array**.

chainer.functions.maxout

chainer.functions.maxout(x, pool_size, axis=1)

Maxout activation function.

It accepts an input tensor x, reshapes the $axis$ dimension (say the size being $M \times pool_size$) into two dimensions ($M, pool_size$), and takes maximum along the $axis$ dimension.

Parameters

- x (**Variable** or **N-dimensional array**) – Input variable. A n-dimensional ($n \geq axis$) float array. In general, its first dimension is assumed to be the *minibatch dimension*. The other dimensions are treated as one concatenated dimension.

- $pool_size$ (**int**) – The size used for downsampling of pooling layer.

- $axis$ (**int**) – The $axis$ dimension to be reshaped. The size of $axis$ dimension should be $M \times pool_size$.

Returns Output variable. The shape of the output is same as x except that $axis$ dimension is transformed from $M \times pool_size$ to M.

Return type **Variable**
See also:

Maxout

Example

Typically, \(x \) is the output of a linear layer or a convolution layer. The following is the example where we use \(\text{maxout()} \) in combination with a Linear link.

```python
>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype(np.float32)
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), np.float32)  # prepare data
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).array
array([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.],
       [40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
       [50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
       [60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],
       [70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],
       [80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],
       [90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]],
       dtype=float32)
>>> y.array
       dtype=float32)
```

chainer.functions.prelu

chainer.functions.prelu\((x, W)\)

Parametric ReLU function.

It accepts two arguments: an input \(x \) and a weight array \(W \) and computes the output as

\[
PReLU(x_i) = \begin{cases}
x_i & (x_i > 0)
W_i * x_i & (otherwise)
\end{cases}
\]

Parameters

- \(x \) (Variable or N-dimensional array) – Input variable. Its first axis is assumed to be the minibatch dimension.

- \(W \) (Variable or N-dimensional array) – Weight variable.

Returns Output variable

Return type Variable

Example
>>> x = np.arange(-3, 3, dtype=np.float32).reshape((2, 3))

array([[-3., -2., -1.],
 [0., 1., 2.]], dtype=float32)

>>> W = np.array([0.01, 0.1, 1], dtype=np.float32)

array([0.01, 0.1, 1.], dtype=float32)

>>> F.prelu(x, W)

variable([[-0.03, -0.2, -1.],
 [0. , 1. , 2.]])

Note: When the PReLU function is combined with two-dimensional convolution, the elements of parameter \(W\) are typically shared across the same filter of different pixels. In order to support such usage, this function supports the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

For example, if \(W\) has the shape of \((2, 3, 4)\), \(x\) must have the shape of \((B, 2, 3, 4, S_1, ..., S_N)\) where \(B\) is the batch size and the number of trailing \(S\)’s \(N\) is an arbitrary non-negative integer.

Warning: \(W\) is a trainable parameter in the original paper (https://arxiv.org/abs/1502.01852). To train \(W\), use `chainer.links.PReLU` instead.

See also:

`chainer.links.PReLU` to manage the model parameter \(W\).

chainer.functions.rrelu

`chainer.functions.rrelu(x, l=1. / 8, u=1. / 3, *, r=None, return_r=False)`

Randomized Leaky Rectified Liner Unit function.

This function is expressed as

\[
 f(x) = \max(x, rx),
\]

where \(r\) is a random number sampled from a uniform distribution \(U(l, u)\).

Note: The \(r\) corresponds to \(a\) in the original paper (https://arxiv.org/pdf/1505.00853.pdf).

Parameters

- \(x\) (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- \(l\) (*float*) – The lower bound of the uniform distribution.
- \(u\) (*float*) – The upper bound of the uniform distribution.
- \(r\) (*N-dimensional array* or None) – The \(r\) to be used for \(rrelu\). The shape and dtype must be the same as \(x[0]\) and should be on the same device. If \(r\) is not specified or set to None, an \(r\) will be generated randomly according to the given \(l\) and \(u\). If \(r\) is specified, \(l\) and \(u\) will be ignored.
- `return_r (bool)` – If True, the r used for rrelu is returned altogether with the output variable. The returned r can latter be reused by passing it to r argument.

Returns When `return_r` is False (default), return the output variable. Otherwise returns the tuple of the output variable and r (N-dimensional array). The r will be on the same device as the input. A $(s_1, s_2,..., s_N)$-shaped float array.

Return type *Variable* or tuple

Example

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1.,  0.],
       [ 2., -3.],
       [-2.,  1.]], dtype=float32)
>>> F.rrelu(x).array
array([[0.24850948, 0.          ],
       [2.          , 0.50844127],
       [0.59853506, 1.          ]], dtype=float32)
```

chainer.functions.relu

`chainer.functions.relu(x)`

Rectified Linear Unit function.

\[f(x) = \max(0, x). \]

Parameters

- `x` (*Variable* or *N-dimensional array*) – Input variable. A $(s_1, s_2,..., s_N)$-shaped float array.

Returns

Output variable. A $(s_1, s_2,..., s_N)$-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> np.any(x < 0)
True
>>> y = F.relu(x)
>>> np.any(y.array < 0)
False
>>> y.shape
(3, 2)
```
chainer.functions.relu6

chainer.functions.relu6(x)
Rectifier Unit function clipped at 6.

It computes

\[\text{ReLU6}(x) = \min(\max(0, x), 6). \]

Parameters
- **x** (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_n)\)-shaped float array.

Returns
- Output variable. A \((s_1, s_2, ..., s_n)\)-shaped float array.

Return type *Variable*

See also:
- chainer.functions.clipped_relu()

Example

```python
>>> x = np.array([-20, -2, 0, 2, 4, 10, 100]).astype(np.float32)
>>> x
array([-20., -2.,  0.,  2.,  4., 10., 100.], dtype=float32)
>>> F.relu6(x)
variable([0., 0., 0., 2., 4., 6., 6.])
```

chainer.functions.selu

chainer.functions.selu(x, alpha=1.6732632423543772, scale=1.0507009873554805)

Scaled Exponential Linear Unit function.

For parameters \(\alpha\) and \(\lambda\), it is expressed as

\[
 f(x) = \lambda \begin{cases}
 x & \text{if } x \geq 0 \\
 \alpha(\exp(x) - 1) & \text{if } x < 0
\end{cases}
\]

See: https://arxiv.org/abs/1706.02515

Parameters
- **x** (*Variable* or *N-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **alpha** (*float*) – Parameter \(\alpha\).
- **scale** (*float*) – Parameter \(\lambda\).

Returns
- Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*
chainer.functions.sigmoid

chainer.functions.sigmoid(x)
Element-wise sigmoid logistic function.

\[f(x) = \frac{1}{1 + \exp(-x)} \]

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable. A \((s_1, s_2, \ldots, s_N)\)-shaped float array.

Returns

- Output variable. A \((s_1, s_2, \ldots, s_N)\)-shaped float array.

Return type Variable

Example

It maps the input values into the range of \([0, 1]\).

```python
>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.sigmoid(x).array
array([0.11920291, 0.5 , 0.8807971 ], dtype=float32)
```

chainer.functions.slstm

chainer.functions.slstm(c_prev1, c_prev2, x1, x2)

S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states \(c_{\text{prev}1}\) and \(c_{\text{prev}2}\), and input arrays \(x1\) and \(x2\).

First both input arrays \(x1\) and \(x2\) are split into eight arrays \(a_1, i_1, f_1, o_1, a_2, i_2, f_2, o_2\). They have the same shape along the second axis. It means that \(x1\) and \(x2\)'s second axis must have 4 times the length of \(c_{\text{prev}1}\) and \(c_{\text{prev}2}\).

The split input arrays are corresponding to:

- \(a_i\): sources of cell input
- \(i_i\): sources of input gate
- \(f_i\): sources of forget gate
- \(o_i\): sources of output gate

It computes the updated cell state \(c\) and the outgoing signal \(h\) as:

\[
c = \tanh(a_1 + a_2)\sigma(i_1 + i_2) + c_{\text{prev}1}\sigma(f_1) + c_{\text{prev}2}\sigma(f_2),
\]

\[
h = \tanh(c)\sigma(o_1 + o_2),
\]

where \(\sigma\) is the elementwise sigmoid function. The function returns \(c\) and \(h\) as a tuple.

Parameters
- **c_prev1** (*Variable* or *N-dimensional array*) – Variable that holds the previous cell state of the first child node. The cell state should be a zero array or the output of the previous call of LSTM.

- **c_prev2** (*Variable* or *N-dimensional array*) – Variable that holds the previous cell state of the second child node.

- **x1** (*Variable* or *N-dimensional array*) – Variable that holds the sources of cell input, input gate, forget gate and output gate from the first child node. It must have the second dimension whose size is four times of that of the cell state.

- **x2** (*Variable* or *N-dimensional array*) – Variable that holds the input sources from the second child node.

Returns Two *Variable* objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

Assuming *c1*, *c2* is the previous cell state of children, and *h1*, *h2* is the previous outgoing signal from children. Each of *c1*, *c2*, *h1* and *h2* has *n_units* channels. Most typical preparation of *x1*, *x2* is:

```python
>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model1 = chainer.Chain()
>>> with model1.init_scope():
...    model1.w = L.Linear(n_units, 4 * n_units)
...    model1.v = L.Linear(n_units, 4 * n_units)
>>> model2 = chainer.Chain()
>>> with model2.init_scope():
...    model2.w = L.Linear(n_units, 4 * n_units)
...    model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)
```

It corresponds to calculate the input array *x1*, or the input sources *a1*, *i1*, *f1*, *o1* from the previous cell state of first child node *c1*, and the previous outgoing signal from first child node *h1*. Different parameters are used for different kind of input sources.

chainer.functions.softmax

chainer.functions.softmax(*x*, *axis=1*)

Softmax function.

This function computes its softmax along an axis. Let \(c = (c_1, c_2, \ldots, c_D) \) be the slice of \(x \) along with the axis. For each slice \(c \), it computes the function \(f(c) \) defined as

\[
 f(c) = \frac{\exp(c)}{\sum_d \exp(c_d)}.
\]

Parameters

- **x** (*Variable* or *N-dimensional array*) – Input variable. A *n*-dimensional \((n \geq 2) \) float array.
• **axis** (*int*) – The axis along which the softmax is to be computed.

Returns Output variable. A \(n\)-dimensional \((n \geq 2)\) float array, which is the same shape with \(x\).

Return type *Variable*

Example

```python
code
>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],
       [0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.array
array([[0.09003057, 0.24472848, 0.66524094],
       [0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).array
array([1., 1.], dtype=float32)
```

chainer.functions.softplus

*chainer.functions.*softplus\((x, \beta=1.0)\)

Element-wise softplus function.

The softplus function is the smooth approximation of ReLU.

\[
f(x) = \frac{1}{\beta} \log(1 + \exp(\beta x)),
\]

where \(\beta\) is a parameter. The function becomes curved and akin to ReLU as the \(\beta\) is increasing.

Parameters

- **\(x\)** (*Variable* or *\(N\)-dimensional array*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

- **\(\beta\)** (*float*) – Parameter \(\beta\).

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example

```python
code
>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2.,  0.,  2.], dtype=float32)
>>> F.softplus(x, beta=1.0).array
array([0.126928 , 0.6931472, 2.126928 ], dtype=float32)
```
chainer.functions.swish

chainer.functions.swish(x, beta)

Swish activation function.

\[f(x, \beta) = x \cdot \sigma(\beta x), \]

where \(\sigma(\cdot) \) is the sigmoid function. It has the following properties:

\[f(x, 0) = \frac{x}{2}, \]
\[\lim_{\beta \to \infty} f(x, \beta) = \max(0, x). \]

Parameters

- x (Variable or N-dimensional array) – Input variable of shape \((s_B, s_1, s_2, ..., s_N)\), where \(s_B\) is assumed to be the minibatch dimension.
- beta (Variable or N-dimensional array) – Parameter variable \(\beta\) of shape \((s_1, s_2, ..., s_M)\), where \(M\) is an arbitrary integer between \(0 \leq M \leq N\). The number of dimensions of beta will be matched with x by reshaping it as \((1, s_1, ..., s_M, 1, ..., 1)\), then beta and x are multiplied together in an element-wise manner.

Returns

Output variable of the same shape as x.

Return type Variable

See also:

chainer.links.Swish to manage the model parameter beta.

chainer.functions.tanh

chainer.functions.tanh(x)

Elementwise hyperbolic tangent function.

\[f(x) = \tanh(x). \]

Parameters

- x (Variable or N-dimensional array) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Returns

Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type Variable

Example

```python
>>> x = np.arange(-1, 4, 2).astype(np.float32)
>>> x
array([-1., 1., 3.], dtype=float32)
>>> F.tanh(x).array
array([-0.7615942, 0.7615942, 0.9950548], dtype=float32)
```
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the children cell states c_1, c_2, \ldots, c_N, and the incoming signal x. First, the incoming signal x is split into $(3 + N)$ arrays $a, i, o, f_1, f_2, \ldots, f_N$ of the same shapes along the second axis. It means that x 's second axis must have $(3 + N)$ times of the length of each c_n.

The splitted input signals are corresponding to:

- a: sources of cell input
- i: sources of input gate
- o: sources of output gate
- f_n: sources of forget gate for n-th ary

Second, it computes outputs as:

$$c = \tanh(a)\text{sigmoid}(i) + c_1\text{sigmoid}(f_1),$$
$$+ c_2\text{sigmoid}(f_2),$$
$$+ \ldots,$$
$$+ c_N\text{sigmoid}(f_N),$$
$$h = \tanh(c)\text{sigmoid}(o).$$

These are returned as a tuple of $(N + 1)$ variables.

Parameters

`inputs` (list of `Variable`) – Variable arguments which include all cell vectors from child-nodes, and an input vector. Each of the cell vectors and the input vector is `Variable` or N-dimensional array. The input vector must have the second dimension whose size is $(N + 3)$ times of that of each cell, where N denotes the total number of cells.

Returns

Two `Variable` objects c and h. c is the updated cell state. h indicates the outgoing signal.

Return type

`tuple`

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.'s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. only has one W matrix to be applied to x, consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an `tree_lstm()` function. Each of y, c and h has n `units` channels. Using 2-ary (binary) TreeLSTM, most typical preparation of x is:
It corresponds to calculate the input sources a, i, o, f_1, f_2 from the current input y and the children’s outputs h_1 and h_2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

- **chainer.functions.as_strided**: Create a new view of array with the given shape, strides, and offset.
- **chainer.functions.broadcast**: Broadcast given variables.
- **chainer.functions.broadcast_to**: Broadcast a given variable to a given shape.
- **chainer.functions.cast**: Cast an input variable to a given type.
- **chainer.functions.concat**: Concatenates variables along an axis.
- **chainer.functions.copy**: Copies the input variable onto the specified device.
- **chainer.functions.depth2space**: Computes the depth2space transformation for subpixel calculations.
- **chainer.functions.diagonal**: Take diagonal.
- **chainer.functions.dstack**: Concatenate variables along third axis (depth wise).
- **chainer.functions.expand_dims**: Expands dimensions of an input variable without copy.
- **chainer.functions.flatten**: Flatten a given array into one dimension.
- **chainer.functions.flip**: Flips an input variable in reverse order along the given axis.
- **chainer.functions.fliplr**: Flip array in the left/right direction.
- **chainer.functions.flipud**: Flip array in the up/down direction.
- **chainer.functions.get_item**: Extract elements from array with specified shape, axes and offsets.
- **chainer.functions.hstack**: Concatenate variables horizontally (column wise).
- **chainer.functions.im2col**: Extract patches from an image based on the filter.
- **chainer.functions.moveaxis**: Move the source axes to the destination.
- **chainer.functions.pad**: Pad an input variable.
- **chainer.functions.pad_sequence**: Pad given arrays to make a matrix.
- **chainer.functions.permute**: Permutates a given variable along an axis.
- **chainer.functions.repeat**: Construct an array by repeating a given array.
- **chainer.functions.reshape**: Reshapes an input variable without copy.
- **chainer.functions.resize_images**: Resize images to the given shape.
- **chainer.functions.rollaxis**: Roll the axis backwards to the given position.
- **chainer.functions.scatter_add**: Adds given values to specified elements of an array.
- **chainer.functions.select_item**: Select elements stored in given indices.
- **chainer.functions.separate**: Separates an array along a given axis.

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.space2depth</td>
<td>Computes the space2depth transformation for subpixel calculations.</td>
</tr>
<tr>
<td>chainer.functions.spatial_transformer_grid</td>
<td>2D Spatial Transformer grid.</td>
</tr>
<tr>
<td>chainer.Functions.spatial_transformer_sampler</td>
<td>2D Spatial Transformer sampler.</td>
</tr>
<tr>
<td>chainer.functions.split_axis</td>
<td>Splits given variables along an axis.</td>
</tr>
<tr>
<td>chainer.functions.squeeze</td>
<td>Remove dimensions of size one from the shape of a ndarray.</td>
</tr>
<tr>
<td>chainer.functions.stack</td>
<td>Concatenate variables along a new axis.</td>
</tr>
<tr>
<td>chainer.functions.swapaxes</td>
<td>Swap two axes of a variable.</td>
</tr>
<tr>
<td>chainer.functions.tile</td>
<td>Construct an array by tiling a given array.</td>
</tr>
<tr>
<td>chainer.functions.transpose</td>
<td>Permute the dimensions of an input variable without copy.</td>
</tr>
<tr>
<td>chainer.functions.transpose_sequence</td>
<td>Transpose a list of Variables.</td>
</tr>
<tr>
<td>chainer.functions.vstack</td>
<td>Concatenate variables vertically (row wise).</td>
</tr>
<tr>
<td>chainer.functions.where</td>
<td>Choose elements depending on condition.</td>
</tr>
</tbody>
</table>

chainer.functions.as_strided

chainer.functions.as_strided*(x, shape, strides, storage_offset=None)*

Create a new view of array with the given shape, strides, and offset.

Parameters

- **x** *(tuple of Variable or numpy.ndarray or cupy.ndarray)* – The array pointing a memory buffer. Its view is totally ignored.
- **shape** *(tuple of int)* – The shape of output.
- **strides** *(tuple of int)* – The strides of output, given in the unit of steps.
- **storage_offset** *(int)* – The offset between the head of allocated memory and the pointer of first element, given in the unit of steps.

Returns The strided variable.

Return type *Variable*

Warning: Users should be aware that this function potentially causes unintended side effects. See numpy.lib.stride_tricks.as_strided for the detail.

Note: The backward algorithm is borrowed from *torch.Tensor.as_strided*. Therefore, the returned gradient of backward is *layout-agnostic* when x contains memory overlap. See notes in pytorch’s source code (as_strided Backward and layout-aware/agnostic autograd) too.

Note: In this function strides and storage_offset are given in the unit of steps instead of bytes. This specification differs from numpy.lib.stride_tricks.as_strided().

Example
>>> from chainer import functions as F, Variable
>>> x = Variable(np.arange(4, dtype=np.float32))
>>> x
variable([0., 1., 2., 3.])
>>> y = F.as_strided(x, (3, 2), (1, 1), 0)
>>> y
variable([[0., 1.],
 [1., 2.],
 [2., 3.]])
>>> y.grad = np.ones((3, 2), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([1., 2., 2., 1.], dtype=float32)

chainer.functions.broadcast

chainer.functions.broadcast(*args)
Broadcast given variables.

Parameters

- args (Variable or N-dimensional array) – Input variables to be broadcasted. Each dimension of the shapes of the input variables must have the same size.

Returns

Variable or tuple of Variable objects which are broadcasted from the given arguments.

Return type

Variable

Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast(x)
>>> np.all(x == y.array)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.array) & np.all(z == w.array)
True

chainer.functions.broadcast_to

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

Parameters

- x (Variable or N-dimensional array) – Input variable to be broadcasted. A $(s_1,s_2,...,s_N)$-shaped float array.
- shape (tuple) – Tuple of int of the shape of the output variable.

Returns

Output variable broadcasted to the given shape.

Return type

Variable
Example

```python
>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.array
array([[0, 1, 2],
       [0, 1, 2],
       [0, 1, 2]])
```

chainer.functions.cast

chainer.functions.cast(x, typ)

Cast an input variable to a given type.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable to be casted. A \((s_1, s_2, ..., s_N)\)-shaped array.
- **typ** *(str of dtype or numpy.dtype)* – Typecode or data type to cast.

Returns

Variable holding a casted array.

Return type

Variable

Example

```python
>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')
```

chainer.functions.concat

chainer.functions.concat(xs, axis=1)

Concatenates given variables along an axis.

Parameters

- **xs** *(tuple of Variable or N-dimensional array)* – Input variables to be concatenated. The variables must have the same shape, except in the dimension corresponding to axis.
- **axis** *(int)* – The axis along which the arrays will be joined. Default is 1.

Returns

The concatenated variable.

Return type

Variable
Example

```python
>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],
       [1],
       [2]])
>>> z = F.concat((x, y), axis=1)
>>> z.array
array([[ 0,  1,  2,  3,  0],
       [ 4,  5,  6,  7,  1],
       [ 8,  9, 10, 11,  2]])
```

chainer.functions.copy

chainer.functions.copy *(x, dst)*

Copies the input variable onto the specified device.

If the input `x` already resides on the device specified by `dst`, no copy will actually take place and the returned variable will hold a view of the input. In other cases, the input will be copied to `dst`. When `dst == -1`, the array is copied to the host memory. This function supports copies from host to host, from host to device, from device to device and from device to host.

Parameters

- **x** *(Variable or N-dimensional array)* – Variable to be copied.
- **dst** *(int)* – Target device specifier.

Returns Output variable.

Return type *Variable*

Example

```python
>>> import chainer.backends.cuda as cuda
>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0)  # from host to device0
>>> cuda.get_device_from_array(y.array).id
0
>>> z = F.copy(y, -1)  # from device0 to host
>>> cuda.get_device_from_array(z.array).id
-1
```
chainer.functions.depth2space

chainer.functions.depth2space(X, r)

Computes the depth2space transformation for subpixel calculations.

Parameters

- **X** *(Variable or N-dimensional array)* – Variable holding a 4d array of shape `(batch, channel * r * r, dim1, dim2)`.
- **r** *(int)* – the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is `(batch, channel, dim1 * r, dim2 * r)`.

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.

See also:

space2depth()

Example

```python
>>> X = np.arange(24).reshape(1, 4, 2, 3).astype(np.float32)
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]],
       [[ 6.,  7.,  8.],
       [ 9., 10., 11.]],
       [[12., 13., 14.],
       [15., 16., 17.]],
       [[18., 19., 20.],
       [21., 22., 23.]]], dtype=float32)
>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.array
array([[[ 0.,  6.,  1.,  7.,  2.,  8.],
       [12., 18., 13., 19., 14., 20.],
       [ 3.,  9.,  4., 10.,  5., 11.],
       [15., 21., 16., 22., 17., 23.]]], dtype=float32)
```
chainer.functions.diagonal

chainer.functions.diagonal(x, offset=0, axis1=0, axis2=1)

Take diagonal

Axes other than axis1 and axis2 are regarded as batch dimensions.

Parameters

- **x** *(Variable or N-dimensional array)* – A variable to be sliced.
- **offset** *(int)* – Offset from the principal diagonal. An upper diagonal matrix can have nonzero diagonals with nonnegative offsets.
- **axis1** *(int)* – First axis (that has row indices) of matrix
- **axis2** *(int)* – Second axis (that has column indices) of matrix

Returns *(Batched) diagonal vectors*

Return type **Variable**

Example

```python
>>> x = chainer.Variable(np.arange(9).reshape(3, 3).astype(np.float32))
>>> x
variable([[0., 1., 2.],
          [3., 4., 5.],
          [6., 7., 8.]])
>>> chainer.functions.diagonal(x, offset=1)
variable([1., 5.])
```

chainer.functions.dstack

chainer.functions.dstack(xs)

Concatenate variables along third axis (depth wise).

Parameters **xs** (list of Variable or N-dimensional array) – Input variables to be concatenated.

The variables must have the same ndim. When the variables have the third axis (i.e. ndim ≥ 3), the variables must have the same shape along all but the third axis. When the variables do not have the third axis (i.e. ndim < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. ndim ≥ 3), the shapes of inputs and output are the same along all but the third axis. The length of third axis is the sum of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. ndim = 2), the shape of output is (N1, N2, 2). When the shape of variables are (N1,) (i.e. ndim = 1), the shape of output is (1, N1, 2). When the shape of variables are () (i.e. ndim = 0), the shape of output is (1, 1, 2).

Return type **Variable**

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
```

4.2. Functions
```
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.array
array([[1, 2],
        [2, 3],
        [3, 4]])
```

```
>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],
        [2, 3],
        [4, 5]])
>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[ 6,  7],
        [ 8,  9],
        [10, 11]])
>>> y = F.dstack((x1, x2))
>>> y.shape
(3, 2, 2)
>>> y.array
array([[[ 0,  6],
        [ 1,  7]],
        [[ 2,  8],
        [ 3,  9]],
        [[ 4, 10],
        [ 5, 11]]])
```

```
>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack((x1, x2))
>>> y.shape
(3, 2, 3)
>>> y.array
array([[[ 0,  1, 12],
        [ 2,  3, 13]],
        [[ 4,  5, 14],
        [ 6,  7, 15]],
        [[ 8,  9, 16],
        [10, 11, 17]]])
```
chainer.functions.expand_dims

Expands dimensions of an input variable without copy.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable.
- **axis** *(int)* – Position where new axis is to be inserted. The axis parameter is acceptable when $-ndim - 1 \leq axis \leq ndim$. (ndim is the dimension of input variables). When axis < 0, the result is the same with $ndim + 1 - |axis|$.

Returns Variable that holds an expanded input. The ndim of output is one greater than that of x.

Return type Variable

Example

```python
>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])
>>> y = F.expand_dims(x, axis=1)
>>> y.shape
(3, 1)
>>> y.array
array([[1],
       [2],
       [3]])
>>> y = F.expand_dims(x, axis=-2)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])
```

chainer.functions.flatten

Flatten a given array into one dimension.

Parameters **x** *(Variable or N-dimensional array)* – Input variable.

Returns Output variable flattened to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose shape is (1,).

Example
x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.flatten(x)
>>> y.shape
(4,)
>>> y.array
array([1, 2, 3, 4])

x = np.arange(8).reshape(2, 2, 2)
>>> x.shape
(2, 2, 2)
>>> y = F.flatten(x)
>>> y.shape
(8,)
>>> y.array
array([0, 1, 2, 3, 4, 5, 6, 7])

chainer.functions.flip

chainer.functions.flip(x, axis)
Flips an input variable in reverse order along the given axis.

Parameters
- x (Variable or N-dimensional array) – Input variable.
- axis (int) – Axis along which the input variable is reversed.

Returns Output variable.
Return type Variable

chainer.functions.fliplr

chainer.functions.fliplr(a)
Flip array in the left/right direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.
Return type Variable

chainer.functions.flipud

chainer.functions.flipud(a)
Flip array in the up/down direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.
Return type Variable
chainer.functions.get_item

chainer.functions.get_item(x, slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

- **x** (Variable or N-dimensional array) – A variable to be sliced.
- **slices** (int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them) – An object to specify the selection of elements.

Returns
A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA's atomicAdd when an integer array is included in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

```python
>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
       [[ 6,  7,  8],
        [ 9, 10, 11]])
>>> F.get_item(x, 0)
variable([[ 0,  1,  2],
          [ 3,  4,  5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1)))  # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2))  # equals x[..., 2]
variable([[ 6,  7,  8],
          [ 9, 10, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0))  # equals x[1, None, 1, 0]
variable([9])
```
chainer.functions.hstack

chainer.functions.hstack(xs)

Concatenate variables horizontally (column wise).

Parameters

- **xs** (list of Variable or N-dimensional array) – Input variables to be concatenated. The variables must have the same ndim. When the variables have the second axis (i.e. \(ndim \geq 2 \)), the variables must have the same shape along all but the second axis. When the variables do not have the second axis (i.e. \(ndim < 2 \)), the variables need not to have the same shape.

Returns

Output variable. When the input variables have the second axis (i.e. \(ndim \geq 2 \)), the shapes of inputs and output are the same along all but the second axis. The length of second axis is the sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e. \(ndim < 2 \)), the shape of output is \((N,) \) (\(N \) is the sum of the input variables’ size).

Return type

Variable

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.array
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],
        [14, 15],
        [16, 17]])
>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.array
array([[ 0,  1,  2,  3, 12, 13],
        [ 4,  5,  6,  7, 14, 15],
        [ 8,  9, 10, 11, 16, 17]])
```
chainer.functions.im2col

chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)

Extract patches from an image based on the filter.

This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of \(\text{stride} \) from the first position \(-\text{pad}\) for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

- \(n \) is the batch size.
- \(c \) is the number of the input channels.
- \(h \) and \(w \) are the height and width of the input image, respectively.
- \(k_H \) and \(k_W \) are the height and width of the filters, respectively.
- \(s_Y \) and \(s_X \) are the strides of the filter.
- \(p_H \) and \(p_W \) are the spatial padding sizes.
- \(d_Y \) and \(d_X \) are the dilation factors of filter application.

The output size \((h_O, w_O)\) is determined by the following equations when \(\text{cover_all} = \text{False} \):

\[
h_O = \frac{(h + 2p_H - k_H - (k_H - 1) \cdot (d_Y - 1))}{s_Y} + 1,
\]

\[
w_O = \frac{(w + 2p_W - k_W - (k_W - 1) \cdot (d_X - 1))}{s_X} + 1.
\]

When \(\text{cover_all} = \text{True} \), the output size is determined by the following equations:

\[
h_O = \frac{(h + 2p_H - k_H - (k_H - 1) \cdot (d_Y - 1) + s_Y - 1)}{s_Y} + 1,
\]

\[
w_O = \frac{(w + 2p_W - k_W - (k_W - 1) \cdot (d_X - 1) + s_X - 1)}{s_X} + 1.
\]

Parameters

- \(x \) \((\text{Variable} \ \text{or} \ N\text{-dimensional array})\) – Input variable of shape \((n, c, h, w)\).

- \(\text{ksize} \) \((\text{int} \ \text{or} \ \text{pair of ints})\) – Size of filters (a.k.a. kernels). \(\text{ksize}=k\) and \(\text{ksize}=(k, k)\) are equivalent.

- \(\text{stride} \) \((\text{int} \ \text{or} \ \text{pair of ints})\) – Stride of filter applications. \(\text{stride}=s\) and \(\text{stride}=(s, s)\) are equivalent.

- \(\text{pad} \) \((\text{int} \ \text{or} \ \text{pair of ints})\) – Spatial padding width for input arrays. \(\text{pad}=p\) and \(\text{pad}=(p, p)\) are equivalent.

- \(\text{cover_all} \) \((\text{bool})\) – If True, all spatial locations are rearranged into some output pixels. It may make the output size larger.

- \(\text{dilate} \) \((\text{int} \ \text{or} \ \text{pair of ints})\) – Dilation factor of filter applications. \(\text{dilate}=d\) and \(\text{dilate}=(d, d)\) are equivalent.

Returns Output variable whose shape is \((n, c \cdot k_H \cdot k_W, h_O, w_O)\)

Return type \text{Variable}
chainer.functions.moveaxis

chainer.functions.moveaxis(x, source, destination)
Move the source axes to the destination.

This function transpose the input x by moving the axes source to the axes destination. Other axes remain in their original order.

See also chainer.functions.transpose(), chainer.functions.swapaxes().

Parameters

- x (Variable or N-dimensional array) – Input variable.
- source (int or tuple of int) – Original positions of the axes to move. These must be unique.
- destination (int or tuple of int) – Destination positions for each of the original axes. These must also be unique.

Returns Variable whose axis is moved.

Return type Variable

Example

```python
>>> x = np.zeros((2, 3, 4, 5), np.float32)
>>> chainer.functions.moveaxis(x, 0, -1).shape
(3, 4, 5, 2)
>>> chainer.functions.moveaxis(x, (0, 3), (2, 0)).shape
(5, 3, 2, 4)
```

chainer.functions.pad

chainer.functions.pad(x, pad_width, mode, **keywords)
Pad an input variable.

Parameters

- x (Variable or N-dimensional array) – Input data.
- pad_width (int or array-like) – Number of values padded to the edges of each axis.
- mode (str) – Specifies how the function fills the periphery of the array. The mode is passed to numpy.pad() or cupy.pad(). If it is 'constant', the input is padded by a constant value specified by constant_values.
- constant_values (int or array-like) – Constant values to fill the periphery in the 'constant' mode.

Returns Output variable.

Return type Variable
chainer.functions.pad_sequence

chainer.functions.pad_sequence(xs, length=None, padding=0)

Pad given arrays to make a matrix.

Parameters

- **xs** (list of :class:`~chainer.Variable` or :class:`N-dimensional array`) – Variables you want to concatenate.
- **length** (None or int) – Size of the first dimension of a padded array. If it is None, the longest size of the first dimension of xs is used.
- **padding** (int or float) – Value to fill.

Returns

A padded matrix. Its shape is \((n, \text{length}, ...)\), where \(n == \text{len}(\text{xs})\).

Return type :class:`Variable`

chainer.functions.permutate

chainer.functions.permutate(x, indices, axis=0, inv=False)

Permutates a given variable along an axis.

This function permute x with given indices. That means \(y[i] = x[\text{indices}[i]]\) for all \(i\). Note that this result is same as \(y = x\text{.take(indices)}.\) indices must be a permutation of \([0, 1, \ldots, \text{len}(x) - 1]\).

When inv is True, indices is treated as its inverse. That means \(y[\text{indices}[i]] = x[i]\).

Parameters

- **x** (:class:`~chainer.Variable` or :class:`N-dimensional array`) – Variable to permutate. A \((s_1, s_2, \ldots, s_N)\)-shaped float array.
- **indices** (:class:`~chainer.Variable` or :class:`N-dimensional array`) – Indices to extract from the variable. A one-dimensional int array.
- **axis** (int) – Axis that the input array is permutate along.
- **inv** (bool) – If True, indices is treated as its inverse.

Returns

Output variable.

Return type :class:`Variable`

Example

```python
>>> x = np.arange(6).reshape((3, 2)).astype(np.float32)
>>> x
array([[0., 1.],
       [2., 3.],
       [4., 5.]], dtype=float32)
>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)
>>> y.array
array([[4., 5.],
       [0., 1.],
       [2., 3.]], dtype=float32)
>>> y = F.permutate(x, indices, inv=True)
>>> y.array
array([[2., 3.],
       [4., 5.],
       [0., 1.]])
```
>>> import numpy as np
>>> x = np.array([[4., 5.],
 [0., 1.]])
>>> indices = np.array([1, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)
>>> y.array
array([[1., 0.],
 [3., 2.],
 [5., 4.]], dtype=float32)

chainer.functions.repeat

chainer.functions.repeat(x, repeats, axis=None)

Construct an array by repeating a given array.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable.
- **repeats** *(int or tuple of int)* – The number of times which each element of x is repeated.
- **axis** *(int)* – The axis along which to repeat values.

Returns

The repeated output Variable.

Return type *Variable*

Example

```python
>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.repeat(x, 2)
>>> y.shape
(6,)
>>> y.array
array([0, 0, 1, 1, 2, 2])

>>> x = np.array([[1,2], [3,4]])
>>> x.shape
(2, 2)
>>> y = F.repeat(x, 3, axis=1)
>>> y.shape
(2, 6)
>>> y.array
array([[1, 1, 1, 2, 2, 2],
        [3, 3, 3, 4, 4, 4]])

>>> y = F.repeat(x, (1, 2), axis=0)
>>> y.shape
(3, 2)
>>> y.array
array([[1, 2],
        [3, 4],
        [3, 4]])
```
chainer.functions.reshape

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable.
- **shape** *(tuple of int s)* – Expected shape of the output array. The number of elements which the array of shape contains must be equal to that of input array. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

Returns
Variable that holds a reshaped version of the input variable.

Return type
Variable

See also:
numpy.reshape(), cupy.reshape()

Example

```python
>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))
>>> y.shape
(8,)
>>> y.array
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.array
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8]])
>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent
Traceback (most recent call last):
  ...: chainer.utils.type_check.InvalidType:
invalid operation is performed in: Reshape (Forward)
Expect: prod(x.shape) == prod((4, 3))
Actual: 8 != 12
```
chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape)

Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the sampling method.

Notation: here is a notation for dimensionalities.

• n is the batch size.
• c_I is the number of the input channels.
• h and w are the height and width of the input image, respectively.
• h_O and w_O are the height and width of the output image.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (n, c_I, h, w).
• output_shape (tuple) – This is a tuple of length 2 whose values are (h_O, w_O). Note that the order of height and width is opposite of the one in OpenCV.

Returns Resized image whose shape is (n, c_I, h_O, w_O).

Return type Variable

chainer.functions.rollaxis

chainer.functions.rollaxis(x, axis, start=0)

Roll the axis backwards to the given position.

This function continues to be supported for backward compatibility, but you should prefer chainer.functions.moveaxis(x, source, destination). See chainer.functions.moveaxis().

Parameters

• x (Variable or N-dimensional array) – Input variable.
• axis (int) – The axis to roll backwards.
• start (int) – The place to which the axis is moved.

Returns Variable whose axis is rolled.

Return type Variable

chainer.functions.scatter_add

chainer.functions.scatter_add(a, slices, b)

Adds given values to specified elements of an array.

This function adds b to the specified elements of the copy of a, and returns the copy. The value of the original a is not changed.

Parameters

• a (Variable or N-dimensional array) – A variable.
• \texttt{slices} \hspace{1em} (\texttt{int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them}) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

• \texttt{b} (\texttt{Variable} or \texttt{N-dimensional array}) – A variable that is scatter added to \texttt{a}. Its shape has to equal \texttt{a[slices]} because broadcasting of variables is not supported.

\textbf{Returns} \hspace{1em} \texttt{A Variable object which is the result of scatter addition.}

\textbf{Note:} \hspace{1em} It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in \texttt{slices}. The supported types are \texttt{numpy.float32, numpy.int32, numpy.uint32, numpy.uint64} and \texttt{numpy.ulonglong}.

\textbf{Note:} \hspace{1em} It does not support \texttt{slices} that contains multiple boolean arrays.

\textbf{See also:}
\texttt{numpy.add.at()} and \texttt{cupyx.scatter_add()}.

\texttt{chainer.functions.select_item}

\texttt{chainer.functions.select_item(x, t)}

Select elements stored in given indices.

This function returns \texttt{t.choose(x.T)}, that means \texttt{y[i] == x[i, t[i]]} for all \texttt{i}.

\textbf{Parameters}

• \texttt{x} (\texttt{Variable} or \texttt{N-dimensional array}) – Variable storing arrays. A two-dimensional float array.

• \texttt{t} (\texttt{Variable} or \texttt{N-dimensional array}) – Variable storing index numbers. A one-dimensional int array. Length of the \texttt{t} should be equal to \texttt{x.shape[0]}.

\textbf{Returns} \hspace{1em} Variable that holds \texttt{t}-th element of \texttt{x}.

\textbf{Return type} \hspace{1em} \texttt{Variable}

\textbf{Example}

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]], float32])
>>> t = np.array([0, 2], int32)
>>> y = F.select_item(x, t)
>>> y.shape
(2,)
>>> y.array
array([0., 5.], dtype=float32)
```
chainer.functions.separate

chainer.functions.separate(x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is (2, 3, 4). When it separates the array with `axis=1`, it returns three (2, 4) arrays.

This function is an inverse of `chainer.functions.stack()`.

Parameters
- **x** (Variable or N-dimensional array) – Variable to be separated. A \((s_1, s_2, ..., s_N)\) -shaped float array.
- **axis** (int) – Axis along which variables are separated.

Returns Output variables.

Return type tuple of chainer.Variable

See also:

`chainer.functions.stack()`

Example

```python
>>> x = np.arange(6).reshape((2, 3)).astype(np.float32)
>>> x
array([[0., 1., 2.],
       [3., 4., 5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x)  # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].array
array([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].array
array([[0., 3.],
       [1., 4.],
       [2., 5.]])
```
chainer.functions.space2depth

chainer.functions.space2depth(X, r)

Computes the space2depth transformation for subpixel calculations.

Parameters

- X (Variable or N-dimensional array) – Variable holding a 4d array of shape (batch, channel, dim1 * r, dim2 * r).
- r (int) – the downscaling factor.

Returns
A variable holding the downscaled layer array from subpixel array sampling. The shape is (batch, channel * r * r, dim1, dim2).

Return type
Variable

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.

See also:
depth2space()

Example

```python
>>> X = np.arange(24).reshape(1, 1, 4, 6).astype(np.float32)
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[ 0.,  1.,  2.,  3.,  4.,  5.],
        [ 6.,  7.,  8.,  9., 10., 11.],
        [12., 13., 14., 15., 16., 17.],
        [18., 19., 20., 21., 22., 23.]]], dtype=float32)
>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.array
array([[[ 0.,  2.,  4.],
        [12., 14., 16.]],
       [[ 1.,  3.,  5.],
        [13., 15., 17.]],
       [[ 6.,  8., 10.],
        [18., 20., 22.]],
       [[ 7.,  9., 11.],
        [19., 21., 23.]]], dtype=float32)
```
chainer.functions.spatial_transformer_grid

chainer.functions.spatial_transformer_grid(\theta, \text{output_shape}, **\text{kwargs})

2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial Transformer Networks.

Given a coordinate in the warped image \((x_t^i, y_t^i)\), the point sampled from the source image \((x_s^i, y_s^i)\) are calculated by the following equation.

Note: cuDNN supports SpatialTransformerGrid from version 5.0.0.

\[
\begin{pmatrix}
 x_t^i \\
 y_t^i
\end{pmatrix} =
\begin{pmatrix}
 \theta_{11} & \theta_{12} & \theta_{13} \\
 \theta_{21} & \theta_{22} & \theta_{23}
\end{pmatrix}
\begin{pmatrix}
 x_s^i \\
 y_s^i \\
 1
\end{pmatrix}
\]

Notation: here is a notation for dimensionalities.

* \(n\) is the batch size.
* \(h_O\) and \(w_O\) are the height and the width of the output image.

Parameters

* \text{theta} (\text{Variable or N-dimensional array}) – An array of shape \((n, 2, 3)\). This is a batch of \(2 \times 3\) matrix used for the warping described above.

* \text{output_shape} (\text{tuple}) – A tuple of 2 elements: \(h_O, w_O\).

Returns A variable of shape \((n, 2, h_O, w_O)\). In the 2nd dimension, the first element is the coordinate along the x axis, and the second element is the coordinate along the y axis. All the coordinates in the image are scaled to fit range \([-1, 1]\). This means that the coordinate \((-1, -1)\) corresponds to the upper-left corner of the input image.

Return type \text{Variable}

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler(x, grid, **\text{kwargs})

2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points \text{grid} and an input feature map \text{x}, this produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in \text{grid} is outside range \([-1, 1]\), values are sampled from a zero padded input image.

Notation: here is a notation for dimensionalities.

* \(n\) is the batch size.
* \(c_I\) is the number of the input channels.
* \(h\) and \(w\) are the height and width of the input image, respectively.
* \(h_O\) and \(w_O\) are the height and width of the output image.
See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable of shape \((n, c_I, h, w)\).
- **grid** *(Variable)* – Coordinate variable of shape \((n, 2, h_O, w_O)\). Each coordinate defines the spatial location in the input where a sampling kernel is applied to get the value at a particular pixel in the output. \(grid[idx, :, i, j]\) corresponds to the coordinate that is used to sample the values for an output pixel at location \((i, j)\).

In the second dimension, the first coordinate corresponds to the location along the horizontal axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate \((-1, -1)\) corresponds to the upper-left corner of the input image.

Returns Output feature map of shape \((n, c_I, h_O, w_O)\).

Return type *Variable*

chainer.functions.split_axis

chainer.functions.split_axis *(x, indices_or_sections, axis, force_tuple=True)*

Splits given variables along an axis.

Parameters

- **x** *(Variable or N-dimensional array)* – A variable to be split.
- **indices_or_sections** *(int or 1-D array)* – If this argument is an integer, \(N\), the array will be divided into \(N\) equal arrays along axis. If it is a 1-D array of sorted integers, it indicates the positions where the array is split.
- **axis** *(int)* – Axis that the input array is split along.
- **force_tuple** *(bool)* – If True (the default) this method returns a tuple even when the number of outputs is one. Otherwise, if False a Variable will be returned when the number of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable otherwise. When force_tuple is True, returned value is always a tuple regardless of the number of outputs.

Return type *tuple or Variable*

chainer.functions.squeeze

chainer.functions.squeeze *(x, axis=None)*

Remove dimensions of size one from the shape of a ndarray.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable. A \((s_1, s_2, ..., s_N)\) -shaped float array.
axis *(None or int or tuple of ints)* – A subset of the single-dimensional entries in the shape to remove. If None is supplied, all of them are removed. The dimension index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type *Variable*

Example

```python
code
>>> x = np.array([[[0, 1, 2]], [[[3, 4, 5]]]], np.float32)
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape
(2, 3)
>>> y.array
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[0., 1., 2.],
        [3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=(1, 2))
>>> y.shape
(2, 3)
>>> y.array
array([[0., 1., 2.],
        [3., 4., 5.]], dtype=float32)
```

chainer.functions.stack

chainer.functions.stack *(xs, axis=0)*

Concatenate variables along a new axis.

Parameters

- **xs** *(list of Variable or N-dimensional array)* – Input variables to be concatenated. The variables must have the same shape.

- **axis** *(int)* – The axis along which the arrays will be stacked. The axis parameter is acceptable when \(-\text{ndim} - 1 \leq \text{axis} \leq \text{ndim} \). (ndim is the dimension of input variables). When axis < 0, the result is the same with \(\text{ndim} + 1 - |\text{axis}| \).

Returns Output variable. Let \(x_1, x_2, \ldots, x_n \) and \(y \) be the input variables and the output variable, \(y[:, :, 0, \ldots, :] \) is \(x_1 \), \(y[:, \ldots, 1, \ldots, :] \) is \(x_2 \) and \(y[:, \ldots, n-1, \ldots, :] \) is \(x_n \) (The indexed axis indicates the axis).

Return type *Variable*

Example

```python
code
```
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.array
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.array
array([[[0, 12],
 [1, 13],
 [2, 14],
 [3, 15]],
 [[4, 16],
 [5, 17],
 [6, 18],
 [7, 19]],
 [[8, 20],
 [9, 21],
 [10, 22],
 [11, 23]])
>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.array
array([[[0, 12],
 [1, 13],
 [2, 14],
 [3, 15]],
 [[4, 16],
 [5, 17],
 [6, 18],
 [7, 19]],
 [[8, 20],
 [9, 21],
 [10, 22],
 [11, 23]]])
>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)
chainer.functions.swapaxes

chainer.functions.swapaxes(x, axis1, axis2)

Swap two axes of a variable.

Parameters

- x (Variable or N-dimensional array) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- axis1 (int) – The first axis to swap.
- axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type Variable

Example

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[0., 1., 2.],
  [3., 4., 5.]], dtype=float32)
```

chainer.functions.tile

chainer.functions.tile(x, reps)

Construct an array by tiling a given array.

Parameters

- x (Variable or N-dimensional array) – Input variable. Let the length of reps be \(d\). If \(x.n\text{dim} < d\), \(x\) is treated as \(d\)-dimensional array by prepending new axes. For example, when the shape of \(x\) is \((2,)\) and tiled with 2-dim repetitions, \(x\) is treated as the shape \((1, 2)\). If \(x.n\text{dim} > d\), reps is treated as \(x.n\text{dim}\)-dimensional by pre-pending 1’s. For example, when the shape of \(x\) is \((2, 3, 2, 3)\), the 2-dim \(\text{reps}\) of \((2, 2)\) is treated as \((1, 1, 2, 2)\).
- reps (int or tuple of int) – The number of times which \(x\) is replicated along each axis.

Returns The tiled output Variable. Let the length of \(\text{reps}\) be \(d\), the output has the dimension of \(\max(d, x.n\text{dim})\).

Return type Variable

Example
>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.tile(x, 2)
>>> y.shape
(6,)
>>> y.array
array([0, 1, 2, 0, 1, 2])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(2, 6)
>>> y.array
array([[0, 1, 2, 0, 1, 2],
 [0, 1, 2, 0, 1, 2]])
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y.array
array([[[0, 1, 2, 0, 1, 2],
 [0, 1, 2, 0, 1, 2]]])

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.tile(x, 2)
>>> y.shape
(2, 4)
>>> y.array
array([[1, 2, 1, 2],
 [3, 4, 3, 4]])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(4, 4)
>>> y.array
array([[[1, 2, 1, 2],
 [3, 4, 3, 4],
 [1, 2, 1, 2],
 [3, 4, 3, 4]]])
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y.array
array([[[1, 2, 1, 2],
 [3, 4, 3, 4]],
 [[1, 2, 1, 2],
 [3, 4, 3, 4]]])

4.2. Functions 195
chainer.functions.transpose

chainer.functions.transpose(x, axes=None)
Permute the dimensions of an input variable without copy.

Parameters
- x (Variable or N-dimensional array) – Input variable to be transposed. A \((s_1, s_2, ..., s_N)\)
 -shaped float array.
- axes (tuple of ints) – By default, reverse the dimensions, otherwise permute the
 axes according to the values given.

Returns Variable whose axes are permuted.

Example
>>> x = np.array([[0, 1, 2], [3, 4, 5]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x) # reverse the dimensions
>>> y.shape
(3, 2, 1)
>>> y.array
array([[0.,
 [3.],
 [1.,
 [4.],
 [2.,
 [5.]], dtype=float32)

chainer.functions.transpose_sequence

chainer.functions.transpose_sequence(xs)
Transpose a list of Variables.
This function transposes a list of Variables and returns a list of Variables. For example a user gives \([\{(0, 1, 2, 3), (4, 5), (6)\}],\) the function returns \([\{(0, 4, 6), (1, 5), (2), (3)\}]\). Note that a
given list needs to be sorted by each length of Variable.

Parameters xs (list of Variable or N-dimensional array) – Variables to transpose.

Returns Transposed list.

Return type tuple of Variable
Example

```python
>>> lst = [chainer.Variable(np.array([1, 1, 1])),
        ...        chainer.Variable(np.array([2, 2]))],
        ...        chainer.Variable(np.array([3]))]
>>> lst
[variable([1, 1, 1]), variable([2, 2]), variable([3])]  
>>> transposed = F.transpose_sequence(lst)
>>> transposed
(variable([1, 2, 3]), variable([1, 2]), variable([1]))
```

chainer.functions.vstack

`chainer.functions.vstack(xs)`

Concatenate variables vertically (row wise).

Parameters

- `xs` (list of *[Variable* or *N-dimensional array]*) – Input variables to be concatenated.

 The variables must have the same `ndim`. When the variables have the second axis (i.e. `ndim ≥ 2`), the variables must have the same shape along all but the first axis. When the variables do not have the second axis (i.e. `ndim < 2`), the variables must have the same shape.

Returns

Output variable. When the input variables have the second axis (i.e. `ndim ≥ 2`), the shapes of inputs and output are the same along all but the first axis. The length of first axis is the sum of the lengths of inputs' first axis. When the variables do not have the second axis (i.e. `ndim < 2`), the shape of output is `(2, N)` (N is the size of the input variable).

Return type`Variable`

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.array
array([[1, 2, 3],  
        [2, 3, 4]])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],  
        [ 4,  5,  6,  7],  
        [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],  
```
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.array
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19]])

chainer.functions.where

chainer.functions.where(condition, x, y)

Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same shape.

Parameters

- **condition** *(Variable or N-dimensional array)* – Input variable containing the condition. A \((s_1, s_2, ..., s_N)\)-shaped boolean array. Only boolean array is permitted.
- **x** *(Variable or N-dimensional array)* – Input variable chosen when condition is True. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **y** *(Variable or N-dimensional array)* – Input variable chosen when condition is False. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Returns Variable containing chosen values.

Return type Variable

Example

```python
>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[ True, False],
       [False,  True]])
>>> x = np.array([[1, 2], [3, 4]], np.float32)
>>> y = np.zeros((2, 2), np.float32)
>>> F.where(cond, x, y).array
array([[1.,  0.],
       [0.,  4.]], dtype=float32)
```
4.2.4 Neural network connections

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.bilinear</code></td>
<td>Applies a bilinear function based on given parameters.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_1d</code></td>
<td>1-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_2d</code></td>
<td>Two-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_3d</code></td>
<td>3-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_nd</code></td>
<td>N-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_1d</code></td>
<td>Two dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_2d</code></td>
<td>Two dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_3d</code></td>
<td>3-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_nd</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.depthwise_convolution_2d</code></td>
<td>Two-dimensional depthwise convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deformable_convolution_2d</code></td>
<td>Two-dimensional deformable convolution function using computed offset.</td>
</tr>
<tr>
<td><code>chainer.functions.dilated_convolution_2d</code></td>
<td>Two-dimensional dilated convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.embed_id</code></td>
<td>Efficient linear function for one-hot input.</td>
</tr>
<tr>
<td><code>chainer.functions.linear</code></td>
<td>Linear function, or affine transformation.</td>
</tr>
<tr>
<td><code>chainer.functions.local_convolution_2d</code></td>
<td>Two-dimensional local convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_bigru</code></td>
<td>Stacked Bi-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_bilstm</code></td>
<td>Stacked Bi-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_birnn</code></td>
<td>Stacked Bi-directional RNN function for sequence inputs.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_gru</code></td>
<td>Stacked Uni-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_lstm</code></td>
<td>Stacked Uni-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_rnn</code></td>
<td>Stacked Uni-directional RNN function for sequence inputs.</td>
</tr>
<tr>
<td><code>chainer.functions.shift</code></td>
<td>Shift function.</td>
</tr>
</tbody>
</table>

chainer.functions.bilinear

chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)

Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by $e^1 \in \mathbb{R}^{I \cdot J}$, $e^2 \in \mathbb{R}^{I \cdot K}$, $W \in \mathbb{R}^{J \cdot K \cdot L}$, $V^1 \in \mathbb{R}^{J \cdot L}$, $V^2 \in \mathbb{R}^{K \cdot L}$, and $b \in \mathbb{R}^L$, where I is mini-batch size. In this document, we call V^1, V^2, and b linear parameters.

The output of forward propagation is calculated as

$$y_{il} = \sum_{jk} e^1_{ij} e^2_{ik} W_{jkl} + \sum_j e^1_{ij} V^1_{jl} + \sum_k e^2_{ik} V^2_{kl} + b_l.$$

Note that V^1, V^2, b are optional. If these are not given, then this function omits the last three terms in the above equation.

Note: This function accepts an input variable e^1 or e^2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, J and K must be equal and the author denotes $[V^1V^2]$ (concatenation of matrices) by V.

Parameters

- $e1$ (*Variable* or *N-dimensional array*) – Left input variable.
- $e2$ (*Variable* or *N-dimensional array*) – Right input variable.
- W (*Variable* or *N-dimensional array*) – Quadratic weight variable.
- $V1$ (*Variable* or *N-dimensional array*) – Left coefficient variable.
- $V2$ (*Variable* or *N-dimensional array*) – Right coefficient variable.
- b (*Variable* or *N-dimensional array*) – Bias variable.

Returns Output variable.

Return type *Variable*

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

See also:

Bilinear to manage the model parameters W, $V1$, $V2$, and b.

chainer.functions.convolution_1d

```
chainer.functions.convolution_1d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1, groups=1)
```

1-dimensional convolution function.

Note: This function calls `convolution_nd()` internally, so see the details of the behavior in the documentation of `convolution_nd()`.

chainer.functions.convolution_2d

```
chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False, *, dilate=1, groups=1)
```

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
- h_I and w_I are the height and width of the input image, respectively.
- h_K and w_K are the height and width of the filters, respectively.
• h_P and w_P are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (h_K, w_K) in x. Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at positions shifted by multiples of stride from the first position $(-h_P, -w_P)$ for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let (s_Y, s_X) be the stride of filter application. Then, the output size (h_O, w_O) is determined by the following equations:

$$h_O = (h_I + 2h_P - h_K)/s_Y + 1,$$
$$w_O = (w_I + 2w_P - w_K)/s_X + 1.$$

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size (h_O, w_O) is determined by the following equations:

$$h_O = (h_I + 2h_P - h_K + s_Y - 1)/s_Y + 1,$$
$$w_O = (w_I + 2w_P - w_K + s_X - 1)/s_X + 1.$$

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.config.cudnn_deterministic is True and cuDNN version is \geq v3, it forces cuDNN to use a deterministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True).

When the dilation factor is greater than one, cuDNN is not used unless the version is 6.0 or higher.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable of shape (n, c_I, h_I, w_I).
- **W** *(Variable or N-dimensional array)* – Weight variable of shape (c_O, c_I, h_K, w_K).
- **b** *(None or Variable or N-dimensional array)* – Bias variable of length c_O (optional).
- **stride** *(int or pair of int s)* – Stride of filter applications. stride=s and stride=(s, s) are equivalent.
- **pad** *(int or pair of int s)* – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.
- **cover_all** *(bool)* – If True, all spatial locations are convoluted into some output pixels.
- **dilate** *(int or pair of int s)* – Dilation factor of filter applications. dilate=d and dilate=(d, d) are equivalent.
- **groups** *(int)* – Number of groups of channels. If the number is greater than 1, input tensor W is divided into some blocks by this value. For each tensor blocks, convolution operation will be executed independently. Input channel size c_I and output channel size c_O must be exactly divisible by this value.

Returns Output variable of shape (n, c_O, h_O, w_O).

Return type *Variable*

See also: *Convolution2D* to manage the model parameters W and b.

4.2. Functions
Example

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype(np.float32)
>>> b.shape
(1,)
>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)
>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True
```

chainer.functions.convolution_3d

chainer.functions.convolution_3d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1, groups=1)

3-dimensional convolution function.

Note: This function calls convolution_nd() internally, so see the details of the behavior in the documentation of convolution_nd().

chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1, groups=1)

N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.

- N is the number of spatial dimensions.
- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
• $d_1, d_2, ..., d_N$ are the size of each axis of the input’s spatial dimensions, respectively.
• $k_1, k_2, ..., k_N$ are the size of each axis of the filters, respectively.
• $l_1, l_2, ..., l_N$ are the size of each axis of the output’s spatial dimensions, respectively.
• $p_1, p_2, ..., p_N$ are the size of each axis of the spatial padding size, respectively.

Then the `convolution_nd` function computes correlations between filters and patches of size $(k_1, k_2, ..., k_N)$ in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of `stride` from the first position $(-p_1, -p_2, ..., -p_N)$ for each spatial axis.

Let $(s_1, s_2, ..., s_N)$ be the stride of filter application. Then, the output size $(l_1, l_2, ..., l_N)$ is determined by the following equations:

$$l_n = (d_n + 2p_n - k_n)/s_n + 1 \quad (n = 1, ..., N)$$

If `cover_all` option is `True`, the filter will cover all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations:

$$l_n = (d_n + 2p_n - k_n + s_n - 1)/s_n + 1 \quad (n = 1, ..., N)$$

Parameters

- `x` *(Variable or N-dimensional array)* – Input variable of shape $(n, c_I, d_1, d_2, ..., d_N)$.
- `W` *(Variable or N-dimensional array)* – Weight variable of shape $(c_O, c_I, k_1, k_2, ..., k_N)$.
- `b` *(None or Variable or N-dimensional array)* – One-dimensional bias variable with length c_O (optional).
- `stride` *(int or tuple of int s)* – Stride of filter applications $(s_1, s_2, ..., s_N)$. `stride=s` is equivalent to $(s, s, ..., s)$.
- `pad` *(int or tuple of int s)* – Spatial padding width for input arrays $(p_1, p_2, ..., p_N)$. `pad=p` is equivalent to $(p, p, ..., p)$.
- `cover_all` *(bool)* – If `True`, all spatial locations are convoluted into some output pixels. It may make the output size larger. `cover_all` needs to be `False` if you want to use cuDNN.
- `dilate` *(int or tuple of int s)* – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d, ..., d)` are equivalent.
- `groups` *(int)* – The number of groups to use grouped convolution. The default is one, where grouped convolution is not used.

Returns Output variable of shape $(n, c_O, l_1, l_2, ..., l_N)$.

Return type `Variable`

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the following conditions are satisfied:

- `cuda.cudnn_enabled` is `True`
- `chainer.config.use_cudnn` is 'always' or 'auto'
- The number of spatial dimensions is more than one.
- `cover_all` is `False`
- The input’s `dtype` is equal to the filter weight’s.
• The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version ≥ v3.)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set

\[\text{chainer.using_config('autotune', True)}\]

See also:

ConvolutionND to manage the model parameters \(W\) and \(b\).

See also:

\text{convolution_2d()}

Example

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True
```

chainer.functions.deconvolution_1d

chainer.functions.deconvolution_1d(\(x, W, b\text{=None, stride=}1, pad=0, outsize=\text{None, dilate=}1, groups=1\))

1-dimensional deconvolution function.

Note: This function calls deconvolution_nd() internally, so see the details of the behavior in the documentation of deconvolution_nd().
chainer.functions.deconvolution_2d

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and papers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image \(x \), the filter weight \(W \), and the bias vector \(b \).

Notation: here is a notation for dimensionalities.

- \(n \) is the batch size.
- \(c_I \) and \(c_O \) are the number of the input and output channels, respectively.
- \(h_I \) and \(w_I \) are the height and width of the input image, respectively.
- \(h_K \) and \(w_K \) are the height and width of the filters, respectively.
- \(h_P \) and \(w_P \) are the height and width of the spatial padding size, respectively.

Let \((s_Y, s_X) \) be the stride of filter application. Then, the output size \((h_O, w_O)\) is estimated by the following equations:

\[
\begin{align*}
h_O &= s_Y (h_I - 1) + h_K - 2h_P, \\
w_O &= s_X (w_I - 1) + w_K - 2w_P.
\end{align*}
\]

The output of this function can be non-deterministic when it uses cuDNN. If `chainer.configuration.config.deterministic` is `True` and cuDNN version is >= v3, it forces cuDNN to use a deterministic algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

Parameters

- \(x \) (Variable or N-dimensional array) – Input variable of shape \((n, c_I, h_I, w_I)\).
- \(W \) (Variable or N-dimensional array) – Weight variable of shape \((c_I, c_O, h_K, w_K)\).
- \(b \) (None or Variable or N-dimensional array) – Bias variable of length \(c_O \) (optional).
- \(\text{stride} \) (int or pair of int s) – Stride of filter applications. \(\text{stride}=s \) and \(\text{stride}=(s, s) \) are equivalent.
- \(\text{pad} \) (int or pair of int s) – Spatial padding width for input arrays. \(\text{pad}=p \) and \(\text{pad}=(p, p) \) are equivalent.
- \(\text{outsize} \) (None or tuple of int s) – Expected output size of deconvolutional operation. It should be pair of height and width \((h_O, w_O)\). Default value is None and the outsize is estimated by input size, stride and pad.
- \(\text{dilate} \) (int or pair of int s) – Dilation factor of filter applications. \(\text{dilate}=d \) and \(\text{dilate}=(d, d) \) are equivalent.
- \(\text{groups} \) (int) – The number of groups to use grouped deconvolution. The default is one, where grouped deconvolution is not used.

Returns Output variable of shape \((n, c_O, h_O, w_O)\).

Return type Variable
See also:

`Deconvolution2D` to manage the model parameters \(W \) and \(b \).

Example

```python
>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype(np.float32)
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True
```

```python
chainer.functions.deconvolution_3d
```

This is a 3-dimensional deconvolution function.

Note: This function calls `deconvolution_nd()` internally, so see the details of the behavior in the documentation of `deconvolution_nd()`.

```python
chainer.functions.deconvolution_nd
```

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of deep learning frameworks and papers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: the input \(x \), the filter weight \(W \), and the bias vector \(b \).

Notation: here is a notation for dimensionalities.

- \(N \) is the number of spatial dimensions.
- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
- $d_1, d_2, ..., d_N$ are the size of each axis of the input's spatial dimensions, respectively.
- $k_1, k_2, ..., k_N$ are the size of each axis of the filters, respectively.
- $p_1, p_2, ..., p_N$ are the size of each axis of the spatial padding size, respectively.
- $s_1, s_2, ..., s_N$ are the stride of each axis of filter application, respectively.

If `outsize` option is `None`, the output size $(l_1, l_2, ..., l_N)$ is determined by the following equations with the items in the above list:

$$
l_n = s_n(d_n - 1) + k_n - 2p_n \quad (n = 1, ..., N)$$

If `outsize` option is given, the output size is determined by `outsize`. In this case, the `outsize` $(l_1, l_2, ..., l_N)$ must satisfy the following equations:

$$d_n = \lceil(l_n + 2p_n - k_n)/s_n \rceil + 1 \quad (n = 1, ..., N)$$

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`.

Parameters

- `x` (*Variable* or *N-dimensional array*) – Input variable of shape $(n, c_I, d_1, d_2, ..., d_N)$.
- `W` (*Variable* or *N-dimensional array*) – Weight variable of shape $(c_I, c_O, k_1, k_2, ..., k_N)$.
- `b` (*None* or *Variable* or *N-dimensional array*) – One-dimensional bias variable with length c_O (optional).
- `stride` (*int* or *tuple of int s*) – Stride of filter applications $(s_1, s_2, ..., s_N)$. `stride=s` is equivalent to $(s, s, ..., s)$.
- `pad` (*int* or *tuple of int s*) – Spatial padding width for input arrays $(p_1, p_2, ..., p_N)$. `pad=p` is equivalent to $(p, p, ..., p)$.
- `outsize` (*None* or *tuple of int s*) – Expected output size of deconvolutional operation. It should be a tuple of ints $(l_1, l_2, ..., l_N)$. Default value is `None` and the `outsize` is estimated by input size, stride and pad.
- `dilate` (*int* or *tuple of int s*) – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d, ..., d)` are equivalent.
- `groups` (*int*) – The number of groups to use grouped convolution. The default is one, where grouped convolution is not used.

Returns Output variable of shape $(n, c_O, l_1, l_2, ..., l_N)$.

Return type *Variable*

See also:

DeconvolutionND to manage the model parameters W and b.

See also:

deconvolution_2d()

Example

Example1: the case when `outsize` is not given.
Example1: when outsize is not given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True
```

Example2: the case when outsize is given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3),
→   outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True
```
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input image \(x \), the filter weight \(W \), and optionally, the bias vector \(b \).

Notation: here is a notation for dimensionalities.

- \(n \) is the batch size.
- \(c_I \) is the number of the input.
- \(c_M \) is the channel multiplier.
- \(h \) and \(w \) are the height and width of the input image, respectively.
- \(h_O \) and \(w_O \) are the height and width of the output image, respectively.
- \(k_H \) and \(k_W \) are the height and width of the filters, respectively.

Parameters

- \(x \) (Variable or N-dimensional array) – Input variable of shape \((n, c_I, h, w)\).
- \(W \) (Variable or N-dimensional array) – Weight variable of shape \((c_M, c_I, k_H, k_W)\).
- \(b \) (Variable or N-dimensional array) – Bias variable of length \(c_M \times c_I \) (optional).
- \(\text{stride} \) (int or pair of ints) – Stride of filter applications. \(\text{stride}=s \) and \(\text{stride}=(s, s) \) are equivalent.
- \(\text{pad} \) (int or pair of ints) – Spatial padding width for input arrays. \(\text{pad}=p \) and \(\text{pad}=(p, p) \) are equivalent.

Returns

Output variable. Its shape is \((n, c_I \times c_M, h_O, w_O)\).

Return type
Variable

Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and patches of size \((k_H, k_W)\) in \(x \). But unlike Convolution2D, DepthwiseConvolution2D does not add up input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution are \((n, c_I \times c_M, h_O, w_O)\), \(c_M \) is called channel_multiplier.

\((h_O, w_O)\) is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

DepthwiseConvolution2D to manage the model parameters \(W \) and \(b \).

Example

```python
>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)
```
chainer.functions.deformable_convolution_2d_sampler

\[\text{chainer.functions.deformable_convolution_2d_sampler}(x, \text{offset}, W, b=\text{None}, \text{stride}=1, \text{pad}=0)\]

Two-dimensional deformable convolution function using computed offset.

This is an implementation of two-dimensional deformable convolution from Deformable Convolutional Networks.

It takes four variables: the input image \(x\), the offset image \(\text{offset}\), the filter weight \(W\), and the bias vector \(b\).

Notation: here is the notation for the dimensionalities.

- \(n\) is the batch size.
- \(c_I\) and \(c_O\) are the number of the input and output, respectively.
- \(h\) and \(w\) are the height and width of the input image, respectively.
- \(k_H\) and \(k_W\) are the height and width of the filters, respectively.
- \(s_Y\) and \(s_X\) are the strides of the filter.
- \(p_H\) and \(p_W\) are the spatial padding sizes.

The output size \((h_O, w_O)\) is determined by the following equations:

\[
h_O = \left(h + 2p_H - k_H \right) / s_Y + 1,
\]
\[
w_O = \left(w + 2p_W - k_W \right) / s_X + 1.
\]

Parameters

- \(x\) (\textit{Variable} or \textit{N-dimensional array}) – Input variable of shape \((n, c_I, h, w)\).
- \(\text{offset}\) (\textit{Variable} or \textit{N-dimensional array}) – Offset variable of shape \((n, 2 \cdot k_H \cdot k_W, h_O, w_O)\). The first \(k_H \cdot k_W\) index of the second axis corresponds to the offsets in the horizontal direction. The last \(k_H \cdot k_W\) index of the second axis corresponds to the offsets in the vertical direction.
- \(W\) (\textit{Variable} or \textit{N-dimensional array}) – Weight variable of shape \((c_O, c_I, k_H, k_W)\).
- \(b\) (\textit{Variable} or \textit{N-dimensional array}) – Bias variable of length \(c_O\) (optional).
- \(\text{stride}\) (\textit{int} or \textit{pair of ints}) – Stride of filter applications. \(\text{stride}=s\) and \(\text{stride}=(s, s)\) are equivalent.
- \(\text{pad}\) (\textit{int} or \textit{pair of ints}) – Spatial padding width for input arrays. \(\text{pad}=p\) and \(\text{pad}=(p, p)\) are equivalent.

Returns Output variable.

Return type \textit{Variable}

Deformable convolution adds 2D offsets to the regular grid sampling locations in the standard convolution. It enables free form deformation of the sampling grid.

See Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei. Deformable Convolutional Networks

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

\textit{DeformableConvolution2D} to manage the model parameters \(W\) and \(b\).
>>> x = np.random.uniform(0, 1, (2, 3, 4, 7)).astype(np.float32)
>>> offset = np.random.uniform(0, 1, (2, 2 * 3 * 3, 2, 5)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (4, 3, 3, 3)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (4,)).astype(np.float32)
>>> y = F.deformable_convolution_2d_sampler(x, offset, W, b)
>>> y.shape
(2, 4, 2, 5)

chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1, cover_all=False)

Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the input image \(x\), the filter weight \(W\), and the bias vector \(b\).

Note: You can also perform dilated convolution by passing `dilate` argument to `chainer.functions.convolution_2d`. The functionality is the same.

Notation: here is a notation for dimensionalities.

- \(n\) is the batch size.
- \(c_I\) and \(c_O\) are the number of the input and output, respectively.
- \(h\) and \(w\) are the height and width of the input image, respectively.
- \(k_H\) and \(k_W\) are the height and width of the filters, respectively.

Parameters

- \(x\) (**Variable** or **N-dimensional array**) – Input variable of shape \((n, c_I, h, w)\).
- \(W\) (**Variable** or **N-dimensional array**) – Weight variable of shape \((c_O, c_I, k_H, k_W)\).
- \(b\) (**Variable** or **N-dimensional array**) – Bias variable of length \(c_O\) (optional).
- \(stride\) (**int** or **pair of ints**) – Stride of filter applications. \(stride=s\) and \(stride=(s, s)\) are equivalent.
- \(pad\) (**int** or **pair of ints**) – Spatial padding width for input arrays. \(pad=p\) and \(pad=(p, p)\) are equivalent.
- \(dilate\) (**int** or **pair of ints**) – Dilation factor of filter applications. \(dilate=d\) and \(dilate=(d, d)\) are equivalent.
- \(cover_all\) (**bool**) – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger.

Returns Output variable.

Return type **Variable**

The two-dimensional dilated convolution function is defined as follows. Then the \texttt{DilatedConvolution2D} function computes correlations between filters and patches of size \((k_H, k_W)\) in \(x\). Patches here are extracted at intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded
vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of stride from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let \((s_Y, s_X)\) be the stride of filter application, \((p_H, p_W)\) the spatial padding size, and \((d_Y, d_X)\) the dilation factor of filter application. Then, the output size \((h_O, w_O)\) is determined by the following equations:

\[
\begin{align*}
h_O &= (h + 2p_H - k_H - (k_H - 1) \times (d_Y - 1))/s_Y + 1, \\
w_O &= (w + 2p_W - k_W - (k_W - 1) \times (d_X - 1))/s_X + 1.
\end{align*}
\]

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

chainer.functions.embed_id

`chainer.functions.embed_id(x, W, ignore_label=None)`

Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) \(x\) in \(B\) dimensional integer vector, and a set of all ID (word) embeddings \(W\) in \(V \times d\) float matrix. It outputs \(B \times d\) matrix whose \(i\)-th row is the \(x[i]\)-th row of \(W\).

This function is only differentiable on the input \(W\).

Parameters

- \(x\) (Variable or N-dimensional array) – Batch vectors of IDs. Each element must be signed integer.
- \(W\) (Variable or N-dimensional array) – Distributed representation of each ID (a.k.a. word embeddings).
- \(ignore_label\) (int or None) – If \(ignore_label\) is an int value, \(i\)-th row of return value is filled with 0.

Returns Output variable.

Return type Variable

See also: EmbedID to manage the model parameter \(W\).

Example

```python
>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]], dtype=float32)
>>> F.embed_id(x, W).array
array([[2., 2., 2.],
       [1., 1., 1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).array
array([[2., 2., 2.],
       [0., 0., 0.]], dtype=float32)
```
chainer.functions.linear

chainer.functions.linear(x, W=None, b=None, n_batch_axes=1)

Linear function, or affine transformation.
It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It computes

$$y_i = W x_i + b.$$

Parameters

- x ($Variable$ or N-dimensional array) – Input variable, which is a ($s_1, s_2, ..., s_n$)-shaped float array. Its first $n_{\text{batch axes}}$ dimensions are handled as minibatch dimensions. The other dimensions are handled as concatenated one dimension whose size must be $(s_{n_{\text{batch axes}}} \times \ldots \times s_n = N)$.
- W ($Variable$ or N-dimensional array) – Weight variable of shape (M, N), where $(N = s_{n_{\text{batch axes}}} \times \ldots \times s_n)$.
- b ($Variable$ or N-dimensional array) – Bias variable (optional) of shape $(M,)$.
- $n_{\text{batch axes}}$ (int) – The number of batch axes. The default is 1. The input variable is reshaped into $(n_{\text{batch axes}} + 1)$-dimensional tensor. This should be greater than 0.

Returns

Output variable. A float array with shape of $(s_1, ..., s_{n_{\text{batch axes}}}, M)$.

Return type $Variable$

See also:
Linear to manage the model parameters W and b.

Example

```python
>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)
```

chainer.functions.local_convolution_2d

chainer.functions.local_convolution_2d(x, W=None, b=None, stride=1)

Two-dimensional local convolution function.
Locally-connected function for 2D inputs. Works similarly to convolution_2d, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input. It takes two or three variables: the input image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

- n is the batch size.
- c_I is the number of the input.
• c_O is the number of output channels.
• h and w are the height and width of the input image, respectively.
• h_O and w_O are the height and width of the output image, respectively.
• k_H and k_W are the height and width of the filters, respectively.

Parameters

- x (Variable or N-dimensional array) – Input variable of shape (n, c_I, h, w).
- W (Variable or N-dimensional array) – Weight variable of shape $(c_O, h_O, w_O, c_I, k_H, k_W)$.
- b (Variable or N-dimensional array) – Bias variable of shape (c_O, h_O, w_O) (optional).
- stride (int or pair of ints) – Stride of filter applications. $\text{stride}=s$ and $\text{stride}=(s, s)$ are equivalent.

Returns

Output variable. Its shape is $(n, c_I \times c_O, h_O, w_O)$.

Return type

Variable

Like Convolution2D, LocalConvolution2D function computes correlations between filters and patches of size (k_H, k_W) in x. But unlike Convolution2D, LocalConvolution2D has a separate filter for each patch of the input

(h_O, w_O) is determined by the equivalent equation of Convolution2D, without any padding

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

LocalConvolution2D to manage the model parameters W and b.

Example

```python
>>> x = np.random.uniform(0, 1, (2, 3, 7, 7))
>>> W = np.random.uniform(0, 1, (2, 5, 5, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (2, 5, 5))
>>> y = F.local_convolution_2d(x, W, b)
>>> y.shape
(2, 2, 5, 5)
```
functions 215

each time \(t \) from input \(x_t \).

\[
\begin{align*}
 r_t^f &= \sigma(W^f_0 x_t + W^f_1 h_{t-1} + b^f_0 + b^f_3) \\
 z_t^f &= \sigma(W^f_1 x_t + W^f_4 h_{t-1} + b^f_1 + b^f_4) \\
 h_t' &= \tanh(W^f_2 x_t + b^f_2 + r_t^f \cdot (W^f_3 h_{t-1} + b^f_5)) \\
 h_t^f &= (1 - z_t^f) \cdot h_t' + z_t^f \cdot h_{t-1} \\
 r_t^b &= \sigma(W^b_0 x_t + W^b_3 h_{t-1} + b^b_0 + b^b_3) \\
 z_t^b &= \sigma(W^b_1 x_t + W^b_4 h_{t-1} + b^b_1 + b^b_4) \\
 h_t' &= \tanh(W^b_2 x_t + b^b_2 + r_t^b \cdot (W^b_3 h_{t-1} + b^b_5)) \\
 h_t^b &= (1 - z_t^b) \cdot h_t' + z_t^b \cdot h_{t-1} \\
 h_t &= [h_t^f; h_t^b]
\end{align*}
\]

where \(W^f \) is weight matrices for forward-GRU, \(W^b \) is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates \(h_t \) for all \(t \) with one call. Six weight matrices and six bias vectors are required for each layers. So, when \(S \) layers exists, you need to prepare \(6S \) weight matrices and \(6S \) bias vectors.

If the number of layers \(n_layers \) is greater than 1, input of \(k \)-th layer is hidden state \(h_{k-t} \) of \(k-1 \)-th layer. Note that all input variables except first layer may have different shape from the first layer.

Parameters

- \textbf{\texttt{n_layers}} \texttt{(int)} – Number of layers.
- \textbf{\texttt{dropout_ratio}} \texttt{(float)} – Dropout ratio.
- \textbf{\texttt{hx}} \texttt{(Variable)} – Variable holding stacked hidden states. Its shape is \((2S, B, N)\) where \(S \) is number of layers and is equal to \texttt{n_layers}, \(B \) is mini-batch size, and \(N \) is dimension of hidden units.
- \textbf{\texttt{ws}} \texttt{(list of list of Variable)} – Weight matrices. \texttt{ws[i]} represents weights for \(i \)-th layer. Each \texttt{ws[i]} is a list containing six matrices. \texttt{ws[i][j]} is corresponding with \(W^j \) in the equation. Only \texttt{ws[0][j]} where \(0 <= j < 3 \) is \((N, I)\) shape as they are multiplied with input variables. All other matrices has \((N, N)\) shape.
- \textbf{\texttt{bs}} \texttt{(list of list of Variable)} – Bias vectors. \texttt{bs[i]} represents biases for \(i \)-th layer. Each \texttt{bs[i]} is a list containing six vectors. \texttt{bs[i][j]} is corresponding with \(b^j \) in the equation. Shape of each matrix is \((N,)\) where \(N \) is dimension of hidden units.
- \textbf{\texttt{xs}} \texttt{(list of Variable)} – A list of \texttt{Variable} holding input values. Each element \texttt{xs[t]} holds input value for time \(t \). Its shape is \((B_t, I)\), where \(B_t \) is mini-batch size for time \(t \), and \(I \) is size of input units. Note that this function supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. \texttt{transpose_sequence()} transpose a list of \texttt{Variable()} holding sequence. So \texttt{xs} needs to satisfy \texttt{xs[t].shape[0] >= xs[t + 1].shape[0]}.
- \textbf{\texttt{use_bi_direction}} \texttt{(bool)} – If \texttt{True}, this function uses Bi-direction GRU.

Returns

This function returns a tuple containing three elements, \(h_y \) and \(y_s \).

- \(h_y \) is an updated hidden states whose shape is same as \(h_x \).
• *ys* is a list of *Variable*. Each element *ys*[t] holds hidden states of the last layer corresponding to an input *xs*[t]. Its shape is *(B_t, N)* where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as *xs*[t].

Return type tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(*n_layers*, *dropout_ratio*, *hx*, *cx*, *ws*, *bs*, *xs*)

Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state *h*_0, an initial cell state *c*_0, an input sequence *x*, weight matrices *W*, and bias vectors *b*. This function calculates hidden states *h*_t and *c*_t for each time *t* from input *x*_t.

\[
i_f^t = \sigma(W_f^0 x_t + W_f^4 h_{t-1} + b_0^f + b_4^f),
\]

\[
f_f^t = \sigma(W_f^1 x_t + W_f^3 h_{t-1} + b_1^f + b_3^f),
\]

\[
o_f^t = \sigma(W_f^2 x_t + W_f^6 h_{t-1} + b_2^f + b_6^f),
\]

\[
tanh(W_f^3 x_t + W_f^7 h_{t-1} + b_3^f + b_7^f),
\]

\[
c_f^t = f_f^t \cdot c_{t-1}^f + i_f^t \cdot o_f^t,
\]

\[
h_f^t = o_f^t \cdot \text{tanh}(c_f^t),
\]

\[
i_b^t = \sigma(W_b^0 x_t + W_b^4 h_{t-1} + b_0^b + b_4^b),
\]

\[
f_b^t = \sigma(W_b^1 x_t + W_b^3 h_{t-1} + b_1^b + b_3^b),
\]

\[
o_b^t = \sigma(W_b^2 x_t + W_b^6 h_{t-1} + b_2^b + b_6^b),
\]

\[
tanh(W_b^3 x_t + W_b^7 h_{t-1} + b_3^b + b_7^b),
\]

\[
c_b^t = f_b^t \cdot c_{t-1}^b + i_b^t \cdot o_b^t,
\]

\[
h_b^t = o_b^t \cdot \text{tanh}(c_b^t),
\]

\[
[h_f^t; h_b^t]
\]

where *W_f* is the weight matrices for forward-LSTM, *W_b* is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates *h*_t for all *t* with one call. Eight weight matrices and eight bias
vectors are required for each layer of each direction. So, when S layers exist, you need to prepare $16S$ weight matrices and $16S$ bias vectors.

If the number of layers `n_layers` is greater than 1, the input of the k-th layer is the hidden state h_t of the $k-1$-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

- `n_layers (int)` – The number of layers.
- `dropout_ratio (float)` – Dropout ratio.
- `hx (Variable)` – Variable holding stacked hidden states. Its shape is $(2S, B, N)$ where S is the number of layers and is equal to `n_layers`, B is the mini-batch size, and N is the dimension of the hidden units. Because of bi-direction, the first dimension length is $2S$.
- `cx (Variable)` – Variable holding stacked cell states. It has the same shape as `hx`.
- `ws (list of list of Variable)` – Weight matrices. `ws[2 * l + m]` represents the weights for the l-th layer of the m-th direction. ($m == 0$ means the forward direction and $m == 1$ means the backward direction.) Each `ws[i]` is a list containing eight matrices. `ws[i][j]` corresponds to W_j in the equation. `ws[0][j]` and `ws[1][j]` where $0 <= j < 4$ are (N, I)-shaped because they are multiplied with input variables, where I is the size of the input. `ws[1][j]` where $2 <= i$ and $0 <= j < 4$ are $(N, 2N)$-shaped because they are multiplied with two hidden layers $h_t = [h^f_t; h^b_t]$. All other matrices are (N, N)-shaped.
- `bs (list of list of Variable)` – Bias vectors. `bs[2 * l + m]` represents the weights for the l-th layer of the m-th direction. ($m == 0$ means the forward direction and $m == 1$ means the backward direction.) Each `bs[i]` is a list containing eight vectors. `bs[i][j]` corresponds to b_j in the equation. The shape of each matrix is $(N,)$.
- `xs (list of Variable)` – A list of Variable holding input values. Each element `xs[t]` holds input value for time t. Its shape is (B_t, I) where B_t is the mini-batch size for time t. The sequences must be transposed. `transpose_sequence()` can be used to transpose a list of Variables each representing a sequence. When sequences has different lengths, they must be sorted in descending order of their lengths before transposing. So `xs` needs to satisfy `xs[t].shape[0] >= xs[t + 1].shape[0]`.

Returns

This function returns a tuple containing three elements, `hy`, `cy` and `ys`.

- `hy` is an updated hidden states whose shape is the same as `hx`.
- `cy` is an updated cell states whose shape is the same as `cx`.
- `ys` is a list of `Variable`. Each element `ys[t]` holds hidden states of the last layer corresponding to an input `xs[t]`. Its shape is $(B_t, 2N)$ where B_t is the mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as `xs[t]`.

Return type `tuple`

Example

```python
>>> batches = [3, 2, 1]  # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batches]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batches[0], out_size)
(continues on next page)
```
```python
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
...    if i == 0 and j < 4:
...        return in_size
...    elif i > 0 and j < 4:
...        return out_size * 2
...    else:
...        return out_size
...
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
...    for direction in (0, 1):
...        ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i in range(8)])
...    bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape  # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape  # ws[2:][:4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape  # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_bilstm(...
    n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]
```

chainer.functions.n_step_birnn

chainer.functions.n_step_birnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation='tanh')

Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t and c_t for each time t from input x_t.

\[
\begin{align*}
 h_t^f &= f(W_0^f x_t + W_1^f h_{t-1} + b_0^f + b_1^f), \\
 h_t^b &= f(W_0^b x_t + W_1^b h_{t-1} + b_0^b + b_1^b), \\
 h_t &= [h_t^f; h_t^b],
\end{align*}
\]

where f is an activation function.
Weight matrices W contains two matrices W^f and W^b. W^f is weight matrices for forward directional RNN. W^b is weight matrices for backward directional RNN.

W^f contains W^f_0 for an input sequence and W^f_1 for a hidden state. W^b contains W^b_0 for an input sequence and W^b_1 for a hidden state.

Bias matrices b contains two matrices b^f and b^b. b^f contains b^f_0 for an input sequence and b^f_1 for a hidden state. b^b contains b^b_0 for an input sequence and b^b_1 for a hidden state.

As the function accepts a sequence, it calculates h_t for all t with one call. Two weight matrices and two bias vectors are required for each layer. So, when S layers exist, you need to prepare $2S$ weight matrices and $2S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_{t-1} of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Parameters

- `n_layers` *(int)* – Number of layers.
- `dropout_ratio` *(float)* – Dropout ratio.
- `hx` *(Variable)* – Variable holding stacked hidden states. Its shape is $(2S, B, N)$ where S is number of layers and is equal to `n_layers`, B is mini-batch size, and N is dimension of hidden units. Because of bi-direction, the first dimension length is $2S$.
- `ws` *(list of list of Variable)* – Weight matrices. $ws[2 * i + di]$ represents weights for i-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $ws[2 * i + di]$ is a list containing two matrices. $ws[2 * i + di][j]$ is corresponding with W^f_j if $di = 0$ and corresponding with W^b_j if $di = 1$ in the equation. Only $ws[0][j]$ and $ws[1][j]$ where $0 <= j < 1$ are (N, I) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- `bs` *(list of list of Variable)* – Bias vectors. $bs[2 * i + di]$ represents biases for i-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $bs[2 * i + di]$ is a list containing two vectors. $bs[2 * i + di][j]$ is corresponding with b^f_j if $di = 0$ and corresponding with b^b_j if $di = 1$ in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- `xs` *(list of Variable)* – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this function supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. `transpose_sequence()` transpose a list of `Variable()` holding sequence. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.
- `activation` *(str)* – Activation function name. Please select `tanh` or `relu`.

Returns

This function returns a tuple containing three elements, hy and ys.

- hy is an updated hidden states whose shape is same as hx.
- ys is a list of Variable. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is (B_t, N) where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as $xs[t]$.

Return type tuple
chainer.functions.n_step_gru

chainer.functions.n_step_gru(n_layers, dropout_ratio, hx, ws, bs, xs)

Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state h_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t for each time t from input x_t.

\[
\begin{align*}
 r_t &= \sigma(W_0 x_t + W_3 h_{t-1} + b_0 + b_3) \\
 z_t &= \sigma(W_1 x_t + W_4 h_{t-1} + b_1 + b_4) \\
 h_t' &= \tanh(W_2 x_t + b_2 + r_t \cdot (W_5 h_{t-1} + b_5)) \\
 h_t &= (1 - z_t) \cdot h_t' + z_t \cdot h_{t-1}
\end{align*}
\]

As the function accepts a sequence, it calculates h_t for all t with one call. Six weight matrices and six bias vectors are required for each layers. So, when S layers exists, you need to prepare $6S$ weight matrices and $6S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_t of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Parameters

- **n_layers** (int) – Number of layers.
- **dropout_ratio** (float) – Dropout ratio.
- **hx** (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- **ws** (list of list of Variable) – Weight matrices. $ws[i]$ represents weights for i-th layer. Each $ws[i]$ is a list containing six matrices. $ws[i][j]$ is corresponding with W_j in the equation. Only $ws[0][j]$ where $0 \leq j < 3$ is (N, I) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- **bs** (list of list of Variable) – Bias vectors. $bs[i]$ represents biases for i-th layer. Each $bs[i]$ is a list containing six vectors. $bs[i][j]$ is corresponding with b_j in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- **xs** (list of Variable) – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this function supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable holding sequence. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.

Returns

This function returns a tuple containing two elements, hy and ys.

- **hy** is an updated hidden states whose shape is same as hx.
- **ys** is a list of Variable. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is (B_t, N) where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as $xs[t]$.

Return type tuple
chainer.functions.n_step_lstm

chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)

Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t and c_t for each time t from input x_t.

\[
\begin{align*}
i_t &= \sigma(W_0x_t + W_4h_{t-1} + b_0 + b_4) \\
f_t &= \sigma(W_1x_t + W_5h_{t-1} + b_1 + b_5) \\
o_t &= \sigma(W_2x_t + W_6h_{t-1} + b_2 + b_6) \\
a_t &= \tanh(W_3x_t + W_7h_{t-1} + b_3 + b_7) \\
c_t &= f_t \cdot c_{t-1} + i_t \cdot a_t \\
h_t &= o_t \cdot \tanh(c_t)
\end{align*}
\]

As the function accepts a sequence, it calculates h_t for all t with one call. Eight weight matrices and eight bias vectors are required for each layer. So, when S layers exist, you need to prepare $8S$ weight matrices and $8S$ bias vectors.

If the number of layers `n_layers` is greater than 1, the input of the k-th layer is the hidden state h_{t-1} of the $k-1$-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

- `n_layers (int)` – The number of layers.
- `dropout_ratio (float)` – Dropout ratio.
- `hx (Variable)` – Variable holding stacked hidden states. Its shape is (S, B, N) where S is the number of layers and is equal to `n_layers`, B is the mini-batch size, and N is the dimension of the hidden units.
- `cx (Variable)` – Variable holding stacked cell states. It has the same shape as `hx`.
- `ws (list of list of Variable)` – Weight matrices. $ws[i]$ represents the weights for the i-th layer. Each $ws[i]$ is a list containing eight matrices. $ws[i][j]$ corresponds to W_j in the equation. Only $ws[0][j]$ where $0 <= j < 4$ are (N, I)-shaped as they are multiplied with input variables, where I is the size of the input and N is the dimension of the hidden units. All other matrices are (N, N)-shaped.
- `bs (list of list of Variable)` – Bias vectors. $bs[i]$ represents the biases for the i-th layer. Each $bs[i]$ is a list containing eight vectors. $bs[i][j]$ corresponds to b_j in the equation. The shape of each matrix is (N, N) where N is the dimension of the hidden units.
- `xs (list of Variable)` – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for time t. The sequences must be transposed. `transpose_sequence()` can be used to transpose a list of Variables each representing a sequence. When sequences have different lengths, they must be sorted in descending order of their lengths before transposing. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

- hy is an updated hidden states whose shape is the same as `hx`.
- cy is an updated cell states whose shape is the same as `cx`.
• *ys* is a list of *Variable*. Each element *ys*[t] holds hidden states of the last layer corresponding to an input *xs*[t]. Its shape is (B_<i>_t, N) where B_<i>_t is the mini-batch size for time t, and N is size of hidden units. Note that B_<i>_t is the same value as *xs*[t].

Return type tuple

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of hidden units, please use *chainer.functions.lstm*.

See also:

chainer.functions.lstm()

Example

```python
>>> batches = [3, 2, 1]  # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batches]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batches[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
...    ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i in range(8)])
...    bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
... >>> ws[0][0].shape  # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape  # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm(
...    n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(2, 3, 2)
>>> cy.shape
(2, 3, 2)
>>> [y.shape for y in ys]
[(3, 2), (2, 2), (1, 2)]
```
chainer.functions.n_step_rnn

chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation='tanh')

Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t and c_t for each time t from input x_t.

$$h_t = f(W_0 x_t + W_1 h_{t-1} + b_0 + b_1)$$

where f is an activation function.

Weight matrices W contains two matrices W_0 and W_1. W_0 is a parameter for an input sequence. W_1 is a parameter for a hidden state. Bias matrices b contains two matrices b_0 and b_1. b_0 is a parameter for an input sequence. b_1 is a parameter for a hidden state.

As the function accepts a sequence, it calculates h_t for all t with one call. Two weight matrices and two bias vectors are required for each layer. So, when S layers exist, you need to prepare $2S$ weight matrices and $2S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_{t-1} of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Parameters

- **n_layers (int)** – Number of layers.
- **dropout_ratio (float)** – Dropout ratio.
- **hx (Variable)** – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- **ws (list of list of Variable)** – Weight matrices. $ws[i]$ represents weights for i-th layer. Each $ws[i]$ is a list containing two matrices. $ws[i][j]$ is corresponding with W_j in the equation. Only $ws[0][j]$ where $0 <= j < 1$ is (N, I) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- **bs (list of list of Variable)** – Bias vectors. $bs[i]$ represents biases for i-th layer. Each $bs[i]$ is a list containing two vectors. $bs[i][j]$ is corresponding with b_j in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- **xs (list of Variable)** – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this function supports variable length sequences. When sequencs has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable() holding sequence. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.
- **activation (str)** – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing two elements, hy and ys.

- **hy** is an updated hidden states whose shape is same as hx.
- **ys** is a list of Variable. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is (B_t, N) where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as $xs[t]$.
chainer.functions.shift

chainer.functions.shift(x, ksize=3, dilate=1)
Shift function.

See: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions

Parameters
• x (Variable or N-dimensional array) – Input variable of shape \((n, c, h, w)\).
• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). \(ksize=k\) and \(ksize=(k, k)\) are equivalent.
• dilate (int or pair of ints) – Dilation factor of filter applications. \(dilate=d\) and \(dilate=(d, d)\) are equivalent.

Returns Output variable of same shape as \(x\).

Return type Variable

4.2.5 Evaluation functions

counter

chainer.functions.accuracy

chainer.functions.accuracy(y, t, ignore_label=None)
Computes multiclass classification accuracy of the minibatch.

Parameters
• y (Variable or N-dimensional array) – Array whose \((i, j, k, \ldots)\)-th element indicates the score of the class \(j\) at the \((i, k, \ldots)\)-th sample. The prediction label \(\hat{t}\) is calculated by the formula \(\hat{t}(i, k, \ldots) = \text{argmax}_j y(i, j, k, \ldots)\).
• t (Variable or N-dimensional array) – Array of ground truth labels.
• ignore_label (int or None) – Skip calculating accuracy if the true label is ignore_label.

Returns A variable holding a scalar array of the accuracy.

Return type Variable
Note: This function is non-differentiable.

Example

We show the most common case, when \(y \) is the two dimensional array.

\[
\begin{align*}
\text{>>=} & \quad y = np.array([0.1, 0.7, 0.2], \quad \# \text{prediction label is 1} \\
& \quad \ldots \quad [8.0, 1.0, 2.0], \quad \# \text{prediction label is 0} \\
& \quad \ldots \quad [-8.0, 1.0, 2.0], \quad \# \text{prediction label is 2} \\
& \quad \ldots \quad [-8.0, -1.0, -2.0]], \quad \# \text{prediction label is 1} \\
\text{>>=} & \quad t = np.array([1, 0, 2, 1], \ \text{np.int32}) \\
\text{>>=} & \quad \text{F.accuracy}(y, t).\text{array} \quad \# \text{100\% accuracy because all samples are correct} \\
& \quad \text{array(1.)} \\
\text{>>=} & \quad t = np.array([1, 0, 0, 0], \ \text{np.int32}) \\
\text{>>=} & \quad \text{F.accuracy}(y, t).\text{array} \quad \# \text{50\% accuracy because 1st and 2nd samples are correct.} \\
& \quad \text{array(0.5)} \\
\text{>>=} & \quad \text{F.accuracy}(y, t, \text{ignore_label}=0).\text{array} \quad \# \text{100\% accuracy because of ignoring}_\rightarrow \text{the 2nd, 3rd and 4th samples.} \\
& \quad \text{array(1.)}
\end{align*}
\]

chainer.functions.binary_accuracy

chainer.functions.binary_accuracy\((y, t)\)
Computes binary classification accuracy of the minibatch.

Parameters

- \(y \) (Variable or N-dimensional array) – Array whose i-th element indicates the score of positive at the i-th sample. The prediction label \(\hat{t}[i] \) is 1 if \(y[i] \geq 0 \), otherwise 0.

- \(t \) (Variable or N-dimensional array) – Array holding a signed integer vector of ground truth labels. If \(t[i] == 1 \), it indicates that i-th sample is positive. If \(t[i] == 0 \), it indicates that i-th sample is negative. If \(t[i] == -1 \), corresponding \(y[i] \) is ignored. Accuracy is zero if all ground truth labels are -1.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when \(y \) is the two dimensional array.

\[
\begin{align*}
\text{>>=} & \quad y = np.array([-2.0, 0.0], \quad \# \text{prediction labels are [0, 1]} \\
& \quad \ldots \quad [3.0, -5.0]], \quad \# \text{prediction labels are [1, 0]} \\
\text{>>=} & \quad t = np.array([0, 1], \\
& \quad \ldots \quad [1, 0]], \ \text{np.int32}) \\
\text{>>=} & \quad \text{F.binary_accuracy}(y, t).\text{array} \quad \# \text{100\% accuracy because all samples are correct.} \\
& \quad \text{array(1.)} \\
\text{>>=} & \quad t = np.array([0, 0], \\
& \quad \ldots \quad [0, 0]], \ \text{np.int32}) \\
\end{align*}
\]

(continues on next page)
```python
>>> F.binary_accuracy(y, t).array # 50% accuracy because y[0][0] and y[1][0] are correct.
array(0.5)
```
chainer.functions.f1_score

chainer.functions.f1_score(y, t, label_num=None, ignore_label=-1)

chainer.functions.precison

chainer.functions.precision(y, t, label_num=None, ignore_label=-1)

chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput='uniform_average')
Computes R^2(coefficient of determination) regression score function.

Parameters

- **pred** (**Variable** or **N-dimensional array**) – Variable holding a vector, matrix or tensor of estimated target values.
- **true** (**Variable** or **N-dimensional array**) – Variable holding a vector, matrix or tensor of correct target values.
- **sample_weight** – This argument is for compatibility with scikit-learn’s implementation of r2_score. Current implementation admits None only.
- **multioutput** (**string**) – [‘uniform_average’, ‘raw_values’]. If ‘uniform_average’, this function returns an average of R^2 score of multiple output. If ‘raw_average’, this function return a set of R^2 score of multiple output.

Returns
A Variable holding a scalar array of the R^2 score if ‘multioutput’ is ‘uniform_average’ or a vector of R^2 scores if ‘multioutput’ is ‘raw_values’.

Return type **Variable**

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall(y, t, label_num=None, ignore_label=-1)

4.2.6 Loss functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.absolute_error</td>
<td>Element-wise absolute error function.</td>
</tr>
<tr>
<td>chainer.functions.bernoulli_nll</td>
<td>Computes the negative log-likelihood of a Bernoulli distribution.</td>
</tr>
<tr>
<td>chainer.functions.black_out</td>
<td>BlackOut loss function.</td>
</tr>
<tr>
<td>chainer.functions.</td>
<td>Connectionist Temporal Classification loss function.</td>
</tr>
<tr>
<td>connectionist_temporal_classification</td>
<td></td>
</tr>
<tr>
<td>chainer.functions.contrastive</td>
<td>Computes contrastive loss.</td>
</tr>
<tr>
<td>chainer.functions.crf1d</td>
<td>Calculates negative log-likelihood of linear-chain CRF.</td>
</tr>
<tr>
<td>chainer.functions.argmax_crf1d</td>
<td>Computes a state that maximizes a joint probability of the given CRF.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.cross_covariance</code></td>
<td>Computes the sum-squared cross-covariance penalty between y and z.</td>
</tr>
<tr>
<td><code>chainer.functions.decov</code></td>
<td>Computes the DeCov loss of h.</td>
</tr>
<tr>
<td><code>chainer.functions.discriminative_margin_based_clustering_loss</code></td>
<td>Discriminative margin-based clustering loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.gaussian_kl_divergence</code></td>
<td>Computes the KL-divergence of Gaussian variables from the standard one.</td>
</tr>
<tr>
<td><code>chainer.functions.gaussian_nll</code></td>
<td>Computes the negative log-likelihood of a Gaussian distribution.</td>
</tr>
<tr>
<td><code>chainer.functions.hinge</code></td>
<td>Computes the hinge loss for a one-of-many classification task.</td>
</tr>
<tr>
<td><code>chainer.functions.huber_loss</code></td>
<td>Computes the Huber loss.</td>
</tr>
<tr>
<td><code>chainer.functions.mean_absolute_error</code></td>
<td>Mean absolute error function.</td>
</tr>
<tr>
<td><code>chainer.functions.mean_squared_error</code></td>
<td>Mean squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.negative_sampling</code></td>
<td>Negative sampling loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.sigmoid_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-sigmoid activations.</td>
</tr>
<tr>
<td><code>chainer.functions.softmax_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-softmax activations.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_error</code></td>
<td>Squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.triplet</code></td>
<td>Computes triplet loss.</td>
</tr>
</tbody>
</table>

`chainer.functions.absolute_error`

`chainer.functions.absolute_error(x0, x1)`
Element-wise absolute error function.
Computes the element-wise absolute error L between two inputs x_0 and x_1 defined as follows.
$$L = |x_0 - x_1|$$

Parameters

- `x0` ([Variable](https://docs.chainer.org/en/latest/reference/user_guide/variable.html) or [N-dimensional array](https://docs.chainer.org/en/latest/reference/user_guide/variable.html)) – First input variable.

Returns An array representing the element-wise absolute error between the two inputs.

Return type [Variable](https://docs.chainer.org/en/latest/reference/user_guide/variable.html)

`chainer.functions.bernoulli_nll`

`chainer.functions.bernoulli_nll(x, y, reduce='sum')`
Computes the negative log-likelihood of a Bernoulli distribution.
This function calculates the negative log-likelihood of a Bernoulli distribution.
$$- \log B(x; p) = - \sum_i \{x_i \log(p_i) + (1 - x_i) \log(1 - p_i)\},$$

where $p = \sigma(y)$, $\sigma(\cdot)$ is a sigmoid function, and $B(x; p)$ is a Bernoulli distribution.
The output is a variable whose value depends on the value of the option `reduce`. If it is `no`, it holds the elementwise values. If it is `sum` or `mean`, loss values are summed up or averaged respectively.
As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means `Linear`) to this function directly.

Parameters

- `x (Variable or N-dimensional array)` – Input variable.
- `y (Variable or N-dimensional array)` – A variable representing the parameter of Bernoulli distribution.
- `reduce (str)` – Reduction option. Its value must be either 'sum', 'mean' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable representing the negative log-likelihood. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum' or 'mean', the output variable holds a scalar value.

Return type `Variable`

```python
chainer.functions.black_out
```

BlackOut loss function.

BlackOut loss function is defined as

\[
-\log(p(t)) - \sum_{s \in S} \log(1 - p(s)),
\]

where `t` is the correct label, `S` is a set of negative examples and \(p(\cdot) \) is likelihood of a given label. And, \(p \) is defined as

\[
p(y) = \frac{\exp(W_y^T x)}{\sum_{s \in \text{samples}} \exp(W_s^T x)}.
\]

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the no loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

- `x (Variable or N-dimensional array)` – Batch of input vectors. Its shape should be \((N, D)\).
- `t (Variable or N-dimensional array)` – Vector of ground truth labels. Its shape should be \((N,)\). Each elements \(v\) should satisfy \(0 \geq v \geq V\) or \(-1\) where \(V\) is the number of label types.
- `W (Variable or N-dimensional array)` – Weight matrix. Its shape should be \((V, D)\)
- `samples (Variable)` – Negative samples. Its shape should be \((N, S)\) where \(S\) is the number of negative samples.
- `reduce (str)` – Reduction option. Its value must be either 'no' or 'mean'. Otherwise, `ValueError` is raised.

Returns A variable object holding loss value(s). If `reduce` is 'no', the output variable holds an array whose shape is \((N,)\). If it is 'mean', it holds a scalar.

Return type `Variable`
chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol,
input_length=None,
label_length=None, reduce='mean')

Connectionist Temporal Classification loss function.

Connectionist Temporal Classification (CTC) [Graves2006] is a loss function of sequence labeling where the alignment between the inputs and target is unknown. See also [Graves2012]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

- x (list or tuple of Variable) – A list of unnormalized probabilities for labels. Each element of x, x[i], is a Variable object, which has shape (B, V), where B is the batch size and V is the number of labels. The softmax of x[i] represents the probabilities of the labels at time i.

- t (Variable or N-dimensional array) – A matrix including expected label sequences. Its shape is (B, M), where B is the batch size and M is the maximum length of the label sequences. All elements in t must be less than V, the number of labels.

- blank_symbol (int) – Index of blank_symbol. This value must be non-negative.

- input_length (Variable or N-dimensional array) – Length of sequence for each of mini batch x (optional). Its shape must be (B,). If the input_length is omitted or None, it assumes that all of x is valid input.

- label_length (Variable or N-dimensional array) – Length of sequence for each of mini batch t (optional). Its shape must be (B,). If the label_length is omitted or None, it assumes that all of t is valid input.

- reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a scalar.

Return type Variable

Note: You need to input x without applying to activation functions (e.g. softmax function), because this function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.
Note: This function supports (batch, sequence, 1-dimensional input)-data.

chainer.functions.contrastive

Chainer Documentation, Release 6.7.0

chainer.functions.

contrastive

chainer.functions.

contrastive

(x0, x1, y, margin=1, reduce='mean')

Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they are dissimilar.

Let \(N \) and \(K \) denote mini-batch size and the dimension of input variables, respectively. The shape of both input variables \(x0 \) and \(x1 \) should be \((N, K)\). The loss value of the \(n \)-th sample pair \(L_n \) is

\[
L_n = \frac{1}{2} \left(y_n d_n^2 + (1 - y_n) \max(\text{margin} - d_n, 0)^2 \right)
\]

where \(d_n = \|x_{0_n} - x_{1_n}\|_2 \), \(x_{0_n} \) and \(x_{1_n} \) are \(n \)-th \(K \)-dimensional vectors of \(x0 \) and \(x1 \).

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

- \(x0 \) (Variable or N-dimensional array) – The first input variable. The shape should be \((N, K)\), where \(N \) denotes the mini-batch size, and \(K \) denotes the dimension of \(x0 \).
- \(x1 \) (Variable or N-dimensional array) – The second input variable. The shape should be the same as \(x0 \).
- \(y \) (Variable or N-dimensional array) – Labels. All values should be 0 or 1. The shape should be \((N,)\), where \(N \) denotes the mini-batch size.
- \(\text{margin} \) (float) – A parameter for contrastive loss. It should be positive value.
- \(\text{reduce} \) (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If \(\text{reduce} \) is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with Application to Face Verification for details.

Example

```python
>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype(np.float32)
>>> y = np.array([1, 0]).astype(np.int32)
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0)  # harder penalty
variable(0.3528857)
>>> z = F.contrastive(x0, x1, y, reduce='no')
```

(continues on next page)
>>> z.shape
(2,)
>>> z.array
array([0.625, 0.], dtype=float32)

chainer.functions.crf1d

chainer.functions.crf1d(cost, xs, ys, reduce='mean')
Calculates negative log-likelihood of linear-chain CRF.
It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let c_{st} be a transition cost from a label s to a label t, x_t be a cost of a label t at position i, and y_i be an expected label at position i. The negative log-likelihood of linear-chain CRF is defined as

$$L = -\left(\sum_{i=1}^l x_{y_i} + \sum_{i=1}^{l-1} c_{y_i,y_{i+1}} - \log(Z) \right),$$

where l is the length of the input sequence and Z is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort the sequences in descending order of lengths and transpose the sequences. For example, you have three input sequences:

```python
>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]
```

where `a1` and all other variables are arrays with `(K,)` shape. Make a transpose of the sequences:

```python
>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])
```

and make a list of the arrays:

```python
>>> xs = [x1, x2, x3, x4]
```

You need to make label sequences in the same fashion. And then, call the function:

```python
>>> cost = chainer.Variable(...
np.random.uniform(-1, 1, (3, 3)).astype(np.float32))
>>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
>>> loss = F.crf1d(cost, xs, ys)
```

It calculates mean of the negative log-likelihood of the three sequences.
The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'mean', it holds mean of the loss values.
Parameters

• **cost** *(Variable or N-dimensional array)* – A \(K \times K \) matrix which holds transition cost between two labels, where \(K \) is the number of labels.

• **xs** *(list of Variable)* – Input vector for each label. \(\text{len}(\text{xs}) \) denotes the length of the sequence, and each Variable holds a \(B \times K \) matrix, where \(B \) is mini-batch size, \(K \) is the number of labels. Note that \(B \)'s in all the variables are not necessary the same, i.e., it accepts the input sequences with different lengths.

• **ys** *(list of Variable)* – Expected output labels. It needs to have the same length as \(\text{xs} \). Each Variable holds a \(B \) integer vector. When \(x \) in \(\text{xs} \) has the different \(B \), corresponding \(y \) has the same \(B \). In other words, \(y \)'s must satisfy \(\text{ys}[i].\text{shape} == \text{xs}[i].\text{shape}[0:1] \) for all \(i \).

• **reduce** *(str)* – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, \(\text{ValueError} \) is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type *Variable*

Note: See detail in the original paper: *Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.*

`chainer.functions.argmax_crf1d`

`chainer.functions.argmax_crf1d(cost, xs)`

Computes a state that maximizes a joint probability of the given CRF.

Parameters

• **cost** *(Variable or N-dimensional array)* – A \(K \times K \) matrix which holds transition cost between two labels, where \(K \) is the number of labels.

• **xs** *(list of Variable)* – Input vector for each label. \(\text{len}(\text{xs}) \) denotes the length of the sequence, and each Variable holds a \(B \times K \) matrix, where \(B \) is mini-batch size, \(K \) is the number of labels. Note that \(B \)'s in all the variables are not necessary the same, i.e., it accepts the input sequences with different lengths.

Returns A tuple of Variable object \(s \) and a list \(ps \). The shape of \(s \) is \((B,\)) and each \(s[i] \) represents log-likelihood of \(i \)-th data. \(ps \) is a list of N-dimensional array, and denotes the state that maximizes the point probability. \(\text{len}(ps) \) is equal to \(\text{len}(\text{xs}) \) and shape of each \(ps[i] \) is the mini-batch size of the corresponding \(\text{xs}[i] \). That means, \(\text{ps}[i].\text{shape} == \text{xs}[i].\text{shape}[0:1] \).

Return type *tuple*
chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce='half_squared_sum')
Computes the sum-squared cross-covariance penalty between y and z.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp.z). If it is 'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a vector) of the covariant matrix.

Parameters

- y (Variable or N-dimensional array) – Variable holding a matrix where the first dimension corresponds to the batches.
- z (Variable or N-dimensional array) – Variable holding a matrix where the first dimension corresponds to the batches.
- reduce (str) – Reduction option. Its value must be either 'half_squared_sum' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds 2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y (resp. z). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.decov

chainer.functions.decov(h, reduce='half_squared_sum')
Computes the DeCov loss of h.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds a matrix whose size is same as the number of columns of y. If it is 'half_squared_sum', it holds the half of the squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

Parameters

- h (Variable or N-dimensional array) – Variable holding a matrix where the first dimension corresponds to the batches.
- reduce (str) – Reduction option. Its value must be either 'half_squared_sum' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar of the DeCov loss. If reduce is 'no', the output variable holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: See https://arxiv.org/abs/1511.06068 for details.
chainer.functions.discriminative_margin_based_clustering_loss

This is the implementation of the following paper: https://arxiv.org/abs/1708.02551 This method is a semi-supervised solution to instance segmentation. It calculates pixel embeddings, and calculates three different terms based on those embeddings and applies them as loss. The main idea is that the pixel embeddings for same instances have to be closer to each other (pull force), for different instances, they have to be further away (push force). The loss also brings a weak regularization term to prevent overfitting. This loss function calculates the following three parameters:

Variance Loss Loss to penalize distances between pixels which are belonging to the same instance. (Pull force)

Distance loss Loss to penalize distances between the centers of instances. (Push force)

Regularization loss Small regularization loss to penalize weights against overfitting.

Parameters

- **embeddings** *(Variable or N-dimensional array)* – predicted embedding vectors (batch size, max embedding dimensions, height, width)
- **labels** *(N-dimensional array)* – instance segmentation ground truth each unique value has to be denoting one instance (batch size, height, width)
- **delta_v** *(float)* – Minimum distance to start penalizing variance
- **delta_d** *(float)* – Maximum distance to stop penalizing distance
- **max_embedding_dim** *(int)* – Maximum number of embedding dimensions
- **norm** *(int)* – Norm to calculate pixels and cluster center distances
- **alpha** *(float)* – Weight for variance loss
- **beta** *(float)* – Weight for distance loss
- **gamma** *(float)* – Weight for regularization loss

Returns

- **Variance loss**: Variance loss multiplied by alpha
- **Distance loss**: Distance loss multiplied by beta
- **Regularization loss**: Regularization loss multiplied by gamma

Return type `tuple of chainer.Variable`
chainer.functions.gaussian_kl_divergence

chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce='sum')
Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing \(\mu \) and ln_var representing \(\log(\sigma^2) \), this function calculates the KL-divergence in elementwise manner between the given multi-dimensional Gaussian \(N(\mu, S) \) and the standard Gaussian \(N(0, I) \)

\[
D_{\text{KL}}(N(\mu, S)\|N(0, I)),
\]

where \(S \) is a diagonal matrix such that \(S_{ii} = \sigma^2_i \) and \(I \) is an identity matrix.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

- **mean** ([Variable or N-dimensional array]) – A variable representing mean of given gaussian distribution, \(\mu \).
- **ln_var** ([Variable or N-dimensional array]) – A variable representing logarithm of variance of given gaussian distribution, \(\log(\sigma^2) \).
- **reduce** (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'. Otherwise, ValueError is raised.

Returns

A variable representing KL-divergence between given gaussian distribution and the standard gaussian. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum' or 'mean', the output variable holds a scalar value.

Return type [Variable]

chainer.functions.gaussian_nll

chainer.functions.gaussian_nll(x, mean, ln_var, reduce='sum')
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing \(\mu \) and ln_var representing \(\log(\sigma^2) \), this function computes in elementwise manner the negative log-likelihood of \(x \) on a Gaussian distribution \(N(\mu, S) \),

\[
-\log N(x; \mu, \sigma^2) = \log \left(\frac{1}{\sqrt{(2\pi)^D|S|}} \right) + \frac{1}{2} (x - \mu)^T S^{-1} (x - \mu),
\]

where \(D \) is a dimension of \(x \) and \(S \) is a diagonal matrix where \(S_{ii} = \sigma^2_i \).

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

- **x** ([Variable or N-dimensional array]) – Input variable.
- **mean** ([Variable or N-dimensional array]) – A variable representing mean of a Gaussian distribution, \(\mu \).
- **ln_var** ([Variable or N-dimensional array]) – A variable representing logarithm of variance of a Gaussian distribution, \(\log(\sigma^2) \).
- **reduce** (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'. Otherwise, ValueError is raised.
Returns A variable representing the negative log-likelihood. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum' or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.hinge

\texttt{chainer.functions.hinge}(x, t, norm='L1', reduce='mean')

Computes the hinge loss for a one-of-many classification task.

\begin{equation}
L = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} [\max(0, 1 - \delta\{t_n = k\}x_{nk})]^p
\end{equation}

where \(N \) denotes the batch size and \(K \) is the number of classes of interest,

\[\delta\{\text{condition}\} = \begin{cases}
1 & \text{if condition is true} \\
-1 & \text{otherwise},
\end{cases} \]

and

\[p = \begin{cases}
1 & \text{if norm = L1} \\
2 & \text{if norm = L2}.
\end{cases} \]

Let the hinge loss function \(l(x, \delta) = [\max(0, 1 - \delta x)]^p \). When \(x \) and \(\delta \) have the same sign (meaning \(x \) predicts the proper score for classification) and \(|x| \geq 1 \), the hinge loss \(l(x, \delta) = 0 \), but when they have opposite sign, \(l(x, \delta) \) increases linearly with \(x \).

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

- \(x \) (Variable or N-dimensional array) – Input variable. The shape of \(x \) should be \((N, K)\).
- \(t \) (Variable or N-dimensional array) – The N-dimensional label vector with values \(t_n \in \{0, 1, 2, \ldots, K - 1\} \). The shape of \(t \) should be \((N,)\).
- \(\text{norm} \) (string) – Specifies norm type. Either 'L1' or 'L2' is acceptable.
- \(\text{reduce} \) (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, \text{ValueError} \ is raised.

Returns A variable object holding a scalar array of the hinge loss \(L \). If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Example

In this case, the batch size \(N \) is 2 and the number of classes \(K \) is 3.
```python
>>> x = np.array([[-2.0, 3.0, 0.5],
[5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. ,  3. ,  0.5],
       [ 5. ,  2. , -0.5]], dtype=float32)
>>> t = np.array([1, 0]).astype(np.int32)
>>> t
array([1, 0], dtype=int32)
>>> F.hinge(x, t)
variable(2.5)
>>> F.hinge(x, t, reduce='no')
variable([[ 0. ,  0. ,  1.5],
       [ 0. ,  3. ,  0.5]])
>>> F.hinge(x, t, norm='L2')
variable(5.75)
```

chainer.functions.huber_loss

chainer.functions.huber_loss (x, t, delta, reduce='sum_along_second_axis')

Computes the Huber loss.

The Huber loss is similar to the **mean_squared_error()** but is less sensitive to outliers in the data. It is defined as

\[
L_\delta(a) = \begin{cases}
 \frac{1}{2}a^2 & \text{if } |a| \leq \delta \\
 \delta(|a| - \frac{1}{2}\delta) & \text{otherwise},
\end{cases}
\]

where \(a = x - t\) is the difference between the input \(x\) and the target \(t\).

The loss is a variable whose value depends on the value of the option *reduce*. If it is 'no', it holds the elementwise loss values. If it is 'sum_along_second_axis', loss values are summed up along the second axis (i.e. *axis*=1).

See: Huber loss - Wikipedia.

Parameters

- **x** (Variable or N-dimensional array) – Input variable. The shape of \(x\) should be \((N, K, ...)\) if *reduce='sum_along_second_axis'*.
- **t** (Variable or N-dimensional array) – Target variable for regression. The shape of \(t\) should be \((N, K, ...)\) if *reduce='sum_along_second_axis'*.
- **delta** (float) – Constant variable for Huber loss function as used in definition.
- **reduce** (str) – Reduction option. Its value must be either 'sum_along_second_axis' or 'no'. Otherwise, ValueError is raised.

Returns A variable object holding a scalar array of the Huber loss \(L_\delta\). If *reduce* is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum_along_second_axis', the shape of the array is same as the input variables, except the second axis is removed.

Return type Variable

Example

Example without reduction, in which case the output \(y\) will have the same shape as the inputs \(x\) and \(t\).
```python
>>> import numpy as np
>>> from chainer import functions as F

>>> x = np.array([[[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]]).astype(np.float32)

>>> x.shape
(2, 3)

>>> t = np.array([[[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]]).astype(np.float32)

>>> t.shape
(2, 3)

>>> y = F.huber_loss(x, t, delta=1.0, reduce='no')

>>> y.shape
(2, 3)

>>> y
variable([[ 0. ,  0. ,  0.125],
          [ 4.5 ,  0. ,  0. ]])

Example with reduction along the second axis.

>>> y = F.huber_loss(x, t, delta=1.0, reduce='sum_along_second_axis')

>>> y.shape
(2,)

>>> y
variable([ 0.125,  4.5 ])
```

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error(x0, x1)

Mean absolute error function.

This function computes mean absolute error between two variables. The mean is taken over the minibatch.

Parameters

- **x0** *(Variable or N-dimensional array)* – Input variable.
- **x1** *(Variable or N-dimensional array)* – Input variable.

Returns A variable holding an array representing the mean absolute error of two inputs.

Return type Variable

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error(x0, x1)

Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note that the error is not scaled by 1/2.

Parameters

- **x0** *(Variable or N-dimensional array)* – Input variable.
- **x1** *(Variable or N-dimensional array)* – Input variable.

Returns A variable holding an array representing the mean squared error of two inputs.

Return type Variable

4.2. Functions
Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative examples.

The loss is defined as follows.

\[f(x, p) = - \log \sigma(x^T w_p) - k E_{i \sim P(i)}[\log \sigma(-x^T w_i)] \]

where \(\sigma(\cdot) \) is a sigmoid function, \(w_i \) is the weight vector for the word \(i \), and \(p \) is a positive example. It is approximated with \(k \) examples \(N \) sampled from probability \(P(i) \).

\[f(x, p) \approx - \log \sigma(x^T w_p) - \sum_{n \in N} \log \sigma(-x^T w_n) \]

Each sample of \(N \) is drawn from the word distribution \(P(w) = \frac{1}{Z} c(w)^\alpha \), where \(c(w) \) is the unigram count of the word \(w \), \(\alpha \) is a hyper-parameter, and \(Z \) is the normalization constant.

Parameters

- \(x \) (Variable or N-dimensional array) – Batch of input vectors.
- \(t \) (Variable or N-dimensional array) – Vector of ground truth labels.
- \(W \) (Variable or N-dimensional array) – Weight matrix.
- \(\text{sampler} \) (FunctionType) – Sampling function. It takes a shape and returns an integer array of the shape. Each element of this array is a sample from the word distribution. A WalkerAlias object built with the power distribution of word frequency is recommended.
- \(\text{sample_size} \) (int) – Number of samples.
- \(\text{reduce} \) (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, ValueError is raised.
- \(\text{return_samples} \) (bool) – If True, the sample array is also returned. The sample array is a

Returns

If \(\text{return_samples} \) is False (default), the output variable holding the loss value(s) calculated by the above equation is returned. Otherwise, a tuple of the output variable and the sample array is returned.

If \(\text{reduce} \) is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type Variable or tuple

See: Distributed Representations of Words and Phrases and their Compositionality

See also:

NegativeSampling to manage the model parameter \(W \).
chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy(x, t, normalize=True, reduce='mean')

Computes cross entropy loss for pre-sigmoid activations.

Parameters

- **x** *(Variable or N-dimensional array)* – A variable object holding a matrix whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at the i-th example.

- **t** *(Variable or N-dimensional array)* – A variable object holding a matrix whose (i, j)-th element indicates a signed integer vector of ground truth labels 0 or 1. If t[i, j] == -1, corresponding x[i, j] is ignored. Loss is zero if all ground truth labels are -1.

- **normalize** *(bool)* – Variable holding a boolean value which determines the normalization constant. If true, this function normalizes the cross entropy loss across all instances. If else, it only normalizes along a batch size.

- **reduce** *(str)* – Variable holding a str which determines whether to reduce the shape of the input. If it is 'mean', it computes the sum of cross entropy and normalize it according to normalize option. If is is 'no', this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has -1 as its target value, is set to 0.

Returns A variable object holding an array of the cross entropy. If reduce is 'mean', it is a scalar array. If reduce is 'no', the shape is same as those of x and t.

Return type Variable

Note: This function is differentiable only by x.

Example

```python
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. ,  3. ,  0.5],
       [ 5. ,  2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype(np.int32)
>>> t
array([[0, 1, 0],
       [1, 1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664714)
>>> F.relu(x, t, normalize=False)
variable(0.64161783)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.array
array([[ 0.1269280 ,  0.04858735,  0.974077  ],
       [ 0.00671535,  0.1269280 ,  0.   ]], dtype=float32)
```
chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(x, t, normalize=True, cache_score=True, class_weight=None, ignore_label=-1, reduce='mean', enable_double_backprop=False)

Computes cross entropy loss for pre-softmax activations.

Parameters

- **x** (Variable or N-dimensional array) – Variable holding a multidimensional array whose element indicates unnormalized log probability: the first axis of the variable represents the number of samples, and the second axis represents the number of classes. While this function computes a usual softmax cross entropy if the number of dimensions is equal to 2, it computes a cross entropy of the replicated softmax if the number of dimensions is greater than 2.

- **t** (Variable or N-dimensional array) – Variable holding a signed integer vector of ground truth labels. If t[i] == ignore_label, corresponding x[i] is ignored.

- **normalize** (bool) – If True, this function normalizes the cross entropy loss across all instances. If False, it only normalizes along a batch size.

- **cache_score** (bool) – When it is True, the function stores result of forward computation to use it on backward computation. It reduces computational cost though consumes more memory. If enable_double_backprop option is True, this option is forcibly turned off and the function does not cache the intermediate value.

- **class_weight** (N-dimensional array) – An array that contains constant weights that will be multiplied with the loss values along with the second dimension. The shape of this array should be (x.shape[1],). If this is not None, each class weight class_weight[i] is actually multiplied to y[:, i] that is the corresponding log-softmax output of x and has the same shape as x before calculating the actual loss value.

- **ignore_label** (int) – Label value you want to ignore. Its default value is -1. See description of the argument t.

- **reduce** (str) – A string that determines whether to reduce the loss values. If it is 'mean', it computes the sum of the individual cross entropy and normalize it according to normalize option. If it is 'no', this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has ignore_label as its target value, is set to 0.

- **enable_double_backprop** (bool) – If True, this function uses implementation that supports higher order differentiation. If False, it uses single-backprop implementation. This function use the single-backprop version because we expect it is faster. So, if you need second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean', it is a scalar array. If reduce is 'no', the shape is same as that of t.

Return type Variable

Note: This function is differentiable only by x.

Example
>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype(np.float32)
>>> x
array([[-1., 0., 1., 2.],
 [2., 0., 1., -1.]], dtype=float32)

>>> t = np.array([3, 0]).astype(np.int32)
>>> t
array([3, 0], dtype=int32)

>>> y = F.softmax_cross_entropy(x, t)
>>> y
variable(0.44018972)

>>> log_softmax = -F.log_softmax(x)

>>> expected_loss = np.mean([log_softmax[row, column].data
 for row, column in enumerate(t)])

>>> y.array == expected_loss
True

chainer.functions.squared_error

chainer.functions.squared_error(x0, x1)

Squared error function.

This function computes the squared error between two variables:

$$(x_0 - x_1)^2$$

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

Parameters

- **x0** (*Variable* or *N-dimensional array*) – Input variable.
- **x1** (*Variable* or *N-dimensional array*) – Input variable.

Returns

A variable holding an array representing the squared error of two inputs.

Return type

Variable

chainer.functions.triplet

chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce='mean')

Computes triplet loss.

It takes a triplet of variables as inputs, \(a, p\) and \(n\): anchor, positive example and negative example respectively. The triplet defines a relative similarity between samples. Let \(N\) and \(K\) denote mini-batch size and the dimension of input variables, respectively. The shape of all input variables should be \((N, K)\).

$L(a, p, n) = \frac{1}{N} \left(\sum_{i=1}^{N} \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\} \right)$

where \(d(x_i, y_i) = \|x_i - y_i\|^2\).

The output is a variable whose value depends on the value of the option \textit{reduce}. If it is 'no', it holds the elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters
• **anchor** *(Variable or N-dimensional array)* – The anchor example variable. The shape should be \((N, K)\), where \(N\) denotes the minibatch size, and \(K\) denotes the dimension of the anchor.

• **positive** *(Variable or N-dimensional array)* – The positive example variable. The shape should be the same as anchor.

• **negative** *(Variable or N-dimensional array)* – The negative example variable. The shape should be the same as anchor.

• **margin** *(float)* – A parameter for triplet loss. It should be a positive value.

• **reduce** *(str)* – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type *Variable*

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep Ranking for details.

Example

```python
>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype(np.float32)
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype(np.float32)
>>> F.triplet(anchor, pos, neg)
variable(0.14000003)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.array
array([0.11000005, 0.17], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5)  # harder penalty
variable(0.44000003)
```

4.2.7 Mathematical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.absolute</code></td>
<td>Element-wise absolute.</td>
</tr>
<tr>
<td><code>chainer.functions.arccos</code></td>
<td>Elementwise arccosine function.</td>
</tr>
<tr>
<td><code>chainer.functions.arcsin</code></td>
<td>Elementwise arcsine function.</td>
</tr>
<tr>
<td><code>chainer.functions.arctan</code></td>
<td>Elementwise arctangent function.</td>
</tr>
<tr>
<td><code>chainer.functions.arctan2</code></td>
<td>Elementwise arctangent function with two arguments.</td>
</tr>
<tr>
<td><code>chainer.functions.argmax</code></td>
<td>Returns index which holds maximum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.argmin</code></td>
<td>Returns index which holds minimum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.average</code></td>
<td>Calculate weighted average of array elements over a given axis.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.batch_inv</td>
<td>Computes the inverse of a batch of square matrices.</td>
</tr>
<tr>
<td>chainer.functions.batch_l2_norm_squared</td>
<td>L2 norm (a.k.a. Euclidean norm) squared.</td>
</tr>
<tr>
<td>chainer.functions.batch_matmul</td>
<td>Computes the batch matrix multiplications of two sets of arrays.</td>
</tr>
<tr>
<td>chainer.functions.bias</td>
<td>Elementwise summation with broadcasting.</td>
</tr>
<tr>
<td>chainer.functions.ceil</td>
<td>Elementwise ceil function.</td>
</tr>
<tr>
<td>chainer.functions.clip</td>
<td>Clips (limits) elements of input variable.</td>
</tr>
<tr>
<td>chainer.functions.cos</td>
<td>Elementwise cos function.</td>
</tr>
<tr>
<td>chainer.functions.cosh</td>
<td>Elementwise hyperbolic cosine function.</td>
</tr>
<tr>
<td>chainer.functions.cumprod</td>
<td>Cumulative prod of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.cumsum</td>
<td>Cumulative sum of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.det</td>
<td>Computes the determinant of a single square matrix.</td>
</tr>
<tr>
<td>chainer.functions.batch_det</td>
<td>Computes the determinant of a batch of square matrices.</td>
</tr>
<tr>
<td>chainer.functions.digamma</td>
<td>Digamma function.</td>
</tr>
<tr>
<td>chainer.functions.einsum</td>
<td>Einstein summation</td>
</tr>
<tr>
<td>chainer.functions.erf</td>
<td>Elementwise error function.</td>
</tr>
<tr>
<td>chainer.functions.erfc</td>
<td>Elementwise complementary error function.</td>
</tr>
<tr>
<td>chainer.functions.erfctxt</td>
<td>Elementwise inverse function of complementary error function.</td>
</tr>
<tr>
<td>chainer.functions.erfcinv</td>
<td>Elementwise scaled complementary error function.</td>
</tr>
<tr>
<td>chainer.functions.erfexp</td>
<td>Elementwise inverse function of error function.</td>
</tr>
<tr>
<td>chainer.functions.expm1</td>
<td>Elementwise exponential function.</td>
</tr>
<tr>
<td>chainer.functions.expm1l</td>
<td>Elementwise exponential minus one function.</td>
</tr>
<tr>
<td>chainer.functions.fft</td>
<td>Fast Fourier transform.</td>
</tr>
<tr>
<td>chainer.functions.fix</td>
<td>Elementwise fix function.</td>
</tr>
<tr>
<td>chainer.functions.fmod</td>
<td>Elementwise mod function.</td>
</tr>
<tr>
<td>chainer.functions.floor</td>
<td>Elementwise floor function.</td>
</tr>
<tr>
<td>chainer.functions.identity</td>
<td>Just returns input variables.</td>
</tr>
<tr>
<td>chainer.functions.ifft</td>
<td>Inverse fast Fourier transform.</td>
</tr>
<tr>
<td>chainer.functions.inv</td>
<td>Computes the inverse of square matrix.</td>
</tr>
<tr>
<td>chainer.functions.lgamma</td>
<td>logarithm of gamma function.</td>
</tr>
<tr>
<td>chainer.functions.linear_interpolate</td>
<td>Elementwise linear-interpolation function.</td>
</tr>
<tr>
<td>chainer.functions.log</td>
<td>Elementwise natural logarithm function.</td>
</tr>
<tr>
<td>chainer.functions.log10</td>
<td>Elementwise logarithm function to the base 10.</td>
</tr>
<tr>
<td>chainer.functions.log1p</td>
<td>Elementwise natural logarithm plus one function.</td>
</tr>
<tr>
<td>chainer.functions.log2</td>
<td>Elementwise logarithm function to the base 2.</td>
</tr>
<tr>
<td>chainer.functions.log_ndtr</td>
<td>Logarithm of cumulative distribution function of normal distribution.</td>
</tr>
<tr>
<td>chainer.functions.logsumexp</td>
<td>Log-sum-exp of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.matmul</td>
<td>Computes the matrix multiplication of two arrays.</td>
</tr>
<tr>
<td>chainer.functions.max</td>
<td>Maximum of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.maximum</td>
<td>Element-wise maximum of input variables.</td>
</tr>
<tr>
<td>chainer.functions.mean</td>
<td>Calculate weighted average of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.min</td>
<td>Minimum of array elements over a given axis.</td>
</tr>
<tr>
<td>chainer.functions.minimum</td>
<td>Element-wise minimum of input variables.</td>
</tr>
<tr>
<td>chainer.functions.ndtr</td>
<td>Elementwise cumulative distribution function of normal distribution.</td>
</tr>
<tr>
<td>chainer.functions.ndtri</td>
<td>Elementwise inverse function of ndtr.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.prod</code></td>
<td>Product of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.polygamma</code></td>
<td>Polygamma function.</td>
</tr>
<tr>
<td><code>chainer.functions.rsqrt</code></td>
<td>Computes elementwise reciprocal of square root of input x_i.</td>
</tr>
<tr>
<td><code>chainer.functions.scale</code></td>
<td>Elementwise product with broadcasting.</td>
</tr>
<tr>
<td><code>chainer.functions.sin</code></td>
<td>Elementwise sin function.</td>
</tr>
<tr>
<td><code>chainer.functions.sinh</code></td>
<td>Elementwise hyperbolic sine function.</td>
</tr>
<tr>
<td><code>chainer.functions.sign</code></td>
<td>Elementwise sign function.</td>
</tr>
<tr>
<td><code>chainer.functions.sparse_matmul</code></td>
<td>Computes the batched multiplication of sparse and dense matrix.</td>
</tr>
<tr>
<td><code>chainer.functions.sqrt</code></td>
<td>Elementwise square root function.</td>
</tr>
<tr>
<td><code>chainer.functions.square</code></td>
<td>Elementwise square function.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_difference</code></td>
<td>Squared difference of input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.sum</code></td>
<td>Sum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.sum_to</code></td>
<td>Sum elements along axes to output an array of a given shape.</td>
</tr>
<tr>
<td><code>chainer.functions.tanh</code></td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
<tr>
<td><code>chainer.functions.tan</code></td>
<td>Elementwise tan function.</td>
</tr>
<tr>
<td><code>chainer.functions.tensordot</code></td>
<td>Returns the tensor dot product of two arrays along specified axes.</td>
</tr>
</tbody>
</table>

chainer.functions.absolute

chainer.functions.absolute(self)

Element-wise absolute.

- **Returns**: Output variable.
- **Return type**: Variable

chainer.functions.arccos

chainer.functions.arccos(x)

Elementwise arccosine function.

\[y_i = \arccos x_i. \]

- **Parameters**: \(x \) (Variable or \(N \)-dimensional array) – Input variable.
- **Returns**: Output variable.
- **Return type**: Variable

chainer.functions.arcsin

chainer.functions.arcsin(x)

Elementwise arcsine function.

\[y_i = \arcsin x_i. \]

- **Parameters**: \(x \) (Variable or \(N \)-dimensional array) – Input variable.
- **Returns**: Output variable.
- **Return type**: Variable
chainer.functions.arctan

```
chainer.functions.arctan(x)
```

Elementwise arctangent function.

\[y_i = \arctan x_i. \]

- **Parameters**
 - `x` (*Variable* or *N-dimensional array*) – Input variable.
- **Returns**
 - Output variable.
- **Return type** *Variable*

chainer.functions.arctan2

```
chainer.functions.arctan2(x1, x2)
```

Elementwise arctangent function with two arguments.

- **Parameters**
 - `x1` (*Variable* or *N-dimensional array*) – Y-coordinates.
 - `x2` (*Variable* or *N-dimensional array*) – X-coordinates.
- **Returns**
 - Angles in radians, in the range [-pi, pi].
- **Return type** *Variable*

chainer.functions.argmax

```
chainer.functions.argmax(x, axis=None)
```

Returns index which holds maximum of array elements over a given axis.

- **Parameters**
 - `x` (*Variable* or *N-dimensional array*) – Array to find maximum elements.
 - `axis` (*None* or *int*) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.
- **Returns**
 - Output variable.
- **Return type** *Variable*

chainer.functions.argmin

```
chainer.functions.argmin(x, axis=None)
```

Returns index which holds minimum of array elements over a given axis.

- **Parameters**
 - `x` (*Variable* or *N-dimensional array*) – Array to find minimum elements.
 - `axis` (*None* or *int*) – Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.
- **Returns**
 - Output variable.
- **Return type** *Variable*
chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

- **x** *(Variable or N-dimensional array)* – Elements to sum.
- **axis** *(None or int or tuple of int)* – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
- **weights** *(None or Variable or N-dimensional array)* – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
- **keepdims** *(bool)* – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters **a** *(Variable or N-dimensional array)* – Input array to compute the inverse for. Shape of the array should be *(m, n, n)* where m is the number of matrices in the batch, and n is the dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.
Return type Variable

chainer.functions.batch_l2_norm_squared

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

Parameters **x** *(Variable or N-dimensional array)* – Input variable. The first dimension is assumed to be the minibatch dimension. If x has more than two dimensions all but the first dimension are flattened to one dimension.

Returns Two dimensional output variable.
Return type Variable
chainer.functions.batch_matmul

chainer.functions.batch_matmul \((a, b, transa=False, transb=False)\)

Computes the batch matrix multiplications of two sets of arrays.

Parameters

- \(a\) *(Variable or N-dimensional array)* – The left operand of the batch matrix multiplications. A 2-D array of shape \((B, N)\) is considered as \(B \times N \times 1\) matrices. A 3-D array of shape \((B, M, N)\) is considered as \(B \times M \times N\) matrices.
- \(b\) *(Variable or N-dimensional array)* – The right operand of the batch matrix multiplications. Its array is treated as matrices in the same way as \(a\)’s array.
- \(\text{transa}\) *(bool)* – If True, transpose each matrix in \(a\).
- \(\text{transb}\) *(bool)* – If True, transpose each matrix in \(b\).

Returns The result of the batch matrix multiplications as a 3-D array.

Return type *Variable*

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias \((x, y, axis=1)\)

Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to match the shape of the former. \(axis\) is the first axis of the first variable along which the second variable is applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

\[
\begin{align*}
 x : 100 \times 3 \times 40 \times 5 \times 6 \\
 y : 3 \times 40 \\
 \text{axis} : 1
\end{align*}
\]

is equivalent to the following numpy broadcasting:

\[
\begin{align*}
 x : 100 \times 3 \times 40 \times 5 \times 6 \\
 y : (1 \times) \times 3 \times 40 \times 1 \times 1
\end{align*}
\]

Note that the axis of \(x\) to which we apply \(y\) is specified by the argument \(axis\), whose meaning is different from numpy’s \(axis\).

Parameters

- \(x\) *(Variable or N-dimensional array)* – Input variable to be summed.
- \(y\) *(Variable or N-dimensional array)* – Input variable to sum, broadcasted.
- \(\text{axis}\) *(int)* – The first axis of \(x\) along which \(y\) is applied.

Returns Output variable.

Return type *Variable*
chainer.functions.ceil

chainer.functions.ceil(x)
Elementwise ceil function.

\[y_i = \lceil x_i \rceil \]

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.clip

chainer.functions.clip(x, x_min, x_max)
Clips (limits) elements of input variable.

Given an interval \([x_{\text{min}}, x_{\text{max}}]\), elements outside the interval are clipped to the interval edges.

Its gradients at \(x_{\text{min}} \) and \(x_{\text{max}} \) are regarded as 1.

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable to be clipped.
- \(x_{\text{min}} \) (*float*) – Minimum value.
- \(x_{\text{max}} \) (*float*) – Maximum value.

Returns
Output variable.

Return type
Variable

chainer.functions.cos

chainer.functions.cos(x)
Elementwise cos function.

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

\[y_i = \cosh x_i \]

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable.

Returns
Output variable.

Return type
Variable
chainer.functions.cumprod

chainer.functions.cumprod(x, axis=None)
Cumulative prod of array elements over a given axis.

Parameters

- x (Variable or N-dimensional array) – Elements to calculate the cumulative prod.
- axis (int or None) – Axis along which the cumulative prod is taken. If it is not specified, the input is flattened.

Returns Output variable.
Return type Variable

chainer.functions.cumsum

chainer.functions.cumsum(x, axis=None)
Cumulative sum of array elements over a given axis.

Parameters

- x (Variable or N-dimensional array) – Elements to calculate the cumulative sum.
- axis (int or None) – Axis along which the cumulative sum is taken. If it is not specified, the input is flattened.

Returns Output variable.
Return type Variable

chainer.functions.det

chainer.functions.det(a)
Computes the determinant of a single square matrix.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.

Returns Scalar determinant of the matrix a.
Return type Variable

chainer.functions.batch_det

chainer.functions.batch_det(a)
Computes the determinant of a batch of square matrices.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.
The first dimension should iterate over each matrix and be of the batchsize.

Returns vector of determinants for every matrix in the batch.
Return type Variable
chainer.functions.digamma

chainer.functions.digamma(x)

Digamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable.

Returns

Output variable.

Return type

Variable

chainer.functions.einsum

chainer.functions.einsum(*operands)

Einstein summation

This function supports two formats of inputs:

- einsum(subscripts, op0, op1, ...)
- einsum(op0, sublist0, op1, sublist1, ..., [sublistout])

See also numpy.einsum()

Example

The following example computes a batched application of a bilinear function with weight \(w \).

```python
>>> x1 = np.arange(12).reshape(3, 4).astype(np.float32)
>>> x2 = np.arange(15).reshape(3, 5).astype(np.float32)
>>> w = np.arange(120).reshape(4, 5, 6).astype(np.float32)
>>> y = F.einsum('ij,ik,jkl->il', x1, x2, w)
>>> y.shape
(3, 6)
```

The batch axes can be denoted by ... If the string of output subscripts is omitted, the summation is taken over the subscript alphabets with two (or more) occurrences.

```python
>>> np.allclose(y.array, F.einsum('...j,...k,jkl', x1, x2, w).array)
True
```

In the other format:

```python
>>> y = F.einsum(x1, [0, 1], x2, [0, 2], w, [1, 2, 3], [0, 3])
>>> y.shape
(3, 6)
>>> y = F.einsum(x1, [Ellipsis, 1], x2, [Ellipsis, 2], w, [1, 2, 3])
>>> y.shape
(3, 6)
```
chainer.functions.erf

chainer.functions.\texttt{erf}(x)

Elementwise error function.

\textbf{Note:} Forward computation in CPU can be slow if SciPy is not available.

\textbf{Parameters} \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Input variable.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.erfc

chainer.functions.\texttt{erfc}(x)

Elementwise complementary error function.

\textbf{Note:} Forward computation in CPU can be slow if SciPy is not available.

\textbf{Parameters} \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Input variable.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.erfcinv

chainer.functions.\texttt{erfcinv}(x)

Elementwise inverse function of complementary error function.

\textbf{Note:} Forward computation in CPU cannot be done if SciPy is not available.

\textbf{Parameters} \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Input variable.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.erfcx

chainer.functions.\texttt{erfcx}(x)

Elementwise scaled complementary error function.

\textbf{Note:} Forward computation in CPU cannot be done if SciPy is not available.

\textbf{Parameters} \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Input variable.

\textbf{Returns} Output variable.

4.2. Functions
Return type: Variable

chainer.functions.erfinv

`chainer.functions.erfinv(x)`
Elementwise inverse function of error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

- **Parameters** `x` *(Variable or N-dimensional array)* – Input variable.
- **Returns** Output variable.
- **Return type** Variable

chainer.functions.exp

`chainer.functions.exp(x)`
Elementwise exponential function.

- **Parameters** `x` *(Variable or N-dimensional array)* – Input variable.
- **Returns** Output variable.
- **Return type** Variable

chainer.functions.expm1

`chainer.functions.expm1(x)`
Elementwise exponential minus one function.

- **Parameters** `x` *(Variable or N-dimensional array)* – Input variable.
- **Returns** Output variable.
- **Return type** Variable

chainer.functions.fft

`chainer.functions.fft(x)`
Fast Fourier transform.

- **Parameters** `x` *(tuple)* – `(real, imag)` where `real` is a Variable or an N-dimensional array storing the real part and `imag` is a Variable or an N-dimensional array storing the imaginary part.
- **Returns** Returns `(ry, iy)` where `ry` is the real part of the result and `iy` is the imaginary part of the result.
- **Return type** tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.
chainer.functions.fix

\[y_i = x_i \]

- **Parameters**
 \(x \) (*Variable* or *N-dimensional array*) – Input variable.

- **Returns**
 Output variable.

- **Return type**
 Variable

chainer.functions.fmod

\[y_i = x_i \mod \text{divisor} \]

- **Parameters**
 \(x \) (*Variable* or *N-dimensional array*) – Input variable.

 \(\text{divisor} \) (*Variable* or *N-dimensional array*) – Input divisor.

- **Returns**
 Output variable.

- **Return type**
 Variable

chainer.functions.floor

\[y_i = \lfloor x_i \rfloor \]

- **Parameters**
 \(x \) (*Variable* or *N-dimensional array*) – Input variable.

- **Returns**
 Output variable.

- **Return type**
 Variable

chainer.functions.identity

\[\text{identity} \] (*inputs*)

Just returns input variables.

chainer.functions.ifft

\[\text{ifft} \] (*x*)

Inverse fast Fourier transform.

- **Parameters**
 \(x \) (*tuple*) – (real, imag) where real is a *Variable* or an *N-dimensional array* storing the real part and imag is a *Variable* or an *N-dimensional array* storing the imaginary part.
Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

a (Variable or N-dimensional array): Input array to compute the inverse for. Shape of the array should be (n, n) where n is the dimensionality of a square matrix.

Returns Matrix inverse of a.

Return type Variable

chainer.functions.lgamma

chainer.functions.lgamma(x)
logarithm of gamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.linear_interpolate

chainer.functions.linear_interpolate(p, x, y)
Elementwise linear-interpolation function.

This function is defined as

$$f(p, x, y) = px + (1 - p)y.$$

Parameters

- p (Variable or N-dimensional array) – Input variable.
- x (Variable or N-dimensional array) – Input variable.
- y (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable
chainer.functions.log

chainer.functions.log(x)
Elementwise natural logarithm function.

Parameters
- \(x \) *(Variable or N-dimensional array)* – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.log10

chainer.functions.log10(x)
Elementwise logarithm function to the base 10.

\[y_i = \log_{10} x_i. \]

Parameters
- \(x \) *(Variable or N-dimensional array)* – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.log1p

chainer.functions.log1p(x)
Elementwise natural logarithm plus one function.

Parameters
- \(x \) *(Variable or N-dimensional array)* – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.log2

chainer.functions.log2(x)
Elementwise logarithm function to the base 2.

\[y_i = \log_2 x_i. \]

Parameters
- \(x \) *(Variable or N-dimensional array)* – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.log_ndtr

chainer.functions.log_ndtr(x)
Logarithm of cumulative distribution function of normal distribution.

Note: Forward computation in CPU can not be done if SciPy is not available.
Parameters
\(x \) *(Variable or N-dimensional array)* – Input variable.

Returns
Output variable.

Return type
Variable

caller.functions.logsumexp

caller.functions.logsumexp \((x, axis=None)\)
Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

\[
y_i = \log \left(\sum_{j} \exp(x_{ij}) \right)
\]

Parameters
- \(x \) *(Variable or N-dimensional array)* – Elements to log-sum-exp.
- \(axis \) *(None, int, or tuple of int)* – Axis which a sum is performed. The default \((axis = None)\) is perform a sum over all the dimensions of the input array.

Returns
Output variable.

Return type
Variable

caller.functions.matmul

caller.functions.matmul \((a, b, transa=False, transb=False)\)
Computes the matrix multiplication of two arrays.

Parameters
- \(a \) *(Variable or N-dimensional array)* – The left operand of the matrix multiplication. If \(a \) and \(b \) are both 1-D arrays, matmul returns a dot product of vector \(a \) and vector \(b \). If 2-D arrays, matmul returns matrix product of \(a \) and \(b \). If either’s dimension is larger than 2, they are treated as a stack of matrices residing in the last two indexes. matmul returns a stack of each two arrays. In this case, \(a \) and \(b \) are broadcasted along axes except the last two.
- \(b \) *(Variable or N-dimensional array)* – The right operand of the matrix multiplication. Its array is treated as a matrix in the same way as \(a \)’s array.
- \(transa \) *(bool)* – If True, each matrices in \(a \) will be transposed. If \(a \).ndim == 1, do nothing.
- \(transb \) *(bool)* – If True, each matrices in \(b \) will be transposed. If \(b \).ndim == 1, do nothing.

Returns
The result of the matrix multiplication.

Return type
Variable

Example
```python
>>> a = np.array([[1, 0], [0, 1]], np.float32)
>>> b = np.array([[4, 1], [2, 2]], np.float32)
>>> F.matmul(a, b).array
array([[4., 1.],
       [13.5, 2.]], dtype=float32)
```

chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)

Maximum of array elements over a given axis.

Parameters

- x (Variable or N-dimensional array) – Array to be maximized.
- axis (None, int, or tuple of int) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.maximum

chainer.functions.maximum(x1, x2)

Element-wise maximum of input variables.

Parameters

- x1 (Variable or N-dimensional array) – Input variables to be compared.
- x2 (Variable or N-dimensional array) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)

Calculate weighted average of array elements over a given axis.

Parameters

- x (Variable or N-dimensional array) – Elements to sum.
- axis (None or int or tuple of int) – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
- weights (None or Variable or N-dimensional array) – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
- keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable
chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) -- Array to be minimized.
• axis (None, int, or tuple of int) -- Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.
Return type Variable

chainer.functions.minimum

chainer.functions.minimum(x1, x2)
Element-wise minimum of input variables.

Parameters

• x1 (Variable or N-dimensional array) -- Input variables to be compared.
• x2 (Variable or N-dimensional array) -- Input variables to be compared.

Returns Output variable.
Return type Variable

chainer.functions.ndtr

chainer.functions.ndtr(x)
Elementwise cumulative distribution function of normal distribution.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) -- Input variable.
Returns Output variable.
Return type Variable

chainer.functions.ndtri

chainer.functions.ndtri(x)
Elementwise inverse function of ndtr.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) -- Input variable.
Returns Output variable.
Return type Variable
chainer.functions.prod

chainer.functions.prod(x, axis=None, keepdims=False)
Product of array elements over a given axis.

Parameters
• x (Variable or N-dimensional array) – Elements to calculate the product.
• axis (None, int, or tuple of int) – Axis which a product is performed. The default (axis = None) is perform a product over all the dimensions of the input array.
• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

chainer.functions.polygamma

chainer.functions.polygamma(n, x)
Polygamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters
• n (Variable or N-dimensional array) – Input variable.
• x (Variable or N-dimensional array) – Input variable.

Returns Output variable.
Return type Variable

chainer.functions.rsqrt

chainer.functions.rsqrt(x)
Computes elementwise reciprocal of square root of input \(x_i \).
\[
y_i = \frac{1}{\sqrt{x_i}}.
\]

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.
Return type Variable

See also:
sqrt()
chainer.functions.scale

chainer.functions.scale(x, y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following argu-
ments:

\[
\begin{align*}
x & : 100 \times 3 \times 40 \times 5 \times 6 \\
y & : 3 \times 40 \\
axis & : 1
\end{align*}
\]

is equivalent to the following numpy broadcasting:

\[
\begin{align*}
x & : 100 \times 3 \times 40 \times 5 \times 6 \\
y & : (1 \times) 3 \times 40 \times 1 \times 1
\end{align*}
\]

Note that the axis of \(x \) to which we apply \(y \) is specified by the argument \(\text{axis} \), whose meaning is different from
numpy’s \(\text{axis} \).

Parameters

- \(x \) (\text{Variable or N-dimensional array}) – Input variable to be scaled.
- \(y \) (\text{Variable or N-dimensional array}) – Input variable to scale, broadcasted.
- \(\text{axis} \) (\text{int}) – The first axis of \(x \) along which \(y \) is applied.

Returns Output variable.

Return type \text{Variable}

chainer.functions.sin

chainer.functions.sin(x)
Elementwise sin function.

Parameters \(x \) (\text{Variable or N-dimensional array}) – Input variable.

Returns Output variable.

Return type \text{Variable}

chainer.functions.sinh

chainer.functions.sinh(x)
Elementwise hyperbolic sine function.

\[
y_i = \sinh x_i.
\]

Parameters \(x \) (\text{Variable or N-dimensional array}) – Input variable.

Returns Output variable.

Return type \text{Variable}
chainer.functions.sign

chainer.functions.sign(x)
Elementwise sign function.

For a given input \(x \), this function returns \(sgn(x) \) defined as

\[
sgn(x) = \begin{cases}
-1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
1 & \text{if } x > 0
\end{cases}
\]

Note: The gradient of this function is None everywhere and therefore unchains the computational graph.

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable for which the sign is computed.

Returns
- Output variable.

Return type *Variable*

chainer.functions.sparse_matmul

chainer.functions.sparse_matmul(a, b, transa=False, transb=False)
Computes the batched multiplication of sparse and dense matrix.

The following use cases are supported:
1. \(C \) (dense) = \(A \) (sparse) * \(B \) (dense)
2. \(C \) (dense) = \(A \) (dense) * \(B \) (sparse)

Parameters
- \(a \) (*Variable* or *CooMatrix*) – The left operand of matrix multiplication.
- \(b \) (*Variable* or *CooMatrix*) – The right operand of matrix multiplication.
- \(\text{transa} \) (*bool*) – If True, each matrix in \(a \) will be transposed.
- \(\text{transb} \) (*bool*) – If True, each matrix in \(b \) will be transposed.

Returns
- Result of batched mat-mul.

Return type *Variable*

See also:
See *to_coo()* for how to construct a COO matrix from an array.

Note: Performance of this function on GPU can be improved by using the *order* argument of *CooMatrix* when the sparse matrix is created.
chainer.functions.sqrt

chainer.functions.sqrt(x)
Elementwise square root function.

\[y_i = \sqrt{x_i}. \]

If the value of \(x_i \) is negative, it returns \(\text{NaN} \) for \(y_i \) respect to underlying numpy and cupy specification.

Parameters
- \(x \) (**Variable** or **N-dimensional array**) – Input variable.

Returns Output variable.

Return type **Variable**

chainer.functions.square

chainer.functions.square(x)
Elementwise square function.

\[y_i = x_i^2. \]

Parameters
- \(x \) (**Variable** or **N-dimensional array**) – Input variable.

Returns Output variable.

Return type **Variable**

chainer.functions.squared_difference

chainer.functions.squared_difference(x1, x2)
Squared difference of input variables.

Parameters
- \(x1 \) (**Variable** or **N-dimensional array**) – Input variables to be compared.
- \(x2 \) (**Variable** or **N-dimensional array**) – Input variables to be compared.

Returns \((x1 - x2)^2 \) element-wise.

Return type **Variable**

chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters
- \(x \) (**Variable** or **N-dimensional array**) – Elements to sum. A \((s_1, s_2, ..., s_N)\) -shaped float array.
- \(axis \) (**None**, **int**, or **tuple of int**) – Axis along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array.
- \(keepdims \) (**bool**) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
chainer.functions.sum_to

chainer.functions.sum_to(x, shape)

Sum elements along axes to output an array of a given shape.

Parameters

- **x** (`Variable` or `N-dimensional array`) – Input variable.
- **shape** (`tuple of int`) – The target shape.

Returns

Output variable of shape `shape`.

Return type **Variable**

Example

```python
>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> x
array([[1., 2., 3.],
       [4., 5., 6.]])
>>> y = F.sum_to(x, (1, 3))
>>> y
variable([[5., 7., 9.]])
>>> z = F.sum_to(x, (2, 1))
>>> z
variable([[6.],
          [15.]])
```
chainer.functions.tan

chainer.functions.tan(x)
Elementwise tan function.

Parameters
x (Variable or N-dimensional array) – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.tensordot

chainer.functions.tensordot (a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.
This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters
• a (Variable or N-dimensional array) – The first argument.
• b (Variable or N-dimensional array) – The second argument.
• axes –
 – If it is an integer, then axes axes at the last of a and the first of b are used.
 – If it is a pair of sequences of integers, then these two sequences specify the list of axes for a and b. The corresponding axes are paired for sum-product.

Returns
The tensor dot product of a and b along the axes specified by axes.

Return type
Variable

Example

```python
generated from code
>>> a = np.random.rand(5, 3, 2)
>>> b = np.random.rand(3, 2, 4)
>>> c = F.tensordot(a, b, axes=2)
>>> c.shape
(5, 4)
```

See also:

• numpy.tensordot()

4.2.8 Noise injections

<table>
<thead>
<tr>
<th>chainer.functions.dropout</th>
<th>Drops elements of input variable randomly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.gaussian</td>
<td>Gaussian sampling function.</td>
</tr>
<tr>
<td>chainer.functions.gumbel_softmax</td>
<td>Gumbel-Softmax sampling function.</td>
</tr>
<tr>
<td>chainer.functions.simplified_dropconnect</td>
<td>Linear unit regularized by simplified dropconnect.</td>
</tr>
<tr>
<td>chainer.functions.zoneout</td>
<td>Drops elements of input variable and sets to previous variable randomly.</td>
</tr>
</tbody>
</table>
chainer.functions.dropout

chainer.functions.dropout (x, ratio=.5, *, mask=None, return_mask=False)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by factor \(1 / (1 - \text{ratio})\). In testing mode (i.e., chainer.config.train is set to False), it does nothing and just returns x.

Parameters

- \(x\) (Variable or \(N\)-dimensional array) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- \(\text{ratio}\) (float) – Dropout ratio. The ratio must be \(0.0 \leq \text{ratio} < 1.0\).
- \(\text{mask}\) (\(N\)-dimensional array or None) – The mask to be used for dropout. You do not have to specify this value, unless you need to make results deterministic. If \(\text{mask}\) is not specified or set to None, a mask will be generated randomly according to the given \(\text{ratio}\). If \(\text{mask}\) is specified, \(\text{ratio}\) will be ignored. The shape and dtype must be the same as \(x\) and should be on the same device. Note that iDeep and cuDNN will not be used for this function if \(\text{mask}\) is specified, as iDeep and cuDNN do not support it.
- \(\text{return_mask}\) (bool) – If True, the mask used for dropout is returned together with the output variable. The returned mask can later be reused by passing it to \(\text{mask}\) argument.

Returns

When \(\text{return_mask}\) is False (default), returns the output variable. When True, returns the tuple of the output variable and mask (\(N\)-dimensional array). The mask will be on the same device as the input. The mask will become None when chainer.config.train is set to False.

Return type

Variable or tuple

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

```python
>>> import numpy as np
>>> x = np.array([[[-1, 0], [2, -3], [-2, 1]], [3, 4, 5], [6, 7, 8]], np.float32)
>>> with chainer.using_config('train', True):
...     y = F.dropout(x)
>>> y.array
array([[-2.,  0.],
       [ 4., -6.],
       [-0.,  2.]], dtype=float32)
>>> with chainer.using_config('train', True):
...     y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.array).all()
True
>>> with chainer.using_config('train', False):
...     y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.array).all()
True
```
Chainer Documentation, Release 6.7.0

chainer.functions.gaussian

chainer.functions.gaussian(mean, ln_var, *, eps=None, return_eps=False)

Gaussian sampling function.

This function takes a mean \(\mu \) and the logarithm of a variance \(\log(\sigma^2) \) as inputs and outputs a sample drawn from a Gaussian distribution \(N(\mu, \sigma) \).

The inputs must have the same shape.

Parameters

- **mean** ([Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74) or N-dimensional array) – Input variable representing the mean \(\mu \).
- **ln_var** ([Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74) or N-dimensional array) – Input variable representing the logarithm of a variance \(\log(\sigma^2) \).
- **eps** (N-dimensional array or None) – The eps value to be used. You do not have to specify this value, unless you need to make results deterministic. If `eps` is not specified or set to None, an eps value will be generated randomly. The shape and dtype must be the same as `ln_var` and should be on the same device.
- **return_eps** (bool) – If `True`, the eps value used in this function is returned together with the output variable. The returned eps can later be reused by passing it to the `eps` argument.

Returns

When `return_eps` is `False` (default), returns the output variable with the shape of `mean` and/or `ln_var`. When `True`, returns the tuple of the output variable and eps (N-dimensional array). The eps will be on the same device as the input (`ln_var`).

Return type [Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74) or tuple

chainer.functions.gumbel_softmax

chainer.functions.gumbel_softmax(log_pi, tau=0.1, axis=1)

Gumbel-Softmax sampling function.

This function draws samples \(y_i \) from Gumbel-Softmax distribution,

\[
y_i = \frac{\exp((g_i + \log \pi_i)/\tau)}{\sum_j \exp((g_j + \log \pi_j)/\tau)},
\]

where \(\tau \) is a temperature parameter and \(g_i \) s are samples drawn from Gumbel distribution \(\text{Gumbel}(0, 1) \).

See [Categorical Reparameterization with Gumbel-Softmax](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74).

Parameters

- **log_pi** ([Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74) or N-dimensional array) – Input variable representing pre-normalized log-probability \(\log \pi \).
- **tau** (float or [Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74) or N-dimensional array) – Input variable representing temperature \(\tau \).

Returns

Output variable.

Return type [Variable](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L74)
chainer.functions.simplified_dropconnect

chainer.functions.simplified_dropconnect(x, W, b=None, ratio=0.5, train=True, mask=None, use_batchwise_mask=True)

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remaining elements by factor $1 / (1 - ratio)$. It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It computes $Y = xW^T + b$.

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable. Its first dimension n is assumed to be the minibatch dimension. The other dimensions are treated as concatenated one dimension whose size must be N.
- **W** *(Variable or N-dimensional array)* – Weight variable of shape (M, N).
- **b** *(Variable or N-dimensional array)* – Bias variable (optional) of shape $(M,)$.
- **ratio** *(float)* – Dropconnect ratio.
- **train** *(bool)* – If True, executes simplified dropconnect. Otherwise, simplified dropconnect function works as a linear function.
- **mask** *(None or Variable or N-dimensional array)* – If None, randomized dropconnect mask is generated. Otherwise, The mask must be (n, M, N) or (M, N) shaped array, and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array will be used as a dropconnect mask.
- **use_batchwise_mask** *(bool)* – If True, dropped connections depend on each sample in mini-batch.

Returns Output variable.

Return type Variable

See also:

Dropconnect

See also:

chainer.functions.zoneout

chainer.functions.zoneout (h, x, ratio=.5)
Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability ratio and instead sets dropping element to their previous variable. In testing mode, it does nothing and just returns x.

Parameters

- h (Variable or N-dimensional array) – Previous variable.
- x (Variable or N-dimensional array) – Input variable.
- ratio (float) – Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

4.2.9 Normalization functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.batch_normalization</td>
<td>Batch normalization function.</td>
</tr>
<tr>
<td>chainer.functions.batch_renormalization</td>
<td>Batch renormalization function.</td>
</tr>
<tr>
<td>chainer.functions.decorrelated_batch_normalization</td>
<td>Decorrelated batch normalization function.</td>
</tr>
<tr>
<td>chainer.functions.fixed_batch_normalization</td>
<td>Batch normalization function with fixed statistics.</td>
</tr>
<tr>
<td>chainer.functions.fixed_batch_renormalization</td>
<td>Decorrelated batch normalization function with fixed statistics.</td>
</tr>
<tr>
<td>chainer.functions.group_normalization</td>
<td>Group normalization function.</td>
</tr>
<tr>
<td>chainer.functions.layer_normalization</td>
<td>Layer normalization.</td>
</tr>
<tr>
<td>chainer.functions.local_response_normalization</td>
<td>Local response normalization across neighboring channels.</td>
</tr>
<tr>
<td>chainer.functions.normalize</td>
<td>Normalize input by L2 norm.</td>
</tr>
</tbody>
</table>

chainer.functions.batch_normalization

chainer.functions.batch_normalization (x, gamma, beta, eps=2e-5, running_mean=None, running_var=None, decay=0.9, axis=None)
Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the dimensionality of the input must be at least one plus the number of channel dimensions. The total effective “batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Parameters

- **x** *(Variable or N-dimensional array)* – Input variable.
- **gamma** *(Variable or N-dimensional array)* – Scaling parameter of normalized data.
- **beta** *(Variable or N-dimensional array)* – Shifting parameter of scaled normalized data.
- **eps** *(float)* – Epsilon value for numerical stability.
- **running_mean** *(N-dimensional array)* – Running average of the mean. This is a running
 average of the mean over several mini-batches using the decay parameter. The function takes
 a previous running average, and updates the array in-place by the new running average. If
 None, the running average is not computed. If this is None, then running_var must also
 be None.
- **running_var** *(N-dimensional array)* – Running average of the variance. This is a running
 average of the variance over several mini-batches using the decay parameter. The function
 takes a previous running average, and updates the array in-place by the new running average.
 If None, the running average is not computed. If this is None, then running_mean must
 also be None.
- **decay** *(float)* – Decay rate of moving average. It is used during training.
- **axis** *(int, tuple of int or None)* – Axis over which normalization is per-
 formed. When axis is None, it is determined from input dimensions. For example, if
 x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd
 axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of
 input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
 in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

BatchNormalization to manage the model parameters *(gamma, beta)* and the statistics
(running_mean, running_var).

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-05, run-
ning_mean=None, running_var=None, decay=0.9, update_statistics=False)

Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

Note: This function does not perform in-place update to running_mean and running_var by de-
fault, contrary to *batch_normalization()*). If the function is called, it will not be possible to access
the updated running mean and variance statistics, because they are members of the function object, which
cannot be accessed by the caller. If it is desired to update the running statistics, call the function with
update_statistics=True option.
Note: For the consistency with Batch Normalization, this function intentionally ignores some of the theoretical flaws in Algorithm 1 of the Batch Renormalization paper:

- `F.batch_renormalization` maintains the moving average of variances σ^2, while the original paper maintains the moving average of standard deviations σ.
- `F.batch_renormalization` applies Bessel’s correction to update the moving average of variances.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
See also:
`BatchRenormalization` to manage the model parameters (`gamma`, `beta`) and the statistics (`running_mean`, `running_var`).

chainer.functions.decorrelated_batch_normalization

```python
chainer.functions.decorrelated_batch_normalization(x, *, groups=16, eps=2e-5, running_mean=None, running_projection=None, decay=0.9)
```

Decorrelated batch normalization function.

It takes the input variable `x` and normalizes it using batch statistics to make the output zero-mean and decorrelated.

Parameters

- `x (Variable)` – Input variable.
- `groups (int)` – Number of groups to use for group whitening.
- `eps (float)` – Epsilon value for numerical stability.
- `running_mean (N-dimensional array)` – Expected value of the mean. This is a running average of the mean over several mini-batches using the decay parameter. If `None`, the expected mean is initialized to zero.
- `running_projection (N-dimensional array)` – Expected value of the project matrix. This is a running average of the projection over several mini-batches using the decay parameter. If `None`, the expected projected is initialized to the identity matrix.
- `decay (float)` – Decay rate of moving average. It is used during training.

Returns The output variable which has the same shape as `x`.

Return type `Variable`

See: Decorrelated Batch Normalization
See also:
`DecorrelatedBatchNormalization`
chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=2e-05, axis=None)

Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used for prediction consistency.

Parameters

- **x** (`Variable` or `N-dimensional array`) – Input variable.
- **gamma** (`Variable` or `N-dimensional array`) – Scaling parameter of normalized data.
- **beta** (`Variable` or `N-dimensional array`) – Shifting parameter of scaled normalized data.
- **mean** (`Variable` or `N-dimensional array`) – Shifting parameter of input.
- **var** (`Variable` or `N-dimensional array`) – Square of scaling parameter of input.
- **eps** (`float`) – Epsilon value for numerical stability.
- **axis** (`int`, `tuple of int` or `None`) – Axis over which normalization is performed. When axis is `None`, it is determined from input dimensions. For example, if x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of input. When a tuple of int is given to this option, numbers in the tuple must be being sorted in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See also:

`batch_normalization()`, `BatchNormalization`

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization(x, gamma, beta, mean, var, eps=2e-05)

chainer.functions.fixed_decorrelated_batch_normalization

chainer.functions.fixed_decorrelated_batch_normalization(x, mean, projection, groups=16)

Decorrelated batch normalization function with fixed statistics.

This is a variant of decorrelated batch normalization, where the mean and projection statistics are given by the caller as fixed variables. This is used in testing mode of the decorrelated batch normalization layer, where batch statistics cannot be used for prediction consistency.

Parameters

- **x** (`Variable`) – Input variable.
- **mean** (`Variable` or `N-dimensional array`) – Shifting parameter of input.
- **projection** (`Variable` or `N-dimensional array`) – Projection matrix for decorrelation of input.
- **groups** (`int`) – Number of groups to use for group whitening.

Returns The output variable which has the same shape as x.
Return type *Variable*

See also:

`decorrelated_batch_normalization()`, `DecorrelatedBatchNormalization`

chainer.functions.group_normalization

```python
chainer.functions.group_normalization(x, groups, gamma, beta, eps=1e-05)
```

Group normalization function.

This function implements a “group normalization” which divides the channels into groups and computes within each group the mean and variance, then normalize by these statistics, scales and shifts them.

Parameters

- `x` (*Variable* or *N-dimensional array*) – Batch tensors. First dimension of this value must be the size of minibatch and second dimension must be the number of channels. Moreover, this value must have one or more following dimensions, such as height and width.
- `groups` (*int*) – The number of channel groups. This value must be a divisor of the number of channels.
- `gamma` (*Variable* or *N-dimensional array*) – Scaling parameter.
- `beta` (*Variable* or *N-dimensional array*) – Shifting parameter.
- `eps` (*float*) – Epsilon value for numerical stability of normalization.

Returns
The output variable which has the same shape as `x`.

Return type *Variable*

See: Group Normalization

See also:

`GroupNormalization` to manage the model parameters `gamma` and `beta`.

chainer.functions.layer_normalization

```python
chainer.functions.layer_normalization(x, gamma, beta, eps=1e-05)
```

Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are computed along the second axis, scales and shifts them.

Parameters

- `x` (*Variable* or *N-dimensional array*) – Batch vectors. Shape of this value must be `(batch_size, unit_size)`, e.g., the output of `linear()`.
- `gamma` (*Variable* or *N-dimensional array*) – Scaling vectors.
- `beta` (*Variable* or *N-dimensional array*) – Shifting vectors.

Returns
The output variable which has the same shape as `x`.

Return type *Variable*

See: Layer Normalization

See also:

`LayerNormalization` to manage the model parameters `gamma` and `beta`.
Chainer Documentation, Release 6.7.0

chainer.functions.local_response_normalization

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let \(x \) an input image with \(N \) channels. Then, this function computes an output image \(y \) by following formula:

\[
y_i = \frac{x_i}{\left(k + \alpha \sum_{j=\max(1,i-n/2)}^{\min(N, i+n/2)} x_j^2 \right)^{\beta/2}}.
\]

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – Input variable.
- \(n \) (*int*) – Normalization window width.
- \(k \) (*float*) – Smoothing parameter.
- \(\alpha \) (*float*) – Normalizer scaling parameter.
- \(\beta \) (*float*) – Normalizer power parameter.

Returns Output variable.

Return type *Variable*

See: Section 3.3 of *ImageNet Classification with Deep Convolutional Neural Networks*

chainer.functions.normalize

chainer.functions.normalize(x, eps=1e-05, axis=1)
Normalize input by L2 norm.

This function implements L2 normalization on a sample along the given axis/axes. No reduction is done along the normalization axis.

In the case when \(axis=1 \) and \(x \) is a matrix of dimension \((N, K)\), where \(N \) and \(K \) denote mini-batch size and the dimension of the input vectors, this function computes an output matrix \(y \) of dimension \((N, K)\) by the following equation:

\[
y_i = \frac{x_i}{\|x_i\|_2 + \epsilon}
\]

\(\epsilon \) is used to avoid division by zero when norm of \(x \) along the given axis is zero.

The default value of \(axis \) is determined for backward compatibility.

Parameters
- \(x \) (*Variable* or *N-dimensional array*) – multi-dimensional output variable. The first dimension is assumed to be the mini-batch dimension.
- \(\epsilon \) (*float*) – Epsilon value for numerical stability.
- \(axis \) (*int* or tuple of *ints*) – Axis along which to normalize.

Returns The output variable which has the same shape as \(x \).

Return type *Variable*
4.2.10 Spatial pooling

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>average_pooling_1d</code></td>
<td>1-dimensional spatial average pooling function.</td>
</tr>
<tr>
<td><code>average_pooling_2d</code></td>
<td>Spatial average pooling function.</td>
</tr>
<tr>
<td><code>average_pooling_3d</code></td>
<td>3-dimensional spatial average pooling function.</td>
</tr>
<tr>
<td><code>average_pooling_nd</code></td>
<td>N-dimensionally spatial average pooling function.</td>
</tr>
<tr>
<td><code>max_pooling_1d</code></td>
<td>1-dimensional spatial max pooling function.</td>
</tr>
<tr>
<td><code>max_pooling_2d</code></td>
<td>Spatial max pooling function.</td>
</tr>
<tr>
<td><code>max_pooling_3d</code></td>
<td>3-dimensional spatial max pooling function.</td>
</tr>
<tr>
<td><code>max_pooling_nd</code></td>
<td>N-dimensionally spatial max pooling function.</td>
</tr>
<tr>
<td><code>roi_average_align_2d</code></td>
<td>Spatial Region of Interest (ROI) average align function.</td>
</tr>
<tr>
<td><code>roi_average_pooling_2d</code></td>
<td>Spatial Region of Interest (ROI) average pooling function.</td>
</tr>
<tr>
<td><code>roi_max_align_2d</code></td>
<td>Spatial Region of Interest (ROI) max align function.</td>
</tr>
<tr>
<td><code>roi_max_pooling_2d</code></td>
<td>Spatial Region of Interest (ROI) max pooling function.</td>
</tr>
<tr>
<td><code>roi_pooling_2d</code></td>
<td>Spatial Region of Interest (ROI) pooling function.</td>
</tr>
<tr>
<td><code>spatial_pyramid_pooling_2d</code></td>
<td>Spatial pyramid pooling function.</td>
</tr>
<tr>
<td><code>unpooling_1d</code></td>
<td>Inverse operation of 1-dimensional spatial pooling.</td>
</tr>
<tr>
<td><code>unpooling_2d</code></td>
<td>Inverse operation of pooling for 2d array.</td>
</tr>
<tr>
<td><code>unpooling_3d</code></td>
<td>Inverse operation of 3-dimensional spatial pooling.</td>
</tr>
<tr>
<td><code>upsampling_2d</code></td>
<td>Inverse operation of N-dimensional spatial pooling.</td>
</tr>
</tbody>
</table>

chainer.functions.average_pooling_1d

`average_pooling_1d(x, ksize, stride=None, pad=0, pad_value=0)`

1-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls `average_pooling_nd()` internally, so see the details of the behavior in the documentation of `average_pooling_nd()`.

chainer.functions.average_pooling_2d

`average_pooling_2d(x, ksize, stride=None, pad=0)`

Spatial average pooling function.

This function acts similarly to `convolution_2d()`, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- `x` (Variable) – Input variable.
- `ksize` (int or pair of ints) – Size of pooling window. `ksize=k` and `ksize=(k, k)` are equivalent.
• **stride** *(int or pair of ints or None)* – Stride of pooling applications.
 stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
 stride as the pooling window size.

• **pad** *(int or pair of ints)* – Spatial padding width for the input array. pad=p and
 pad=(p, p) are equivalent.

Returns Output variable.

Return type *Variable*

Note: This function currently does not support *cover_all* mode as *max_pooling_2d()*.
Average pooling runs in non-cover-all mode.

Note: The values in the padded region is treated as 0, leading the averages biased towards zero. To obtain
unbiased averages, use *average_pooling_nd()* with pad_value=None.

```python
chainer.functions.average_pooling_3d
```

chainer.functions.average_pooling_3d*(x, ksize, stride=None, pad=0, pad_value=0)*

3-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls *average_pooling_nd()* internally, so see the details of the behavior in the
documentation of *average_pooling_nd()*.

```python
chainer.functions.average_pooling_nd
```

chainer.functions.average_pooling_nd*(x, ksize, stride=None, pad=0, pad_value=0)*

N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of *average_pooling_2d()*.
This acts similarly to *convolution_nd()* , but it computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• **x** *(Variable)* – Input variable.

• **ksize** *(int or tuple of ints)* – Size of pooling window. ksize=k and
 ksize=(k, k, ..., k) are equivalent.

• **stride** *(int or tuple of ints or None)* – Stride of pooling applications.
 stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
 it uses same stride as the pooling window size.
- **pad** *(int or tuple of ints)* – Spatial padding width for the input array. pad=p and pad=(p, p, ..., p) are equivalent.
- **pad_value** *(0 or None)* – Value to fill the padded region when calculating average. If None is specified, such region is ignored. The default value is 0, therefore the averages are biased towards zero.

Returns

Output variable.

Return type *Variable*

Note: This function currently does not support cover_all mode as `max_pooling_nd()`. Average pooling runs in non-cover-all mode.

chainer.functions.max_pooling_1d

chainer.functions.max_pooling_1d(x, ksize, stride=None, pad=0, cover_all=True, return_indices=False)

1-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls `max_pooling_nd()` internally, so see the details of the behavior in the documentation of `max_pooling_nd()`.

chainer.functions.max_pooling_2d

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True, return_indices=False)

Spatial max pooling function.

This function acts similarly to `convolution_2d()`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- **x** *(Variable)* – Input variable.
- **ksize** *(int or pair of ints)* – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.
- **stride** *(int or pair of ints or None)* – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad** *(int or pair of ints)* – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.
- **cover_all** *(bool)* – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.
• **return_indices** *(bool)* – If True, pooling indices array is returned together with the output variable. The returned indices are expected for use by `chainer.functions.upsampling_2d()`. Note that cuDNN will not be used for this function if `return_indices` is set to True, as cuDNN does not return indices information.

Returns When `return_indices` is False (default), returns the output variable. When True, returns the tuple of the output variable and pooling indices *(N-dimensional array)*. Pooling indices will be on the same device as the input.

Return type *Variable* or tuple

`chainer.functions.max_pooling_3d`

`chainer.functions.max_pooling_3d(x, ksize, stride=None, pad=0, cover_all=True, return_indices=False)`

3-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls `max_pooling_nd()` internally, so see the details of the behavior in the documentation of `max_pooling_nd()`.

`chainer.functions.max_pooling_nd`

`chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True, return_indices=False)`

N-dimensionally spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of `max_pooling_2d()`. This acts similarly to `convolution_nd()`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- **x** *(Variable)* – Input variable.
- **ksize** *(int or tuple of ints)* – Size of pooling window. `ksize=k` and `ksize=(k, k, ..., k)` are equivalent.
- **stride** *(int or tuple of ints or None)* – Stride of pooling applications. `stride=s` and `stride=(s, s, ..., s)` are equivalent. If `None` is specified, then it uses same stride as the pooling window size.
- **pad** *(int or tuple of ints)* – Spatial padding width for the input array. `pad=p` and `pad=(p, p, ..., p)` are equivalent.
- **cover_all** *(bool)* – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.
• **return_indices** (*bool*) – If True, pooling indices array is returned together with the output variable. The returned indices are expected for use by `chainer.functions.upsampling_nd()`. Note that cuDNN will not be used for this function if `return_indices` is set to True, as cuDNN does not return indices information.

Returns When `return_indices` is False (default), returns the output variable. When True, returns the tuple of the output variable and pooling indices (*N*-dimensional array). Pooling indices will be on the same device as the input.

Return type *Variable* or tuple

`chainer.functions.roi_average_align_2d`

chainer.functions.roi_average_align_2d(x, rois, roi_indices, outsize, spatial_scale, sampling_ratio=None)

Spatial Region of Interest (ROI) average align function.

This function acts similarly to `roi_average_pooling_2d()`, but it computes average of input spatial patch with bilinear interpolation for each channel with the region of interest.

Parameters

- **x** (*Variable*) – Input variable. The shape is expected to be 4 dimensional: (*n*: batch, *c*: channel, *h*, height, *w*: width).
- **rois** (*Variable*) – Input roi variable. The shape is expected to be (*n*: data size, 4), and each datum is set as below: (*y_min*, *x_min*, *y_max*, *x_max*).
- **roi_indices** (*Variable*) – Input roi variable. The shape is expected to be (*n*: data size,).
- **outsize** (*int or int*) – Expected output size after pooled (height, width). `outsize=o` and `outsize=(o, o)` are equivalent.
- **spatial_scale** (*float*) – Scale of the roi is resized.
- **sampling_ratio** (*int or int*) – Sampling step for the alignment. It must be an integer over 1 or `None`, and the value is automatically decided when `None` is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as `sampling_ratio_h, sampling_ratio_w`. `sampling_ratio=s` and `sampling_ratio=(s, s)` are equivalent.

Returns Output variable.

Return type *Variable*

See the original paper proposing ROIAli

`chainer.functions.roi_average_pooling_2d`

chainer.functions.roi_average_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)

Spatial Region of Interest (ROI) average pooling function.

This function acts similarly to `average_pooling_2d()`, but it computes the average of input spatial patch for each channel with the region of interest.

Parameters

- **x** (*Variable*) – Input variable. The shape is expected to be 4 dimensional: (*n*: batch, *c*: channel, *h*, height, *w*: width).
• **rois** (*Variable*) – Input roi variable. The shape is expected to be (n: data size, 4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• **roi_indices** (*Variable*) – Input roi variable. The shape is expected to be (n: data size,).

• **outsize** (*int, int* or *int*) – Expected output size after pooled (height, width). `outsize=o` and `outsize=(o, o)` are equivalent.

• **spatial_scale** (*float*) – Scale of the roi is resized.

Returns Output variable.

Return type *Variable*

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_max_align_2d

chainer.functions.roi_max_align_2d(*x, rois, roi_indices, outsize, spatial_scale, sampling_ratio=None*)

Spatial Region of Interest (ROI) max align function.

This function acts similarly to *roi_max_pooling_2d()*, but it computes maximum of input spatial patch with bilinear interpolation for each channel with the region of interest.

Parameters

• **x** (*Variable*) – Input variable. The shape is expected to be 4 dimensional: (n: batch, c: channel, h: height, w: width).

• **rois** (*Variable*) – Input roi variable. The shape is expected to be (n: data size, 4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• **roi_indices** (*Variable*) – Input roi variable. The shape is expected to be (n: data size,).

• **outsize** (*int, int* or *int*) – Expected output size after pooled (height, width). `outsize=o` and `outsize=(o, o)` are equivalent.

• **spatial_scale** (*float*) – Scale of the roi is resized.

• **sampling_ratio** (*int, int* or *int*) – Sampling step for the alignment. It must be an integer over 1 or *None*, and the value is automatically decided when *None* is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as *(sampling_ratio_h, sampling_ratio_w)*. `sampling_ratio=s` and `sampling_ratio=(s, s)` are equivalent.

Returns Output variable.

Return type *Variable*

See the original paper proposing ROIAlign: Mask R-CNN.
chainer.functions.roi_max_pooling_2d

chainer.functions.roi_max_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)

Spatial Region of Interest (ROI) max pooling function.

This function acts similarly to max_pooling_2d(), but it computes the maximum of input spatial patch for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimensional: (n: batch, c: channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n: data size,).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
 outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

282 Chapter 4. API Reference
chainer.functions.spatial_pyramid_pooling_2d

`chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling=None)`

Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array `x` with different kernel sizes and padding sizes, and then flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second dimension.

At `i`-th pyramid level, the kernel size `(k_h^{(i)}, k_w^{(i)})` and padding size `(p_h^{(i)}, p_w^{(i)})` of pooling operation are calculated as below:

\[
\begin{align*}
 k_h^{(i)} &= \left\lceil \frac{b_h}{2^i} \right\rceil, \\
 k_w^{(i)} &= \left\lceil \frac{b_w}{2^i} \right\rceil, \\
 p_h^{(i)} &= \frac{(2^i k_h^{(i)} - b_h)}{2}, \\
 p_w^{(i)} &= \frac{(2^i k_w^{(i)} - b_w)}{2},
\end{align*}
\]

where `⌈·⌉` denotes the ceiling function, and `b_h, b_w` are height and width of input variable `x`, respectively. Note that index of pyramid level `i` is zero-based.

Parameters

- `x` *(Variable)* – Input variable. The shape of `x` should be `(batchsize, # of channels, height, width)`.
- `pyramid_height` *(int)* – Number of pyramid levels
- `pooling` *(str)* – Currently, only `max` is supported, which performs a 2d max pooling operation.

Returns Output variable. The shape of the output variable will be `(batchsize, c \sum_{h=0}^{H-1} 2^h, 1, 1)`, where `c` is the number of channels of input variable `x` and `H` is the number of pyramid levels.

Return type Variable

chainer.functions.unpooling_1d

`chainer.functions.unpooling_1d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)`

Inverse operation of 1-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls `unpooling_nd()` internally, so see the details of the behavior in the documentation of `unpooling_nd()`.
chainer.functions.unpooling_2d

Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2DFunction, but it spreads input 2d array’s value without any parameter instead of computing the inner products.

Parameters

- **x** (Variable) – Input variable.
- **ksize** (int or pair of ints) – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.
- **stride** (int, pair of ints or None) – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad** (int or pair of ints) – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.
- **outsize** (None or pair of ints) – Expected output size (height, width) of array after the operation. If None, the size (height or width) is estimated from the size of input array in first batch with `get_deconv_outsize()`. If outsize is not None, the result of outsize applied to `get_conv_outsize()` must be equal to the shape of the 2d array in the input batch x.
- **cover_all** (bool) – If True, the output size may be smaller than the size if cover_all is False. This flag serves to align behavior to the pooling functions which can cover all input locations, see `max_pooling_2d()` and `convolution_2d()`.

Returns Output variable.

Return type Variable

chainer.functions.unpooling_3d

Inverse operation of 3-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls `unpooling_nd()` internally, so see the details of the behavior in the documentation of `unpooling_nd()`.
chainer.functions.unpooling_nd

This function acts similarly to **DeconvolutionND**, but it spreads input N-dimensional array’s value without any parameter instead of computing the inner products.

Parameters

- **x** (**Variable**) – Input variable.
- **ksize** (**int or pair of ints**) – Size of pooling window \((k_1, k_2, \ldots, k_N)\). \(ksize=k\) is equivalent to \((k, k, \ldots, k)\).
- **stride** (**int, pair of ints or None**) – Stride of pooling applications \((s_1, s_2, \ldots, s_N)\). \(stride=s\) is equivalent to \((s, s, \ldots, s)\). If None is specified, then it uses same stride as the pooling window size.
- **pad** (**int or pair of ints**) – Spatial padding width for the input array \((p_1, p_2, \ldots, p_N)\). \(pad=p\) is equivalent to \((p, p, \ldots, p)\).
- **outsize** (**None or pair of ints**) – Expected output size of unpooling operation \((out_1, out_2, \ldots, out_N)\). If None, the size is estimated from input size, stride and padding.
- **cover_all** (**bool**) – If True, the pooling window is assumed to cover all of the output array, eventually the output size may be smaller than that in the case **cover_all** is False.

Returns Output variable.

Return type **Variable**

chainer.functions.upsampling_2d

This function produces an upsampled image using pooling indices.

Example

```python
>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype(np.float32)
>>> x = chainer.Variable(x)
>>> x.array
array([[[[ 1., 2., 3., 4., 5., 6.],
          [ 7., 8., 9., 10., 11., 12.],
          [13., 14., 15., 16., 17., 18.],
          [19., 20., 21., 22., 23., 24.],
          [25., 26., 27., 28., 29., 30.],
          [31., 32., 33., 34., 35., 36.]]], dtype=float32)
```

This is the original \(x\) before max pooling.
```python
>>> pooled_x, indexes = F.max_pooling_2d(
...     x, ksize=2, stride=2, return_indices=True)
>>> pooled_x.array
array([[[[ 8., 10., 12.],
          [20., 22., 24.],
          [32., 34., 36.]]],
        dtype=float32)
>>> indexes
array([[[[3, 3, 3],
         [3, 3, 3],
         [3, 3, 3]]]])
```

These are the outputs from the max pooling operation including the resulting indices that will be used to upsample `pooled_x`. Note that the indices all point to the largest, in the case the last, elements in each window.

```python
>>> upsampled_x = F.upsampling_2d(
...     pooled_x, indexes, ksize=2, stride=2, outsize=x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.array
array([[[ 0., 0., 0., 0., 0., 0.],
        [ 0., 8., 0., 10., 0., 12.],
        [ 0., 0., 0., 0., 0., 0.],
        [ 0., 20., 0., 22., 0., 24.],
        [ 0., 0., 0., 0., 0., 0.],
        [ 0., 32., 0., 34., 0., 36.]]],
        dtype=float32)
```

Parameters

- **x** *(Variable)* – Input variable.
- **indexes** *(N-dimensional array)* – Index array returned from preceding call to `max_pooling_2d()`.
- **ksize** *(int or pair of ints)* – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.
- **stride** *(int or pair of ints or None)* – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad** *(int or pair of ints)* – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.
- **outsize** *(int, int)* – Expected output size (height, width).
- **cover_all** *(bool)* – Should be set to True if all spatial locations were pooled into some output pixels during the preceding pooling operation. False otherwise. See `max_pooling_2d()`.

Returns Output variable.

Return type `Variable`
4.2.11 Utility functions

```
chainer.functions.forget

Calls a function without storing intermediate results.
```

chainer.functions.forget

chainer.functions.forget *(func, *xs)*

Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computational graph as they are required on backward propagation. Sometimes these results consume too much memory. \(\text{F}. \text{forget} \) forgets such intermediate results on forward propagation, and still supports backpropagation with recalculation.

On a forward propagation, \(\text{F}. \text{forget} \) calls a given function with given variables without creating a computational graph. That means, no intermediate results are stored. On a backward propagation, \(\text{F}. \text{forget} \) calls the given function again to create a computational graph for backpropagation.

\(\text{F}. \text{forget} \) reduces internal memory usage, whereas it requires more calculation time as it calls the function twice.

Example

Let \(f \) be a function defined as:

```python
>>> def f(a, b):
...     return (a + b) * a
```

and, \(x \) and \(y \) be Variables:

```python
>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))
```

When \(z \) is calculated as \(z = f(x, y) \), its intermediate result \(x + y \) is stored in memory. Instead, if you call \(f \) with \(\text{F}. \text{forget} \):

```python
>>> z = F.forget(f, x, y)
```

Intermediate \(x + y \) is forgotten.

Note: \(\text{F}. \text{forget} \) does not support functions which behave differently in multiple calls with the same inputs, such as \(\text{F}. \text{dropout}() \) and \(\text{F}. \text{negative_sampling}() \).

Note: In case input argument variables are of \(N \)-dimensional array objects, arguments will automatically be converted to Variables. This conversion takes place to ensure that this function is included in the computational graph to enable backward computations.

Note: \(\text{F}. \text{forget} \) does not support double backpropagation.
Note: If you want to use `F.forget` to a link which updates the link's internal information every time the forward computation is called, please ensure that the information is updated just once in a single iteration. You may use the `chainer.config.in_recomputing` flag to check if the forward computation is the first call in an iteration. Please see the implementation of `BatchNormalization` for detail.

Parameters

- **func (callable)** – A function to call. It needs to be called with `Variable` object(s) and to return a `Variable` object or a tuple of `Variable` objects.
- **xs (tuple of Variable or N-dimensional array)** – Argument variables of the function.

Returns A variable `func` returns. If it returns a tuple, the method returns a tuple too.

Return type `Variable`

4.2.12 Function base

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.Function</code></td>
<td>Old-style interface of a differentiable function.</td>
</tr>
<tr>
<td><code>chainer.FunctionAdapter</code></td>
<td>Adapter class to wrap <code>Function</code> with <code>FunctionNode</code>.</td>
</tr>
<tr>
<td><code>chainer.FunctionNode</code></td>
<td>Function node of the computational graph.</td>
</tr>
<tr>
<td><code>chainer.force_backprop_mode</code></td>
<td>Make a context manager which enables backpropagation.</td>
</tr>
<tr>
<td><code>chainer.no_backprop_mode</code></td>
<td>Make a context manager which disables backpropagation.</td>
</tr>
<tr>
<td><code>chainer.grad</code></td>
<td>Computes the gradient of output variables w.r.t. the input variables.</td>
</tr>
</tbody>
</table>

chainer.Function

class chainer.Function

Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function application is recorded to the computational graph). The subclass of `Function` that implement `forward()` and `backward()` can be used to run the forward computation and automatically induce the backpropagation procedure.

There is another way to implement such a function: subclassing `FunctionNode`. There are mainly two differences between them.

1. The `differentiable backprop` is available for `FunctionNode`, while it is not for `Function` because the `backward()` of the latter directly operates on the arrays instead of `Variable` objects so that it cannot record the history of the computation.

2. The information passed to `backward()` is different. In `FunctionNode`, which inputs the function node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while `Function` always has to compute gradients w.r.t. all the input nodes. The `FunctionNode` also accepts the current gradient values of the input nodes so that the accumulation work can be merged with the gradient computation if an efficient kernel is available.

This class uses `FunctionAdapter` to convert the interface to that of `FunctionNode` and adds the `FunctionNode` object to the computational graph.
See FunctionNode for the details of building the computational graph in Chainer.

Methods

__call__(*inputs)
Applies forward propagation with chaining backward references.
This method creates a new FunctionAdapter object and runs the forward propagation using it.
See FunctionNode for the detailed behavior of building the computational graph.

Parameters
inputs – Tuple of input Variable or N-dimensional array objects. If the input is N-dimensional array, it is automatically wrapped with Variable.

Returns
One Variable object or a tuple of multiple Variable objects.

add_hook(hook, name=None)
Registers a function hook.
See FunctionNode.add_hook() for the detail.

Parameters
• hook (FunctionHook) – Function hook to be registered.
• name (str) – Name of the function hook. name must be unique among function hooks registered to the function. If None, default name of the function hook is used.

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.
It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is determined by the type of input arrays and output gradient arrays. Implementations of Function must implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters
• inputs – Tuple of input arrays.
• grad_outputs – Tuple of output gradient arrays.

Returns
Tuple of input gradient arrays. Some or all of them can be None, if the function is not differentiable on inputs.

Return type
tuple

Warning: Implementations of Function must take care that the return value must be a tuple even if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters
• inputs – Tuple of input numpy.ndarray object(s).
• grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns
Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None, if the function is not differentiable on corresponding inputs.

Return type
tuple
Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu (inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters
• inputs – Tuple of input cupy.ndarray object(s).
 • grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward (in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

delete_hook (name)
Unregisters the specified function hook.

Parameters name (str) – the name of the function hook to be unregistered.

forward (inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either CPU/GPU
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu (inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of numpy.ndarray object(s).

Returns Tuple of numpy.ndarray object(s).

Return type tuple
Warning: Implementations of Function must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of cupy.ndarray object(s).

Returns Tuple of cupy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even if it returns only one array.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input arrays, call this method by passing an empty sequence. Note that this behavior is different from that of FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs(indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for backprop. If this method is not called, any output variables are not marked to keep the data array at the point of returning from __call__. The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED that you use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, whereas it might influence on the performance of later function applications to the output variables.

Note that this method must not be called from the outside of forward().

Parameters
• indexes (iterable of int) – Indexes of input variables that the function will require for backprop.
• retain_after_backward (bool) – This option has no effect. It is left only for the backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

__eq__()
Return self==value.
__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

inputs
 The input nodes of the function.

label
 Short text that represents the function.
 The default implementation returns its type name. Each function should override it to give more information.

local_function_hooks
 Ordered Dictionary of registered function hooks.
 See FunctionNode.local_function_hooks for the detail.

node
 The FunctionAdapter object that wraps this Function.
 If the Function does not have a node object, this property automatically creates a new one.

output_data
 A tuple of the retained output arrays.
 It has the same length as the outputs. Elements that are not retained are set to None.

outputs
 Weak references to the output nodes of the function.

rank
 The topological ordinal of the corresponding function node.

stack

chainer.FunctionAdapter

class chainer.FunctionAdapter(function)
 Adapter class to wrap Function with FunctionNode.

 While FunctionNode provides the interface of new-style differentiable functions, the old-style Function can still be used for the backward compatibility. This class provides an adapter of there interface; it adds FunctionNode interface to any Function object by delegation.
Note: The ownership of `FunctionAdapter` and `Function` is a bit tricky. At the initialization, `FunctionAdapter` is owned by the `Function` object. Once the function is applied to variables, the ownership is reversed; the adapter becomes the owner of the `Function` object and the `Function` object changes the reference to a weak one.

Parameters

`function (Function)` – The function object to wrap.

New in version 3.0.0.

Methods

`__call__(*args, **kwargs)`
Call self as a function.

`add_hook(hook, name=None)`
Registers a function hook.

Parameters

- `hook (FunctionHook)` – Function hook to be registered.
- `name (str)` – Name of the function hook. The name must be unique among function hooks registered to this function. If `None`, the default name of the function hook is used.

`apply(inputs)`
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of `FunctionNode`.

Note: If the `data` attributes of the input variables exist on a GPU device, that device is made current before calling `forward()`, so implementers do not need to take care of device selection in most cases.

Parameters

`inputs` – Tuple of input variables. Each element can be either `Variable` or `N-dimensional array`. If the element is an ndarray, it is automatically wrapped with `Variable`.

Returns

A tuple of output `Variable` objects.

`backward(target_input_indexes, grad_outputs)`
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t. specified input variables. Note that this method does not need to compute any input gradients not specified by `target_input_indices`.

Unlike `Function.backward()`, gradients are given as `Variable` objects and this method itself has to return input gradients as `Variable` objects. It enables the function node to return the input gradients with the full computational history, in which case it supports differentiable backpropagation or higher-order differentiation.

The default implementation returns `None`, which means the function is not differentiable.

Parameters
• **target_input_indexes** (*tuple of int*) – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

• **grad_outputs** (*tuple of Variables*) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is **None**.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The length of the tuple can be same as either `len(target_input_indexes)` or the number of inputs. In the latter case, the elements not specified by `target_input_indexes` will be discarded.

See also:

* `backward_accumulate()` provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

* **backward_accumulate** (*target_input_indexes, grad_outputs, grad_inputs*)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case that the multiple functions are applied to the same variable.

Users have to override either of this method or `backward()`. It is often simpler to implement `backward()` and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• **target_input_indexes** (*tuple of int*) – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

• **grad_outputs** (*tuple of Variable*) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is **None**.

• **grad_inputs** (*tuple of Variable*) – Gradients w.r.t. the input variables specified by `target_input_indexes`. These values are computed by other computation paths. If there is no gradient value existing for the variable, the corresponding element is **None**. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. Unlike `backward()`, the length of the tuple must be same as that of `target_input_indices`.

Note: Gradient variables in `grad_outputs` are distinct, even if a variable is passed to multiple input arguments of the function. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case.

Usually, only the first position of `grad_inputs` corresponding to these input arguments may contain the gradient variable corresponding to that input variable, and other entries are set to **None**. This is not the case with the `lazy_grad_sum` feature. This behavior might be changed in a future version.

check_type_forward (*in_types*)
Checks types of input data before forward propagation.

This method is called before `forward()` and validates the types of input variables using the type checking utilities.

Parameters

• **in_types** (*TypeInfoTuple*) – The type information of input variables for `forward()`.
delete_hook(name)

Unregisters the function hook.

Parameters

- **name** *(str)* – The name of the function hook to be unregistered.

forward(inputs)

Computes the output arrays from the input arrays.

It delegates the procedure to `forward_cpu()` or `forward_gpu()` by default. Which of them this method selects is determined by the type of input arrays. Implementations of `FunctionNode` must implement either CPU/GPU methods or this method.

Parameters

- **inputs** – Tuple of input array(s).

Returns

Tuple of output array(s).

Warning: Implementations of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

forward_chainerx(inputs)

Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using ChainerX implementation. If it’s not supported, `chainer.Fallback` should be returned instead of output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters

- **inputs** – Tuple of input array(s).

Returns

Tuple of output array(s) or `chainer.Fallback`.

forward_cpu(inputs)

Computes the output arrays from the input NumPy arrays.

Parameters

- **inputs** – Tuple of input `numpy.ndarray` objects.

Returns

Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)

Computes the output arrays from the input CuPy arrays.

Parameters

- **inputs** – Tuple of input `cupy.ndarray` objects.

Returns

Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

get_retained_inputs()

Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in `forward()`.

Returns

A tuple of retained input variables, if available. Otherwise return `None`.
get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this method is called; in this case, this method creates a fresh variable node that acts as an output node of the function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the point of returning from apply(). The output variables with retained arrays can then be obtained by calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.
__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

chainerx_device = None

function
 The Function object that this adapter is wrapping.

inputs = None

label
 Short text that represents the function.
 The default implementation returns its type name. Each function should override it to give more information.

lazy_grad_sum = False

local_function_hooks
 Ordered dictionary of registered function hooks.
 Contrary to chainer.thread_local.function_hooks, which registers its elements to all functions, Function hooks in this property is specific to this function.

output_data
 A tuple of the retained output arrays.
 This property is mainly used by Function. Users basically do not have to use this property; use get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.FunctionNode

class chainer.FunctionNode
 Function node of the computational graph.

 FunctionNode is a class representing a node in a computational graph. The node corresponds to an application of a differentiable function to input variables.

 When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode implementation and calls its apply() method. The apply() method basically does the following three things.

 1. Adding an edge from the function node to the variable node corresponding to each input. The node of each input is extracted by Variable.node.

 2. Computing the output arrays of the function.

 3. Creating a Variable object for each output array and adding an edge from the node of the variable to the function node.

4.2. Functions
The output variables are then returned.

Example

Let \(x \) be an instance of `Variable` and \(f \) be an instance of `FunctionNode` taking only one argument. Then the following code

```python
>>> import numpy, chainer
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = chainer.functions.math.identity.Identity()
>>> y = f.apply((x,))[0]
```

computes a new variable \(y \) and creates backward references. The backward references are actually set as per the following diagram:

```
x.node <--- f <--- y.node
```

If an application of another function \(g \) occurs as

```python
>>> g = chainer.functions.math.identity.Identity()
>>> z = g.apply((x,))[0]
```

then the graph grows with a branch:

```
     |--- f <--- y.node
x.node <--+        |--- g <--- z.node
```

Note that the branching is correctly managed on backward computation, i.e. the gradients from \(f \) and \(g \) are accumulated to the gradient of \(x \).

Every function-node implementation should provide `forward()` and `backward()`. Instead of overriding `forward()`, one can also implement `forward_cpu()` and `forward_gpu()` when the implementations for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from `backward()` by default. If it needs accesses to these variables, the `forward()` method (or its CPU/GPU variants) has to call `retain_inputs()` and `retain_outputs()` appropriately. The retained input/output variables can be accessed from `backward()` by calling `get_retained_inputs()` and `get_retained_outputs()`.

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using a subclass of `Function`, which is called *old-style differentiable function*. The second type is of a function using a subclass of `FunctionNode`, which is called *new-style differentiable function*. There are several advantages on using the new-style differentiable function.

- The new-style differentiable function supports *differentiable backpropagation*. The backpropagated gradients computed through the new-style differentiable functions themselves support further backpropagations so that the automatic higher-order differentiation is available.
- The backpropagation of the new-style differentiable function can be more computationally efficient because the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the computational graph in Chainer; old-style differentiable functions are implemented as wrappers of the new-style differentiable functions.
Variables

- **inputs** – A tuple of the input `VariableNode` objects.
- **outputs** – A tuple of weak references to the output `VariableNode` objects.
- **rank** (`int`) – An ordinal following the topological order of the computational graph.
- **stack** – Stack trace retrieved at the forward computation. The stack trace is available only in the debug mode.

New in version 3.0.0.

Methods

__call__(*args, **kwargs*)

Call self as a function.

add_hook(*hook, name=None*)

Registers a function hook.

Parameters

- **hook** (`FunctionHook`) – Function hook to be registered.
- **name** (`str`) – Name of the function hook. The name must be unique among function hooks registered to this function. If `None`, the default name of the function hook is used.

apply(*inputs*)

Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of `FunctionNode`.

Note: If the `data` attributes of the input variables exist on a GPU device, that device is made current before calling `forward()`, so implementers do not need to take care of device selection in most cases.

Parameters **inputs** – Tuple of input variables. Each element can be either `Variable` or `N-dimensional array`. If the element is an ndarray, it is automatically wrapped with `Variable`.

Returns A tuple of output `Variable` objects.

backward(*target_input_indexes, grad_outputs*)

Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t. specified input variables. Note that this method does not need to compute any input gradients not specified by `target_input_indices`.

Unlike `Function.backward()`, gradients are given as `Variable` objects and this method itself has to return input gradients as `Variable` objects. It enables the function node to return the input gradients with the full computational history, in which case it supports *differentiable backpropagation* or *higher-order differentiation*.

The default implementation returns `None`, which means the function is not differentiable.

Parameters
• **target_input_indexes** *(tuple of int)* – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

• **grad_outputs** *(tuple of Variables)* – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The length of the tuple can be same as either len(target_input_indexes) or the number of inputs. In the latter case, the elements not specified by target_input_indexes will be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

backward_accumulate *(target_input_indexes, grad_outputs, grad_inputs)*

Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case that the multiple functions are applied to the same variable.

Users have to override either of this method or *backward()*. It is often simpler to implement *backward()*, and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• **target_input_indexes** *(tuple of int)* – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

• **grad_outputs** *(tuple of Variable)* – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.

• **grad_inputs** *(tuple of Variable)* – Gradients w.r.t. the input variables specified by target_input_indexes. These values are computed by other computation paths. If there is no gradient value existing for the variable, the corresponding element is None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. Unlike *backward()*, the length of the tuple **must** be same as that of target_input_indexes.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple input arguments of the function. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case.

Usually, only the first position of grad_inputs corresponding to these input arguments may contain the gradient variable corresponding to that input variable, and other entries are set to None. This is not the case with the lazy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward(in_types)

Checks types of input data before forward propagation.

This method is called before *forward()* and validates the types of input variables using the type checking utilities.

Parameters **in_types** *(TypeInfoTuple)* – The type information of input variables for *forward()*.
delete_hook(name)
Unregisters the function hook.

Parameters

<table>
<thead>
<tr>
<th>name</th>
<th>str</th>
</tr>
</thead>
</table>

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to **forward_cpu()** or **forward_gpu()** by default. Which of them this method selects is determined by the type of input arrays. Implementations of **FunctionNode** must implement either CPU/GPU methods or this method.

Parameters

| inputs | Tuple of input array(s). |

Returns

Tuple of output array(s).

Warning: Implementations of **FunctionNode** must take care that the return value must be a tuple even if it returns only one array.

forward_chainerx(inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using ChainerX implementation. If it’s not supported, **chainerFallback** should be returned instead of output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters

| inputs | Tuple of input array(s). |

Returns

Tuple of output array(s) or **chainerFallback**.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters

| inputs | Tuple of input **numpy.ndarray** objects. |

Returns

Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of **FunctionNode** must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters

| inputs | Tuple of input **cupy.ndarray** objects. |

Returns

Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of **FunctionNode** must take care that the return value must be a tuple even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in **forward()**.

Returns

A tuple of retained input variables, if available. Otherwise return **None**.
get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in `forward()`.

Returns A tuple of retained output variables, if available. Otherwise return `None`.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this method is called; in this case, this method creates a fresh variable node that acts as an output node of the function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from `forward()`, the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling `get_retained_inputs()` from inside `backward()`.

Unlike `Function`, the function node **DOES NOT** keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

Note that **this method must not be called from the outside of `forward()`**.

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from `forward()`, the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the point of returning from `apply()`. The output variables with retained arrays can then be obtained by calling `get_retained_outputs()` from inside `backward()`.

Note: It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

Note that **this method must not be called from the outside of `forward()`**.

Parameters indexes (iterable of int) – Indexes of output variables that the function will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return `self==value`.

__ne__()
Return `self!=value`.

__lt__()
Return `self<value`.

__le__()
Return `self<=value`.
__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

chainerx_device = None

inputs = None

label
 Short text that represents the function.
 The default implementation returns its type name. Each function should override it to give more information.

lazy_grad_sum = False

local_function_hooks
 Ordered dictionary of registered function hooks.
 Contrary to chainer.thread_local.function_hooks, which registers its elements to all functions, Function hooks in this property is specific to this function.

output_data
 A tuple of the retained output arrays.
 This property is mainly used by Function. Users basically do not have to use this property; use get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.force_backprop_mode

chainer.force_backprop_mode()
 Make a context manager which enables back-propagation.

 When you want to enable back-propagation in no_backprop_mode(), call this method. A Variable created in this context always has a computational graph unless overridden by deeper contexts. If you call this method outside of no_backprop_mode() context, it changes nothing.

 In the following example, y has a computational graph and calling backward() on y will compute and accumulate the gradients of the variables in the graph, in this case only x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad
array([1.], dtype=float32)
Note: chainer.force_backprop_mode() implicitly applies ChainerX's counterpart chainerx.force_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not affect ChainerX.

See also:
See chainer.no_backprop_mode() for details on disabled back-propagation mode.

chainer.no_backprop_mode

chainer.no_backprop_mode()
Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consumption. However, a Variable created in this context does not hold a reference to the FunctionNode that created itself so no gradients are accumulated by backward().

In the following example, y is created in this context, which means that calling backward() on y has no effect on the gradients of x.

```python
>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
...    y = x + 1
>>> y.backward()
>>> x.grad is None
True
```

Note: chainer.no_backprop_mode() implicitly applies ChainerX's counterpart chainerx.no_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not affect ChainerX.

See also:
See chainer.force_backprop_mode() for details on how to override this context.

chainer.grad

chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, retain_grad=False, enable_double_backprop=False, loss_scale=None)
Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward() also implements backprop, this function selects the smallest paths in the computational graph needed to compute the gradients w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall computational cost.

This function also differs from Variable.backward() in the way to return the gradients; it directly returns the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.grad_var attribute of each variable, in which case any original value of Variable.grad_var will be updated even if it had already been set.

Parameters
functions\((\text{tuple or list of } \text{Variable}) \) – A sequence of output variables from which backprop starts.

- **inputs** (tuple or list of Variable) – A sequence of input variables each of which this function computes the gradient w.r.t.

- **grad_outputs** (tuple or list of Variable or None) – A sequence of variables that gives the initial value of each output gradient. If an element is set to None, an array filled with 1 is used. If this argument itself is None, it is treated as a sequence of Nones.

- **grad_inputs** (tuple or list of Variable or None) – A sequence of variables that gives the initial value of each input gradient. The gradients computed by the backprop algorithm are accumulated to them (not in-place). If an element is set to None, the gradient is not accumulated to this value. If this argument itself is None, it is treated as a sequence of Nones.

- **set_grad** (bool) – If it is True, the Variable.grad_var attribute of each input variable is set to the corresponding computed gradient variable.

- **retain_grad** (bool) – If it is True, the gradients w.r.t. all the intermediate variables are stored in the Variable.grad_var attribute. In this case, the set_grad option is ignored.

- **enable_double_backprop** (bool) – If it is True, the computed gradients can be further backpropagated. Enabling it may increase the memory consumption (and possibly the computational time) to remember the intermediate gradient values for the second backpropagation.

- **loss_scale** (float) – Loss scaling factor. Loss scaling is a useful technique to mitigate vanishing gradient issue that tends to happen when low precision data type like float16 is used during training. If you set loss scaling factor, gradients of loss values are to be multiplied by the factor before backprop starts. The factor is propagated to whole gradients in a computational graph along the backprop. The gradients of parameters are divided by the factor just before the parameters are to be updated.

Returns A list of gradient variables w.r.t. the inputs.

4.2.13 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of FunctionNode and Function.

<table>
<thead>
<tr>
<th>chainer.function_hooks.</th>
<th>Function hook for measuring memory usage of functions in cupy memory pool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDAProfileHook</td>
<td></td>
</tr>
<tr>
<td>CupyMemoryProfileHook</td>
<td></td>
</tr>
<tr>
<td>chainer.function_hooks.PrintHook</td>
<td>Function hook that prints debug information.</td>
</tr>
<tr>
<td>chainer.function_hooks.TimerHook</td>
<td>Function hook for measuring elapsed time of functions.</td>
</tr>
</tbody>
</table>

4.2. Functions
chainer.function-hooks.CUDAProfileHook

class chainer.function-hooks.CUDAProfileHook

Methods

__enter__()
__exit__(*)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.
__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'CUDAProfileHook'

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
 Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

```python
from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:
    trainer.run()
hook.print_report()
```

Output example:

<table>
<thead>
<tr>
<th>FunctionName</th>
<th>UsedBytes</th>
<th>AcquiredBytes</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>5.16GB</td>
<td>179.98MB</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>0.99GB</td>
<td>458.97MB</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>0.01GB</td>
<td>5.08MB</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.00GB</td>
<td>0.35MB</td>
<td>700</td>
</tr>
</tbody>
</table>

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired from GPU device on the function call, and Occurrence is the number of calls.

Variables **call_history** – List of measurement results. It consists of the name of the function that calls this hook, the memory bytes the function used from cupy memory pool, and the memory bytes the cupy memory pool acquired from GPU device on the function call.
Methods

__enter__()
__exit__(*_)

added (function=None)
Callback function invoked when the function hook is registered

Parameters

* function (FunctionNode) – Function object to which the function hook is added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

* function (FunctionNode) – Function object to which the function hook is registered.
* in_data (tuple of N-dimensional array) – Input of forward propagation.
* out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

* function (FunctionNode) – Function object to which the function hook is registered.
* in_data (tuple of N-dimensional array) – Input data of forward propagation.
* out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted (function=None)
Callback function invoked when the function hook is unregistered

Parameters

* function (FunctionNode) – Function object from which the function hook is deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

* function (FunctionNode) – Function object to which the function hook is registered.
* in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

* function (FunctionNode) – Function object to which the function hook is registered.
* in_data (tuple of N-dimensional array) – Input data of forward propagation.

print_report (unit='auto', file=<_io.TextIOWrapper name='<stdout>' mode='w', encoding='UTF-8'>)
Prints a summary report of memory profiling in functions.
Parameters

unit *(str)* – Supplementary units used for used memories. *B, KB, MB, GB, TB, PB, EB, ZB, auto (default) and auto foreach* are supported. If auto, units of memories are aligned to the largest values of ‘used_bytes’ and ‘acquired_bytes’. If auto foreach, units of memories are adjusted for each element.

summary()

Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of `used_bytes`, `acquired_bytes`, and `occurrrence`.

total_acquired_bytes()

Returns total bytes that cupy memory pool acquired from GPU.

total_used_bytes()

Returns total bytes that functions used from cupy memory pool.

__eq__()

Return `self==value`.

__ne__()

Return `self!=value`.

__lt__()

Return `self<value`.

__le__()

Return `self<=value`.

__gt__()

Return `self>value`.

__ge__()

Return `self>=value`.

Attributes

name = 'CupyMemoryProfileHook'

chainer.function_hooks.PrintHook

class **chainer.function_hooks.PrintHook**(*sep=None, end='n', file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, flush=True)

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of `forward` and `backward` methods involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we can show the information of all functions involved with single `with` statement.

Further, this hook enables us to show the information of `backward` methods without inserting print functions into Chainer’s library code.

Parameters

- **sep** – *(deprecated since v4.0.0)* Ignored.
- **end** – Character to be added at the end of print function.
• **file** – Output file_like object that that redirect to.
• **flush** – If True, this hook forcibly flushes the text stream at the end of preprocessing.

Example

The basic usage is to use it with `with` statement.

```python
>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.PrintHook():
...     y = l(x)
...     z = F.sum(y)
...     z.backward()
```

In this example, `PrintHook` shows the debug information of forward propagation of `LinearFunction` (which is implicitly called by `l`) and `Sum` (called by `F.sum`) and backward propagation of `z` and `y`.

Methods

`__enter__()`
`__exit__(*_)`
`added(function)`

Callback function invoked when the function hook is registered

Parameters

- **function** (*FunctionNode*) – Function object to which the function hook is added. None if the function hook is registered globally.

`backward_postprocess(function, in_data, out_grad)`

Callback function invoked after backward propagation.

Parameters

- **function** (*FunctionNode*) – Function object to which the function hook is registered.
- **in_data** (*tuple of `N-dimensional array`*) – Input of forward propagation.
- **out_grad** (*tuple of `N-dimensional array`*) – Gradient data of backward propagation.

`backward_preprocess(function, in_data, out_grad)`

Callback function invoked before backward propagation.

Parameters

- **function** (*FunctionNode*) – Function object to which the function hook is registered.
- **in_data** (*tuple of `N-dimensional array`*) – Input data of forward propagation.
- **out_grad** (*tuple of `N-dimensional array`*) – Gradient data of backward propagation.

`deleted(function)`

Callback function invoked when the function hook is unregistered

Parameters

- **function** (*FunctionNode*) – Function object from which the function hook is deleted. None if the function hook was registered globally.
forward_postprocess
\(\text{(function, in_data)} \)
Callback function invoked after forward propagation.

Parameters
- **function** *(FunctionNode)* – Function object to which the function hook is registered.
- **in_data** *(tuple of \(N\)-dimensional array)* – Input data of forward propagation.

forward_preprocess
\(\text{(function, in_data)} \)
Callback function invoked before forward propagation.

Parameters
- **function** *(FunctionNode)* – Function object to which the function hook is registered.
- **in_data** *(tuple of \(N\)-dimensional array)* – Input data of forward propagation.

__eq__
Return self==value.

__ne__
Return self!=value.

__lt__
Return self<value.

__le__
Return self<=value.

__gt__
Return self>value.

__ge__
Return self>=value.

Attributes

name = 'PrintHook'

chainer.function_hooks.TimerHook

class chainer.function_hooks.TimerHook
Function hook for measuring elapsed time of functions.

Example

Code example:

```python
from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:
    trainer.run()
hook.print_report()
```

Output example:

4.2. Functions
<table>
<thead>
<tr>
<th>FunctionName</th>
<th>ElapsedTime</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>1.24sec</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>0.59sec</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>0.82sec</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.18sec</td>
<td>700</td>
</tr>
</tbody>
</table>

where FunctionName is the name of function that calls the hook, and ElapsedTime is the elapsed time the function consumed, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of pairs of the name of the function that calls this hook and the elapsed time the function consumes.

Methods

__enter__ ()
__exit__ (*_)

added (function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.
• in_data (tuple of N-dimensional array) – Input of forward propagation.
• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.
• in_data (tuple of N-dimensional array) – Input data of forward propagation.
• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.
• in_data (tuple of N-dimensional array) – Input data of forward propagation.
forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

- **function** (FunctionNode) – Function object to which the function hook is registered.
- **in_data** (tuple of N-dimensional array) – Input data of forward propagation.

print_report (unit='auto', file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)
Prints a summary report of time profiling in functions.

Parameters

- **unit** (str) – Supplementary units used for computational times. sec, ms, us, ns, auto (default) and auto_foreach are supported. If auto, units of times are aligned to the largest, and if auto_foreach, units of times are adjusted for each element.

summary ()
Returns a summary of time profiling in functions.

Returns
A summarized dictionary whose keys are function names and values are dictionaries of elapsed_time and occurrence.

total_time ()
Returns total elapsed time in seconds.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

name = 'TimerHook'

<table>
<thead>
<tr>
<th>table</th>
</tr>
</thead>
<tbody>
<tr>
<td>{'ms': 1000, 'ns': 100000000, 'sec': 1, 'us': 100000}</td>
</tr>
</tbody>
</table>

You can also implement your own function-hook to inject arbitrary code before/after the forward/backward propagation.

chainer.FunctionHook
Base class of hooks for Functions.
chainer.FunctionHook

class chainer.FunctionHook
Base class of hooks for Functions.

FunctionHook is a callback object that is registered to FunctionNode. Registered function hooks are
invoked before and after forward and backward operations of each function.

Function hooks that derive from FunctionHook may override the following methods:

- added()
- deleted()
- forward_preprocess()
- forward_postprocess()
- backward_preprocess()
- backward_postprocess()

By default, these methods do nothing.

Specifically, when the __call__() method of some function is invoked, forward_preprocess() (resp.
forward_postprocess()) of all function hooks registered to this function are called before (resp. after)
forward propagation.

Likewise, when backward() of some Variable is invoked, backward_preprocess() (resp.
backward_postprocess()) of all function hooks registered to the function which holds this variable as a
gradient are called before (resp. after) backward propagation.

added() and deleted() are called when the hook is registered or unregistered, respectively.

There are two ways to register FunctionHook objects to FunctionNode objects.

The first one is to use with statement. Function hooks hooked in this way are registered to all functions within
with statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of FunctionHook.

```python
>>> class Model(chainer.Chain):
...     def __init__(self):
...         super(Model, self).__init__()
...         with self.init_scope():
...             self.l = L.Linear(10, 10)
...         def __call__(self, x1):
...             return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.TimerHook() as m:
...     _ = model1(x)
...     y = model2(x)
>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
... Total time : ...
```
In this example, we measure the elapsed times for each forward propagation of all functions in model1 and model2. Note that model3 is not a target of measurement as TimerHook is unregistered before forward propagation of model3.

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks registered are different depending on threads.

The other one is to register it directly to a FunctionNode object by calling its add_hook() method. Function hooks registered in this way can be removed by delete_hook() method. Contrary to the former registration method, function hooks are registered only to the function whose add_hook() method is called. If the hook is registered globally using with statement, None is passed as the function argument of added() and deleted().

If the hook is registered in a specific function using add_hook(), the FunctionNode instance is passed as the function argument of added() and deleted().

Parameters name (str) – Name of this function hook.

Methods

__enter__ ()
__exit__ (*_,)

added (function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.
• in_data (tuple of N-dimensional array) – Input of forward propagation.
• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is registered.
• in_data (tuple of N-dimensional array) – Input data of forward propagation.
• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is deleted. None if the function hook was registered globally.
forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters
- function (FunctionNode) – Function object to which the function hook is registered.
- in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters
- function (FunctionNode) – Function object to which the function hook is registered.
- in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes
name = 'FunctionHook'

4.3 Link and Chains

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in the namespace for backward compatibility, though it is strongly recommended that you use them via the chainer.links package.
4.3.1 Learnable connections

<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.Bias</code></td>
<td>Broadcasted elementwise summation with learnable parameters.</td>
</tr>
<tr>
<td><code>chainer.links.Bilinear</code></td>
<td>Bilinear layer that performs tensor multiplication.</td>
</tr>
<tr>
<td><code>chainer.links.ChildSumTreeLSTM</code></td>
<td>Child-Sum TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.Convolution1D</code></td>
<td>1-dimensional convolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.Convolution2D</code></td>
<td>Two-dimensional convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.Convolution3D</code></td>
<td>3-dimensional convolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.ConvolutionND</code></td>
<td>N-dimensional convolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.Deconvolution1D</code></td>
<td>1-dimensional deconvolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.Deconvolution2D</code></td>
<td>Two-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.Deconvolution3D</code></td>
<td>Three-dimensional deconvolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.DeconvolutionND</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.DeformableConvolution2D</code></td>
<td>Two-dimensional deformable convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.DepthwiseConvolution2D</code></td>
<td>Two-dimensional depthwise convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.DilatedConvolution2D</code></td>
<td>Two-dimensional dilated convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.EmbedID</code></td>
<td>Efficient linear layer for one-hot input.</td>
</tr>
<tr>
<td><code>chainer.links.GRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.Highway</code></td>
<td>Highway module.</td>
</tr>
<tr>
<td><code>chainer.links.Inception</code></td>
<td>Inception module of GoogLeNet.</td>
</tr>
<tr>
<td><code>chainer.links.InceptionBN</code></td>
<td>Inception module of the new GoogLeNet withBatch-Normalization.</td>
</tr>
<tr>
<td><code>chainer.links.Linear</code></td>
<td>Linear layer (a.k.a. fully-connected layer).</td>
</tr>
<tr>
<td><code>chainer.links.LocalConvolution2D</code></td>
<td>Two-dimensional local convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.LSTM</code></td>
<td>Fully-connected LSTM layer.</td>
</tr>
<tr>
<td><code>chainer.links.MLPConvolution2D</code></td>
<td>Two-dimensional MLP convolution layer of Network in Network.</td>
</tr>
<tr>
<td><code>chainer.links.NaryTreeLSTM</code></td>
<td>N-ary TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiGRU</code></td>
<td>Stacked Bi-directional GRU for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiLSTM</code></td>
<td>Stacked Bi-directional LSTM for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiRNNReLU</code></td>
<td>Stacked Bi-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiRNNTanh</code></td>
<td>Stacked Bi-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepGRU</code></td>
<td>Stacked Uni-directional GRU for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepLSTM</code></td>
<td>Stacked Uni-directional LSTM for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNReLU</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNTanh</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.Parameter</code></td>
<td>Link that just holds a parameter and returns it.</td>
</tr>
<tr>
<td><code>chainer.links.Scale</code></td>
<td>Broadcasted elementwise product with learnable parameters.</td>
</tr>
<tr>
<td><code>chainer.links.StatefulGRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatelessGRU</code></td>
<td>Stateless Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatefulMGU</code></td>
<td>Fully-connected LSTM layer with peephole connections.</td>
</tr>
<tr>
<td><code>chainer.links.StatelessMGU</code></td>
<td>Stateless LSTM layer.</td>
</tr>
<tr>
<td><code>chainer.links.StatefulPeepholeLSTM</code></td>
<td></td>
</tr>
</tbody>
</table>
chainer.links.Bias

class chainer.links.Bias(axis=1, shape=None)

Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as \(\text{bias()}\) function does except that its second input is a learnable bias parameter \(b\) the link has.

Parameters

- **axis** (int) – The first axis of the first input of \(\text{bias()}\) function along which its second input is applied.
- **shape** (tuple of ints) – Shape of the learnable bias parameter. If None, this link does not have learnable parameters so an explicit bias needs to be given to its forward method’s second input.

See also:

See \(\text{bias()}\) for details.

Variables \(b\) (Variable) – Bias parameter if shape is given. Otherwise, no attributes.

Methods

__call__(*args, **kwargs)

Call self as a function.

add_hook(hook, name=None)

Registers a link hook.

Parameters

- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

addpersistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (*Link*) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode*='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is *share*.

Returns
Copied link object.

Return type *Link*

copyparams (*link*, *copy_persistent*=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an *ndarray*, the elements are copied. Otherwise, it is copied using *copy.deepcopy()* . The old behavior (not copying persistent values) can be reproduced with *copy_persistent*=False.

Parameters
- **link** (*Link*) – Source link object.
- **copy_persistent** (*bool*) – If *True*, persistent values are also copied. *True* by default.
count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)

Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*xs)

Applies broadcasted elementwise summation.

Parameters xs (list of Variables) – Input variables whose length should be one if the link has a learnable bias parameter, otherwise should be two.

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize(*serializer*)

Serializes the link object.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.
zerograds()
 Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.Bilinear

class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, initial_bias=None)

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters \(W, V_1, V_2, \) and \(b \) corresponding to the arguments of `bilinear()`.

Parameters

- **left_size (int)** – Dimension of input vector \(e_1 \) (\(J \))
- **right_size (int)** – Dimension of input vector \(e_2 \) (\(K \))
- **out_size (int)** – Dimension of output vector \(y \) (\(L \))
- **nobias (bool)** – If True, parameters \(V_1, V_2, \) and \(b \) are omitted.
- **initialW (initializer)** – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 3.
- **initial_bias (tuple of initializer)** – Initial values of \(V_1, V_2 \) and \(b \). The length of this argument must be 3. Each element of this tuple must have the shapes of (left_size, out_size), (right_size, out_size), and (out_size,), respectively if they are `numpy.ndarray`. If None, \(V_1 \) and \(V_2 \) are initialized by the default initializer and \(b \) is set to 0.

See also:

See `chainer.functions.bilinear()` for details.

Variables

- **W (Variable)** – Bilinear weight parameter.
- **V1 (Variable)** – Linear weight parameter for the first argument.
- **V2 (Variable)** – Linear weight parameter for the second argument.
- **b (Variable)** – Bias parameter.

Methods

__call__(*args, **kwargs)

Call self as a function.

add_hook (hook, name=None)

Registers a link hook.

Parameters

- **hook (LinkHook)** – Link hook to be registered.
- **name (str)** – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link
copyparams *(link, copy_persistent=True)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using *copy.deepcopy()* . The old behavior (not copying persistent values) can be reproduced with *copy_persistent=False*.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to *False*.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to *True*.

forward *(el, e2)*
Applies the bilinear function to inputs and the internal parameters.

Parameters

- **el** *(Variable)* – Left input.
- **e2** *(Variable)* – Right input.

Returns Output variable.

Return type *Variable*

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.
init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(`skipself=False`)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(`skipself=False`)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(`include_uninit=True`)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(`include_uninit=True`)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(`name`)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(`n_repeat`, mode='init')
Repeats this link multiple times to make a `Sequential`.
This method returns a \textit{Sequential} object which has the same \textit{Link} multiple times repeatedly. The \textit{mode} argument means how to copy this link to repeat.

\textbf{Example}

You can repeat the same link multiple times to create a longer \textit{Sequential} block like this:

\begin{verbatim}
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
\end{verbatim}

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

\textbf{Parameters}

- \texttt{n_repeat (int)} – Number of times to repeat.
- \texttt{mode (str)} – It should be either init, copy, or share. init means parameters of each repeated element in the returned \textit{Sequential} will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting \textit{Sequential} object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

\textbf{serialize (serializer)}

Serializes the link object.

\textbf{Parameters} \texttt{serializer (AbstractSerializer)} – Serializer object.

\textbf{to_chx ()}

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

\textbf{to_cpu ()}

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override \texttt{device_resident_accept ()} to do so.

Returns: self
to_device *(device)*

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters

- **device** — Target device specifier. See `get_device()` for available values.

Returns: `self`

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** — Target device specifier. If omitted, the current device is used.

Returns: `self`

to_intel64 *

Copies parameter variables and persistent values to CPU.

zero_grads *

zerograds *

Initializes all gradient arrays by zero.

Depreciated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__ *

Return `self==value`.

__ne__ *

Return `self!=value`.

__lt__ *

Return `self<value`.

__le__ *

Return `self<=value`.

__gt__ *

Return `self>value`.

__ge__ *

Return `self>=value`.

Attributes

- **device** — *Device* instance.

- **local_link_hooks** — Ordered dictionary of registered link hooks.

 Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions,
 link hooks in this property are specific to this link.

- **printable_specs** — Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` function. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM(in_size, out_size)
Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, c, and the output, h, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as `func(c1, c2, h1, h2, x)` if the number of children nodes is 2, while `func(c1, c2, c3, h1, h2, h3, x)` if that is 3. This function is independent from an order of children nodes. Thus, the returns of `func(c1, c2, h1, h2, x)` equal to those of `func(c2, c1, h2, h1, x)`.

Parameters

• **in_size** (int) – Dimension of input vectors.
• **out_size** (int) – Dimensionality of cell and output vectors.

Variables

• **W_x** (`chainer.links.Linear`) – Linear layer of connections from input vectors.
• **W_h_aio** (`chainer.links.Linear`) – Linear layer of connections between (a, i, o) and summation of children’s output vectors. a, i and o denotes input compound, input gate and output gate, respectively. a, input compound, equals to v in the paper by Tai et al.
• **W_h_f** (`chainer.links.Linear`) – Linear layer of connections between forget gate f and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
 • hook (LinkHook) – Link hook to be registered.
 • name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
 self

add_link(name, link)
Registers a child link to this chain.

Parameters
 • name (str) – Name of the child link. This name is also used as the attribute name.
 • link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
 • name (str) – Name of the parameter. This name is also used as the attribute name.
 • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 • dtype – Data type of the parameter array.
 • initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
 • name (str) – Name of the persistent value. This name is also used for the attribute name.
 • value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
 link (Link) – Source link object.
children()
Returns a generator of all child links.

 Returns A generator object that generates all child links.

cleargrads()
Cleans all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.
copy (mode='share')
Copies the link hierarchy to a new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

 Returns Copied link object.

 Return type Link
copyparams (link, copy_persistent=True)
Copies all parameters from the given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

 From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

 • link (Link) – Source link object.
 • copy_persistent (bool) – If True, persistent values are also copied. True by
default.
count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

 Returns The total size of parameters (int)
delete_hook (name)
Unregisters the link hook.

 Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*cshsx***)*
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters **cshsx** *(list of Variable)* – Variable arguments which include all cell vectors and all output vectors of variable children, and an input vector.

Returns Returns
\[
(c_{\text{new}}, h_{\text{new}})
\]
where
\[c_{\text{new}}\] represents new cell state vector, and
\[h_{\text{new}}\] is new output vector.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.
Parameters

skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is ConvBNReLU. And the *mode* was *init*, so each block is re-initialized with different parameters. If you give *copy* to this argument, each block has same values for its parameters but its object ID is different from others. If it is *share*, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters
- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)
Serializes the link object.

Parameters
- **serializer** (*AbstractSerializer*) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device (*device*)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters
- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu (*device=None*)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.
Chainer Documentation, Release 6.7.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution1D

class chainer.links.Convolution1D (in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False, dilate=1, groups=1)

1-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 1 to the first argument ndim, so see the details of the behavior in the documentation of ConvolutionND.
```python
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
```

4.3. Link and Chains 337
copy\((\text{mode}='share')\)
Copies the link hierarchy to a new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument \text{mode} below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters \text{mode} (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their \text{initialize()} method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default \text{mode} is share.

Returns Copied link object.

Return type Link

copyparams\((\text{link}, \text{copy_persistent=True})\)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- \text{link} (Link) – Source link object.
- \text{copy_persistent} (bool) – If True, persistent values are also copied. True by default.

count_params\()\)
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook\((\text{name})\)
Unregisters the link hook.

Parameters \text{name} (str) – The name of the link hook to be unregistered.

device_resident_accept\((\text{visitor})\)
Applies the visitor to all the device objects in this instance.

Parameters \text{visitor} (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update\()\)
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

forward(x)
Applies N-dimensional convolution layer.

- **Parameters** `x (Variable)` – Input image.
- **Returns** Output of convolution.
- **Return type** `Variable`

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, parameter) pairs under the hierarchy.

- **Parameters** `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.
- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters
- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is `ConvBNReLU`. And the *mode* was *init*, so each block is re-initialized with different parameters. If you give *copy* to this argument, each block has same values for its parameters but its object ID is different from others. If it is *share*, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.
serialize (serializer)
 Serializes the link object.

 Parameters serializer (**AbstractSerializer**) – Serializer object.

to_chx ()
 Converts parameter variables and persistent values to ChainerX without any copy.
 This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.
 Returns: self

to_cpu ()
 Copies parameter variables and persistent values to CPU.
 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept () to do so.
 Returns: self

to_device (device)
 Copies parameter variables and persistent values to the specified device.
 This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

 Parameters device – Target device specifier. See get_device () for available values.
 Returns: self

to_gpu (device=None)
 Copies parameter variables and persistent values to GPU.
 This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept () to do so.

 Parameters device – Target device specifier. If omitted, the current device is used.
 Returns: self

to_intel64 ()
 Copies parameter variables and persistent values to CPU.

zerograds ()
 Initializes all gradient arrays by zero.
 Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq__ ()
 Return self==value.

_ne__ ()
 Return self!=value.

_lt__ ()
 Return self<value.

_le__ ()
 Return self<=value.

_gt__ ()
 Return self>value.

_ge__ ()
 Return self>=value.
Attributes

device

Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() function. This pair of key and value is used for representing this class or subclass with __str__().

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution2D

class chainer.links.Convolution2D(self, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, *, dilate=1, groups=1)

Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True)

Parameters

- in_channels (int or None) – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- out_channels (int) – Number of channels of output arrays.

- ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- stride (int or pair of ints) – Stride of filter applications. stride=s and stride=(s, s) are equivalent.
pad (*int or pair of ints*) – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.

nobias (*bool*) – If True, then this link does not use the bias term.

initialW (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 4.

initial_bias (*initializer*) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

dilate (*int or pair of ints*) – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d)` are equivalent.

groups (*int*) – Number of groups of channels. If the number is greater than 1, input tensor `W` is divided into some blocks by this value channel-wise. For each tensor blocks, convolution operation will be executed independently. Input channel size `in_channels` and output channel size `out_channels` must be exactly divisible by this value.

See also:

See `chainer.functions.convolution_2d()` for the definition of two-dimensional convolution.

Variables

- **W** (*Variable*) – Weight parameter.
- **b** (*Variable*) – Bias parameter.

Example

There are several ways to make a Convolution2D link.

Let an input vector `x` be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(... 1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

```python
>>> l = L.Convolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

2. Omit `in_channels` or fill it with `None`:

The below two cases are the same.

```python
>>> l = L.Convolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```
When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

Methods

- **`__call__`**

 Call self as a function.

- **`add_hook`**

 Registers a link hook.

 Parameters

 - `hook (LinkHook)` – Link hook to be registered.
 - `name (str)` – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

 Returns

 `self`

- **`add_param`**

 Registers a parameter to the link.

 Parameters

 - `name (str)` – Name of the parameter. This name is also used as the attribute name.
 - `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 - `dtype – Data type of the parameter array.
 - `initializer (initializer)` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

- **`add_persistent`**

 Registers a persistent value to the link.

 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

 Parameters

 - `name (str)` – Name of the persistent value. This name is also used for the attribute name.
 - `value` – Value to be registered.
addgrads (link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link (Link)** – Source link object.

children()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode (str)** – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

Returns

Copied link object.

Return type

- **Link**

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link (Link)** – Source link object.

 - **copy_persistent (bool)** – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

`delete_hook(name)`

Unregisters the link hook.

Parameters `name` (**str**) – The name of the link hook to be unregistered.

`device_resident_accept(visitor)`

Applies the visitor to all the device objects in this instance.

Parameters `visitor` (**DeviceResidentsVisitor**) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`forward(x)`

Applies the convolution layer.

Parameters `x` (**Variable**) – Input image.

Returns Output of the convolution.

Return type **Variable**

`from_chx()`

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links(skipself=False)`

Returns a generator of all links under the hierarchy.

Parameters `skipself` (**bool**) – If `True`, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all links.

namedlinks (*skipself=False*)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters
- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to...
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.

- **mode** (*str*) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```
serialize(serializer)
```

Serializes the link object.

Parameters *serializer* (**AbstractSerializer**) – Serializer object.

```
to_chx()
```

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```
to_cpu()
```

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```
to_device(device)
```

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters *device* – Target device specifier. See `get_device()` for available values.

Returns: self

```
to_gpu(device=None)
```

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters *device* – Target device specifier. If omitted, the current device is used.

Returns: self

```
to_intel64()
```

Copies parameter variables and persistent values to CPU.

```
zerograds()
```

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.
Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the _init_(). This pair of key and value is used for representing this class or subclass with _str_().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution3D

class chainer.links.Convolution3D(in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False, dilate=1, groups=1)

3-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 3 to the first argument ndim, so see the details of the behavior in the documentation of ConvolutionND.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

• **hook** (*LinkHook*) — Link hook to be registered.

• **name** (*str*) — Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• **name** (*str*) — Name of the parameter. This name is also used as the attribute name.

• **shape** (*int or tuple of ints*) — Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** — Data type of the parameter array.

• **initializer** (*initializer*) — If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** (*str*) — Name of the persistent value. This name is also used for the attribute name.

• **value** — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** (*Link*) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy *(mode='share')*
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

ReturnsCopied link object.

Return type *Link*

copyparams *(link, copy_persistent=True)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params *
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

ReturnsThe total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

Parameters

- **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters

- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update *
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

forward(x)
Applies N-dimensional convolution layer.

Parameters
- *x* ([Variable]) – Input image.

Returns
Output of convolution.

Return type
[Variable]

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A [Parameter] object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a [Parameter] object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters
- *skipself* (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

namedlinks *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- *skipself* (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- *include_uninit* (bool) – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params(include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns: A generator object that generates all parameters.

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode='init')

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- n_repeat (int) – Number of times to repeat.
- mode (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.
serialize(*serializer*)

Serializes the link object.

Parameters

serializer (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

device – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ConvolutionND

class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False, dilate=1, groups=1)

N-dimensional convolution layer.

This link wraps the convolution_nd() function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True)

Parameters

- ndim (int) – Number of spatial dimensions.
- in_channels (int) – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- out_channels (int) – Number of channels of output arrays.
- ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k, ..., k) are equivalent.
- stride (int or tuple of ints) – Stride of filter application. stride=s and stride=(s, s, ..., s) are equivalent.
- pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and pad=(p, p, ..., p) are equivalent.
• nobias (bool) – If True, then this function does not use the bias.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be \(n + 2 \) where \(n \) is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is numpy.ndarray, its ndim should 1.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

• dilate (int or tuple of int s) – Dilation factor of filter applications. \(\text{dilate} = d \) and \(\text{dilate} = (d, d, \ldots, d) \) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one, where grouped convolution is not used.

See also:

See convolution_nd() for the definition of N-dimensional convolution. See convolution_2d() for the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a ConvolutionND link.

Let an input vector \(x \) be:

```python
>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(... 1, 2, 5, 5, 5)
```

1. Give the first four arguments explicitly:

```python
>>> l = L.ConvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)
```

2. Omit in_channels or fill it with None:

 The below two cases are the same.

```python
>>> l = L.ConvolutionND(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

>>> l = L.ConvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)
```
When you omit the second argument, you need to specify the other subsequent arguments from *stride* as keyword arguments. So the below two cases are the same.

```python
>>> l = L.ConvolutionND(3, 7, 4, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)
```

```python
>>> l = L.ConvolutionND(3, None, 7, 4, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)
```

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

- **hook** *(LinkHook)* – Link hook to be registered.
- **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, *dtype* argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.
addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads ()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- **mode** (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns
Copied link object.

Return type
Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters
- **link** (Link) – Source link object.
- **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update *
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update *
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward *(x)*
Applies N-dimensional convolution layer.

Parameters x *(Variable)* – Input image.

Returns Output of convolution.

Return type Variable

from_chx *
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope *
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

4.3. Link and Chains 359
Returns A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters *skipself* *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters *name* *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)

Serializes the link object.

Parameters **serializer** (*AbstractSerializer*) – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override *device_resident_accept()* to do so.

Returns: self

to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.

zerograds ()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient *cleargrads()* instead.
__eq__(value)
 Return self==value.

__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

counterparts

counterparts

class chainer.links.Deconvolution1D
 1-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 1 to the first argument ndim, so see the details of the behavior in the documentation of DeconvolutionND.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters
- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** *(str)* – It should be either **init**, **copy**, or **share**. **init** means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. **copy** means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. **share** means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is **share**.

Returns

Copied link object.

Return type

Link

copyparams *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using **copy.deepcopy()**. The old behavior (not copying persistent values) can be reproduced with **copy_persistent=False**.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params *

Counts the total number of parameters.

This method counts the total number of scalar values included in all the **Parameters** held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns

The total size of parameters (int)

delete_hook *(name)*

Unregisters the link hook.

Parameters

- **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*

Applies the visitor to all the device objects in this instance.

Parameters

- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update *

Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

Parameters **skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters **skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters **include_uninit (bool)** – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit (bool)** – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.
register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*
Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters
- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*
Serializes the link object.

Parameters
- **serializer** *(AbstractSerializer)* – Serializer object.

to_chx *
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.
Deprecation warning: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() method. This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution2D

class chainer.links.Deconvolution2D(self, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None, *, dilate=1, groups=1)

Two dimensional deconvolution function.

This link wraps the deconvolution_2d() function and holds the filter weight and bias vector as parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True)

Parameters

- **in_channels** (int or None) – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels** (int) – Number of channels of output arrays.

- **ksize** (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride** (int or pair of ints) – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- **pad** (int or pair of ints) – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

- **nobias** (bool) – If True, then this function does not use the bias term.
• `outsize` (tuple) – Expected output size of deconvolutional operation. It should be pair of height and width \((\text{out}_H, \text{out}_W)\). Default value is `None` and the outsize is estimated by input size, stride and pad.

• `initialW` (initializer) – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 4.

• `initial_bias` (initializer) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.

• `dilate` (int or tuple of int) – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d)` are equivalent.

• `groups` (int) – The number of groups to use grouped deconvolution. The default is one, where grouped deconvolution is not used.

The filter weight has four dimensions \((c_I, c_O, k_H, k_W)\) which indicate the number of input channels, output channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian random samples, each of which has zero mean and deviation \(\sqrt{1/(c_I k_H k_W)}\) by default.

The bias vector is of size \(c_O\). Its elements are initialized by `bias` argument. If `nobias` argument is set to `True`, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If `chainer.configuration.config.cudnn_deterministic` is `True` and cuDNN version is \(\geq v3\), it forces cuDNN to use a deterministic algorithm.

See also:

See `chainer.functions.deconvolution_2d()` for the definition of two-dimensional convolution.

See also:

See `chainer.links.Convolution2D()` for the examples of ways to give arguments to this link.

Example

There are several ways to make a Deconvolution2D link.

Let an input vector \(x\) be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape( ...
    1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

 In this case, all the other arguments are set to the default values.

   ```python
   >>> l = L.Deconvolution2D(3, 7, 4)
   >>> y = l(x)
   >>> y.shape
   (1, 7, 13, 13)
   ```

2. Omit `in_channels` or fill it with `None`:

 The below two cases are the same.

   ```python
   >>> l = L.Deconvolution2D(7, 4)
   >>> y = l(x)
   >>> y.shape
   (1, 7, 13, 13)
   ```
```python
>>> l = L.Deconvolution2D(None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)
```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

```python
>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)
```

---

**Methods**

**__call__** (*args, **kwargs*)

Call self as a function.

**add_hook** (*hook, name=None*)

Registers a link hook.

**Parameters**

- **hook** (*LinkHook*) – Link hook to be registered.
- **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

**Returns** self

**add_param** (*name, shape=None, dtype=<class 'numpy.float32'>, initializer=None*)

Registers a parameter to the link.

**Parameters**

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (*initializer*) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent** (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** (*Link*) – Source link object.

children()

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode='share'*)

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument *mode* below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- **mode** (*str*) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** *Link*

copyparams (*link*, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- **link** (*Link*) – Source link object.
- **copy_persistent** (*bool*) – If True, persistent values are also copied. True by default.
count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns: The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters: name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters: visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters: skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all links.

**namedlinks** *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

**register_persistent** *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

**repeat** *(n_repeat, mode='init')*
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

**Example**
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

### Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

#### serialize (serializer)
Serializes the link object.

**Parameters**

- **serializer (AbstractSerializer)** – Serializer object.

#### to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

**Returns**: self

#### to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept () to do so.

**Returns**: self

#### to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

**Parameters**

- **device** – Target device specifier. See get_device () for available values.

**Returns**: self

#### to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept () to do so.

**Parameters**

- **device** – Target device specifier. If omitted, the current device is used.

**Returns**: self

#### to_intel64 ()
Copies parameter variables and persistent values to CPU.

#### zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.
__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__. This pair of key and value is used for
representing this class or subclass with __str__.

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution3D

class chainer.links.Deconvolution3D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, initial_bias=None, dilate=1, groups=1)

3-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of DeconvolutionND.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- `mode` *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

**Returns**  Copied link object.

**Return type**  **Link**

**copyparams** *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:*  this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- `link` *(Link)* – Source link object.
- `copy_persistent` *(bool)* – If True, persistent values are also copied. True by default.

**count_params** *

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns**  The total size of parameters (int)

**delete_hook** *(name)*

Unregisters the link hook.

**Parameters**

- `name` *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*

Applies the visitor to all the device objects in this instance.

**Parameters**

- `visitor` *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update** *

Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 377
This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update()**
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

**forward(x)**

**from_chx()**
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope()**
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links(skipself=False)**
Returns a generator of all links under the hierarchy.

**Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

**namedlinks(skipself=False)**
Returns a generator of all (path, link) pairs under the hierarchy.

**Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

**namedparams(include_uninit=True)**
Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params(include_uninit=True)**
Returns a generator of all parameters under the link hierarchy.

**Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all parameters.
**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**

- **name** *(str)* – Name of the attribute to be registered.

**repeat** *(n_repeat, mode='init')*

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The mode argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- **n_repeat** *(int)* – Number of times to repeat.

- **mode** *(str)* – It should be either init, copy, or share. init means parameters of each repeated element in the returned **Sequential** will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting **Sequential** object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize** *(serializer)*

Serializes the link object.

**Parameters**

- **serializer** *(AbstractSerializer)* – Serializer object.

**to_chx** ()

Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override \texttt{device\_resident\_accept()} to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

\textbf{Parameters} device – Target device specifier. See \texttt{get\_device()} for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override \texttt{device\_resident\_accept()} to do so.

\textbf{Parameters} device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient \texttt{cleargrads()} instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
Attributes

**device**

Device instance.

**local_link_hooks**

Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

**printable_specs**

Generator of printable specs of this link.

Yields *specs (tuple of str and object)* – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` function. This pair of key and value is used for representing this class or subclass with `__str__()`.

**update_enabled**

True if at least one parameter has an update rule enabled.

**within_init_scope**

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

**xp**

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

### chainer.links.DeconvolutionND

```python
class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1,
 pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None, dilate=1, groups=1)
```

N-dimensional deconvolution function.

This link wraps `deconvolution_nd()` function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

**Parameters**

- **ndim (int)** – Number of spatial dimensions.
- **in_channels (int)** – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_channels (int)** – Number of channels of output arrays.
- **ksize (int or tuple of ints)** – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k, ..., k) are equivalent.
- **stride (int or tuple of ints)** – Stride of filter application. stride=s and stride=(s, s, ..., s) are equivalent.
- **pad (int or tuple of ints)** – Spatial padding width for input arrays. pad=p and pad=(p, p, ..., p) are equivalent.
• **nobias** *(bool)* – If True, then this function does not use the bias.

• **outsize** *(tuple of ints)* – Expected output size of deconvolutional operation. It should be a tuple of ints that represents the output size of each dimension. Default value is None and the outsize is estimated with input size, stride and pad.

• **initialW** *(initializer)* – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be \( n + 2 \) where \( n \) is the number of spatial dimensions.

• **initial_bias** *(initializer)* – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should 1.

• **dilate** *(int or tuple of int)* s – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d, ..., d)` are equivalent.

• **groups** *(int)* – The number of groups to use grouped convolution. The default is one, where grouped convolution is not used.

See also:

`deconvolution_nd()`

Variables

• **W** *(Variable)* – Weight parameter.

• **b** *(Variable)* – Bias parameter. If **initial_bias** is None, set to None.

Example

There are several ways to make a DeconvolutionND link.

Let an input vector \( x \) be:

```python
>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(...
1, 2, 5, 5, 5)
```

1. Give the first four arguments explicitly:

```python
>>> l = L.DeconvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)
```

2. Omit **in_channels** or fill it with None:

The below two cases are the same.

```python
>>> l = L.DeconvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)
```

When you omit the second argument, you need to specify the other subsequent arguments from **stride** as keyword arguments. So the below two cases are the same.
l = L.DeconvolutionND(3, 7, 4, stride=2, pad=1)
>>>
y = l(x)
>>>
y.shape
(1, 7, 10, 10, 10)

l = L.DeconvolutionND(3, None, 7, 4, 2, 1)
>>>
y = l(x)
>>>
y.shape
(1, 7, 10, 10, 10)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks
  registered to this link. If None, the default name of the link hook is used.

Returns
self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
  the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given
  initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
  a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
  scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
  this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** *(Link)* – Source link object.

**children** *(Link)*

Returns a generator of all child links.

**Returns**

A generator object that generates all child links.

**cleargrads** *(Link)*

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- **mode** *(str)* – It should be eitherinit, copy, or share. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is *share*.

**Returns**

Copied link object.

**Return type** *Link*

**copyparams** *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

**From v5.0.0:** this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an *ndarray*, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*. The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

**Parameters**

- **link** *(Link)* – Source link object.
  - **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

**count_params** *(Link)*

Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendents.

If the link contains uninitialized parameters, this method raises a warning.

**Returns**

The total size of parameters (int)
delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()

        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.
namedparams (include_uninit=True)
  Returns a generator of all (path, param) pairs under the hierarchy.

  Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
  Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
  Returns a generator of all parameters under the link hierarchy.

  Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
  Returns A generator object that generates all parameters.

register_persistent (name)
  Registers an attribute of a given name as a persistent value.
  This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

  Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
  Repeats this link multiple times to make a Sequential.
  This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

  Example
  You can repeat the same link multiple times to create a longer Sequential block like this:

  ```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

 net = ConvBNReLU().repeat(16, mode='init')
```

  The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

  Parameters

  - n_repeat (int) – Number of times to repeat.
  - mode (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize** *(serializer)*  
Serializes the link object.

**Parameters**  
*serializer* *(AbstractSerializer)* — Serializer object.

to_chx ()  
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()  
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device *(device)*  
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

**Parameters**  
*device* — Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu *(device=None)*  
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

**Parameters**  
*device* — Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()  
Copies parameter variables and persistent values to CPU.

zerograds ()  
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__ ()  
Return self==value.

__ne__ ()  
Return self!=value.

__lt__ ()  
Return self<value.
__le__(self, value)
    Return self<=value.

__gt__(self, value)
    Return self>value.

__ge__(self, value)
    Return self>=value.

Attributes

device
    Device instance.

local_link_hooks
    Ordered dictionary of registered link hooks.
    Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
    Generator of printable specs of this link.
    Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__`. This pair of key and value is used for representing this class or subclass with `__str__`. 

update_enabled
    True if at least one parameter has an update rule enabled.

within_init_scope
    True if the current code is inside of an initialization scope.
    See `init_scope()` for the details of the initialization scope.

xp
    Array module corresponding to the device.
    Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

counterparts

class chainer.links.DeformableConvolution2D

    Two-dimensional deformable convolutional layer.
    This link wraps the convolution layer for offset prediction and the `deformable_convolution_2d_sampler()` function. This also holds the filter weights and bias vectors of two convolution layers as parameters.

Parameters

    - in_channels (int) – Number of channels of input arrays. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
• **out_channels** (*int*) – Number of channels of output arrays.

• **ksize** (*int or pair of ints*) – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

• **stride** (*int or pair of ints*) – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

• **pad** (*int or pair of ints*) – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

• **offset_nobias** (*bool*) – If True, then this link does not use the bias term for the first convolution layer.

• **offset_initialW** (*initializer*) – Initializer to initialize the weight of the first convolution layer. When it is `numpy.ndarray`, its ndim should be 4.

• **offset_initial_bias** (*initializer*) – Initializer to initialize the bias of the first convolution layer. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.

• **deform_nobias** (*bool*) – If True, then this link does not use the bias term for the second convolution layer.

• **deform_initialW** (*initializer*) – Initializer to initialize the weight for the second convolution layer. When it is `numpy.ndarray`, its ndim should be 4.

• **deform_initial_bias** (*initializer*) – Initializer to initialize the bias for the second convolution layer. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.

See also:

See `chainer.functions.deformable_convolution_2d_sampler()`.

### Methods

__call__ (*args, **kwargs*)

Call self as a function.

__getitem__ (*name*)

Equivalent to `getattr`.

add_hook (*hook, name=None*)

Registers a link hook.

**Parameters**

• **hook** (*LinkHook*) – Link hook to be registered.

• **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

**Returns**  self

add_link (*name, link*)

Registers a child link to this chain.

**Parameters**

• **name** (*str*) – Name of the child link. This name is also used as the attribute name.

• **link** (*Link*) – The link object to be registered.
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialzed but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default mode is `share`.

**Returns** Copied link object.

**Return type** `Link`

`copyparams (link, copy_persistent=True)`
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an `ndarray`, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- **link** (`Link`) – Source link object.
- **copy_persistent** (`bool`) – If `True`, persistent values are also copied. `True` by default.

`count_params ()`
Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

`delete_hook (name)`
Unregisters the link hook.

**Parameters**

- **name** (`str`) – The name of the link hook to be unregistered.

`device_resident_accept (visitor)`
Applies the visitor to all the device objects in this instance.

**Parameters**

- **visitor** (`DeviceResidentsVisitor`) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update ()`
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update ()`
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`forward (x)`
Applies the deformable convolution.

**Parameters**

- **x** (`Variable`) – Input image.

**Returns** Output of the deformable convolution.

**Return type** `Variable`
from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.
repeat \(n_{\text{repeat}}, \text{mode}=\text{init}'\)

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (int) – Number of times to repeat.
- **mode** (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize(serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See `get_device()` for available values.

Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.
Depreciated since version v1.15: Use the more efficient `cleargrads()` instead.

_eq_()
Return self==value.

_ne_()
Return self!=value.

_lt_()
Return self<value.

_le_()
Return self<=value.

_gt_()
Return self>value.

_ge_()
Return self>value.

Attributes
device
Device instance.
local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.
printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

**update_enabled**
True if at least one parameter has an update rule enabled.

**within_init_scope**
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

**xp**
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

### chainer.links.DepthwiseConvolution2D

class chainer.links.DepthwiseConvolution2D(in_channels, channel_multiplier, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None)

Two-dimensional depthwise convolutional layer.

This link wraps the depthwise_convolution_2d() function and holds the filter weight and bias vector as parameters.

**Parameters**

- **in_channels (int)** – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **channel_multiplier (int)** – Channel multiplier number. Number of output arrays equal in_channels * channel_multiplier.

- **ksize (int or pair of ints)** – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride (int or pair of ints)** – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- **pad (int or pair of ints)** – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

- **nobias (bool)** – If True, then this link does not use the bias term.

- **initialW (initializer)** – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be 4.

- **initial_bias (initializer)** – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.depthwise_convolution_2d().

**Variables**

- **W (Variable)** – Weight parameter.

- **b (Variable)** – Bias parameter.
Methods

```
__call__(*args, **kwargs)
Call self as a function.
```

```
add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self
```

```
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
```

```
add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.
```

```
addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

link (Link) – Source link object.
```

```
children()
Returns a generator of all child links.

Returns

A generator object that generates all child links.
```

```
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
```
copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters  mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns  Copied link object.

Return type  Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
• link (Link) – Source link object.
• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns  The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters  name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters  visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```python
enable_update() ->
```

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

```python
forward(x) ->
```
Applies the depthwise convolution layer.

```python
Parameters:
x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input image.

Returns:
Output of the depthwise convolution.

Return type:
Variable
```

```python
from_chx() ->
```
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

```python
init_scope() ->
```
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

```python
links(skipself=False) ->
```
Returns a generator of all links under the hierarchy.

```python
Parameters:
skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns:
A generator object that generates all links.
```

```python
namedlinks(skipself=False) ->
```
Returns a generator of all (path, link) pairs under the hierarchy.

```python
Parameters:
skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns:
A generator object that generates all (path, link) pairs.
```

```python
namedparams(include_uninit=True) ->
```
Returns a generator of all (path, parameter) pairs under the hierarchy.

```python
Parameters:
include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns:
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a *Sequential*.

This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is *ConvBNReLU*. And the *mode* was *init*, so each block is re-initialized with different parameters. If you give *copy* to this argument, each block has same values for its parameters but its object ID is different from others. If it is *share*, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.

- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.
serialize(*serializer*)

Serializes the link object.

Parameters *serializer* (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override *device_resident_accept()* to do so.

Returns: self

to_device(*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters *device* – Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu(*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters *device* – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient *cleargrads()* instead.

__eq__()

Return *self*==*value*.

__ne__()

Return *self*!*=value*.

__lt__()

Return *self*<*value*.

__le__()

Return *self*<=*value*.

__gt__()

Return *self*>*value*.

__ge__()

Return *self*>=*value*.
Attributes

device

Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() function. This pair of key and value is used for representing this class or subclass with __str__().

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DilatedConvolution2D

class chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the dilated_convolution_2d() function and holds the filter weight and bias vector as parameters.

Note: You can also define a dilated convolutional layer by passing dilate argument to chainer.links.Convolution2D. The functionality is the same.

Parameters

- **in_channels (int or None)** – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels (int)** – Number of channels of output arrays.

- **ksize (int or pair of ints)** – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride (int or pair of ints)** – Stride of filter applications. stride=s and stride=(s, s) are equivalent.
• **pad** (*int or pair of ints*) – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.

• **dilate** (*int or pair of ints*) – Dilation factor of filter applications. `dilate=d` and `dilate=(d, d)` are equivalent.

• **nobias** (*bool*) – If `True`, then this link does not use the bias term.

• **initialW** (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 4.

• **initial_bias** (*initializer*) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

See also:

See `chainer.functions.dilated_convolution_2d()` for the definition of two-dimensional dilated convolution.

Variables

• **W** (*Variable*) – Weight parameter.

• **b** (*Variable*) – Bias parameter.

Example

There are several ways to make a `DilatedConvolution2D` link.

Let an input vector `x` be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

```python
>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

2. Omit `in_channels` or fill it with `None`:

 The below two cases are the same.

```python
>>> l = L.DilatedConvolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.DilatedConvolution2D(\texttt{None}, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.
l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

4.3. Link and Chains 403
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

children()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument *mode* below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default *mode* is *share*.

Returns

Copied link object.

Return type *Link*

copyparams(link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an *ndarray*, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*.

The old behavior (not copying persistent values) can be reproduced with *copy_persistent=False*.

Parameters

- **link** *(Link)* – Source link object.

- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns

The total size of parameters (int)
\textbf{delete_hook}(\textit{name})
Unregisters the link hook.

Parameters \textit{name} (str) – The name of the link hook to be unregistered.

\textbf{device_resident_accept}(\textit{visitor})
Applies the visitor to all the device objects in this instance.

Parameters \textit{visitor} (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

\textbf{disable_update}()
Disables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to False.

\textbf{enable_update}()
Enables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to True.

\textbf{forward}(\textit{x})
Applies the convolution layer.

Parameters \textit{x} (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

\textbf{from_chx}()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

\textbf{init_scope}()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for \texttt{Chain}) by an assignment. A \texttt{Parameter} object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the \textbf{init_scope} method, we can simply assign a \texttt{Parameter} object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

\textbf{links}(\texttt{skipself=False})
Returns a generator of all links under the hierarchy.

Parameters \texttt{skipself} (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.
namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```
serialize(serializer)
```
Serializes the link object.

Parameters **serializer** (*AbstractSerializer*) – Serializer object.

```
to_chx()
```
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```
to_cpu()
```
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```
to_device(device)
```
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See `get_device()` for available values.

Returns: self

```
to_gpu(device=None)
```
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

```
to_intel64()
```
Copies parameter variables and persistent values to CPU.

```
zerograds()
```
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

```
__eq__(value)
```
Return self==value.
__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.EmbedID

class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)
Efficient linear layer for one-hot input.
This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix \(W \) as a parameter.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
it's ndim should be 2.
• **ignore_label** (*int* or *None*) – If ignore_label is an int value, i-th row of return value is filled with 0.

See also:

embed_id()

Variables \(W\) (*Variable*) – Embedding parameter matrix.

Example

```python
>>> W = np.array([[0, 0, 0],
...               [1, 1, 1],
...               [2, 2, 2]]).astype(np.float32)
```

```python
>>> W
array([[0., 0., 0.],
       [1., 1., 1.],
       [2., 2., 2.]], dtype=float32)
```

```python
>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
```

```python
>>> x = np.array([2, 1]).astype(np.int32)
```

```python
>>> y = l(x)
```

```python
>>> y.array
array([[2., 2., 2.],
       [1., 1., 1.]], dtype=float32)
```

Methods

__call__(*args, **kwargs)

Call self as a function.

add_hook (*hook*, *name=None*)

Registers a link hook.

Parameters

• **hook** (*LinkHook*) – Link hook to be registered.

• **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

add_param (*name*, *shape=None*, *dtype=numpy.float32*, *initializer=None*)

Registers a parameter to the link.

Parameters

• **name** (*str*) – Name of the parameter. This name is also used as the attribute name.

• **shape** (*int* or *tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** (*initializer*) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name**(str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()

Returns a generator of all child links.

** Returns** A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is share.

** Returns** Copied link object.

Return type Link

copyparams(link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of **BatchNormalization**). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- `link` (Link) – Source link object.
- `copy_persistent` (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Extracts the word embedding of given IDs.

Parameters x (Variable) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

4.3. Link and Chains
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links (skipself=False)`

Returns a generator of all links under the hierarchy.

- **Parameters** `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all links.

`namedlinks (skipself=False)`

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** `include_uninit (bool)` – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit (bool)` – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters** `name (str)` – Name of the attribute to be registered.

`repeat (n_repeat, mode='init')`

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters

- `serializer (AbstractSerializer)` – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** – Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograd*

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient *cleargrads()* instead.

__eq__(())
Return self==value.

__ne__(())
Return self!=value.

__lt__(())
Return self<value.

__le__(())
Return self<=value.

__gt__(())
Return self>value.

__ge__(())
Return self>=value.

Attributes

device

Device instance.

ignore_label = None

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to *chainer.thread_local.link_hooks*, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled

True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.GRU

class `chainer.links.GRU` *(in_size, out_size, init=None, inner_init=None, bias_init=0)*

Stateful Gated Recurrent Unit function (GRU)

This is an alias of `StatefulGRU`.

Methods

__call__(*args, **kwargs)*
Call self as a function.

__getitem__(name)*
Equivalent to getattr.

add_hook(hook, name=None)*
Registers a link hook.

Parameters

- **hook** (*LinkHook*) – Link hook to be registered.
- **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns `self`

add_link(name, link)*
Registers a child link to this chain.

Parameters

- **name** (*str*) – Name of the child link. This name is also used as the attribute name.
- **link** (*Link*) – The link object to be registered.

add_param(name, shape=None, dtype=None, initializer=None)*
Registers a parameter to the link.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (*initializer*) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

4.3. Link and Chains
add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters

link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters

mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns

Copied link object.

Return type

Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
• **link** *(Link)* – Source link object.

• **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*

Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*

Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to **False**.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to **True**.

forward *(self, x)*

Does forward propagation.

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for *Chain*) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the *init_scope* method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

4.3. Link and Chains
links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has the same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (`int`) – Number of times to repeat.
- **mode** (`str`) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reset_state()

Serializes the link object.

serialize(*serializer*)

Serializes the link object.

- **Parameters** `serializer` (`AbstractSerializer`) – Serializer object.

set_state(*h*)

to_chx()

Converts parameter variables and persistent to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

- **Parameters** `device` – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

- **Parameters** `device` – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.
Depreciated since version v1.15: Use the more efficient cleargrads() instead.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() . This pair of key and value is used for representing this class or subclass with __str__() .

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.Highway

class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>,
init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

Highway module.

In highway network, two gates are added to the ordinal non-linear transformation ($H(x) = activate(W_h x + b_h)$). One gate is the transform gate $T(x) = \sigma(W_t x + b_t)$, and the other is the carry gate $C(x)$. For simplicity, the author defined $C = 1 - T$. Highway module returns y defined as

$$y = activate(W_h x + b_h) \odot \sigma(W_t x + b_t) + x \odot (1 - \sigma(W_t x + b_t))$$

The output array has the same spatial size as the input. In order to satisfy this, W_h and W_t must be square matrices.

Parameters

- **in_out_size** (*int*) – Dimension of input and output vectors.
- **nobias** (*bool*) – If True, then this function does not use the bias.
- **activate** – Activation function of plain array. $tanh$ is also available.
- **init_Wh** (*initializer*) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be 2.
- **init_Wt** (*initializer*) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be 1.
- **init_bh** (*initializer*) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is numpy.ndarray, its ndim should be 1. Negative value is recommended by the author of the paper. (e.g. -1, -3, ...).
- **init_bt** (*initializer*) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is numpy.ndarray, its ndim should be 1. Negative value is recommended by the author of the paper. (e.g. -1, -3, ...).

See: Highway Networks.

Methods

- **__call__(*args, **kwargs)**

 Call self as a function.
- **__getitem__(name)**

 Equivalent to getattr.
- **add_hook(hook, name=None)**

 Registers a link hook.

 Parameters

 - **hook** (*LinkHook*) – Link hook to be registered.
 - **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

 Returns

 self

- **add_link(name, link)**

 Registers a child link to this chain.

 Parameters
• **name** *(str)* – Name of the child link. This name is also used as the attribute name.

• **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• **link** *(Link)* – Source link object.

children *()*

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *()*

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

• **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized.
but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. \texttt{share} means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is \texttt{share}.

\textbf{Returns} Copied link object.

\textbf{Return type} \texttt{Link}

\texttt{copyparams} (\texttt{link, copy_persistent=True})

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

\textit{From v5.0.0:} this method also copies the persistent values (e.g. the moving statistics of \texttt{BatchNormalization}). If the persistent value is an \texttt{ndarray}, the elements are copied. Otherwise, it is copied using \texttt{copy.deepcopy()}. The old behavior (not copying persistent values) can be reproduced with \texttt{copy_persistent=False}.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{link} (\texttt{Link}) – Source link object.
 \item \texttt{copy_persistent} (\texttt{bool}) – If \texttt{True}, persistent values are also copied. \texttt{True} by default.
\end{itemize}

\texttt{count_params} ()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the \texttt{Parameters} held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

\textbf{Returns} The total size of parameters (int)

\texttt{delete_hook} (\texttt{name})

Unregisters the link hook.

\textbf{Parameters} \texttt{name} (\texttt{str}) – The name of the link hook to be unregistered.

\texttt{device_resident_accept} (\texttt{visitor})

Applies the visitor to all the device objects in this instance.

\textbf{Parameters} \texttt{visitor} (\texttt{DeviceResidentsVisitor}) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

\texttt{disable_update} ()

Disables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to \texttt{False}.

\texttt{enable_update} ()

Enables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to \texttt{True}.

\texttt{forward} (\texttt{x})

Computes the output of the Highway module.

\textbf{Parameters} \texttt{x} (\texttt{Variable}) – Input variable.

\textbf{Returns} Output variable. Its array has the same spatial size and the same minibatch size as the input array.
Return type **Variable**

```python
from_chx()
```

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

```python
init_scope()
```

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```python
links(skipself=False)
```

Returns a generator of all links under the hierarchy.

Parameters

- `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

```python
namedlinks(skipself=False)
```

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

- `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

```python
namedparams(include_uninit=True)
```

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

```python
params(include_uninit=True)
```

Returns a generator of all parameters under the link hierarchy.

Parameters

- `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

```python
register_persistent(name)
```

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.
Parameters `name` (**str**) – Name of the attribute to be registered.

`repeat` (**n_repeat, mode='init'**)
Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat` (**int**) – Number of times to repeat.
- `mode` (**str**) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (**serializer**)
Serializes the link object.

Parameters `serializer` (**AbstractSerializer**) – Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.
Depreciated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()`. This pair of key and value is used for representing this class or subclass with `__str__()`.

`update_enabled`
True if at least one parameter has an update rule enabled.

`within_init_scope`
True if the current code is inside of an initialization scope.
See `init_scope()` for the details of the initialization scope.

`xp`
Array module corresponding to the device. Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

`chainer.links.Inception`

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None)

Inception module of GoogLeNet. It applies four different functions to the input array and concatenates their outputs along the channel dimension. Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1 convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and 3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

- `in_channels` *(int or None)* – Number of channels of input arrays.
- `out1` *(int)* – Output size of 1x1 convolution path.
- `proj3` *(int)* – Projection size of 3x3 convolution path.
- `out3` *(int)* – Output size of 3x3 convolution path.
- `proj5` *(int)* – Projection size of 5x5 convolution path.
- `out5` *(int)* – Output size of 5x5 convolution path.
- `proj_pool` *(int)* – Projection size of max pooling path.
- `conv_init` *(initializer)* – Initializer to initialize the convolution matrix weights. When it is `numpy.ndarray`, its ndim should be 4.
- `bias_init` *(initializer)* – Initializer to initialize the convolution matrix weights. When it is `numpy.ndarray`, its ndim should be 1.
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

add_link(name, link)
Registers a child link to this chain.

Parameters
• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
• link (Link) – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.
cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.
copy(mode='share')
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.
Return type Link
copyparams(link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by default.
count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters **visitor**(DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Computes the output of the Inception module.

Parameters **x**(Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size out1 + out3 + out5 + proj_pool.

Return type **Variable**

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters **skipself**(bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.
Parameters

skipself \((bool)\) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams \((include_uninit=True)\)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit \((bool)\) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

dev

gene

params \((include_uninit=True)\)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit \((bool)\) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent \((name)\)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If \(name\) has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name \((str)\) – Name of the attribute to be registered.

repeat \((n_repeat, mode='init')\)

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters
• **n_repeat** (*int*) – Number of times to repeat.

• **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)

Serializes the link object.

Parameters

serializer (*AbstractSerializer*) – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override *device_resident_accept()* to do so.

Returns: self

to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

device – Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters

device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.

zerograds ()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient *cleargrads()* instead.

eq ()

Return self==value.

ne ()

Return self!=value.
__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields *specs (tuple of str and object)* — Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype, proj_pool=None, stride=1, conv_init=None, dtype=None)*

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each convolution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling method is configurable.

Parameters

- *in_channels (int or None)* — Number of channels of input arrays.
- *out1 (int)* — Output size of the 1x1 convolution path.
- *proj3 (int)* — Projection size of the single 3x3 convolution path.
• **out3** (*int*) – Output size of the single 3x3 convolution path.
• **proj33** (*int*) – Projection size of the double 3x3 convolutions path.
• **out33** (*int*) – Output size of the double 3x3 convolutions path.
• **pooltype** (*str*) – Pooling type. It must be either 'max' or 'avg'.
• **proj_pool** (*int or None*) – Projection size in the pooling path. If None, no projection is done.
• **stride** (*int*) – Stride parameter of the last convolution of each path.
• **conv_init** (*initializer*) – Initializer to initialize the convolution matrix weights. When it is `numpy.ndarray`, its ndim should be 4.
• **dtype** (*numpy.dtype*) – Type to use in `BatchNormalization`.

See also:

Inception

Methods

• **`__call__`** (*args, **kwargs*)
 Call self as a function.

• **`__getitem__`** (*name*)
 Equivalent to `getattr`.

• **`add_hook`** (*hook, name=None*)
 Registers a link hook.

 Parameters

 • **hook** (*LinkHook*) – Link hook to be registered.
 • **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

 Returns self

• **`add_link`** (*name, link*)
 Registers a child link to this chain.

 Parameters

 • **name** (*str*) – Name of the child link. This name is also used as the attribute name.
 • **link** (*Link*) – The link object to be registered.

• **`add_param`** (*name, shape=None, dtype=<class 'numpy.float32'>, initializer=None*)
 Registers a parameter to the link.

 Parameters

 • **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
 • **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 • **dtype** – Data type of the parameter array.
• **initializer** (*initializer*) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

`add_persistent(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

`addgrads(link)`

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

`children()`

Returns a generator of all child links.

Returns

A generator object that generates all child links.

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy(mode='share')`

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** (*str*) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns

Copied link object.

Return type

Link

`copyparams(link, copy_persistent=True)`

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.
From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)

Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept(visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters** *skipself (bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** *skipself (bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** *include_uninit (bool)* – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters** *include_uninit (bool)* – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters** *name (str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a *Sequential*.

This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
```

(continues on next page)
with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*
Serializes the link object.

Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device *(device)*
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See get_device() for available values.

Returns: self
to_gpu(device=None)
 Copies parameter variables and persistent values to GPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
 the link implementation must override device_resident_accept() to do so.

 Parameters device – Target device specifier. If omitted, the current device is used.

 Returns: self

to_intel64()
 Copies parameter variables and persistent values to CPU.

zero_grads()
 Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__() . This pair of key and value is used for
 representing this class or subclass with __str__() .

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.
xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Linear

class chainer.links.Linear(in_size, out_size=None, nobias=False, initialW=None, initial_bias=None)
Linear layer (a.k.a. fully-connected layer).
This is a link that wraps the linear() function, and holds a weight matrix \(W \) and optionally a bias vector \(b \) as parameters.
If initialW is left to the default value of None, the weight matrix \(W \) is initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation \(\sqrt{1/n} \)

Parameters
• in_size (int or None) – Dimension of input vectors. If unspecified or None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
• out_size (int) – Dimension of output vectors. If only one value is passed for in_size and out_size, that value will be used for the out_size dimension.
• nobias (bool) – If True, then this function does not use the bias.
• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be 2. If initialW is None, then the weights are initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation \(\sqrt{1/n} \)

See also:
linear()

• Variables
 • W (Variable) – Weight parameter.
 • b (Variable) – Bias parameter.

Example
There are several ways to make a Linear link.
Define an input vector \(x \) as:

```python
>>> x = np.array([[0, 1, 2, 3, 4]], np.float32)
```

1. Give the first two arguments explicitly:
 Those numbers are considered as the input size and the output size.

```python
>>> l = L.Linear(5, 10)
>>> y = l(x)
>>> y.shape
(1, 10)
```

2. Omit in_size (give the output size only as the first argument) or fill it with None:
 In this case, the size of second axis of \(x \) is used as the input size. So the below two cases are the same.
```python
>>> l = L.Linear(10)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(None, 10)
>>> y = l(x)
>>> y.shape
(1, 10)
```

When you omit the first argument, you need to specify the other subsequent arguments from `nobias` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Linear(None, 10, False, None, 0)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
>>> y = l(x)
>>> y.shape
(1, 10)
```

Methods

__call__ (args, **kwargs)**
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
- **hook** (`LinkHook`) – Link hook to be registered.
- **name** (`str`) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns
self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
- **name** (`str`) – Name of the parameter. This name is also used as the attribute name.
- shape (`int or tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (callable) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

children()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode='share'*)

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** (*str*) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns

Copied link object.

Return type

Link

copyparams (*link, copy_persistent=True*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of **BatchNormalization**). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using **copy.deepcopy()**. The old behavior (not copying persistent values) can be reproduced with **copy_persistent=False**.

Parameters

- **link** (*Link*) – Source link object.
• `copy_persistent` (bool) – If True, persistent values are also copied. True by default.

`count_params()`
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

`delete_hook(name)`
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

`device_resident_accept(visitor)`
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

`forward(x, n_batch_axes=1)`
Applies the linear layer.

Parameters

• x (Variable) – Batch of input vectors.

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable is reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output of the linear layer.

Return type Variable

`from_chx()`
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

`init_scope()`
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 443
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.
	namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat (int)** – Number of times to repeat.

- **mode (str)** – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device () for available values.

Returns: self
to_gpu

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the
link implementation must override device_resident_accept() to do so.

Parameters
device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.

Attributes

device

Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link
hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value)
that are passed to the __init__() . This pair of key and value is used for representing this class
or subclass with __str__() .

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.
xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.LocalConvolution2D

class chainer.links.LocalConvolution2D(in_channels, out_channels, in_size=None, ksize=None, stride=1, nobias=False, initialW=None, initial_bias=None, **kwargs)

Two-dimensional local convolutional layer.

This link wraps the `local_convolution_2d()` function and holds the filter weight and bias array as parameters.

Parameters

- **in_channels (int)** – Number of channels of input arrays. If either in_channels or in_size is `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels (int)** – Number of channels of output arrays

- **in_size (int or pair of ints)** – Size of each image channel. in_size=k and in_size=(k,k) are equivalent. If either in_channels or in_size is `None`, parameter initialization will be deferred until the first forward data pass when the size will be determined.

- **ksize (int or pair of ints)** – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride (int or pair of ints)** – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- **nobias (bool)** – If True, then this link does not use the bias term.

- **initialW (initializer)** – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 6.

- **initial_bias (initializer)** – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 3.

See also:

See `chainer.functions.local_convolution_2d()`.

Variables

- **W (Variable)** – Weight parameter.

- **b (Variable)** – Bias parameter.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy (mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns

Copied link object.

Return type Link

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link** (Link) – Source link object.
- **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

count_params ()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns

The total size of parameters (int)

delete_hook (name)

Unregisters the link hook.

Parameters

- **name** (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)

Applies the visitor to all the device objects in this instance.

Parameters

- **visitor** (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()

Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```python
enable_update()
```

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

```python
forward(x)
```

Applies the local convolution layer.

- **Parameters**
 - `x (Variable)` – Input image.
- **Returns**
 - Output of the convolution.
- **Return type**
 - `Variable`

```python
from_chx()
```

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

```python
init_scope()
```

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```python
links(skipself=False)
```

Returns a generator of all links under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns**
 - A generator object that generates all links.

```python
namedlinks(skipself=False)
```

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns**
 - A generator object that generates all (path, link) pairs.

```python
namedparams(include_uninit=True)
```

Returns a generator of all (path, parameter) pairs under the hierarchy.

- **Parameters**
 - `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.
- **Returns**
 - A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.
This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Parameters
• n_repeat (int) – Number of times to repeat.
• mode (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
serialize(serializer)
 Serializes the link object.

 Parameters serializer(AbstractSerializer) – Serializer object.

to_chx()
 Converts parameter variables and persistent values to ChainerX without any copy.

 This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

 Returns: self

to_cpu()
 Copies parameter variables and persistent values to CPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

 Returns: self

to_device(device)
 Copies parameter variables and persistent values to the specified device.

 This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

 Parameters device – Target device specifier. See get_device() for available values.

 Returns: self

to_gpu(device=None)
 Copies parameter variables and persistent values to GPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

 Parameters device – Target device specifier. If omitted, the current device is used.

 Returns: self

to_intel64()
 Copies parameter variables and persistent values to CPU.

zerograds()
 Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.
Attributes

- **device**: A `Device` instance.

- **local_link_hooks**: An ordered dictionary of registered link hooks.

- **printable_specs**: A generator of printable specs of this link. Yields `specs (tuple of str and object)` - Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` function. This pair of key and value is used for representing this class or subclass with `__str__()`.

- **update_enabled**: `True` if at least one parameter has an update rule enabled.

- **within_init_scope**: `True` if the current code is inside of an initialization scope. See `init_scope()` for the details of the initialization scope.

- **xp**: Array module corresponding to the device. Depending on the device in which this object resides, this property returns `numpy`, `cupy`, or `chainerx`.

chainer.links.LSTM

```python
class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)
```

Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the `lstm()` function, which is defined as a stateless activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be used as a `stateful LSTM`.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. The mini-batch size of `c` and `h` is determined as that of the first input `x`. When mini-batch size of `i`-th input is smaller than that of the previous input, this link only updates `c[0:len(x)]` and `h[0:len(x)]` and doesn’t change the rest of `c` and `h`. So, please sort input sequences in descending order of lengths before applying the function.

Parameters

- **in_size (int)** – Dimension of input vectors. If it is `None` or omitted, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_size (int)** – Dimensionality of output vectors.

- **lateral_init** – A callable that takes `N-dimensional array` and edits its value. It is used for initialization of the lateral connections. May be `None` to use default initialization.

- **upward_init** – A callable that takes `N-dimensional array` and edits its value. It is used for initialization of the upward connections. May be `None` to use default initialization.
• **bias_init** – A callable that takes *N-dimensional array* and edits its value. It is used for initialization of the biases of cell input, input gate and output gate, and gates of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is `None`, the cell-input bias is initialized to zero.

• **forget_bias_init** – A callable that takes *N-dimensional array* and edits its value. It is used for initialization of the biases of the forget gate of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is `None`, the forget bias is initialized to one.

Variables

- **upward** *(Linear)* – Linear layer of upward connections.
- **lateral** *(Linear)* – Linear layer of lateral connections.
- **c** *(Variable)* – Cell states of LSTM units.
- **h** *(Variable)* – Output at the previous time step.

Example

There are several ways to make a LSTM link.

Let a two-dimensional input array `x` be:

```python
>>> x = np.zeros((1, 10), dtype=np.float32)
```

1. Give both `in_size` and `out_size` arguments:

```python
>>> l = L.LSTM(10, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)
```

2. Omit `in_size` argument or fill it with `None`:

 The below two cases are the same.

```python
>>> l = L.LSTM(20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)
```

```python
>>> l = L.LSTM(None, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)
```
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

dd_add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

dd_add_link (name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

dd_add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

dd_add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

dd_addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• link (Link) – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
mode : str
It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
• link : Link
– Source link object.

• copy_persistent : bool
– If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters
name : str
– The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor(DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

able_enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x(Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself(bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself(bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all (path, link) pairs.

dnamedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- n_repeat (int) – Number of times to repeat.
• **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reset_state()
```
Resets the internal state.

It sets `None` to the `c` and `h` attributes.

```python
serialize(serializer)
```
Serializes the link object.

Parameters
- `serializer` (*AbstractSerializer*) – Serializer object.

```python
set_state(c, h)
```
Sets the internal state.

It sets the `c` and `h` attributes.

Parameters
- `c` (*Variable*) – A new cell states of LSTM units.
- `h` (*Variable*) – A new output at the previous time step.

```python
to_chx()
```
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

```python
to_cpu()
```
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```python
to_device(device)
```
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters
- `device` – Target device specifier. See `get_device()` for available values.

Returns: self

```python
to_gpu(device=None)
```
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
- `device` – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecation since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D(self, in_channels, out_channels, ksize=None, stride=1, pad=0, activation=relu.relu, conv_init=None, bias_init=None)

Two-dimensional MLP convolution layer of Network in Network.

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

- **in_channels** (int or None) – Number of channels of input arrays. If it is None or omitted, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels** (tuple of ints) – Tuple of number of channels. The i-th integer indicates the number of filters of the i-th convolution.

- **ksize** (int or pair of ints) – Size of filters (a.k.a. kernels) of the first convolution layer. ksize=k and ksize=(k, k) are equivalent.

- **stride** (int or pair of ints) – Stride of filter applications at the first convolution layer. stride=s and stride=(s, s) are equivalent.

- **pad** (int or pair of ints) – Spatial padding width for input arrays at the first convolution layer. pad=p and pad=(p, p) are equivalent.

- **activation** (callable) – Activation function for internal hidden units. You can specify one of activation functions from built-in activation functions or your own function. It should not be an activation functions with parameters (i.e., Link instance). The function must accept one argument (the output from each child link), and return a value. Returned value must be a Variable derived from the input Variable to perform backpropagation on the variable. Note that this function is not applied to the output of this link.

- **conv_init** – An initializer of weight matrices passed to the convolution layers. This option must be specified as a keyword argument.

- **bias_init** – An initializer of bias vectors passed to the convolution layers. This option must be specified as a keyword argument.

See: Network in Network.

Variables activation (callable) – Activation function. See the description in the arguments for details.

Methods

__call__(*args, **kwargs)

Call self as a function.

__getitem__(index)

Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link
__getitem__ (index, value)

__len__ ()
Returns the number of children.

__iter__ ()

add_hook (hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append (value)
S.append(value) – append value to the end of the sequence
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear() \(\rightarrow\) None -- remove all items from S
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy (mode='share')
Returns a deep copy of the chainlist.
copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.
count (value) \(\rightarrow\) integer -- return number of occurrences of value
count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook (name)
Unregisters the link hook.

Parameters
- name (str) – The name of the link hook to be unregistered.
device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters
- visitor (DeviceResidentsVisitor) – Visitor.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

able_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
extend(values)
S.extend((iterable)) – extend sequence by appending elements from the iterable

forward(x)
Computes the output of the mlpconv layer.

Parameters x (Variable) – Input image.

Returns Output of the mlpconv layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index(value, start, stop) → integer -- return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index(int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns a generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- **include_uninit**(bool) – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit**(bool) – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

pop(index) → item -- remove and return item at index (default last).

Raise IndexError if list is empty or index is out of range.

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name**(str) – Name of the attribute to be registered.

remove(value)

S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode='init')

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either *init, copy, or share*. *init* means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reverse()
S.reverse() – reverse IN PLACE
```

```python
serialize (serializer)
Serializes the link object.
```

Parameters

- **serializer (AbstractSerializer)** – Serializer object.

```python
to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```python
to_cpu()
Copies parameter variables and persistent values to CPU.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```python
to_device (device)
Copies parameter variables and persistent values to the specified device.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

```python
to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

```python
to_intel64 ()
Copies parameter variables and persistent values to CPU.
```

```python
zerograds ()
Initializes all gradient arrays by zero.
```

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.
Chainer Documentation, Release 6.7.0

__eq__
Return self==value.

__ne__
Return self!=value.

__lt__
Return self<value.

__le__
Return self<=value.

__gt__
Return self>value.

__ge__
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM(in_size, out_size, n_ary=2)
N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.
This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the
states of all children nodes into the new states of a current (parent) node. *states* denotes the cell state, c, and the
output, h, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as \texttt{func(c1, c2, h1, h2, x)} if the number of children nodes
was set 2 (n_ary = 2), while \texttt{func(c1, c2, c3, h1, h2, h3, x)} if that was 3 (n_ary = 3).
This function is *dependent* from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of
\texttt{func(c1, c2, h1, h2, x)} are different from those of \texttt{func(c2, c1, h2, h1, x)}.

Parameters

- \texttt{in_size(int)} – Dimension of input vectors.
- \texttt{out_size(int)} – Dimensionality of cell and output vectors.
- \texttt{n_ary(int)} – The number of children nodes in a tree structure.

Variables

- \texttt{W_x(chainer.links.Linear)} – Linear layer of connections from input vectors.
- \texttt{W_h(chainer.links.Linear)} – Linear layer of connections between \((a, i, o, all\, f)\) and the output of each child. \(a, i, o\) and \(f\) denotes input compound, input gate, output gate and forget gate, respectively. \(a\), input compound, equals to \(u\) in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. has only one \(W\) matrix to be applied to \(x\), consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Methods

- \texttt{__call__(*args, **kwargs)}
 Call self as a function.
- \texttt{__getitem__(name)}
 Equivalent to getattr.
- \texttt{add_hook(hook, name=None)}
 Registers a link hook.
 Parameters
 - \texttt{hook(LinkHook)} – Link hook to be registered.
 - \texttt{name(str)} – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.
 Returns
 self
- \texttt{add_link(name, link)}
 Registers a child link to this chain.
 Parameters
 - \texttt{name(str)} – Name of the child link. This name is also used as the attribute name.
 - \texttt{link(Link)} – The link object to be registered.
- \texttt{add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)}
 Registers a parameter to the link.
Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer (initializer)** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link (Link)** – Source link object.

children ()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode (str)** – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is share.

Returns

Copied link object.
Return type: `Link`

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an `ndarray`, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters
- **link** (`Link`) – Source link object.
- **copy_persistent** (`bool`) – If `True`, persistent values are also copied. `True` by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook(name)
Unregisters the link hook.

Parameters **name** (`str`) – The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters **visitor** (`DeviceResidentsVisitor`) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.
enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.
forward(*cshsx)
Returns new cell state and output of N-ary TreeLSTM.

Parameters **cshsx** (list of `Variable`) – Arguments which include all cell vectors and all output vectors of fixed-length children, and an input vector. The number of arguments must be same as `n_ary * 2 + 1`.

Returns Returns `(c_{new}, h_{new})`, where `c_{new}` represents new cell state vector, and `h_{new}` is new output vector.

Return type tuple of ~chainer.Variable
from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

- **Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** include_uninit (bool) – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

- **Parameters** include_uninit (bool) – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all parameters.

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters** name (str) – Name of the attribute to be registered.
repeat (n_repeat, mode='init')

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters **serializer** (AbstractSerializer) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See `get_device()` for available values.

Returns: self
to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
`Device` instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiGRU

class chainer.links.NStepBiGRU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bigru(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Parameters
• n_layers (int) – Number of layers.
• in_size (int) – Dimensionality of input vectors.
• out_size (int) – Dimensionality of hidden states and output vectors.
• dropout (float) – Dropout ratio.

See also:
chainer.functions.n_step_bigru()

Methods
__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()
add_hook (hook, name=None)
 Registers a link hook.

 Parameters
 • hook (LinkHook) – Link hook to be registered.
 • name (str) – Name of the link hook. The name must be unique among link hooks
 registered to this link. If None, the default name of the link hook is used.

 Returns
 self

add_link (link)
 Registers a child link and adds it to the tail of the list.

 Parameters
 link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.

 Parameters
 • name (str) – Name of the parameter. This name is also used as the attribute name.
 • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
 the parameter variable is left uninitialized.
 • dtype – Data type of the parameter array.
 • initializer (initializer) – If it is not None, the data is initialized with the given
 initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
 a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
 scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
 this case.

add_persistent (name, value)
 Registers a persistent value to the link.

 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
 of the link.

 Parameters
 • name (str) – Name of the persistent value. This name is also used for the attribute name.
 • value – Value to be registered.

addgrads (link)
 Accumulates gradient values from given link.

 This method adds each gradient array of the given link to corresponding gradient array of this link. The
 accumulation is even done across host and different devices.

 Parameters
 link (Link) – Source link object.

append (value)
 S.append(value) – append value to the end of the sequence

children ()
 Returns a generator of all child links.

 Returns
 A generator object that generates all child links.

clear () → None -- remove all items from S

4.3. Link and Chains
cleargrads ()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count (value) → integer -- return number of occurrences of value

count_params ()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.
disable_update ()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.
extend (values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward (self, hx, xs)
Calculates all of the hidden states and the cell states.
Parameters

- **hx** (:obj:`Variable` or :obj:`None`) – Initial hidden states. If :obj:`None` is specified zero-vector is used. Its shape is \((S, B, N)\) for uni-directional RNN and \((2S, B, N)\) for bi-directional RNN where \(S\) is the number of layers and is equal to :attr:`n_layers`, \(B\) is the mini-batch size, and \(N\) is the dimension of the hidden units.

- **xs** (list of :obj:`Variable`) – List of input sequences. Each element \(xs[i]\) is a :class:`chainer.Variable` holding a sequence. Its shape is \((L_i, I)\), where \(L_i\) is the length of a sequence for batch \(i\), and \(I\) is the size of the input and is equal to :attr:`in_size`.

Returns

This function returns a tuple containing two elements, \(hy\) and \(ys\).

- \(hy\) is an updated hidden states whose shape is same as \(hx\).

- \(ys\) is a list of :obj:`Variable`. Each element \(ys[i]\) holds hidden states of the last layer corresponding to an input \(xs[i]\). Its shape is \((L_i, N)\) for uni-directional RNN and \((L_i, 2N)\) for bi-directional RNN where \(L_i\) is the length of a sequence for batch \(i\), and \(N\) is size of hidden units.

Return type tuple

:func:`from_chx`

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

:func:`index`

\(\text{index}([\text{value}], [\text{start}], [\text{stop}]) \rightarrow \text{integer} \quad \text{return first index of value.}\)

Raises :class:`ValueError` if the value is not present.

:func:`init_hx`

:func:`init_scope`

Create an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for :class:`Chain`) by an assignment. A :class:`Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the :func:`init_scope` method, we can simply assign a :class:`Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

:func:`insert`

Insert a child link at the given index.

Parameters

- **index** (:obj:`int`) – The position of the list where the new

- **link** (:obj:`Link`) – The link to be inserted.
links (skipself=False)
 Returns a generator of all links under the hierarchy.
 Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
 Returns A generator object that generates all links.

namedlinks (skipself=False)
 Returns a generator of all (path, link) pairs under the hierarchy.
 Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
 Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
 Returns a generator of all (path, param) pairs under the hierarchy.
 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
 Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
 Returns a generator of all parameters under the link hierarchy.
 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
 Returns A generator object that generates all parameters.

pop ([index]) → item -- remove and return item at index (default last).
 Raise IndexError if list is empty or index is out of range.

register_persistent (name)
 Registers an attribute of a given name as a persistent value.
 This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.
 Parameters name (str) – Name of the attribute to be registered.

remove (value)
 S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode='init')
 Repeats this link multiple times to make a Sequential.
 This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
 You can repeat the same link multiple times to create a longer Sequential block like this:

 class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()

S.reverse() – reverse IN PLACE

rnn(*args)

Calls RNN function.

serialize(serializer)

Serializes the link object.

Parameters **serializer** (**AbstractSerializer**) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override **device_resident_accept()** to do so.

Returns: self

to_device(device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** — Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu(*device=None*)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters **device** — Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient *cleargrads()* instead.

___eq___()
Return self==value.

___ne___()
Return self!=value.

___lt___()
Return self<value.

___le___()
Return self<=value.

___gt___()
Return self>value.

___ge___()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to *chainer.thread_local.link_hooks*, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword and value) that are passed to the ___init___(). This pair of key and value is used for representing this class or subclass with ___str___().
update_enabled
 True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM(self, n_layers, in_size, out_size, dropout)
 Stacked Bi-directional LSTM for sequences.

 This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
 layer at end-of-string, and all hidden states of the last layer for each time.

 Unlike chainer.functions.n_step_bilstm(), this function automatically sort inputs in descending
 order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
 holding sequences.

 Parameters
 • n_layers (int) – Number of layers.
 • in_size (int) – Dimensionality of input vectors.
 • out_size (int) – Dimensionality of hidden states and output vectors.
 • dropout (float) – Dropout ratio.

 See also:
 chainer.functions.n_step_bilstm()

Methods

__call__(*args, **kwargs)
 Call self as a function.

__getitem__(index)
 Returns the child at given index.
 Parameters index (int) – Index of the child in the list.
 Returns The index-th child link.

Return type Link

__setitem__(index, value)
__len__()
__iter__()

add_hook(hook, name=None)
 Registers a link hook.
Parameters

- **hook** *(LinkHook)* – Link hook to be registered.
- **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns `self`

add_link *(link)*

Registers a child link and adds it to the tail of the list.

Parameters `link` *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** *(initializer)* – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters `link` *(Link)* – Source link object.

append *(value)*

S.append(value) – append value to the end of the sequence

children ()

Returns a generator of all child links.

Returns A generator object that generates all child links.

clear () → `None` -- remove all items from S

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy (mode='share')
 Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
 Copies all parameters from given link.

 This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
 and devices. Note that this method does not copy the gradient arrays.

 From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
 BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
 it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
 duced with copy_persistent=False.

 Parameters
 • link (Link) – Source link object.
 • copy_persistent (bool) – If True, persistent values are also copied. True by
 default.

count (value) → integer -- return number of occurrences of value

count_params ()
 Counts the total number of parameters.

 This method counts the total number of scalar values included in all the Parameters held by this link
 and its descendants.

 If the link contains uninitialized parameters, this method raises a warning.

 Returns The total size of parameters (int)

delete_hook (name)
 Unregisters the link hook.

 Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
 Applies the visitor to all the device objects in this instance.

 Parameters visitor (DeviceResidentsVisitor) – Visitor.

 This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
 Disables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
 Enables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
 S.extend(iterable) – extend sequence by appending elements from the iterable

forward (self, hx, cx, xs)
 Calculates all of the hidden states and the cell states.

 Parameters
 • hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
 Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3. Link and Chains 483
LSTM where \(S \) is the number of layers and is equal to \(n_{\text{layers}} \), \(B \) is the mini-batch size, and \(N \) is the dimension of the hidden units.

- \(\text{cx} \) (Variable or None) – Initial cell states. If None is specified zero-vector is used. It has the same shape as \(h_x \).
- \(\text{xs} \) (list of Variable) – List of input sequences. Each element \(x_s[i] \) is a chainer.Variable holding a sequence. Its shape is \((L_i, I)\), where \(L_i \) is the length of a sequence for batch \(i \), and \(I \) is the size of the input and is equal to \(\text{in_size} \).

Returns

This function returns a tuple containing three elements, \(h_y \), \(c_y \) and \(y_s \).

- \(h_y \) is an updated hidden states whose shape is the same as \(h_x \).
- \(c_y \) is an updated cell states whose shape is the same as \(c_x \).
- \(y_s \) is a list of Variable. Each element \(y_s[i] \) holds hidden states of the last layer corresponding to an input \(x_s[i] \). Its shape is \((L_i, N)\) for uni-directional LSTM and \((L_i, 2N)\) for bi-directional LSTM where \(L_i \) is the length of a sequence for batch \(i \), and \(N \) is size of hidden units.

Return type tuple

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index(value[start, stop]) → integer -- return first index of value.

Raises ValueError if the value is not present.

init_hx(xs)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the \text{init_scope} method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

insert(index, link)

Insert a child link at the given index.

Parameters

- \(\text{index}(\text{int}) \) – The position of the list where the new

- \(\text{is \ inserted}(\text{link}) \) –
• **link** *(Link)* – The link to be inserted.

links *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters
- **skipself** *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

namedlinks *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- **skipself** *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- **include_uninit** *(bool)* – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters
- **include_uninit** *(bool)* – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all parameters.

pop *(index)* → item -- remove and return item at index (default last).
Raise `IndexError` if list is empty or index is out of range.

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** *(str)* – Name of the attribute to be registered.

remove *(value)*
`S.remove(value)` – remove first occurrence of value. Raise `ValueError` if the value is not present.

repeat *(n_repeat, mode='init')*
Repeats this link multiple times to make a `Sequential`.
This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
```

(continues on next page)
self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()
 S.reverse() – reverse IN PLACE

rnn(*args)
 Calls RNN function.
 This function must be implemented in a child class.

serialize(serializer)
 Serializes the link object.

 Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_chx()
 Converts parameter variables and persistent values to ChainerX without any copy.
 This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

 Returns: self

to_cpu()
 Copies parameter variables and persistent values to CPU.
 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

 Returns: self

to_device(device)
 Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns

self

`to_gpu(device=None)`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

self

`to_intel64()`

Copies parameter variables and persistent values to CPU.

`zerograds()`

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

Special Methods

- **`__eq__(value)`**

 Return self==value.

- **`__ne__(value)`**

 Return self!=value.

- **`__lt__(value)`**

 Return self<value.

- **`__le__(value)`**

 Return self<=value.

- **`__gt__(value)`**

 Return self>value.

- **`__ge__(value)`**

 Return self>=value.

Attributes

- **device**

 Device instance.

- **link_hooks**

 Ordered dictionary of registered link hooks.

 Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

- **n_cells**

 Returns the number of cells.

 This function must be implemented in a child class.

- **n_weights = 8**

- **printable_specs**

 Generator of printable specs of this link.

4.3. Link and Chains
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True
within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Parameters
• n_layers (int) – Number of layers.
• in_size (int) – Dimensionality of input vectors.
• out_size (int) – Dimensionality of hidden states and output vectors.
• dropout (float) – Dropout ratio.

See also:
chainer.functions.n_step_birnn()

Methods
__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__ ()
Returns the number of children.
add_hook (hook, name=None)
 Registers a link hook.

 Parameters
 • hook (LinkHook) – Link hook to be registered.
 • name (str) – Name of the link hook. The name must be unique among link hooks
 registered to this link. If None, the default name of the link hook is used.

 Returns
 self

add_link (link)
 Registers a child link and adds it to the tail of the list.

 Parameters
 link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.

 Parameters
 • name (str) – Name of the parameter. This name is also used as the attribute name.
 • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
 the parameter variable is left uninitialized.
 • dtype – Data type of the parameter array.
 • initializer (initializer) – If it is not None, the data is initialized with the given
 initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
 a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
 scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
 this case.

add_persistent (name, value)
 Registers a persistent value to the link.

 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
 of the link.

 Parameters
 • name (str) – Name of the persistent value. This name is also used for the attribute name.
 • value – Value to be registered.

addgrads (link)
 Accumulates gradient values from given link.

 This method adds each gradient array of the given link to corresponding gradient array of this link. The
 accumulation is even done across host and different devices.

 Parameters
 link (Link) – Source link object.

append (value)
 S.append(value) – append value to the end of the sequence

children ()
 Returns a generator of all child links.

 Returns
 A generator object that generates all child links.

clear () → None -- remove all items from S
cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count (value) → integer -- return number of occurrences of value
count_params ()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.
disable_update ()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update ()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.
extend (values)
S.extend(iterable) – extend sequence by appending elements from the iterable
forward (self, hx, xs)
Calculates all of the hidden states and the cell states.
Parameters

- **hx** *(Variable or None)* – Initial hidden states. If None is specified zero-vector is used. Its shape is *(S, B, N)* for uni-directional RNN and *(2S, B, N)* for bi-directional RNN where *S* is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the dimension of the hidden units.

- **xs** *(list of Variable)* – List of input sequences. Each element *xs[i]* is a *chainer.Variable* holding a sequence. Its shape is *(L_i, I)*, where L_i is the length of a sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, *hy* and *ys*.

- *hy* is an updated hidden states whose shape is same as *hx*.
- *ys* is a list of *Variable*. Each element *ys[i]* holds hidden states of the last layer corresponding to an input *xs[i]*. Its shape is *(L_i, N)* for uni-directional RNN and *(L_i, 2N)* for bi-directional RNN where L_i is the length of a sequence for batch i, and N is size of hidden units.

Return type *tuple*

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index([value, start, stop]) → integer -- return first index of value.

Raises ValueError if the value is not present.

init_hx(xs)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the *init_scope* method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

insert(index, link)

Insert a child link at the given index.

Parameters

- **index**(int) – The position of the list where the new
- **is inserted**(link) –
- **link**(Link) – The link to be inserted.
`links` *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters** `skipself` *(bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

`namedlinks` *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself` *(bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

`namedparams` *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** `include_uninit` *(bool)* – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params` *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit` *(bool)* – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

`pop` *(index)* → item -- remove and return item at index (default last).

Raise IndexError if list is empty or index is out of range.

`register_persistent` *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters** `name` *(str)* – Name of the attribute to be registered.

`remove` *(value)*

S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

`repeat` *(n_repeat, mode='init')*

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
```

(continues on next page)
self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (int) – Number of times to repeat.
- **mode** (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()
 S.reverse() – reverse IN PLACE

rnn(*args)
 Calls RNN function.

 This function must be implemented in a child class.

serialize(serializer)
 Serializes the link object.

 Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
 Converts parameter variables and persistent values to ChainerX without any copy.

 This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

 Returns: self

to_cpu()
 Copies parameter variables and persistent values to CPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

 Returns: self

to_device(device)
 Copies parameter variables and persistent values to the specified device.

 This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu (*device=None*)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
`Device` instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` function. This pair of key and value is used for representing this class or subclass with `__str__()`.
update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Parameters

• n_layers (int) – Number of layers.
• in_size (int) – Dimensionality of input vectors.
• out_size (int) – Dimensionality of hidden states and output vectors.
• dropout (float) – Dropout ratio.

See also:
chainer.functions.n_step_birnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__ (index, value)

__len__ ()
Returns the number of children.

__iter__ ()

add_hook (hook, name=None)
Registers a link hook.
Parameters

- **hook** (*LinkHook*) – Link hook to be registered.
- **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns `self`

`add_link(link)`

Registers a child link and adds it to the tail of the list.

Parameters `link` (*Link*) – The link object to be registered.

`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`

Registers a parameter to the link.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (*initializer*) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

`add_persistent(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

`addgrads(link)`

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters `link` (*Link*) – Source link object.

`append(value)`

`S.append(value)` – append value to the end of the sequence

`children()`

Returns a generator of all child links.

Returns A generator object that generates all child links.

`clear()` → None -- remove all items from `S`

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy *(mode='share')*
Returns a deep copy of the chainlist.

copyparams *(link, copy_persistent=True)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count *(value)* → integer -- return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitializated parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

Parameters **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend *(values)*
S.extend(iterable) – extend sequence by appending elements from the iterable

forward *(self, hx, xs)*
Calculates all of the hidden states and the cell states.

Parameters

- **hx** *(Variable or None)* – Initial hidden states. If None is specified zero-vector is used. Its shape is *(S, B, N)* for uni-directional RNN and *(2S, B, N)* for bi-directional
RNN where \(S\) is the number of layers and is equal to \(n_layers\), \(B\) is the mini-batch size, and \(N\) is the dimension of the hidden units.

- **xs** (list of Variable) – List of input sequences. Each element \(xs[i]\) is a chainer.Variable holding a sequence. Its shape is \((L_i, I)\), where \(L_i\) is the length of a sequence for batch \(i\), and \(I\) is the size of the input and is equal to \(in_size\).

Returns

This function returns a tuple containing two elements, \(hy\) and \(ys\).

- \(hy\) is an updated hidden states whose shape is same as \(hx\).
- \(ys\) is a list of Variable. Each element \(ys[i]\) holds hidden states of the last layer corresponding to an input \(xs[i]\). Its shape is \((L_i, N)\) for uni-directional RNN and \((L_i, 2N)\) for bi-directional RNN where \(L_i\) is the length of a sequence for batch \(i\), and \(N\) is size of hidden units.

Return type tuple

```python
from_chx()
```

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

```python
index([value, start, stop]) → integer -- return first index of value.
```

Raises ValueError if the value is not present.

```python
init_hx(xs)
```

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the \(init_scope\) method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```python
insert(index, link)
```

Insert a child link at the given index.

Parameters

- **index** (int) – The position of the list where the new
- **is inserted** (link) –
- **link** (Link) – The link to be inserted.

```python
links(skipself=False)
```

Returns a generator of all links under the hierarchy.
Parameters `skipself` (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks` (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams` (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params` (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`pop` (index) → item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

`register_persistent` (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (str) – Name of the attribute to be registered.

`remove` (value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

`repeat` (n_repeat, mode='init')
Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
```

(continues on next page)
return F.relu(self.bn(self.conv(x)))
net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()

reverse() – reverse IN PLACE

rnn(*args)

Calls RNN function.

This function must be implemented in a child class.

serialize(*serializer)*

Serializes the link object.

Parameters **serializer** (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See get_device() for available values.

Returns: self
to_gpu\((device=None) \)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override \texttt{device_resident_accept()} to do so.

\textbf{Parameters} \texttt{device} – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.

zerograds ()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient \texttt{cleargrads()} instead.

__eq__ ()

Return self==value.

__ne__ ()

Return self!=value.

__lt__ ()

Return self<value.

__le__ ()

Return self<=value.

__gt__ ()

Return self>value.

__ge__ ()

Return self>=value.

\textbf{Attributes}

device

\texttt{Device} instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to \texttt{chainer.thread_local.link_hooks}, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells

Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs

Generator of printable specs of this link.

\textbf{Yields} specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__.

update_enabled

True if at least one parameter has an update rule enabled.
use_bidi_direction = True

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepGRU

class chainer.links.NStepGRU(self, n_layers, in_size, out_size, dropout)
 Stacked Uni-directional GRU for sequences.
 This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.
 Unlike chainer.functions.n_step_gru(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

 Parameters
 • n_layers (int) – Number of layers.
 • in_size (int) – Dimensionality of input vectors.
 • out_size (int) – Dimensionality of hidden states and output vectors.
 • dropout (float) – Dropout ratio.

 See also:
 chainer.functions.n_step_gru()

Methods

__call__(*args, **kwargs)
 Call self as a function.

__getitem__(index)
 Returns the child at given index.
 Parameters
 index (int) – Index of the child in the list.
 Returns
 The index-th child link.

 Return type
 Link

__setitem__(index, value)

__len__()
 Returns the number of children.

__iter__()

add_hook(hook, name=None)
 Registers a link hook.
 Parameters
• **hook** (*LinkHook*) – Link hook to be registered.

• **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns self

```python
def add_link(link)
    Registers a child link and adds it to the tail of the list.

    Parameters
    ----------
    link : *Link*
        The link object to be registered.

```  

```python
def add_param(name, shape=None, dtype=numpy.float32, initializer=None)
    Registers a parameter to the link.

    Parameters
    ----------
    name : *str*
        Name of the parameter. This name is also used as the attribute name.
    shape : *int or tuple of ints*, optional
        Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
    dtype : *data type of the parameter array*, optional
        Data type of the parameter array.
    initializer : *initializer*, optional
        If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, the `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that `float32` is used in this case.

```  

```python
def add_persistent(name, value)
    Registers a persistent value to the link.

    The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

    Parameters
    ----------
    name : *str*
        Name of the persistent value. This name is also used for the attribute name.
    value : *
        Value to be registered.

```  

```python
def addgrads(link)
    Accumulates gradient values from given link.

    This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

    Parameters
    ----------
    link : *Link*
        Source link object.

```  

```python
def append(value)
    S.append(value) – append value to the end of the sequence

```  

```python
def children()
    Returns a generator of all child links.

    Returns
    -------
    A generator object that generates all child links.

```  

```python
def clear() → None -- remove all items from S

def cleargrads()
    Clears all gradient arrays.

    This method should be called before the backward computation at every iteration of the optimization.
```
copy (mode='share')

Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count (value) → integer -- return number of occurrences of value

count_params ()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)

Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)

S.extend(iterable) – extend sequence by appending elements from the iterable

forward (self, hx, xs)

Calculates all of the hidden states and the cell states.

Parameters

- hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.

Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the dimension of the hidden units.

- **xs** (list of `Variable`) – List of input sequences. Each element $xs[i]$ is a `chainer.Variable` holding a sequence. Its shape is (L_i, I), where L_i is the length of a sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

- hy is an updated hidden states whose shape is same as hx.
- ys is a list of `Variable`. Each element $ys[i]$ holds hidden states of the last layer corresponding to an input $xs[i]$. Its shape is (L_i, N) for uni-directional RNN and $(L_i, 2N)$ for bi-directional RNN where L_i is the length of a sequence for batch i, and N is size of hidden units.

Return type tuple

`from_chx()`

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

`index([value[, start[, stop]]])` → integer — return first index of value.

Raises ValueError if the value is not present.

`init_hx(xs)`

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`insert(index, link)`

Insert a child link at the given index.

Parameters

- **index** (`int`) – The position of the list where the new
- **is inserted.** (`link`) –
- **link** (`Link`) – The link to be inserted.

`links` (`skipself=False`)
Returns a generator of all links under the hierarchy.

4.3. Link and Chains
Parameters \texttt{skipself} (\texttt{bool}) – If \texttt{True}, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

\texttt{namedlinks (skipself=False)}

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters \texttt{skipself} (\texttt{bool}) – If \texttt{True}, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

\texttt{namedparams (include_uninit=True)}

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters \texttt{include_uninit} (\texttt{bool}) – If \texttt{True}, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

\texttt{params (include_uninit=True)}

Returns a generator of all parameters under the link hierarchy.

Parameters \texttt{include_uninit} (\texttt{bool}) – If \texttt{True}, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

\texttt{pop ([index]) \rightarrow item \rightarrow remove and return item at index (default last).}

Raise IndexError if list is empty or index is out of range.

\texttt{register_persistent (name)}

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If \texttt{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters \texttt{name} (\texttt{str}) – Name of the attribute to be registered.

\texttt{remove (value)}

\texttt{S.remove(value)} \rightarrow \texttt{remove first occurrence of value. Raise ValueError if the value is not present.}

\texttt{repeat (n_repeat, mode='init')}\n
Repeats this link multiple times to make a \texttt{Sequential}.

This method returns a \texttt{Sequential} object which has the same \texttt{Link} multiple times repeatedly. The \texttt{mode} argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer \texttt{Sequential} block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
```
return F.relu(self.bn(self.conv(x)))
net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.
This function must be implemented in a child class.

serialize(*serializer*)
Serializes the link object.

Parameters **serializer** (*AbstractSerializer*) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(*device*)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See get_device() for available values.

Returns: self

4.3. Link and Chains
to_gpu\(device=None \)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override \texttt{device_resident_accept()} to do so.

Parameters

- \texttt{device} – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograd()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient \texttt{cleargrads()} instead.

__eq__(
Return self==value.
__ne__(
Return self!=value.
__lt__(
Return self<value.
__le__(
Return self<=value.
__gt__(
Return self>value.
__ge__(
Return self>=value.

Attributes

device
\texttt{Device} instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to \texttt{chainer.thread_local.link_hooks}, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.
use_bi_direction = False

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepLSTM

class chainer.links.NStepLSTM(self, n_layers, in_size, out_size, dropout)
 Stacked Uni-directional LSTM for sequences.
 This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all
 layer at end-of-string, and all hidden states of the last layer for each time.
 Unlike chainer.functions.n_step_lstm(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

 Parameters
 • n_layers(int) – Number of layers.
 • in_size(int) – Dimensionality of input vectors.
 • out_size(int) – Dimensionality of hidden states and output vectors.
 • dropout(float) – Dropout ratio.

 See also:
 chainer.functions.n_step_lstm()

Example

Read forward() method below first.

```python
>>> dropout_ratio = 0.0
>>> in_size, seq_len, n_layers, out_size = 2, 4, 2, 3
>>> batch = 5
>>> xs = [
...    Variable(np.random.rand(seq_len, in_size).astype(np.float32))
...    for i in range(batch)]
>>> [x.shape for x in xs]
[(4, 2), (4, 2), (4, 2), (4, 2), (4, 2)]
>>> lstm = L.NStepLSTM(n_layers, in_size, out_size, dropout_ratio)

Without hidden or cell state:

```python
>>> hy, cy, ys = lstm(None, None, xs)
>>> hy.shape # shape should be (n_layers, batch, out_size)
(2, 5, 3)
>>> ys[0].shape # should be (seq_len, out_size)
(4, 3)
>>> len(ys) # should be equal to batch
5
```
With hidden and cell states:

```python
>>> h_shape = (n_layers, batch, out_size)
>>> hx = Variable(np.ones(h_shape, np.float32))
>>> cx = Variable(np.ones(h_shape, np.float32))
>>> hy, cy, ys = lstm(hx, cx, xs)
>>> hy.shape # shape should be (n_layers, batch, out_size)
(2, 5, 3)
>>> ys[0].shape # should be (seq_len, out_size)
(4, 3)
```

### Methods

- **`__call__`**: (args, **kwargs)
  Call self as a function.

- **`__getitem__`**: (index)
  Returns the child at given index.

  Parameters
  - **index**: (int) – Index of the child in the list.

  Returns
  - The index-th child link.

  Return type **Link**

- **`__setitem__`**: (index, value)

- **`__len__`**: ()
  Returns the number of children.

- **`__iter__`**: ()

- **`add_hook`**: (hook, name=None)
  Registers a link hook.

  Parameters
  - **hook**: (LinkHook) – Link hook to be registered.
  - **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

  Returns
  - self

- **`add_link`**: (link)
  Registers a child link and adds it to the tail of the list.

  Parameters
  - **link**: (Link) – The link object to be registered.

- **`add_param`**: (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
  Registers a parameter to the link.

  Parameters
  - **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
  - **shape**: *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
  - **dtype** – Data type of the parameter array.
• **initializer** (*initializer*) – If it is not *None*, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, *dtype* argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent** (*name*, *value*)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• *name* (*str*) – Name of the persistent value. This name is also used for the attribute name.

• *value* – Value to be registered.

**addgrads** (*link*)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

• *link* (*Link*) – Source link object.

**append** (*value*)
S.append(value) – append value to the end of the sequence

**children** ()
Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**clear** () → None -- remove all items from S

**cleargrads** ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** (*mode='share'*)
Returns a deep copy of the chainlist.

**copyparams** (**link**, *copy_persistent=True*)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*.

**Parameters**

• *link* (*Link*) – Source link object.

• *copy_persistent* (*bool*) – If True, persistent values are also copied. True by default.

**count** (*value*) → integer -- return number of occurrences of value
count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns: The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters: name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters: visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, cx, xs)
Calculates all of the hidden states and the cell states.

Parameters:
- hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used. Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the dimension of the hidden units.
- cx (Variable or None) – Initial cell states. If None is specified zero-vector is used. It has the same shape as hx.
- xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence. Its shape is (L_i, I), where L_i is the length of a sequence for batch i, and I is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy, cy and ys.

- hy is an updated hidden states whose shape is the same as hx.
- cy is an updated cell states whose shape is the same as cx.
- ys is a list of Variable. Each element ys[i] holds hidden states of the last layer corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional LSTM and (L_i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i, and N is size of hidden units.

Return type: tuple
from_chx()  
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index([value, start, stop]) → integer -- return first index of value.  
Raises ValueError if the value is not present.

init_hx(xs)  
init_scope()  
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

insert(index, link)  
Insert a child link at the given index.

**Parameters**

- **index (int)** – The position of the list where the new
- **is inserted. (link)** –
- **link (Link)** – The link to be inserted.

links(skipself=False)  
Returns a generator of all links under the hierarchy.

**Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

namedlinks (skipself=False)  
Returns a generator of all (path, link) pairs under the hierarchy.

**Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)  
Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters** include_uninit (bool) – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop ([index]) → item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove (value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.
This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- n_repeat (int) – Number of times to repeat.
- mode (str) – It should be either init, copy, or share. init means parameters
  of each repeated element in the returned Sequential will be re-initialized, so that all
  elements have different initial parameters. copy means that the parameters will not be
  re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer(AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self
to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self
to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.
__eq__() Return self==value.
__ne__(self, value)
    Return self!=value.

__lt__(self, value)
    Return self<value.

__le__(self, value)
    Return self<=value.

__gt__(self, value)
    Return self>value.

__ge__(self, value)
    Return self>=value.

**Attributes**

device
    Device instance.

local_link_hooks
    Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells
    Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

printable_specs
    Generator of printable specs of this link.

    Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()`. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
    True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
    True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
    Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`. 
chainer.links.NStepRNNReLU

class chainer.links.NStepRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is \texttt{relu}. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike \texttt{chainer.functions.n_step_rnn()}, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of \texttt{chainer.Variable} holding sequences.

Parameters

- \texttt{n_layers (int)} – Number of layers.
- \texttt{in_size (int)} – Dimensionality of input vectors.
- \texttt{out_size (int)} – Dimensionality of hidden states and output vectors.
- \texttt{dropout (float)} – Dropout ratio.

See also:

\texttt{chainer.functions.n_step_rnn()}

Methods

\texttt{__call__}(\*args, **kwargs)
Call self as a function.

\texttt{__getitem__}(index)
Returns the child at given index.

Parameters

\texttt{index (int)} – Index of the child in the list.

Returns

The index-th child link.

Return type \texttt{Link}

\texttt{__setitem__}(index, value)

\texttt{__len__}()
Returns the number of children.

\texttt{__iter__}()

\texttt{add_hook}(hook, name=None)
Registers a link hook.

Parameters

- \texttt{hook (LinkHook)} – Link hook to be registered.
- \texttt{name (str)} – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

\texttt{add_link}(link)
Registers a child link and adds it to the tail of the list.

Parameters

- \texttt{link (Link)} – The link object to be registered.
add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.

- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

- dtype – Data type of the parameter array.

- initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.

- value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- link (Link) – Source link object.

append (value)
S.append(value) – append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns

A generator object that generates all child links.

clear () → None -- remove all items from S

cleargrads ()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

**count** *(value) → integer* -- return number of occurrences of value

**count_params()**
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

**Returns**
The total size of parameters (int)

**delete_hook** *(name)*
Unregisters the link hook.

**Parameters**
- **name** *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*
Applies the visitor to all the device objects in this instance.

**Parameters**
- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update()**
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update()**
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

**extend** *(values)*
S.extend(iterable) – extend sequence by appending elements from the iterable

**forward** *(self, hx, xs)*
Calculates all of the hidden states and the cell states.

**Parameters**

- **hx** *(Variable or None)* – Initial hidden states. If None is specified zero-vector is used. Its shape is \((S, B, N)\) for uni-directional RNN and \((2S, B, N)\) for bi-directional RNN where \(S\) is the number of layers and is equal to \(n\_layers\), \(B\) is the mini-batch size, and \(N\) is the dimension of the hidden units.

- **xs** *(list of Variable)* – List of input sequences. Each element \(xs[i]\) is a chainer.Variable holding a sequence. Its shape is \((L_i, I)\), where \(L_i\) is the length of a sequence for batch \(i\), and \(I\) is the size of the input and is equal to \(in\_size\).

**Returns**
This function returns a tuple containing two elements, \(hy\) and \(ys\).\n
- **hy** is an updated hidden states whose shape is same as \(hx\).
ys is a list of Variable. Each element ys[i] holds hidden states of the last layer corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and (L_i, 2N) for bi-directional RNN where L_i is the length of a sequence for batch i, and N is size of hidden units.

Return type: tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index(value[, start[, stop]]) → integer -- return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
  def __init__(self):
    super().__init__()
    with self.init_scope():
      self.W = chainer.Parameter(0, (10, 5))
      self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters
• index (int) – The position of the list where the new
• is inserted. (link)–
• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.
	namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.
**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters**

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

**Returns**

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

**Parameters**

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

**Returns**

A generator object that generates all parameters.

**pop**(index) → item -- remove and return item at index (default last).

Raise IndexError if list is empty or index is out of range.

**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**

- **name** *(str)* – Name of the attribute to be registered.

**remove**(value)

S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

**repeat**(n_repeat, mode='init')

Repeats this link multiple times to make a *Sequential*.

This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The mode argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse *IN PLACE*

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(*serializer*)
Serializes the link object.

Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override *device_resident_accept()* to do so.

Returns: self

to_device(*device*)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See *get_device()* for available values.

Returns: self

to_gpu(*device=*)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override *device_resident_accept()* to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
    Initializes all gradient arrays by zero.
    Deprecated since version v1.15: Use the more efficient cleargrads() instead.
__eq__()
    Return self==value.
__ne__()
    Return self!=value.
__lt__()
    Return self<value.
__le__()
    Return self<=value.
__gt__()
    Return self>value.
__ge__()
    Return self>=value.

Attributes

device
    Device instance.
local_link_hooks
    Ordered dictionary of registered link hooks.
    Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.
n_cells
    Returns the number of cells.
    This function must be implemented in a child class.
n_weights = 2
printable_specs
    Generator of printable specs of this link.
    Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().
update_enabled
    True if at least one parameter has an update rule enabled.
use_bi_direction = False
within_init_scope
    True if the current code is inside of an initialization scope.
    See init_scope() for the details of the initialization scope.
xp
    Array module corresponding to the device.
    Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is \text{tanh}. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike \textit{chainer.functions.n_step_rnn()}, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of \textit{chainer.Variable} holding sequences.

Parameters

\begin{itemize}
\item \texttt{n\_layers} (int) – Number of layers.
\item \texttt{in\_size} (int) – Dimensionality of input vectors.
\item \texttt{out\_size} (int) – Dimensionality of hidden states and output vectors.
\item \texttt{dropout} (float) – Dropout ratio.
\end{itemize}

See also:
\textit{chainer.functions.n_step_rnn()}

Methods

\begin{itemize}
\item \texttt{__call__}(\*args, **kwargs)
Call self as a function.
\item \texttt{__getitem__}(index)
Returns the child at given index.
\begin{itemize}
\item Parameters \texttt{index} (int) – Index of the child in the list.
\item Returns The \texttt{index}-th child link.
\end{itemize}
\item Return type \textit{Link}
\item \texttt{__setitem__}(index, value)
\item \texttt{__len__}()
Returns the number of children.
\item \texttt{__iter__}()
\item \texttt{add\_hook}(hook, name=None)
Registers a link hook.
\begin{itemize}
\item Parameters
\begin{itemize}
\item \texttt{hook} (LinkHook) – Link hook to be registered.
\item \texttt{name} (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If \texttt{None}, the default name of the link hook is used.
\end{itemize}
\item Returns self
\end{itemize}
\item \texttt{add\_link}(link)
Registers a child link and adds it to the tail of the list.
\begin{itemize}
\item Parameters \texttt{link} (Link) – The link object to be registered.
\end{itemize}
\end{itemize}
add_param\((name, shape=\text{None}, dtype=\text{<class 'numpy.float32'>}, initializer=\text{None})\)
 Registers a parameter to the link.

**Parameters**

- **name** \((\text{str})\) – Name of the parameter. This name is also used as the attribute name.
- **shape** \((\text{int or tuple of ints})\) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** \((\text{initializer})\) – If it is not \text{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent\((name, value)\)
 Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** \((\text{str})\) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads\((link)\)
 Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** \((\text{Link})\) – Source link object.

append\((value)\)
 S.append(value) – append value to the end of the sequence

children\()\)
 Returns a generator of all child links.

**Returns** A generator object that generates all child links.

clear\()\)
 \(\rightarrow \text{None} -- \text{remove all items from S}\)

cleargrads\()\)
 Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy\((mode='share')\)
 Returns a deep copy of the chainlist.

copyparams\((link, copy\_persistent=True)\)
 Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using \texttt{copy.deepcopy()}. The old behavior (not copying persistent values) can be reproduced with \texttt{copy\_persistent=False}.

\textbf{Parameters}

- \texttt{link (Link)} – Source link object.
- \texttt{copy\_persistent (bool)} – If True, persistent values are also copied. True by default.

\textbf{count (value) \rightarrow integer} -- return number of occurrences of value

\textbf{count\_params ()}

Counts the total number of parameters.

This method counts the total number of scalar values included in all the \texttt{Parameters} held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

\textbf{Returns} The total size of parameters (int)

\textbf{delete\_hook (name)}

Unregisters the link hook.

\textbf{Parameters} \texttt{name (str)} – The name of the link hook to be unregistered.

\textbf{device\_resident\_accept (visitor)}

Applies the visitor to all the device objects in this instance.

\textbf{Parameters} \texttt{visitor (DeviceResidentsVisitor)} – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

\textbf{disable\_update ()}

Disables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to \texttt{False}.

\textbf{enable\_update ()}

Enables update rules of all parameters under the link hierarchy.

This method sets the \texttt{enabled} flag of the update rule of each parameter variable to \texttt{True}.

\textbf{extend (values)}

\texttt{S.extend(iterable)} – extend sequence by appending elements from the iterable

\textbf{forward (self, hx, xs)}

Calculates all of the hidden states and the cell states.

\textbf{Parameters}

- \texttt{hx (Variable or None)} – Initial hidden states. If \texttt{None} is specified zero-vector is used. Its shape is \texttt{(S, B, N)} for uni-directional RNN and \texttt{(2S, B, N)} for bi-directional RNN where \texttt{S} is the number of layers and is equal to \texttt{n\_layers}, \texttt{B} is the mini-batch size, and \texttt{N} is the dimension of the hidden units.

- \texttt{xs (list of Variable)} – List of input sequences. Each element \texttt{xs[i]} is a \texttt{chainer.Variable} holding a sequence. Its shape is \texttt{(L\_i, I)}, where \texttt{L\_i} is the length of a sequence for batch \texttt{i}, and \texttt{I} is the size of the input and is equal to \texttt{in\_size}.

\textbf{Returns}

This function returns a tuple containing two elements, \texttt{hy} and \texttt{ys}.

- \texttt{hy} is an updated hidden states whose shape is same as \texttt{hx}. 

526 Chapter 4. API Reference
• \( ys \) is a list of \( \textit{Variable} \). Each element \( ys[i] \) holds hidden states of the last layer corresponding to an input \( xs[i] \). Its shape is \((L_i, N)\) for uni-directional RNN and \((L_i, 2N)\) for bi-directional RNN where \( L_i \) is the length of a sequence for batch \( i \), and \( N \) is size of hidden units.

\textbf{Return type} \textit{tuple}

\textbf{from_chx()}

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

\textbf{index(value[, start[, stop]])} → integer -- return first index of value.

Raises ValueError if the value is not present.

\textbf{init_hx(xs)}

\textbf{init_scope()}

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for \textit{Chain}) by an assignment. A \textit{Parameter} object can be automatically registered by assigning it to an attribute under this context manager.

\textbf{Example}

In most cases, the parameter registration is done in the initializer method. Using the \textit{init_scope} method, we can simply assign a \textit{Parameter} object to register it to the link.

\begin{verbatim}
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
\end{verbatim}

\textbf{insert(index, link)}

Insert a child link at the given index.

\textbf{Parameters}

• \( \textbf{index (int)} \) – The position of the list where the new
• \( \textbf{is inserted (link)} \)
• \( \textbf{link (Link)} \) – The link to be inserted.

\textbf{links(skipself=False)}

Returns a generator of all links under the hierarchy.

\textbf{Parameters} \textbf{skipself (bool)} – If True, then the generator skips this link and starts with the first child link.

\textbf{Returns} A generator object that generates all links.

\textbf{namedlinks(skipself=False)}

Returns a generator of all (path, link) pairs under the hierarchy.

\textbf{Parameters} \textbf{skipself (bool)} – If True, then the generator skips this link and starts with the first child link.

\textbf{Returns} A generator object that generates all (path, link) pairs.
**namedparams** (*include_uninit=True*)

Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters**

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

**Returns**

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** (*include_uninit=True*)

Returns a generator of all parameters under the link hierarchy.

**Parameters**

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

**Returns**

A generator object that generates all parameters.

**pop** ([*index*]) → *item* -- remove and return item at index (default last).

Raise IndexError if list is empty or index is out of range.

**register_persistent** (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**

- **name** (*str*) – Name of the attribute to be registered.

**remove** (*value*)

S.remove(*value*) – remove first occurrence of value. Raise ValueError if the value is not present.

**repeat** (*n_repeat*, *mode='init'*)

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is ConvBNReLU. And the *mode* was *init*, so each block is re-initialized with different parameters. If you give *copy* to this argument, each block has same values for its parameters but its object ID is different from others. If it is *share*, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
Parameters

- **n_repeat** *(int)* – Number of times to repeat.

- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reverse()
S.reverse() – reverse IN PLACE
```

```python
rnn(*args)
Calls RNN function.
This function must be implemented in a child class.
```

```python
serialize(serializer)
Serializes the link object.
Parameters **serializer** *(AbstractSerializer)* – Serializer object.
```

```python
to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.
Returns: self
```

```python
to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.
Returns: self
```

```python
to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** – Target device specifier. See get_device() for available values.
Returns: self
```

```python
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.
Parameters **device** – Target device specifier. If omitted, the current device is used.
Returns: self
```

```python
to_intel64()
Copies parameter variables and persistent values to CPU.
```

4.3. Link and Chains
zerograds()
Initializes all gradient arrays by zero.
Deprecation warning since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__ge__()
Return self>=value.

__gt__()
Return self>value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

n_cells
Returns the number of cells.
This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.
See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`. 
chainer.links.Parameter

class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.

Deprecated since version v1.5: The parameters are stored as variables since v1.5. Use them directly instead.

Parameters
array – Initial parameter array.

Variables W (Variable) – Parameter variable.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.
Parameters `link` (*Link*) – Source link object.

**children()**

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads()**

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy (mode='share')**

Copies the link hierarchy to a new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- `mode` (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

**Returns** Copied link object.

**Return type** *Link*

**copyparams (link, copy_persistent=True)**

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- `link` (*Link*) – Source link object.

- `copy_persistent` (*bool*) – If True, persistent values are also copied. True by default.

**count_params()**

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

**delete_hook (name)**

Unregisters the link hook.
Parameters **name** *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters **visitor** *(DeviceResidentsVisitor)* – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update**
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

**enable_update**
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

**forward** *(volatile='off')*
Returns the parameter variable.

Parameters **volatile** *(Flag)* – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type **Variable**

**from_chx**
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope**
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links** *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

**namedlinks** *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.
Parameters **skipself** (*bool*) – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

**namedparams** (*include_uninit=True*)

Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters** **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** (*include_uninit=True*)

Returns a generator of all parameters under the link hierarchy.

**Parameters** **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all parameters.

**register_persistent** (*name*)

 Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters** **name** (*str*) – Name of the attribute to be registered.

**repeat** (*n_repeat*, *mode='init'* )

Repeats this link multiple times to make a *Sequential*.

This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is ConvBNReLU. And the *mode* was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
• **n_repeat** (*int*) – Number of times to repeat.

• **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
serialize(serializer)
```

Serializes the link object.

**Parameters**

- **serializer** (*AbstractSerializer*) – Serializer object.

```python
to_chx()
```

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```python
to_cpu()
```

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```python
to_device(device)
```

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

**Parameters**

- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

```python
to_gpu(device=None)
```

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

**Parameters**

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

```python
to_intel64()
```

Copies parameter variables and persistent values to CPU.

```python
zerograds()
```

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

```python
__eq__(value)
```

Return `self==value`.

```python
__ne__(value)
```

Return `self!=value`.

---

4.3. Link and Chains
__lt__(value)
Return self<value.

__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Scale

class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)
Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale() function does except that its second input is a learnable weight parameter \( W \) the link has.

Parameters

- **axis (int)** – The first axis of the first input of scale() function along which its second input is applied.
- **W_shape (tuple of ints)** – Shape of learnable weight parameter. If None, this link does not have learnable weight parameter so an explicit weight needs to be given to its forward method’s second input.
- **bias_term (bool)** – Whether to also learn a bias (equivalent to Scale link + Bias link).
• **bias_shape** *(tuple of ints)* – Shape of learnable bias. If \( W_{\text{shape}} \) is None, this should be given to determine the shape. Otherwise, the bias has the same shape \( W_{\text{shape}} \) with the weight parameter and bias_shape is ignored.

See also:
See `scale()` for details.

**Variables**

- **\( W \) (Parameter)** – Weight parameter if \( W_{\text{shape}} \) is given. Otherwise, no W attribute.
- **bias (Bias)** – Bias term if bias_term is True. Otherwise, no bias attribute.

**Methods**

- **`__call__(\*args, **kwargs)`**
  Call self as a function.

- **`__getitem__(name)`**
  Equivalent to getattr.

- **`add_hook(hook, name=None)`**
  Registers a link hook.

  **Parameters**
  - **hook** *(LinkHook)* – Link hook to be registered.
  - **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

  **Returns**  self

- **`add_link(name, link)`**
  Registers a child link to this chain.

  **Parameters**
  - **name** *(str)* – Name of the child link. This name is also used as the attribute name.
  - **link** *(Link)* – The link object to be registered.

- **`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`**
  Registers a parameter to the link.

  **Parameters**
  - **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
  - **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
  - **dtype** – Data type of the parameter array.
  - **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

- **`add_persistent(name, value)`**
  Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

`addgrads(link)`

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** (*Link*) – Source link object.

`children()`

Returns a generator of all child links.

**Returns**

A generator object that generates all child links.

`cleargrads()`

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy(mode='share')`

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

**Returns**

Copied link object.

**Return type**

*Link*

`copyparams(link, copy_persistent=True)`

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an *ndarray*, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- **link** (*Link*) – Source link object.
• **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

   **Returns** The total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

   **Parameters** name *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

   **Parameters** visitor *(DeviceResidentsVisitor)* – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

forward (*xs*)
Applies broadcasted elementwise product.

   **Parameters** xs *(list of Variables)* – Input variables whose length should be one if the link has a learnable weight parameter, otherwise should be two.

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope ()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

4.3. Link and Chains 539
links (skipself=False)
    Returns a generator of all links under the hierarchy.
    Parameters skipself (bool) – If True, then the generator skips this link and starts with the
    first child link.
    Returns A generator object that generates all links.

namedlinks (skipself=False)
    Returns a generator of all (path, link) pairs under the hierarchy.
    Parameters skipself (bool) – If True, then the generator skips this link and starts with the
    first child link.
    Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
    Returns a generator of all (path, param) pairs under the hierarchy.
    Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
    Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
    this link.

params (include_uninit=True)
    Returns a generator of all parameters under the link hierarchy.
    Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
    Returns A generator object that generates all parameters.

register_persistent (name)
    Registers an attribute of a given name as a persistent value.
    This is a convenient method to register an existing attribute as a persistent value. If name has been already
    registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
    persistent value.
    Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
    Repeats this link multiple times to make a Sequential.
    This method returns a Sequential object which has the same Link multiple times repeatedly. The
    mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))
```
(continues on next page)
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

```
net = ConvBNReLU().repeat(16, mode='init')
```

### Parameters

- **`n_repeat (int)`** – Number of times to repeat.
- **`mode (str)`** – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

### serialize (serializer)

Serializes the link object.

- **Parameters** `serializer (AbstractSerializer)` – Serializer object.

### to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

### to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

### to_device (device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

- **Parameters** `device` – Target device specifier. See `get_device()` for available values.

Returns: self

### to_gpu (device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

- **Parameters** `device` – Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.
Depreciated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters $W_r$, $W_z$, $W$, $U_r$, $U_z$, and $U$. The three parameters $W_r$, $W_z$, and $W$ are $n \times m$ matrices, and the others $U_r$, $U_z$, and $U$ are $n \times n$ matrices, where $m$ is the length of input vectors and $n$ is the length of hidden vectors.

Given input vector $x$, Stateful GRU returns the next hidden vector $h'$ defined as

\[
\begin{align*}
    r &= \sigma(W_r x + U_r h), \\
    z &= \sigma(W_z x + U_z h), \\
    \overline{h} &= \tanh(W x + U (r \odot h)), \\
    h' &= (1 - z) \odot h + z \odot \overline{h},
\end{align*}
\]

where $h$ is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector $h'$ as a state. For a stateless GRU, use StatelessGRU.

**Parameters**

- **in_size** (int) – Dimension of input vector $x$.
- **out_size** (int) – Dimension of hidden vector $h$.
- **init** – Initializer for GRU’s input units ($W$). It is a callable that takes $N$-dimensional array and edits its value. If it is None, the default initializer is used.
- **inner_init** – Initializer for the GRU’s inner recurrent units ($U$). It is a callable that takes $N$-dimensional array and edits its value. If it is None, the default initializer is used.
- **bias_init** – Bias initializer. It is a callable that takes $N$-dimensional array and edits its value. If None, the bias is set to zero.

**Variables**

- $h$ (Variable) – Hidden vector that indicates the state of StatefulGRU.

**See also:**

- StatelessGRU
- GRU: an alias of StatefulGRU

**Example**

There are several ways to make a StatefulGRU link. Let $x$ be a two-dimensional input array:

```python
>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)
```

1. Give only in_size and out_size arguments:
>>> l = L.StatefulGRU(in_size, out_size)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Give all optional arguments:

>>> init = np.zeros((out_size, in_size), dtype=np.float32)
>>> inner_init = np.zeros((out_size, out_size), dtype=np.float32)
>>> bias = np.zeros((1, out_size), dtype=np.float32)
>>> l = L.StatefulGRU(in_size, out_size, init=init, ...
... inner_init=inner_init, bias_init=bias)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters
• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent**(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name**(str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

**addgrads**(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters** link (Link) – Source link object.

**children**()

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads**()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy**(mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters** mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** Link

**copyparams**(link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is a ndarray, the elements are copied. Otherwise,
it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- `link` ([`Link`]) – Source link object.
- `copy_persistent` ([`bool`]) – If True, persistent values are also copied. True by default.

**count_params**()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns**
The total size of parameters (int)

**delete_hook**(name)

Unregisters the link hook.

**Parameters**

- `name` ([`str`]) – The name of the link hook to be unregistered.

**device_resident_accept**(visitor)

Applies the visitor to all the device objects in this instance.

**Parameters**

- `visitor` ([`DeviceResidentsVisitor`]) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update**()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to False.

**enable_update**()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to True.

**forward**(x)

**from_chx**()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope**()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
```
**links** *(skipself=False)*
Returns a generator of all links under the hierarchy.

**Parameters skipself** *(bool)* – If **True**, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

**namedlinks** *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

**Parameters skipself** *(bool)* – If **True**, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters include_uninit** *(bool)* – If **True**, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

**Parameters include_uninit** *(bool)* – If **True**, it also generates uninitialized parameters.

**Returns** A generator object that generates all parameters.

**register_persistent** *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If **name** has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters name** *(str)* – Name of the attribute to be registered.

**repeat** *(n_repeat, mode='init'*
Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The **mode** argument means how to copy this link to repeat.

**Example**
You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
```

(continues on next page)
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

```python
The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reset_state()
serialize(serializer)
    Serializes the link object.

    Parameters
    serializer (AbstractSerializer) – Serializer object.

set_state(h)
to_chx()
    Converts parameter variables and persistent values to ChainerX without any copy.

    This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

    Returns: self

to_cpu()
    Copies parameter variables and persistent values to CPU.

    This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

    Returns: self

to_device(device)
    Copies parameter variables and persistent values to the specified device.

    This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

    Parameters
    device (str) – Target device specifier. See `get_device()` for available values.

    Returns: self
```
to_gpu(device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

Attributes

- **device**

 Device instance.

- **local_link_hooks**

 Ordered dictionary of registered link hooks.

 Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

- **printable_specs**

 Generator of printable specs of this link.

 Yields *specs (tuple of str and object)* – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()`. This pair of key and value is used for representing this class or subclass with `__str__()`.

- **update_enabled**

 True if at least one parameter has an update rule enabled.

- **within_init_scope**

 True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.
xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.StatelessGRU

class chainer.links.StatelessGRU(in_size, out_size, init=None, inner_init=None, bias_init=None)

Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters W_r, W_z, W, U_r, U_z, and U. The three parameters W_r, W_z, and W are $n \times m$ matrices, and the others U_r, U_z, and U are $n \times n$ matrices, where m is the length of input vectors and n is the length of hidden vectors.

Given two inputs a previous hidden vector h and an input vector x, GRU returns the next hidden vector h' defined as

$$
\begin{align*}
 r &= \sigma(W_r x + U_r h), \\
 z &= \sigma(W_z x + U_z h), \\
 \bar{h} &= \tanh(W x + U (r \odot h)), \\
 h' &= (1 - z) \odot h + z \odot \bar{h},
\end{align*}
$$

where σ is the sigmoid function, and \odot is the element-wise product.

As the name indicates, `StatelessGRU` is *stateless*, meaning that it does not hold the value of hidden vector h. For a *stateful* GRU, use `StatefulGRU`.

Parameters

- **in_size (int)** – Dimension of input vector x. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_size (int)** – Dimension of hidden vector h, \bar{h} and h'.

See:

- Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014 DLWorkshop].

See also:

`StatefulGRU`

Example

There are several ways to make a StatelessGRU link. Let x be a two-dimensional input array:

```python
>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)
>>> h = np.zeros((1, out_size), dtype=np.float32)
```
1. Give both `in_size` and `out_size` arguments:

```python
>>> l = L.StatelessGRU(in_size, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)
```

2. Omit `in_size` argument or fill it with `None`:

```python
>>> l = L.StatelessGRU(None, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)
```

Methods

- `__call__`(*args, **kwargs)*
 Call self as a function.

- `__getitem__`(*name*)
 Equivalent to getattr.

- `add_hook`(*hook, name=None*)
 Registers a link hook.

 Parameters

 - `hook` (*LinkHook*) – Link hook to be registered.
 - `name` (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

 Returns self

- `add_link`(*name, link*)
 Registers a child link to this chain.

 Parameters

 - `name` (*str*) – Name of the child link. This name is also used as the attribute name.
 - `link` (*Link*) – The link object to be registered.

- `add_param`(*name, shape=None, dtype=<class 'numpy.float32'>, initializer=None*)
 Registers a parameter to the link.

 Parameters

 - `name` (*str*) – Name of the parameter. This name is also used as the attribute name.
 - `shape` (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 - `dtype` – Data type of the parameter array.
 - `initializer` (*initializer*) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- **mode** (str) – It should be either **init**, **copy**, or **share**. **init** means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. **copy** means the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. **share** means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is **share**.

Returns
Copied link object.

Return type
Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of **BatchNormalization**). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using **copy.deepcopy()**. The old behavior (not copying persistent values) can be reproduced with **copy_persistent=False**.

Parameters

• **link** ([Link](#)) – Source link object.

• **copy_persistent** ([bool](#)) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the **Parameters** held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (**name**)
Unregisters the link hook.

Parameters
name ([str](#)) – The name of the link hook to be unregistered.

device_resident_accept (**visitor**)
Applies the visitor to all the device objects in this instance.

Parameters
visitor ([DeviceResidentsVisitor](#)) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the **enabled** flag of the update rule of each parameter variable to **False**.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the **enabled** flag of the update rule of each parameter variable to **True**.

forward (**h, x**)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for **Chain**) by an assignment. A **Parameter** object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a **Parameter** object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```
The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat (int)** – Number of times to repeat.
- **mode (str)** – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters **serializer** (AbstractSerializer) – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. See get_device () for available values.

Returns: self

to_gpu (device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept () to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.StatefulMGU

class chainer.links.StatefulMGU(in_size, out_size)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters
• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=numpy.float32, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

4.3. Link and Chains 557
addgrads (link)
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (Link) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- **mode** (str) – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link.
 - `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently.
 - `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is `share`.

Returns
Copied link object.

Return type
- **Link**

copyparams (link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters
- **link** (Link) – Source link object.
- **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

`delete_hook(name)`

Unregisters the link hook.

Parameters `name` (str) – The name of the link hook to be unregistered.

`device_resident_accept(visitor)`

Applies the visitor to all the device objects in this instance.

Parameters `visitor` (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`forward(x)`

`from_chx()`

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links(skipself=False)`

Returns a generator of all links under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks(skipself=False)`

Returns a generator of all (path, link) pairs under the hierarchy.
Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The **net** object contains 16 blocks, each of which is **ConvBNReLU**. And the mode was **init**, so each block is re-initialized with different parameters. If you give **copy** to this argument, each block has same values for its parameters but its object ID is different from others. If it is **share**, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
• **n_repeat** (*int*) – Number of times to repeat.

• **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reset_state()
serialize(serializer)
    Serializes the link object.

    Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)
to_chx()
    Converts parameter variables and persistent values to ChainerX without any copy.

    This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

    Returns: self
to_cpu()
    Copies parameter variables and persistent values to CPU.

    This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

    Returns: self
to_device(device)
    Copies parameter variables and persistent values to the specified device.

    This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

    Parameters device – Target device specifier. See `get_device()` for available values.

    Returns: self
to_gpu(device=None)
    Copies parameter variables and persistent values to GPU.

    This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

    Parameters device – Target device specifier. If omitted, the current device is used.

    Returns: self
to_intel64()
    Copies parameter variables and persistent values to CPU.

zerograds()
    Initializes all gradient arrays by zero.

    Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
    Return self==value.
```
__ne__()
 Return self!=value.
__lt__()
 Return self<value.
__le__()
 Return self<=value.
__gt__()
 Return self>value.
__ge__()
 Return self>=value.

Attributes

device
 Device instance.
local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.
printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().
update_enabled
 True if at least one parameter has an update rule enabled.
within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessMGU

class chainer.links.StatelessMGU (n_inputs, n_units)
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• link (Link) – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters

name (str) – The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters
visitor(DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(h, x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters
skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
include_uninit (bool) – If True, it also generates uninitialized parameters.

4.3. Link and Chains 565
Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns
A generator object that generates all parameters.

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*
Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)
    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))
net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

`serialize(serializer)`
Serializes the link object.

Parameters

`serializer` (**AbstractSerializer**) – Serializer object.

`to_chx()`
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: `self`

`to_cpu()`
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: `self`

`to_device(device)`
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

`device` – Target device specifier. See `get_device()` for available values.

Returns: `self`

`to_gpu(device=None)`
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

`device` – Target device specifier. If omitted, the current device is used.

Returns: `self`

`to_intel64()`
Copies parameter variables and persistent values to CPU.

`zerograds()`
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__(value)
Return `self==value`.

__ne__(value)
Return `self!=value`.

__lt__(value)
Return `self<value`.

__le__(value)
Return `self<=value`.

4.3. Link and Chains

567
__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM(in_size, out_size)
 Fully-connected LSTM layer with peephole connections.

 This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain
 holds peep_i, peep_f and peep_o as child links besides upward and lateral.
Given an input vector x, Peephole returns the next hidden vector h' defined as

$$a = \tanh(upward x + lateral h),$$

$$i = \sigma(upward x + lateral h + peep_i c),$$

$$f = \sigma(upward x + lateral h + peep_f c),$$

$$c' = a \odot i + f \odot c,$$

$$o = \sigma(upward x + lateral h + peep_o c'),$$

$$h' = o \tanh(c'),$$

where σ is the sigmoid function, \odot is the element-wise product, c is the current cell state, c' is the next cell state and h is the current hidden vector.

Parameters

- `in_size (int)` – Dimension of the input vector x.
- `out_size (int)` – Dimension of the hidden vector h.

Variables

- `upward (Linear)` – Linear layer of upward connections.
- `lateral (Linear)` – Linear layer of lateral connections.
- `peep_i (Linear)` – Linear layer of peephole connections to the input gate.
- `peep_f (Linear)` – Linear layer of peephole connections to the forget gate.
- `peep_o (Linear)` – Linear layer of peephole connections to the output gate.
- `c (Variable)` – Cell states of LSTM units.
- `h (Variable)` – Output at the current time step.

Methods

- `__call__.(*args, **kwargs)`
 Call self as a function.

- `__getitem__. (name)`
 Equivalent to getattr.

- `add_hook (hook, name=None)`
 Registers a link hook.

Parameters

- `hook (LinkHook)` – Link hook to be registered.
- `name (str)` – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns

- `self`
add_link (name, link)
Registers a child link to this chain.

Parameters

 • `name (str)` – Name of the child link. This name is also used as the attribute name.
 • `link (Link)` – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

 • `name (str)` – Name of the parameter. This name is also used as the attribute name.
 • `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 • `dtype` – Data type of the parameter array.
 • `initializer (initializer)` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

 • `name (str)` – Name of the persistent value. This name is also used for the attribute name.
 • `value` – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters `link (Link)` – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).
Parameters

mode (**str**) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type *Link*

copyparams (*link*, *copy_persistent=True*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- *link* (**Link**) – Source link object.
- *copy_persistent* (**bool**) – If True, persistent values are also copied. True by default.

count_params ()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (*name*)

Unregisters the link hook.

Parameters

- *name* (**str**) – The name of the link hook to be unregistered.

device_resident_accept (*visitor*)

Applies the visitor to all the device objects in this instance.

Parameters

- *visitor* (**DeviceResidentsVisitor**) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (*x*)

Updates the internal state and returns the LSTM outputs.
Parameters `x` *(Variable)* – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type `Variable`

`from_chx()`
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

`init_scope()`
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links` *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks` *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams` *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params` *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent` *(name)*
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

repeat (*n_repeat, mode='init'*)

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reset_state()

Resets the internal states.

It sets `None` to the `c` and `h` attributes.

serialize (*serializer*)

Serializes the link object.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer object.
to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.
Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.
Returns: self
to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.
Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.
Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerosgrads()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulZoneoutLSTM

class chainer.links.StatefulZoneoutLSTM(in_size, out_size, c_ratio=0.5, h_ratio=0.5, **kwargs)

Methods

__call__(*args, **kwargs)
 Call self as a function.

__getitem__(name)
 Equivalent to getattr.

add_hook(hook, name=None)
 Registers a link hook.

 Parameters

 • hook (LinkHook) – Link hook to be registered.

 • name (str) – Name of the link hook. The name must be unique among link hooks
 registered to this link. If None, the default name of the link hook is used.

 Returns self

add_link(name, link)
 Registers a child link to this chain.

 Parameters

 • name (str) – Name of the child link. This name is also used as the attribute name.
• **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Parameters
- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays...
are shared with the original one. Thus, their values are changed synchronously. The default mode is `share`.

Returns Copied link object.

Return type `Link`

`copyparams(link, copy_persistent=True)`
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an `ndarray`, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- `link` (`Link`) – Source link object.
- `copy_persistent` (`bool`) – If `True`, persistent values are also copied. `True` by default.

`count_params()`
Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

`delete_hook(name)`
Unregisters the link hook.

Parameters

- `name` (`str`) – The name of the link hook to be unregistered.

`device_resident_accept(visitor)`
Applies the visitor to all the device objects in this instance.

Parameters

- `visitor` (`DeviceResidentsVisitor`) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`forward(x)`
Updates the internal state and returns the LSTM outputs.

Parameters

- `x` (`Variable`) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type `Variable`
from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with the
 first child link.

 Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with the
 first child link.

 Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
 this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

 Parameters name (str) – Name of the attribute to be registered.
repeat \((n\textunderscore repeat, \text{mode}='init') \)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (int) – Number of times to repeat.
- **mode** (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

reset_state()

Resets the internal state.

It sets None to the \(c \) and \(h \) attributes.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state (c, h)

Sets the internal state.

It sets the \(c \) and \(h \) attributes.
• **c** *(**Variable**)* – A new cell states of LSTM units.

• **h** *(**Variable**)* – A new output at the previous time step.

to_chx
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device *(**device**)*
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters
- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu *(device=None)*
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64
Copies parameter variables and persistent values to CPU.

zerograds
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__
Return `self==value`.

__ne__
Return `self!=value`.

__lt__
Return `self<value`.

__le__
Return `self<=value`.

__gt__
Return `self>value`.

__ge__
Return `self>=value`.
Attributes

device

Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields `specs (tuple of str and object)` – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` function. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.StatelessLSTM

```python
class chainer.links.StatelessLSTM(in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)
```

Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the `lstm()` function, this chain holds upward and lateral connections as child links. This link doesn’t keep cell and hidden states.

Parameters

- **in_size** (`int` or `None`) – Dimension of input vectors. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_size** (`int`) – Dimensionality of output vectors.

Variables

- **upward** (`chainer.links.Linear`) – Linear layer of upward connections.

- **lateral** (`chainer.links.Linear`) – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array x, a cell state array h, and the output array of the previous step h_* be:
1. Give both `in_size` and `out_size` arguments:

```python
>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

2. Omit `in_size` argument or fill it with `None`:

The below two cases are the same.

```python
>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

>>> l = L.StatelessLSTM(None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

Methods

__**call**__(*args, **kwargs)

Call self as a function.

__**getitem**__(name)

Equivalent to getattr.

add_hook (hook, name=None)

Registers a link hook.

Parameters

- **hook** ([`LinkHook`]) – Link hook to be registered.
- **name** ([`str`]) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns
self

add_link (name, link)

Registers a child link to this chain.

Parameters

- **name** ([`str`]) – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=numpy.float32, initializer=None)*

Registers a parameter to the link.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link** (Link) – Source link object.
- **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(c, h, x)
Returns new cell state and updated output of LSTM.

Parameters

- **c** (Variable) – Cell states of LSTM units.
- **h** (Variable) – Output at the previous time step.
- **x** (Variable) – A new batch from the input sequence.
Returns

Returns \((c_{\text{new}}, h_{\text{new}})\), where \(c_{\text{new}}\) represents new cell state, and \(h_{\text{new}}\) is updated output of LSTM units.

Return type

tuple of \(\sim\)chainer.Variable

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)

Registers an attribute of a given name as a persistent value.

4.3. Link and Chains
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

name *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)
    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))
net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- n_repeat *(int)* – Number of times to repeat.
- mode *(str)* – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*

Serializes the link object.

Parameters

serializer *(AbstractSerializer)* – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.
Returns: `self`

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: `self`

to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters
- **device** – Target device specifier. See `get_device()` for available values.

Returns: `self`

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
- **device** – Target device specifier. If omitted, the current device is used.

Returns: `self`

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.
Deprecation since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return `self==value`.

__ne__()
Return `self!=value`.

__lt__()
Return `self<value`.

__le__()
Return `self<=value`.

__gt__()
Return `self>value`.

__ge__()
Return `self>=value`.

4.3. Link and Chains 587
Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.2 Activation/loss/normalization functions with parameters

<table>
<thead>
<tr>
<th>chainer.links.BatchNormalization</th>
<th>Batch normalization layer on outputs of linear or convolution functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.links.BatchRenormalization</td>
<td>Batch renormalization layer on outputs of linear or convolution functions.</td>
</tr>
<tr>
<td>chainer.links.DecorrelatedBatchNormalization</td>
<td>Decorrelated batch normalization layer.</td>
</tr>
<tr>
<td>chainer.links.GroupNormalization</td>
<td>Group normalization layer on outputs of convolution functions.</td>
</tr>
<tr>
<td>chainer.links.LayerNormalization</td>
<td>Layer normalization layer on outputs of linear functions.</td>
</tr>
<tr>
<td>chainer.links.BinaryHierarchicalSoftmax</td>
<td>Hierarchical softmax layer over binary tree.</td>
</tr>
<tr>
<td>chainer.links.BlackOut</td>
<td>BlackOut loss layer.</td>
</tr>
<tr>
<td>chainer.links.CRF1d</td>
<td>Linear-chain conditional random field loss layer.</td>
</tr>
<tr>
<td>chainer.links.SimplifiedDropconnect</td>
<td>Fully-connected layer with simplified dropconnect regularization.</td>
</tr>
<tr>
<td>chainer.links.PReLU</td>
<td>Parametric ReLU function as a link.</td>
</tr>
<tr>
<td>chainer.links.Swish</td>
<td>Swish activation function as a link.</td>
</tr>
<tr>
<td>chainer.links.Maxout</td>
<td>Fully-connected maxout layer.</td>
</tr>
<tr>
<td>chainer.links.NegativeSampling</td>
<td>Negative sampling loss layer.</td>
</tr>
</tbody>
</table>
Batch normalization layer on outputs of linear or convolution functions.

This link wraps the `batch_normalization()` and `fixed_batch_normalization()` functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics by moving averages, which can be used for instant evaluation in testing mode. Training mode is enabled when `chainer.config.train` is set to `True` and `__call__()` is invoked with `finetune=False` (the default is False).

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the population statistics, a user must use this mode to feed mini-batches running through whole training dataset. Finetuning mode is enabled when `chainer.config.train` is set to `True` and `__call__()` is invoked with `finetune=True`.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-tuning mode. Testing mode is enabled when `chainer.config.train` is set to `False`.

Parameters

- **size** *(int, tuple of ints, or None)* — Size (or shape) of channel dimensions. If `None`, the size will be determined from dimension(s) of the input batch during the first forward pass.
- **decay** *(float)* — Decay rate of moving average. It is used on training.
- **eps** *(float)* — Epsilon value for numerical stability.
- **dtype** *(numpy.dtype)* — Type to use in computing.
- **use_gamma** *(bool)* — If `True`, use scaling parameter. Otherwise, use unit(1) which makes no effect.
- **use_beta** *(bool)* — If `True`, use shifting parameter. Otherwise, use unit(0) which makes no effect.
- **axis** *(int or tuple of int)* — Axis over which normalization is performed. When axis is `None`, it is determined from input dimensions. For example, if `x.ndim` is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of input. When a tuple of int is given to this option, numbers in the tuple must be being sorted in ascending order. For example, (0, 2) is OK, but (2, 0) is not.
- **initial_gamma** — Initializer of the scaling parameter. The default value is 1.
- **initial_beta** — Initializer of the shifting parameter. The default value is 0.
- **initial_avg_mean** — Initializer of the moving average of population mean. The default value is 0.
- **initial_avg_var** — Initializer of the moving average of population variance. The default value is 1.
Note: From v5.0.0, the initial value of the population variance is changed to 1. It does not change the behavior of training, but the resulting model may have a slightly different behavior on inference. To emulate the old behavior, pass `initial_avg_var=0` for training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

`batch_normalization()`, `fixed_batch_normalization()`

Variables

- **gamma** (Variable) – Scaling parameter. In mixed16 mode, it is initialized as float32 variable.
- **beta** (Variable) – Shifting parameter. In mixed16 mode, it is initialized as float32 variable.
- **avg_mean** (N-dimensional array) – Population mean. In mixed16 mode, it is initialized as float32 array.
- **avg_var** (N-dimensional array) – Population variance. In mixed16 mode, it is initialized as float32 array.
- **N** (int) – Count of batches given for fine-tuning.
- **decay** (float) – Decay rate of moving average. It is used on training.
- **eps** (float) – Epsilon value for numerical stability. This value is added to the batch variances.

Example

```python
>>> x = np.arange(12).reshape(4, 3).astype(np.float32) ** 2
>>> x
array([[ 0.,  1.,  4.],
       [ 9., 16., 25.],
       [36., 49., 64.],
       [81., 100., 121.]], dtype=float32)
>>> bn = chainer.links.BatchNormalization(3)
>>> bn(x)
variable([-1. , -1.0664359 , -1.1117983 ],
         [-0.71428573, -0.6714596 , -0.6401263 ],
         [ 0.14285715, 0.19748813, 0.23583598],
         [ 1.5714287 , 1.5404074 , 1.5160885 ]])
>>> (x - x.mean(axis=0)) / np.sqrt(x.var(axis=0) + 2e-5)
array([-1. , -1.0664359 , -1.1117983 ],
       [-0.71428573, -0.6714596 , -0.6401263 ],
       [ 0.14285715, 0.19748813, 0.23583598],
       [ 1.5714287 , 1.5404074 , 1.5160886 ]], dtype=float32)
```

There are several ways to make a BatchNormalization link. Consider an input of batched 10 images of 32x32 with 3 channels.

```python
>>> x = np.random.randn(10, 3, 32, 32).astype(np.float32)
```

1. Give the parameter size:
To normalize for each channel, give the number of channels to `size`.

```python
>>> bn = chainer.links.BatchNormalization(3)
>>> bn.avg_mean.shape
(3,)
>>> bn.beta += 2.0
>>> bn.gamma *= 5.0
>>> list(sorted(bn.namedparams()))
[('/beta', variable([2.0, ...])), ('/gamma', variable([5.0, ...]))]
>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(y.array.mean(axis=(0, 2, 3)), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(y.array.std(axis=(0, 2, 3)), bn.gamma.array, atol=1e-3)
```

To normalize for each channel for each pixel, `size` should be the tuple of the dimensions.

```python
>>> bn = chainer.links.BatchNormalization((3, 32, 32))
>>> bn.avg_mean.shape
(3, 32, 32)
>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(y.array.mean(axis=0), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(y.array.std(axis=0),
... bn.gamma.array, atol=1e-3)
```

By default, channel axis is (or starts from) the 1st axis of the input shape.

2. Give the aggregate axes:

from Chainer v5

With `axis` option, similarly to NumPy, you may specify the aggregate axes, which are treated as the “batch” axes for the batch statistics.

You can omit `size` if `axis` is given. In this case, creation of persistent values `avg_mean`, `avg_var` and parameters `beta`, `gamma` is deferred until first forward propagation.

The examples in 1. corresponds to the following, respectively.

```python
>>> bn = chainer.links.BatchNormalization(axis=(0, 2, 3))
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3,)
```

```python
>>> bn = chainer.links.BatchNormalization(axis=0)
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3, 32, 32)
```
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters
- **hook** *(LinkHook)* – Link hook to be registered.
- **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns
self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** *(initializer)* – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** *(Link)* – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
• link (Link) – Source link object.
• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

forward(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.
In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics.

Parameters
- `x` (Variable) – Input variable.
- `finetune` (bool) – If it is in the training mode and `finetune` is `True`, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (`skipself=False`)
Returns a generator of all links under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (`skipself=False`)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all (path, link) pairs.

namedparams (*include_uninit=True*)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (*include_uninit=True*)

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

repeat (*n_repeat, mode='init'*)

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was 'init', so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
• **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize(serializer)

Serializes the link object.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer object.

start_finetuning()

Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method should be called before starting the fine-tuning mode again.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.
__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

beta = None

device
 Device instance.

gamma = None

local_link_hooks
 Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
chainer.links.BatchRenormalization

class chainer.links.BatchRenormalization(size, rmax=1, dmax=0, decay=0.9, eps=2e-05, dtype=None, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None, initial_avg_mean=None, initial_avg_var=None)

Batch renormalization layer on outputs of linear or convolution functions.

This link wraps the batch_renormalization() and fixed_batch_renormalization() functions.

This is an extension of batch normalization, which ensures that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:
batch_renormalization(), fixed_batch_renormalization(), batch_normalization()

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads (*link*)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (*Link*) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode='share'*)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if it exists).

Parameters
- **mode** (*str*) – It should be either **init**, **copy**, or **share**. **init** means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. **copy** means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. **share** means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is **share**.

Returns
Copied link object.

Return type *Link*

copyparams (*link*, **copy_persistent=True**)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of **BatchNormalization**). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using **copy.deepcopy()**. The old behavior (not copying persistent values) can be reproduced with **copy_persistent=False**.

Parameters
- **link** (*Link*) – Source link object.

- **copy_persistent** (*bool*) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters
name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters
visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics.

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            ...
```

(continues on next page)


```python
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

Parameters *

skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters *

skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters *

include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters *

include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters *

name *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
```


```python
self.bn = L.BatchNormalization(64)

def forward(self, x):
    return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat` (*int*) – Number of times to repeat.
- `mode` (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)

Serializes the link object.

Parameters: `serializer` (*AbstractSerializer*) – Serializer object.

start_finetuning()

Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method should be called before starting the fine-tuning mode again.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters: `device` – Target device specifier. See `get_device()` for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64 ()
Copies parameter variables and persistent values to CPU.
zerograd ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

beta = None
device
Device instance.
gamma = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() . This pair of key and value is used for representing this class or subclass with __str__() .

update_enabled
True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DecorrelatedBatchNormalization

class chainer.links.DecorrelatedBatchNormalization(size, groups=16, decay=0.9, eps=2e-05, dtype=<class 'numpy.float32'>)

Decorrelated batch normalization layer.

This link wraps the decorrelated_batch_normalization() and fixed_decorrelated_batch_normalization() functions. It works on outputs of linear or convolution functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics by moving averages, which can be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-tuning mode.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.
• groups (int) – Number of groups to use for group whitening.
• decay (float) – Decay rate of moving average which is used during training.
• eps (float) – Epsilon value for numerical stability.
• dtype (numpy.dtype) – Type to use in computing.

See: Decorrelated Batch Normalization

See also:

decorrelated_batch_normalization(), fixed_decorrelated_batch_normalization()

Variables

• avg_mean (N-dimensional array) – Population mean.
• avg_projection (N-dimensional array) – Population projection.
• groups (int) – Number of groups to use for group whitening.
• N (int) – Count of batches given for fine-tuning.
• decay (float) – Decay rate of moving average which is used during training.
• eps (float) – Epsilon value for numerical stability. This value is added to the batch variances.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.
 Parameters
 • hook (LinkHook) – Link hook to be registered.
 • name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.
 Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.
 Parameters
 • name (str) – Name of the parameter. This name is also used as the attribute name.
 • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 • dtype – Data type of the parameter array.
 • initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.
 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
 Parameters
 • name (str) – Name of the persistent value. This name is also used for the attribute name.
 • value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.
 This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.
 Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.
 Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
 This method should be called before the backward computation at every iteration of the optimization.
copy *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

Returns

Copied link object.

Return type *Link*

copyparams *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params *()*

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns

The total size of parameters (int)

delete_hook *(name)*

Unregisters the link hook.

Parameters

- **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*

Applies the visitor to all the device objects in this instance.

Parameters

- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update *()*

Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, *, finetune=False)
Invokes the forward propagation of DecorrelatedBatchNormalization.

In training mode, the DecorrelatedBatchNormalization computes moving averages of the mean and projection for evaluation during training, and normalizes the input using batch statistics.

Parameters
- **x (Variable)** – Input variable.
- **finetune (bool)** – If it is in the training mode and finetune is True, DecorrelatedBatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

4.3. Link and Chains 607
Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (str) – Name of the attribute to be registered.

`repeat (n_repeat, mode='init')`

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the `mode` was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.

- `mode (str)` – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*

Serializes the link object.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer object.

start_finetuning ()

Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method should be called before starting the fine-tuning mode again.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept () to do so.

Returns: self

to_device *(device)*

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See get_device() for available values.

Returns: self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept () to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.

zerograds ()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

__eq__ ()

Return self==value.

__ne__ ()

Return self!=value.
__lt__()
 Return self<value.
__le__()
 Return self<=value.
__gt__()
 Return self>value.
__ge__()
 Return self>=value.

Attributes

device
 Device instance.
local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link
 hooks in this property are specific to this link.
printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().
update_enabled
 True if at least one parameter has an update rule enabled.
within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.GroupNormalization

class chainer.links.GroupNormalization (groups, size=None, eps=1e-05, initial_gamma=None, initial_beta=None)
 Group normalization layer on outputs of convolution functions.
 This link implements a “group normalization” which divides the channels into groups and computes
 within each group the mean and variance, then normalize by these statistics, scales and shifts them.
 Parameter initialization will be deferred until the first forward data pass at which time the size will
 be determined.

Parameters

• groups (int) – The number of channel groups. This value must be a divisor of the number
 of channels.
• size (int) – Size of input units. If None, parameter initialization will be deferred until
 the first forward data pass at which time the size will be determined.
• **eps** (*float*) – Epsilon value for numerical stability of normalization.

• **initial_gamma** (*Initializer*) – Initializer for scaling parameter. If None, then the vector is filled by 1. If a scalar, the vector is filled by it. If *numpy.ndarray*, the vector is set by it.

• **initial_beta** (*Initializer*) – Initializer for shifting parameter. If None, then the vector is filled by 0. If a scalar, the vector is filled by it. If *numpy.ndarray*, the vector is set by it.

Variables

• **groups** (*int*) – The number of channel groups.

• **gamma** (*Parameter*) – Scaling parameter.

• **beta** (*Parameter*) – Shifting parameter.

• **eps** (*float*) – Epsilon value for numerical stability.

See: Group Normalization

Methods

```python
__call__(*args, **kwargs)
Call self as a function.
```

```python
add_hook(hook, name=None)
Registers a link hook.

Parameters

• **hook** (*LinkHook*) – Link hook to be registered.

• **name** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self
```

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• **name** (*str*) – Name of the parameter. This name is also used as the attribute name.

• **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** (*initializer*) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads** *(link)*
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** *(Link)* – Source link object.

**children** *()*
Returns a generator of all child links.

**Returns**
A generator object that generates all child links.

**cleargrads** *(*)
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** *(mode='share')*
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is *share*.

**Returns**
Copied link object.

**Return type** *Link*

**copyparams** *(link, copy_persistent=True)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0*: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an *ndarray*, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*(). The old behavior (not copying persistent values) can be reproduced with *copy_persistent=False*.

**Parameters**

- **link** *(Link)* – Source link object.

- **copy_persistent** *(bool)* – If *True*, persistent values are also copied. *True* by default.

**count_params** *(*)
Counts the total number of parameters.
This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

```python
def delete_hook(name):
 Unregisters the link hook.

 Parameters name (str) – The name of the link hook to be unregistered.
```

```python
device_resident_accept(visitor)
 Applies the visitor to all the device objects in this instance.

 Parameters visitor (DeviceResidentsVisitor) – Visitor.
```

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

```python
def disable_update():
 Disables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to False.
```

```python
def enable_update():
 Enables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to True.
```

```python
def forward(x):
 Apply group normalization to given input.

 Parameters x (Variable) – Batch tensors. First dimension of this value must be the size of minibatch and second dimension must be the number of channels. Moreover, this value must have one or more following dimensions, such as height and width.

 Returns Output of the group normalization.

 Return type Variable
```

```python
def from_chx():
 Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.
```

```python
def init_scope():
 Creates an initialization scope.

 This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.
```

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

---

4.3. Link and Chains 613
links\(\text{skipself} = \text{False}\)

Returns a generator of all links under the hierarchy.

**Parameters**

- **skipself** \((\text{bool})\) – If \(\text{True}\), then the generator skips this link and starts with the first child link.

**Returns**

A generator object that generates all links.

namedlinks\(\text{skipself} = \text{False}\)

Returns a generator of all \((\text{path}, \text{link})\) pairs under the hierarchy.

**Parameters**

- **skipself** \((\text{bool})\) – If \(\text{True}\), then the generator skips this link and starts with the first child link.

**Returns**

A generator object that generates all \((\text{path}, \text{link})\) pairs.

namedparams\(\text{include_uninit} = \text{True}\)

Returns a generator of all \((\text{path}, \text{param})\) pairs under the hierarchy.

**Parameters**

- **include_uninit** \((\text{bool})\) – If \(\text{True}\), it also generates uninitialized parameters.

**Returns**

A generator object that generates all \((\text{path}, \text{parameter})\) pairs. The paths are relative from this link.

params\(\text{include_uninit} = \text{True}\)

Returns a generator of all parameters under the link hierarchy.

**Parameters**

- **include_uninit** \((\text{bool})\) – If \(\text{True}\), it also generates uninitialized parameters.

**Returns**

A generator object that generates all parameters.

register_persistent\(\text{name}\)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If \text{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**

- **name** \((\text{str})\) – Name of the attribute to be registered.

repeat\(n_{\text{repeat}}, \text{mode} = \text{init}'\)

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```
The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize** (`serializer`)  
Serializes the link object.

**Parameters**  
`serializer` (*AbstractSerializer*) – Serializer object.

**to_chx**()  
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

**to_cpu**()  
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

**to_device**(*device*)  
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

**Parameters**  
`device` – Target device specifier. See `get_device()` for available values.

Returns: self

**to_gpu**(*device=None*)  
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

**Parameters**  
`device` – Target device specifier. If omitted, the current device is used.

Returns: self

**to_intel64**()  
Copies parameter variables and persistent values to CPU.
**zerograds()**
Initializes all gradient arrays by zero.
Depreciated since version v1.15: Use the more efficient `cleargrads()` instead.

**__eq__()**
Return self==value.

**__ne__()**
Return self!=value.

**__lt__()**
Return self<value.

**__le__()**
Return self<=value.

**__gt__()**
Return self>value.

**__ge__()**
Return self>=value.

**Attributes**

**device**
Device instance.

**local_link_hooks**
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

**printable_specs**
Generator of printable specs of this link.

  **Yields** specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

**update_enabled**
True if at least one parameter has an update rule enabled.

**within_init_scope**
True if the current code is inside of an initialization scope.
See `init_scope()` for the details of the initialization scope.

**xp**
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`. 
Layer normalization layer on outputs of linear functions.

**Warning:** This feature is experimental. The interface can change in the future.

This link implements a “layer normalization” layer which normalizes the input units by statistics that are computed along the second axis, scales and shifts them. Parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

**Parameters**

- `size (int)` – Size of input units. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- `eps (float)` – Epsilon value for numerical stability of normalization.
- `initial_gamma (Initializer)` – Initializer for scaling vector. If None, then the vector is filled by 1. If a scalar, the vector is filled by it. If `numpy.ndarray`, the vector is set by it.
- `initial_beta (Initializer)` – Initializer for shifting vector. If None, then the vector is filled by 0. If a scalar, the vector is filled by it. If `numpy.ndarray`, the vector is set by it.

**Variables**

- `gamma (Parameter)` – Scaling parameter.
- `beta (Parameter)` – Shifting parameter.
- `eps (float)` – Epsilon value for numerical stability.

See: Layer Normalization

**Methods**

- `_call_ (*args, **kwargs)`
  Call self as a function.

- `add_hook (hook, name=None)`
  Registers a link hook.

  **Parameters**
  
  - `hook (LinkHook)` – Link hook to be registered.
  
  - `name (str)` – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

  **Returns** self

- `add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
  Registers a parameter to the link.

  **Parameters**

  - `name (str)` – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent** *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads** *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

• **link** *(Link)* – Source link object.

**children** *

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads** *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

• **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** *Link*
copyparams\( \text{link, copy\_persistent=True} \)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)

Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward\( (x) \)

Apply layer normalization to given input.

Parameters x (Variable) – Batch vectors. Shape of this value must be \((\text{batch\_size, unit\_size})\), e.g., the output of linear().

Returns Output of the layer normalization.

Return type Variable

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.
**init_scope()**

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A **Parameter** object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a **Parameter** object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links** *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

**namedlinks** *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters name (str)** – Name of the attribute to be registered.

**repeat** *(n_repeat, mode='init')*

Repeats this link multiple times to make a **Sequential**.
This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters

- `serializer (AbstractSerializer)` – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self
to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().
**update_enabled**
True if at least one parameter has an update rule enabled.

**within_init_scope**
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

**xp**
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

### chainer.links.BinaryHierarchicalSoftmax

**class** chainer.links.BinaryHierarchicalSoftmax(in_size, tree, dtype=None)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical softmax uses product of sigmoid functions. It costs only $O(\log(n))$ time where $n$ is the vocabulary size in average.

At first a user needs to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When a word $x$ is given, exactly one path from the root of the tree to the leaf of the word exists. Let $\text{path}(x) = ((e_1, b_1), \ldots, (e_m, b_m))$ be the path of $x$, where $e_i$ is an index of $i$-th internal node, and $b_i \in \{-1, 1\}$ indicates direction to move at $i$-th internal node (-1 is left, and 1 is right). Then, the probability of $x$ is given as below:

$$
P(x) = \prod_{(e_i, b_i) \in \text{path}(x)} P(b_i|e_i)$$

$$
= \prod_{(e_i, b_i) \in \text{path}(x)} \sigma(b_i x^T w_{e_i}),$$

where $\sigma(\cdot)$ is a sigmoid function, and $w$ is a weight matrix.

This function costs $O(\log(n))$ time as an average length of paths is $O(\log(n))$, and $O(n)$ memory as the number of internal nodes equals $n - 1$.

**Parameters**

- **in_size** (`int`) – Dimension of input vectors.
- **tree** – A binary tree made with tuples like `((1, 2), 3)`.
- **dtype** (`numpy.dtype`) – Type to use in computing.

**Variables** $W$ (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

**Methods**

- **__call__(*args, **kwargs)**
  Call self as a function.

- **add_hook(hook, name=None)**
  Registers a link hook.

  **Parameters**

  - **hook** (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** Link

**copyparams** *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

**count_params** *

Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

**static create_huffman_tree** *(word_counts)*

Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for *BinaryHierarchicalSoftmax*. For example, `{0: 8, 1: 5, 2: 6, 3: 4}` is converted to `((3, 1), (2, 0))`.

**Parameters** word_counts *(dict of int key and int or float values)* – Dictionary representing counts of words.

**Returns** Binary Huffman tree with tuples and keys of word_counts.

**delete_hook** *(name)*

Unregisters the link hook.

**Parameters** name *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*

Applies the visitor to all the device objects in this instance.

**Parameters** visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update** *

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
**enable_update()**
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

**forward \((x, t)\)**
Computes the loss value for given input and ground truth labels.

Parameters

- \(x\) (Variable) – Input to the classifier at each node.
- \(t\) (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type `Variable`

**from_chx()**
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope()**
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links \((skipself=False)\)**
Returns a generator of all links under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

**namedlinks \((skipself=False)\)**
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

**namedparams \((include_uninit=True)\)**
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` (bool) – If `True`, it also generates uninitialized parameters.
Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`repeat (n_repeat, mode='init')`

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. **share** means all the elements which consist the resulting **Sequential** object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize** *(serializer)*
Serializes the link object.

**Parameters** **serializer** *(AbstractSerializer)* – Serializer object.

**to_chx** ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

**to_cpu** ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override **device_resident_accept()** to do so.

Returns: self

**to_device** *(device)*
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

**Parameters** **device** – Target device specifier. See **get_device()** for available values.

Returns: self

**to_gpu** *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override **device_resident_accept()** to do so.

**Parameters** **device** – Target device specifier. If omitted, the current device is used.

Returns: self

**to_intel64** ()
Copies parameter variables and persistent values to CPU.

**zerograds** ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient **cleargrads()** instead.

**__eq__**(value)
Return self==value.

**__ne__**(value)
Return self!=value.

**__lt__**(value)
Return self<value.

**__le__**(value)
Return self<=value.
__gt__(self, value)
    Return self>value.

__ge__(self, value)
    Return self>=value.

**Attributes**

**device**
- *Device* instance.

**local_link_hooks**
- Ordered dictionary of registered link hooks.
  Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

**printable_specs**
- Generator of printable specs of this link.
  Yields *specs (tuple of str and object)* – Basically, it returns the arguments (pair of keyword and value) that are passed to the **__init__()**. This pair of key and value is used for representing this class or subclass with **str()**.

**update_enabled**
- True if at least one parameter has an update rule enabled.

**within_init_scope**
- True if the current code is inside of an initialization scope.
  See **init_scope()** for the details of the initialization scope.

**xp**
- Array module corresponding to the device.
  Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

**chainer.links.BlackOut**

**class chainer.links.BlackOut(in_size, counts, sample_size)**
- BlackOut loss layer.

See also:
- **black_out()** for more detail.

**Parameters**

- **in_size** (int) – Dimension of input vectors.
- **counts** (int list) – Number of each identifiers.
- **sample_size** (int) – Number of negative samples.

**Variables**

- **W** (Parameter) – Weight parameter matrix.
Methods

__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument *mode* below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default *mode* is *share*.

**Returns** Copied link object.

**Return type** *Link*

**copyparams** *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using *copy.deepcopy()*.

**Parameters**

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

**count_params** *

Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

**delete_hook** *(name)*

Unregisters the link hook.

**Parameters**

- **name** *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*

Applies the visitor to all the device objects in this instance.

**Parameters**

- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update** *

Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update()**
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

**forward(x, t)**
Computes the loss value for given input and ground truth labels.

**Parameters**
- x (Variable) – Input of the weight matrix multiplication.
- t (Variable) – Batch of ground truth labels.

**Returns** Loss value.

**Return type** Variable

**from_chx()**
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope()**
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links**(skipself=False)
Returns a generator of all links under the hierarchy.

**Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

**namedlinks**(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

**Parameters** skipself (bool) – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

**namedparams**(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters** include_uninit (bool) – If True, it also generates uninitialized parameters.
Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

**Parameters**
- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

**Returns**
A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**
- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a *Sequential*. This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The mode argument means how to copy this link to repeat.

**Example**

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either init, copy, or share. init means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize** *(serializer)*
Serializes the link object.
Parameters **serializer** *(AbstractSerializer)* – Serializer object.

**to_chx** ()
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.
Returns: self

**to_cpu** ()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override **device_resident_accept** () to do so.
Returns: self

**to_device** *(device)*
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** – Target device specifier. See **get_device** () for available values.
Returns: self

**to_gpu** *(device=None)*
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override **device_resident_accept** () to do so.
Parameters **device** – Target device specifier. If omitted, the current device is used.
Returns: self

**to_intel64** ()
Copies parameter variables and persistent values to CPU.

**zerograds** ()
Initializes all gradient arrays by zero.
Deprecated since version v1.15: Use the more efficient **cleargrads** () instead.

**__eq__** ()
Return self==value.

**__ne__** ()
Return self!=value.

**__lt__** ()
Return self<value.

**__le__** ()
Return self<=value.
__gt__(self, value)
    Return self>value.

__ge__(self, value)
    Return self>=value.

Attributes

device
    Device instance.

local_link_hooks
    Ordered dictionary of registered link hooks.
    Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
    link hooks in this property are specific to this link.

printable_specs
    Generator of printable specs of this link.
    Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
    and value) that are passed to the __init__(). This pair of key and value is used for
    representing this class or subclass with __str__().

sample_data = None

update_enabled
    True if at least one parameter has an update rule enabled.

within_init_scope
    True if the current code is inside of an initialization scope.
    See init_scope() for the details of the initialization scope.

xp
    Array module corresponding to the device.
    Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.CRF1d

class chainer.links.CRF1d(n_label, initial_cost=None)
    Linear-chain conditional random field loss layer.
    This link wraps the crf1d() function. It holds a transition cost matrix as a parameter.

    Parameters
    • n_label (int) – Number of labels.
    • initial_cost (initializer) – Initializer to initialize the transition cost matrix. If this
      attribute is not specified, the transition cost matrix is initialized with zeros.

    See also:
    crf1d() for more detail.

    Variables cost (Variable) – Transition cost parameter.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (Link) – Source link object.

argmax(xs)
Computes a state that maximizes a joint probability.

Parameters

- **xs** (list of Variable) – Input vector for each label.

Returns

A tuple of Variable representing each log-likelihood and a list representing the argmax path.

Return type

tuple
See also:

See crf1d_argmax() for more detail.

children()

Returns a generator of all child links.

Returns  A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters  mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns  Copied link object.

Return type  Link

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

  - link (Link) – Source link object.
  - copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns  The total size of parameters (int)
delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor(DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(xs, ys, reduce='mean')

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.
namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- n_repeat (int) – Number of times to repeat.
- mode (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```
serialize(serializer)
```
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See `get_device()` for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

```__eq__(value)
Return self==value.

__ne__(value)
Return self!=value.

__lt__(value)
Return self<value.
__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect(\(in_size, out_size, ratio=0.5, nobias=False, initialW=None, initial_bias=None\))
 Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

- **in_size** (int) – Dimension of input vectors. If None, parameter initialization will be
defined until the first forward data pass at which time the size will be determined.

- **out_size** (int) – Dimension of output vectors.

- **nobias** (bool) – If True, then this link does not use the bias term.

- **initialW** (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
it's ndim should be 3.
• **initial_bias** *(initializer)* – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 2.

Variables

• **W** *(Variable)* – Weight parameter.

• **b** *(Variable)* – Bias parameter.

See also:

`simplified_dropconnect()`

See also:

Methods

```python
__call__(*args, **kwargs)
Call self as a function.
```

```python
add_hook(hook, name=None)
Registers a link hook.
```

Parameters

• **hook** *(LinkHook)* – Link hook to be registered.

• **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.
```

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

```python
add_persistent(name, value)
Registers a persistent value to the link.
```

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.
addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads ()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
- mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns
Copied link object.

Returns type
Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)

Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x, train=True, mask=None, use_batchwise_mask=True)

Applies the simplified dropconnect layer.

Parameters

- x (chainer.Variable or N-dimensional array) – Batch of input vectors. Its first dimension n is assumed to be the minibatch dimension.
- train (bool) – If True, executes simplified dropconnect. Otherwise, simplified dropconnect link works as a linear unit.
- mask (None or chainer.Variable or N-dimensional array) – If None, randomized simplified dropconnect mask is generated. Otherwise, The mask must be (n, M, N) or (M, N) shaped array, and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array will be used as a dropconnect mask.
- use_batchwise_mask (bool) – If True, dropped connections depend on each sample in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type Variable

from_chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope ()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()}
with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (`int`) – Number of times to repeat.
- **mode** (`str`) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (`serializer`)
Serializes the link object.

Parameters `serializer` (`AbstractSerializer`) – Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device (`device`)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters `device` – Target device specifier. See `get_device()` for available values.

Returns: self
to_gpu *(device=None)*
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__ ()
Return `self==value`.

__ne__ ()
Return `self!=value`.

__lt__ ()
Return `self<value`.

__le__ ()
Return `self<=value`.

__gt__ ()
Return `self>value`.

__ge__ ()
Return `self>=value`.

Attributes

device
`Device` instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields `specs (tuple of str and object)` – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.
xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.links.PReLU

class chainer.links.PReLU(shape=(), init=0.25)

Parametric ReLU function as a link.

Parameters

- `shape (tuple of ints)` – Shape of the parameter array.
- `init (float)` – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

To try PReLU instead of ReLU, replace `F.relu` with individual `PReLU` links registered to the model. For example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

```python
class MLP(chainer.Chain):
    def __init__(self, n_units, n_out):
        super(MLP, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_units)
            self.l2 = L.Linear(None, n_units)
            self.l3 = L.Linear(None, n_out)

        def forward(self, x):
            h1 = F.relu(self.l1(x))
            h2 = F.relu(self.l2(h1))
            return self.l3(h2)
```

PReLU version:

```python
class MLP(chainer.Chain):
    def __init__(self, n_units, n_out):
        super(MLP, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_units)
            self.a1 = L.PReLU()
            self.l2 = L.Linear(None, n_units)
            self.a2 = L.PReLU()
            self.l3 = L.Linear(None, n_out)

        def forward(self, x):
            h1 = self.a1(self.l1(x))
            h2 = self.a2(self.l2(h1))
            return self.l3(h2)
```

See also:

`chainer.functions.prelu()`
Variables W (Parameter) – Coefficient of parametric ReLU.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

- **hook** (LinkHook) – Link hook to be registered.
- **name** (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (Link) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.
cleargrads ()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.
From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters
- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)
delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

forward(x)
Applies the parametric ReLU activation function.

- **Parameters**
 - `x (Variable)` – Input variable.
- **Returns**
 - Output of the parametric ReLU function.
- **Return type**
 - `Variable`

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
Returns a generator of all links under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns**
 - A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns**
 - A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.
Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (str) – Name of the attribute to be registered.

`repeat (n_repeat, mode='init')`

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```
serialize(serializer)
```
Serializes the link object.

Parameters

serializer (AbstractSerializer) – Serializer object.

```
to_chx()
```
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```
to_cpu()
```
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

```
to_device(device)
```
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

device – Target device specifier. See get_device() for available values.

Returns: self

```
to_gpu(device=None)
```
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters

device – Target device specifier. If omitted, the current device is used.

Returns: self

```
to_intel64()
```
Copies parameter variables and persistent values to CPU.

```
zerograds()
```
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

```
__eq__(value)
```

Return self==value.

```
__ne__(value)
```

Return self!=value.

```
__lt__(value)
```

Return self<value.

```
__le__(value)
```

Return self<=value.
__gt__(self, value)
 Return self>value.

__ge__(self, value)
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
 link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__(). This pair of key and value is used for
 representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Swish

class chainer.links.Swish(beta_shape, beta_init=1.0)
 Swish activation function as a link.

Parameters

* beta_shape (tuple of ints or None) – Shape of the parameter variable \(\beta \). If
 None, parameter initialization will be deferred until the first forward data pass at which
 time the shape will be determined.

* beta_init (float) – Initial value of the parameter variable \(\beta \).

See the paper for details: Searching for Activation Functions

To try Swish instead of ReLU, replace F.relu with individual Swish links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

```python
class MLP(chainer.Chain):
    def __init__(self, n_units, n_out):
```

(continues on next page)
super(MLP, self).__init__()
with self.init_scope():
 self.l1 = L.Linear(None, n_units)
 self.l2 = L.Linear(None, n_units)
 self.l3 = L.Linear(None, n_out)

def forward(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 return self.l3(h2)

Swish version:

class MLP(chainer.Chain):
 def __init__(self, n_units, n_out):
 super(MLP, self).__init__()
 with self.init_scope():
 self.l1 = L.Linear(None, n_units)
 self.s1 = L.Swish(None)
 self.l2 = L.Linear(None, n_units)
 self.s2 = L.Swish(None)
 self.l3 = L.Linear(None, n_out)

def forward(self, x):
 h1 = self.s1(self.l1(x))
 h2 = self.s2(self.l2(h1))
 return self.l3(h2)

See also:

See :func:`chainer.functions.swish()` for the definition of Swish activation function.

Variables beta (Parameter) – Parameter variable β.

Methods

__call__(*args, **kwargs)

Call self as a function.

add_hook (hook, name=None)

Registers a link hook.

Parameters

- hook (LinkHook) – Link hook to be registered.
- name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
• `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• `dtype` – Data type of the parameter array.

• `initializer (initializer)` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

`add_persistent (name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.

- `value` – Value to be registered.

`addgrads (link)`

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

`link (Link)` – Source link object.

`children ()`

Returns a generator of all child links.

Returns

A generator object that generates all child links.

`cleargrads ()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy (mode='share')`

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument `mode` below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default `mode` is `share`.

Returns

Copied link object.

Return type

`Link`
copyparams *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)

Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept(visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

Applies the Swish activation function.

Parameters x *(Variable)* – Input variable.

Returns Output of the Swish activation function.

Return type Variable

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters include_uninit** *(bool)* – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters include_uninit** *(bool)* – If True, it also generates uninitialized parameters.
- **Returns** A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.
Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (`int`) – Number of times to repeat.
- **mode** (`str`) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

`serialize` (`serializer`)
Serializes the link object.

Parameters **serializer** (`AbstractSerializer`) – Serializer object.

`to_chx()`
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

`to_cpu()`
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

`to_device` (`device`)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

device — Target device specifier. See `get_device()` for available values.

Returns: `self`

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

device — Target device specifier. If omitted, the current device is used.

Returns: `self`

to_intel64

Copies parameter variables and persistent values to CPU.

zerograds

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

Attributes

device

`Device` instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields `specs (tuple of str and object)` — Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled

True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Maxout

class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector x of size M, it computes

$$Y_i = \max_j (W_{ij} x + b_{ij}).$$

Here W is a weight tensor of shape (M, P, N), b an optional bias vector of shape (M, P) and W_{ij} is a sub-vector extracted from W by fixing first and second dimensions to i and j, respectively. Minibatch dimension is omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a $(M \times P, N)$ weight matrix and an optional $M \times P$ dimensional bias vector.

Parameters

- **in_size (int)** – Dimension of input vectors.
- **out_size (int)** – Dimension of output vectors.
- **pool_size (int)** – Number of channels.
- **initialW (initializer)** – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be 3.
- **initial_bias (initializer)** – Initializer to initialize the bias. If None, the bias is omitted. When it is numpy.ndarray, its ndim should be 2.

Variables **linear (Link)** – The Linear link that performs affine transformation.

See also:
maxout()

See also:
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• link (Link) – Source link object.
children()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

mode (str) – It should be either `init`, `copy`, or `share`. `init` means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link. `copy` means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. `share` means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is `share`.

Returns Copied link object.

Return type `Link`

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link (Link)** – Source link object.
- **copy_persistent (bool)** – If True, persistent values are also copied. True by default.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)

Unregisters the link hook.

Parameters

- **name (str)** – The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor(Device ResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.
forward(x)
Applies the maxout layer.

Parameters x(Variable) – Batch of input vectors.

Returns Output of the maxout layer.

Return type Variable
from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.
namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns a generator object that generates all (path, link) pairs.

```python
namedparams(include_uninit=True)
```

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

```python
params(include_uninit=True)
```

Returns a generator of all parameters under the link hierarchy.

Parameters
- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns
A generator object that generates all parameters.

```python
register_persistent(name)
```

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** (*str*) – Name of the attribute to be registered.

```python
repeat(n_repeat, mode='init')
```

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters
- **n_repeat** (*int*) – Number of times to repeat.
• mode (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.
Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__. This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NegativeSampling

class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75, dtype=None)

Negative sampling loss layer.
This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.
• counts (int list) – Number of each identifiers.
• sample_size (int) – Number of negative samples.
• power (float) – Power factor \(\alpha \).
• **`dtype`** (*numpy.dtype*) – Type to use in computing.

See also:

`negative_sampling()` for more detail.

Variables

- **W** (*Variable*) – Weight parameter matrix.

Methods

- **`__call__`** (*args, **kwargs*)
 Call self as a function.

- **`add_hook`** (*hook*, *name=None*)
 Registers a link hook.

 Parameters

 - **`hook`** (*LinkHook*) – Link hook to be registered.
 - **`name`** (*str*) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

 Returns

 `self`

- **`add_param`** (*name*, *shape=None*, *dtype=<class 'numpy.float32'>*, *initializer=None*)
 Registers a parameter to the link.

 Parameters

 - **`name`** (*str*) – Name of the parameter. This name is also used as the attribute name.
 - **`shape`** (*int* or *tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 - **`dtype`** – Data type of the parameter array.
 - **`initializer`** (*initializer*) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

- **`add_persistent`** (*name*, *value*)
 Registers a persistent value to the link.

 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

 Parameters

 - **`name`** (*str*) – Name of the persistent value. This name is also used for the attribute name.
 - **`value`** – Value to be registered.

- **`addgrads`** (*link*)
 Accumulates gradient values from given link.

 This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

 Parameters

 - **`link`** (*Link*) – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.
device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters
visitor(DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t, reduce='sum', *, return_samples=False)
Computes the loss value for given input and ground truth labels.

Parameters
• x (Variable) – Input of the weight matrix multiplication.
• t (Variable) – Batch of ground truth labels.
• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, ValueError is raised.
• return_samples (bool) – If True, the sample array is also returned. The sample array is a

Returns
If return_samples is False (default), loss value is returned.
Otherwise, a tuple of the loss value and the sample array is returned.

Return type
Variable or tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
links

Returns a generator of all links under the hierarchy.

Parameters

skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

namedlinks

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.

namedparams

Returns a generator of all (path, parameter) pairs under the hierarchy.

Parameters

include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params

Returns a generator of all parameters under the link hierarchy.

Parameters

include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

register_persistent

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

name (str) – Name of the attribute to be registered.

repeat

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*

Serializes the link object.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device *(device)*

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See get_device() for available values.

Returns: self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.
zerograds()
 Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.

Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
4.3.3 Machine learning models

chainer.links.Classifier

class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>, accfun=<function accuracy>, label_key=-1)

A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given input/label pair.

Parameters

- **predictor** (Link) – Predictor network.
- **lossfun** (callable) – Loss function. You can specify one of loss functions from built-in loss functions, or your own loss function (see the example below). It should not be an loss functions with parameters (i.e., Link instance). The function must accept two argument (an output from predictor and its ground truth labels), and return a loss. Returned value must be a Variable derived from the input Variable to perform backpropagation on the variable.
- **accfun** (callable) – Function that computes accuracy. You can specify one of evaluation functions from built-in evaluation functions, or your own evaluation function. The signature of the function is the same as lossfun.
- **label_key** (int or str) – Key to specify label variable from arguments. When it is int, a variable in positional arguments is used. And when it is str, a variable in keyword arguments is used.

Variables

- **predictor** (Link) – Predictor network.
- **lossfun** (callable) – Loss function. See the description in the arguments for details.
- **accfun** (callable) – Function that computes accuracy. See the description in the arguments for details.
- **y** (Variable) – Prediction for the last minibatch.
- **loss** (Variable) – Loss value for the last minibatch.
- **accuracy** (Variable) – Accuracy for the last minibatch.
- **compute_accuracy** (bool) – If True, compute accuracy on the forward computation. The default value is True.

Note: This link uses chainer.softmax_cross_entropy() with default arguments as a loss function (specified by lossfun), if users do not explicitly change it. In particular, the loss function does not support double backpropagation. If you need second or higher order differentiation, you need to turn it on with enable_double_backprop=True:

```python
>>> import chainer.functions as F
>>> import chainer.links as L

>>> def lossfun(x, t):
...    return F.softmax_cross_entropy(
...        ...    |
```
... x, t, enable_double_backprop=True)
>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters
• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• **value** – Value to be registered.

addgrads(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (Link) – Source link object.

children()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** (str) – It should be either **init**, **copy**, or **share**.
 - **init** means parameter variables under the returned link object is re-initialized by calling their `initialize()` method, so that all the parameters may have different initial values from the original link.
 - **copy** means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently.
 - **share** means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default **mode** is **share**.

Returns

Copied link object.

Return type Link

copyparams(link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

- **link** (Link) – Source link object.

 - **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

 count_params()

 Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*

Unregisters the link hook.

Parameters

- **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*

Applies the visitor to all the device objects in this instance.

Parameters

- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update *

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update *

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward *(args, **kwargs)*

Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.

Parameters

- **args** *(list of ~chainer.Variable)* – Input minibatch.
- **kwargs** *(dict of ~chainer.Variable)* – Input minibatch.

When label_key is int, the corresponding element in args is treated as ground truth labels. And when it is str, the element in kwargs is used. The all elements of args and kwargs except the ground truth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

Note: We set None to the attributes y, loss and accuracy each time before running the predictor, to avoid unnecessary memory consumption. Note that the variables set on those attributes hold the whole computation graph when they are computed. The graph stores interim values on memory required for back-propagation. We need to clear the attributes to free those values.

Returns Loss value.

Return type Variable

from_chx *

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope *

Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

- **links** *(skipself=False)*
 Returns a generator of all links under the hierarchy.

 - **Parameters** `skipself` *(bool)* — If True, then the generator skips this link and starts with the first child link.

 - **Returns** A generator object that generates all links.

- **namedlinks** *(skipself=False)*
 Returns a generator of all (path, link) pairs under the hierarchy.

 - **Parameters** `skipself` *(bool)* — If True, then the generator skips this link and starts with the first child link.

 - **Returns** A generator object that generates all (path, link) pairs.

- **namedparams** *(include_uninit=True)*
 Returns a generator of all (path, param) pairs under the hierarchy.

 - **Parameters** `include_uninit` *(bool)* — If True, it also generates uninitialized parameters.

 - **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

- **params** *(include_uninit=True)*
 Returns a generator of all parameters under the link hierarchy.

 - **Parameters** `include_uninit` *(bool)* — If True, it also generates uninitialized parameters.

 - **Returns** A generator object that generates all parameters.

- **register_persistent** *(name)*
 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

 - **Parameters** `name` *(str)* — Name of the attribute to be registered.

- **repeat** *(n_repeat, mode='init')*
 Repeats this link multiple times to make a Sequential.

 This method returns a Sequential object which has the same Link multiple times repeatedly. The `mode` argument means how to copy this link to repeat.
Example

You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

`serialize (serializer)`

Serializes the link object.

Parameters `serializer` (*AbstractSerializer*) – Serializer object.

`to_chx()`

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

`to_cpu()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

`to_device (device)`

Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns

- self

`to_gpu()`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

- self

`to_intel64()`

Copies parameter variables and persistent values to CPU.

`zerograds()`

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

`__eq__()`

Return `self==value`.

`__ne__()`

Return `self!=value`.

`__lt__()`

Return `self<value`.

`__le__()`

Return `self<=value`.

`__gt__()`

Return `self>value`.

`__ge__()`

Return `self>=value`.

Attributes

- **compute_accuracy** = True

- **device**

 `Device` instance.

- **local_link_hooks**

 Ordered dictionary of registered link hooks.

 *Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions,
 link hooks in this property are specific to this link.*

- **printable_specs**

 Generator of printable specs of this link.

 Yields

 specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the `__init__()`. This pair of key and value is used for
 representing this class or subclass with `__str__()`.
update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

4.3.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature vector. Although `CaffeFunction` automatically loads a pre-trained model released as a caffemodel, the following link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature vectors.

For example, to extract the feature vectors with `VGG16Layers`, which is a common pre-trained model in the field of image recognition, users need to write the following few lines:

```python
from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([img], layers=['fc7'])['fc7']
```

where `fc7` denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically load all the parameters from the pre-trained models during initialization.

VGG Networks

<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.VGG16Layers</code></td>
<td>A pre-trained CNN model with 16 layers provided by VGG team.</td>
</tr>
<tr>
<td><code>chainer.links.VGG19Layers</code></td>
<td>A pre-trained CNN model with 19 layers provided by VGG team.</td>
</tr>
<tr>
<td><code>chainer.links.model.vision.vgg.prepare</code></td>
<td>Converts the given image to the numpy array for VGG models.</td>
</tr>
</tbody>
</table>

`chainer.links.VGG16Layers`

```python
class chainer.links.VGG16Layers(pretrained_model='auto')
A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another chainer model, stores it on your local directory, and initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

4.3. Link and Chains 681
See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

**Parameters**

`pretrained_model (str)` – the destination of the pre-trained chainer model serialized as a `.npz` file. If this argument is specified as *auto*, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on `$CHAINER_DATASET_ROOT/pfnet/chainer/models` directory, where `$CHAINER_DATASET_ROOT` is set as `$HOME/.chainer/dataset` unless you specify another value as an environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as *None*, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., `chainer.initializers.Normal(scale=0.01)`.

**Variables**

`available_layers (list of str)` – The list of available layer names used by `forward` and `extract` methods.

**Methods**

`__call__(*args, **kwargs)`

Call self as a function.

`__getitem__ (name)`

Equivalent to `getattr`.

`add_hook (hook, name=None)`

Registers a link hook.

**Parameters**

- `hook (LinkHook)` – Link hook to be registered.
- `name (str)` – Name of the link hook. The name must be unique among link hooks registered to this link. If *None*, the default name of the link hook is used.

**Returns** `self`

`add_link (name, link)`

Registers a child link to this chain.

**Parameters**

- `name (str)` – Name of the child link. This name is also used as the attribute name.
- `link (Link)` – The link object to be registered.

`add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`

Registers a parameter to the link.

**Parameters**

- `name (str)` – Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer (initializer)` – If it is not *None*, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, *dtype* argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
add_persistent (name, value)
  Registers a persistent value to the link.
  The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
  of the link.
  Parameters
  • name (str) – Name of the persistent value. This name is also used for the attribute name.
  • value – Value to be registered.

addgrads (link)
  Accumulates gradient values from given link.
  This method adds each gradient array of the given link to corresponding gradient array of this link. The
  accumulation is even done across host and different devices.
  Parameters link (Link) – Source link object.

children ()
  Returns a generator of all child links.
  Returns A generator object that generates all child links.

cleargrads ()
  Clears all gradient arrays.
  This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz)
  Converts a pre-trained caffemodel to a chainer model.
  Parameters
  • path_caffemodel (str) – Path of the pre-trained caffemodel.
  • path_npz (str) – Path of the converted chainer model.

copy (mode='share')
  Copies the link hierarchy to new one.
  The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.
  The name of the link is reset on the copy, since the copied instance does not belong to the original parent
  chain (even if exists).
  Parameters mode (str) – It should be either init, copy, or share. init means parameter
  variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
  copy means that the link object is deeply copied, so that its parameters are not re-initialized
  but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays
  are shared with the original one. Thus, their values are changed synchronously. The default
  mode is share.
  Returns Copied link object.
  Return type Link

copyparams (link, copy_persistent=True)
  Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link** (*Link*) — Source link object.
- **copy_persistent** (*bool*) — If True, persistent values are also copied. True by default.

`count_params()`

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

`delete_hook(name)`

Unregisters the link hook.

Parameters **name** (*str*) — The name of the link hook to be unregistered.

`device_resident_accept(visitor)`

Applies the visitor to all the device objects in this instance.

Parameters **visitor** (*DeviceResidentsVisitor*) — Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

`extract(self, images, layers=['fc7'], size=(224, 224))`

Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.config.enable_backprop configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):
 with chainer.using_config('enable_backprop', False):
 feature = model.extract([image])
```

Parameters
• **images** (*iterable of PIL.Image or numpy.ndarray*) – Input images.

• **layers** (*list of str*) – The list of layer names you want to extract.

• **size** (*pair of ints*) – The resolution of resized images used as an input of CNN.

All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of `~chainer.Variable`

---

### forward

```python
forward(self, x, layers=['prob'])
```

Computes all the feature maps specified by `layers`.

**Parameters**

- **x** (*Variable*) – Input variable. It should be prepared by `prepare` function.

- **layers** (*list of str*) – The list of layer names you want to extract. If `None`, ‘prob’ will be used as layers.

**Returns** A dictionary in which the key contains the layer and the value contains the corresponding feature map variable.

**Return type** Dictionary of `~chainer.Variable`

---

### from_chx

```python
from_chx()
```

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

---

### init_scope

```python
init_scope()
```

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

---

### links

```python
links(skipself=False)
```

Returns a generator of all links under the hierarchy.

**Parameters** `skipself` (*bool*) – If `True`, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

### namedlinks

```python
namedlinks(skipself=False)
```

Returns a generator of all (path, link) pairs under the hierarchy.

---

4.3. Link and Chains 685
Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`predict (images, oversample=True)`
Computes all the probabilities of given images.

Parameters

- `images (iterable of PIL.Image or numpy.ndarray)` – Input images. When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

- `oversample (bool)` – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

`register_persistent (name)`
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`repeat (n_repeat, mode='init')`
Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)
```

**def forward(self, x):**

```python
return F.relu(self.bn(self.conv(x)))
```

```python
net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize**(serializer)

Serializes the link object.

- `Parameters serialzier (AbstractSerializer)` – Serializer object.

**to_chx()**

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

**to_cpu()**

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

**to_device**(device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

- **Parameters device** – Target device specifier. See `get_device()` for available values.

Returns: self

**to_gpu**(device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.
Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.
Deprecated since version v1.15: Use the more efficient cleargrads() instead.
__eq__()
Return self==value.
__ne__()
Return self!=value.
__lt__()
Return self<value.
__le__()
Return self<=value.
__gt__()
Return self>value.
__ge__()
Return self>=value.

Attributes
available_layers
device
Device instance.
functions
local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.
printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() . This pair of key and value is used for representing this class or subclass with __str__().
update_enabled
True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.
A pre-trained CNN model with 19 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another chainer model, stores it on your local directory, and initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters

- **pretrained_model** *(str)* – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value as an environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.Normal(scale=0.01).

Variables

- **available_layers** *(list of str)* – The list of available layer names used by forward and extract methods.

Methods

- **__call__(**args, **kwargs)**
  Call self as a function.

- **__getitem__(**name)**
  Equivalent to getattr.

- **add_hook**(hook, name=None)
  Registers a link hook.

  Parameters

  - **hook** *(LinkHook)* – Link hook to be registered.

  - **name** *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

  Returns self

- **add_link**(name, link)
  Registers a child link to this chain.

  Parameters

  - **name** *(str)* – Name of the child link. This name is also used as the attribute name.

  - **link** *(Link)* – The link object to be registered.

- **add_param**(name=None, dtype=<class 'numpy.float32'>, initializer=None)
  Registers a parameter to the link.

  Parameters
• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent** *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads** *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters** **link** *(Link)* – Source link object.

**children** *

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads** *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**classmethod convert_caffemodel_to_npz** *(path_caffemodel, path_npz)*

Converts a pre-trained caffemodel to a chainer model.

**Parameters**

• **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.

• **path_npz** *(str)* – Path of the converted chainer model.

**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument **mode** below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters** **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their **initialize()** method, so that all the parameters may have different initial values from the original link. **copy** means that the link object is deeply copied, so that its parameters are not re-initialized.
but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

**Parameters**

- **link** (Link) – Source link object.
- **copy_persistent** (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

**Parameters** name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

**Parameters** visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract (self, images, layers=['fc7'], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and forward functions.
Unlike `predict` method, this method does not override `chainer.config.train` and `chainer.config.enable_backprop` configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):
 with chainer.using_config('enable_backprop', False):
 feature = model.extract([image])
```

**Parameters**

- `layers` (*list of str*) – The list of layer names you want to extract.
- `size` (*pair of ints*) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of :class:`chainer.Variable`

**forward** *(self, x, layers=['prob'])*  
Computes all the feature maps specified by `layers`.

**Parameters**

- `x` (:class:`Variable`) – Input variable. It should be prepared by `prepare` function.
- `layers` (*list of str*) – The list of layer names you want to extract. If `None`, `’prob’` will be used as layers.

**Returns** A dictionary in which the key contains the layer and the value contains the corresponding feature map variable.

**Return type** Dictionary of :class:`chainer.Variable`

**from_chx** *
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope** *
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```
links\(\text{skipself=\text{False}}\)

Returns a generator of all links under the hierarchy.

Parameters

\text{skipself (bool)} – If \text{True}, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

namedlinks\(\text{skipself=\text{False}}\)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

\text{skipself (bool)} – If \text{True}, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.

namedparams\(\text{include\_uninit=\text{True}}\)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

\text{include\_uninit (bool)} – If \text{True}, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params\(\text{include\_uninit=\text{True}}\)

Returns a generator of all parameters under the link hierarchy.

Parameters

\text{include\_uninit (bool)} – If \text{True}, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

predict\(\text{images, oversample=\text{True}}\)

Computes all the probabilities of given images.

Parameters

\text{images \text{iterable of PIL.Image or numpy.ndarray}} – Input images.

When you specify a color image as a \text{numpy.ndarray}, make sure that color order is RGB.

\text{oversample \text{bool}} – If \text{True}, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns

Output that contains the class probabilities of given images.

Return type \text{Variable}

register_persistent\(\text{name}\)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If \text{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

\text{name (str)} – Name of the attribute to be registered.

repeat\(\text{n\_repeat, mode='init'}\)

Repeats this link multiple times to make a \text{Sequential}.

This method returns a \text{Sequential} object which has the same \text{Link} multiple times repeatedly. The \text{mode} argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):

 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

**Parameters**

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

**serialize**

Serializes the link object.


**to_chx()**

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

**to_cpu()**

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

**to_device**

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** – Target device specifier. See `get_device()` for available values.

Returns: self

**to_gpu** *(device=None)*
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

**to_intel64** ()
Copies parameter variables and persistent values to CPU.

**zerograds** ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

**__eq__** ()
Return self==value.

**__ne__** ()
Return self!=value.

**__lt__** ()
Return self<value.

**__le__** ()
Return self<=value.

**__gt__** ()
Return self>value.

**__ge__** ()
Return self>=value.

Attributes

**available_layers**

**device**
`Device` instance.

**functions**

**local_link_hooks**
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

**printable_specs**
Generator of printable specs of this link.

Yields *specs (tuple of str and object)* – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

**update_enabled**
True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.vgg.prepare
chainer.links.model.vision.vgg.prepare(image, size=(224, 224))
Converts the given image to the numpy array for VGG models.
Note that you have to call this method before forward because the pre-trained vgg model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters
- image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.ndarray, its shape must be (height, width), (height, width, channels), or (channels, height, width), and the order of the channels must be RGB.
- size (pair of ints) – Size of converted images. If None, the given image is not resized.

Returns The converted output array.
Return type numpy.ndarray

Note: ChainerCV contains implementation of VGG networks as well (i.e., chainercv.links.model.vgg.VGG16). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel of the input image to be ordered in RGB instead of BGR.

GoogLeNet

chainer.links.GoogLeNet
A pre-trained GoogLeNet model provided by BVLC.

chainer.links.model.vision.googlenet.prepare
Converts the given image to the numpy array for GoogLeNet.

chainer.links.GoogLeNet

class chainer.links.GoogLeNet (pretrained_model='auto')
A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in
This model is relatively lightweight and requires small memory footprint during training compared with modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you just want an off-the-shelf classifier, we recommend that you use ResNet50 or other models since they are more accurate than GoogLeNet.

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

**Parameters**

pretrained_model (str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on $SCHAINER_DATASET_ROOT/pfnet/chainer/models directory, where $SCHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value as a environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in BVLC, i.e., chainer.initializers.LeCunUniform(scale=1.0). Note that, in Caffe, when weight_filler is specified as “xavier” type without variance_norm parameter, the weights are initialized by Uniform(-s, s), where $s = \sqrt{\frac{3}{\text{fan}_{in}}}$ and \text{fan}_{in} is the number of input units. This corresponds to LeCunUniform in Chainer but not GlorotUniform.

**Variables**

available_layers (list of str) – The list of available layer names used by forward and extract methods.

**Methods**

__call__(*args, **kwargs)

Call self as a function.

__getitem__(name)

Equivalent to getattr.

add_hook (hook, name=None)

Registers a link hook.

Parameters

- hook (LinkHook) – Link hook to be registered.
- name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns

self

add_link (name, link)

Registers a child link to this chain.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param (name=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

**add_persistent** *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads** *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

• **link** *(Link)* – Source link object.

**children** *

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads** *

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**classmethod convert_caffemodel_to_npz** *(path_caffemodel, path_npz)*

Converts a pre-trained caffemodel to a chainer model.

**Parameters**

• **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.

• **path_npz** *(str)* – Path of the converted chainer model.

**copy** *(mode='share')*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Parameters**

• **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays
are shared with the original one. Thus, their values are changed synchronously. The default mode is `share`.

**Returns** Copied link object.

**Return type** `Link`

`copyparams(link, copy_persistent=True)`

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g., the moving statistics of `BatchNormalization`). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

**Parameters**

- `link` (`Link`) – Source link object.
- `copy_persistent` (`bool`) – If True, persistent values are also copied. True by default.

`count_params()`

Counts the total number of parameters.

This method counts the total number of scalar values included in all the `Parameters` held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

`delete_hook(name)`

Unregisters the link hook.

**Parameters** `name` (`str`) – The name of the link hook to be unregistered.

`device_resident_accept(visitor)`

Applies the visitor to all the device objects in this instance.

**Parameters** `visitor` (`DeviceResidentsVisitor`) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`extract(self, images, layers=['pool5'], size=(224, 224))`

Extracts all the feature maps of given images.

The difference of directly executing `forward` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `forward` functions.
Unlike predict method, this method does not override chainer.config.train and chainer.config.enable_backprop configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
model is an instance of `GoogLeNet`
with chainer.using_config('train', False):
 with chainer.using_config('enable_backprop', False):
 feature = model.extract([image])
```

**Parameters**

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
- **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of ~chainer.Variable

**forward** *(self, x, layers=[`'prob'`])*  
Computes all the feature maps specified by layers.

**Parameters**

- **x** *(Variable)* – Input variable. It should be prepared by prepare function.
- **layers** *(list of str)* – The list of layer names you want to extract.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of ~chainer.Variable

**from_chx** *(self)*  
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope** *(self)*  
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```
**links** *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters**
  - **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns**
  - A generator object that generates all links.

**namedlinks** *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
  - **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

- **Returns**
  - A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters**
  - **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

- **Returns**
  - A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters**
  - **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

- **Returns**
  - A generator object that generates all parameters.

**predict** *(images, oversample=True)*

Computes all the probabilities of given images.

- **Parameters**
  - **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a numpy.ndarray, make sure that color order is RGB.
  - **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

- **Returns**
  - Output that contains the class probabilities of given images.

- **Return type**
  - Variable

**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters**
  - **name** *(str)* – Name of the attribute to be registered.

**repeat** *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

- **Example**
  - You can repeat the same link multiple times to create a longer Sequential block like this:

---

4.3. Link and Chains
class ConvBNReLU(chainer.Chain):

    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (int) – Number of times to repeat.
- **mode** (str) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize(serializer)

Serializes the link object.

Parameters **serializer** (AbstractSerializer) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters **device** — Target device specifier. See `get_device()` for available values.

Returns: self

to **gpu**(device=`None`)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters **device** — Target device specifier. If omitted, the current device is used.

Returns: self

to **int16**()
Copies parameter variables and persistent values to CPU.

zerograd**s**()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return `self==value`.

__ne__()
Return `self!=value`.

__lt__()
Return `self<value`.

__le__()
Return `self<=value`.

__gt__()
Return `self>value`.

__ge__()
Return `self>=value`.

Attributes

available_layers

device
`Device` instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields `specs (tuple of str and object)` — Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` . This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.googlenet.prepare
chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))
Converts the given image to the numpy array for GoogLeNet.
Note that you have to call this method before forward because the pre-trained GoogLeNet model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters
- **image** (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.ndarray, its shape must be (height, width), (height, width, channels), or (channels, height, width), and the order of the channels must be RGB.
- **size** (pair of ints) – Size of converted images. If None, the given image is not resized.

Returns The converted output array.
Return type numpy.ndarray

Residual Networks

chainer.links.model.vision.resnet.ResNetLayers	A pre-trained CNN model provided by MSRA.
chainer.links.ResNet50Layers	A pre-trained CNN model with 50 layers provided by MSRA.
chainer.links.ResNet101Layers	A pre-trained CNN model with 101 layers provided by MSRA.
chainer.links.ResNet152Layers	A pre-trained CNN model with 152 layers provided by MSRA.
chainer.links.model.vision.resnet.prepare	Converts the given image to a numpy array for ResNet.

chainer.links.model.vision.resnet.ResNetLayers

class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers, downsample_fb=False)
A pre-trained CNN model provided by MSRA.
When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

See: K. He et. al., Deep Residual Learning for Image Recognition

**Parameters**

- `pretrained_model (str)` – the destination of the pre-trained chainer model serialized as a `.npz` file. If this argument is specified as `auto`, it automatically loads and converts the caffemodel from `$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-{n-layers}-model.caffemodel`, where `$CHAINER_DATASET_ROOT` is set as `$HOME/.chainer/dataset` unless you specify another value by modifying the environment variable and `{n_layers}` is replaced with the specified number of layers given as the first argument to this constructor. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as `None`, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., `chainer.initializers.HeNormal(scale=1.0).

- `n_layers (int)` – The number of layers of this model. It should be either 50, 101, or 152.

- `downsample_fb (bool)` – If this argument is specified as `False`, it performs downsampling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If this argument is specified as `True`, it performs downsampling by placing stride 2 on the 3x3 convolutional layers (Facebook ResNet).

**Variables**

- `available_layers (list of str)` – The list of available layer names used by `forward` and `extract` methods.

**Methods**

- `__call__(*args, **kwargs)`
  Call self as a function.

- `__getitem__(name)`
  Equivalent to getattr.

- `add_hook(hook, name=None)`
  Registers a link hook.

  **Parameters**

  - `hook (LinkHook)` – Link hook to be registered.

  - `name (str)` – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

  **Returns**

  self

- `add_link(name, link)`
  Registers a child link to this chain.

  **Parameters**

  - `name (str)` – Name of the child link. This name is also used as the attribute name.

  - `link (Link)` – The link object to be registered.

- `add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
  Registers a parameter to the link.
Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

- path_caffemodel (str) – Path of the pre-trained caffemodel.
- path_npz (str) – Path of the converted chainer model.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters' arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

**Returns** Copied link object.

**Return type** Link

**copyparams** *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

*From v5.0.0:* this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

**Parameters**

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

**count_params** *

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

**Returns** The total size of parameters (int)

**delete_hook** *(name)*

Unregisters the link hook.

**Parameters** name *(str)* – The name of the link hook to be unregistered.

**device_resident_accept** *(visitor)*

Applies the visitor to all the device objects in this instance.

**Parameters** visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

**disable_update** *

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update** *

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

**extract** *(self, images, layers=['pool5'], size=(224, 224))*

Extracts all the feature maps of given images.
The difference of directly executing `forward` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `forward` functions.

Unlike `predict` method, this method does not override `chainer.config.train` and `chainer.config.enable_backprop` configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):
 with chainer.using_config('enable_backprop', False):
 feature = model.extract([image])
```

**Parameters**

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
- **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of `~chainer.Variable`

**forward**(self, x, layers=['prob'])

Computes all the feature maps specified by `layers`.

**Parameters**

- **x** *(Variable)* – Input variable. It should be prepared by `prepare` function.
- **layers** *(list of str)* – The list of layer names you want to extract.

**Returns** A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

**Return type** Dictionary of `~chainer.Variable`

**from_chx**()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

**init_scope**()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
(continues on next page)```
with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

Parameters

- **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

- **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a numpy.ndarray, make sure that color order is RGB.

- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns

Output that contains the class probabilities of given images.

Return type

Variable

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a Sequential.
This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

- **Parameters**
 - `serializer (AbstractSerializer)` – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self
to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

 Returns: self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

 Returns: self

to_intel64

Copies parameter variables and persistent values to CPU.

zerograds

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

Attributes

- **available_layers**
- **device** – *Device* instance.
- **functions**
- **local_link_hooks** – Ordered dictionary of registered link hooks.

 Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

- **printable_specs** – Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the \texttt{__init_()} method. This pair of key and value is used for representing this class or subclass with \texttt{__str_()}.

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See \texttt{__init_scope()} for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns \texttt{numpy}, \texttt{cupy} or \texttt{chainerx}.

crainer_links.ResNet50Layers

class crainer_links.ResNet50Layers (pretrained_model=\textquoteleft auto\textquoteright, downsampling_fb=False)
A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a \texttt{.npz} file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use \texttt{convert_caffemodel_to_npz} classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152, respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and 1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between the accuracy and the model size. It would be basically just enough for many cases, but some advanced models for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets are here for making reproduction work easier.

See: K. He et al., Deep Residual Learning for Image Recognition

Parameters

\begin{itemize}
 \item \texttt{pretrained_model (str)} – the destination of the pre-trained chainer model serialized as a \texttt{.npz} file. If this argument is specified as \texttt{auto}, it automatically loads and converts the caffemodel from \texttt{$\text{CHAINER_DATASET_ROOT/fpfnet/chainer/models/ResNet-50-model.caffemodel}$}, where \texttt{$\text{CHAINER_DATASET_ROOT}$} is set as \texttt{\$HOME/.chainer/dataset} unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as \texttt{None}, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., \texttt{chainer.initializers.HeNormal(scale=1.0)}.
 \item \texttt{downsampling_fb (bool)} – If this argument is specified as \texttt{False}, it performs downsampling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If this argument is specified as \texttt{True}, it performs downsampling by placing stride 2 on the 3x3 convolutional layers (Facebook ResNet).
\end{itemize}
Variables `available_layers` (list of str) – The list of available layer names used by `forward` and `extract` methods.

Methods

`__call__` (*args, **kwargs)
Call self as a function.

`__getitem__` (name)
Equivalent to `getattr`.

`add_hook` (hook, name=None)
Registers a link hook.

Parameters
- `hook` (LinkHook) – Link hook to be registered.
- `name` (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns
self

`add_link` (name, link)
Registers a child link to this chain.

Parameters
- `name` (str) – Name of the child link. This name is also used as the attribute name.
- `link` (Link) – The link object to be registered.

`add_param` (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
- `name` (str) – Name of the parameter. This name is also used as the attribute name.
- `shape` (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` (initializer) – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

`add_persistent` (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- `name` (str) – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.
addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters
link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters
• path_caffemodel (str) – Path of the pre-trained caffemodel.
• path_npz (str) – Path of the converted chainer model.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters
mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns
Copied link object.

Return type
Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
• link (Link) – Source link object.
• **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name *(str)* – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to *False*.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to *True*.

extract(self, images, layers=['pool5'], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing *forward* is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls *prepare* and *forward* functions.

Unlike *predict* method, this method does not override *chainer.config.train* and *chainer.config.enable_backprop* configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):
    with chainer.using_config('enable_backprop', False):  
        feature = model.extract([image])
```

Parameters

• **images**(iterable of PIL.Image or numpy.ndarray) – Input images.

• **layers**(list of str) – The list of layer names you want to extract.

• **size**(pair of ints) – The resolution of resized images used as an input of CNN.

All the given images are not resized if this argument is *None*, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

4.3. Link and Chains
Return type Dictionary of ~chainer.Variable

forward (self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.
• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink (chainer.Link):
    def __init__ (self):
        super ().__init__ ()
        with self.init_scope ():
            self.W = chainer.Parameter (0, (10, 5))
            self.b = chainer.Parameter (0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict (images, oversample=True)
Computes all the probabilities of given images.

Parameters

- images (iterable of PIL.Image or numpy.ndarray) – Input images. When you specify a color image as a numpy.ndarray, make sure that color order is RGB.
- oversample (bool) – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.
Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)

Serializes the link object.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See get_device() for available values.

Returns: self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()

Return self==value.
Attributes

available_layers

device
 Device instance.

downsample_fb

functions

local_link_hooks
 Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

local_printable_specs
 Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
 and value) that are passed to the __init__. This pair of key and value is used for
 representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.

 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ResNet101Layers

class chainer.links.ResNet101Layers (pretrained_model='auto', downsample_fb=False)
 A pre-trained CNN model with 101 layers provided by MSRA.

 When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
 chain model automatically initializes all the parameters with it. This model would be useful when you want
 to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
 VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
 loaded at GitHub.
If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use \texttt{convert_caffemodel_to_npz} classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43\% fewer than ResNet152 model, while the top-5 classification accuracy on ImageNet dataset drops 1.1\% from ResNet152. For many cases, ResNet50 may have the best balance between the accuracy and the model size.

See: K. He et. al., \textit{Deep Residual Learning for Image Recognition}

\textbf{Parameters}

- \texttt{pretrained_model (str)} – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as \texttt{auto}, it automatically loads and converts the caffemodel from $\texttt{CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-101-model.caffemodel}$, where $\texttt{CHAINER_DATASET_ROOT}$ is set as $\texttt{HOME/.chainer/dataset}$ unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as \texttt{None}, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, \texttt{i.e.}, \texttt{chainer.initializers.HeNormal(scale=1.0)}.

- \texttt{downsample_fb (bool)} – If this argument is specified as \texttt{False}, it performs downsampling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If this argument is specified as \texttt{True}, it performs downsampling by placing stride 2 on the 3x3 convolutional layers (Facebook ResNet).

\textbf{Variables} \texttt{available_layers (list of str)} – The list of available layer names used by \texttt{forward} and \texttt{extract} methods.

\textbf{Methods}

\texttt{_call_} (*args, **kwargs)
Call self as a function.

\texttt{_getitem_} (name)
Equivalent to \texttt{getattr}.

\texttt{add_hook (hook, name=None)}
Registers a link hook.

\textbf{Parameters}

- \texttt{hook (LinkHook)} – Link hook to be registered.

- \texttt{name (str)} – Name of the link hook. The name must be unique among link hooks registered to this link. If \texttt{None}, the default name of the link hook is used.

\textbf{Returns} self

\texttt{add_link (name, link)}
Registers a child link to this chain.

\textbf{Parameters}

- \texttt{name (str)} – Name of the child link. This name is also used as the attribute name.

- \texttt{link (Link)} – The link object to be registered.

\texttt{add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)}
Registers a parameter to the link.

\textbf{Parameters}
• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• **dtype** – Data type of the parameter array.
• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
• **value** – Value to be registered.

addgrads *(link)*
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
• **link** *(Link)* – Source link object.

children *
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads *
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz *(path_caffemodel, path_npz, n_layers=50)*
Converting a pre-trained caffemodel to a chainer model.

Parameters
• **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.
• **path_npz** *(str)* – Path of the converted chainer model.

copy *(mode='share')*
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters
• **mode** *(str)* – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized.
but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract (self, images, layers=['pool5'], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and forward functions.
Unlike the `predict` method, this method does not override `chainer.config.train` and `chainer.config.enable_backprop` configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):
    with chainer.using_config('enable_backprop', False):
        feature = model.extract([image])
```

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* — Input images.
- **layers** *(list of str)* — The list of layer names you want to extract.
- **size** *(pair of ints)* — The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `~chainer.Variable`

forward *(self, x, layers=['prob'])*

Computes all the feature maps specified by `layers`.

Parameters

- **x** *(Variable)* — Input variable. It should be prepared by `prepare` function.
- **layers** *(list of str)* — The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `~chainer.Variable`

from_chx *

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope *

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
links (skipself=False)
 Returns a generator of all links under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with
 the first child link.

 Returns A generator object that generates all links.

namedlinks (skipself=False)
 Returns a generator of all (path, link) pairs under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with
 the first child link.

 Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
 Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all (path, parameter) pairs. The paths are relative
 from this link.

params (include_uninit=True)
 Returns a generator of all parameters under the link hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all parameters.

predict (images, oversample=True)
 Computes all the probabilities of given images.

 Parameters

 • images (iterable of PIL.Image or numpy.ndarray) – Input images.
 When you specify a color image as a numpy.ndarray, make sure that color order is
 RGB.

 • oversample (bool) – If True, it averages results across center, corners, and mirrors.
 Otherwise, it uses only the center.

 Returns Output that contains the class probabilities of given images.

 Return type Variable

register_persistent (name)
 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If name
 has been already registered as a parameter, this method removes it from the list of parameter names
 and re-registers it as a persistent value.

 Parameters name (str) – Name of the attribute to be registered.

repeat (n_repeat, mode='init')
 Repeats this link multiple times to make a Sequential.

 This method returns a Sequential object which has the same Link multiple times repeatedly. The
 mode argument means how to copy this link to repeat.

 Example

 You can repeat the same link multiple times to create a longer Sequential block like this:
class ConvBNReLU(chainer.Chain):
 def __init__(self):
 super(ConvBNReLU, self).__init__()
 with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*

Serializes the link object.

Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_chx *

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu *

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device *(device)*

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.
Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

available_layers

device
 Device instance.

functions

local_link_hooks
 Ordered dictionary of registered link hooks.

 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.

 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

class chainer.links.ResNet152Layers
A pre-trained CNN model with 152 layers provided by MSRA.
When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

- **pretrained_model**(str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $\text{CHAINER_DATASET_ROOT}/pfnet/chainer/models/ResNet-152-model.caffemodel, where $\text{CHAINER_DATASET_ROOT}$ is set as $\text{HOME}/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

- **downsample_fb**(bool) – If this argument is specified as False, it performs downsampling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If this argument is specified as True, it performs downsampling by placing stride 2 on the 3x3 convolutional layers (Facebook ResNet).

Variables **available_layers**(list of str) – The list of available layer names used by forward and extract methods.
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters
 • hook (LinkHook) – Link hook to be registered.
 • name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
 self

add_link(name, link)
Registers a child link to this chain.

Parameters
 • name (str) – Name of the child link. This name is also used as the attribute name.
 • link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
 • name (str) – Name of the parameter. This name is also used as the attribute name.
 • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 • dtype – Data type of the parameter array.
 • initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
 • name (str) – Name of the persistent value. This name is also used for the attribute name.
 • value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
 • link (Link) – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract (self, images, layers=[‘pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.config.enable_backprop configuration. If you want to extract features without updating model parameters, you need to manually set configuration when calling this method as follows:

```python
# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):
    with chainer.using_config('enable_backprop', False):
        feature = model.extract([image])
```

Parameters

- images (iterable of PIL.Image or numpy.ndarray) – Input images.
- layers (list of str) – The list of layer names you want to extract.
- size (pair of ints) – The resolution of resized images used as an input of CNN.

All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward (self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Parameters

- x (Variable) – Input variable. It should be prepared by prepare function.
• **layers** ([list of str]) – The list of layer names you want to extract.

 Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

 Return type Dictionary of `chainer.Variable`

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

 Returns A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

 Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all parameters.
predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*

Repeats this link multiple times to make a `Sequential`.

This method returns a `Sequential` object which has the same `Link` multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

 serialize(serializer)

 Serializes the link object.

 Parameters serializer *(AbstractSerializer)* – Serializer object.

 to_chx()

 Converts parameter variables and persistent values to ChainerX without any copy.

 This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

 Returns: self

 to_cpu()

 Copies parameter variables and persistent values to CPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

 Returns: self

 to_device(device)

 Copies parameter variables and persistent values to the specified device.

 This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

 Parameters device – Target device specifier. See get_device() for available values.

 Returns: self

 to_gpu(device=None)

 Copies parameter variables and persistent values to GPU.

 This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

 Parameters device – Target device specifier. If omitted, the current device is used.

 Returns: self

 to_intel64()

 Copies parameter variables and persistent values to CPU.

 zerograds()

 Initializes all gradient arrays by zero.

 Deprecated since version v1.15: Use the more efficient cleargrads() instead.

 __eq__(())

 Return self==value.

 __ne__(())

 Return self!=value.
__lt__(value)
 Return self<value.
__le__(value)
 Return self<=value.
__gt__(value)
 Return self>value.
__ge__(value)
 Return self>=value.

Attributes

available_layers

device
 Device instance.
functions
local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.
printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().
update_enabled
 True if at least one parameter has an update rule enabled.
within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.resnet.prepare

chainer.links.model.vision.resnet.prepare(image, size=(224, 224))
 Converts the given image to a numpy array for ResNet.
 Note that this method must be called before calling forward, because the pre-trained resnet model will resize the given image, convert from RGB to BGR, subtract the mean, and permute the dimensions before calling.

Parameters

- image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.ndarray, its shape must be (height, width),(height, width, channels), or (channels, height, width), and the order of the channels must be RGB.
- **size** *(pair of ints)* – Size of converted images. If None, the given image is not resized.

Returns The converted output array.

Return type *numpy.ndarray*

Note: ChainerCV contains implementation of ResNet as well (i.e., `chainercv.links.model.resnet.ResNet50`, `chainercv.links.model.resnet.ResNet101`, `chainercv.links.model.resnet.ResNet152`). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel of the input image to be ordered in RGB instead of BGR.

ChainerCV models

Note: ChainerCV supports implementations of links that are useful for computer vision problems, such as object detection, semantic segmentation, and instance segmentation. The documentation can be found in `chainercv.links`. Here is a subset of models with pre-trained weights supported by ChainerCV:

- **Detection**
 - `chainercv.links.model.faster_rcnn.FasterRCNNVGG16`
 - `chainercv.links.model.ssd.SSD300`
 - `chainercv.links.model.ssd.SSD512`
 - `chainercv.links.model.yolo.YOLOv2`
 - `chainercv.links.model.yolo.YOLOv3`

- **Semantic Segmentation**
 - `chainercv.links.model.segnet.SegNetBasic`
 - `chainercv.experimental.links.model.pspnet.PSPNetResNet101`

- **Instance Segmentation**
 - `chainercv.experimental.links.model.fcis.FCISResNet101`

- **Classification**
 - `chainercv.links.model.resnet.ResNet101`
 - `chainercv.links.model.resnet.ResNet152`
 - `chainercv.links.model.resnet.ResNet50`
 - `chainercv.links.model.senet.SEResNet101`
 - `chainercv.links.model.senet.SEResNet152`
 - `chainercv.links.model.senet.SEResNet50`
 - `chainercv.links.model.senet.SEResNeXt101`
 - `chainercv.links.model.senet.SEResNeXt50`
 - `chainercv.links.model.vgg.VGG16`
Compatibility with other frameworks

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.TheanoFunction</code></td>
<td>Theano function wrapper.</td>
</tr>
<tr>
<td><code>chainer.links.caffe.CaffeFunction</code></td>
<td>Caffe emulator based on the model file of Caffe.</td>
</tr>
</tbody>
</table>

chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)

Theano function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a `chainer.Link`. A user needs to make input Theano variables and output Theano variables. This function automatically creates Theano function for forward calculation and backward calculation from inputs and outputs. And then, it sends data in `chainer.Variable` to the function and gets results from Theano.

Example

```python
>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype=np.float32))
>>> b = chainer.Variable(np.array([2, 3], dtype=np.float32))
>>> c, d = f(a, b)
>>> c.array
array([3., 5.], dtype=float32)
>>> d.array
array([-1., -1.], dtype=float32)
```

Note: The current implementation always copies `cupy.ndarray` to CPU.

Parameters

- **inputs** (tuple of `theano.tensor.TensorVariable`) – Input variables of Theano. This function accepts the same number of `Variables` in forward computation.
- **outputs** (tuple of `theano.tensor.TensorVariable`) – Output variables of Theano. The function returns the same number of `Variables` as `outputs`.
Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.
• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

add_param(name, shape=None, dtype=numpy.float32, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters' arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

- link (Link) – Source link object.
- copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

forward(*args)

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for *Chain*) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.
register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
name *(str)* – Name of the attribute to be registered.

repeat *(n_repeat, mode='init')*
Repeats this link multiple times to make a *Sequential*.

This method returns a *Sequential* object which has the same *Link* multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer *Sequential* block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The *net* object contains 16 blocks, each of which is *ConvBNReLU*. And the *mode* was *init*, so each block is re-initialized with different parameters. If you give *copy* to this argument, each block has same values for its parameters but its object ID is different from others. If it is *share*, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize *(serializer)*
Serializes the link object.

Parameters
serializer *(AbstractSerializer)* – Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.
This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self
to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
Attributes

device
 Device instance.

local_link_hooks
 Ordered dictionary of registered link hooks.
 Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
 Generator of printable specs of this link.
 Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__() method. This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module corresponding to the device.
 Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.caffe.CaffeFunction

class chainer.links.caffe.CaffeFunction(model_path)
 Caffe emulator based on the model file of Caffe.

 Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:
 • Layers that CaffeFunction does not support (including data layers)
 • Layers that have no top blobs
 • Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not implemented in Chainer yet, though the reference models provided by the BVLC team are supported except data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
We want to compute the `fc8` blob from the `data` blob. It is simply written as follows:

```python
# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
...  # (Fill the minibatch here)

# Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])
```

The result `y` contains the Variable corresponding to the `fc8` blob. The computational graph is memorized as a usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters
- `model_path` *(str)* – Path to the binary-proto model file of Caffe.

Variables
- `forwards` *(dict)* – A mapping from layer names to corresponding functions.

Methods
- `__call__` (*args, **kwargs)*
 Call self as a function.

- `__getitem__` *(name)*
 Equivalent to getattr.

- `add_hook` *(hook, name=None)*
 Registers a link hook.
 Parameters
 - `hook` *(LinkHook)* – Link hook to be registered.
 - `name` *(str)* – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.
 Returns self

- `add_link` *(name, link)*
 Registers a child link to this chain.
 Parameters
 - `name` *(str)* – Name of the child link. This name is also used as the attribute name.
 - `link` *(Link)* – The link object to be registered.

- `add_param` *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*
 Registers a parameter to the link.
 Parameters
 - `name` *(str)* – Name of the parameter. This name is also used as the attribute name.
 - `shape` *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 - `dtype` – Data type of the parameter array.
• **initializer** (*initializer*) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (*name*, *value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters

• **link** (*Link*) – Source link object.

children()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode='share'*)

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument *mode* below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters

• **mode** (*str*) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their *initialize()*
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type *Link*

copyparams (*link*, *copy_persistent=True*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.
This method also copies the persistent values (e.g., the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link (Link)** – Source link object.
- **copy_persistent (bool)** – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (self, inputs, outputs, disable=())
Executes a sub-network of the network.

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output blobs as Variable objects.

Parameters

- **inputs (dict)** – A dictionary whose key-value pairs indicate initial correspondences between blob names and Variable objects.
- **outputs (Iterable)** – A list of blob names whose corresponding Variable objects are returned.
- **disable (Iterable)** – A list of layer names that will be ignored during the forward computation.

Returns A tuple of output Variable objects corresponding to elements of the outputs argument.

Return type tuple
from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
 Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.
repeat(\(n_\text{repeat}, \text{mode}='\text{init}'\))

Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same **Link** multiple times repeatedly. The \textit{mode} argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer **Sequential** block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The \texttt{net} object contains 16 blocks, each of which is \texttt{ConvBNReLU}. And the \texttt{mode} was \texttt{init}, so each block is re-initialized with different parameters. If you give \texttt{copy} to this argument, each block has same values for its parameters but its object ID is different from others. If it is \texttt{share}, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- \texttt{n_repeat}(\texttt{int}) – Number of times to repeat.
- \texttt{mode}(\texttt{str}) – It should be either \texttt{init}, \texttt{copy}, or \texttt{share}. \texttt{init} means parameters of each repeated element in the returned **Sequential** will be re-initialized, so that all elements have different initial parameters. \texttt{copy} means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. \texttt{share} means all the elements which consist the resulting **Sequential** object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize(\texttt{serializer})

Serializes the link object.

Parameters \texttt{serializer}(\texttt{AbstractSerializer}) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. See `get_device()` for available values.

Returns: self
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64()
Copies parameter variables and persistent values to CPU.
zerograds()
Initializes all gradient arrays by zero.
Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.
Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.
Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the __init__(). This pair of key and value is used for representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.5 Link and Chain base classes

chainer.Link	Building block of model definitions.
chainer.Chain	Composable link with object-like interface.
chainer.ChainList	Composable link with list-like interface.
chainer.Sequential	Sequential model which has a single-stream forward pass.

chainer.Link

class chainer.Link(**params)
Building block of model definitions.

Link is a building block of neural network models that support various features like handling parameters, defining network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and persistent values that should be incorporated to serialization.

Parameter is an instance of Parameter registered to a link. A Parameter object can be registered as a parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded by a init_scope() context manager using the with statement.

Persistent values are arrays, scalars, or any other serializable values registered via register_persistent() or add_persistent().

Note: Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended that you just register values that should be treated as results of learning. A typical example of persistent values is ones computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links. Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like Chain and ChainList. One can create a chain by combining one or more links. See the documents for these classes for details.
As noted above, Link supports the serialization protocol of the \texttt{Serializer} class. \textbf{Note that only parameters and persistent values are saved and loaded.} Other attributes are considered as a part of user program (i.e. a part of network definition). In order to construct a link from saved file, other attributes must be identically reconstructed by user codes.

\section*{Example}

This is a simple example of custom link definition. Chainer itself also provides many links defined under the \texttt{links} module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the \texttt{linear()} function. Note that this function takes input units, a weight variable, and a bias variable as arguments. Then, the fully-connected layer can be defined as follows:

```python
import chainer
import chainer.functions as F
from chainer import initializers
import numpy as np

class LinearLayer(chainer.Link):
    def __init__(self, n_in, n_out):
        super(LinearLayer, self).__init__()
        with self.init_scope():
            self.W = chainer.Parameter(
                initializers.Normal(), (n_out, n_in))
            self.b = chainer.Parameter(
                initializers.Zero(), (n_out,))

    def forward(self, x):
        return F.linear(x, self.W, self.b)
```

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically implement the \texttt{forward} operator, although they can also provide other methods to implement the forward propagation.

\begin{description}
\item[Parameters \texttt{params}] Names, shapes, and optional dtypes of initial parameters. The keywords are used as the parameter names and the corresponding values consist either of the shape or a tuple of shape and a dtype (\texttt{shape, dtype}). If only the shape is supplied, the default dtype will be used.
\item[Variables \texttt{name (str)}] Name of this link, given by the parent chain (if exists).
\end{description}

\section*{Methods}

\begin{description}
\item[\texttt{__call__}(*\texttt{args}, **\texttt{kwargs})] Call self as a function.
\item[\texttt{add_hook}(\texttt{hook, name=None})] Registers a link hook.
\end{description}

\begin{description}
\item[Parameters]
\begin{itemize}
\item[\texttt{hook (LinkHook)}] – Link hook to be registered.
\item[\texttt{name (str)}] – Name of the link hook. The name must be unique among link hooks registered to this link. If \texttt{None}, the default name of the link hook is used.
\end{itemize}
\end{description}
Returns self

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode='share')
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter variables under the returned link object is re-initialized by calling their initialize() method, so that all the parameters may have different initial values from the original link. copy means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. share means that the link is shallowly copied, so that its parameters’ arrays...
are shared with the original one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

• link (Link) – Source link object.
• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope ()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```python
links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.
```

```python
namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.
```

```python
namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
```

```python
params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.
```

```python
register_persistent (name)
 Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.
```

```python
repeat (n_repeat, mode='init')
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.
```
Example

You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is ConvBNReLU. And the mode was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

`serialize` (*serializer*)

Serializes the link object.

 Parameters **serializer** (*AbstractSerializer*) – Serializer object.

`to_chx()`

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

`to_cpu()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

`to_device` (*device*)

Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters

device – Target device specifier. See :func:`get_device()` for available values.

Returns: self

:func:`to_gpu`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override :func:`device_resident_accept()` to do so.

Parameters

device – Target device specifier. If omitted, the current device is used.

Returns: self

:func:`to_intel64`

Copies parameter variables and persistent values to CPU.

:func:`zerograds`

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient :func:`cleargrads()` instead.

__eq__

Return self==value.

__ne__

Return self!=value.

__lt__

Return self<value.

__le__

Return self<=value.

__gt__

Return self>value.

__ge__

Return self>=value.

Attributes

device

Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to :func:`chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value) that are passed to the :meth:`__init__`. This pair of key and value is used for representing this class or subclass with :meth:`__str__`.

update_enabled

True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.Chain

class chainer.Chain(links)**
Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a neural net based on composition, without bothering about routine works like collecting parameters, serialization, copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or more child links. Child link is a link registered to the chain with its own name. The child link is stored to an attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on the path, joined by slashes `/`.

A child link can be added just by assigning it to an attribute of the chain within `init_scope()`.

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimization. The registered link is called a child. The child link is accessible via `children()` generator, which returns a generator running through the children in lexical order.

On registration of a child link, its `name` attribute is also set (or overwritten if the link has already been registered to another chain).

Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the `links` module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation functions. We can use the `Linear` link as a building block:

```python
import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):
    def __init__(self, n_in, n_hidden, n_out):
        super(MultiLayerPerceptron, self).__init__()
        self.__init_scope__():
            self.layer1 = L.Linear(n_in, n_hidden)
            self.layer2 = L.Linear(n_hidden, n_hidden)
            self.layer3 = L.Linear(n_hidden, n_out)
```

(continues on next page)
```python
def forward(self, x):
    # Forward propagation
    h1 = F.relu(self.layer1(x))
    h2 = F.relu(self.layer2(h1))
    return self.layer3(h2)
```

Child links are registered via the assignment within a `with self.init_scope():` block. The forward propagation is often implemented as the `forward` operator as the above example, though it is not mandatory.

Parameters

- `links` – Child links. The keywords are used as their names. The names are also set to the links.

Methods

- `__call__(*args, **kwargs)`
 Call self as a function.

- `__getitem__(name)`
 Equivalent to `getattr`.

- `add_hook(hook, name=None)`
 Registers a link hook.

 Parameters

 - `hook` (LinkHook) – Link hook to be registered.

 - `name` (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

 Returns

 self

- `add_link(name, link)`
 Registers a child link to this chain.

 Parameters

 - `name` (str) – Name of the child link. This name is also used as the attribute name.

 - `link` (Link) – The link object to be registered.

- `add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
 Registers a parameter to the link.

 Parameters

 - `name` (str) – Name of the parameter. This name is also used as the attribute name.

 - `shape` (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

 - `dtype` – Data type of the parameter array.

 - `initializer` (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.
add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

children

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargradients

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (*mode='share'*)

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the documentation for the argument *mode* below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Parameters

- **mode** (*str*) – It should be either *init*, *copy*, or *share*. *init* means parameter variables under the returned link object is re-initialized by calling their *initialize()* method, so that all the parameters may have different initial values from the original link. *copy* means that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply copied. Thus, all parameters have same initial values but can be changed independently. *share* means that the link is shallowly copied, so that its parameters’ arrays are shared with the original one. Thus, their values are changed synchronously. The default *mode* is *share*.

Returns

Copied link object.

Return type

Link

copyparams (*link, copy_persistent=True*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using *copy.deepcopy()* . The old behavior (not copying persistent values) can be reproduced with *copy_persistent=False*.

Parameters
- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the *Parameters* held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook *(name)*
Unregisters the link hook.

Parameters
- **name** *(str)* – The name of the link hook to be unregistered.

device_resident_accept *(visitor)*
Applies the visitor to all the device objects in this instance.

Parameters
- **visitor** *(DeviceResidentsVisitor)* – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the *enabled* flag of the update rule of each parameter variable to True.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for *Chain*) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the *init_scope* method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*
Returns a generator of all links under the hierarchy.
Parameters `skipself` (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

dnamedlinks (`skipself=False`)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

dnamedparams (`include_uninit=True`)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

dparams (`include_uninit=True`)
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

dregister_persistent (`name`)
Registers an attribute of a given name as a persistent value. This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (str) – Name of the attribute to be registered.

drepeat (`n_repeat`, `mode='init'`)
Repeats this link multiple times to make a Sequential. This method returns a Sequential object which has the same Link multiple times repeatedly. The `mode` argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
 super(ConvBNReLU, self).__init__(**
with self.init_scope():
 self.conv = L.Convolution2D(
 None, 64, 3, 1, 1, nobias=True)
 self.bn = L.BatchNormalization(64)

 def forward(self, x):
 return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** (*int*) – Number of times to repeat.
- **mode** (*str*) – It should be either init, copy, or share. init means parameters of each repeated element in the returned Sequential will be re-initialized, so that all elements have different initial parameters. copy means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. share means all the elements which consist the resulting Sequential object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

serialize (*serializer*)

Serializes the link object.

Parameters serializer (*AbstractSerializer*) – Serializer object.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device (*device*)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()

Copies parameter variables and persistent values to CPU.

zerograds()

Initializes all gradient arrays by zero.
Deprecation since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__
Return `self==value`.

__ne__
Return `self!=value`.

__lt__
Return `self<value`.

__le__
Return `self<=value`.

__gt__
Return `self>value`.

__ge__
Return `self>=value`.

Attributes

device
`Device` instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields `specs (tuple of str and object)` – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.
class chainer.ChainList(*links)

Composable link with list-like interface.

This is another example of compositional link. Unlike `Chain`, this class can be used like a list of child links. Each child link is indexed by a non-negative integer, and it maintains the current number of registered child links. The `add_link()` method inserts a new link at the end of the list. It is useful to write a chain with arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

This class inherits the methods `index`, `count`, `append`, `reverse`, `extend`, `pop`, `remove` from `collections.abc.MutableSequence` and can be accessed and assigned by index or slice.

Parameters
- `links` – Initial child links.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters
- `index` – Index of the child in the list.

Returns
The `index`-th child link.

Return type
`Link`

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters
- `hook` (LinkHook) – Link hook to be registered.
- `name` (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If `None`, the default name of the link hook is used.

Returns
self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters
- `link` (Link) – The link object to be registered.

add_param(name=None, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters
- `name` (str) – Name of the parameter. This name is also used as the attribute name.
- `shape` (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
• **initializer** *(initializer)* – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• **link** *(Link)* – Source link object.

append *(value)*

S.append(value) – append value to the end of the sequence

children

Returns a generator of all child links.

Returns

A generator object that generates all child links.

clear()

→ None -- remove all items from S

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(mode='share')*

Returns a deep copy of the chainlist.

copyparams *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of *BatchNormalization*). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using `copy.deepcopy()`. The old behavior (not copying persistent values) can be reproduced with `copy_persistent=False`.

Parameters

• **link** *(Link)* – Source link object.

• **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count *(value)* → integer -- return number of occurrences of value
count_params()
Counts the total number of parameters.
This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.
If the link contains uninitialized parameters, this method raises a warning.

Returns: The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters: name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters: visitor (DeviceResidentsVisitor) – Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

index(value[, start[, stop]]) → integer -- return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
insert (*index, link*)
Insert a child link at the given index.

Parameters

- **index** (*int*) – The position of the list where the new
- **is inserted** (*link*) –
- **link** (*Link*) – The link to be inserted.

links (*skipself=False*)
Returns a generator of all links under the hierarchy.

Parameters

- **skipself** (*bool*) – If True, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

namedlinks (*skipself=False*)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

- **skipself** (*bool*) – If True, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

namedparams (*include_uninit=True*)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (*include_uninit=True*)
Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns
A generator object that generates all parameters.

pop (*[index]*) → *item* – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (*name*)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

remove (*value*)
S.remove(*value*) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat (*n_repeat, mode='init'*)
Repeats this link multiple times to make a **Sequential**.

This method returns a **Sequential** object which has the same Link multiple times repeatedly. The mode argument means how to copy this link to repeat.

Example
You can repeat the same link multiple times to create a longer `Sequential` block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The `net` object contains 16 blocks, each of which is `ConvBNReLU`. And the `mode` was `init`, so each block is re-initialized with different parameters. If you give `copy` to this argument, each block has same values for its parameters but its object ID is different from others. If it is `share`, each block is same to others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- `n_repeat (int)` – Number of times to repeat.
- `mode (str)` – It should be either `init`, `copy`, or `share`. `init` means parameters of each repeated element in the returned `Sequential` will be re-initialized, so that all elements have different initial parameters. `copy` means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. `share` means all the elements which consist the resulting `Sequential` object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

`reverse()`

`S.reverse()` – reverse IN PLACE

`serialize (serializer)`

Serializes the link object.

Parameters `serializer (AbstractSerializer)` – Serializer object.

`to_chx ()`

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

`to_cpu ()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept ()` to do so.

Returns: self

`to_device (device)`

Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters
- **device** – Target device specifier. See `get_device()` for available values.

Returns: `self`

to_gpu *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

Parameters
- **device** – Target device specifier. If omitted, the current device is used.

Returns: `self`

to_intel64 *
Copies parameter variables and persistent values to CPU.

zerograds *
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__ *
Return `self==value`.

__ne__ *
Return `self!=value`.

__lt__ *
Return `self<value`.

__le__ *
Return `self<=value`.

__gt__ *
Return `self>value`.

__ge__ *
Return `self>=value`.

Attributes

device
- `Device` instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields `specs (tuple of str and object)` – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` method. This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled
- `True` if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.

chainer.Sequential

class chainer.Sequential(*layers)

Sequential model which has a single-stream forward pass.

Warning: This feature is experimental. The interface can change in the future.

This class enables to construct a network which has sequential structure easily. While `Chain` and `ChainList` can only take `Link` object as input to their constructor, this `Sequential` can take arbitrary number of any callable objects for the forward pass computation. A `Sequential` calls the given callable objects sequentially inside of the `forward()` method in the same order as the given arguments. Therefore, you do not need to write the forward pass computation explicitly.

Example

The below example code shows how to use this class to construct a simple sequential network:

```python
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import Sequential

# Model definition without writing forward function
model = Sequential(
    L.Linear(n_in, n_hidden),
    F.relu,
    L.Linear(n_hidden, n_hidden),
    F.relu,
    L.Linear(n_hidden, n_out)
)

# Compute the forward pass
y = model(x)
```

where `x` denotes a mini-batch of `n_in`-dimensional input vectors.

Furthermore, `Sequential` supports built-in APIs, so you can concatenate `Sequential` objects to create a longer `Sequential` model easily with the same ways as Python lists:

```python
>>> from chainer import Sequential
>>> model_A = Sequential(L.Linear(10, 10), F.relu)
>>> model_B = Sequential(L.Linear(10, 10), F.sigmoid)
>>> model_C = model_A + model_B
```

To repeat a `Sequential` object multiple times, you can use `repeat()` method.
You can also add your own functions or any callable objects to a `Sequential` object:

```python
from chainer.links.model.vision.vgg import VGG16Layers

model = Sequential()
model.append(L.Linear(n_out, n_hidden))
model.append(F.relu)
model.append(lambda x: F.reshape(x, (1, 3, 224, 224)))
model.append(VGG16Layers())
model.append(lambda x: x['prob'])
y = model(x)
```

The above code example shows how to add some layers to the model using `append()` method and then add a large network (`VGG16Layers`) and finally add a lambda function to extract the `prob` output.

You can check the structure of your model briefly using `print` as following:

```python
>>> print(model_C)
Sequential(
  (0): Linear(in_size=10, out_size=10, nobias=False),
  (1): <function relu at 0x...>,
  (2): Linear(in_size=10, out_size=10, nobias=False),
  (3): <function sigmoid at 0x...>,
)
```

Note: Note that a `Sequential` link which has at least one lambda function as its member cannot be pickled. So, please use `partial` method from `functools` package instead:

```python
from functools import partial

# This is not pickable
model = Sequential(
    L.Convolution2D(None, 64, 3, 1, 1),
    lambda x: F.max_pooling_2d(x, 2)
)

# This is pickable
model = Sequential(
    L.Convolution2D(None, 64, 3, 1, 1),
    partial(F.max_pooling_2d, ksize=2)
)
```

Parameters layers – The layers which are called in its order. Each component should be a callable object including `Link` object and functions defined under the `chainer.functions`, e.g., `relu()`, etc.
Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(i)
Returns the child at given index.

Parameters
index (int) – Index of the child in the list.

Returns
The index-th child link.

Return type
Link

__setitem__(i, layer)

__len__()
Returns the number of children.

__iter__()

add_hook (hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks registered to this link. If None, the default name of the link hook is used.

Returns
self

add_link (link)
Registers a child link and adds it to the tail of the list.

Parameters
link (Link) – The link object to be registered.

add_param (name=None, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

append *(layer)*

S.append(value) – append value to the end of the sequence

children()

Returns a generator of all child links.

Returns

A generator object that generates all child links.

clear() → None -- remove all items from S

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode='share')

Returns a deep copy of the chainlist.

copyparams *(link, copy_persistent=True)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with copy_persistent=False.

Parameters

- **link** *(Link)* – Source link object.
- **copy_persistent** *(bool)* – If True, persistent values are also copied. True by default.

count(value) → integer -- return number of occurrences of value

count_by_layer_type(type_name)

Count the number of layers by layer type.

This method counts the number of layers which have the name given by the argument type_name. For example, if you want to know the number of Linear layers included in this model, type_name should be Linear. If you want to know the number of Function classes or user-defined functions which have a specific name, type_name should be the function name, e.g., relu or reshape, etc.

Parameters

- **type_name** *(str)* – The class or function name of a layer you want to enumerate.

count_params()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its descendants.

If the link contains uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook(name)
 Unregisters the link hook.

 Parameters name(str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
 Applies the visitor to all the device objects in this instance.

 Parameters visitor(DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
 Disables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
 Enables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to True.

extend(sequential)
 S.extend(iterable) – extend sequence by appending elements from the iterable

flatten()
 Flatten nested Sequential links.

 This method flattens all the nested Sequential links inside this Sequential link.

 Returns A flattened Sequential object.

Example

>>> import chainer
>>> import chainer.functions as F
>>> import chainer.links as L

>>> a = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> b = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> a.append(b)

>>> print(a) # Without flatten
0 Linear W(None) b(10,)
1 relu
2 Sequential which has 2 layers

>>> print(a.flatten()) # With flatten
0 Linear W(None) b(10,)
1 relu
2 Linear W(None) b(10,)
3 relu

forward(*x)
 Forward pass computation.

 This method performs the forward pass computation by giving the input variable x to the layers registered
in the constructor in the same order as the order in which the arguments are given to the constructor.

 It should be noted that the input variable is given directly to the first layer and all intermediate outputs
generated during the forward pass are also directly fed to the next layer. Therefore, the number of outputs
at a layer should be the same as the number of inputs at the next layer.
 Parameters \(x \) – Input variables.

 Returns The output of the final layer in the given layers.

\texttt{from_chx()} Convertst parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

\texttt{index(value[, start[, stop]])} \rightarrow \text{integer} -- return first index of value.
Raises ValueError if the value is not present.

\texttt{init_scope()} Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for \texttt{Chain}) by an assignment. A \texttt{Parameter} object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the \texttt{init_scope} method, we can simply assign a \texttt{Parameter} object to register it to the link.

```
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

\texttt{insert(i, layer)} Insert a child link at the given index.

 Parameters

- \texttt{index(int)} – The position of the list where the new
- \texttt{is inserted.(link)} –
- \texttt{link(\text{Link})} – The link to be inserted.

\texttt{links(skipself=False)} Returns a generator of all links under the hierarchy.

 Parameters \texttt{skipself(bool)} – If True, then the generator skips this link and starts with the first child link.

 Returns A generator object that generates all links.

\texttt{namedlinks(skipself=False)} Returns a generator of all (path, link) pairs under the hierarchy.

 Parameters \texttt{skipself(bool)} – If True, then the generator skips this link and starts with the first child link.

 Returns A generator object that generates all (path, link) pairs.

\texttt{namedparams(include_uninit=True)} Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters \texttt{include_uninit(bool)} – If True, it also generates uninitialized parameters.
Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters
include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop *(index)*
→ item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
name (str) – Name of the attribute to be registered.

remove *(layer)*
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

remove_by_layer_type *(type_name)*
Remove layers by layer type.

This method removes layers from the Sequential object by the layer’s class name or function name. If you want to remove a Link, the argument *type_name* should be its class name, e.g., Linear or Convolution2D, etc. If you want to remove a Function class or any other callable objects, *type_name* should be the function name, e.g., relu or reshape, etc.

Parameters
type_name (str) – The name of a layer you want to remove.

repeat *(n_repeat, mode='init')*
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The *mode* argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

```python
class ConvBNReLU(chainer.Chain):
    def __init__(self):
        super(ConvBNReLU, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(
                None, 64, 3, 1, 1, nobias=True)
            self.bn = L.BatchNormalization(64)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')
```

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block is re-initialized with different parameters. If you give copy to this argument, each block has same values for its parameters but its object ID is different from others. If it is share, each block is same to

4.3. Link and Chains 775
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one block is changed, all the parameters in the others also change.

Parameters

- **n_repeat** *(int)* – Number of times to repeat.
- **mode** *(str)* – It should be either *init*, *copy*, or *share*. *init* means parameters of each repeated element in the returned *Sequential* will be re-initialized, so that all elements have different initial parameters. *copy* means that the parameters will not be re-initialized but object itself will be deep-copied, so that all elements have same initial parameters but can be changed independently. *share* means all the elements which consist the resulting *Sequential* object are same object because they are shallow-copied, so that all parameters of elements are shared with each other.

```python
reverse()
S.reverse() – reverse IN PLACE
```

```python
serialize(serializer)
Serializes the link object.
```

```
Parameters serializer (AbstractSerializer) – Serializer object.
```

```python
to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

```python
to_cpu()
Copies parameter variables and persistent values to CPU.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

Returns: self

```python
to_device(device)
Copies parameter variables and persistent values to the specified device.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

```
Parameters device – Target device specifier. See get_device() for available values.
```

Returns: self

```python
to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
```

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override `device_resident_accept()` to do so.

```
Parameters device – Target device specifier. If omitted, the current device is used.
```

Returns: self

```python
to_intel64()
Copies parameter variables and persistent values to CPU.
```
zerograds()

Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient `cleargrads()` instead.

__eq__(value)

Return self==value.

__ne__(value)

Return self!=value.

__lt__(value)

Return self<value.

__le__(value)

Return self<=value.

__gt__(value)

Return self>value.

__ge__(value)

Return self>=value.

__add__(other)

Attributes

device

`Device` instance.

local_link_hooks

Ordered dictionary of registered link hooks.

Contrary to `chainer.thread_local.link_hooks`, which registers its elements to all functions, link hooks in this property are specific to this link.

printable_specs

Generator of printable specs of this link.

Yields `specs (tuple of str and object)` – Basically, it returns the arguments (pair of keyword and value) that are passed to the `__init__()` . This pair of key and value is used for representing this class or subclass with `__str__()`.

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns `numpy`, `cupy` or `chainerx`.
4.3.6 Link hooks

Chainer provides a link-hook mechanism that enriches the behavior of Link.

```python
chainer.link_hooks.SpectralNormalization
```
Spectral Normalization link hook implementation.

```python
chainer.link_hooks.TimerHook
```
Link hook for measuring elapsed time of Link. forward().

class chainer.link_hooks.SpectralNormalization

Spectral Normalization link hook implementation.

This hook normalizes a weight using max singular value and this value is computed via power iteration method. Currently, this hook is supposed to be added to `chainer.links.Linear`, `chainer.links.EmbedID`, `chainer.links.Convolution2D`, `chainer.links.ConvolutionND`, `chainer.links.Deconvolution2D`, and `chainer.links.DeconvolutionND`. However, you can use this to other links like RNNs by specifying `weight_name`. It is highly recommended to add this hook before optimizer setup because this hook add a scaling parameter `gamma` if `use_gamma` is True. Otherwise, the registered `gamma` will not be updated.

\[
\hat{W} = \frac{W}{\sigma(W)}
\]

where \(\sigma(W) := \max_{h: h \neq 0} \frac{\|Wh\|_2}{\|h\|_2} = \max_{\|h\|_2 \leq 1} \|Wh\|_2\)

See: T. Miyato et. al., Spectral Normalization for Generative Adversarial Networks

Parameters

- `n_power_iteration (int)` – Number of power iteration. The default value is 1.
- `eps (float)` – Numerical stability in norm calculation. The default value is 1e-6 for the compatibility with mixed precision training. The value used in the author’s implementation is 1e-12.
- `use_gamma (bool)` – If True, weight scaling parameter gamma which is initialized by initial weight’s max singular value is introduced.
- `factor (float, None)` – Scaling parameter to divide maximum singular value. The default value is 1.0.
- `weight_name (str)` – Link’s weight name to apply this hook. The default value is 'W'.
- `name (str or None)` – Name of this hook. The default value is 'SpectralNormalization'.

Variables

- `vector_name (str)` – Name of the approximate first left singular vector registered in the target link.
• **axis** (*int*) – Axis of weight represents the number of output feature maps or output units (out_channels and out_size, respectively).

Example

There are almost the same but 2 ways to apply spectral normalization (SN) hook to links.

1. Initialize link and SN separately. This makes it easy to handle buffer and parameter of links registered by SN hook.

```python
>>> l = L.Convolution2D(3, 5, 3)
>>> hook = chainer.link_hooks.SpectralNormalization()
>>> _ = l.add_hook(hook)
>>> # Check the shape of the first left singular vector.
>>> getattr(l, hook.vector_name).shape
(5,)
>>> # Delete SN hook from this link.
>>> l.delete_hook(hook.name)
```

2. Initialize both link and SN hook at one time. This makes it easy to define your original *Chain*.

```python
>>> # SN hook handles lazy initialization!
>>> layer = L.Convolution2D(...
...   5, 3, stride=1, pad=1).add_hook(
...     chainer.link_hooks.SpectralNormalization())
```

Methods

- **__enter__(self)**
- **__exit__(self, exc_type, exc_value, traceback)**
- **added(link)**
 Callback function invoked when the link hook is registered

 Parameters

 link (*Link*) – Link object to which the link hook is registered. *None* if the link hook is registered globally.

- **deleted(link)**
 Callback function invoked when the link hook is unregistered

 Parameters

 link (*Link*) – Link object to which the link hook is unregistered. *None* if the link hook had been registered globally.

- **forward_postprocess(cb_args)**
 Callback function invoked after a forward call of a link.

 Parameters

 args – Callback data. It has the following attributes:

 - **link** (*Link*) – Link object.
 - **forward_name** (*str*) – Name of the forward method.
 - **args** (*tuple*) – Non-keyword arguments given to the forward method.
 - **kwargs** (*dict*) – Keyword arguments given to the forward method.
 - **out** – Return value of the forward method.
forward_preprocess(*cb_args*)

Callback function invoked before a forward call of a link.

Parameters

- **args** – Callback data. It has the following attributes:
 - **link** (*Link*) – Link object.
 - **forward_name** (*str*) – Name of the forward method.
 - **args** (*tuple*) – Non-keyword arguments given to the forward method.
 - **kwargs** (*dict*) – Keyword arguments given to the forward method.

normalize_weight(*link*)

Normalize target weight before every single forward computation.

reshape_W(*W*)

Reshape & transpose weight into 2D if necessary.

```
__eq__()
Return self==value.
__ne__()
Return self!=value.
__lt__()
Return self<value.
__le__()
Return self<=value.
__gt__()
Return self>value.
__ge__()
Return self>=value.
```

Attributes

- **name** = `'SpectralNormalization'`

chainer.link_hooks.TimerHook

class `chainer.link_hooks.TimerHook`

Link hook for measuring elapsed time of `Link.forward()`.

Example

Code example:

```python
from chainer.link_hooks import TimerHook
hook = TimerHook()
with hook:
    trainer.run()
hook.print_report()
```

Output example:
where *LinkName* is the name of link that calls the hook, and *ElapsedTime* is the elapsed time the link consumed, and *Occurrence* is the number of calls.

Warning: Call graph of links are hierarchical. That means reported elapsed times may be overlapping with each other and the sum may exceed the total time.

Variables *call_history* – List of measurement results. It consists of pairs of the name of the link that calls this hook and the elapsed time the *forward()* method of link consumes.

Methods

__enter__()

__exit__(*_)

added(link)

Callback function invoked when the link hook is registered

Parameters

link (Link) – Link object to which the link hook is registered. *None* if the link hook is registered globally.

deleted(link)

Callback function invoked when the link hook is unregistered

Parameters

link (Link) – Link object to which the link hook is unregistered. *None* if the link hook had been registered globally.

forward_postprocess(args)

Callback function invoked after a forward call of a link.

Parameters

args – Callback data. It has the following attributes:

- *link* (Link) Link object.
- *forward_name* (str) Name of the forward method.
- *args* (tuple) Non-keyword arguments given to the forward method.
- *kwargs* (dict) Keyword arguments given to the forward method.
- *out* Return value of the forward method.

forward_preprocess(args)

Callback function invoked before a forward call of a link.

Parameters

args – Callback data. It has the following attributes:

- *link* (Link) Link object.
- *forward_name* (str) Name of the forward method.
- *args* (tuple) Non-keyword arguments given to the forward method.
- *kwargs* (dict) Keyword arguments given to the forward method.
print_report *(unit='auto', file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)*

Prints a summary report of time profiling in links.

Parameters

- **unit** *(str)* – Supplementary units used for computational times. *sec, ms, us, ns, auto*(default) and `auto_foreach` are supported. If *auto*, units of times are aligned to the largest, and if *auto_foreach*, units of times are adjusted for each element.

summary()

Returns a summary of time profiling in links.

Returns

A summarized dictionary whose keys are link names and values are dictionaries of *elapsed_time* and *occurrence*.

total_time()

Returns total elapsed time in seconds.

Attributes

- **name** = 'TimerHook'
- **table** = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 100000}

You can also implement your own link-hook to inject arbitrary code before/after the forward propagation.

chainer.LinkHook

Base class of hooks for links.

class chainer.LinkHook

Base class of hooks for links.

LinkHook is a callback object that is registered to a *Link*. Registered link hooks are invoked before and after calling *Link.forward()* method of each link.

Link hooks that derive from *LinkHook* may override the following method:

- *added()*
- *deleted()*
- *forward_preprocess()*
• `forward_postprocess()`

By default, these methods do nothing.

Specifically, when the `__call__()` method of some link is invoked, `forward_preprocess()` (resp. `forward_postprocess()`) of all link hooks registered to this link are called before (resp. after) `Link.forward()` method of the link.

There are two ways to register `LinkHook` objects to `Link` objects.

The first one is to use `with` statement. Link hooks hooked in this way are registered to all links within `with` statement and are unregistered at the end of `with` statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation procedure with `TimerHook`, which is a subclass of `LinkHook`.

```python
>>> class Model(chainer.Chain):
...     def __init__(self):
...         super(Model, self).__init__()
...         with self.init_scope():
...             self.l = L.Linear(10, 10)
...     def forward(self, x1):
...         return F.exp(self.l(x1))

>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.link_hooks.TimerHook() as m:
...     _ = model1(x)
...     y = model2(x)

>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
... Total time : ...
```

In this example, we measure the elapsed times for each forward propagation of all functions in `model1` and `model2`. Note that `model3` is not a target measurement as `TimerHook` is unregistered before forward propagation of `model3`.

Note: Chainer stores the dictionary of registered link hooks as a thread local object. So, link hooks registered are different depending on threads.

The other one is to register directly to a `Link` object by calling its `add_hook()` method. Link hooks registered in this way can be removed by `delete_hook()` method. Contrary to former registration method, link hooks are registered only to the link which `add_hook()` is called.

Parameters

- `name (str)` – Name of this link hook.
Methods

__enter__()
__exit__(*)

added(link)
Callback function invoked when the link hook is registered

Parameters
 link (Link) – Link object to which the link hook is registered. None if the link
 hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters
 link (Link) – Link object to which the link hook is unregistered. None if the
 link hook had been registered globally.

forward_postprocess(args)
Callback function invoked after a forward call of a link.

Parameters
 args – Callback data. It has the following attributes:
 • link (Link) Link object.
 • forward_name (str) Name of the forward method.
 • args (tuple) Non-keyword arguments given to the forward method.
 • kwargs (dict) Keyword arguments given to the forward method.
 • out Return value of the forward method.

forward_preprocess(args)
Callback function invoked before a forward call of a link.

Parameters
 args – Callback data. It has the following attributes:
 • link (Link) Link object.
 • forward_name (str) Name of the forward method.
 • args (tuple) Non-keyword arguments given to the forward method.
 • kwargs (dict) Keyword arguments given to the forward method.
__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
4.4 Probability Distributions

Chainer provides many Distribution implementations in the chainer.distributions package.

4.4.1 Distributions

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.distributions.Bernoulli</td>
<td>Bernoulli Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Beta</td>
<td>Beta Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Categorical</td>
<td>Categorical Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Cauchy</td>
<td>Cauchy Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Chisquare</td>
<td>Chi-Square Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Dirichlet</td>
<td>Dirichlet Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Exponential</td>
<td>Exponential Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Gamma</td>
<td>Gamma Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Independent</td>
<td>Independent distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Laplace</td>
<td>Laplace Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.LogNormal</td>
<td>Logarithm Normal Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.OneHotCategorical</td>
<td>OneHotCategorical Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Pareto</td>
<td>Pareto Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Poisson</td>
<td>Poisson Distribution.</td>
</tr>
<tr>
<td>chainer.distributions.Uniform</td>
<td>Uniform Distribution.</td>
</tr>
</tbody>
</table>

class chainer.distributions.Bernoulli

(p=None, logit=None, binary_check=False)

Bernoulli Distribution.

The probability mass function of the distribution is expressed as

\[
P(x = 1; p) = p \\
P(x = 0; p) = 1 - p
\]

Parameters

- **p** (Variable or N-dimensional array) – Parameter of distribution representing \(p \). Either \(p \) or **logit** (not both) must have a value.

- **logit** (Variable or N-dimensional array) – distribution representing \(\log\{p/(1 - p)\} \). Either \(p \) or **logit** (not both) must have a value.
Methods

cdf (x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf (x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf (x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob (x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function (x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity (x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Perplexity function value evaluated at x.

Return type Variable

prob (x)
Evaluates probability at the given points.
Parameters `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Probability evaluated at `x`.

Return type *Variable*

```
sample(sample_shape=())
```
Samples random points from the distribution.

This function calls `sample_n` and reshapes a result of `sample_n` to `sample_shape + batch_shape + event_shape`. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override `sample_n`.

Parameters `sample_shape` *(tuple of int)* – Sampling shape.

Returns Sampled random points.

Return type *Variable*

```
sample_n(n)
```
Samples `n` random points from the distribution.

This function returns sampled points whose shape is `(n,) + batch_shape + event_shape`. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters `n` *(int)* – Sampling size.

Returns sampled random points.

Return type *Variable*

```
survival_function(x)
```
Evaluates the survival function at the given points.

Parameters `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Survival function value evaluated at `x`.

Return type *Variable*

```
__eq__()
```
Return `self`==`value`.

```
__ne__()
```
Return `self`!=`value`.

```
__lt__()
```
Return `self`<`value`.

```
__le__()
```
Return `self`<=`value`.

```
__gt__()
```
Return `self`>`value`.

```
__ge__()
```
Return `self`>=`value`.
Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

logit

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.
chainer.distributions.Beta

class chainer.distributions.Beta(a, b)

Beta Distribution.

The probability density function of the distribution is expressed as

\[f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, \]

for \(0 < x < 1, \alpha > 0, \beta > 0\).

Parameters

- **a** *(Variable or N-dimensional array)* – Parameter of distribution representing \(\alpha\).
- **b** *(Variable or N-dimensional array)* – Parameter of distribution representing \(\beta\).

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x\).

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x\).

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x\).

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at \(x\).

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.
Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at x.

Return type *Variable*

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at x.

Return type *Variable*

prob(x)
Evaluates probability at the given points.

Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Probability evaluated at x.

Return type *Variable*

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type *Variable*

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns Sampled random points.

Return type *Variable*

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Survival function value evaluated at x.

Return type *Variable*

__eq__()
Return self==value.

__ne__()
Return self!=value.
__lt__(self, value)
 Return self<value.

__le__(self, value)
 Return self<=value.

__gt__(self, value)
 Return self>value.

__ge__(self, value)
 Return self>=value.

Attributes

a
b

batch_shape
 Returns the shape of a batch.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

covariance
 Returns the covariance of the distribution.

 Returns The covariance of the distribution.

 Return type Variable

tuple covariance

entropy

event_shape
 Returns the shape of an event.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

mean

mode
 Returns the mode of the distribution.

 Returns The mode of the distribution.

 Return type Variable

params
 Returns the parameters of the distribution.

 Returns The parameters of the distribution.

 Return type dict

stddev
 Returns the standard deviation of the distribution.

 Returns The standard deviation of the distribution.

 Return type Variable

support
 Returns the support of the distribution.
Returns String that means support of this distribution.
Return type str

variance

xp Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns \texttt{numpy} or \texttt{cupy}.

chainer.distributions.Categorical

class chainer.distributions.Categorical\(p=\text{None, } **\text{kwargs}\)

Categorical Distribution.

The probability mass function of the distribution is expressed as

\[
P(x = i; p) = p_i
\]

Parameters

• \(p\) (\texttt{Variable} or \texttt{N-dimensional array}) – Parameter of distribution.
• \(\logit\) (\texttt{Variable} or \texttt{N-dimensional array}) – Parameter of distribution representing \(\log\{p\} + C\). Either \(p\) or \(\logit\) (not both) must have a value.

Methods

cdf\(x)\)

Evaluates the cumulative distribution function at the given points.

Parameters \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x\).

Return type \texttt{Variable}

icdf\(x)\)

Evaluates the inverse cumulative distribution function at the given points.

Parameters \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x\).

Return type \texttt{Variable}

log_cdf\(x)\)

Evaluates the log of cumulative distribution function at the given points.

Parameters \(x\) (\texttt{Variable} or \texttt{N-dimensional array}) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x\).

Return type \texttt{Variable}

log_prob\(x)\)

Evaluates the logarithm of probability at the given points.
Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Logarithm of probability evaluated at x.

Return type Variable

$log_survival_function(x)$
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at x.

Return type Variable

$perplexity(x)$
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at x.

Return type Variable

$prob(x)$
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Probability evaluated at x.

Return type Variable

$sample(sample_shape=())$
Samples random points from the distribution.

This function calls $sample_n$ and reshapes a result of $sample_n$ to $sample_shape + batch_shape + event_shape$. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override $sample_n$.

Parameters $sample_shape$ (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

$sample_n(n)$
Samples n random points from the distribution.

This function returns sampled points whose shape is $(n,) + batch_shape + event_shape$. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

$survival_function(x)$
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.
Returns Survival function value evaluated at \(x \).

Return type Variable

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.

Attributes

batch_shape

Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance

Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape

Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

log_p

mean

Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode

Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p
params
Returns the parameters of the distribution.

Returns
The parameters of the distribution.

Return type
dict

stddev
Returns the standard deviation of the distribution.

Returns
The standard deviation of the distribution.

Return type
Variable

support
Returns the support of the distribution.

Returns
String that means support of this distribution.

Return type
str

variance
Returns the variance of the distribution.

Returns
The variance of the distribution.

Return type
Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

cipher.distributions.Cauchy

class cipher.distributions.Cauchy(loc, scale)
Cauchy Distribution.

The probability density function of the distribution is expressed as

\[p(x; x_0, \gamma) = \frac{1}{\pi \left((x - x_0)^2 + \gamma^2 \right)} \]

Parameters

- **loc** *(Variable or N-dimensional array)* – Parameter of distribution representing the location \(x_0\).

- **scale** *(Variable or N-dimensional array)* – Parameter of distribution representing the scale \(\gamma\).

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters

- **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Cumulative distribution function value evaluated at \(x\).

Return type
Variable
icdf \((x)\)
Evaluates the inverse cumulative distribution function at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Inverse cumulative distribution function value evaluated at \(x\).

Return type *Variable*

log_cdf \((x)\)
Evaluates the log of cumulative distribution function at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Logarithm of cumulative distribution function value evaluated at \(x\).

Return type *Variable*

log_prob \((x)\)
Evaluates the logarithm of probability at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Logarithm of probability evaluated at \(x\).

Return type *Variable*

log_survival_function \((x)\)
Evaluates the logarithm of survival function at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Logarithm of survival function value evaluated at \(x\).

Return type *Variable*

perplexity \((x)\)
Evaluates the perplexity function at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Perplexity function value evaluated at \(x\).

Return type *Variable*

prob \((x)\)
Evaluates probability at the given points.

Parameters
\(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns
Probability evaluated at \(x\).

Return type *Variable*

sample *(sample_shape=())*
Samples random points from the distribution.

This function calls \(sample_n\) and reshapes a result of \(sample_n\) to \(sample_shape + batch_shape + event_shape\). On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override \(sample_n\).
Parameters `sample_shape` (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type `Variable`

`sampel_n(n)`

Samples n random points from the distribution.

This function returns sampled points whose shape is \((n,) + batch_shape + event_shape\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters `n` (int) – Sampling size.

Returns Sampled random points.

Return type `Variable`

`survival_function(x)`

Evaluates the survival function at the given points.

Parameters `x` (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Survival function value evaluated at \(x\).

Return type `Variable`

```python
__eq__(self, value)
return self==value.

__ne__(self, value)
return self!=value.

__lt__(self, value)
return self<value.

__le__(self, value)
return self<=value.

__gt__(self, value)
return self>value.

__ge__(self, value)
return self>=value.
```

Attributes

`batch_shape`

Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type `tuple`

`covariance`

Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type `Variable`

`entropy`
event_shape
Returns the shape of an event.

- **Returns**: The shape of a sample that is not identical and independent.
- **Return type**: tuple

loc
mean
mode
Returns the mode of the distribution.

- **Returns**: The mode of the distribution.
- **Return type**: Variable

params
Returns the parameters of the distribution.

- **Returns**: The parameters of the distribution.
- **Return type**: dict

scale
stddev
Returns the standard deviation of the distribution.

- **Returns**: The standard deviation of the distribution.
- **Return type**: Variable

support
Returns the support of the distribution.

- **Returns**: String that means support of this distribution.
- **Return type**: str

variance
xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns **numpy** or **cupy**.

chainer.distributions.Chisquare

class `chainer.distributions.Chisquare(k)`
Chi-Square Distribution.

The probability density function of the distribution is expressed as

\[
p(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}
\]

Parameters
- **k** (*Variable* or *N-dimensional array*) – Parameter of distribution.
Methods

cdf (x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at x.
Return type Variable

icdf (x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at x.
Return type Variable

log_cdf (x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at x.
Return type Variable

log_prob (x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at x.
Return type Variable

log_survival_function (x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at x.
Return type Variable

perplexity (x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Perplexity function value evaluated at x.
Return type Variable

prob (x)
Evaluates probability at the given points.
Parameters **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns Probability evaluated at *x*.

Return type *Variable*

sample(*sample_shape=*())

Samples random points from the distribution.

This function calls *sample_n* and reshapes a result of *sample_n* to *sample_shape + batch_shape + event_shape*. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override *sample_n*.

Parameters **sample_shape** (*tuple of int*) – Sampling shape.

Returns Sampled random points.

Return type *Variable*

sample_n(*n*)

Samples *n* random points from the distribution.

This function returns sampled points whose shape is (*n*) + *batch_shape + event_shape*. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters **n** (*int*) – Sampling size.

Returns sampled random points.

Return type *Variable*

survival_function(*x*)

Evaluates the survival function at the given points.

Parameters **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns Survival function value evaluated at *x*.

Return type *Variable*

__eq__()

Return *self==value*.

__ne__()

Return *self!=value*.

__lt__()

Return *self<value*.

__le__()

Return *self<=value*.

__gt__()

Return *self>value*.

__ge__()

Return *self>=value*.
Attributes

batch_shape
Returns the shape of a batch.

 Returns The shape of a sample that is not identical and independent.
 Return type tuple

covariance
Returns the covariance of the distribution.

 Returns The covariance of the distribution.
 Return type Variable

entropy

event_shape
Returns the shape of an event.

 Returns The shape of a sample that is not identical and independent.
 Return type tuple

k

mean

mode
Returns the mode of the distribution.

 Returns The mode of the distribution.
 Return type Variable

params
Returns the parameters of the distribution.

 Returns The parameters of the distribution.
 Return type dict

stddev
Returns the standard deviation of the distribution.

 Returns The standard deviation of the distribution.
 Return type Variable

support
Returns the support of the distribution.

 Returns String that means support of this distribution.
 Return type str

variance

xp
Array module for the distribution.
Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

4.4. Probability Distributions 801
chainer.distributions.Dirichlet

```python
class chainer.distributions.Dirichlet(alpha)
```

Dirichlet Distribution.

The probability density function of the distribution is expressed as

\[
p(x) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}
\]

Parameters

- `alpha (Variable or N-dimensional array)` – Parameter of distribution.

Methods

- `cdf(x)`
 Evaluates the cumulative distribution function at the given points.

 Parameters
 - `x (Variable or N-dimensional array)` – Data points in the domain of the distribution

 Returns
 - Cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- `icdf(x)`
 Evaluates the inverse cumulative distribution function at the given points.

 Parameters
 - `x (Variable or N-dimensional array)` – Data points in the domain of the distribution

 Returns
 - Inverse cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- `log_cdf(x)`
 Evaluates the log of cumulative distribution function at the given points.

 Parameters
 - `x (Variable or N-dimensional array)` – Data points in the domain of the distribution

 Returns
 - Logarithm of cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- `log_prob(x)`
 Evaluates the logarithm of probability at the given points.

 Parameters
 - `x (Variable or N-dimensional array)` – Data points in the domain of the distribution

 Returns
 - Logarithm of probability evaluated at `x`.

 Return type `Variable`

- `log_survival_function(x)`
 Evaluates the logarithm of survival function at the given points.

 Parameters
 - `x (Variable or N-dimensional array)` – Data points in the domain of the distribution

 Returns
 - Logarithm of survival function value evaluated at `x`.

 Return type `Variable`
perplexity\((x) \)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Perplexity function value evaluated at \(x \).

Return type Variable

prob\((x) \)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Probability evaluated at \(x \).

Return type Variable

sample\((sample_shape=()) \)
Samples random points from the distribution.

This function calls \(\text{sample_n} \) and reshapes a result of \(\text{sample_n} \) to \(\text{sample_shape} + \text{batch_shape} + \text{event_shape} \). On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override \(\text{sample_n} \).

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n\((n) \)
Samples \(n \) random points from the distribution.

This function returns sampled points whose shape is \((n,) + \text{batch_shape} + \text{event_shape} \). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function\((x) \)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Survival function value evaluated at \(x \).

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.
__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

alpha
alpha0

batch_shape
 Returns the shape of a batch.

 Returns The shape of a sample that is not identical and independent.
 Return type tuple

covariance
 Returns the covariance of the distribution.

 Returns The covariance of the distribution.
 Return type Variable

entropy

event_shape
 Returns the shape of an event.

 Returns The shape of a sample that is not identical and independent.
 Return type tuple

mean

mode
 Returns the mode of the distribution.

 Returns The mode of the distribution.
 Return type Variable

params
 Returns the parameters of the distribution.

 Returns The parameters of the distribution.
 Return type dict

stddev
 Returns the standard deviation of the distribution.

 Returns The standard deviation of the distribution.
 Return type Variable

support
 Returns the support of the distribution.

 Returns String that means support of this distribution.
 Return type str

variance
xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

`chainer.distributions.Exponential`

class chainer.distributions.Exponential(lam)

Exponential Distribution.

The probability density function of the distribution is expressed as

\[p(x; \lambda) = \lambda e^{-\lambda x} \]

Parameters lam (Variable or N-dimensional array) – Parameter of distribution \(\lambda \).

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x \).

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x \).

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x \).

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at \(x \).

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.
Parameters x (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at x.

Return type **Variable**

perplexity(x)

Evaluates the perplexity function at the given points.

Parameters x (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at x.

Return type **Variable**

prob(x)

Evaluates probability at the given points.

Parameters x (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution.

Returns Probability evaluated at x.

Return type **Variable**

sample(sample_shape=())

Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type **Variable**

sample_n(n)

Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type **Variable**

survival_function(x)

Evaluates the survival function at the given points.

Parameters x (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution.

Returns Survival function value evaluated at x.

Return type **Variable**

__eq__()

Return self==value.

__ne__()

Return self!=value.
__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

lam

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.
Return type str

variance

xp

Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

chainer.distributions.Gamma

class chainer.distributions.Gamma(k, theta)

Gamma Distribution.

Parameters

- `k` (*Variable or N-dimensional array*) – Parameter of distribution.
- `theta` (*Variable or N-dimensional array*) – Parameter of distribution.

Methods

cdf(x)

Evaluates the cumulative distribution function at the given points.

Parameters
\(x \) (*Variable or N-dimensional array*) – Data points in the domain of the distribution

Returns
Cumulative distribution function value evaluated at \(x \).

Return type
`Variable`

icdf(x)

Evaluates the inverse cumulative distribution function at the given points.

Parameters
\(x \) (*Variable or N-dimensional array*) – Data points in the domain of the distribution

Returns
Inverse cumulative distribution function value evaluated at \(x \).

Return type
`Variable`

log_cdf(x)

Evaluates the log of cumulative distribution function at the given points.

Parameters
\(x \) (*Variable or N-dimensional array*) – Data points in the domain of the distribution

Returns
Logarithm of cumulative distribution function value evaluated at \(x \).

Return type
`Variable`

log_prob(x)

Evaluates the logarithm of probability at the given points.

Parameters
\(x \) (*Variable or N-dimensional array*) – Data points in the domain of the distribution

Returns
Logarithm of probability evaluated at \(x \).

Return type
`Variable`

log_survival_function(x)

Evaluates the logarithm of survival function at the given points.
Parameters x \((\text{Variable or N-dimensional array})\) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity \((x)\)
Evaluates the perplexity function at the given points.

Parameters x \((\text{Variable or N-dimensional array})\) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at x.

Return type Variable

prob \((x)\)
Evaluates probability at the given points.

Parameters x \((\text{Variable or N-dimensional array})\) – Data points in the domain of the distribution.

Returns Probability evaluated at x.

Return type Variable

sample \((\text{sample_shape}=())\)
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape \((\text{tuple of int})\) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n \((n)\)
Samples n random points from the distribution.

This function returns sampled points whose shape is \((n,) + \text{batch_shape} + \text{event_shape}\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n \((\text{int})\) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function \((x)\)
Evaluates the survival function at the given points.

Parameters x \((\text{Variable or N-dimensional array})\) – Data points in the domain of the distribution.

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.
__lt__(\)
Return self<value.

__le__(\)
Return self<=value.

__gt__(\)
Return self>value.

__ge__(\)
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

 \textbf{Returns} The shape of a sample that is not identical and independent.
 \textbf{Return type} tuple

covariance
Returns the covariance of the distribution.

 \textbf{Returns} The covariance of the distribution.
 \textbf{Return type} Variable

entropy

event_shape
Returns the shape of an event.

 \textbf{Returns} The shape of a sample that is not identical and independent.
 \textbf{Return type} tuple

k

mean

mode
Returns the mode of the distribution.

 \textbf{Returns} The mode of the distribution.
 \textbf{Return type} Variable

params
Returns the parameters of the distribution.

 \textbf{Returns} The parameters of the distribution.
 \textbf{Return type} dict

stddev
Returns the standard deviation of the distribution.

 \textbf{Returns} The standard deviation of the distribution.
 \textbf{Return type} Variable

support
Returns the support of the distribution.

 \textbf{Returns} String that means support of this distribution.
Return type: `str`

- `theta`
- `variance`
- `xp`

Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

chainer.distributions.Geometric

class chainer.distributions.Geometric(p)

Geometric Distribution.

The probability mass function of the distribution is expressed as

\[Pr(x = k) = p(1 - p)^{k-1}, \text{for} k = 1, 2, 3, ... \]

Parameters

- `p` *(Variable or N-dimensional array)* – Parameter of distribution.

Methods

- **cdf**(x)

 Evaluates the cumulative distribution function at the given points.

 Parameters

 - `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

 Returns

 Cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- **icdf**(x)

 Evaluates the inverse cumulative distribution function at the given points.

 Parameters

 - `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

 Returns

 Inverse cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- **log_cdf**(x)

 Evaluates the log of cumulative distribution function at the given points.

 Parameters

 - `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

 Returns

 Logarithm of cumulative distribution function value evaluated at `x`.

 Return type `Variable`

- **log_prob**(x)

 Evaluates the logarithm of probability at the given points.

 Parameters

 - `x` *(Variable or N-dimensional array)* – Data points in the domain of the distribution

 Returns

 Logarithm of probability evaluated at `x`.

 Return type `Variable`
log_survival_function \((x) \)
Evaluates the logarithm of survival function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns
Logarithm of survival function value evaluated at \(x \).

Return type *Variable*

perplexity \((x) \)
Evaluates the perplexity function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns
Perplexity function value evaluated at \(x \).

Return type *Variable*

prob \((x) \)
Evaluates probability at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns
Probability evaluated at \(x \).

Return type *Variable*

sample \((\text{sample_shape}()) \)
Samples random points from the distribution.

This function calls *sample_n* and reshapes a result of *sample_n* to *sample_shape* + *batch_shape* + *event_shape*. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override *sample_n*.

Parameters
- **sample_shape** (*tuple of int*) – Sampling shape.

Returns
Sampled random points.

Return type *Variable*

sample_n \((n) \)
Samples \(n \) random points from the distribution.

This function returns sampled points whose shape is \((n,) + \text{batch_shape} + \text{event_shape}\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters
- **n** (*int*) – Sampling size.

Returns
Sampled random points.

Return type *Variable*

survival_function \((x) \)
Evaluates the survival function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns
Survival function value evaluated at \(x \).

Return type *Variable*

__eq__
Return self==value.
__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

batch_shape
 Returns the shape of a batch.

 Returns: The shape of a sample that is not identical and independent.

 Return type: tuple

covariance
 Returns the covariance of the distribution.

 Returns: The covariance of the distribution.

 Return type: Variable

entropy
 Returns the entropy of the distribution.

 Returns: The entropy of the distribution.

 Return type: Variable

event_shape
 Returns the shape of an event.

 Returns: The shape of a sample that is not identical and independent.

 Return type: tuple

mean

mode
 Returns the mode of the distribution.

 Returns: The mode of the distribution.

 Return type: Variable

P

params
 Returns the parameters of the distribution.

 Returns: The parameters of the distribution.

 Return type: dict

stddev
 Returns the standard deviation of the distribution.
Returns The standard deviation of the distribution.

Return type Variable

support

Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Gumbel

class chainer.distributions.Gumbel(loc, scale)

Gumbel Distribution.

The probability density function of the distribution is expressed as

\[
 f(x) = \frac{1}{\eta} \exp \left\{ -\frac{x - \mu}{\eta} \right\} \exp \left[-\exp \left\{ -\frac{x - \mu}{\eta} \right\} \right],
\]

Parameters

- **loc** *(Variable or N-dimensional array)* – Parameter of distribution \(\mu \).
- **scale** *(Variable or N-dimensional array)* – Parameter of distribution \(\eta \).

Methods

cdf(x)

Evaluates the cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x \).

Return type Variable

icdf(x)

Evaluates the inverse cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x \).

Return type Variable

log_cdf(x)

Evaluates the log of cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x \).
Return type: Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters:
- x (Variable or N-dimensional array): Data points in the domain of the distribution

Returns: Logarithm of probability evaluated at x.

Return type: Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters:
- x (Variable or N-dimensional array): Data points in the domain of the distribution

Returns: Logarithm of survival function value evaluated at x.

Return type: Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters:
- x (Variable or N-dimensional array): Data points in the domain of the distribution

Returns: Perplexity function value evaluated at x.

Return type: Variable

prob(x)
Evaluates probability at the given points.

Parameters:
- x (Variable or N-dimensional array): Data points in the domain of the distribution

Returns: Probability evaluated at x.

Return type: Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters:
- sample_shape (tuple of int): Sampling shape.

Returns: Sampled random points.

Return type: Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters:
- n (int): Sampling size.

Returns: Sampled random points.

Return type: Variable
survival_function (*x*)
Evaluates the survival function at the given points.

Parameters

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Survival function value evaluated at *x*.

Return type *Variable*

__eq__
Return `self==value`.

__ne__
Return `self!=value`.

__lt__
Return `self<value`.

__le__
Return `self<=value`.

__gt__
Return `self>value`.

__ge__
Return `self>=value`.

Attributes

batch_shape
Returns the shape of a batch.

Returns
The shape of a sample that is not identical and independent.

Return type *tuple*

covariance
Returns the covariance of the distribution.

Returns
The covariance of the distribution.

Return type *Variable*

entropy

event_shape
Returns the shape of an event.

Returns
The shape of a sample that is not identical and independent.

Return type *tuple*

loc

mean

mode
Returns the mode of the distribution.

Returns
The mode of the distribution.

Return type *Variable*
params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns \texttt{numpy} or \texttt{cupy}.

\texttt{chainer.distributions.Independent}

\texttt{class} \texttt{chainer.distributions.Independent(distribution, reinterpreted_batch_ndims=None)}

Independent distribution.

Parameters

- \texttt{distribution (Distribution)} – The base distribution instance to transform.
- \texttt{reinterpreted_batch_ndims (int)} – Integer number of rightmost batch dims which will be regarded as event dims. When \texttt{None} all but the first batch axis (batch axis 0) will be transferred to event dimensions.

Methods

cdf (x)
Evaluates the cumulative distribution function at the given points.

Parameters \texttt{x (Variable or N-dimensional array)} – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \texttt{x}.

Return type Variable

icdf (x)
The inverse cumulative distribution function for multivariate variable.

Cumulative distribution function for multivariate variable is not invertible. This function always raises \texttt{RuntimeError}.

Parameters \texttt{x (Variable or N-dimensional array)} – Data points in the codomain of the distribution

Raises `RuntimeError` –

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Logarithm of cumulative distribution function value evaluated at *x*.

Return type *Variable*

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Logarithm of probability evaluated at *x*.

Return type *Variable*

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Logarithm of survival function value evaluated at *x*.

Return type *Variable*

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Perplexity function value evaluated at *x*.

Return type *Variable*

prob(x)
Evaluates probability at the given points.

Parameters
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns
Probability evaluated at *x*.

Return type *Variable*

sample(sample_shape=())
Samples random points from the distribution.

This function calls `sample_n` and reshapes a result of `sample_n` to `sample_shape + batch_shape + event_shape`. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override `sample_n`.

Parameters
- **sample_shape** (*tuple of int*) – Sampling shape.

Returns
Sampled random points.

Return type *Variable*
sample_n(n)
Samples n random points from the distribution.
This function returns sampled points whose shape is \((n,) + batch_shape + event_shape\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters
- n (int) – Sampling size.

Returns
- sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters
- x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns
- Survival function value evaluated at \(x\).

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
The covariance of the independent distribution.

By definition, the covariance of the new distribution becomes block diagonal matrix. Let \(\Sigma_x\) be the covariance matrix of the original random variable \(x \in \mathbb{R}^d\), and \(x^{(1)}, x^{(2)}, \ldots, x^{(m)}\) be the \(m\) i.i.d. random variables, new covariance matrix \(\Sigma_y\) of \(y = [x^{(1)}, x^{(2)}, \ldots, x^{(m)}] \in \mathbb{R}^{md}\) can be written as

\[
\begin{bmatrix}
\Sigma_x^{1} & 0 & \cdots & 0 \\
0 & \Sigma_x^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Sigma_x^{m}
\end{bmatrix}
\]

Note that this relationship holds only if the covariance matrix of the original distribution is given analytically.
Returns The covariance of the distribution.

Return type Variable

distribution

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

reinterpreted_batch_ndims

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.
Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.
chainer.distributions.Laplace

class chainer.distributions.Laplace(loc, scale)
Laplace Distribution.

The probability density function of the distribution is expressed as

\[p(x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b} \right) \]

Parameters

- **loc** *(Variable or N-dimensional array)* – Parameter of distribution representing the location \(\mu \).
- **scale** *(Variable or N-dimensional array)* – Parameter of distribution representing the scale \(b \).

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x \).

Return type **Variable**

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x \).

Return type **Variable**

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x \).

Return type **Variable**

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at \(x \).

Return type **Variable**

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.
Parameters \(x \) (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at \(x \).

Return type Variable

perplexity \((x)\)

Evaluates the perplexity function at the given points.

Parameters \(x \) (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Perplexity function value evaluated at \(x \).

Return type Variable

prob \((x)\)

Evaluates probability at the given points.

Parameters \(x \) (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Probability evaluated at \(x \).

Return type Variable

sample \((\text{sample_shape=()})\)

Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n \((n)\)

Samples \(n \) random points from the distribution.

This function returns sampled points whose shape is \((n,) + \text{batch_shape} + \text{event_shape}\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters \(n \) (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function \((x)\)

Evaluates the survival function at the given points.

Parameters \(x \) (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Survival function value evaluated at \(x \).

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.
__lt__(self, value)
Return self<value.

__le__(self, value)
Return self<=value.

__gt__(self, value)
Return self>value.

__ge__(self, value)
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

tuple

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
xp

Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

chainer.distributions.LogNormal

```python
class chainer.distributions.LogNormal(mu, sigma)
```

Logarithm Normal Distribution.

The probability density function of the distribution is expressed as

\[
p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma^2 x} \exp \left(-\frac{(\log x - \mu)^2}{2\sigma^2} \right)
\]

Parameters

- `mu` (*Variable* or *N-dimensional array*) – Parameter of distribution \(\mu \).
- `sigma` (*Variable* or *N-dimensional array*) – Parameter of distribution \(\sigma \).

Methods

- **cdf\((x)\)**

 Evaluates the cumulative distribution function at the given points.

 Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

 Returns Cumulative distribution function value evaluated at \(x \).

 Return type *Variable*

- **icdf\((x)\)**

 Evaluates the inverse cumulative distribution function at the given points.

 Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

 Returns Inverse cumulative distribution function value evaluated at \(x \).

 Return type *Variable*

- **log_cdf\((x)\)**

 Evaluates the log of cumulative distribution function at the given points.

 Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

 Returns Logarithm of cumulative distribution function value evaluated at \(x \).

 Return type *Variable*

- **log_prob\((x)\)**

 Evaluates the logarithm of probability at the given points.

 Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

 Returns Logarithm of probability evaluated at \(x \).

 Return type *Variable*
log_survival_function \((x)\)
Evaluates the logarithm of survival function at the given points.

Parameters
\(x\) (`Variable` or `N-dimensional array`) – Data points in the domain of the distribution

Returns
Logarithm of survival function value evaluated at \(x\).

Return type `Variable`

perplexity \((x)\)
Evaluates the perplexity function at the given points.

Parameters
\(x\) (`Variable` or `N-dimensional array`) – Data points in the domain of the distribution

Returns
Perplexity function value evaluated at \(x\).

Return type `Variable`

prob \((x)\)
Evaluates probability at the given points.

Parameters
\(x\) (`Variable` or `N-dimensional array`) – Data points in the domain of the distribution

Returns
Probability evaluated at \(x\).

Return type `Variable`

sample \(\left(sample_shape=()\right)\)
Samples random points from the distribution.

This function calls `sample_n` and reshapes a result of `sample_n` to `sample_shape + batch_shape + event_shape`. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override `sample_n`.

Parameters
`sample_shape` (`tuple of int`) – Sampling shape.

Returns
Sampled random points.

Return type `Variable`

sample_n \((n)\)
Samples \(n\) random points from the distribution.

This function returns sampled points whose shape is \((n,) + batch_shape + event_shape\). When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters
\(n\) (`int`) – Sampling size.

Returns
sampled random points.

Return type `Variable`

survival_function \((x)\)
Evaluates the survival function at the given points.

Parameters
\(x\) (`Variable` or `N-dimensional array`) – Data points in the domain of the distribution

Returns
Survival function value evaluated at \(x\).

Return type `Variable`

```python
__eq__()
```

Return `self==value`.

4.4. Probability Distributions 825
__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

covariance
Returns the covariance of the distribution.

 Returns The covariance of the distribution.

 Return type Variable

entropy

event_shape
Returns the shape of an event.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

mean

mode
Returns the mode of the distribution.

 Returns The mode of the distribution.

 Return type Variable

mu

params
Returns the parameters of the distribution.

 Returns The parameters of the distribution.

 Return type dict

sigma

stddev
Returns the standard deviation of the distribution.

 Returns The standard deviation of the distribution.

 Return type Variable
support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.
 Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.MultivariateNormal

class chainer.distributions.MultivariateNormal(loc, **kwargs)
MultivariateNormal Distribution.
The probability density function of the distribution is expressed as

\[p(x; \mu, V) = \frac{1}{\sqrt{\det(2\pi V)}} \exp \left(-\frac{1}{2}(x - \mu)V^{-1}(x - \mu) \right) \]

Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the location \(\mu \).

• scale_tril (Variable or N-dimensional array) – Parameter of distribution representing the scale \(L \) such that \(V = LL^T \).

Methods

__copy__()

cdf (x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x \).

Return type Variable

icdf (x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x \).

Return type Variable

log_cdf (x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x \).
Return type Variable

log_prob

Evaluates the logarithm of probability at the given points.

Parameters
- x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function

Evaluates the logarithm of survival function at the given points.

Parameters
- x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity

Evaluates the perplexity function at the given points.

Parameters
- x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Perplexity function value evaluated at x.

Return type Variable

prob

Evaluates probability at the given points.

Parameters
- x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Probability evaluated at x.

Return type Variable

sample

Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters
- sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n

Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters
- n (int) – Sampling size.

Returns Sampled random points.

Return type Variable
survival_function *(x)*

Evaluates the survival function at the given points.

Parameters

- **x** *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns

Survival function value evaluated at *x*.

Return type *Variable*

Attributes

- **batch_shape**
 Returns the shape of a batch.

 Returns
 The shape of a sample that is not identical and independent.

 Return type *tuple*

- **covariance**
 Returns the covariance of the distribution.

 Returns
 The covariance of the distribution.

 Return type *Variable*

- **d**

- **entropy**

- **event_shape**
 Returns the shape of an event.

 Returns
 The shape of a sample that is not identical and independent.

 Return type *tuple*

- **loc**

- **mean**

- **mode**

 Returns the mode of the distribution.

 Returns
 The mode of the distribution.

 Return type *Variable*
params
Returns the parameters of the distribution.
Returns The parameters of the distribution.
Return type dict

scale_tril

stddev
Returns the standard deviation of the distribution.
Returns The standard deviation of the distribution.
Return type Variable

support
Returns the support of the distribution.
Returns String that means support of this distribution.
Return type str

variance
Returns the variance of the distribution.
Returns The variance of the distribution.
Return type Variable

xp
Array module for the distribution.
Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

class **chainer.distributions.Normal**

class chainer.distributions.Normal (loc, scale=\texttt{None}, **kwargs)

Normal Distribution.

The probability density function of the distribution is expressed as

\[
p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)
\]

Parameters

- **loc** (Variable or N-dimensional array) – Parameter of distribution representing the location \(\mu\). This is the mean parameter.
- **scale** (Variable or N-dimensional array) – Parameter of distribution representing the scale \(\sigma\). Either scale or log_scale (not both) must have a value.
- **log_scale** (Variable or N-dimensional array) – Parameter of distribution representing the scale \(\log(\sigma)\). Either scale or log_scale (not both) must have a value.
Methods

cdf \(x\)
Evaluates the cumulative distribution function at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x\).

Return type Variable

icdf \(x\)
Evaluates the inverse cumulative distribution function at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x\).

Return type Variable

log_cdf \(x\)
Evaluates the log of cumulative distribution function at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x\).

Return type Variable

log_prob \(x\)
Evaluates the logarithm of probability at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at \(x\).

Return type Variable

log_survival_function \(x\)
Evaluates the logarithm of survival function at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at \(x\).

Return type Variable

perplexity \(x\)
Evaluates the perplexity function at the given points.

Parameters \(x\) *(Variable or N-dimensional array)* – Data points in the domain of the distribution

Returns Perplexity function value evaluated at \(x\).

Return type Variable

prob \(x\)
Evaluates probability at the given points.
Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns Probability evaluated at x.

Return type *Variable*

sample($sample_shape=()$)

Samples random points from the distribution.

This function calls *sample_n* and reshapes a result of *sample_n* to *sample_shape + batch_shape + event_shape*. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override *sample_n*.

Parameters *sample_shape*(*tuple* of *int*) – Sampling shape.

Returns Sampled random points.

Return type *Variable*

sample_n(n)

Samples n random points from the distribution.

This function returns sampled points whose shape is $(n,) + batch_shape + event_shape$. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters *n*(*int*) – Sampling size.

Returns sampled random points.

Return type *Variable*

survival_function(x)

Evaluates the survival function at the given points.

Parameters x (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

Returns Survival function value evaluated at x.

Return type *Variable*

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
Attributes

batch_shape
- Returns the shape of a batch.

 Returns: The shape of a sample that is not identical and independent.

 Return type: tuple

covariance
- Returns the covariance of the distribution.

 Returns: The covariance of the distribution.

 Return type: Variable

entropy

event_shape
- Returns the shape of an event.

 Returns: The shape of a sample that is not identical and independent.

 Return type: tuple

loc

log_scale

mean

mode
- Returns the mode of the distribution.

 Returns: The mode of the distribution.

 Return type: Variable

params
- Returns the parameters of the distribution.

 Returns: The parameters of the distribution.

 Return type: dict

scale

stddev

support
- Returns the support of the distribution.

 Returns: String that means support of this distribution.

 Return type: str

variance

xp
- Array module for the distribution.

 Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.
chainer.distributions.OneHotCategorical

class chainer.distributions.OneHotCategorical(p)

OneHotCategorical Distribution.

Parameters p (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf (x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf (x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf (x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob (x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function (x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity (x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution
Returns Perplexity function value evaluated at x.

Return type Variable

```python
prob(x)
```
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Probability evaluated at x.

Return type Variable

```python
sample(sample_shape=())
```
Samples random points from the distribution.

This function calls `sample_n` and reshapes a result of `sample_n` to `sample_shape + batch_shape + event_shape`. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override `sample_n`.

Parameters `sample_shape` (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

```python
sample_n(n)
```
Samples n random points from the distribution.

This function returns sampled points whose shape is $(n,) + batch_shape + event_shape$. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters `n` (int) – Sampling size.

Returns sampled random points.

Return type Variable

```python
survival_function(x)
```
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Survival function value evaluated at x.

Return type Variable

```python
__eq__()
```
Return self==value.

```python
__ne__()
```
Return self!=value.

```python
__lt__()
```
Return self<value.

```python
__le__()
```
Return self<=value.

```python
__gt__()
```
Return self>value.

```python
__ge__()
```
Return self>=value.
Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.
Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.
Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.
Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.
Return type tuple

log_p

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.
Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.
Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.
Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.
Return type str

variance
xp

Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Pareto

class chainer.distributions.Pareto(scale, alpha)

Pareto Distribution.

\[f(x) = \alpha x_m^\alpha (x)^{-(\alpha+1)}, \]

Parameters

- **scale** (Variable or N-dimensional array) – Parameter of distribution \(x_m \).
- **alpha** (Variable or N-dimensional array) – Parameter of distribution \(\alpha \).

Methods

cdf \((x)\)

Evaluates the cumulative distribution function at the given points.

Parameters **x** (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \(x \).

Return type Variable

icdf \((x)\)

Evaluates the inverse cumulative distribution function at the given points.

Parameters **x** (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \(x \).

Return type Variable

log_cdf \((x)\)

Evaluates the log of cumulative distribution function at the given points.

Parameters **x** (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of cumulative distribution function value evaluated at \(x \).

Return type Variable

log_prob \((x)\)

Evaluates the logarithm of probability at the given points.

Parameters **x** (Variable or N-dimensional array) – Data points in the domain of the distribution

Returns Logarithm of probability evaluated at \(x \).

Return type Variable

log_survival_function \((x)\)

Evaluates the logarithm of survival function at the given points.
Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at `x`.

Return type *Variable*

perplexity(`x`)
Evaluates the perplexity function at the given points.

Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at `x`.

Return type *Variable*

prob(`x`)
Evaluates probability at the given points.

Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Probability evaluated at `x`.

Return type *Variable*

sample(`sample_shape=()`)
Samples random points from the distribution.

This function calls `sample_n` and reshapes a result of `sample_n` to `sample_shape + batch_shape + event_shape`. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override `sample_n`.

Parameters `sample_shape` (*tuple of int*) – Sampling shape.

Returns Sampled random points.

Return type *Variable*

sample_n(`n`)
Samples `n` random points from the distribution.

This function returns sampled points whose shape is `(n,) + batch_shape + event_shape`. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters `n` (*int*) – Sampling size.

Returns Sampled random points.

Return type *Variable*

survival_function(`x`)
Evaluates the survival function at the given points.

Parameters `x` (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution.

Returns Survival function value evaluated at `x`.

Return type *Variable*

__eq__()
Return `self==value`.

__ne__()
Return `self!=value`.

Chapter 4. API Reference
__lt__(self, value)
 Return self<value.

__le__(self, value)
 Return self<=value.

__gt__(self, value)
 Return self>value.

__ge__(self, value)
 Return self>=value.

Attributes

alpha

batch_shape
 Returns the shape of a batch.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

covariance
 Returns the covariance of the distribution.

 Returns The covariance of the distribution.

 Return type Variable

entropy

event_shape
 Returns the shape of an event.

 Returns The shape of a sample that is not identical and independent.

 Return type tuple

mean

mode
 Returns the mode of the distribution.

 Returns The mode of the distribution.

 Return type Variable

params
 Returns the parameters of the distribution.

 Returns The parameters of the distribution.

 Return type dict

scale

stddev
 Returns the standard deviation of the distribution.

 Returns The standard deviation of the distribution.

 Return type Variable

support
 Returns the support of the distribution.
Returns String that means support of this distribution.

Return type str

variance

xp

Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns `numpy` or `cupy`.

chainer.distributions.Poisson

```python
class chainer.distributions.Poisson(lam)

Poisson Distribution.

The probability mass function of the distribution is expressed as

\[ P(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!} \]

**Parameters**

- **lam** (*Variable* or *N-dimensional array*) – Parameter of distribution. \( \lambda \)

**Methods**

**cdf**(x)

Evaluates the cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**  Cumulative distribution function value evaluated at \( x \).

**Return type**  Variable

**icdf**(x)

Evaluates the inverse cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**  Inverse cumulative distribution function value evaluated at \( x \).

**Return type**  Variable

**log_cdf**(x)

Evaluates the log of cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**  Logarithm of cumulative distribution function value evaluated at \( x \).

**Return type**  Variable

**log_prob**(x)

Evaluates the logarithm of probability at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**  Logarithm of probability evaluated at \( x \).
Return type: **Variable**

**log_survival_function**(*x*)
Evaluates the logarithm of survival function at the given points.

**Parameters**
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**
Logarithm of survival function value evaluated at *x*.

**Return type** **Variable**

**perplexity**(*x*)
Evaluates the perplexity function at the given points.

**Parameters**
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**
Perplexity function value evaluated at *x*.

**Return type** **Variable**

**prob**(*x*)
Evaluates probability at the given points.

**Parameters**
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**
Probability evaluated at *x*.

**Return type** **Variable**

**sample**(*sample_shape=())
Samples random points from the distribution.

This function calls **sample_n** and reshapes a result of **sample_n** to **sample_shape + batch_shape + event_shape**. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override **sample_n**.

**Parameters**
- **sample_shape** (*tuple of int*) – Sampling shape.

**Returns**
Sampled random points.

**Return type** **Variable**

**sample_n**(*n*)
Samples *n* random points from the distribution.

This function returns sampled points whose shape is (*n*) + **batch_shape + event_shape**. When implementing sampling code in a subclass, it is recommended that you override this method.

**Parameters**
- **n** (*int*) – Sampling size.

**Returns**
sampled random points.

**Return type** **Variable**

**survival_function**(*x*)
Evaluates the survival function at the given points.

**Parameters**
- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**
Survival function value evaluated at *x*.

**Return type** **Variable**
__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

__gt__()
    Return self>value.

__ge__()
    Return self>=value.

Attributes

batch_shape
    Returns the shape of a batch.
    
    Returns  The shape of a sample that is not identical and independent.
    
    Return type  tuple

covariance
    Returns the covariance of the distribution.
    
    Returns  The covariance of the distribution.
    
    Return type  Variable

entropy
    Returns the entropy of the distribution.
    
    Returns  The entropy of the distribution.
    
    Return type  Variable

event_shape
    Returns the shape of an event.
    
    Returns  The shape of a sample that is not identical and independent.
    
    Return type  tuple

lam

mean

mode
    Returns the mode of the distribution.
    
    Returns  The mode of the distribution.
    
    Return type  Variable

params
    Returns the parameters of the distribution.
    
    Returns  The parameters of the distribution.
    
    Return type  dict
stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Uniform

class chainer.distributions.Uniform(**kwargs)
Uniform Distribution.

The probability density function of the distribution is expressed as

\[
p(x; l, h) = \begin{cases} 
\frac{1}{h-l} & \text{if } l \leq x \leq h \\
0 & \text{otherwise}
\end{cases}
\]

Parameters

- **low** (**Variable** or **N-dimensional array**) – Parameter of distribution representing the lower bound \( l \).
- **high** (**Variable** or **N-dimensional array**) – Parameter of distribution representing the higher bound \( h \).

Methods

cdf \( (x) \)
Evaluates the cumulative distribution function at the given points.

Parameters **x** (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution

Returns Cumulative distribution function value evaluated at \( x \).

Return type Variable

icdf \( (x) \)
Evaluates the inverse cumulative distribution function at the given points.

Parameters **x** (**Variable** or **N-dimensional array**) – Data points in the domain of the distribution

Returns Inverse cumulative distribution function value evaluated at \( x \).

Return type Variable

4.4. Probability Distributions
**log_cdf** \((x)\)  
Evaluates the log of cumulative distribution function at the given points.

**Parameters**  
\(x\)  
(Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Logarithm of cumulative distribution function value evaluated at \(x\).

**Return type**  
Variable

**log_prob** \((x)\)  
Evaluates the logarithm of probability at the given points.

**Parameters**  
\(x\)  
(Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Logarithm of probability evaluated at \(x\).

**Return type**  
Variable

**log_survival_function** \((x)\)  
Evaluates the logarithm of survival function at the given points.

**Parameters**  
\(x\)  
(Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Logarithm of survival function value evaluated at \(x\).

**Return type**  
Variable

**perplexity** \((x)\)  
Evaluates the perplexity function at the given points.

**Parameters**  
\(x\)  
(Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Perplexity function value evaluated at \(x\).

**Return type**  
Variable

**prob** \((x)\)  
Evaluates probability at the given points.

**Parameters**  
\(x\)  
(Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Probability evaluated at \(x\).

**Return type**  
Variable

**sample** \((sample_shape=())\)  
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

**Parameters**  
\(sample\_shape\)  
(tuple of int) – Sampling shape.

**Returns**  
Sampled random points.

**Return type**  
Variable

**sample_n** \((n)\)  
Samples \(n\) random points from the distribution.
This function returns sampled points whose shape is \((n,) + \text{batch\_shape} + \text{event\_shape}\). When implementing sampling code in a subclass, it is recommended that you override this method.

**Parameters**  
\(n\) (int) – Sampling size.

**Returns**  
sampled random points.

**Return type**  
Variable

**survival\_function**(\(x\))  
Evaluates the survival function at the given points.

**Parameters**  
\(x\) (Variable or N-dimensional array) – Data points in the domain of the distribution

**Returns**  
Survival function value evaluated at \(x\).

**Return type**  
Variable

**Attributes**

**batch\_shape**  
Returns the shape of a batch.

**Returns**  
The shape of a sample that is not identical and independent.

**Return type**  
tuple

**covariance**  
Returns the covariance of the distribution.

**Returns**  
The covariance of the distribution.

**Return type**  
Variable

**entropy**

**event\_shape**  
Returns the shape of an event.

**Returns**  
The shape of a sample that is not identical and independent.

**Return type**  
tuple

**high**

**loc**
low
mean
mode
Returns the mode of the distribution.

Returns  The mode of the distribution.
Return type  Variable

params
Returns the parameters of the distribution.

Returns  The parameters of the distribution.
Return type  dict

scale
stddev
support
Returns the support of the distribution.

Returns  String that means support of this distribution.
Return type  str

variance
xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4.2 Functionals of distribution

chainer.cross_entropy
chainer.kl_divergence
chainer.register_kl

<table>
<thead>
<tr>
<th>chainer.cross_entropy</th>
<th>Computes Cross entropy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.kl_divergence</td>
<td>Computes Kullback-Leibler divergence.</td>
</tr>
<tr>
<td>chainer.register_kl</td>
<td>Decorator to register KL divergence function.</td>
</tr>
</tbody>
</table>

chainer.cross_entropy

chainer.cross_entropy( dist1, dist2 )

Computes Cross entropy.

For two continuous distributions \( p(x), q(x) \), it is expressed as

\[
H(p, q) = - \int p(x) \log q(x)dx
\]

For two discrete distributions \( p(x), q(x) \), it is expressed as

\[
H(p, q) = - \sum_x p(x) \log q(x)
\]

This function call \kl_divergence() and \entropy() of \dist1. Therefore, it is necessary to register KL divergence function with \register_kl() decoartor and define \entropy() in \dist1.

Parameters
• **dist1** (*Distribution*) – Distribution to calculate cross entropy $p$. This is the first (left) operand of the cross entropy.

• **dist2** (*Distribution*) – Distribution to calculate cross entropy $q$. This is the second (right) operand of the cross entropy.

**Returns** Output variable representing cross entropy $H(p, q)$.

**Return type** *Variable*

**chainer.kl_divergence**

**chainer.kl_divergence**(*dist1, dist2*)

Computes Kullback-Leibler divergence.

For two continuous distributions $p(x), q(x)$, it is expressed as

$$D_{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

For two discrete distributions $p(x), q(x)$, it is expressed as

$$D_{KL}(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)}$$

**Parameters**

• **dist1** (*Distribution*) – Distribution to calculate KL divergence $p$. This is the first (left) operand of the KL divergence.

• **dist2** (*Distribution*) – Distribution to calculate KL divergence $q$. This is the second (right) operand of the KL divergence.

**Returns** Output variable representing kl divergence $D_{KL}(p||q)$.

**Return type** *Variable*

Using **register_kl()**, we can define behavior of **kl_divergence()** for any two distributions.

**chainer.register_kl**

**chainer.register_kl**(*Dist1, Dist2*)

Decorator to register KL divergence function.

This decorator registers a function which computes Kullback-Leibler divergence. This function will be called by **kl_divergence()** based on the argument types.

**Parameters**

• **Dist1** (*type*) – type of a class inherit from *Distribution* to calculate KL divergence.

• **Dist2** (*type*) – type of a class inherit from *Distribution* to calculate KL divergence.

The decorated function takes an instance of Dist1 and Dist2 and returns KL divergence value.

**Example**

This is a simple example to register KL divergence. A function to calculate a KL divergence value between an instance of Dist1 and an instance of Dist2 is registered.
from chainer import distributions
@distributions.register_kl(Dist1, Dist2)
def _kl_dist1_dist2(dist1, dist2):
    return KL

4.4.3 Base classes

chainer.Distribution

class chainer.Distribution
    Interface of Distribution

    Distribution is a base class for dealing with probability distributions.

    This class provides the following capabilities.
    1. Sampling random points.
    2. Evaluating a probability-related function at a given realization value. (e.g., probability density function, probability mass function)
    3. Obtaining properties of distributions. (e.g., mean, variance)

    Note that every method and property that computes them from chainer.Variable can basically be differentiated.

    In this class, sampled random points and realization values given in probability-related function is called sample. Sample consists of batches, and each batch consists of independent events. Each event consists of values, and each value in an event cannot be sampled independently in general. Each event in a batch is independent while it is not sampled from an identical distribution. And each batch in sample is sampled from an identical distribution.

    Each part of the sample-batch-event hierarchy has its own shape, which is called sample_shape, batch_shape, and event_shape, respectively.

    On initialization, it takes distribution-specific parameters as inputs. batch_shape and event_shape is decided by the shape of the parameter when generating an instance of a class.

Example

The following code is an example of sample-batch-event hierarchy on using MultivariateNormal distribution. This makes 2d normal distributions. dist consists of 12(4 * 3) independent 2d normal distributions. And on initialization, batch_shape and event_shape is decided.

```python
>>> import chainer
>>> import chainer.distributions as D
>>> import numpy as np

>>> d = 2
>>> shape = (4, 3)
>>> loc = np.random.normal(...
 size=shape + (d,)).astype(np.float32)
>>> cov = np.random.normal(size=shape + (d, d)).astype(np.float32)
>>> cov = np.matmul(cov, np.rollaxis(cov, -1, -2))
```
Every probability-related function takes realization value whose shape is the concatenation of `sample_shape`, `batch_shape`, and `event_shape` and returns an evaluated value whose shape is the concatenation of `sample_shape` and `batch_shape`.

### Methods

#### cdf (x)
Evaluates the cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**

Cumulative distribution function value evaluated at `x`.

**Return type** *Variable*

#### icdf (x)
Evaluates the inverse cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**

Inverse cumulative distribution function value evaluated at `x`.

**Return type** *Variable*

#### log_cdf (x)
Evaluates the log of cumulative distribution function at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**

Logarithm of cumulative distribution function value evaluated at `x`.

**Return type** *Variable*

#### log_prob (x)
Evaluates the logarithm of probability at the given points.

**Parameters**

- **x** (*Variable* or *N-dimensional array*) – Data points in the domain of the distribution

**Returns**

Logarithm of probability evaluated at `x`.

**Return type** *Variable*

#### log_survival_function (x)
Evaluates the logarithm of survival function at the given points.
Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited distribution class, it is not recommended that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns Sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distribution.

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.
__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

**Attributes**

**batch_shape**  
Returns the shape of a batch.

  - **Returns**  The shape of a sample that is not identical and independent.
  - **Return type**  tuple

**covariance**  
Returns the covariance of the distribution.

  - **Returns**  The covariance of the distribution.
  - **Return type**  Variable

**entropy**  
Returns the entropy of the distribution.

  - **Returns**  The entropy of the distribution.
  - **Return type**  Variable

**event_shape**  
Returns the shape of an event.

  - **Returns**  The shape of a sample that is not identical and independent.
  - **Return type**  tuple

**mean**  
Returns the mean of the distribution.

  - **Returns**  The mean of the distribution.
  - **Return type**  Variable

**mode**  
Returns the mode of the distribution.

  - **Returns**  The mode of the distribution.
  - **Return type**  Variable

**params**  
Returns the parameters of the distribution.

  - **Returns**  The parameters of the distribution.
  - **Return type**  dict

**stddev**  
Returns the standard deviation of the distribution.
Returns
The standard deviation of the distribution.

Return type  Variable

support
Returns the support of the distribution.

Returns  String that means support of this distribution.

Return type  str

variance
Returns the variance of the distribution.

Returns  The variance of the distribution.

Return type  Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.5  Optimizers

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizers.AdaDelta</td>
<td>Zeiler’s ADADELTA.</td>
</tr>
<tr>
<td>chainer.optimizers.Adam</td>
<td>Adam optimizer.</td>
</tr>
<tr>
<td>CorrectedMomentumSGD</td>
<td>Momentum SGD optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.MomentumSGD</td>
<td>Momentum SGD optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.NesterovAG</td>
<td>Nesterov’s Accelerated Gradient.</td>
</tr>
<tr>
<td>chainer.optimizers.MSVAG</td>
<td>M-SVAG optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSprop</td>
<td>RMSprop optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSpropGraves</td>
<td>Alex Graves’s RMSprop.</td>
</tr>
<tr>
<td>chainer.optimizers.SGD</td>
<td>Vanilla Stochastic Gradient Descent.</td>
</tr>
<tr>
<td>chainer.optimizers.SMORMS3</td>
<td>Simon Funk’s SMORMS3.</td>
</tr>
</tbody>
</table>

4.5.1  chainer.optimizers.AdaDelta

class  chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)

Zeiler’s ADADELTA.


Parameters

- rho (float) – Exponential decay rate of the first and second order moments.
- eps (float) – Small value for the numerical stability.
Methods

**add_hook** *(hook, name=None, timing='auto')*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

**Parameters**

- **hook** *(callable)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.
- **timing** *(str)* – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

**call_hook** *(hook)*

**call_hooks** *(timing='pre')*

Invokes hook functions in registration order.

**check_nan_in_grads** ()

Checks if there is NaN in grads when dynamic loss scaling used.

**create_update_rule** ()

Creates a new update rule object.

This method creates an update rule object. It is called by `setup()` to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

**Returns** Update rule object.

**Return type** *UpdateRule*

**is_safe_to_update** ()

**loss_scaling** *(interval=1000, scale=None)*

Configures the loss scaling algorithm.

**Parameters**

- **interval** *(int)* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- **scale** *(float)* – Loss scaling factor. If `None`, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** *(auto=False)*

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**

- **auto** *(bool)* – Should be True if this method is called by an updater. In this case, `use_auto_new_epoch` should be set to True by the updater.

**reallocate_cleared_grads** ()

Reallocate gradients cleared by `cleargrad()`.
This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

```python
remove_hook(name)
```
Removes a hook function.

**Parameters**

- `name (str)` – Registered name of the hook function to remove.

```python
serialize(serializer)
```
Serializes or deserializes the optimizer.

**Parameters**

- `serializer (AbstractSerializer)` – Serializer or deserializer object.

```python
set_loss_scale(loss_scale)
```
Sets loss scaling factor.

```python
setup(link)
```
Sets a target link and initializes the optimizer states.

**Parameters**

- `link (Link)` – Target link object.

**Returns**

The optimizer instance.

---

**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link)`.

```python
update(lossfun=None, *args, **kwds)
```
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()
```

```python
use_cleargrads(use=True)
```
Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- `use (bool)` – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```
Enables use of parameter update in fp32.
__eq__()  
Return self==value.

__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

Attributes

ePOCH = 0
eps
   Alias to self.hyperparam.eps
rho
   Alias to self.hyperparam.rho
t = 0

target = None
use_auto_new_epoch = False

4.5.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad optimizer.
See: http://jmlr.org/papers/v12/duchi11a.html

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook (hook, name=None, timing='auto')
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
• **name** *(str)* – Name of the registration. If omitted, hook.name is used by default.

• **timing** *(str)* – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

`call_hook(hook)`

`call_hooks(timing='pre')`  
Invokes hook functions in registration order.

`check_nan_in_grads()`  
Checks if there is NaN in grads when dynamic loss scaling used.

`create_update_rule()`  
Creates a new update rule object.

This method creates an update rule object. It is called by `setup()` to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

**Returns**  
Update rule object.

**Return type**  
`UpdateRule`

`is_safe_to_update()`

`loss_scaling(interval=1000, scale=None)`  
Configures the loss scaling algorithm.

**Parameters**

• **interval** *(int)* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

• **scale** *(float)* – Loss scaling factor. If `None`, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

`new_epoch(auto=False)`  
Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**  
`auto` *(bool)* – Should be `True` if this method is called by an updater. In this case, `use_auto_new_epoch` should be set to `True` by the updater.

`reallocate_cleared_grads()`  
Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

`remove_hook(name)`  
Removes a hook function.

**Parameters**  
`name` *(str)* – Registered name of the hook function to remove.

`serialize(serializer)`  
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states
• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale (loss_scale)
Sets loss scaling factor.

setup (link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update (lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

update_loss_scale ()

use_cleargrads (use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

use_fp32_update (flag=True)
Enables use of parameter update in fp32.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.
__ge__(value)  
Return self>=value.

Attributes

epoch = 0

eps  
Alias to self.hyperparam.eps

lr  
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.3 chainer.optimizers.Adam

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0,  
weight_decay_rate=0, amsgrad=False, adabound=False,  
final_lr=0.1, gamma=0.001)  

Adam optimizer.

See: Adam: A Method for Stochastic Optimization

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay rate from alpha, as shown in the below paper.

Note that with the default values eta = 1 and weight_decay_rate = 0, this implementation is identical to the standard Adam method.

See: Fixing Weight Decay Regularization in Adam

A flag amsgrad to use the AMSGrad variant of Adam from the paper: On the Convergence of Adam and Beyond

A flag adabound to use the AdaBound variant of Adam from the paper: Adaptive Gradient Methods with Dynamic Bound of Learning Rate

Parameters

- **alpha (float)** – Coefficient of learning rate.
- **beta1 (float)** – Exponential decay rate of the first order moment.
- **beta2 (float)** – Exponential decay rate of the second order moment.
- **eps (float)** – Small value for the numerical stability.
- **eta (float)** – Schedule multiplier, can be used for warm restarts.
- **weight_decay_rate (float)** – Weight decay rate.
- **amsgrad (bool)** – Whether to use AMSGrad variant of Adam.
- **adabound (bool)** – Whether to use the AdaBound variant of Adam.
- **final_lr (float)** – Final (SGD) learning rate in AdaBound.
- **gamma (float)** – Convergence speed of the bound functions in AdaBound.
Methods

**add_hook** *(hook, name=None, timing='auto')*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

**Parameters**

- **hook** *(callable)* – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** *(str)* – Name of the registration. If omitted, hook.name is used by default.

- **timing** *(str)* – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

**call_hook** *(hook)*

**call_hooks** *(timing='pre')*

Invokes hook functions in registration order.

**check_nan_in_grads** ()

Checks if there is NaN in grads when dynamic loss scaling used.

**create_update_rule** ()

Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

**Returns** Update rule object.

**Return type** UpdateRule

**is_safe_to_update** ()

**loss_scaling** *(interval=1000, scale=None)*

Configures the loss scaling algorithm.

**Parameters**

- **interval** *(int)* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

- **scale** *(float)* – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** *(auto=False)*

Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**

- **auto** *(bool)* – Should be True if this method is called by an updater. In this case, use_auto_new_epoch should be set to True by the updater.

**reallocate_cleared_grads** ()

Reallocate gradients cleared by cleargrad().

4.5. Optimizers
This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

\texttt{remove\_hook(name)}
\begin{itemize}
  \item Removes a hook function.
\end{itemize}

\textbf{Parameters} \texttt{name (str)} – Registered name of the hook function to remove.

\texttt{serialize(serializer)}
\begin{itemize}
  \item Serializes or deserializes the optimizer.
\end{itemize}

\begin{itemize}
  \item It only saves or loads the following things:
  \begin{itemize}
    \item Optimizer states
    \item Global states (t and epoch)
  \end{itemize}
\end{itemize}

\textbf{It does not saves nor loads the parameters of the target link.} They should be separately saved or loaded.

\textbf{Parameters} \texttt{serializer (AbstractSerializer)} – Serializer or deserializer object.

\texttt{set\_loss\_scale(loss\_scale)}
\begin{itemize}
  \item Sets loss scaling factor.
\end{itemize}

\texttt{setup(link)}
\begin{itemize}
  \item Sets a target link and initializes the optimizer states.
\end{itemize}

\begin{itemize}
  \item Given link is set to the \texttt{target} attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.
\end{itemize}

\textbf{Parameters} \texttt{link (Link)} – Target link object.

\textbf{Returns} The optimizer instance.

\textbf{Note:} As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., \texttt{optimizer = SomeOptimizer().setup(link)}.

\texttt{update(lossfun=None, *args, **kwds)}
\begin{itemize}
  \item Updates parameters based on a loss function or computed gradients.
\end{itemize}

This method runs in two ways.

\begin{itemize}
  \item If \texttt{lossfun} is given, then it is used as a loss function to compute gradients.
  \item Otherwise, this method assumes that the gradients are already computed.
\end{itemize}

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

\texttt{update\_loss\_scale()}

\texttt{use\_cleargrads(use=True)}
\begin{itemize}
  \item Enables or disables use of \texttt{cleargrads()} in \texttt{update}.
\end{itemize}

\textbf{Parameters} \texttt{use (bool)} – If \texttt{True}, this function enables use of \texttt{cleargrads}. If \texttt{False}, disables use of \texttt{cleargrads} (\texttt{zerograd} is used).

\textbf{Deprecation Warning:} since version v2.0: Note that \texttt{update()} calls \texttt{cleargrads()} by default. \texttt{cleargrads()} is more efficient than \texttt{zerograd}, so one does not have to call \texttt{use\_cleargrads()}. This method remains for backward compatibility.

\texttt{use\_fp32\_update(flag=True)}
\begin{itemize}
  \item Enables use of parameter update in fp32.
__eq__(self, value)
    Return self==value.

__ne__(self, value)
    Return self!=value.

__lt__(self, value)
    Return self<value.

__le__(self, value)
    Return self<=value.

__gt__(self, value)
    Return self>value.

__ge__(self, value)
    Return self>=value.

Attributes

adabound
    Alias to self.hyperparam.adabound

alpha
    Alias to self.hyperparam.alpha

alpha_t

amsgrad
    Alias to self.hyperparam.amsgrad

beta1
    Alias to self.hyperparam.beta1

beta2
    Alias to self.hyperparam.beta2

epoch = 0

eps
    Alias to self.hyperparam.eps

eta
    Alias to self.hyperparam.eta

final_lr
    Alias to self.hyperparam.final_lr

gamma
    Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
    Alias to self.hyperparam.weight_decay_rate

4.5. Optimizers
4.5.4 chainer.optimizers.CorrectedMomentumSGD

class chainer.optimizers.CorrectedMomentumSGD (lr=0.01, momentum=0.9)

Momentum SGD optimizer.

This implements momentum correction discussed in the third section of Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

MomentumSGD implements the equation (10) of the paper. This optimizer implements the equation (9).

To get better understanding between the two methods, we show the equivalence between the equation (9) and modification of the equation (10) that takes momentum correction into account. First, we set $v_t = \eta_t u_t$. We substitute this relation to the equation (10).

$$v_{t+1} = m \frac{\eta_{t+1}}{\eta_t} v_t + \eta_{t+1} g_t$$

$$= m \frac{\eta_{t+1}}{\eta_t} \eta_t u_t + \eta_{t+1} g_t$$

$$= \eta_{t+1} (m u_t + g_t)$$

From this result, we derive $u_{t+1} = m u_t + g_t$, which is how update tensors are calculated by CorrectedMomentumSGD. Thus, the equivalence is shown.

Parameters

- **lr (float)** – Learning rate.
- **momentum (float)** – Exponential decay rate of the first order moment.

Methods

add_hook (hook, name=None, timing='auto')

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

- **hook (callable)** – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name (str)** – Name of the registration. If omitted, hook.name is used by default.
- **timing (str)** – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

call_hook (hook)

call_hooks (timing='pre')

Invokes hook functions in registration order.

check_nan_in_grads()

Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()

Creates a new update rule object.
This method creates an update rule object. It is called by `setup()` to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

**Returns**  Update rule object.

**Return type**  UpdateRule

### is_safe_to_update()

### loss_scaling(interval=1000, scale=None)

Configures the loss scaling algorithm.

**Parameters**

- `interval` *int* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- `scale` *float* – Loss scaling factor. If `None`, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

### new_epoch(auto=False)

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**

- `auto` *bool* – Should be `True` if this method is called by an updater. In this case, `use_auto_new_epoch` should be set to `True` by the updater.

### reallocate_cleared_grads()

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

### remove_hook(name)

Removes a hook function.

**Parameters**

- `name` *str* – Registered name of the hook function to remove.

### serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

**It does not save nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- `serializer` *AbstractSerializer* – Serializer or deserializer object.

### set_loss_scale(loss_scale)

Sets loss scaling factor.

### setup(link)

Sets a target link and initializes the optimizer states.

Given link is set to the `target` attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

**Parameters**

- `link` *Link* – Target link object.
**Returns** The optimizer instance.

**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link)`.

```python
update(lossfun=None, *args, **kwds)
```

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()
```

**use_cleargrads(use=True)**

Enables or disables use of `cleargrads()` in `update`.

**Parameters** `use` (bool) – If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```

Enables use of parameter update in fp32.

```python
__eq__(self, value)
Return self==value.
```

```python
__ne__(self, value)
Return self!=value.
```

```python
__lt__(self, value)
Return self<value.
```

```python
__le__(self, value)
Return self<=value.
```

```python
__gt__(self, value)
Return self>value.
```

```python
__ge__(self, value)
Return self>=value.
```
Attributes

epoch = 0
lr
 Alias to self.hyperparam.lr
momentum
 Alias to self.hyperparam.momentum
t = 0
target = None
use_auto_new_epoch = False

4.5.5 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD (lr=0.01, momentum=0.9)
Momentum SGD optimizer.

Parameters

• lr (float) – Learning rate.
• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook (hook, name=None, timing='auto')
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.
• name (str) – Name of the registration. If omitted, hook.name is used by default.
• timing (str) – Specifies when the hook is called. If ‘auto’, the timing property of the
hook will decide the timing. If ’pre’, the hook will be called before any updates. If ’post’,
the hook will be called after any updates.

call_hook (hook)
call_hooks (timing='pre')
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.
Returns  Update rule object.

Return type  \texttt{UpdateRule}

\textbf{is\_safe\_to\_update}()

\textbf{loss\_scaling}(\texttt{interval}=1000, \texttt{scale}=\texttt{None})

Configures the loss scaling algorithm.

\textbf{Parameters}

- \texttt{interval (int)} – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- \texttt{scale (float)} – Loss scaling factor. If \texttt{None}, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

\textbf{new\_epoch}(\texttt{auto}=\texttt{False})

Starts a new epoch.

This method increments the \texttt{epoch} count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

\textbf{Parameters} \texttt{auto (bool)} – Should be \texttt{True} if this method is called by an updater. In this case, \texttt{use\_auto\_new\_epoch} should be set to \texttt{True} by the updater.

\textbf{reallocate\_cleared\_grads}()

Reallocate gradients cleared by \texttt{cleargrad()}.

This method allocates arrays for all gradients which have \texttt{None}. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

\textbf{remove\_hook}(\texttt{name})

Removes a hook function.

\textbf{Parameters} \texttt{name (str)} – Registered name of the hook function to remove.

\textbf{serialize}(\texttt{serializer})

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (\texttt{t} and \texttt{epoch})

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

\textbf{Parameters} \texttt{serializer (AbstractSerializer)} – Serializer or deserializer object.

\textbf{set\_loss\_scale}(\texttt{loss\_scale})

Sets loss scaling factor.

\textbf{setup}(\texttt{link})

Sets a target link and initializes the optimizer states.

Given link is set to the \texttt{target} attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

\textbf{Parameters} \texttt{link (Link)} – Target link object.

\textbf{Returns}  The optimizer instance.
**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link).

**update** (lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways,

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**update_loss_scale()**

**use_cleargrads** (use=True)
Enables or disables use of `cleargrads()` in `update`.

- **Parameters** use (bool) – If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

**use_fp32_update** (flag=True)
Enables use of parameter update in fp32.

- **__eq__()**
  Return self==value.

- **__ne__()**
  Return self!=value.

- **__lt__()**
  Return self<value.

- **__le__()**
  Return self<=value.

- **__gt__()**
  Return self>value.

- **__ge__()**
  Return self>=value.

**Attributes**

**epoch = 0**

**lr**
Alias to `self.hyperparam.lr`

**momentum**
Alias to `self.hyperparam.momentum`

**t = 0**

**target = None**
use_auto_new_epoch = False

4.5.6 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)

Nesterov’s Accelerated Gradient.


Parameters

- **lr** (float) – Learning rate.
- **momentum** (float) – Exponential decay rate of the first order moment.

Methods

add_hook (hook, name=None, timing=’auto’)

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

- **hook** (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** (str) – Name of the registration. If omitted, hook.name is used by default.
- **timing** (str) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

call_hook (hook)

call_hooks (timing=’pre’)

Invokes hook functions in registration order.

check_nan_in_grads ()

Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule ()

Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update ()

loss_scaling (interval=1000, scale=None)

Configures the loss scaling algorithm.

Parameters
• `interval (int)` – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

• `scale (float)` – Loss scaling factor. If `None`, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

`new_epoch (auto=False)`

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

Parameters `auto (bool)` – Should be `True` if this method is called by an updater. In this case, `use_auto_new_epoch` should be set to `True` by the updater.

`reallocate_cleared_grads ()`

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

`remove_hook (name)`

Removes a hook function.

Parameters `name (str)` – Registered name of the hook function to remove.

`serialize (serializer)`

Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (`t` and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters `serializer (AbstractSerializer)` – Serializer or deserializer object.

`set_loss_scale (loss_scale)`

Sets loss scaling factor.

`setup (link)`

Sets a target link and initializes the optimizer states.

Given link is set to the `target` attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

Parameters `link (Link)` – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link)`.

`update (lossfun=None, *args, **kwds)`

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If `lossfun` is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.
In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()
use_cleargrads(use=True)
```

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- `use (bool)` — If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograds` is used).

Deprecation since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```

Enables use of parameter update in fp32.

**Attributes**

- `epoch = 0`
- `lr`
  - Alias to `self.hyperparam.lr`
- `momentum`
  - Alias to `self.hyperparam.momentum`
- `t = 0`
- `target = None`
- `use_auto_new_epoch = False`
4.5.7 chainer.optimizers.MSVAG

```python
class chainer.optimizers.MSVAG(lr=0.1, beta=0.9, eta=1.0, weight_decay_rate=0)
```

M-SVAG optimizer.

See: Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters \( \eta \) and \( \text{weight\_decay\_rate} \), which can be used to properly scale the learning rate, and decouple the weight decay rate from \( \alpha \), as shown in the below paper.

See: Fixing Weight Decay Regularization in Adam

**Parameters**

- \( \text{lr (float)} \) – Learning rate.
- \( \text{beta (float)} \) – Exponential decay rate of the first and second order moment.
- \( \text{eta (float)} \) – Schedule multiplier, can be used for warm restarts.
- \( \text{weight\_decay\_rate (float)} \) – Weight decay rate.

**Methods**

- `add_hook(hook, name=None, timing='auto')`
  Registers a hook function.
  Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.
  
  **Parameters**
  
  - `hook (callable)` – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
  - `name (str)` – Name of the registration. If omitted, `hook.name` is used by default.
  - `timing (str)` – Specifies when the hook is called. If `‘auto’`, the timing property of the hook will decide the timing. If `‘pre’`, the hook will be called before any updates. If `‘post’`, the hook will be called after any updates.

- `call_hook(hook)`

- `call_hooks(timing='pre')`
  Invokes hook functions in registration order.

- `check_nan_in_grads()`
  Checks if there is NaN in grads when dynamic loss scaling used.

- `create_update_rule()`
  Creates a new update rule object.
  
  This method creates an update rule object. It is called by `setup()` to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.
  
  **Returns** Update rule object.
  
  **Return type** `UpdateRule`

- `is_safe_to_update()`
**loss_scaling** (*interval*=1000, *scale*=None)
Configures the loss scaling algorithm.

**Parameters**

- **interval** (*int*) – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

- **scale** (*float*) – Loss scaling factor. If *None*, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** (*auto*=False)
Starts a new epoch.

This method increments the *epoch* count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**

- **auto** (*bool*) – Should be True if this method is called by an updater. In this case, use_auto_new_epoch should be set to True by the updater.

**reallocate_cleared_grads**()
Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have *None*. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook** (*name*)
Removes a hook function.

**Parameters**

- **name** (*str*) – Registered name of the hook function to remove.

**serialize** (*serializer*)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (*t* and *epoch*)

*It does not saves nor loads the parameters of the target link.* They should be separately saved or loaded.

**Parameters**

- **serializer** (*AbstractSerializer*) – Serializer or deserializer object.

**set_loss_scale** (*loss_scale*)
Sets loss scaling factor.

**setup** (*link*)
Sets a target link and initializes the optimizer states.

Given link is set to the *target* attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

**Parameters**

- **link** (*Link*) – Target link object.

**Returns**

The optimizer instance.

**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link)`.

**update** (*lossfun*=None, *args*, **kwds*)
Updates parameters based on a loss function or computed gradients.
This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()
```

```python
use_cleargrads(use=True)
```

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- **use** (`bool`) – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```

Enables use of parameter update in fp32.

```python
__eq__()
```

Return `self==value`.

```python
__ne__()
```

Return `self!=value`.

```python
__lt__()
```

Return `self<value`.

```python
__le__()
```

Return `self<=value`.

```python
__gt__()
```

Return `self>value`.

```python
__ge__()
```

Return `self>=value`.

**Attributes**

- **beta**
  Alias to `self.hyperparam.beta`

- **epoch** = 0

- **eta**
  Alias to `self.hyperparam.eta`

- **lr**
  Alias to `self.hyperparam.lr`

- **t** = 0

- **target** = None

- **use_auto_new_epoch** = False

- **weight_decay_rate**
  Alias to `self.hyperparam.weight_decay_rate`
4.5.8 chainer.optimizers.RMSprop

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08, eps_inside_sqrt=False)
RMSprop optimizer.


Parameters

- **lr** (float) – Learning rate.
- **alpha** (float) – Exponential decay rate of the second order moment.
- **eps** (float) – Small value for the numerical stability.
- **eps_inside_sqrt** (bool) – When True, gradient will be divided by $\sqrt{ms + \text{eps}}$ where ms is the mean square. When False (default), gradient will be divided by $\sqrt{ms + \text{eps}}$ instead. This option may be convenient for users porting code from other frameworks; see #4754 for details.

Methods

- **add_hook** (hook, name=None, timing='auto')
  Registers a hook function.

  Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

  Parameters

  - **hook** (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
  - **name** (str) – Name of the registration. If omitted, hook.name is used by default.
  - **timing** (str) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

- **call_hook** (hook)
- **call_hooks** (timing='pre')
  Invokes hook functions in registration order.

- **check_nan_in_grads**()
  Checks if there is NaN in grads when dynamic loss scaling used.

- **create_update_rule**()
  Creates a new update rule object.

  This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

  Returns Update rule object.

  Return type UpdateRule

- **is_safe_to_update**()
**loss_scaling** *(interval=1000, scale=None)*
Configures the loss scaling algorithm.

**Parameters**

- **interval** *(int)* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- **scale** *(float)* – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** *(auto=False)*
Starts a new epoch.

This method increments the *epoch* count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters**

- **auto** *(bool)* – Should be True if this method is called by an updater. In this case, *use_auto_new_epoch* should be set to True by the updater.

**reallocate_cleared_grads** *
Reallocate gradients cleared by *cleargrad()*. This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook** *(name)*
Removes a hook function.

**Parameters**

- **name** *(str)* – Registered name of the hook function to remove.

**serialize** *(serializer)*
Serializes or deserializes the optimizer. It only saves or loads the following things:

- Optimizer states
- Global states (*t* and *epoch*)

**It does not saves nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

**set_loss_scale** *(loss_scale)*
Sets loss scaling factor.

**setup** *(link)*
Sets a target link and initializes the optimizer states.

Given link is set to the *target* attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

**Parameters**

- **link** *(Link)* – Target link object.

**Returns** The optimizer instance.

**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., *optimizer = SomeOptimizer().setup(link)*.

**update** *(lossfun=None, *args, **kwds)*
Updates parameters based on a loss function or computed gradients.
This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()

use_cleargrads(use=True)
```

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- **use** ([bool](https://docs.python.org/3/library/stdtypes.html#bool)) – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograds` is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```

Enables use of parameter update in fp32.

```python
__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.
```

**Attributes**

- **alpha**
  
  Alias to `self.hyperparam.alpha`

- **epoch** = 0

- **eps**
  
  Alias to `self.hyperparam.eps`

- **eps_inside_sqrt**
  
  Alias to `self.hyperparam.eps_inside_sqrt`

- **lr**
  
  Alias to `self.hyperparam.lr`

- **t** = 0

- **target** = None

- **use_auto_new_epoch** = False
4.5.9 chainer.optimizers.RMSpropGraves

class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9, eps=0.0001)

Alex Graves’s RMSprop.

See: https://arxiv.org/abs/1308.0850

Parameters

• lr (float) – Learning rate.
• alpha (float) – Exponential decay rate of the first and second order moments of the raw gradient.
• momentum (float) – Exponential decay rate of the first order moment of the adjusted gradient.
• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing='auto')

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
• name (str) – Name of the registration. If omitted, hook.name is used by default.
• timing (str) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

call_hook(hook)

call_hooks(timing='pre')

Invokes hook functions in registration order.

check_nan_in_grads()

Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()

Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)

Configures the loss scaling algorithm.
Parameters

- **interval** (*int*) – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

- **scale** (*float*) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** (*auto=False*)
Starts a new epoch.

This method increments the **epoch** count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

- **Parameters auto** (*bool*) – Should be True if this method is called by an updater. In this case, **use_auto_new_epoch** should be set to True by the updater.

**reallocate_cleared_grads**()
Reallocate gradients cleared by **cleargrad()**.

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook** (**name**)
Removes a hook function.

- **Parameters name** (*str*) – Registered name of the hook function to remove.

**serialize** (**serializer**)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (**t** and **epoch**)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

- **Parameters serializer** (*AbstractSerializer*) – Serializer or deserializer object.

**set_loss_scale** (**loss_scale**)
Sets loss scaling factor.

**setup** (**link**)
Sets a target link and initializes the optimizer states.

Given link is set to the **target** attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

- **Parameters link** (*Link*) – Target link object.

  **Returns** The optimizer instance.

**update** (**lossfun=None, *args, **kwds**)**
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If **lossfun** is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**update_loss_scale()**

**use_cleargrads(use=True)**

Enables or disables use of `cleargrads()` in `update`.

Parameters **use** *(bool)* — If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (zero_grads is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zero_grads()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

**use_fp32_update(flag=True)**

Enables use of parameter update in fp32.

**Attributes**

- `alpha`
  
  Alias to `self.hyperparam.alpha`

- `epoch = 0`

- `eps`
  
  Alias to `self.hyperparam.eps`

- `lr`
  
  Alias to `self.hyperparam.lr`

- `momentum`
  
  Alias to `self.hyperparam.momentum`

- `t = 0`

- `target = None`

- `use_auto_new_epoch = False`
4.5.10 chainer.optimizers.SGD

class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

Parameters

- **lr** (float) – Learning rate.

Methods

- **add_hook** (hook, name=None, timing='auto')
  Registers a hook function.
  Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

  Parameters

  - **hook** (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
  - **name** (str) – Name of the registration. If omitted, hook.name is used by default.
  - **timing** (str) – Specifies when the hook is called. If 'auto', the timing property of the hook will decide the timing. If 'pre', the hook will be called before any updates. If 'post', the hook will be called after any updates.

- **call_hook** (hook)

- **call_hooks** (timing='pre')
  Invokes hook functions in registration order.

- **check_nan_in_grads**()
  Checks if there is NaN in grads when dynamic loss scaling used.

- **create_update_rule**()
  Creates a new update rule object.
  This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

  Returns  Update rule object.

  Return type  UpdateRule

- **is_safe_to_update**()

- **loss_scaling** (interval=1000, scale=None)
  Configures the loss scaling algorithm.

  Parameters

  - **interval** (int) – Number of iterations until scaling factor gets doubled. This is effective when "dynamic" loss scaling is used.
  - **scale** (float) – Loss scaling factor. If None, "dynamic" loss scaling is used, otherwise "static" loss scaling is used.

- **new_epoch** (auto=False)
  Starts a new epoch.
This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

**Parameters**

*auto* (bool) – Should be `True` if this method is called by an updater. In this
 case, `use_auto_new_epoch` should be set to `True` by the updater.

**reallocate_cleared_grads()**

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

**remove_hook(name)**

Removes a hook function.

*name* (str) – Registered name of the hook function to remove.

**serialize(serializer)**

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

It does not save nor loads the parameters of the *target link*. They should be separately saved or loaded.

*serializer* (AbstractSerializer) – Serializer or deserializer object.

**set_loss_scale(loss_scale)**

Sets loss scaling factor.

**setup(link)**

Sets a target link and initializes the optimizer states.

Given link is set to the `target` attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

*link* (Link) – Target link object.

**Returns** The optimizer instance.

---

**Note:** As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., `optimizer = SomeOptimizer().setup(link)`.

**update(lossfun=None, *args, **kwds)**

 Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

**update_loss_scale()**

**use_cleargrads(use=True)**

Enables or disables use of `cleargrads()` in `update`.  

4.5. Optimizers
Parameters `use` (bool) – If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

`use_fp32_update` (flag=True)

   Enables use of parameter update in fp32.

   __eq__()
      Return self==value.

   __ne__()
      Return self!=value.

   __lt__()
      Return self<value.

   __le__()
      Return self<=value.

   __gt__()
      Return self>value.

   __ge__()
      Return self>=value.

Attributes

   epoch = 0
   lr
      Alias to self.hyperparam.lr
   t = 0
   target = None
   use_auto_new_epoch = False

4.5.11 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3 (lr=0.001, eps=1e-16)

Simon Funk's SMORMS3.


Parameters

   • lr (float) – Learning rate.
   • eps (float) – Small value for the numerical stability.
Methods

**add_hook** *(hook, name=None, timing='auto')*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

**Parameters**

- **hook** *(callable)* – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** *(str)* – Name of the registration. If omitted, hook.name is used by default.

- **timing** *(str)* – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

**call_hook** *(hook)*

**call_hooks** *(timing='pre')*

Invokes hook functions in registration order.

**check_nan_in_grads** *

Checks if there is NaN in grads when dynamic loss scaling used.

**create_update_rule** *

Creates a new update rule object.

This method creates an update rule object. It is called by *setup()* to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

**Returns** Update rule object.

**Return type** *UpdateRule*

**is_safe_to_update** *

**loss_scaling** *(interval=1000, scale=None)*

Configures the loss scaling algorithm.

**Parameters**

- **interval** *(int)* – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.

- **scale** *(float)* – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

**new_epoch** *(auto=False)*

Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**Parameters** **auto** *(bool)* – Should be True if this method is called by an updaters. In this case, use AUTO new epoch should be set to True by the updater.

**reallocate_cleared_grads** *

Reallocate gradients cleared by *cleargrad()*.
This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook**(name)
Removes a hook function.

- **Parameters**
  - name (str) – Registered name of the hook function to remove.

**serialize**(serializer)
Serializes or deserializes the optimizer.

- It only saves or loads the following things:
  - Optimizer states
  - Global states (t and epoch)

- It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

- **Parameters**
  - serializer (AbstractSerializer) – Serializer or deserializer object.

**set_loss_scale**(loss_scale)
Sets loss scaling factor.

**setup**(link)
Sets a target link and initializes the optimizer states.

- Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

- **Parameters**
  - link (Link) – Target link object.

- **Returns**
  - The optimizer instance.

**update**(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

- This method runs in two ways:
  - If lossfun is given, then it is used as a loss function to compute gradients.
  - Otherwise, this method assumes that the gradients are already computed.

- In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**update_loss_scale**()

**use_cleargrads**(use=True)
Enables or disables use of cleargrads() in update.

- **Parameters**
  - use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

- Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

**use_fp32_update**(flag=True)
Enables use of parameter update in fp32.
__eq__()  
Return self==value.

__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

Attributes

epoch = 0

eps
    Alias to self.hyperparam.eps

lr
    Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.12 Optimizer base classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.Optimizer</td>
<td>Base class of all numerical optimizers.</td>
</tr>
<tr>
<td>chainer.UpdateRule</td>
<td>Base class of all update rules.</td>
</tr>
<tr>
<td>chainer.optimizer.Hyperparameter</td>
<td>Set of hyperparameter entries of an optimizer.</td>
</tr>
<tr>
<td>chainer.GradientMethod</td>
<td>Base class of all single gradient-based optimizers.</td>
</tr>
</tbody>
</table>

chainer.Optimizer

class chainer.Optimizer
    Base class of all numerical optimizers.

    This class provides basic features for all optimization methods. It optimizes parameters of a target link. The target link is registered via the setup() method, and then the update() method updates its parameters based on a given loss function.

    Each optimizer implementation must be defined as a child class of Optimizer. It must override update() method.

    If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit GradientMethod, which adds some features dedicated for the first order methods, including the support of UpdateRule.
Optimizer instance also supports hook functions. Hook function is registered by the `add_hook()` method. Each hook function is called in registration order before of after the actual parameter update (configurable). If the hook function has an attribute `call_for_each_param` and its value is `True`, the hook function is used as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update rule and the parameter).

Variables

- **target** – Target link object. It is set by the `setup()` method.
- **t** – Number of update steps. It must be incremented by the `update()` method.
- **epoch** – Current epoch. It is incremented by the `new_epoch()` method.
- **use_auto_new_epoch** – Boolean flag to indicate if `new_epoch()` will be called by the updater. Updater should set this flag to `True` if it automatically calls `new_epoch()`.

Methods

`add_hook(hook, name=None, timing='auto')`

 registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

- **hook** (*callable*) – Hook function. If `hook.call_for_each_param` is `true`, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** (*str*) – Name of the registration. If omitted, `hook.name` is used by default.
- **timing** (*str*) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

`call_hook(hook)`

`call_hooks(timing='pre')`

Invokes hook functions in registration order.

`check_nan_in_grads()`

Checks if there is NaN in grads when dynamic loss scaling used.

`is_safe_to_update()`

`loss_scaling(interval=1000, scale=None)`

Configures the loss scaling algorithm.

Parameters

- **interval** (*int*) – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- **scale** (*float*) – Loss scaling factor. If `None`, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

`new_epoch(auto=False)`

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.
Parameters auto (bool) – Should be True if this method is called by an updater. In this case, use_auto_new_epoch should be set to True by the updater.

remove_hook (name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize (serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:
• Optimizer states
• Global states (t and epoch)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale (loss_scale)
Sets loss scaling factor.

setup (link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update (lossfun=None, *args, **kwds)
Updates the parameters.

This method updates the parameters of the target link. The behavior of this method is different for the cases either lossfun is given or not.

If lossfun is given, this method typically clears the gradients, calls the loss function with given extra arguments, and calls the backward() method of its output to compute the gradients. The actual implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the gradients of all parameters are already computed. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters
• lossfun (callable) – Loss function. You can specify one of loss functions from built-in loss functions, or your own loss function. It should not be an loss functions with parameters (i.e., Link instance). The function must accept arbitrary arguments and return one Variable object that represents the loss (or objective) value. Returned value must be a Variable derived from the input Variable object. lossfun can be omitted for single gradient-based methods. In this case, this method assumes gradient arrays computed.
• kwds (args,) – Arguments for the loss function.
update_loss_scale()

__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

__gt__()
    Return self>value.

__ge__()
    Return self>=value.

Attributes

epoch = 0

t = 0

target = None

use_auto_new_epoch = False

chainer.UpdateRule

class chainer.UpdateRule (parent_hyperparam=None)
Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss function. This class provides the interface and the common features of any update rules.

An update rule can be set to a Variable object that represents a parameter array of a model. An Optimizer instance defines which parameters to update, and the update rule instance of each parameter defines how to update it.

Hook functions can be set to any update rule instance. The hook function is called just before or after any updates (configurable) in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e., update_core_cpu() and update_core_gpu()).

The state (e.g., a moving average of the gradient) of the update rule is stored into the state dictionary. An implementation of update rule using state should also override init_state() to initialize the state at the first update. The values of the state dictionary are automatically copied to the appropriate device before the update based on the data and grad arrays.

Parameters

parent_hyperparam (Hyperparameter) – Hyperparameter that provides the default values.

Variables

• enabled (bool) – Flag to configure if this update rule is active. If the update rule is not active (i.e., enabled = False), the update() method does not update the parameter.

• hyperparam (Hyperparameter) – Hyperparameter of the update rule.
• \( t \) (int) – Number of updates made by this update rule.

**Methods**

**add_hook** (hook, name=None, timing='auto')

Adds a hook function.

The hook function is called before or after any updates (see the timing attribute).

**Parameters**

• **hook** (callable) – Hook function to be added. It takes two arguments: the update rule object and the parameter variable.

• **name** (str) – Name of the hook function. The name attribute of the hook function is used by default.

• **timing** (str) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates. If ‘auto’ and the timing property of the hook is not available, timing will default to ‘pre’.

**init_state** (param)

Initializes the state.

Any implementations that use the state should override this method. This method is called at the first update.

**Parameters**

• **param** (Variable) – Parameter variable. It can be used to extract the shape and the data type of the parameter.

**remove_hook** (name)

Removes the specified hook function.

**Parameters**

• **name** (str) – Name of the hook function to be removed. The hook function registered with this name will be removed.

**serialize** (serializer)

Serializes the update rule state.

Be careful that this method only saves/loads the state of the update rule. The parameters of the target link is not saved/loaded by this method, and so you need to serialize the target link separately if you want to fully recover the training state including parameters.

**Parameters**

• **serializer** (AbstractSerializer) – Serializer object.

**update** (param)

Invokes hook functions and updates the parameter.

**Parameters**

• **param** (Variable) – Variable to be updated.

**update_core** (param)

Updates the parameter.

Implementation of UpdateRule should override this method or both of **update_core_cpu**() and **update_core_gpu**().

**Parameters**

• **param** (Variable) – Variable to be updated.

**update_core_chainerx** (param)

Updates the ChainerX parameter.
This method can be overridden to implement custom update logic. The default implementation is to convert the parameter to a memory-shared NumPy/CuPy parameter and call the corresponding update method.

See `update_core()` for details.

**Parameters** param (Variable) – Variable to be updated.

`update_core_cpu(param)`
Updates the parameter on CPU.

See `update_core()` for details.

**Parameters** param (Variable) – Variable to be updated.

`update_core_gpu(param)`
Updates the parameter on GPU.

See `update_core()` for details.

**Parameters** param (Variable) – Variable to be updated.

`use_fp32_update(flag=True)`
Enables use of parameter update in fp32.

This method enables use of parameter update in fp32. When it is enabled and data type of original parameter variable is fp16, fp32 copy of parameter variable is automatically created and retained at self.fp32_param. And the parameter is update in fp32 in the following way.

1. copies the grad of original parameter variable to the grad of fp32 parameter variable, converting its data type from fp16 to fp32.
2. updates the parameter in fp32.
3. copies the data of fp32 parameter variable to the data of original parameter variable, converting its data type from fp32 to fp16.

See `update()` for details.

`__eq__()`  
Return self==value.

`__ne__()`  
Return self!=value.

`__lt__()`  
Return self<value.

`__le__()`  
Return self<=value.

`__gt__()`  
Return self>value.

`__ge__()`  
Return self>=value.
Attributes

state
State dictionary.

chainer.optimizer.Hyperparameter

class chainer.optimizer.Hyperparameter (parent=\texttt{None})
Set of hyperparameter entries of an optimizer.

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each update rule if needed.

Parameters parent (Hyperparameter) – Parent hyperparameter.

Methods

get\_dict ()
Converts the hyperparameter into a dictionary.

Returns Dictionary containing all entries that can be referred by this hyperparameter object.

\_\_eq\_\_ ()
Return self==value.

\_\_ne\_\_ ()
Return self!=value.

\_\_lt\_\_ ()
Return self<value.

\_\_le\_\_ ()
Return self<=value.

\_\_gt\_\_ ()
Return self>value.

\_\_ge\_\_ ()
Return self>=value.

Attributes

parent
Parent hyperparameter object.
Chainer Documentation, Release 6.7.0

chainer.GradientMethod

class chainer.GradientMethod
Base class of all single gradient-based optimizers.

This is an extension of the Optimizer class. Typical gradient methods that just require the gradient at the current parameter vector on an update can be implemented as its child class.

This class uses UpdateRule to manage the update rule of each parameter. A child class of GradientMethod should override create_update_rule() to create the default update rule of each parameter.

This class also provides hyperparam, which is the hyperparameter used as the default configuration of each update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to the attributes of hyperparam. It is recommended that you provide such an alias to each attribute. It can be done by only adding one line for each attribute using HyperparameterProxy.

Variables

hyperparam (Hyperparameter) – The hyperparameter of the gradient method. It is used as the default configuration of each update rule (i.e., the hyperparameter of each update rule refers this hyperparameter as its parent).

Methods

add_hook (hook, name=None, timing='auto')
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method, and the timing attribute.

Parameters

- hook (callable) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- name (str) – Name of the registration. If omitted, hook.name is used by default.

- timing (str) – Specifies when the hook is called. If ‘auto’, the timing property of the hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’, the hook will be called after any updates.

call_hook (hook)

call_hooks (timing='pre')
Invokes hook functions in registration order.

check_nan_in_grads ()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule ()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update ()
loss_scaling (interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

- interval (int) – Number of iterations until scaling factor gets doubled. This is effective when “dynamic” loss scaling is used.
- scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise “static” loss scaling is used.

new_epoch (auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocated gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook (name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize (serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (t and epoch)

It does not save or load the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale (loss_scale)
Sets loss scaling factor.

setup (link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update (lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.
This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
update_loss_scale()
```

```python
use_cleargrads(use=True)
```

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

`use (bool)` – If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

```python
use_fp32_update(flag=True)
```

Enables use of parameter update in fp32.

```python
__eq__()
```

`Return self==value.`

```python
__ne__()
```

`Return self!=value.`

```python
__lt__()
```

`Return self<value.`

```python
__le__()
```

`Return self<=value.`

```python
__gt__()
```

`Return self>value.`

```python
__ge__()
```

`Return self>=value.`

**Attributes**

- `epoch = 0`
- `t = 0`
- `target = None`
- `use_auto_new_epoch = False`
4.5.13 Hook functions

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizer_hooks.WeightDecay</td>
<td>Optimizer/UpdateRule hook function for weight decay regularization.</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.Lasso</td>
<td>Optimizer/UpdateRule hook function for Lasso regularization.</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientClipping</td>
<td>Optimizer hook function for gradient clipping.</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientHardClipping</td>
<td>Optimizer/UpdateRule hook function for gradient clipping.</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientNoise</td>
<td>Optimizer/UpdateRule hook function for adding gradient noise.</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientLARS</td>
<td>Optimizer/UpdateRule hook function for layer wise adaptive rate scaling.</td>
</tr>
</tbody>
</table>

**chainer.optimizer_hooks.WeightDecay**

```python
class chainer.optimizer_hooks.WeightDecay(rate)
```

Optimizer/UpdateRule hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

**Parameters**

- `rate (float)`: Coefficient for the weight decay.

**Variables**

- `rate (float)`: Coefficient for the weight decay.
- `timing (string)`: Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are 'pre' (before any updates) and 'post' (after any updates).
- `call_for_each_param (bool)`: Specifies if this hook is called for each parameter (True) or only once (False) by an optimizer to which this hook is registered. This function does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The `timing` parameter.

**Methods**

- `__call__(rule, param)`: Call self as a function.
- `__eq__()`: Return self==value.
- `__ne__()`: Return self!=value.
- `__lt__()`: Return self<value.
- `__le__()`: Return self<=value.
- `__gt__()`: Return self>value.
- `__ge__()`: Return self>=value.
Attributes

call_for_each_param = True
name = 'WeightDecay'
timing = 'pre'

chainer.optimizer_hooks.Lasso

class chainer.optimizer_hooks.Lasso(rate):
    
    Optimizer/UpdateRule hook function for Lasso regularization.
    
    This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.

    Parameters rate (float) – Coefficient for the weight decay.

    Variables

    • rate (float) – Coefficient for the weight decay.
    • timing (string) – Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any updates).
    • call_for_each_param (bool) – Specifies if this hook is called for each parameter (True) or only once (False) by an optimizer to which this hook is registered. This function does not expect users to switch the value from default one, which is True.

    New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
    Call self as a function.

__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

__gt__()
    Return self>value.

__ge__()
    Return self>=value.
Attributes

call_for_each_param = True
name = 'Lasso'
timing = 'pre'

chainer.optimizer_hooks.GradientClipping

class chainer.optimizer_hooks.GradientClipping(threshold)
    Optimizer hook function for gradient clipping.

    This hook function scales all gradient arrays to fit to the defined L2 norm threshold.

    Parameters threshold (float) – L2 norm threshold.

    Variables

        • threshold (float) – L2 norm threshold of gradient norm.
        • timing (string) – Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any updates).

    New in version 4.0.0: The timing parameter.

Methods

    __call__(opt)
        Call self as a function.

    __eq__()
        Return self==value.

    __ne__()
        Return self!=value.

    __lt__()
        Return self<value.

    __le__()
        Return self<=value.

    __gt__()
        Return self>value.

    __ge__()
        Return self>=value.
Attributes

name = 'GradientClipping'
timing = 'pre'

chainer.optimizer_hooks.GradientHardClipping
class chainer.optimizer_hooks.GradientHardClipping(lower_bound, upper_bound)

Optimizer/UpdateRule hook function for gradient clipping.

This hook function clips all gradient arrays to be within a lower and upper bound.

Parameters

• lower_bound (float) – The lower bound of the gradient value.
• upper_bound (float) – The upper bound of the gradient value.

Variables

• lower_bound (float) – The lower bound of the gradient value.
• upper_bound (float) – The upper bound of the gradient value.
• timing (string) – Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are 'pre' (before any updates) and 'post' (after any updates).
• call_for_each_param (bool) – Specifies if this hook is called for each parameter (True) or only once (False) by an optimizer to which this hook is registered. This function does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
Attributes

call_for_each_param = True
name = 'GradientHardClipping'
timing = 'pre'

chainer.optimizer_hooks.GradientNoise

class chainer.optimizer_hooks.GradientNoise(eta, noise_func=<function exponential_decay_noise>)

Optimizer/UpdateRule hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func to the gradient. By default it adds time-dependent annealed Gaussian noise to the gradient at every training step:

\[ g_t \leftarrow g_t + N(0, \sigma^2_t) \]

where

\[ \sigma^2_t = \eta \left( 1 + \gamma t \right) \]

with \( \eta \) selected from \{0.01, 0.3, 1.0\} and \( \gamma = 0.55 \).

Parameters

- **eta (float)** – Parameter that defines the scale of the noise. For the default noise function, it is recommended that it be either 0.01, 0.3 or 1.0.

- **noise_func (function)** – Noise generating function which by default is given by Adding Gradient Noise Improves Learning for Very Deep Networks.

Variables

- **timing (string)** – Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are 'pre' (before any updates) and 'post' (after any updates).

- **call_for_each_param (bool)** – Specifies if this hook is called for each parameter (True) or only once (False) by an optimizer to which this hook is registered. This function does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)

Call self as a function.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.
__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

Attributes

call_for_each_param = True
name = 'GradientNoise'
timing = 'pre'

chainer.optimizer_hooks.GradientLARS

class chainer.optimizer_hooks.GradientLARS(  
threshold=0.01,  
weight_decay=0.0,  
eps=1e-09)

Optimizer/UpdateRule hook function for layer wise adaptive rate scaling.

See: Large Batch Training of Convolutional Networks.

See: Convergence Analysis of Gradient Descent Algorithms with Proportional Updates.

This hook function scales all gradient arrays to fit to the weight norm.

In <https://arxiv.org/abs/1708.03888>,

\[
\begin{align*}
v_{t+1} &= m \cdot v_t + \gamma \cdot \lambda \cdot (\nabla L(w_t) + \beta w_t), \\
w_{t+1} &= w_t - v_{t+1},
\end{align*}
\]

where

- \(\gamma\): learning_rate
- \(m\): momentum
- \(\beta\): weight_decay
- \(\eta\): lars_coeeficient
- \(\lambda\): local_lr = \(\eta \cdot \frac{\|w_t\|}{\|\nabla L(w_t)\| + \beta \cdot \|w_t\|}\).

As \(lr\) in chainer.optimizers.SGD or chainer.optimizers.MomentumSGD corresponds to \(\gamma \cdot \eta\), we define \(clip\_rate\) as \(\frac{\|w_t\|}{\|\nabla L(w_t)\| + \beta \cdot \|w_t\|}\) and reformulate the aforementioned formula as: \(v_{t+1} = m \cdot v_t + lr \cdot clip\_rate \cdot (\nabla L(w_t) + \beta w_t)\) and implement in this way. So you do not set lars_coeeficient.

Parameters

- **threshold (float)** – If weight norm is more than threshold, this function scales all gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

- **weight_decay (float)** – Coefficient for the weight decay.

- **eps (float)** – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.03137>)

Variables
• **threshold** (*float*) – If weight norm is more than threshold, this function scales all gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

• **weight_decay** (*float*) – Coefficient for the weight decay.

• **eps** (*float*) – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.03137>)

• **timing** (*string*) – Specifies when this hook should be called by the Optimizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any updates).

• **call_for_each_param** (*bool*) – Specifies if this hook is called for each parameter (True) or only once (False) by an optimizer to which this hook is registered. This function does not expect users to switch the value from default one, which is *True*.  

### Methods

```
__call__(rule, param)
 Call self as a function.
__eq__()
 Return self==value.
__ne__()
 Return self!=value.
__lt__()
 Return self<value.
__le__()
 Return self<=value.
__gt__()
 Return self>value.
__ge__()
 Return self>=value.
```

### Attributes

```
call_for_each_param = True
name = 'GradientLARS'
timing = 'pre'
```

### 4.6 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of `numpy.ndarray` or `cupy.ndarray`. Typically, weight initializers are passed to `Links` to initialize their weights and biases.

A weight initializer can be any of the following objects.

- `chainer.Initializer` class instance.
- Python or NumPy scalar or `numpy.ndarray`.
- A callable that takes an array (`numpy.ndarray` or `cupy.ndarray`) and feeds the initial data into it.
• None, in which case the default initializer is used. Unless explicitly specified, it is \texttt{LeCunNormal} with scale value 1.

If an initializer object has the \texttt{dtype} attribute, the initializer can assume that the array to feed the data into has that dtype. If the required dtype, depending on the context where the initializer is used, does not match the \texttt{dtype} attribute, Chainer will report an error.

## 4.6.1 Base class

**chainer.Initializer**

Initializes array.

The `chainer.Initializer` class is defined as follows:

```python
class chainer.Initializer(dtype=None)

Initializes array.

It initializes the given array.

Variables

\texttt{dtype} – Data type specifier. It is for type check in \texttt{__call__} function.

Methods

\texttt{__call__} (array)

Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

\texttt{array} \texttt{(N-dimensional array)} – An array to be initialized by this initializer.

\texttt{__eq__} ()

Return self==value.

\texttt{__ne__} ()

Return self!=value.

\texttt{__lt__} ()

Return self<value.

\texttt{__le__} ()

Return self<=value.

\texttt{__gt__} ()

Return self>value.

\texttt{__ge__} ()

Return self>=value.
4.6.2 Concrete initializers

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Identity</code></td>
<td>Initializes array with the identity matrix.</td>
</tr>
<tr>
<td><code>Constant</code></td>
<td>Initializes array with constant value.</td>
</tr>
<tr>
<td><code>Zero</code></td>
<td>Initializes array to all-zero.</td>
</tr>
<tr>
<td><code>NaN</code></td>
<td>Initializes array to all-NaN.</td>
</tr>
<tr>
<td><code>LeCunNormal</code></td>
<td>Initializes array with scaled Gaussian distribution.</td>
</tr>
<tr>
<td><code>GlorotNormal</code></td>
<td>Initializes array with scaled Gaussian distribution.</td>
</tr>
<tr>
<td><code>Orthogonal</code></td>
<td>Initializes array with an orthogonal system.</td>
</tr>
<tr>
<td><code>Uniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>LeCunUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>GlorotUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>HeUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
</tbody>
</table>

`chainer.initializers.Identity`

```python
class chainer.initializers.Identity(scale=1.0, dtype=None):
    initializer with the identity matrix.
```

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must be 2D squared matrices.

Variables
- `scale` (scalar) – A constant to be multiplied to identity matrices.

Methods

```python
__call__(array)
```

Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters
- `array` (N-dimensional array) – An array to be initialized by this initializer.

```python
__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
```
chainer.initializers.Constant

class chainer.initializers.Constant (fill_value, dtype=None)
Initializes array with constant value.

Variables

 • fill_value (scalar or N-dimensional array) – A constant to be assigned to the initialized
 array. Broadcast is allowed on this assignment.

 • dtype – Data type specifier.

Methods

__call__ (array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

fill_value = None

chainer.initializers.Zero

class chainer.initializers.Zero (dtype=None)
Initializes array to all-zero.

Variables dtype – Data type specifier.
Methods

___call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters **array** *(N-dimensional array)* – An array to be initialized by this initializer.

___eq__ ()
Return self==value.

___ne__ ()
Return self!=value.

___lt__ ()
Return self<value.

___le__ ()
Return self<=value.

___gt__ ()
Return self>value.

___ge__ ()
Return self>=value.

Attributes

fill_value = 0.0

chainer.initializers.One

class chainer.initializers.One(*dtype=None*)
Initializes array to all-one.

Variables **dtype** – Data type specifier.

Methods

___call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters **array** *(N-dimensional array)* – An array to be initialized by this initializer.

___eq__ ()
Return self==value.

___ne__ ()
Return self!=value.

___lt__ ()
Return self<value.

___le__ ()
Return self<=value.

___gt__ ()
Return self>value.

___ge__ ()
Return self>=value.
return self <= value.

__gt__ ()
Return self > value.

__ge__ ()
Return self >= value.

Attributes

fill_value = 1.0

cmlner.\texttt{initializers.NAN}

class chainer.initializers.NAN (dtype=None)
Initializes array to all-NaN.

Variables dtype – Data type specifier.

Methods

__call__ (array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__ ()
Return self == value.

__ne__ ()
Return self != value.

__lt__ ()
Return self < value.

__le__ ()
Return self <= value.

__gt__ ()
Return self > value.

__ge__ ()
Return self >= value.
Attributes

fill_value = nan

citchainer.initializers.Normal

class chainer.initializers.Normal(scale=0.05, dtype=None)
 Initializes array with a normal distribution.

 Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
 mean is 0, and standard deviation is scale.

 Parameters

 • scale (float) – Standard deviation of Gaussian distribution.
 • dtype – Data type specifier.

Methods

__call__(array)
 Initializes given array.

 This method destructively changes the value of array. The derived class is required to implement this
 method. The algorithms used to make the new values depend on the concrete derived classes.

 Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.

citchainer.initializers.LeCunNormal

class chainer.initializers.LeCunNormal(scale=1.0, dtype=None)
 Initializes array with scaled Gaussian distribution.

 Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
 mean is 0, and standard deviation is scale × \sqrt{\frac{1}{fan_{in}}}, where fan_{in} is the number of input units.

 Parameters

 • scale (float) – A constant that determines the scale of the standard deviation.

4.6. Weight Initializers
• `dtype` – Data type specifier.

Methods

```python
__call__(array)
```
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

- `array` (*N-dimensional array*) – An array to be initialized by this initializer.

```python
__eq__()
```
Return `self==value`.

```python
__ne__()
```
Return `self!=value`.

```python
__lt__()
```
Return `self<value`.

```python
__le__()
```
Return `self<=value`.

```python
__gt__()
```
Return `self>value`.

```python
__ge__()
```
Return `self>=value`.

`chainer.initializers.GlorotNormal`

class `chainer.initializers.GlorotNormal(scale=1.0, dtype=None)`

Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \(\text{scale} \times \sqrt{\frac{2}{\text{fan}_{\text{in}} + \text{fan}_{\text{out}}}} \), where \(\text{fan}_{\text{in}} \) and \(\text{fan}_{\text{out}} \) are the number of input and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

- `scale` (*float*) – A constant that determines the scale of the standard deviation.
- `dtype` – Data type specifier.

Methods

```python
__call__(array)
```
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

- `array` (*N-dimensional array*) – An array to be initialized by this initializer.

```python
__eq__()
```
Return `self==value`.
chainer.initializers.HeNormal

class chainer.initializers.HeNormal(scale=1.0, dtype=None, fan_option='fan_in')
Initializes array with scaled Gaussian distribution.
Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is \(scale \times \sqrt{\frac{2}{fan}} \). If \(fan_option == 'fan_in' \), \(fan \) is the number of
input units. If \(fan_option == 'fan_out' \), \(fan \) is the number of output units.

Parameters

- scale (float) – A constant that determines the scale of the standard deviation.
- dtype – Data type specifier.
- fan_option ({'fan_in', 'fan_out'}) – Decides how to compute the standard
deviation. The default value is 'fan_in'.

Methods

__call__(array)
Initializes given array.
This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.
chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal(scale=1.1, dtype=None)

Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn independently from standard Gaussian distribution. Next, it applies QR decomposition to (the transpose of) the matrix. To make the decomposition (almost surely) unique, we require the diagonal of the triangular matrix R to be non-negative (see e.g. Edelman & Rao, https://web.eecs.umich.edu/~rajnrao/Acta05rmt.pdf). Then, it initializes the array with the (semi-)orthogonal matrix Q. Finally, the array is multiplied by the constant scale.

If the ndim of the input array is more than 2, we consider the array to be a matrix by concatenating all axes except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

Variables

- **scale** (float) – A constant to be multiplied by.
- **dtype** – Data type specifier.

Methods

__call__(array)

Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

- **array** (N-dimensional array) – An array to be initialized by this initializer.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
chainer.initializers.Uniform

```
class chainer.initializers.Uniform(scale=0.05, dtype=None):
    Initializes array with a scaled uniform distribution.
    Each element of the array is initialized by the value drawn independently from uniform distribution
    \([-\text{scale}, \text{scale}]\).

    Variables
    • \textit{scale} (\texttt{float}) – A constant that determines the scale of the uniform distribution.
    • \textit{dtype} – Data type specifier.

    Methods
    __call__(array)
    Initializes given array.
    This method destructively changes the value of array. The derived class is required to implement this
    method. The algorithms used to make the new values depend on the concrete derived classes.

    Parameters
    array (\textit{N-dimensional array}) – An array to be initialized by this initializer.

    __eq__()
    Return self==value.

    __ne__()
    Return self!=value.

    __lt__()
    Return self<value.

    __le__()
    Return self<=value.

    __gt__()
    Return self>value.

    __ge__()
    Return self>=value.
```

chainer.initializers.LeCunUniform

```
class chainer.initializers.LeCunUniform(scale=1.0, dtype=None):
    Initializes array with a scaled uniform distribution.
    Each element of the array is initialized by the value drawn independently from uniform distribution
    \([-s, s]\) where \(s = \text{scale} \times \sqrt{\frac{3}{\text{fan}_{\text{in}}}}\). Here \(\text{fan}_{\text{in}}\) is the number of input units.


    Variables
    • \textit{scale} (\texttt{float}) – A constant that determines the scale of the uniform distribution.
    • \textit{dtype} – Data type specifier.
```
Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution $[-s, s]$ where

\[
s = \text{scale} \times \sqrt{\frac{6}{\text{fan}_{\text{in}} + \text{fan}_{\text{out}}}}.
\]

Here, fan_{in} and fan_{out} are the number of input and output units, respectively.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.
__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None)
Initializes array with scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution \([-s, s]\) where
\[s = scale \times \sqrt{\frac{6}{fan_{in}}}\]. Here, \(fan_{in}\) is the number of input units.

Variables

- **scale** (float) – A constant that determines the scale of the uniform distribution.
- **dtype** – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

array (N-dimensional array) – An array to be initialized by this initializer.

__eq__(value)
Return self==value.

__ne__(value)
Return self!=value.

__lt__(value)
Return self<value.

__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.
4.6.3 Helper function

chainer.initializers.generate_array

Return initialized array.

chainer.initializers.generate_array

chainer.initializers.generate_array (initializer, shape, xp, dtype=None, device=None)

Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. If the initializer has the dtype attribute, it is used to construct the array. Otherwise, chainer.config.dtype is used instead. See Configuring Chainer for the dtype config.

Parameters

- initializer – A callable object that takes N-dimensional array and edits its value.
- shape (int or tuple of int) – Shape of the initialized array.
- xp (module) – cupy, numpy, or chainerx.
- dtype – Dtype specifier. If omitted, initializer.dtype is used.
- device – Target device specifier. If omitted, the current device is used for cupy, and the default device is used for chainerx.

Returns An initialized array.

Return type N-dimensional array

4.7 Snapshot Writers

chainer.training.extensions.snapshot_writers.Writer

Base class of snapshot writers.

chainer.training.extensions.snapshot_writers.SimpleWriter

The most simple snapshot writer.

chainer.training.extensions.snapshot_writers.ThreadWriter

Snapshot writer that uses a separate thread.

chainer.training.extensions.snapshot_writers.ProcessWriter

Snapshot writer that uses a separate process.

chainer.training.extensions.snapshot_writers.QueueWriter

Base class of queue snapshot writers.

chainer.training.extensions.snapshot_writers.ThreadQueueWriter

Snapshot writer that uses a thread queue.

chainer.training.extensions.snapshot_writers.ProcessQueueWriter

Snapshot writer that uses process queue.
4.7.1 chainer.training.extensions.snapshot_writers.Writer

class chainer.training.extensions.snapshot_writers.Writer
Base class of snapshot writers.

Snapshot invokes __call__ of this class every time when taking a snapshot. This class determines how the actual saving function will be invoked.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

finalize()
Finalizes the writer.

Like extensions in Trainer, this method is invoked at the end of the training.

save (filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
4.7.2 `chainer.training.extensions.snapshot_writers.SimpleWriter`

```python
class chainer.training.extensions.snapshot_writers.SimpleWriter(savefun=<function save_npz>, **kwds)
```

The most simple snapshot writer.

This class just passes the arguments to the actual saving function.

Parameters

- `savefun` – Callable object. It takes three arguments: the output file path, the serialized dictionary object, and the optional keyword arguments.
- `kwds` – Keyword arguments for the `savefun`.

See also:

- `chainer.training.extensions.snapshot()`

Methods

- `__call__(filename, outdir, target)`

 Invokes the actual snapshot function.

 This method is invoked by a `Snapshot` object every time it takes a snapshot.

 Parameters

 - `filename` (`str`) – Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.
 - `outdir` (`str`) – Output directory. Corresponds to `Trainer.out`.
 - `target` (`dict`) – Serialized object which will be saved.

- `finalize()`

 Finalizes the writer.

 Like extensions in `Trainer`, this method is invoked at the end of the training.

- `save(filename, outdir, target, savefun, **kwds)`

- `__eq__()`

 Return `self==value`.

- `__ne__()`

 Return `self!=value`.

- `__lt__()`

 Return `self<value`.

- `__le__()`

 Return `self<=value`.

- `__gt__()`

 Return `self>value`.

- `__ge__()`

 Return `self>=value`.
4.7.3 `chainer.training.extensions.snapshot_writers.ThreadWriter`

```python
class chainer.training.extensions.snapshot_writers.ThreadWriter(savefun=<function save_npz>, **kwds)
```

Snapshot writer that uses a separate thread. This class creates a new thread that invokes the actual saving function.

See also:

* `chainer.training.extensions.snapshot()`

Methods

`__call__`(filename, outdir, target)

Invokes the actual snapshot function.

This method is invoked by a `Snapshot` object every time it takes a snapshot.

Parameters

- **filename** (*str*) – Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.
- **outdir** (*str*) – Output directory. Corresponds to `Trainer.out`.
- **target** (*dict*) – Serialized object which will be saved.

`create_worker`(filename, outdir, target, **kwds)

Creates a worker for the snapshot.

This method creates a thread or a process to take a snapshot. The created worker must have `start()` and `join()` methods.

Parameters

- **filename** (*str*) – Name of the file into which the serialized target is saved. It is already formatted string.
- **outdir** (*str*) – Output directory. Passed by `trainer.out`.
- **target** (*dict*) – Serialized object which will be saved.
- **kwds** – Keyword arguments for the `savefun`.

`finalize()`

Finalizes the writer.

Like extensions in `Trainer`, this method is invoked at the end of the training.

`save`(filename, outdir, target, savefun, **kwds)

`__eq__`()
Return self==value.

`__ne__`()
Return self!=value.

`__lt__`()
Return self<value.

`__le__`()
Return self<=value.
__gt__(self, value)
 Return self>value.

__ge__(self, value)
 Return self>=value.

4.7.4 chainer.training.extensions.snapshot_writers.ProcessWriter

class ProcessWriter(chainer.training.extensions.snapshot_writers.ProcessWriter, savefun=<function save_npz>, **kwds)

Snapshot writer that uses a separate process.
This class creates a new process that invokes the actual saving function.

Note: Forking a new process from a MPI process might be danger. Consider using ThreadWriter instead of ProcessWriter if you are using MPI.

See also:
- chainer.training.extensions.snapshot()

Methods

__call__(self, filename, outdir, target)
 Invokes the actual snapshot function.
 This method is invoked by a Snapshot object every time it takes a snapshot.

 Parameters

 - *filename* (str) – Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.
 - *outdir* (str) – Output directory. Corresponds to Trainer.out.
 - *target* (dict) – Serialized object which will be saved.

create_worker(self, filename, outdir, target, **kwds)
 Creates a worker for the snapshot.
 This method creates a thread or a process to take a snapshot. The created worker must have start() and join() methods.

 Parameters

 - *filename* (str) – Name of the file into which the serialized target is saved. It is already formated string.
 - *target* (dict) – Serialized object which will be saved.
 - *kwds* – Keyword arguments for the savefun.

finalize(self)
 Finalizes the writer.
 Like extensions in Trainer, this method is invoked at the end of the training.
save (filename, outdir, target, savefun, **kwds)

__eq__ ()
 Return self==value.
__ne__ ()
 Return self!=value.
__lt__ ()
 Return self<value.
__le__ ()
 Return self<=value.
__gt__ ()
 Return self>value.
__ge__ ()
 Return self>=value.

4.7.5 chainer.training.extensions.snapshot_writers.QueueWriter

class chainer.training.extensions.snapshot_writers.QueueWriter (savefun=<function save_npz>,
 task=None)

Base class of queue snapshot writers.

This class is a base class of snapshot writers that use a queue. A Queue is created when this class is constructed, and every time when __call__ is invoked, a snapshot task is put into the queue.

Parameters

• savefun – Callable object which is passed to the create_task() if the task is None. It takes three arguments: the output file path, the serialized dictionary object, and the optional keyword arguments.

• task – Callable object. Its __call__ must have a same interface to Writer. __call__. This object is directly put into the queue.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__ (filename, outdir, target)
 Invokes the actual snapshot function.

 This method is invoked by a Snapshot object every time it takes a snapshot.

 Parameters

 • filename (str) – Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.

 • outdir (str) – Output directory. Corresponds to Trainer.out.

 • target (dict) – Serialized object which will be saved.

consume (q)
create_consumer (q)
create_queue()
create_task(savefun)
finalise()

Finalizes the writer.
Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)
__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.6 chainer.training.extensions.snapshot_writers.ThreadQueueWriter

class chainer.training.extensions.snapshot_writers.ThreadQueueWriter(savefun=<function save_npz>,
 task=None)

Snapshot writer that uses a thread queue.
This class creates a thread and a queue by threading and queue modules respectively. The thread will be a
consumer of the queue, and the main thread will be a producer of the queue.

See also:
* chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.
This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

* filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.
* outdir (str) – Output directory. Corresponds to Trainer.out.
* target (dict) – Serialized object which will be saved.

consume(q)
create_consumer(q)
create_queue()

create_task(savefun)

finalize()

Finalizes the writer.

Like extensions in `Trainer`, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

```python
__eq__(value)

Return self==value.

__ne__(value)

Return self!=value.

__lt__(value)

Return self<value.

__le__(value)

Return self<=value.

__gt__(value)

Return self>value.

__ge__(value)

Return self>=value.
```

4.7.7 chainer.training.extensions.snapshot_writers.ProcessQueueWriter

```python
class chainer.training.extensions.snapshot_writers.ProcessQueueWriter:
```

Snapshot writer that uses process queue.

This class creates a process and a queue by `multiprocessing` module. The process will be a consumer of this queue, and the main process will be a producer of this queue.

Note: Forking a new process from MPI process might be danger. Consider using `ThreadQueueWriter` instead of `ProcessQueueWriter` if you are using MPI.

See also:

- `chainer.training.extensions.snapshot_writer()`

Methods

```python
__call__(filename, outdir, target)
```

Invokes the actual snapshot function.

This method is invoked by a `Snapshot` object every time it takes a snapshot.

Parameters

- `filename` (`str`): Name of the file into which the serialized target is saved. It is a concrete file name, i.e. not a pre-formatted template string.
- `outdir` (`str`): Output directory. Corresponds to `Trainer.out`.

4.7. Snapshot Writers 921
• **target** (*dict*) – Serialized object which will be saved.

```python
consume(q)
create_consumer(q)
create_queue()
create_task(savefun)
finalize()
```

Finalizes the writer.

Like extensions in `Trainer`, this method is invoked at the end of the training.

```python
save(filename, outdir, target, savefun, **kwds)
```

Methods:

- `__eq__(self, value)`
 - Return `self==value`.

- `__ne__(self, value)`
 - Return `self!=value`.

- `__lt__(self, value)`
 - Return `self<value`.

- `__le__(self, value)`
 - Return `self<=value`.

- `__gt__(self, value)`
 - Return `self>value`.

- `__ge__(self, value)`
 - Return `self>=value`.

4.8 Training Tools

Chainer provides a standard implementation of the training loops under the `chainer.training` module. It is built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Optimizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is `Trainer`, which implements the training loop itself. The training loop consists of two parts: one is `Updater`, which actually updates the parameters to train, and the other is `Extension` for arbitrary functionalities other than the parameter update.

Updater and some extensions use `chainer.dataset` and `Iterator` to scan the datasets and load mini-batches. The trainer also uses `Reporter` to collect the observed values, and some extensions use `DictSummary` to accumulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the extension implementations from `Extensions`.
4.8.1 Trainer

chainer.training.Trainer

The standard training loop in Chainer.

chainer.training.Trainer

class chainer.training.Trainer(updater, stop_trigger=None, out='result', extensions=None)

The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the run() method.

Each iteration of the training loop proceeds as follows.

- Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an execution of the update formula. These are all done by the update object held by the trainer.
- Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to each extension, and it decides at each iteration whether the extension should be executed. Trigger objects are callable objects that take the trainer object as the argument and return a boolean value indicating whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define custom extensions: inheriting the Extension class, decorating functions by make_extension(), and defining any callable including lambda functions. See Extension for more details on custom extensions and how to configure them.

Users can register extensions to the trainer by calling the extend() method, where some configurations can be added.

- Trigger object, which is also explained above. In most cases, IntervalTrigger is used, in which case users can simply specify a tuple of the interval length and its unit, like (1000, 'iteration') or (1, 'epoch').
- The order of execution of extensions is determined by their priorities. Extensions of higher priorities are invoked earlier. There are three standard values for the priorities:
 - PRIORITY_WRITER. This is the priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the chainer.report() function to report values to the observation dictionary.
 - PRIORITY_EDITOR. This is the priority for extensions that edit the observation dictionary based on already reported values.
 - PRIORITY_READER. This is the priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

```python
>>> serializers.save_npz('my.trainer', trainer) # To suspend and save
>>> serializers.load_npz('my.trainer', trainer) # To load and resume
```

The snapshot() method makes regular snapshots of the Trainer object during training.

Note: The serialization does not recover everything of the training loop. It only recovers the states which change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You
must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then resume it with larger number of total iterations.

During the training, it also creates a `Reporter` object to store observed values on each update. For each iteration, it creates a fresh observation dictionary and stores it in the `observation` attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of each observer is constructed as the format `<optimizer name><link name>`. The link name is given by the `chainer.Link.namedlink()` method, which represents the path to each link in the hierarchy. Other observers can be registered by accessing the reporter object via the `reporter` attribute.

The default trainer is `plain`, i.e., it does not contain any extensions.

Parameters

- **updater (Updater)** – Updater object. It defines how to update the models.
- **stop_trigger** – Trigger that determines when to stop the training loop. If it is not callable, it is passed to `IntervalTrigger`.
- **out** – Output directory.
- **extensions** – Extensions registered to the trainer.

Variables

- **updater** – The updater object for this trainer.
- **stop_trigger** – Trigger that determines when to stop the training loop. The training loop stops at the iteration on which this trigger returns `True`.
- **observation** – Observation of values made at the last update. See the `Reporter` class for details.
- **out** – Output directory.
- **reporter** – Reporter object to report observed values.

Methods

extend (extension, name=None, trigger=None, priority=None, **kwargs)

Registers an extension to the trainer.

`Extension` is a callable object which is called after each update unless the corresponding trigger object decides to skip the iteration. The order of execution is determined by priorities: extensions with higher priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second to last extensions. The suffix is `_N` where `N` is the ordinal of the extensions.

See `Extension` for the interface of extensions.

Parameters

- **extension** – Extension to register.
- **name (str)** – Name of the extension. If it is omitted, the `Extension.name` attribute of the extension is used or the `Extension.default_name` attribute of the extension
if *name* is is set to *None* or is undefined. Note that the name would be suffixed by an ordinal in case of duplicated names as explained above.

- **trigger** (*tuple or Trigger*) – Trigger object that determines when to invoke the extension. If it is *None*, `extension.trigger` is used instead. If it is *None* and the extension does not have the trigger attribute, the extension is triggered at every iteration by default. If the trigger is not callable, it is passed to `IntervalTrigger` to build an interval trigger.

- **priority** (*int*) – Invocation priority of the extension. Extensions are invoked in the descending order of priorities in each iteration. If this is *None*, `extension.priority` is used instead.

get_extension (*name*)

Returns the extension of a given name.

Parameters

- **name** (*str*) – Name of the extension.

Returns

Extension.

run (*show_loop_exception_msg=True*)

Executes the training loop.

This method is the core of `Trainer`. It executes the whole loop of training the models.

Note that this method cannot run multiple times for one trainer object.

serialize (*serializer*)

- **eq** ()

 Return `self==value`.

- **ne** ()

 Return `self!=value`.

- **lt** ()

 Return `self<value`.

- **le** ()

 Return `self<=value`.

- **gt** ()

 Return `self>value`.

- **ge** ()

 Return `self>=value`.

Attributes

- **elapsed_time**

 Total time used for the training.

 The time is in seconds. If the training is resumed from snapshot, it includes the time of all the previous training to get the current state of the trainer.
4.8.2 Updaters

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.training.Updater</code></td>
<td>Interface of updater objects for trainers.</td>
</tr>
<tr>
<td><code>chainer.training.updaters.StandardUpdater</code></td>
<td>Standard implementation of Updater.</td>
</tr>
<tr>
<td><code>chainer.training.updaters.ParallelUpdater</code></td>
<td>Implementation of a parallel GPU Updater.</td>
</tr>
</tbody>
</table>

`chainer.training.Updater`

class chainer.training.Updater

Interface of updater objects for trainers.

`Updater` implements a training iteration as `update()`. Typically, the updating iteration proceeds as follows.

- Fetch a minibatch from `dataset` via `Iterator`.
- Run forward and backward process of `Chain`.
- Update parameters according to their `UpdateRule`.

The first line is processed by `Iterator.__next__`. The second and third are processed by `Optimizer.update`. Users can also implement their original updating iteration by overriding `Updater.update`.

Methods

`connect_trainer(trainer)`

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

Parameters

- **trainer** (`Trainer`) – Trainer object to which the updater is registered.

`finalize()`

Finalizes the updater object.

This method is called at the end of training loops. It should finalize each dataset iterator used in this updater.

`get_all_optimizers()`

Gets a dictionary of all optimizers for this updater.

- **Returns** Dictionary that maps names to optimizers.

- **Return type** `dict`

`get_optimizer(name)`

Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

- **Parameters** `name` (`str`) – Name of the optimizer.

- **Returns** Optimizer of the name.

- **Return type** `Optimizer`
serialize

Serializes the current state of the updater object.

update()

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.

chainer.training.updaters.StandardUpdater

class chainer.training.updaters.StandardUpdater(iterator, optimizer, converter=\<function concat_examples\>, device=None, loss_func=None, loss_scale=None, auto_new_epoch=True)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users can override this update routine by inheriting this class and overriding the update_core() method. Each batch is converted to input arrays by chainer.dataset.concat_examples() by default, which can also be manually set by converter argument.

Parameters

- **iterator** – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

- **optimizer** – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

- **converter** – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. chainer.dataset.concat_examples() is used by default.

- **device** – Device to which the training data is sent. Negative value indicates the host memory (CPU).
• **loss_func** – Loss function. The target link of the main optimizer is used by default.

• **loss_scale** (*float*) – Loss scaling factor. Loss scaling is a useful technique to mitigate vanishing gradient issue that tends to happen when low precision data type like float16 is used during training. If you set loss scaling factor, gradients of loss values are to be multiplied by the factor before backprop starts. The factor is propagated to whole gradients in a computational graph along the backprop. The gradients of parameters are divided by the factor just before the parameters are to be updated.

• **auto_new_epoch** (*bool*) – If True, `new_epoch()` of the main optimizer is automatically called when the `is_new_epoch` attribute of the main iterator is True.

Variables

• **converter** – Converter function.

• **loss_func** – Loss function. If it is None, the target link of the main optimizer is used instead.

• **device** – Device to which the training data is sent.

• **iteration** – Current number of completed updates.

• **auto_new_epoch** – If True, `new_epoch()` is automatically called by `update_core()`. In this case, the `use_auto_new_epoch` attribute of each optimizer is also set to True. If `update_core()` is overridden, the implementation should correctly call `new_epoch()` of each optimizer.

Methods

`connect_trainer` (*trainer*)

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

Parameters

* **trainer** (*Trainer*) – Trainer object to which the updater is registered.

`finalize()`

Finalizes the updater object.

This method calls the `finalize` method of each iterator that this updater has. It is called at the end of training loops.

`get_all_optimizers()`

Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

`get_iterator` (*name*)

Gets the dataset iterator of given name.

Parameters

* **name** (*str*) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

`get_optimizer` (*name*)

Gets the optimizer of given name.

Parameters

* **name** (*str*) – Name of the optimizer.
Returns: Corresponding optimizer.

Return type: Optimizer

serialize (serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch
epoch_detail
is_new_epoch
previous_epoch_detail

chainer.training.updaters.ParallelUpdater

class chainer.training.updaters.ParallelUpdater (iterator, optimizer, converter=<function concat_examples>, models=None, devices=None, loss_func=None, loss_scale=None, auto_new_epoch=True)

Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

Parameters
• **iterator** – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

• **optimizer** – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

• **converter** – Converter function to build input arrays. Each batch extracted by the main iterator is split equally between the devices and then passed with corresponding `device` option to this function. `concat_examples()` is used by default.

• **models** – Dictionary of models. The main model should be the same model attached to the 'main' optimizer.

• **devices** – Dictionary of devices to which the training data is sent. The devices should be arranged in a dictionary with the same structure as `models`.

• **loss_func** – Loss function. The model is used as a loss function by default.

• **loss_scale** (`float`) – Loss scaling factor. Loss scaling is a useful technique to mitigate vanishing gradient issue that tends to happen when low precision data type like float16 is used during training. If you set loss scaling factor, gradients of loss values are to be multiplied by the factor before backprop starts. The factor is propagated to whole gradients in a computational graph along the backprop. The gradients of parameters are divided by the factor just before the parameters are to be updated.

• **auto_new_epoch** (`bool`) – If True, `new_epoch()` of the main optimizer is automatically called when the `is_new_epoch` attribute of the main iterator is True.

Methods

`connect_trainer` *(trainer)*

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

Parameters

- **trainer** (`Trainer`) – Trainer object to which the updater is registered.

`finalize` ()

Finalizes the updater object.

This method calls the `finalize` method of each iterator that this updater has. It is called at the end of training loops.

`get_all_optimizers` ()

Gets a dictionary of all optimizers for this updater.

Returns

Dictionary that maps names to optimizers.

Return type

dict

`get_iterator` *(name)*

Gets the dataset iterator of given name.

Parameters

- **name** (`str`) – Name of the dataset iterator.

Returns

Corresponding dataset iterator.

Return type

Iterator
get_optimizer(name)
 Gets the optimizer of given name.

 Parameters name (str) – Name of the optimizer.
 Returns Corresponding optimizer.
 Return type Optimizer

serialize(serializer)
 Serializes the current state of the updater object.

update()
 Updates the parameters of the target model.
 This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.
 This method is called once at each iteration of the training loop.

update_core()

__eq__(value)
 Return self==value.

__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

epoch
epoch_detail
is_new_epoch
previous_epoch_detail

criminator. training. updaters. MultiprocessParallelUpdater

class chainer. training. updaters. MultiprocessParallelUpdater (iterators, optimizer,
 converter=<function concat_examples>,
 devices=None,
 auto_new_epoch=True)

Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses Nvidia NCCL for communication between multiple GPUs.
It behaves similarly to `StandardUpdater`. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by `Reporter` in the sub devices to the main device. So you can only see the reported values in the main device.

Parameters

- **iterators** – List of dataset iterator for the training dataset. The number of the iterators must be same to the number of GPUs you use.
- **optimizer** – Optimizer to update parameters. The model should be attached to the optimizer.
- **converter** – Converter function to build input arrays. Each batch extracted by the iterator is split equally between the devices and then passed with corresponding `device` option to this function. `concat_examples()` is used by default.
- **devices** – Dictionary or list of devices to which the training data is sent. The master device will be the first one in the list or the value attached to the key 'main'.
- **auto_new_epoch (bool)** – If `True`, `new_epoch()` of the main optimizer is automatically called when the `is_new_epoch` attribute of the main iterator is `True`.

Methods

static available()

connect_trainer (trainer)

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

- **Parameters**
 - `trainer` (`Trainer`) – Trainer object to which the updater is registered.

finalize()

Finalizes the updater object.

This method calls the `finalize` method of each iterator that this updater has. It is called at the end of training loops.

get_all_optimizers()

Gets a dictionary of all optimizers for this updater.

- **Returns** Dictionary that maps names to optimizers.

- **Return type** `dict`

get_iterator (name)

Gets the dataset iterator of given name.

- **Parameters**
 - `name` (`str`) – Name of the dataset iterator.

- **Returns** Corresponding dataset iterator.

- **Return type** `Iterator`

get_optimizer (name)

Gets the optimizer of given name.

- **Parameters**
 - `name` (`str`) – Name of the optimizer.
Returns Corresponding optimizer.

Return type Optimizer

serialize (serializer)
Serializes the current state of the updater object.

setup_workers ()

update ()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core ()

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

epoch
epoch_detail
is_new_epoch
previous_epoch_detail

We have two kinds of updaters for multi-gpus training. The pros/cons for the updaters are as follows:

ParallelUpdater:
• (+) Can use the same iterator for any number of GPUs
• (-) No parallelism at CPU side
• (-) GPUs used later may be blocked due to the limit of kernel-launch queue size

MultiprocessParallelUpdater:
• (+) Parallelism at CPU side
• (+) No degrade due to kernel launch queue size
• (-) Need per-process data iterator
• (-) Reporter cannot collect data except for one of the devices
4.8.3 Extensions

An extension is a callable object that can perform arbitrary actions during the training loop. Extensions can be registered to `Trainer` by using `Trainer.extend()` method, and they are invoked when the `Trigger` condition is satisfied.

In addition to the built-in extensions listed below, you can define your own extension by implementing `Extension` or using the `make_extension()` decorator. See `Trainer Extensions` for details.

Common

| `chainer.training.Extension` | Base class of trainer extensions. |
| `chainer.training.make_extension` | Decorator to make given functions into trainer extensions. |

`chainer.training.Extension`

```python
class chainer.training.Extension
```

Base class of trainer extensions.

Extension of `Trainer` is a callable object that takes the trainer object as the argument. It also provides some default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by `make_extension()`, or using any callable including lambda functions as extensions. Decorator can slightly reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes, but users have to specify the configurations as arguments to `Trainer.extend()`. For a callable not inheriting this class, the default configurations of this class are used unless the user explicitly specifies them in `Trainer.extend()` method.

Variables

- `trigger` – Default value of trigger for this extension. It is set to `(1, 'iteration')` by default.
- `priority` – Default priority of the extension. It is set to `PRIORITY_READER` by default.
- `name` – Name of the extension. It is set to `None` by default. This value will be overwritten when registering an extension to a trainer. See `chainer.training.Trainer.extend()` for details.

Methods

```
__call__(trainer)
```

Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters

- `trainer` (`Trainer`) – Trainer object that calls this operator.

```
finalize()
```

Finalizes the extension.
This method is called at the end of the training loop.

initialize *(trainer)*

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of *Trainer* can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, *ExponentialShift* extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The *ExponentialShift* extension recovers it in its *initialize* method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- **trainer** *(Trainer)* – Trainer object that runs the training loop.

on_error *(trainer, exc, tb)*

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- **trainer** *(Trainer)* – Trainer object that runs the training loop.
- **exc** *(Exception)* – arbitrary exception thrown during update loop.
- **tb** *(traceback)* – traceback object of the exception

serialize *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

```python
name = None
priority = 100
trigger = (1, 'iteration')
```

chainer.training.make_extension

`chainer.training.make_extension(trigger=None, default_name=None, priority=None, finalizer=None, initializer=None, on_error=None, **kwargs)`

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the arguments
of this decorator.

See `Extension` for details of trainer extensions. Most of the default values of arguments also follow those for this class.

Parameters

- **trigger** – Default trigger of the extension.
- **default_name** – Default name of the extension. The name of a given function is used by default.
- **priority**(int) – Default priority of the extension.
- **finalizer** – Finalizer function of this extension. It is called at the end of the training loop.
- **initializer** – Initializer function of this extension. It is called at the beginning of the training loop.
- **on_error** – Error handler callback function of this extension. It is called after an error is raised during the trainer loop.

Evaluation and Metrics Collection

These extensions provide features to collect additional metrics. The typical use case is to use `Evaluator` to perform
evaluation with a validation dataset to compute validation loss/accuracy.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Evaluator</code></td>
<td>Trainer extension to evaluate models on a validation set.</td>
</tr>
<tr>
<td><code>MicroAverage</code></td>
<td>Calculates micro-average ratio.</td>
</tr>
<tr>
<td><code>FailOnNonNumber</code></td>
<td>Trainer extension to raise RuntimeError if parameters contain NaN or Inf.</td>
</tr>
<tr>
<td><code>ParameterStatistics</code></td>
<td>Trainer extension to report parameter statistics.</td>
</tr>
</tbody>
</table>

Continued on next page
chainer.training.extensions.observe_lr

Returns a trainer extension to record the learning rate.

chainer.training.extensions.observe_value

Returns a trainer extension to continuously record a value.

chainer.training.extensions.Evaluator

class chainer.training.extensions.Evaluator(iterator, target, converter=<function concat_examples>, device=None, eval_hook=None, eval_func=None)

Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function. It creates a Reporter object to store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to DictSummary. The collected mean values are further reported to the reporter object of the trainer, where the name of each observation is prefixed by the evaluator name. See Reporter for details in naming rules of the reports.

Evaluator has a structure to customize similar to that of StandardUpdater. The main differences are:

• There are no optimizers in an evaluator. Instead, it holds links to evaluate.

• An evaluation loop function is used instead of an update function.

• Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is by setting a custom evaluation loop via the eval_func argument. The other is by inheriting this class and overriding the evaluate() method. In latter case, users have to create and handle a reporter object manually. Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In both cases, the functions are called in testing mode (i.e., chainer.config.train is set to False).

This extension is called at the end of each epoch by default.

Parameters

• iterator – Dataset iterator for the validation dataset. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name 'main'.

• target – Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name 'main'.

• converter – Converter function to build input arrays. concat_examples() is used by default.

• device – Device to which the validation data is sent. Negative value indicates the host memory (CPU).

• eval_hook – Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call.

• eval_func – Evaluation function called at each iteration. The target link to evaluate as a callable is used by default.

Variables

• converter – Converter function.

• device – Device to which the validation data is sent.
- **eval_hook** – Function to prepare for each evaluation process.
- **eval_func** – Evaluation function called at each iteration.

Methods

```python
__call__ (trainer=None)
```
Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the `report()` function. Thus, users can use this extension independently from any trainer by manually configuring a `Reporter` object.

Parameters
- `trainer` *(Trainer) –* Trainer object that invokes this extension. It can be omitted in case of calling this extension manually.

Returns
- Result dictionary that contains mean statistics of values reported by the evaluation function.

Return type
- dict

```python
evaluate ()
```
Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to `DictSummary` and returns a dictionary whose values are means computed by the summary.

Note that this function assumes that the main iterator raises `StopIteration` or code in the evaluation loop raises an exception. So, if this assumption is not held, the function could be caught in an infinite loop.

Users can override this method to customize the evaluation routine.

Note: This method encloses `eval_func` calls with `function.no_backprop_mode()` context, so all calculations using `FunctionNode` inside `eval_func` do not make computational graphs. It is for reducing the memory consumption.

Returns
- Result dictionary. This dictionary is further reported via `report()` without specifying any observer.

Return type
- dict

```python
finalize ()
```
Finalizes the evaluator object.

This method calls the `finalize` method of each iterator that this evaluator has. It is called at the end of training loops.

```python
get_all_iterators ()
```
Returns a dictionary of all iterators.

```python
get_all_targets ()
```
Returns a dictionary of all target links.

```python
get_iterator (name)
```
Returns the iterator of the given name.

```python
get_target (name)
```
Returns the target link of the given name.
initialize \((\text{trainer}) \)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- \(\text{trainer (Trainer)} \) – Trainer object that runs the training loop.

on_error \((\text{trainer, exc, tb}) \)

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- \(\text{trainer (Trainer)} \) – Trainer object that runs the training loop.
- \(\text{exc (Exception)} \) – arbitrary exception thrown during update loop.
- \(\text{tb (traceback)} \) – traceback object of the exception

serialize \((\text{serializer}) \)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__ ()

Return self==value.

__ne__ ()

Return self!=value.

__lt__ ()

Return self<value.

__le__ ()

Return self<=value.

__gt__ ()

Return self>value.

__ge__ ()

Return self>=value.
Attributes

default_name = 'validation'
name = None
priority = 300
trigger = (1, 'epoch')

chainer.training.extensions.MicroAverage

class chainer.training.extensions.MicroAverage(numerator_key, denominator_key, result_key, trigger=(1, 'epoch'))

Calculates micro-average ratio.

Give \(N \) batches and values \(\{n_1, \ldots, n_N\} \) and \(\{d_1, \ldots, d_N\} \), this extension calculates micro-average of these ratio defined as:

\[
\frac{\sum_i^n n_i}{\sum_i^n d_i}.
\]

A user usually uses the number of examples which a system correctly predict as \(n_i \) and the number of total examples in \(i \)-th batch as \(d_i \). This value is called macro-average of precision.

Note that macro-average is defined as:

\[
\frac{1}{N} \sum_i^n (n_i/d_i).
\]

It is same to the micro-average when each mini-batch has the same \(d_i \).

You need to report numerator value (the number of correct examples) and denominator value (the number of examples) in your model.

```python
>>> class MyModel(chainer.Link):
...     def __call__(self, x, y):
...         loss = F.softmax_cross_entropy(x, y)
...         correct = (x.data.argmax(axis=1) == y.data).sum()
...         total = len(y.data)
...         reporter.report({'correct': correct, 'total': total}, self)
...         return loss
```

And then, make an extension with corresponding reporting keys and register it.

```python
>>> ext = extensions.MicroAverage(
...     'main/correct', 'main/total', 'main/accuracy')
```

Parameters

- **numerator_key** (str) – Key string of observation storing a numerator value.
- **denominator_key** (str) – Key string of observation storing a denominator value.
- **result_key** (str) – Key string of observation to store a result.
- **trigger** – Trigger that decides when to calculate average. This is distinct from the trigger of this extension itself. If it is a tuple in the form \(<\text{int}>, \text{epoch'} \text{ or } \langle\text{int}, \text{iteration}' \rangle, it is passed to IntervalTrigger.
Methods

__call__ (trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize (trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters
• trainer (Trainer) – Trainer object that runs the training loop.
• exc (Exception) – arbitrary exception thrown during update loop.
• tb (traceback) – traceback object of the exception

serialize (serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.
__ge__(value)
 Return self>=value.

Attributes

default_name
 Default name of the extension.
 It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

 name = None
 priority = 200
 trigger = (1, 'iteration')

chainer.training.extensions.FailOnNonNumber

class chainer.training.extensions.FailOnNonNumber
 Trainer extension to raise RuntimeError if parameters contain NaN or Inf.
 Although parameters including non-number such as NaN and Inf are unnecessary in most cases, Trainer will
continue to compute even if the parameters in a given optimizer diverge. This extension is aimed to reduce
unnecessary computations by throwing RuntimeError if the parameters contain NaN or Inf.

Methods

__call__(trainer)
 Invokes the extension.
 Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

 Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
 Finalizes the extension.
 This method is called at the end of the training loop.

initialize(trainer)
 Initializes up the trainer state.
 This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.
 When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

 Parameters trainer (Trainer) – Trainer object that runs the training loop.
on_error \((trainer, exc, tb) \)

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- \(\text{trainer} (\text{Trainer}) \) – Trainer object that runs the training loop.
- \(\text{exc} (\text{Exception}) \) – arbitrary exception thrown during update loop.
- \(\text{tb} (\text{traceback}) \) – traceback object of the exception

serialize \((\text{serializer}) \)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

- \(\text{default_name} \)
 - Default name of the extension.
 - It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

\[
\begin{align*}
\text{name} & = \text{None} \\
\text{priority} & = 100 \\
\text{trigger} & = (1, \ 'iteration')
\end{align*}
\]
chainer.training.extensions.ParameterStatistics

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given Link or an iterable of Links. If a link contains child links, the statistics are reported separately for each child.

Any function that takes a one-dimensional numpy.ndarray or a cupy.ndarray and outputs a single or multiple real numbers can be registered to handle the collection of statistics, e.g. numpy.ndarray.mean().

The keys of reported statistics follow the convention of link name followed by parameter name, attribute name and function name, e.g. VGG16Layers/conv1_1/W/data/mean. They are prepended with an optional prefix and appended with integer indices if the statistics generating function return multiple values.

Parameters

- **links** (Link or iterable of ~chainer.Link) – Link(s) containing the parameters to observe. The link is expected to have a name attribute which is used as a part of the report key.
- **statistics** (dict) – Dictionary with function name to function mappings. The name is a string and is used as a part of the report key. The function is responsible for generating the statistics.
- **report_params** (bool) – If True, report statistics for parameter values such as weights and biases.
- **report_grads** (bool) – If True, report statistics for parameter gradients.
- **prefix** (str) – Optional prefix to prepend to the report keys.
- **trigger** – Trigger that decides when to aggregate the results and report the values.
- **skip_nan_params** (bool) – If True, statistics are not computed for parameters including NaNs and a single NaN value is immediately reported instead. Otherwise, this extension will simply try to compute the statistics without performing any checks for NaNs.
Methods

__call__(trainer)
Execute the statistics extension.

Collect statistics for the current state of parameters.

Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the
trigger is fired, the summary will also be reported and then reset for the next accumulation.

Parameters trainer (Trainer) – Associated trainer that invoked this extension.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.
• exc (Exception) – arbitrary exception thrown during update loop.
• tb (traceback) – traceback object of the exception

register_statistics (name, function)
Register a function to compute a certain statistic.

The registered function will be called each time the extension runs and the results will be included in the
report.

Parameters

• name (str) – Name of the statistic.
• function – Function to generate the statistic. Any function that takes a one-dimensional
numpy.ndarray or a cupy.ndarray and outputs a single or multiple real numbers
is allowed.

serialize (serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.
__eq__(value)
 Return self==value.

__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

default_name = 'parameter_statistics'
default_statistics = {'max': <function ParameterStatistics.<lambda>>, 'mean': <function ParameterStatistics.<lambda>>, ...
 'std': <function ParameterStatistics.<lambda>>, 'zeros': <function ParameterStatistics.<lambda>>}
name = None
priority = 300
report_key_template = '{prefix}{link_name}{param_name}/{attr_name}/{function_name}'
trigger = (1, 'iteration')

chainer.training.extensions.observe_lr

chainer.training.extensions.observe_lr(optimizer_name='main', observation_key='lr')
Returns a trainer extension to record the learning rate.

Parameters

- optimizer_name (str) – Name of optimizer whose learning rate is recorded.
- observation_key (str) – Key of observation to record.

Returns The extension function.

chainer.training.extensions.observe_value

chainer.training.extensions.observe_value(observation_key, target_func)
Returns a trainer extension to continuously record a value.

Parameters

- observation_key (str) – Key of observation to record.
- target_func (function) – Function that returns the value to record. It must take one argument: :class:`~chainer.training.Trainer` object.

Returns The extension function.
Optimizer Behavior Control

These extensions provide features to adjust optimizer behavior. The typical use case is to change the learning rate of the optimizer over time.

- **chainer.training.extensions.ExponentialShift**
 - Trainer extension to exponentially shift an optimizer attribute. This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case is an exponential decay of the learning rate.
 - This extension is also called before the training loop starts by default.

- **chainer.training.extensions.InverseShift**
 - Trainer extension to shift an optimizer attribute.

- **chainer.training.extensions.LinearShift**
 - Trainer extension to change an optimizer attribute linearly.

- **chainer.training.extensions.MultistepShift**
 - Trainer extension to shift an optimizer attribute in several steps.

- **chainer.training.extensions.PolynomialShift**
 - Trainer extension to polynomially shift an optimizer attribute.

- **chainer.training.extensions.WarmupShift**
 - Trainer extension to gradually initialize an optimizer attribute.

- **chainer.training.extensions.StepShift**
 - Trainer extension to shift an optimizer attribute in “steps”.

chainer.training.extensions.ExponentialShift

```python
class chainer.training.extensions.ExponentialShift(attr, rate, init=None, target=None, optimizer=None):
    Trainer extension to exponentially shift an optimizer attribute.
```

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

- **attr (str)** – Name of the attribute to shift.
- **rate (float)** – Rate of the exponential shift. This value is multiplied to the attribute at each call.
- **init (float)** – Initial value of the attribute. If it is None, the extension extracts the attribute at the first call and uses it as the initial value.
- **target (float)** – Target value of the attribute. If the attribute reaches this value, the shift stops.
- **optimizer (Optimizer)** – Target optimizer to adjust the attribute. If it is None, the main optimizer of the updater is used.
Methods

__call__(\texttt{trainer})
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

\textbf{Parameters} \texttt{trainer} (\texttt{Trainer}) – Trainer object that calls this operator.

\texttt{finalize}()
Finalizes the extension.

This method is called at the end of the training loop.

\texttt{initialize}(\texttt{trainer})
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of \texttt{Trainer} can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, \texttt{ExponentialShift} extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The \texttt{ExponentialShift} extension recovers it in its \texttt{initialize} method if it has been loaded from a snapshot, or just setting the initial value otherwise.

\textbf{Parameters} \texttt{trainer} (\texttt{Trainer}) – Trainer object that runs the training loop.

\texttt{on__error}(\texttt{trainer}, \texttt{exc}, \texttt{tb})
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{trainer} (\texttt{Trainer}) – Trainer object that runs the training loop.
 \item \texttt{exc} (\texttt{Exception}) – arbitrary exception thrown during update loop.
 \item \texttt{tb} (\texttt{traceback}) – traceback object of the exception
\end{itemize}

\texttt{serialize}(\texttt{serializer})
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

\texttt{__eq__}()
Return self==value.

\texttt{__ne__}()
Return self!=value.

\texttt{__lt__}()
Return self<value.

\texttt{__le__}()
Return self<=value.

\texttt{__gt__}()
Return self>value.
__ge__(value)
 Return self>=value.

Attributes

default_name
 Default name of the extension.
 It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

 name = None
 priority = 100
 trigger = (1, 'iteration')

chainer.training.extensions.InverseShift

class chainer.training.extensions.InverseShift(attr, gamma, power, init=None, target=None, optimizer=None)
 Trainer extension to shift an optimizer attribute.
 The new value is computed according to the formula below: new_attr = init_attr * (1 + gamma * iter)^(-power),
 which is compatible to the inv learning rate policy in Caffe.
 The typical use is to decrease the learning rate during the training.
 This extension is also called before the training loop starts by default.

 Parameters
 • attr (str) – Name of the attribute to shift.
 • gamma (float) – Parameter used to compute the new value. Refer to the formula above.
 Note that gamma is assumed to be nonnegative.
 • power (float) – Parameter used to compute the new value. Refer to the formula above.
 • init (float) – Initial value of the attribute. If it is None, the extension extracts the
 attribute at the first call and uses it as the initial value.
 • target (float) – Target value of the attribute. If the attribute reaches this value, the shift
 stops.
 • optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
 main optimizer of the updater is used.

Methods

__call__(trainer)
 Invokes the extension.
 Implementations should override this operator. This method is called at iterations which the corresponding
 trigger accepts.

 Parameters trainer (Trainer) – Trainer object that calls this operator.
finalize()
 Finalizes the extension.

 This method is called at the end of the training loop.

initialize(trainer)
 Initializes the trainer state.

 This method is called before entering the training loop. An extension that modifies the state of Trainer
 can override this method to initialize it.

 When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
 state of the trainer.

 For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
 to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

 Parameters
 trainer (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
 Handles the error raised during training before finalization.

 This method is called when an exception is thrown during the training loop, before finalize. An extension
 that needs different error handling from finalize, can override this method to handle errors.

 Parameters
 • trainer (Trainer) – Trainer object that runs the training loop.
 • exc (Exception) – arbitrary exception thrown during update loop.
 • tb (traceback) – traceback object of the exception

serialize (serializer)
 Serializes the extension state.

 It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
 Return self==value.

__ne__()
 Return self!=value.

__lt__()
 Return self<value.

__le__()
 Return self<=value.

__gt__()
 Return self>value.

__ge__()
 Return self>=value.
Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

```python
name = None
priority = 100
trigger = (1, 'iteration')
```

chainer.training.extensions.LinearShift

class `chainer.training.extensions.LinearShift` *(attr, value_range, time_range, optimizer=None)*

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified duration. The typical use case is warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and `value_range == (x, y)` and `time_range == (i, j)`. Then, this extension keeps the attribute to be `x` up to the `i`-th iteration, linearly shifts the value to `y` by the `j`-th iteration, and then keeps the value to be `y` after the `j`-th iteration.

This extension is also called before the training loop starts by default.

Parameters

- `attr (str)` – Name of the optimizer attribute to adjust.
- `value_range (tuple of float)` – The first and the last values of the attribute.
- `time_range (tuple of ints)` – The first and last counts of calls in which the attribute is adjusted.
- `optimizer (Optimizer)` – Target optimizer object. If it is None, the main optimizer of the trainer is used.

Methods

- `__call__(trainer)`
 Invokes the extension.

 Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

 Parameters

 `trainer (Trainer)` – Trainer object that calls this operator.

- `finalize()`
 Finalizes the extension.

 This method is called at the end of the training loop.

- `initialize(trainer)`
 Initializes up the trainer state.

 This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.
When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- **trainer** *(Trainer)*—Trainer object that runs the training loop.

on_error *(trainer, exc, tb)*

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- **trainer** *(Trainer)*—Trainer object that runs the training loop.
- **exc** *(Exception)*—arbitrary exception thrown during update loop.
- **tb** *(traceback)*—traceback object of the exception

serialize *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

- **default_name**

 Default name of the extension.

 It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

 - **name** = `None`
 - **priority** = `100`
 - **trigger** = `(1, 'iteration')`
chainer.training.extensions.MultistepShift

class chainer.training.extensions.MultistepShift(attr, gamma, step_value, init, optimizer=None)

Trainer extension to shift an optimizer attribute in several steps.

This extension changes an optimizer attribute in several steps, every step the attribute will multiply a factor gamma.

For example, suppose that this extension is called at every iteration, and init = x, gamma = y, step_value = [s1, s2, s3]. Then during the iterations from 0 to (s1 - 1), the attr will be x. During the iterations from s1 to (s2 - 1), the attr will be x * y. During the iterations from s2 to (s3 - 1), the attr will be x * y * y. During the iterations after s3, the attr will be x * y * y * y.

This extension is also called before the training loop starts by default.

Parameters

- **attr** (str) – Name of the attribute to shift.
- **init** (float) – Initial value of the attribute. If it is None, the extension extracts the attribute at the first call and uses it as the initial value.
- **gamma** (float) – The factor which the attr will mutiply at the beginning of each step.
- **step_value** (tuple) – The first iterations of each step.
- **optimizer** (Optimizer) – Target optimizer to adjust the attribute. If it is None, the main optimizer of the updater is used.

Methods

__call__(trainer)

Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters **trainer** (Trainer) – Trainer object that calls this operator.

finalize()

Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer's hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters **trainer** (Trainer) – Trainer object that runs the training loop.
on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters
• trainer (Trainer) – Trainer object that runs the training loop.
• exc (Exception) – arbitrary exception thrown during update loop.
• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__(value)
Return self==value.

__ne__(value)
Return self!=value.

__lt__(value)
Return self<value.

__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

name = None
priority = 100
trigger = (1, 'iteration')

chainer.training.extensions.PolynomialShift

class chainer.training.extensions.PolynomialShift(attr, rate, max_count, init=None, target=None, optimizer=None)

Trainer extension to polynomially shift an optimizer attribute.

This extension polynomially decreases the specified attribute of the optimizer. The typical use case is a polynomial decay of the learning rate at each iteration.
For example, suppose that this extension is invoke at every iteration. Then this extension will set the corresponding attribute to $\text{init_value} \times (1 - i / \text{max_iter})^\text{rate}$ at the i-th iteration, where the max_iter is the number of iterations to be running.

This extension is also called before the training loop starts by default.

Parameters

- **attr** *(str)* – Name of the attribute to shift.
- **rate** *(float)* – Exponent of polynomial shift.
- **max_count** *(int)* – Number of this extension to be invoked.
- **init** *(float)* – Initial value of the attribute. If it is `None`, the extension extracts the attribute at the first call and uses it as the initial value.
- **target** *(float)* – Target value of the attribute. If the attribute reaches this value, the shift stops.
- **optimizer** *(Optimizer)* – Target optimizer to adjust the attribute. If it is `None`, the main optimizer of the updater is used.

Methods

- **__call__**(trainer)
 Invokes the extension.

 Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

 Parameters
 - **trainer** *(Trainer)* – Trainer object that calls this operator.

- **finalize**()
 Finalizes the extension.

 This method is called at the end of the training loop.

- **initialize**(trainer)
 Initializes up the trainer state.

 This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

 When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

 For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

 Parameters
 - **trainer** *(Trainer)* – Trainer object that runs the training loop.

- **on_error**(trainer, exc, tb)
 Handles the error raised during training before finalization.

 This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

 Parameters
 - **trainer** *(Trainer)* – Trainer object that runs the training loop.
- **exc** (*Exception*) – arbitrary exception thrown during update loop.
- **tb** (*traceback*) – traceback object of the exception

serialize (*serializer*)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

```python
__eq__(value)
Return self==value.

__ne__(value)
Return self!=value.

__lt__(value)
Return self<value.

__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.
```

Attributes

- **default_name**
 Default name of the extension.
 It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

```python
invoke_before_training = True
name = None
priority = 100
trigger = (1, 'iteration')
```

chainer.training.extensions.WarmupShift

```python
class chainer.training.extensions.WarmupShift[attr, warmup_start, warmup_iter, init, optimizer=None]
Trainer extension to gradually initialize an optimizer attribute.
This extension changes an optimizer attribute evenly at the begining of one training.
For example, suppose that this extension is called at every iteration, and warmup_start = x , init = y, warmup_iter = t. Then this extension will set the corresponding attribute to from x to y evenly in first t iterations.
This extension is also called before the training loop starts by default.

Parameters

- **attr** (*str*) – Name of the optimizer attribute to adjust.
- **warmup_start** (*float*) – the value of the attr at the begining of one training.
- **init** (*float*) – the value of the attr after warm up iterations.
```
warmup_iter *(int)* – the number of the iterations in which the attr changes from `warmup_start` to `init`.

optimizer *(Optimizer)* – Target optimizer object. If it is None, the main optimizer of the trainer is used.

Methods

__**call**__ *(trainer)*

Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters

trainer *(Trainer)* – Trainer object that calls this operator.

finalize *

Finalizes the extension.

This method is called at the end of the training loop.

initialize *(trainer)*

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

trainer *(Trainer)* – Trainer object that runs the training loop.

on_error *(trainer, exc, tb)*

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

trainer *(Trainer)* – Trainer object that runs the training loop.

exc *(Exception)* – arbitrary exception thrown during update loop.

tb *(traceback)* – traceback object of the exception

serialize *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__ *

Return self==value.

__ne__ *

Return self!=value.

__lt__ *

Return self<value.
__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

Attributes

default_name
 Default name of the extension.
 It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

class chainer.training.extensions.StepShift

Trainer extension to shift an optimizer attribute in “steps”.
This extension multiplies the specified attribute of the optimizer in “steps”. The typical use case is to scale the
attribute at every kth iteration.

For example, suppose that this extension is invoked at every iteration, then given k, a multiplier γ and
an initial value init, the optimizer attribute is set to $\text{init} \ast \gamma ^{\lfloor i / k \rfloor}$, where i
represents the index of the current iteration.

This extension is also called before the training loop starts by default.

Parameters

- attr (str) – Name of the optimizer attribute to adjust.
- gamma (float) – The multiplier.
- step (int) – The interval for the multiplication, i.e., k.
- init (float) – Initial value of the attribute. If it is None, the extension extracts the
 attribute at the first call and uses it as the initial value.
- target (float) – Target value of the attribute. If the attribute reaches this value, the shift
 stops.
- optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
 the trainer is used.
Methods

__call__ (trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize ()
Finalizes the extension.

This method is called at the end of the training loop.

initialize (trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

 • trainer (Trainer) – Trainer object that runs the training loop.
 • exc (Exception) – arbitrary exception thrown during update loop.
 • tb (traceback) – traceback object of the exception

serialize (serialzer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.
__ge__

Return self>=value.

Attributes

default_name

Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

Reporting

These extensions provide features to perform reporting of metrics and various statistics to the console or files.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.training.extensions.PrintReport</td>
<td>Trainer extension to print the accumulated results.</td>
</tr>
<tr>
<td>chainer.training.extensions.ProgressBar</td>
<td>Trainer extension to print a progress bar and recent training status.</td>
</tr>
<tr>
<td>chainer.training.extensions.LogReport</td>
<td>Trainer extension to output the accumulated results to a log file.</td>
</tr>
<tr>
<td>chainer.training.extensions.PlotReport</td>
<td>Trainer extension to output plots.</td>
</tr>
<tr>
<td>chainer.training.extensions.DumpGraph</td>
<td>Trainer extension to dump a computational graph.</td>
</tr>
</tbody>
</table>

chainer.training.extensions.PrintReport

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension to print specified entries of the log in a
human-readable format.

Parameters

- **entries (list of str)** – List of keys of observations to print.

- **log_report (str or LogReport)** – Log report to accumulate the observations. This is either the name of a LogReport extensions registered to the trainer, or a LogReport instance to use internally.

- **out** – Stream to print the bar. Standard output is used by default.
Methods

__call__ (trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters

- **trainer** (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize (trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- **trainer** (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

- **trainer** (Trainer) – Trainer object that runs the training loop.
- **exc** (Exception) – arbitrary exception thrown during update loop.
- **tb** (traceback) – traceback object of the exception

serialize (serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.
__ge__()

Return self>=value.

Attributes

default_name

Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar (training_length=None, update_interval=100, bar_length=50, out=<io.TextIOWrapper name='<stdout>' mode='w', encoding='UTF-8'>)

Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

• training_length (tuple) – Length of whole training. It consists of an integer and either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the trainer is IntervalTrigger, this extension uses its attributes to determine the length of the training.

• update_interval (int) – Number of iterations to skip printing the progress bar.

• bar_length (int) – Length of the progress bar in characters.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__ (trainer)

Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize ()

Finalizes the extension.

This method is called at the end of the training loop.

initialize (trainer)

Initializes up the trainer state.
This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer's hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- **trainer** (`Trainer`) – Trainer object that runs the training loop.

on_error (`trainer`, `exc`, `tb`)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- **trainer** (`Trainer`) – Trainer object that runs the training loop.
- **exc** (`Exception`) – arbitrary exception thrown during update loop.
- **tb** (`traceback`) – traceback object of the exception

serialize (`serializer`)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

- **default_name**
 Default name of the extension.

 It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

  ```python
  name = None
  priority = 100
  trigger = (1, 'iteration')
  ```
chainer.training.extensions.LogReport

class chainer.training.extensions.LogReport(keys=None, trigger=(1, 'epoch'), postprocess=None, filename='log')

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to `DictSummary` at a regular interval specified by a supplied trigger, and writes them into a log file in JSON format.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

- 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.
- 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from `Trainer.elapsed_time`.

Parameters

- **keys** *(iterable of strs)* – Keys of values to accumulate. If this is None, all the values are accumulated and output to the log file.
- **trigger** – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form `<int>, 'epoch'` or `<int>, 'iteration'`, it is passed to `IntervalTrigger`.
- **postprocess** – Callback to postprocess the result dictionaries. Each result dictionary is passed to this callback on the output. This callback can modify the result dictionaries, which are used to output to the log file.
- **filename** *(str)* – Name of the log file under the output directory. It can be a format string: the last result dictionary is passed for the formatting. For example, users can use '{iteration}' to separate the log files for different iterations. If the log name is None, it does not output the log to any file. For historical reasons `log_name` is also accepted as an alias of this argument.

Methods

- **__call__(trainer)**

 Invokes the extension.

 Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

 Parameters **trainer** *(Trainer)* – Trainer object that calls this operator.

- **finalize()**

 Finalizes the extension.

 This method is called at the end of the training loop.

- **initialize(trainer)**

 Initializes up the trainer state.

 This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.
When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- `trainer (Trainer)` – Trainer object that runs the training loop.

on_error (*trainer, exc, tb*)

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- `trainer (Trainer)` – Trainer object that runs the training loop.
- `exc (Exception)` – arbitrary exception thrown during update loop.
- `tb (traceback)` – traceback object of the exception

serialize (*serializer*)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

- `default_name`

 Default name of the extension.

 It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

- `log`

 The current list of observation dictionaries.

- `name = None`

- `priority = 100`

- `trigger = (1, 'iteration')`
chainer.training.extensions.PlotReport

class chainer.training.extensions.PlotReport(y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, filename='plot.png', marker='x', grid=True)

Trainer extension to output plots.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds 'epoch' and 'iteration' entries to each result dictionary, which are the epoch and iteration counts at the output.

Warning: If your environment needs to specify a backend of matplotlib explicitly, please call matplotlib.use before calling trainer.run. For example:

```python
import matplotlib
matplotlib.use('Agg')
trainer.extend(  
    extensions.PlotReport(["main/loss", 'validation/main/loss'],  
                          'epoch', filename='loss.png'))
trainer.run()
```

Then, once one of instances of this extension is called, matplotlib.use will have no effect.

For the details, please see here: https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Parameters

- **y_keys**: (iterable of strs) – Keys of values regarded as y. If this is None, nothing is output to the graph.
- **x_key**: (str) – Keys of values regarded as x. The default value is ‘iteration’.
- **trigger** – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.
- **postprocess** – Callback to postprocess the result dictionaries. Figure object, Axes object, and all plot data are passed to this callback in this order. This callback can modify the figure.
- **filename**: (str) – Name of the figure file under the output directory. It can be a format string. For historical reasons file_name is also accepted as an alias of this argument.
- **marker**: (str) – The marker used to plot the graph. Default is 'x'. If None is given, it draws with no markers.
- **grid**: (bool) – If True, set the axis grid on. The default value is True.
Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters

trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.
• exc (Exception) – arbitrary exception thrown during update loop.
• tb (traceback) – traceback object of the exception

serialize(serializer)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.
Return self>value.

Return self>=value.

Attributes

default_name
Default name of the extension.
It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None
priority = 100
trigger = (1, 'iteration')

chainer.training.extensions.VariableStatisticsPlot

class chainer.training.extensions.VariableStatisticsPlot (targets,
max_sample_size=1000,
report_data=True,
report_grad=True,
plot_mean=True,
plot_std=True,
percentile_sigmas=(0, 0.13, 2.28, 15.87, 50, 84.13, 97.72, 99.87, 100),
trigger=(1, 'epoch'), filename='statistics.png',
figsize=None,
marker=None,
grid=True)

Trainer extension to plot statistics for Variables.

This extension collects statistics for a single Variable, a list of Variables or similarly a single or a list of
Links containing one or more Variables. In case multiple Variables are found, the means are computed.
The collected statistics are plotted and saved as an image in the directory specified by the Trainer.

Statistics include mean, standard deviation and percentiles.

This extension uses reservoir sampling to preserve memory, using a fixed size running sample. This means that
collected items in the sample are discarded uniformly at random when the number of items becomes larger than
the maximum sample size, but each item is expected to occur in the sample with equal probability.

Parameters

• **targets** (Variable, Link or list of either) – Parameters for which statistics are col-
lected.

• **max_sample_size** (**int**) – Maximum number of running samples.

• **report_data** (**bool**) – If True, data (e.g. weights) statistics are plotted. If False,
they are neither computed nor plotted.
• **report_grad** *(bool)* – If True, gradient statistics are plotted. If False, they are neither computed nor plotted.

• **plot_mean** *(bool)* – If True, means are plotted. If False, they are neither computed nor plotted.

• **plot_std** *(bool)* – If True, standard deviations are plotted. If False, they are neither computed nor plotted.

• **percentile_sigmas** *(float or tuple of floats)* – Percentiles to plot in the range \([0, 100]\).

• **trigger** – Trigger that decides when to save the plots as an image. This is distinct from the trigger of this extension itself. If it is a tuple in the form \(<\text{int}>, 'epoch' \text{ or } '<\text{int}>, 'iteration'\), it is passed to **IntervalTrigger**.

• **filename** *(str)* – Name of the output image file under the output directory. For historical reasons **file_name** is also accepted as an alias of this argument.

• **figsize** *(tuple of int)* – Matplotlib **figsize** argument that specifies the size of the output image.

• **marker** *(str)* – Matplotlib **marker** argument that specified the marker style of the plots.

• **grid** *(bool)* – Matplotlib **grid** argument that specifies whether grids are rendered in the plots or not.

Methods

__call__(trainer)

Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

Parameters

trainer *(Trainer)* – Trainer object that calls this operator.

static available()

finalize()

Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of **Trainer** can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, **ExponentialShift** extension changes the optimizer's hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The **ExponentialShift** extension recovers it in its **initialize** method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

trainer *(Trainer)* – Trainer object that runs the training loop.

on_error(trainer, exc, tb)

Handles the error raised during training before finalization.
This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- **trainer***(Trainer) – Trainer object that runs the training loop.*
- **exc***(Exception) – arbitrary exception thrown during update loop.*
- **tb***(traceback) – traceback object of the exception*

save_plot_using_module*(file_path, plt)***

serialize(serializer)**

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

- **default_name**

 Default name of the extension.

 It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

 name = None

 priority = 100

 trigger = (1, 'iteration')

chainer.training.extensions.DumpGraph

class chainer.training.extensions.DumpGraph*(root_name, filename='cg.dot', variable_style=None, function_style=None)***

Trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language. If graphviz is available, this also renders and saves the image of the computational graph.

It only dumps a graph at the first invocation.
Note: The computational graph is not kept by default. This extension changes this behavior until the first invocation. It is strongly recommended that you use it with the default trigger setting.

The detailed behavior of this extension is as follows.

1. In its initializer, it turns on the `chainer.config.keep_graph_on_report` flag.
2. At the first iteration, it dumps the graph using the graph held by the reported variable.
3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported afterward does not hold a computational graph.

When the `keep_graph_on_report` flag is turned on, the computational graph created by the updater is kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an extension also uses a large amount of memory, e.g. `Evaluator`.

With the default setting, the `DumpGraph` extension is called at the first iteration. Since `Evaluator` is not called at the first iteration in most cases, it does not cause any memory problem.

Parameters

- `root_name` (str) – Name of the root of the computational graph. The root variable is retrieved by this name from the observation dictionary of the trainer.
- `filename` (str) – Output file name. For historical reasons `out_name` is also accepted as an alias of this argument.
- `variable_style` (dict) – Dot node style for variables. Each variable is rendered by an octagon by default.
- `function_style` (dict) – Dot node style for functions. Each function is rendered by a rectangular by default.

See also:

See `build_computational_graph()` for the `variable_style` and `function_style` arguments.

Methods

- `__call__`(trainer)
 Invokes the extension.

 Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

 Parameters `trainer` (Trainer) – Trainer object that calls this operator.

- `finalize`
 Finalizes the extension.

 This method is called at the end of the training loop.

- `initialize`(trainer)
 Initializes up the trainer state.

 This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

 When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

4.8. Training Tools
For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

`trainer` *(Trainer)* – Trainer object that runs the training loop.

`on_error` *(trainer, exc, tb)*

Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension that needs different error handling from finalize, can override this method to handle errors.

Parameters

- `trainer` *(Trainer)* – Trainer object that runs the training loop.
- `exc` *(Exception)* – arbitrary exception thrown during update loop.
- `tb` *(traceback)* – traceback object of the exception

`serialize` *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

`trigger` *(trainer)*

tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

```
__eq__()
Return self==value.
__ne__()
Return self!=value.
__lt__()
Return self<value.
__le__()
Return self<=value.
__gt__()
Return self>value.
__ge__()
Return self>=value.
```

Attributes

- `default_name = 'dump_graph'
- `name = None`
- `priority = 100`
Snapshot

These extensions provide features to take snapshots of models.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.training.extensions.snapshot</code></td>
<td>Returns a trainer extension to take snapshots of the trainer.</td>
</tr>
<tr>
<td><code>chainer.training.extensions.snapshot_object</code></td>
<td>Returns a trainer extension to take snapshots of a given object.</td>
</tr>
</tbody>
</table>

chainer.training.extensions.snapshot

Returns a trainer extension to take snapshots of the trainer.

Chainer extension serializes the trainer object and saves it to the output directory. It is used to support resuming the training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object specifying the required interval can be passed along with this extension to the `extend()` method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Parameters

- **savefun** – Function to save the trainer. It takes two arguments: the output file path and the trainer object. It is `chainer.serializers.save_npz()` by default. If `writer` is specified, this argument must be `None`.
- **filename** (`str`) – Name of the file into which the trainer is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method.
- **target** – Object to serialize. If it is not specified, it will be the trainer object.
- **condition** – Condition object. It must be a callable object that returns boolean without any arguments. If it returns `True`, the snapshot will be done. If not, it will be skipped. The default is a function that always returns `True`.
- **writer** – Writer object. It must be a callable object. See below for the list of built-in writers. If `savefun` is other than `None`, this argument must be `None`. In that case, a `SimpleWriter` object instantiated with specified `savefun` argument will be used.
- **snapshot_on_error** (`bool`) – Whether to take a snapshot in case trainer loop has been failed.
- **n_retains** (`int`) – Number of snapshot files to retain through the cleanup. Must be a positive integer for any cleanup to take place. Automatic deletion of old snapshots only works when the filename is string.
- **num_retain** (`int`) – Same as `n_retains` (deprecated).
• **autoload** *(bool)* – With this enabled, the extension automatically finds the latest snapshot and loads the data to the target. Automatic loading only works when the filename is a string. It is assumed that snapshots are generated by `chainer.serializers.save_npz`.

Returns Snapshot extension object.

Using asynchronous writers

By specifying `writer` argument, writing operations can be made asynchronous, hiding I/O overhead of snapshots.

```python
>>> from chainer.training import extensions
>>> writer = extensions.snapshot_writers.ProcessWriter()
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))
```

To change the format, such as npz or hdf5, you can pass a saving function as `savefun` argument of the writer.

```python
>>> from chainer.training import extensions
>>> from chainer import serializers
>>> writer = extensions.snapshot_writers.ProcessWriter(
...   savefun=serializers.save_npz)
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))
```

This is the list of built-in snapshot writers.

• `chainer.training.extensions.snapshot_writers.SimpleWriter`
• `chainer.training.extensions.snapshot_writers.ThreadWriter`
• `chainer.training.extensions.snapshot_writers.ProcessWriter`
• `chainer.training.extensions.snapshot_writers.ThreadQueueWriter`
• `chainer.training.extensions.snapshot_writers.ProcessQueueWriter`

See also:

• `chainer.training.extensions.snapshot_object`
• **filename** (*str*) – Name of the file into which the object is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method. For example, `"snapshot_{.updater.iteration}"` is converted to `"snapshot_10000"` at the 10,000th iteration.

• **savefun** – Function to save the object. It takes two arguments: the output file path and the object to serialize.

• **condition** – Condition object. It must be a callable object that returns boolean without any arguments. If it returns `True`, the snapshot will be done. If not, it will be skipped. The default is a function that always returns `True`.

• **writer** – Writer object. It must be a callable object. See below for the list of built-in writers. If `savefun` is other than `None`, this argument must be `None`. In that case, a `SimpleWriter` object instantiated with specified `savefun` argument will be used.

• **snapshot_on_error** (*bool*) – Whether to take a snapshot in case trainer loop has been failed.

• **n_retains** (*int*) – Number of snapshot files to retain through the cleanup. Must be a positive integer for any cleanup to take place. Automatic deletion of old snapshots only works when the filename is string.

• **num_retain** (*int*) – Same as `n_retains` (deprecated).

• **autoload** (*bool*) – With this enabled, the extension automatically finds the latest snapshot and loads the data to the target. Automatic loading only works when the filename is a string.

Returns Snapshot extension object.

See also:

• `chainer.training.extensions.snapshot()`

Memory Release

These extensions provide features to release memories.

<table>
<thead>
<tr>
<th>chainer.training.extensions.unchain_variables</th>
<th>Trainer extension to unchain all computational graphs.</th>
</tr>
</thead>
</table>

chainer.training.extensions.unchain_variables

class `chainer.training.extensions.unchain_variables`

Trainer extension to unchain all computational graphs.

This extension unchains all computational graphs after all extensions are run to release memory and to avoid memory leak. This extension can be used as a last resort when there is an extension that use a variable graph and cannot release the graph in itself. It observes the previous `chainer.config.keep_graph_on_report` flag. The extension is triggered when the flag is turned on.
Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(_)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error (trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.
• exc (Exception) – arbitrary exception thrown during update loop.
• tb (traceback) – traceback object of the exception

serialize (serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

trigger(_)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

__eq__() # Return self==value.

__ne__() # Return self!=value.

__lt__() # Return self<value.
__le__(value)
 Return self<=value.
__gt__(value)
 Return self>value.
__ge__(value)
 Return self>=value.

Attributes

default_name
 Default name of the extension.
 It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

 name = None
 priority = 0

4.8.4 Triggers

A trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer
object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.

<table>
<thead>
<tr>
<th>chainer.training.get_trigger</th>
<th>Gets a trigger object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger invoked when specific value becomes best.</td>
</tr>
<tr>
<td>BestValueTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger for Early Stopping</td>
</tr>
<tr>
<td>EarlyStoppingTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger based on a fixed interval.</td>
</tr>
<tr>
<td>IntervalTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger invoked at specified point(s) of iterations or</td>
</tr>
<tr>
<td>ManualScheduleTrigger</td>
<td>epochs.</td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger invoked when specific value becomes maximum.</td>
</tr>
<tr>
<td>MaxValueTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger invoked when specific value becomes minimum.</td>
</tr>
<tr>
<td>MinValueTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger based on the starting point of the iteration.</td>
</tr>
<tr>
<td>OnceTrigger</td>
<td></td>
</tr>
<tr>
<td>chainer.training.triggers.</td>
<td>Trigger based on a fixed time interval.</td>
</tr>
<tr>
<td>TimeTrigger</td>
<td></td>
</tr>
</tbody>
</table>
chainer.training.get_trigger

chainer.training.get_trigger(trigger)
Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When it returns True, various kinds of events can occur depending on the context in which the trigger is used. For example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just returns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to IntervalTrigger.

Parameters trigger – Trigger object. It can be either an already built trigger object (i.e., a callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case, the tuple is passed to IntervalTrigger.

Returns trigger if it is a callable, otherwise a IntervalTrigger object made from trigger.

chainer.training.triggers.BestValueTrigger

class chainer.training.triggers.BestValueTrigger(key, compare, trigger=(1, 'epoch'))
Trigger invoked when specific value becomes best.

Parameters

• key (str) – Key of value.

• compare (callable) – Compare function which takes current best value and new value and returns whether new value is better than current best.

• trigger – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>, 'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__(value)
Return self==value.

__ne__(value)
Return self!=value.

__lt__(value)
Return self<value.
This trigger works as follows. Within each check interval defined by the check_trigger argument, it monitors and accumulates the reported value at each iteration. At the end of each interval, it computes the mean of the accumulated values and compares it to the previous ones to maintain the best value. When it finds that the best value is not updated for some periods (defined by patients), this trigger fires.

Parameters

- **monitor** (str) – The metric you want to monitor
- **check_trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>, 'iteration' which is passed to IntervalTrigger.
- **patients** (int) – Counts to let the trigger be patient. The trigger will not fire until the condition is met for successive patient checks.
- **mode** (str) – 'max', 'min', or 'auto'. It is used to determine how to compare the monitored values.
- **verbose** (bool) – Enable verbose output. If verbose is true, you can get more information
- **max_trigger** – Upper bound of the number of training loops

Methods

__call__(trainer)
Decides whether the training loop should be stopped.

Parameters **trainer** (Trainer) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns True if the training loop should be stopped.

Return type **bool**

get_training_length()

__eq__(value)
Return self==value.
__ne__(value)
 Return self!=value.

__lt__(value)
 Return self<value.

__le__(value)
 Return self<=value.

__gt__(value)
 Return self>value.

__ge__(value)
 Return self>=value.

chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)
 Trigger based on a fixed interval.
 This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per
 iterations and epochs. Iteration means the number of updates, while epoch means the number of sweeps over
 the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the
 iteration and epoch_detail attributes defined by the updater.

 For the description of triggers, see get_trigger().

 Parameters
 • period (int or float) – Length of the interval. Must be an integer if unit is
 'iteration'.
 • unit (str) – Unit of the length specified by period. It must be either 'iteration'
 or 'epoch'.

 Methods

 __call__(trainer)
 Decides whether the extension should be called on this iteration.

 Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
 updater associated with this trainer is used to determine if the trigger should fire.

 Returns True if the corresponding extension should be invoked in this iteration.

 Return type bool

 get_training_length()

 serialize(serializer)

 __eq__(value)
 Return self==value.

 __ne__(value)
 Return self!=value.

 __lt__(value)
 Return self<value.

 __le__(value)
 Return self<=value.
__gt__
Return self>value.

__ge__
Return self>=value.

chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)
Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s):
iteration and epoch. iteration means the number of updates, while epoch means the number of sweeps
over the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

Parameters

• **points** (**int**, **float**, or **list of int or float**) – time of the trigger. Must
be an integer or list of integer if unit is 'iteration'.

• **unit** (**str**) – Unit of the time specified by points. It must be either 'iteration' or
'epoch'.

Variables

• **finished** (**bool**) – Flag that indicates whether or not this trigger will
in the future. This flag is used to determine if the
extension (**fire**) –

• **be initialized after resume** (**should**) –

Methods

__call__ (trainer)
Decides whether the extension should be called on this iteration.

Parameters **trainer** (**trainer**) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type **bool**

serialize (**serializer**)

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.
chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, 'epoch'))

Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

- **key** (str) – Key of value. The trigger fires when the value associated with this key becomes maximum.

- **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>, 'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)

Decides whether the extension should be called on this iteration.

Parameters

- **trainer** (Trainer) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns

True if the corresponding extension should be invoked in this iteration.

Return type

bool

serialize(serializer)

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(key, trigger=(1, 'epoch'))

Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

• **key** (str) – Key of value. The trigger fires when the value associated with this key becomes minimum.

• **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>, 'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)

Decides whether the extension should be called on this iteration.

Parameters

trainer (Trainer) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns

True if the corresponding extension should be invoked in this iteration.

Return type

bool

serialize(serializer)

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.

chainer.training.triggers.OnceTrigger

class chainer.training.triggers.OnceTrigger(call_on_resume=False)

Trigger based on the starting point of the iteration.

This trigger accepts only once at starting point of the iteration. There are two ways to specify the starting point: only starting point in whole iteration or called again when training resumed.

Parameters

• **call_on_resume** (bool) – Whether the extension is called again or not when restored from a snapshot. It is set to False by default.

Variables
• **finished**(bool) – Flag that indicates whether or not this trigger will
 be initialized after resume. *(should)*

Methods

__call__(trainer)
Call self as a function.

serialize (serializer)
__eq__()
Return self==value.
__ne__()
Return self!=value.
__lt__()
Return self<value.
__le__()
Return self<=value.
__gt__()
Return self>value.
__ge__()
Return self>value.

Attributes

finished

chainer.training.triggers.TimeTrigger

class chainer.training.triggers.TimeTrigger *(period)*
Trigger based on a fixed time interval.

This trigger accepts iterations with a given interval time.

 Parameters **period**(float) – Interval time. It is given in seconds.

Methods

__call__(trainer)
Call self as a function.

serialize (serializer)
__eq__()
Return self==value.
__ne__()
Return self!=value.
4.9 Datasets

4.9.1 Dataset Abstraction (chainer.dataset)

Chainer supports a common interface for training and validation of datasets. The dataset support consists of three components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to use on it. The built-in iterators of Chainer require the dataset to support `__getitem__` and `__len__` methods. In particular, the `__getitem__` method should support indexing by both an integer and a slice. We can easily support slice indexing by inheriting `DatasetMixin`, in which case users only have to implement `get_example()` method for indexing. Basically, datasets are considered as *stateless* objects, so that we do not need to save the dataset as a checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini-batch of examples as a list. Iterators should support the `Iterator` interface, which includes the standard iterator protocol of Python. Iterators manage where to read next, which means they are *stateful*.

Batch conversion function converts the mini-batch into arrays to feed to the neural nets. They are also responsible to send each array to an appropriate device. Chainer currently provides two implementations:

- `concat_examples()` is a plain implementation which is used as the default choice.
- `ConcatWithAsyncTransfer` is a variant which is basically same as `concat_examples()` except that it overlaps other GPU computations and data transfer for the next iteration.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All datasets managed through the system are saved under the *dataset root directory*, which is determined by the `CHAINER_DATASET_ROOT` environment variable, and can also be set by the `set_dataset_root()` function.

Dataset Representation

See [Dataset Examples (chainer.datasets)] for dataset implementations.

| chainer.dataset.DatasetMixin | Default implementation of dataset indexing. |
chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin

Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default implementation uses get_example() to extract each example, and combines the results into a list. This mixin makes it easy to implement a new dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

- **index** (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns

- If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy

>>> from chainer import dataset

>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])

>>> ds[1]  # Access by int
1

>>> ds[1:3]  # Access by slice
[1, 2]

>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]

>>> index = numpy.arange(3)

>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__(())
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.
Parameters \(i(int)\) – The index of the example.

Returns The i-th example.

```python
__eq__(value)
    Return self==value.
__ne__(value)
    Return self!=value.
__lt__(value)
    Return self<value.
__le__(value)
    Return self<=value.
__gt__(value)
    Return self>value.
__ge__(value)
    Return self>=value.
```

Iterator Interface

See *Iterator* for dataset iterator implementations.

```python
chainer.dataset.Iterator
    Base class of all dataset iterators.
```

chainer.dataset.Iterator

```python
class chainer.dataset.Iterator
    Base class of all dataset iterators.
```

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each implementation should implement an iterator protocol (e.g., the `__next__()` method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

- **batch_size**: Number of examples within each minibatch.
- **epoch**: Number of completed sweeps over the dataset.
- **epoch_detail**: Floating point number version of the epoch. For example, if the iterator is at the middle of the dataset at the third epoch, then this value is 2.5.
- **previous_epoch_detail**: The value of `epoch_detail` at the previous iteration. This value is `None` before the first iteration.
- **is_new_epoch**: `True` if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.
Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()

Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()

Returns self.

finalize()

Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

This method can be called multiple times.

next()

Python2 alternative of __next__.

It calls __next__ by default.

serialize(serializer)

Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
Batch Conversion Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.dataset.converter</code></td>
<td>Decorator to make a converter function.</td>
</tr>
<tr>
<td><code>chainer.dataset.concat_examples</code></td>
<td>Concatenates a list of examples into array(s).</td>
</tr>
<tr>
<td><code>chainer.dataset.ConcatWithAsyncTransfer</code></td>
<td>Interface to concatenate data and transfer them to GPU asynchronously.</td>
</tr>
<tr>
<td><code>chainer.dataset.to_device</code></td>
<td>Send an array to a given device.</td>
</tr>
</tbody>
</table>

chainer.dataset.converter

The target converter must be a callable that accepts two positional arguments: a batch and a device, and returns a converted batch.

The types and values of the batches (the first argument and the return value) are not specified: they depend on how the converter is used (e.g. by updaters).

Example

```python
>>> @chainer.dataset.converter()
... def custom_converter(batch, device):
...     assert isinstance(device, chainer.backend.Device)
...     # do something with batch...
...     return device.send(batch)
```

This decorator puts a mark on the target converter function so that Chainer can recognize that it accepts `chainer.backend.Device` as the device argument. For backward compatibility, the decorator also wraps the function so that if the converter is called with the device argument with int type, it is converted to a `chainer.backend.Device` instance before calling the original function. The int value indicates the CUDA device of the cupy backend.

Without the decorator, the converter cannot support ChainerX devices. If the batch were requested to be converted to ChainerX with such converters, `RuntimeError` will be raised.

chainer.dataset.concat_examples

This function converts an “array of tuples” into a “tuple of arrays”. Specifically, given a list of examples each of which consists of a list of elements, this function first makes an array by taking the element in the same position from each example and concatenates them along the newly-inserted first axis (called `batch dimension`) into one array. It repeats this for all positions and returns the resulting arrays.

The output type depends on the type of examples in batch. For instance, consider each example consists of two arrays (x, y). Then, this function concatenates x’s into one array, and y’s into another array, and returns a tuple of these two arrays. Another example: consider each example is a dictionary of two entries whose keys are 'x' and 'y', respectively, and values are arrays. Then, this function concatenates x’s into one array, and y’s into another array, and returns a dictionary with two entries x and y whose values are the concatenated arrays.
When the arrays to concatenate have different shapes, the behavior depends on the padding value. If padding is None (default), it raises an error. Otherwise, it builds an array of the minimum shape that the contents of all arrays can be substituted to. The padding value is then used to the extra elements of the resulting arrays.

Example

```python
>>> import numpy as np
>>> from chainer import dataset

>>> x = [(np.array([1, 2]), 0),
      ...
      (np.array([3]), 1),
      ...
      (np.array([5, 6]), 3)]

>>> dataset.concat_examples(x)
(array([[1, 2],
        [3, 4],
        [5, 6]]), array([0, 1, 2]))

>>> y = [(np.array([1, 2]), 0),
      ...
      (np.array([3]), 1),
      ...
      (np.array([5, 6]), 3)]

>>> dataset.concat_examples(y, padding=100)
(array([[ 1, 2],
        [ 3, 100],
        [100, 100]]), array([0, 1, 2]))

>>> z = [(np.array([1, 2]), np.array([0])),
      ...
      (np.array([3]), np.array([])),
      ...
      (np.array([5, 6]), np.array([2]))]

>>> dataset.concat_examples(z, padding=(100, 200))
(array([[ 1, 2],
        [ 3, 100],
        [100, 100]]), array([[ 0],
        [200],
        [ 2]]))

>>> w = [{'feature': np.array([1, 2]), 'label': 0},
      ...
      {'feature': np.array([3, 4]), 'label': 1},
      ...
      {'feature': np.array([5, 6]), 'label': 2}]

>>> dataset.concat_examples(w)
{'feature': array([[1, 2],
      [3, 4],
      [5, 6]]), 'label': array([0, 1, 2])}
```

Parameters

- **batch** *(list)* – A list of examples. This is typically given by a dataset iterator.

- **device** *(device specifier)* – A device to which each array is sent. If it is omitted, all arrays are left in their original devices. See `to_device()` for more details.

- **padding** – Scalar value for extra elements. If this is None (default), an error is raised on shape mismatch. Otherwise, an array of minimum dimensionalities that can accommodate all arrays is created, and elements outside of the examples are padded by this value.

Returns

Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each example in the batch.
chainer.dataset.ConcatWithAsyncTransfer

class chainer.dataset.ConcatWithAsyncTransfer(stream=None, compute_stream=None)

Interface to concatenate data and transfer them to GPU asynchronously.

It enables to transfer next batch of input data to GPU while GPU is running kernels for training using current
batch of input data.

An instance of this class is mainly intended to be used as a converter function of an updater like below.

```python
from chainer.dataset import convert
...
updater = chainer.training.updaters.StandardUpdater(
    ...
    converter=convert.ConcatWithAsyncTransfer(),
    ...
)
```

Parameters

- **stream** (cupy.cuda.Stream) – CUDA stream. If None, a stream is automatically cre-
ate on the first call. Data transfer operation is launched asynchronously using the stream.

- **compute_stream** (cupy.cuda.Stream) – CUDA stream used for compute kernels. If not None, CUDA events are created/used to avoid global synchronization and overlap execution of compute kernels and data transfers as much as possible. If None, global syn-
chronization is used instead.

Methods

__call__(batch, device=None, padding=None)

Concatenate data and transfer them to GPU asynchronously.

See also chainer.dataset.concat_examples().

Parameters

- **batch** (list) – A list of examples.

- **device** (int) – Device ID to which each array is sent.

- **padding** – Scalar value for extra elements.

Returns

Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each example in the batch.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
__ge__(value)
 Return self>=value.

chainer.dataset.to_device

chainer.dataset.to_device(device, x)
 Send an array to a given device.

 This method sends a given array to a given device. This method is used in `concat_examples()`. You can also use this method in a custom converter method used in `Updater` and `Extension` such as `StandardUpdater` and `Evaluator`.

 See also `chainer.dataset.concat_examples()`.

 Parameters
 • device (None or int or device specifier) – A device to which an array is sent. If it is a negative integer, an array is sent to CPU. If it is a positive integer, an array is sent to GPU with the given ID. If it is "None", an array is left in the original device. Also, any of device specifiers described at `DeviceId` is accepted.
 • x (N-dimensional array) – An array to send.

 Returns Converted array.

Dataset Management

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.dataset.get_dataset_root</td>
<td>Gets the path to the root directory to download and cache datasets.</td>
</tr>
<tr>
<td>chainer.dataset.set_dataset_root</td>
<td>Sets the root directory to download and cache datasets.</td>
</tr>
<tr>
<td>chainer.dataset.cached_download</td>
<td>Downloads a file and caches it.</td>
</tr>
<tr>
<td>chainer.dataset.cache_or_load_file</td>
<td>Caches a file if it does not exist, or loads it otherwise.</td>
</tr>
</tbody>
</table>

chainer.dataset.get_dataset_root

chainer.dataset.get_dataset_root()
 Gets the path to the root directory to download and cache datasets.

 Returns The path to the dataset root directory.

 Return type str

chainer.dataset.set_dataset_root

chainer.dataset.set_dataset_root(path)
 Sets the root directory to download and cache datasets.

 There are two ways to set the dataset root directory. One is by setting the environment variable CHAINER_DATASET_ROOT. The other is by using this function. If both are specified, one specified via this function is used. The default dataset root is $HOME/.chainer/dataset.

 Parameters path (str) – Path to the new dataset root directory.
chainer.dataset.cached_download

chainer.dataset.cached_download(url)

Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a cache to the directory under the dataset root (see `set_dataset_root()`). If there is already a cache for the given URL, it just returns the path to the cache without downloading the same file.

Note: This function raises `OSError` when it fails to create the cache directory. In older version, it raised `RuntimeError`.

Parameters
- **url** (*str*) – URL to download from.

Returns
- Path to the downloaded file.

Return type
- *str*

chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)

Caches a file if it does not exist, or loads it otherwise.

This is a utility function used in dataset loading routines. The `creator` creates the file to given path, and returns the content. If the file already exists, the `loader` is called instead, and it loads the file and returns the content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function. This function safely renames the file created by the creator to a given path, even if this function is called simultaneously by multiple threads or processes.

Parameters
- **path** (*str*) – Path to save the cached file.
- **creator** – Function to create the file and returns the content. It takes a path to temporary place as the argument. Before calling the creator, there is no file at the temporary path.
- **loader** – Function to load the cached file and returns the content.

Returns
- It returns the returned values by the creator or the loader.

4.9.2 Dataset Examples (chainer.datasets)

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets.

In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete, popular datasets. These concrete examples use the downloading utilities in the `chainer.dataset` module to cache downloaded and converted datasets.
4.9.3 General Datasets

General datasets are further divided into four types.

The first one is `DictDataset` and `TupleDataset`, both of which combine other datasets and introduce some structures on them.

The second one is `ConcatenatedDataset` and `SubDataset`. `ConcatenatedDataset` represents a concatenation of existing datasets. It can be used to merge datasets and make a larger dataset. `SubDataset` represents a subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient functions to make random splits are also provided.

The third one is `TransformDataset`, which wraps around a dataset by applying a function to data indexed from the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, implementations for datasets of images (`ImageDataset`, `LabeledImageDataset`, etc.) and text (`TextDataset`) are provided.

DictDataset

```python
chainer.datasets.DictDataset

Dataset of a dictionary of datasets.
```

chainer.datasets.DictDataset

```python
class chainer.datasets.DictDataset(**datasets)

Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an example of the corresponding dataset.

Parameters:

- **datasets** – Underlying datasets. The keys are used as the keys of each example. All datasets must have the same length.

Methods:

- `__getitem__(index)`: Get an example.
- `__len__()`: Return the length of the dataset.
- `__eq__()`: Return `self==value`.
- `__ne__()`: Return `self!=value`.
- `__lt__()`: Return `self<value`.
- `__le__()`: Return `self<=value`.
- `__gt__()`: Return `self>value`.
- `__ge__()`: Return `self>=value`.
```
TupleDataset

chainer.datasets.TupleDataset

Dataset of tuples from multiple equal-length datasets.

class chainer.datasets.TupleDataset(*datasets)

A TupleDataset combines multiple equal-length datasets into a single dataset of tuples. The i-th tuple contains the i-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both `__getitem__` and `__len__`. The `__getitem__` method should support indexing by both an integer and a slice.

As an example, consider creating a TupleDataset from two argument datasets $d1 = [8, 0, 5, 1]$ and $d2 = [3, 1, 7, 4]$ as `tuple_dataset = TupleDataset(d1, d2)`. The `tuple_dataset` will then contain the examples $(8, 3), (0, 1), (5, 7), (1, 4)$. Note that this behavior is similar to that of the built-in `zip()` function.

Parameters

- `datasets` – Underlying datasets that will be aggregated. Each dataset must be an iterable that implements `__getitem__` and `__len__`. The j-th dataset will be used for the j-th item of each example tuple. All datasets must have the same length.

Methods

- `__getitem__(index)`
- `__len__()`
- `__eq__()`
 Return `self==value`.
- `__ne__()`
 Return `self!=value`.
- `__lt__()`
 Return `self<value`.
- `__le__()`
 Return `self<=value`.
- `__gt__()`
 Return `self>value`.
- `__ge__()`
 Return `self>=value`.
ConcatenatedDataset

chainer.datasets.ConcatenatedDataset

Dataset which concatenates some base datasets.

class chainer.datasets.ConcatenatedDataset(*datasets)

Dataset which concatenates some base datasets.

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with 10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30 samples.

Parameters

- **datasets** – The underlying datasets. Each dataset has to support `__len__()` and `__getitem__()`.

Methods

- **__getitem__**(index)
 Returns an example or a sequence of examples.

 It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

 Parameters

 - **index** (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

 Returns

 If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]    # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```
__len__

Returns the number of data points.

get_example(i)

Returns the i-th example.

Implementations should override it. It should raise `IndexError` if the index is invalid.

Parameters

- `i` (int) – The index of the example.

Returns

The i-th example.

__eq__

Return `self==value`.

__ne__

Return `self!=value`.

__lt__

Return `self<value`.

__le__

Return `self<=value`.

__gt__

Return `self>value`.

__ge__

Return `self>=value`.

SubDataset

<table>
<thead>
<tr>
<th>chainer.datasets.SubDataset</th>
<th>Subset of a base dataset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.datasets.split_dataset</td>
<td>Splits a dataset into two subsets.</td>
</tr>
<tr>
<td>chainer.datasets.split_dataset_random</td>
<td>Splits a dataset into two subsets randomly.</td>
</tr>
<tr>
<td>chainer.datasets.get_cross_validation_datasets</td>
<td>Creates a set of training/test splits for cross validation.</td>
</tr>
<tr>
<td>chainer.datasets.get_cross_validation_datasets_random</td>
<td>Creates a set of training/test splits for cross validation randomly.</td>
</tr>
</tbody>
</table>

chainer.datasets.SubDataset

```
class chainer.datasets.SubDataset(dataset, start, finish, order=None)
```

Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally with a given permutation.

If `order` is given, then the i-th example of this dataset is the `order[start + i]`-th example of the base dataset, where i is a non-negative integer. If `order` is not given, then the i-th example of this dataset is the `start + i`-th example of the base dataset. Negative indexing is also allowed: in this case, the term `start + i` is replaced by `finish + i`.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for training, while the validation set is used to track the generalization performance, i.e. how the learned model works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers, learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set.
There are two ways to make training-validation splits. One is a single split, where the dataset is split just into two subsets. It can be done by `split_dataset()` or `split_dataset_random()`. The other one is a \(k \)-fold cross validation, in which the dataset is divided into \(k \) subsets, and \(k \) different splits are generated using each of the \(k \) subsets as a validation set and the rest as a training set. It can be done by `get_cross_validation_datasets()`.

Parameters

- `dataset` – Base dataset.
- `start (int)` – The first index in the interval.
- `finish (int)` – The next-to-the-last index in the interval.
- `order (sequence of ints)` – Permutation of indexes in the base dataset. If this is None, then the ascending order of indexes is used.

Methods

`__getitem__(index)`

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

- `index (int, slice, list or numpy.ndarray)` – An index of an example or indexes of examples.

Returns If `index` is int, returns an example created by `get_example`. If `index` is either slice or one-dimensional list or `numpy.ndarray`, returns a list of examples created by `get_example`.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```
__len__ ()
Returns the number of data points.

get_example (i)
Returns the i-th example.
Implementations should override it. It should raise IndexError if the index is invalid.

Parameters
i (int) – The index of the example.

Returns
The i-th example.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

criminator.datasets.split_dataset

criminator.datasets.split_dataset (dataset, split_at, order=None)
Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset.

Parameters

• dataset – Dataset to split.

• split_at (int) – Position at which the base dataset is split.

• order (sequence of ints) – Permutation of indexes in the base dataset. See the
documentation of SubDataset for details.

Returns
Two SubDataset objects. The first subset represents the examples of indexes order[:split_at] while the second subset represents the examples of indexes order[split_at:].

Return type
tuple
chainer.datasets.split_dataset_random

chainer.datasets.split_dataset_random*(dataset, first_size, seed=None)*

Splits a dataset into two subsets randomly.

This function creates two instances of *SubDataset*. These instances do not share any examples, and they together cover all examples of the original dataset. The split is automatically done randomly.

Parameters

- **dataset** – Dataset to split.
- **first_size**(int) – Size of the first subset.
- **seed**(int) – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If *None*, the permutation is changed randomly.

Returns Two *SubDataset* objects. The first subset contains first_size examples randomly chosen from the dataset without replacement, and the second subset contains the rest of the dataset.

Return type tuple

chainer.datasets.get_cross_validation_datasets

chainer.datasets.get_cross_validation_datasets*(dataset, n_fold, order=None)*

Creates a set of training/test splits for cross validation.

This function generates n_fold splits of the given dataset. The first part of each split corresponds to the training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples (the numbers may differ up to 1).

Parameters

- **dataset** – Dataset to split.
- **n_fold**(int) – Number of splits for cross validation.
- **order**(sequence of ints) – Order of indexes with which each split is determined. If it is *None*, then no permutation is used.

Returns List of dataset splits.

Return type list of tuples

chainer.datasets.get_cross_validation_datasets_random

chainer.datasets.get_cross_validation_datasets_random*(dataset, n_fold, seed=None)*

Creates a set of training/test splits for cross validation randomly.

This function acts almost same as **get_cross_validation_dataset()**, except automatically generating random permutation.

Parameters

- **dataset** – Dataset to split.
- **n_fold**(int) – Number of splits for cross validation.
• **seed** *(int)* – Seed the generator used for the permutation of indexes. If an integer beginning convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If `None`, the permutation is changed randomly.

Returns List of dataset splits.

Return type list of tuples

TransformDataset

chainer.datasets.TransformDataset

```python
class chainer.datasets.TransformDataset(dataset, transform)
```

Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base dataset’s `__getitem__()` method. Arrays returned by `__getitem__()` of the base dataset with an integer as an argument are transformed by the given function `transform`. Also, `__len__()` returns the integer returned by the base dataset’s `__len__()`.

The function `transform` takes, as an argument, `in_data`, which is the output of the base dataset’s `__getitem__()`, and returns the transformed arrays as output. Please see the following example. Since `in_data` directly refers to the item in the dataset, take care that `transform` not modify it. For example, note that the line `img = img - 0.5` bellow is correct since it makes a copy of `img`. However, it would be incorrect to use `img -= 0.5` since that would update the contents of the item in the dataset in place, corrupting it.

```python
>>> from chainer.datasets import get_mnist
>>> dataset, _ = get_mnist()
>>> def transform(in_data):
...    img, label = in_data
...    img = img - 0.5  # scale to [-0.5, 0.5]
...    return img, label
>>> dataset = TransformDataset(dataset, transform)
```

Parameters

- **dataset** – The underlying dataset. The index of this dataset corresponds to the index of the base dataset. This object needs to support functions `__getitem__()` and `__len__()` as described above.
- **transform (callable)** – A function that is called to transform values returned by the underlying dataset’s `__getitem__()`.
Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.
__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

ImageDataset

<table>
<thead>
<tr>
<th>chainer.datasets.ImageDataset</th>
<th>Dataset of images built from a list of paths to image files.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.datasets.MultiZippedImageDataset</td>
<td>Dataset of images built from a list of paths to zip files.</td>
</tr>
</tbody>
</table>

class chainer.datasets.ImageDataset(paths, root='.', dtype=None)
Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the __getitem__() operator. The paths to the image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape channels, height, width, where channels represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.

Parameters
- **paths** (str or list of strs) – If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to the i-th image. In both cases, each path is a relative one from the root path given by another argument.
- **root** (str) – Root directory to retrieve images from.
- **dtype** – Data type of resulting image arrays. chainer.config.dtype is used by default (see Configuring Chainer).
Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns

If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()

Returns the number of data points.

get_example(i)

Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters

i (int) – The index of the example.

Returns

The i-th example.

eq()
Return self==value.

eq()
Return self!=value.

lt()
Return self<value.
__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

chainer.datasets.ZippedImageDataset

class chainer.datasets.ZippedImageDataset(zipfilename, dtype=None)
Dataset of images built from a zip file.

This dataset reads an external image file in the given zip file. The zip file shall contain only image files. This shall be able to replace ImageDataset and works better on NFS and other networked file systems. If zip file becomes too large you may consider MultiZippedImageDataset as a handy alternative.

Known issue: pickle and unpickle on same process may cause race condition on ZipFile. Pickle of this class is expected to be sent to different processes via ChainerMN.

Parameters

• zipfilename (str) – a string to point zip file path

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
```python
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()

Returns the number of data points.

get_example(i_or_filename)

Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters:
- i (int) – The index of the example.

Returns:
- The i-th example.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.

chainer.datasets.MultiZippedImageDataset

class chainer.datasets.MultiZippedImageDataset(zipfilenames, dtype=None)

Dataset of images built from a list of paths to zip files.

This dataset reads an external image file in given zipfiles. The zipfiles shall contain only image files. This shall be able to replace ImageDataset and works better on NFS and other networked file systems. The user shall find good balance between zipfile size and number of zipfiles (e.g. granularity)

Parameters:
- zipfilenames (list of strings) – List of zipped archive filename.
- dtype – Data type of resulting image arrays. chainer.config.dtype is used by default (see Configuring Chainer).
Methods

__getitem__(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns

If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()

Returns the number of data points.

get_example(i)

Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters

i (int) – The index of the example.

Returns

The i-th example.

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

LabeledImageDataset

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.datasets.LabeledImageDataset</code></td>
<td>Dataset of image and label pairs built from a list of paths and labels.</td>
</tr>
<tr>
<td><code>chainer.datasets.LabeledZippedImageDataset</code></td>
<td>Dataset of zipped image and label pairs.</td>
</tr>
</tbody>
</table>

chainer.datasets.LabeledImageDataset

class `chainer.datasets.LabeledImageDataset(pairs, root='.', dtype=None, label_dtype=<class 'numpy.int32'>)`

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like `ImageDataset`. The difference from `ImageDataset` is that this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated by white spaces. This format is same as one used in Caffe.

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command `pip install Pillow`). Be careful to prepare appropriate libraries for image formats you want to use (e.g. `libpng` for PNG images, and `libjpeg` for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.

Parameters

- **pairs (str or list of tuples)** – If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a pair of the path to the i-th image and the corresponding label. In both cases, each path is a relative one from the root path given by another argument.

- **root (str)** – Root directory to retrieve images from.

- **dtype** – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see Configuring Chainer).

- **label_dtype** – Data type of the labels.
Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...   def __init__(self, values):
...     self.values = values
...   def __len__(self):
...     return len(self.values)
...   def get_example(self, i):
...     return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.
__le__(value)
Return self<=value.

__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

chainer.datasets.LabeledZippedImageDataset
class chainer.datasets.LabeledZippedImageDataset(zipfilename, labelfilename, dtype=None, label_dtype=<class 'numpy.int32'>)

Dataset of zipped image and label pairs.

This dataset is zip version of LabeledImageDataset. It takes a zipfile like ZippedImageDataset. The label file shall contain lines like text file used in LabeledImageDataset, but a filename in each line of the label file shall match with a file in the zip archive.

Parameters

• zipfilename (str) – Path to a zipfile with images
• labelfilename (str) – Path to a label file. i-th line shall contain a filename and an integer label that corresponds to the i-th sample. A filename in the label file shall match with a filename in the zip file given with zipfilename.
• dtype – Data type of resulting image arrays. chainer.config.dtype is used by default (see Configuring Chainer).
• label_dtype – Data type of the labels.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
```
... def get_example(self, i):
... return self.values[i]
...

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters
 i (int) -- The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

TextDataset

chainer.datasets.TextDataset
Dataset of a line-oriented text file.

4.9. Datasets
chainer.datasets.TextDataset

```python
class chainer.datasets.TextDataset(paths, encoding=None, errors=None, newline=None, filter_func=None)
```

Dataset of a line-oriented text file.

This dataset reads each line of text file(s) on every call of the `__getitem__()` operator. Positions of line boundaries are cached so that you can quickly random access the text file by the line number.

Note: Cache will be built in the constructor. You can pickle and unpickle the dataset to reuse the cache, but in that case you are responsible to guarantee that files are not modified after the cache has built.

Parameters

- `paths (str or list of str)` — Path to the text file(s). If it is a string, this dataset reads a line from the text file and emits it as `str`. If it is a list of string, this dataset reads lines from each text file and emits it as a tuple of `str`. In this case, number of lines in all files must be the same.

- `encoding (str or list of str)` — Name of the encoding used to decode the file. See the description in `open()` for the supported options and how it works. When reading from multiple text files, you can also pass a list of `str` to use different encoding for each file.

- `errors (str or list of str)` — String that specifies how decoding errors are to be handled. See the description in `open()` for the supported options and how it works. When reading from multiple text files, you can also pass a list of `str` to use different error handling policy for each file.

- `newline (str or list of str)` — Controls how universal newlines mode works. See the description in `open()` for the supported options and how it works. When reading from multiple text files, you can also pass a list of `str` to use different mode for each file.

- `filter_func (callable)` — Function to filter each line of the text file. It should be a function that takes number of arguments equals to the number of files. Arguments are lines loaded from each file. The filter function must return True to accept the line, or return False to skip the line.

Methods

- `__getitem__(index)`

 Returns an example or a sequence of examples.

 It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

 Parameters

 - `index (int, slice, list or numpy.ndarray)` — An index of an example or indexes of examples.

 Returns

 If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

Example
```python
>>> import numpy
>>> from chainer import
dataset

>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]  # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()
Returns the number of data points.

close()
Manually closes all text files.

In most cases, you do not have to call this method, because files will automatically be closed after Text-
Dataset instance goes out of scope.

get_example(idx)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters

i (int) – The index of the example.

Returns

The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
PickleDataset

```
chainer.datasets.PickleDataset      Dataset stored in a storage using pickle.
chainer.datasets.PickleDatasetWriter Writer class that makes PickleDataset.
chainer.datasets.open_pickle_dataset Opens a dataset stored in a given path.
open_pickle_dataset_writer       Opens a writer to make a PickleDataset.
```

chainer.datasets.PickleDataset

```python
class chainer.datasets.PickleDataset(reader)
```

Dataset stored in a storage using pickle.

pickle is the default serialization library of Python. This dataset stores any objects in a storage using pickle.

Even when a user wants to use a large dataset, this dataset can stores all data in a large storage like HDD and each data can be randomly accessible.

```python
>>> with chainer.datasets.open_pickle_dataset_writer(path_to_data) as w:
...   w.write((1, 2.0, 'hello'))
...   w.write((2, 3.0, 'good-bye'))
... >>> with chainer.datasets.open_pickle_dataset(path_to_data) as dataset:
...   print(dataset[1])
... (2, 3.0, 'good-bye')
```

Parameters

- **reader** – File like object. *reader* must support random access.

Methods

- **__enter__()**
- **__exit__(exc_type, exc_value, traceback)**
- **__getitem__(index)**

 Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

- **index** *(int, slice, list or numpy.ndarray)* – An index of an example or indexes of examples.

Returns

- If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...```
...    def __len__(self):
...        return len(self.values)
...    def get_example(self, i):
...        return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]    # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()  
Returns the number of data points.

close()  
Closes a file reader.

After a user calls this method, the dataset will no longer be accessible..

get_example(index)  
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()  
Return self==value.

__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.
chainer.datasets.PickleDatasetWriter

class chainer.datasets.PickleDatasetWriter(writer, protocol=4)

Writer class that makes PickleDataset.

To make PickleDataset, a user needs to prepare data using PickleDatasetWriter.

Parameters

• writer – File like object that supports write and tell methods.
• protocol (int) – Valid protocol for pickle.

Methods

__enter__()
__exit__(exc_type, exc_value, traceback)
close()
flush()
write(x)
__eq__()
    Return self==value.
__ne__()
    Return self!=value.
__lt__()
    Return self<value.
__le__()
    Return self<=value.
__gt__()
    Return self>value.
__ge__()
    Return self>=value.

chainer.datasets.open_pickle_dataset

chainer.datasets.open_pickle_dataset(path)

Opens a dataset stored in a given path.

This is a helper function to open PickleDataset. It opens a given file in binary mode, and creates a
PickleDataset instance.

This method does not close the opened file. A user needs to call PickleDataset.close() or use with:

```python
with chainer.datasets.open_pickle_dataset('path') as dataset:
 pass # use dataset
```

Parameters path (str) – Path to a dataset.

Returns Opened dataset.

Return type chainer.datasets.PickleDataset
chainer.datasets.open_pickle_dataset_writer

**chainer.datasets.open_pickle_dataset_writer**(path, protocol=4)

Opens a writer to make a PickleDataset.

This is a helper function to open `PickleDatasetWriter`. It opens a given file in binary mode and creates a `PickleDatasetWriter` instance.

This method does not close the opened file. A user needs to call `PickleDatasetWriter.close()` or use `with`:

```
with chainer.datasets.open_pickle_dataset_writer('path') as writer:
 pass # use writer
```

**Parameters**

- `path` (*str*) – Path to a dataset.
- `protocol` (*int*) – Valid protocol for `pickle`.

**Returns**

Opened writer.

**Return type**  `chainer.datasets.PickleDatasetWriter`

### 4.9.4 Concrete Datasets

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.datasets.get_mnist</code></td>
<td>Gets the MNIST dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_kuzushiji_mnist</code></td>
<td>Gets the Kuzushiji-MNIST dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_kuzushiji_mnist_labels</code></td>
<td>Provides a list of labels for the Kuzushiji-MNIST dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_fashion_mnist_labels</code></td>
<td>Provide a list of the string value names of the labels.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_fashion_mnist</code></td>
<td>Gets the Fashion-MNIST dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_cifar10</code></td>
<td>Gets the CIFAR-10 dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_cifar100</code></td>
<td>Gets the CIFAR-100 dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_ptb_words</code></td>
<td>Gets the Penn Tree Bank dataset as long word sequences.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_ptb_words_vocabulary</code></td>
<td>Gets the Penn Tree Bank word vocabulary.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_svhn</code></td>
<td>Gets the SVHN dataset.</td>
</tr>
</tbody>
</table>

**chainer.datasets.get_mnist**

**chainer.datasets.get_mnist**(withlabel=True, ndim=1, scale=1.0, dtype=None, label_dtype=<class 'numpy.int32'>, rgb_format=False)

Gets the MNIST dataset.

**MNIST** is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official MNIST dataset. If `withlabel` is `True`, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**
• `withlabel (bool)` – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

• `ndim (int)` – Number of dimensions of each image. The shape of each image is determined depending on `ndim` as follows:
  - `ndim == 1`: the shape is (784,)
  - `ndim == 2`: the shape is (28, 28)
  - `ndim == 3`: the shape is (1, 28, 28)

• `scale (float)` – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].

• `dtype` – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see Configuring Chainer).

• `label_dtype` – Data type of the labels.

• `rgb_format (bool)` – If `ndim == 3` and `rgb_format` is True, the image will be converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default is False.

Returns A tuple of two datasets. If `withlabel` is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

```python
chainer.datasets.get_kuzushiji_mnist
```

`chainer.datasets.get_kuzushiji_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, label_dtype=<class 'numpy.int32'>, rgb_format=False)`

Gets the Kuzushiji-MNIST dataset.

Kuzushiji-MNIST (KMNIST) is a set of hand-written Japanese characters represented by grey-scale 28x28 images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official KMNIST dataset. If `withlabel` is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• `withlabel (bool)` – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

• `ndim (int)` – Number of dimensions of each image. The shape of each image is determined depending on `ndim` as follows:
  - `ndim == 1`: the shape is (784,)
  - `ndim == 2`: the shape is (28, 28)
  - `ndim == 3`: the shape is (1, 28, 28)

• `scale (float)` – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].

• `dtype` – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see Configuring Chainer).

• `label_dtype` – Data type of the labels.
• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_kuzushiji_mnist_labels

chainer.datasets.get_kuzushiji_mnist_labels()

Provides a list of labels for the Kuzushiji-MNIST dataset.

Returns List of labels in the form of tuples. Each tuple contains the character name in romaji as a string value and the unicode codepoint for the character.

chainer.datasets.get_fashion_mnist_labels

chainer.datasets.get_fashion_mnist_labels()

Provide a list of the string value names of the labels.

Returns List of string values of the image labels.

chainer.datasets.get_fashion_mnist

chainer.datasets.get_fashion_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, label_dtype=<class 'numpy.int32'>, rgb_format=False)

Gets the Fashion-MNIST dataset.

Fashion-MNIST is a set of fashion articles represented by grey-scale 28x28 images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the interval \[0, scale\].

This function returns the training set and the test set of the official Fashion-MNIST dataset. If withlabel is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined depending on ndim as follows:
  – ndim == 1: the shape is \(784,\)
  – ndim == 2: the shape is \(28, 28\)
  – ndim == 3: the shape is \(1, 28, 28\)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval \([0, 1]\).

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be converted to rgb format by duplicating the channels so the image shape is \(3, 28, 28\). Default is False.
**Returns** A tuple of two datasets. If `withlabel` is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_cifar10**

```python
chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0, dtype=None)
```

Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval $[0, scale]$.

This function returns the training set and the test set of the official CIFAR-10 dataset. If `withlabel` is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- `withlabel (bool)` – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

- `ndim (int)` – Number of dimensions of each image. The shape of each image is determined depending on `ndim` as follows:
  - `ndim == 1`: the shape is `(3072,)`
  - `ndim == 3`: the shape is `(3, 32, 32)`

- `scale (float)` – Pixel value scale. If it is 1 (default), pixels are scaled to the interval $[0, 1]$.

- `dtype` – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see [Configuring Chainer](#)).

**Returns** A tuple of two datasets. If `withlabel` is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_cifar100**

```python
chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0, dtype=None)
```

Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval $[0, scale]$.

This function returns the training set and the test set of the official CIFAR-100 dataset. If `withlabel` is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- `withlabel (bool)` – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

- `ndim (int)` – Number of dimensions of each image. The shape of each image is determined depending on `ndim` as follows:
  - `ndim == 1`: the shape is `(3072,)`
  - `ndim == 3`: the shape is `(3, 32, 32)`

- `scale (float)` – Pixel value scale. If it is 1 (default), pixels are scaled to the interval $[0, 1]$.
• `dtype` – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see *Configuring Chainer*).

**Returns** A tuple of two datasets. If `withlabel` is `True`, both are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_ptb_words**

```python
def get_ptb_words():
 # Gets the Penn Tree Bank dataset as long word sequences.
```

**Penn Tree Bank** is originally a corpus of English sentences with linguistic structure annotations. This function uses a variant distributed at https://github.com/wojzaremba/lstm, which omits the annotation and splits the dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word IDs. All sentences in the dataset are concatenated by End-of-Sentence mark `'<eos>'`, which is treated as one of the vocabulary.

**Returns** Int32 vectors of word IDs.

**Return type** tuple of numpy.ndarray

**See also:**

Use `get_ptb_words_vocabulary()` to get the mapping between the words and word IDs.

**chainer.datasets.get_ptb_words_vocabulary**

```python
def get_ptb_words_vocabulary():
 # Gets the Penn Tree Bank word vocabulary.
```

**Returns** Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree Bank long sequence datasets.

**Return type** dict

**See also:**

See `get_ptb_words()` for the actual datasets.

**chainer.datasets.get_svhn**

```python
def get_svhn(withlabel=True, scale=1.0, dtype=None, label_dtype=<class 'numpy.int32'>, add_extra=False):
 # Gets the SVHN dataset.
```

The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped images of house numbers. The functionality of this function is identical to the counterpart for the MNIST dataset (`get_mnist()`), with the exception that there is no `ndim` argument.

**Note:** SciPy is required to use this feature.

**Parameters**

• `withlabel` (bool) – If `True`, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
• **scale** *(float)* – Pixel value scale. If it is 1 (default), pixels are scaled to the interval \([0, 1]\).

• **dtype** – Data type of resulting image arrays. `chainer.config.dtype` is used by default (see *Configuring Chainer*).

• **label_dtype** – Data type of the labels.

• **add_extra** – Use extra training set.

Returns If `add_extra` is `False`, a tuple of two datasets (train and test). Otherwise, a tuple of three datasets (train, test, and extra). If `withlabel` is `True`, all datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**Note:** ChainerCV supports implementations of datasets that are useful for computer vision problems, which can be found in `chainercv.datasets`. Here is a subset of data loaders supported by ChainerCV:

- **Bounding Box Datasets**
  - `chainercv.datasets.VOCBboxDataset`
  - `chainercv.datasets.COCOBboxDataset`

- **Semantic Segmentation Datasets**
  - `chainercv.datasets.ADE20KSemanticSegmentationDataset`
  - `chainercv.datasets.CamVidDataset`
  - `chainercv.datasets.CityscapesSemanticSegmentationDataset`
  - `chainercv.datasets.VOCSemanticSegmentationDataset`

- **Instance Segmentation Datasets**
  - `chainercv.datasets.COCOInstanceSegmentationDataset`
  - `chainercv.datasets.VOCInstanceSegmentationDataset`

- **Classification Datasets**
  - `chainercv.datasets.CUBLabelDataset`
  - `chainercv.datasets.OnlineProductsDataset`

### 4.10 Iterator

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over datasets. `SerialIterator` is the simplest one, which extracts mini-batches in the main thread. `MultiprocessIterator` and `MultithreadIterator` are parallelized versions of `SerialIterator`. They maintain worker subprocesses and subthreads, respectively, to load the next mini-batch in parallel.

<table>
<thead>
<tr>
<th><code>chainer.iterators.SerialIterator</code></th>
<th>Dataset iterator that serially reads the examples.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.iterators.MultiprocessIterator</code></td>
<td>Dataset iterator that loads examples in parallel.</td>
</tr>
<tr>
<td><code>chainer.iterators.MultithreadIterator</code></td>
<td>Dataset iterator that loads examples in parallel.</td>
</tr>
<tr>
<td><code>chainer.iterators.DaliIterator</code></td>
<td>(Experimental) Iterator for DALI pipeline.</td>
</tr>
</tbody>
</table>
4.10.1 chainer.iterators.SerialIterator

class chainer.iterators.SerialIterator (dataset, batch_size, repeat=True, shuffle=None, order_sampler=None)

Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator that just visits each example in either the order of indexes or a shuffled order.

To avoid unintentional performance degradation, the shuffle option is set to True by default. For validation, it is better to set it to False when the underlying dataset supports fast slicing. If the order of examples has an important meaning and the updater depends on the original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

- **dataset** – Dataset to iterate.
- **batch_size** (int) – Number of examples within each batch.
- **repeat** (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
- **shuffle** (bool) – If True, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes. If None and no order_sampler is given, the behavior is the same as the case with shuffle=True.
- **order_sampler** (callable) – A callable that generates the order of the indices to sample in the next epoch when a epoch finishes. This function should take two arguments: the current order and the current position of the iterator. This should return the next order. The size of the order should remain constant. This option cannot be used when shuffle is not None.

Methods

- **__enter__()**
- **__exit__(exc_type, exc_value, traceback)**
- **__next__()**
  Returns the next batch.

  This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

- **__iter__()**
  Returns self.

- **finalize()**
  Finalizes the iterator and possibly releases the resources.

  This method does nothing by default. Implementation may override it to better handle the internal resources.

  This method can be called multiple times.

- **next ()**
  Returns the next batch.

  This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.
**reset**

**serialize**(serializer)

Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

**Note:** It should only serialize the internal state that changes over the iteration. It should not serialize what is set manually by users such as the batch size.

**__eq__**(value)

Return `self==value`.

**__ne__**(value)

Return `self!=value`.

**__lt__**(value)

Return `self<value`.

**__le__**(value)

Return `self<=value`.

**__gt__**(value)

Return `self>value`.

**__ge__**(value)

Return `self>=value`.

**Attributes**

`current_position`

`epoch`

`epoch_detail`

`is_new_epoch`

`previous_epoch_detail`

`repeat`

**4.10.2 chainer.iterators.MultiprocessIterator**

**class chainer.iterators.MultiprocessIterator**(dataset, batch_size, repeat=True, shuffle=None, n_processes=None, n_prefetch=1, shared_mem=None, order_sampler=None, dataset_timeout=30.0, maxtasksperchild=None)

Dataset iterator that loads examples in parallel.

This is an implementation of `Iterator` that loads examples with worker processes. It uses the standard `multiprocessing` module to parallelize the loading. The dataset is sent to the worker processes in the standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current batch is returned.

This iterator saves `-1` instead of `None` in snapshots since some serializers do not support `None`. 
Note: When you are using OpenCV somewhere in your code and the `MultiprocessIterator` is used in the training code, the training loop may get stuck at some point. In such situation, there are several workarounds to prevent the process got stuck.

1. Set the environment variable as follows: `OMP_NUM_THREADS=1`
2. Add `cv2.setNumThreads(0)` right after `import cv2` in your training script.
3. Use `MultithreadIterator` instead of `MultiprocessIterator`.

Parameters

- **dataset** *(Dataset)* – Dataset to iterate.
- **batch_size** *(int)* – Number of examples within each batch.
- **repeat** *(bool)* – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
- **shuffle** *(bool)* – If True, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes. If None and no `order_sampler` is given, the behavior is the same as the case with `shuffle=True`.
- **n_processes** *(int)* – Number of worker processes. The number of CPUs is used by default.
- **n_prefetch** *(int)* – Number of prefetch batches.
- **shared_mem** *(int)* – The size of using shared memory per data. If None, size is adjusted automatically.
- **dataset_timeout** *(float)* – `MultiprocessIterator.TimeoutWarning` will be issued after this time in seconds elapsed in each dataset realization. None to disable the warning. You can turn this warning into an error by using `warnings.simplefilter()`:

```python
warnings.simplefilter('error',
 chainer.iterators.MultiprocessIterator.TimeoutWarning)
```

- **order_sampler** *(callable)* – A callable that generates the order of the indices to sample in the next epoch when a epoch finishes. This function should take two arguments: the current order and the current position of the iterator. This should return the next order. The size of the order should remain constant. This option cannot be used when `shuffle` is not `None`.
- **maxtasksperchild** *(int)* – Number of tasks a worker of prefetch process can complete before it will exit and be replaced with a fresh worker process, to enable unused resources to be freed. If `None`, worker processes will live as long as the pool.
Methods

__enter__()  
Returns the next batch.

__exit__(exc_type, exc_value, traceback)

__next__()  
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()  
Returns self.

__copy__()  
finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

This method can be called multiple times.

next ()  
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

reset ()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what is set manually by users such as the batch size.

__eq__()  
Return self==value.

__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.
Attributes

current_position
epoch
epoch_detail
is_new_epoch
previous_epoch_detail

4.10.3 chainer.iterators.MultithreadIterator

class chainer.iterators.MultithreadIterator (dataset, batch_size, repeat=True, shuffle=None, n_threads=1, order_sampler=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker threads. It uses the standard threading module to parallelize the loading.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset (Dataset) – Dataset to iterate.
• batch_size (int) – Number of examples within each batch.
• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes. If None and no order_sampler is given, the behavior is the same as the case with shuffle=True.
• n_threads (int) – Number of worker threads.
• order_sampler (callable) – A callable that generates the order of the indices to sample in the next epoch when a epoch finishes. This function should take two arguments: the current order and the current position of the iterator. This should return the next order. The size of the order should remain constant. This option cannot be used when shuffle is not None.

Methods

__enter__()  
__exit__(exc_type, exc_value, traceback)
__next__()  
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()  
Returns self.
finalize()  
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

This method can be called multiple times.

next()  
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

reset()  
serialize(serializer)  
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what is set manually by users such as the batch size.

__eq__()  
Return self==value.

__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

Attributes

current_position  
epoch  
ePOCH_detail  
is_new_epoch  
previous_epoch_detail  
repeat
4.10.4 chainer.iterators.DaliIterator

class chainer.iterators.DaliIterator(pipeline, repeat=True)
(Experimental) Iterator for DALI pipeline.

Parameters

• pipeline – DALI pipeline.
• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.

Methods

__enter__()  
__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.
__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

Attributes

batch_size
epoch_detail
previous_epoch_detail
repeat

4.10.5 Order sampler examples

An Iterator iterates over a dataset according to an order represented by a 1-D array of indices. Order samplers are callables that are used by those iterators to generate this array.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.iterators.OrderSampler</code></td>
<td>Base class of all order samplers.</td>
</tr>
<tr>
<td><code>chainer.iterators.ShuffleOrderSampler</code></td>
<td>Sampler that generates random orders.</td>
</tr>
</tbody>
</table>

**chainer.iterators.OrderSampler**

**class** chainer.iterators.OrderSampler

Base class of all order samplers.

Every order sampler subclass has to provide a method **__call__()**. This method is called by an iterator before a new epoch, and it should return a new index order for the next epoch.

**Methods**

**__call__(current_order, current_position)**  
Sample the next order.

**Parameters**

- **current_order** (*numpy.ndarray*) – 1-D array of indices. The length should be the same as the dataset to sample data from.
- **current_position** (*int*) – The current position of an iterator.

**Returns** 1-D array of indices. This is the order in which examples are sampled from a dataset in the next epoch.

**Return type** *numpy.ndarray*

**__eq__()**  
Return self==value.
__ne__(value)
    Return self!=value.

__lt__(value)
    Return self<value.

__le__(value)
    Return self<=value.

__gt__(value)
    Return self>value.

__ge__(value)
    Return self>=value.

chainer.iterators.ShuffleOrderSampler

class chainer.iterators.ShuffleOrderSampler(random_state=None)
    Sampler that generates random orders.

This is expected to be used together with Chainer’s iterators. An order sampler is called by an iterator every epoch.

The two initializations below create basically the same objects.

```python
>>> dataset = [(1, 2), (3, 4)]
>>> it = chainer.iterators.MultiprocessIterator(dataset, 1, shuffle=True)
>>> it = chainer.iterators.MultiprocessIterator(...
 dataset, 1, order_sampler=chainer.iterators.ShuffleOrderSampler())
```

Parameters

- **random_state** (numpy.random.RandomState) – Pseudo-random number generator.

Methods

__call__(current_order, current_position)
    Sample the next order.

Parameters

- **current_order** (numpy.ndarray) – 1-D array of indices. The length should be the same as the dataset to sample data from.
- **current_position** (int) – The current position of an iterator.

Returns

1-D array of indices. This is the order in which examples are sampled from a dataset in the next epoch.

Return type

numpy.ndarray

__eq__(value)
    Return self==value.

__ne__(value)
    Return self!=value.

__lt__(value)
    Return self<value.
__le__(value)

Return self<=value.

__gt__(value)

Return self>value.

__ge__(value)

Return self>=value.

4.11 Serializers

4.11.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serializer/deserializer due to the fact that `numpy.savez()` does not support online serialization. Therefore, serialization requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.serializers.NpzDeserializer</td>
<td>Deserializer for NPZ format.</td>
</tr>
<tr>
<td>chainer.serializers.save_npz</td>
<td>Saves an object to the file in NPZ format.</td>
</tr>
<tr>
<td>chainer.serializers.load_npz</td>
<td>Loads an object from the file in NPZ format.</td>
</tr>
</tbody>
</table>

**chainer.serializers.DictionarySerializer**

class chainer.serializers.DictionarySerializer(target=None, path='')

Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with keys representing the paths to objects in the hierarchy.

**Note:** Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a flat dictionary of arrays that can be fed into `numpy.savez()` and `numpy.savez_compressed()`. If you want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

**Parameters**

- **target (dict)** – The dictionary that this serializer saves the objects to. If target is None, then a new dictionary is created.
- **path (str)** – The base path in the hierarchy that this serializer indicates.

**Variables**

- **target (dict)** – The target dictionary. Once the serialization completes, this dictionary can be fed into `numpy.savez()` or `numpy.savez_compressed()` to serialize it in the NPZ format.
Methods

___call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters
• key (str) – Name of the serialization entry.
• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
  Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

___getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save (obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

___eq__() Return self==value.

___ne__() Return self!=value.

___lt__() Return self<value.

___le__() Return self<=value.

___gt__() Return self>value.

___ge__() Return self>=value.
chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path='', strict=True, ignore_names=None)
Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by 
\texttt{save_npz}().

Parameters

- npz – \texttt{npz} file object.
- path – The base path that the deserialization starts from.
- strict (bool) – If True, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.
- ignore_names (string, callable or list of them) – If callable, it is a function that takes a name of a parameter and a persistent and returns True when it needs to be skipped. If string, this is a name of a parameter or persistent that are going to be skipped. This can also be a list of callables and strings that behave as described above.

Methods

__call__ (key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

Parameters

- key (str) – Name of the serialization entry.
- value (scalar, numpy.ndarray, cupy.ndarray, None, or str) – Object to be (de)serialized. None is only supported by deserializers.

Returns  Serialized or deserialized value.

__getitem__ (key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.
**load**(obj)

Loads an object from this deserializer.

This is equivalent to `obj.serialize(self)`.

**Parameters**

- **obj** – Target object to be serialized.

**__eq__(self, value)**

Return `self==value`.

**__ne__(self, value)**

Return `self!=value`.

**__lt__(self, value)**

Return `self<value`.

**__le__(self, value)**

Return `self<=value`.

**__gt__(self, value)**

Return `self>value`.

**__ge__(self, value)**

Return `self>=value`.

---

**chainer.serializers.save_npz**

**chainer.serializers.save_npz**(file, obj, compression=True)

Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

**Parameters**

- **file**(str or file-like) – Target file to write to.
- **obj** – Object to be serialized. It must support serialization protocol. If it is a dictionary object, the serialization will be skipped.
- **compression**(bool) – If `True`, compression in the resulting zip file is enabled.

**See also:**

`chainer.serializers.load_npz()`

---

**chainer.serializers.load_npz**

**chainer.serializers.load_npz**(file, obj, path='', strict=True, ignore_names=None)

Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

**Parameters**

- **file**(str or file-like) – File to be loaded.
- **obj** – Object to be deserialized. It must support serialization protocol.
- **path**(str) – The path in the hierarchy of the serialized data under which the data is to be loaded. The default behavior (blank) will load all data under the root path.
- **strict**(bool) – If `True`, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.
• **ignore_names** *(string, callable or list of them)* – If callable, it is a function that takes a name of a parameter and a persistent and returns `True` when it needs to be skipped. If string, this is a name of a parameter or persistent that are going to be skipped. This can also be a list of callables and strings that behave as described above.

See also:

`chainer.serializers.save_npz()`

### 4.11.2 Serialization in HDF5 format

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.serializers.HDF5Serializer</code></td>
<td>Serializer for HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.HDF5Deserializer</code></td>
<td>Deserializer for HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.save_hdf5</code></td>
<td>Saves an object to the file in HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.load_hdf5</code></td>
<td>Loads an object from the file in HDF5 format.</td>
</tr>
</tbody>
</table>

`chainer.serializers.HDF5Serializer`

**class chainer.serializers.HDF5Serializer** *(group, compression=4)*

Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

**Parameters**

- **group** *(h5py.Group)* – The group that this serializer represents.
- **compression** *(int)* – Gzip compression level.

**Methods**

`__call__`(key, value)

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the `value` argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the `value` argument. String values are treated like scalars.

**Note:** Serializers and deserializers are required to correctly handle the `None` value. When `value` is `None`, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved `None` value is loaded by a deserializer, it should quietly return the `None` value without modifying the `value` object.

**Parameters**

- **key** *(str)* – Name of the serialization entry.
value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.HDF5Deserializer

class chainer.serializers.HDF5Deserializer(group, strict=True)
Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by HDF5Serializer.

Parameters

• group (h5py.Group) – The group that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.
Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) – Object to be (de)serialized. None is only supported by deserializers.

Returns
Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.
**chainer.serializers.save_hdf5**

`chainer.serializers.save_hdf5(filename, obj, compression=4)`

Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to one HDF5 file, use `HDF5Serializer` directly by passing appropriate `h5py.Group` objects.

**Parameters**

- **filename** (*str*) – Target file name.
- **obj** – Object to be serialized. It must support serialization protocol. If it is a dictionary object, the serialization will be skipped.
- **compression** (*int*) – Gzip compression level.

**Note:** Currently `save_hdf5()` only supports writing to an actual file on file system due to a limitation of HD5F library. See `h5py/h5py#687` for details.

**See also:**

`chainer.serializers.load_hdf5()`

**chainer.serializers.load_hdf5**

`chainer.serializers.load_hdf5(filename, obj)`

Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple objects from one HDF5 file, use `HDF5Deserializer` directly by passing appropriate `h5py.Group` objects.

**Parameters**

- **filename** (*str*) – Name of the file to be loaded.
- **obj** – Object to be deserialized. It must support serialization protocol.

**Note:** Currently `load_hdf5()` only supports loading an actual file on file system due to a limitation of HD5F library. See `h5py/h5py#687` for details.

**See also:**

`chainer.serializers.save_hdf5()`

### 4.11.3 Serializers base classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.Serializer</code></td>
<td>Base class of all serializers.</td>
</tr>
<tr>
<td><code>chainer.AbstractSerializer</code></td>
<td>Abstract base class of all serializers and deserializers.</td>
</tr>
<tr>
<td><code>chainer.Deserializer</code></td>
<td>Base class of all deserializers.</td>
</tr>
</tbody>
</table>
chainer.Serializer

class chainer.Serializer
    Base class of all serializers.

Methods

__call__(key, value)
    Serializes or deserializes a value by given name.
    This operator saves or loads a value by given name.
    If this is a serializer, then the value is simply saved at the key. Note that some type information might be
    missed depending on the implementation (and the target file format).
    If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
    and arrays. For scalars, the value argument is used just for determining the type of restored value to be
    converted, and the converted value is returned. For arrays, the restored elements are directly copied into
    the value argument. String values are treated like scalars.
    
    **Parameters**
    • key (str) – Name of the serialization entry.
    • value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
      Object to be (de)serialized. None is only supported by deserializers.
    
    **Returns** Serialized or deserialized value.

__getitem__(key)
    Gets a child serializer.
    This operator creates a _child_ serializer represented by the given key.
    
    **Parameters** key (str) – Name of the child serializer.

save(obj)
    Saves an object by this serializer.
    This is equivalent to obj.serialize(self).
    
    **Parameters** obj – Target object to be serialized.

__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.
__gt__(value)
Return self>value.

__ge__(value)
Return self>=value.

**chainer(AbstractSerializer**

**class chainer.AbstractSerializer**
Abstract base class of all serializers and deserializers.

**Methods**

**__call__(key, value)**
Serializes or deserializes a value by given name.
This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

**Parameters**
- **key** (str) – Name of the serialization entry.
- **value** (scalar, numpy.ndarray, cupy.ndarray, None, or str) – Object to be (de)serialized. None is only supported by deserializers.

**Returns** Serialized or deserialized value.

**__getitem__(key)**
Gets a child serializer.
This operator creates a _child_ serializer represented by the given key.

**Parameters** key (str) – Name of the child serializer.

**__eq__(value)**
Return self==value.

**__ne__(value)**
Return self!=value.

**__lt__(value)**
Return self<value.

**__le__(value)**
Return self<=value.
__gt__(value)
    Return self>value.

__ge__(value)
    Return self>=value.

chainer.Deserializer

class chainer.Deserializer
    Base class of all deserializers.

Methods

__call__(key, value)
    Serializes or deserializes a value by given name.
    
    This operator saves or loads a value by given name.
    
    If this is a serializer, then the value is simply saved at the key. Note that some type information might be
    missed depending on the implementation (and the target file format).
    
    If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
    and arrays. For scalars, the value argument is used just for determining the type of restored value to be
    converted, and the converted value is returned. For arrays, the restored elements are directly copied into
    the value argument. String values are treated like scalars.

    Parameters
        • key (str) – Name of the serialization entry.
        • value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
          Object to be (de)serialized. None is only supported by deserializers.

    Returns
        Serialized or deserialized value.

__getitem__(key)
    Gets a child serializer.
    
    This operator creates a _child_ serializer represented by the given key.

    Parameters
        key (str) – Name of the child serializer.

load(obj)
    Loads an object from this deserializer.
    
    This is equivalent to obj.serialize(self).

    Parameters
        obj – Target object to be serialized.

eq(value)
    Return self==value.
Return self!=value.

Return self<value.

Return self<=value.

Return self>value.

Return self>=value.

### 4.12 Backends and Devices

#### 4.12.1 Common Classes and Utilities

<table>
<thead>
<tr>
<th>Function/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.backend.Device</code></td>
<td>A base class of unified devices.</td>
</tr>
<tr>
<td><code>chainer.get_device</code></td>
<td>Returns a device object.</td>
</tr>
<tr>
<td><code>chainer.using_device</code></td>
<td>Context manager to apply the thread-local device state.</td>
</tr>
<tr>
<td><code>chainer.backend.get_device_from_array</code></td>
<td>Gets the device from arrays.</td>
</tr>
<tr>
<td><code>chainer.backend.get_array_module</code></td>
<td>Gets an appropriate NumPy-compatible module to process arguments.</td>
</tr>
<tr>
<td><code>chainer.DeviceResident</code></td>
<td>A base class of objects with multi-device hierarchy.</td>
</tr>
<tr>
<td><code>chainer.device_resident.DeviceResidentsVisitor</code></td>
<td>Base class of visitors that visits device resident objects recursively.</td>
</tr>
<tr>
<td><code>chainer.backend.copyto</code></td>
<td>Copies the elements of an ndarray to those of another one.</td>
</tr>
</tbody>
</table>

#### chainer.backend.Device

```python
class chainer.backend.Device
A base class of unified devices.
```

Chainer has the following concrete implementations:

- `chainer.backend.CpuDevice`
- `chainer.backend.GpuDevice`
- `chainer.backend.Intel64Device`
- `chainer.backend.ChainerxDevice`
Methods

__enter__ ()
A dummy definition that simply raises RuntimeError.

    chainer.using_device() should be used instead.

__exit__ (exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

    See also:
    chainer.using_device() calls this method internally.

send (arrays)
Transfers given arrays to the device.

    Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.
    Returns Transferred arrays.

use ()
Makes the device current in the current thread.

__eq__ (other)
Return self==value.

__ne__ (other)
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes

supported_array_types
Array types supported by the device.

    Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.
**chainer.get_device**

`chainer.get_device(device_spec)`

Returns a device object.

**Parameters**

`device_spec (object)` – Device specifier. If a `chainer.backend.Device` instance is given, it is returned intact. Otherwise the following values are supported:

- ChainerX devices
  - A string representing a device. (ex. 'native:0', 'native')
  - A `chainerx.Device` object.
- CuPy
  - A string starts with '@cupy:'. (ex. '@cupy:0')
  - A `cupy.cuda.Device` object.
- NumPy
  - The string '@numpy'.
- NumPy with Intel Architecture
  - The string '@intel64'.

**chainer.using_device**

`chainer.using_device(device_spec)`

Context manager to apply the thread-local device state.

**Parameters**

`device_spec (object)` – Device specifier. See `chainer.get_device()` for details.

**Example**

```python
with chainer.using_device('@cupy:1'):
 a = cupy.empty((3, 2))
assert a.device.id == 1
```

**chainer.backend.get_device_from_array**

`chainer.backend.get_device_from_array(*arrays)`

Gets the device from arrays.

The device on which the given array reside is returned.

**Note:** Unlike `get_array_module()`, this method does not recognize `Variable` objects. If you need to get device from the `Variable` instance `v`, you need to use `get_device_from_array(v.array)`.

**Parameters**

`arrays (array or list of arrays)` – Arrays to determine the device. If multiple arrays are given, the device corresponding to the first array which is not NumPy array is returned.
Returns Device instance.

Return type chainer.backend.Device

chaliner.backend.get_array_module

chaliner.backend.get_array_module(*args)

Gets an appropriate NumPy-compatible module to process arguments

This function will return their data arrays’ array module for Variable arguments.

Parameters args – Values to determine whether NumPy, CuPy, or ChainerX should be used.

Returns numpy, cupy, or chainerx is returned based on the types of the arguments.

Return type module

chaliner.DeviceResident

class chainer.DeviceResident

A base class of objects with multi-device hierarchy.

Methods

device_resident_accept(visitor)

Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

from_chx()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

to_chx()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

Returns: self

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self
to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override device_resident_accept () to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
to_intel64 ()
Copies parameter variables and persistent values to CPU.

__eq__ ()
Return self==value.

__ne__ ()
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.

__gt__ ()
Return self>value.

__ge__ ()
Return self>=value.

Attributes
device
Device instance.

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.device_resident.DeviceResidentsVisitor
class chainer.device_resident.DeviceResidentsVisitor
Base class of visitors that visits device resident objects recursively.

See also:
chainer.DeviceResident
Methods

visit_array(arr)
Processes an array and returns a new one.
If the visitor does not create a new array, it can simply return the original array.

visit_device_resident(device_resident)
Processes a DeviceResident instance.

visit_variable(param)
Processes a Variable or a Parameter.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.backend.copyto

chainer.backend.copyto(dst, src)
Copies the elements of an ndarray to those of another one.
This function can copy the CPU/GPU arrays to the destination arrays on another device.

Parameters

• dst (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.ndarray) – Destination array.
• src (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.ndarray) – Source array.

4.12.2 Concrete Device Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.backend.CpuDevice</td>
<td>Device for CPU (NumPy) backend</td>
</tr>
<tr>
<td>chainer.backend.GpuDevice</td>
<td>Device for GPU (CuPy) backend</td>
</tr>
<tr>
<td>chainer.backend.Intel64Device</td>
<td>Device for Intel64 (Intel Architecture) backend with iDeep</td>
</tr>
<tr>
<td>chainer.backend.ChainerxDevice</td>
<td>Device for ChainerX backend</td>
</tr>
</tbody>
</table>
class chainer.backend.CpuDevice

Device for CPU (NumPy) backend

Methods

__enter__()  
A dummy definition that simply raises RuntimeError.  
chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)  
A dummy definition that should never be called.

create_context()  
Returns a context manager in which the device is made current.  
See also:  
chainer.using_device() calls this method internally.

static from_array(array)  

send(arrays)  
Transfers given arrays to the device.  
Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.  
Returns Transferred arrays.

send_array(array)  

use()  
Makes the device current in the current thread.

__eq__(other)  
Return self==value.

__ne__(other)  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.
Attributes

**supported_array_types**
Array types supported by the device.

**Returns** tuple of array types which the device’s module functions can handle.

**xp**
Array module corresponding to the device.

chainer.backend.GpuDevice

class chainer.backend.GpuDevice(device)
Device for GPU (CuPy) backend

Methods

__enter__ ()
A dummy definition that simply raises RuntimeError.

chainer.using_device () should be used instead.

__exit__ (exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context ()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array (array)
static from_device_id (device_id)
Returns a GpuDevice corresponding to the CUDA device ID.

send (arrays)
Transfers given arrays to the device.

Parameters **arrays** – Array or arrays of NumPy, CuPy, or ChainerX.

**Returns** Transferred arrays.

send_array (array)

use ()
Makes the device current in the current thread.

__eq__ (other)
Return self==value.

__ne__ (other)
Return self!=value.

__lt__ ()
Return self<value.

__le__ ()
Return self<=value.
`__gt__()`
Return self > value.

`__ge__()`
Return self >= value.

**Attributes**

**supported_array_types**
Array types supported by the device.

- **Returns** tuple of array types which the device’s module functions can handle.

**xp**
Array module corresponding to the device.

**chainer.backend.Intel64Device**

class chainer.backend.Intel64Device
Device for Intel64 (Intel Architecture) backend with iDeep

**Methods**

`__enter__()`
A dummy definition that simply raises RuntimeError.

- chainer.using_device() should be used instead.

`__exit__`(exc_type, exc_value, traceback)
A dummy definition that should never be called.

`create_context()`
Returns a context manager in which the device is made current.

- See also:
  - chainer.using_device() calls this method internally.

`static from_array`(array)

`send`(arrays)
Transfers given arrays to the device.

- **Parameters** arrays – Array or arrays of NumPy, CuPy, or ChainerX.
- **Returns** Transferred arrays.

`send_array`(array)

`use`()
Makes the device current in the current thread.

`__eq__`(other)
Return self == value.

`__ne__`(other)
Return self != value.

`__lt__()`
Return self < value.
__le__()  
Return self <= value.

__gt__()  
Return self > value.

__ge__()  
Return self >= value.

Attributes

supported_array_types  
Array types supported by the device.

   Returns tuple of array types which the device's module functions can handle.

xp  
Array module corresponding to the device.

chainer.backend.ChainerXDevice

class chainer.backend.ChainerXDevice(device)  
Device for ChainerX backend

Methods

__enter__()  
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)  
A dummy definition that should never be called.

create_context()  
Returns a context manager in which the device is made current.

   See also:

chainer.using_device() calls this method internally.

static from_array(array)

static from_fallback_device(device)  
Returns a ChainerXDevice corresponding to the fallback device.

   See also:

fallback_device

send(arrays)  
Transfers given arrays to the device.

   Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

   Returns Transferred arrays.

send_array(array)

use()  
Makes the device current in the current thread.
def __eq__(other):
    return self == value.
def __ne__(other):
    return self != value.
def __lt__():
    return self < value.
def __le__():
    return self <= value.
def __gt__():
    return self > value.
def __ge__():
    return self >= value.

Attributes

fallback_device
Fallback device.

A fallback device is either a CpuDevice or a GpuDevice which shares the same physical device with
the original ChainerX device.

For example, the fallback device of native:0 ChainerX device is CpuDevice. The fallback device of
cuda:1 ChainerX device is GpuDevice with device ID 1.

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

4.12.3 GPU (CuPy)

Device, context and memory management on CuPy.

Note: The package chainer.cuda has been renamed to chainer.backends.cuda as of v4.0.0, but the
previous module path chainer.cuda is also available.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes
declared in CuPy are imported to chainer.backends.cuda module for convenience (refer to this table when
reading chainer’s source codes).

<table>
<thead>
<tr>
<th>imported name</th>
<th>original name</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.backends.cuda.cupy</td>
<td>cupy</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupyx</td>
<td>cupyx</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupy.ndarray</td>
<td>cupy.ndarray</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupy.cudarray</td>
<td>cupy.cudarray</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupy.Device</td>
<td>cupy.cudarray.Device</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupy.Event</td>
<td>cupy.cudarray.Event</td>
</tr>
<tr>
<td>chainer.backends.cuda.cupy.Stream</td>
<td>cupy.cudarray.Stream</td>
</tr>
</tbody>
</table>
Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

**Devices**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.backends.cuda.get_device</code></td>
<td>Gets the device from a device object, an ID integer or an array object.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.get_device_from_id</code></td>
<td>Gets the device from an ID integer.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.get_device_from_array</code></td>
<td>Gets the device from a list of CuPy array or a single CuPy array.</td>
</tr>
</tbody>
</table>

**chainer.backends.cuda.get_device**

```python
chainer.backends.cuda.get_device(*args)
```

Gets the device from a device object, an ID integer or an array object.

**Note:** This API is deprecated since v3.0.0. Please use `get_device_from_id()` or `get_device_from_array()` instead.

This is a convenient utility to select a correct device if the type of `args` is unknown (i.e., one can use this function on arrays that may be on CPU or GPU). The returned device object supports the context management protocol of Python for the `with` statement.

**Parameters** `args` – Values to specify a GPU device. The first device object, integer or `cupy.ndarray` object is used to select a device. If it is a device object, it is returned. If it is an integer, the corresponding device is returned. If it is a CuPy array, the device on which this array reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object representing CPU is returned.

**Returns** Device object specified by given `args`.

**See also:**

See `cupy.cuda.Device` for the device selection not by arrays.

**chainer.backends.cuda.get_device_from_id**

```python
chainer.backends.cuda.get_device_from_id(device_id)
```

Gets the device from an ID integer.

**Parameters** `device_id` (*int or None*) – The ID of the device which this function returns.
chainer.backends.cuda.get_device_from_array

chainer.backends.cuda.get_device_from_array(*arrays)

Gets the device from a list of CuPy array or a single CuPy array.

Deprecated since version v6.0.0: This API is deprecated. Please use chainer.backend.get_device_from_array() instead.

The device on which the given CuPy array reside is returned.

Note: This method only recognizes cupy.ndarray in arguments. Especially note that, unlike get_array_module(), this method does not recognize Variable objects. If you need to get device from the Variable instance v, you need to use get_device_from_array(v.array).

Parameters arrays (cupy.ndarray or list of cupy.ndarray) – A CuPy array which this function returns the device corresponding to. If a list of cupy.ndarray are given, it returns the first device object of an array in the list.

CuPy array allocation and copy

chainer.backends.cuda.copy

chainer.backends.cuda.copy(array, out=None, out_device=None, stream=None)

Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

- array (cupy.ndarray) – Array to be copied.
- out (cupy.ndarray) – Destination array. If it is not None, then out_device argument is ignored.
- out_device – Destination device specifier. Actual device object is obtained by passing this value to get_device().
- stream (cupy.cuda.Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device argument.

Return type cupy.ndarray
### chainer.backends.cuda.to_cpu

**chainer.backends.cuda.to_cpu**(array, stream=None)  
Copies the given GPU array to host CPU.

**Parameters**

- **array** (array, None, list or tuple) – Array or arrays to be sent to CPU.
- **stream** (cupy.cuda.Stream) – CUDA stream.

**Returns**

Array on CPU.

If some of the arrays are already on CPU, then this function just returns those arrays without performing any copy.

If input arrays include `None`, it is returned as `None` as is.

**Return type**  numpy.ndarray, list or tuple

### chainer.backends.cuda.to_gpu

**chainer.backends.cuda.to_gpu**(array, device=None, stream=None)  
Copies the given CPU array to the specified device.

**Parameters**

- **array** (array, None, list or tuple) – Array or arrays to be sent to GPU.
- **device** – CUDA device specifier. If `None` or `cuda.DummyDevice`, the arrays will be copied to the current CUDA device.
- **stream** (Stream) – *(deprecated since v3.0.0)* CUDA stream. If not `None`, the copy runs asynchronously.

**Returns**

Array or arrays on GPU.

If some of the arrays are already on GPU, then this function just returns those arrays without performing any copy.

If input arrays include `None`, it is returned as `None` as is.

**Return type**  cupy.ndarray, list or tuple

### Kernel definition utilities

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.backends.cuda.memoize</code></td>
<td>Makes a function memoizing the result for each argument and device.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.clear_memo</code></td>
<td>Clears the memoized results for all functions decorated by memoize.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.elementwise</code></td>
<td>Creates an elementwise kernel function.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.raw</code></td>
<td>Creates a raw kernel function.</td>
</tr>
<tr>
<td><code>chainer.backends.cuda.reduce</code></td>
<td>Creates a global reduction kernel function.</td>
</tr>
</tbody>
</table>
chainer.backends.cuda.memoize

chainer.backends.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose memoization even if for_each_device is set to False.

chainer.backends.cuda.clear_memo

chainer.backends.cuda.clear_memo()
Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for chainer.backends.cuda.memoize(). It can be used even if CUDA is not available. In such a case, this function does nothing.

chainer.backends.cuda.elementwise

chainer.backends.cuda.elementwise(in_params, out_params, operation, name, **kwargs)
Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is mandatory.

chainer.backends.cuda.raw

chainer.backends.cuda.raw(code, name, *args, **kwargs)
Creates a raw kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for cupy.RawKernel.

chainer.backends.cuda.reduce

chainer.backends.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr, identity, name, **kwargs)
Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is mandatory.

4.12. Backends and Devices 1057
### CPU/GPU generic code support

**chainer.backends.cuda.get_array_module**

This function gets an appropriate one from `numpy` or `cupy`. The differences are that this function can be used even if CUDA is not available and that it will return their data arrays’ array module for `Variable` arguments.

**Parameters**
- `args` – Values to determine whether NumPy or CuPy should be used.

**Returns**
- `cupy` or `numpy` is returned based on the types of the arguments.

**Deprecated since version v5.0.0:** This API is deprecated. Please use `get_array_module()` instead.

### cuDNN support

**chainer.backends.cuda.set_max_workspace_size**

Sets the workspace size for cuDNN.

**Parameters**
- `size` – The workspace size for cuDNN.

**chainer.backends.cuda.get_max_workspace_size**

Gets the workspace size for cuDNN.

**chainer.backends.cuda.set_max_workspace_size(size)**

Sets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

**Parameters**
- `size` – The workspace size for cuDNN.

**chainer.backends.cuda.get_max_workspace_size()**

Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

**Returns**
- The workspace size for cuDNN.

**Return type**
- `int`
4.12.4 Intel64 (iDeep)

iDeep is a module that provides NumPy-like API and DNN acceleration using MKL-DNN for Intel CPUs. See Tips and FAQs and Performance Best Practices for details.

```python
chainer.backends.intel64.is_ideep_available
```

Returns if iDeep is available.

```python
chainer.backends.intel64.is_ideep_available()
```

Returns True if the supported version of iDeep is installed.

Return type: bool

4.12.5 ChainerX

```python
chainer.backend.from_chx
```

Converts an array or arrays from ChainerX to NumPy or CuPy ones.

```python
chainer.backend.to_chx
```

Converts an array or arrays to ChainerX.

4.13 Utilities

4.13.1 Convolution/Deconvolution utilities

```python
chainer.utils.get_conv_outsize
```

Calculates output size of convolution.

```python
chainer.utils.get_deconv_outsize
```

Calculates output size of deconvolution.
chainer.utils.get_conv_outsize

chainer.utils.get_conv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of convolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_deconv_outsize()

Parameters

- **size** (int) – The size of input feature map. It usually is the length of a side of feature
  map.
- **k** (int) – The size of convolution kernel.
- **s** (int) – The size of stride.
- **p** (int) – The size of padding.
- **cover_all** (bool) – Use cover_all option or not.
- **d** (int) – The size of dilation.

Returns The expected output size of the convolution operation.

Return type int

chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of deconvolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_conv_outsize()

Parameters

- **size** (int) – The size of input feature map. It usually is the length of a side of feature
  map.
- **k** (int) – The size of deconvolution kernel.
- **s** (int) – The size of stride.
- **p** (int) – The size of padding.
- **cover_all** (bool) – Use cover_all option or not.
- **d** (int) – The size of dilation.

Returns The expected output size of the deconvolution operation.

Return type int
4.13.2 Common algorithms

**chainer.utils.WalkerAlias**

Implementation of Walker’s alias method.

**class chainer.utils.WalkerAlias(probs)**

Implementation of Walker’s alias method.

This method generates a random sample from given probabilities \( p_1, \ldots, p_n \) in \( O(1) \) time. It is more efficient than `choice()`. This class works on both CPU and GPU.

- **Parameters** `probs` (*float list*) – Probabilities of entries. They are normalized with `sum(probs)`.

See: Wikipedia article

**Methods**

- **device_resident_accept(visitor)**
  Applies the visitor to all the device objects in this instance.

  - **Parameters** `visitor` (*DeviceResidentsVisitor*) – Visitor.

  This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

- **from_chx()**
  Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

- **sample(shape)**
  Generates a random sample based on given probabilities.

  - **Parameters** `shape` (*tuple of int*) – Shape of a return value.

  - **Returns** Returns a generated array with the given shape. If a sampler is in CPU mode the return value is a `numpy.ndarray` object, and if it is in GPU mode the return value is a `cupy.ndarray` object.

- **sample_gpu(shape)**

- **sample_xp(xp, shape)**

- **to_chx()**
  Converts parameter variables and persistent values to ChainerX without any copy.

  This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX, the link implementation must override this method to do so.

  - Returns: `self`

- **to_cpu()**
  Copies parameter variables and persistent values to CPU.

  This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation should override `device_resident_accept()` to do so.

  - Returns: `self`
to_device\( (device) \)
Copies parameter variables and persistent values to the specified device.
This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

**Parameters**

*device* – Target device specifier. See \ref{get_device} for available values.

Returns: self

\[ \text{to_gpu} (device=\text{None}) \]
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override \ref{device_resident_accept} to do so.

**Parameters**

*device* – Target device specifier. If omitted, the current device is used.

Returns: self

\[ \text{to_intel64} () \]
Copies parameter variables and persistent values to CPU.

**Attributes**

*device*
Device instance.

*use_gpu*

xp
Array module corresponding to the device.
Depending on the device in which this object resides, this property returns \texttt{numpy}, \texttt{cupy} or \texttt{chainerx}.
4.13.3 Common utilities

**chainer.print_runtime_info**

*chainer.print_runtime_info*(out=None)  
Shows Chainer runtime information.

Runtime information includes:

- OS platform
- Chainer version
- ChainerX version
- NumPy version
- CuPy version
  - CUDA information
  - cuDNN information
  - NCCL information
- iDeep version

**Parameters**

- **out** – Output destination. If it is **None**, runtime information will be shown in `sys.stdout`.

4.13.4 Reporter

**chainer.Reporter**

Object to which observed values are reported.

**chainer.get_current_reporter**  
Returns the current reporter object.

**chainer.report**  
Reports observed values with the current reporter object.

**chainer.report_scope**  
Returns a report scope with the current reporter object.

**chainer.Reporter**

*class chainer.Reporter*

Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value names to the actually observed values. We call this mapping *observations*.

When a value is passed to the reporter, an object called *observer* can be optionally attached. In this case, the name of the observer is added as the prefix of the value name. The observer name should be registered beforehand.

See the following example:
>>> from chainer import Reporter, report, report_scope

```python
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer', observer)
>>> observation = {}
>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
... ...
>>> observation
{'my_observer/x': 1}
```

There are also a global API to add values:

```python
>>> observation = {}
>>> with report_scope(observation):
... report({'x': 1}, observer)
... ...
>>> observation
{'my_observer/x': 1}
```

The most important application of Reporter is to report observed values from each link or chain in the training and validation procedures. Trainer and some extensions prepare their own Reporter object with the hierarchy of the target link registered as observers. We can use `report()` function inside any links and chains to report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

Variables **observation** – Dictionary of observed values.

Methods

__enter__ ()

Makes this reporter object current.

__exit__ (exc_type, exc_value, traceback)

Recovers the previous reporter object to the current.

add_observer (name, observer)

Registers an observer of values.

Observer defines a scope of names for observed values. Values observed with the observer are registered with names prefixed by the observer name.

Parameters

- **name** *(str)* – Name of the observer.
- **observer** – The observer object. Note that the reporter distinguishes the observers by their object ids (i.e., `id(owner)`), rather than the object equality.

add_observers (prefix, observers)

Registers multiple observers at once.

This is a convenient method to register multiple objects at once.

Parameters

- **prefix** *(str)* – Prefix of each name of observers.
- **observers** – Iterator of name and observer pairs.
**report** *(values, observer=None)*  
Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

**Note:** If a value is of type `Variable`, the variable is copied without preserving the computational graph and the new variable object purged from the graph is stored to the observer. This behavior can be changed by setting `chainer.config.keep_graph_on_report` to `True`.

**Parameters**

- **values** *(dict)* – Dictionary of observed values.
- **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.

**scope** *(observation)*  
Creates a scope to report observed values to `observation`.

This is a context manager to be passed to `with` statements. In this scope, the observation dictionary is changed to the given one.

It also makes this reporter object current.

**Parameters** **observation** *(dict)* – Observation dictionary. All observations reported inside of the `with` statement are written to this dictionary.

**__eq__** *(value)*  
Return `self==value`.

**__ne__** *(value)*  
Return `self!=value`.

**__lt__** *(value)*  
Return `self<value`.

**__le__** *(value)*  
Return `self<=value`.

**__gt__** *(value)*  
Return `self>value`.

**__ge__** *(value)*  
Return `self>=value`.

**chainer.get_current_reporter**

`chainer.get_current_reporter()`  
Returns the current reporter object.
chainer.report

chainer.report(values, observer=None)

Reports observed values with the current reporter object.

Any reporter object can be set current by the with statement. This function calls the Reporter.report() method of the current reporter. If no reporter object is current, this function does nothing.

Example

The most typical example is a use within links and chains. Suppose that a link is registered to the current reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter of the Trainer). We can report some values from the link as follows:

```python
class MyRegressor(chainer.Chain):
 def __init__(self, predictor):
 super(MyRegressor, self).__init__(predictor=predictor)

 def __call__(self, x, y):
 # This chain just computes the mean absolute and squared errors between the prediction and y.
 pred = self.predictor(x)
 abs_error = F.sum(abs(pred - y)) / len(x)
 loss = F.mean_squared_error(pred, y)

 # Report the mean absolute and squared errors.
 chainer.report({
 'abs_error': abs_error,
 'squared_error': loss,
 }, self)

 return loss
```

If the link is named 'main' in the hierarchy (which is the default name of the target link in the StandardUpdater), these reported values are named 'main/abs_error' and 'main/squared_error'. If these values are reported inside the Evaluator extension, 'validation/' is added at the head of the link name, thus the item names are changed to 'validation/main/abs_error' and 'validation/main/squared_error' ('validation' is the default name of the Evaluator extension).

Parameters

- **values (dict)** – Dictionary of observed values.
- **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.
chainer.report_scope

chainer.report_scope(\texttt{observation})

Returns a report scope with the current reporter.

This is equivalent to \texttt{get\_current\_reporter().scope(\texttt{observation})}, except that it does not make
the reporter current redundantly.

4.13.5 Summary and DictSummary

<table>
<thead>
<tr>
<th>chainer.Summary</th>
<th>Online summarization of a sequence of scalars.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.DictSummary</td>
<td>Online summarization of a sequence of dictionaries.</td>
</tr>
</tbody>
</table>

chainer.Summary

class chainer.Summary

Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.

Methods

\texttt{add(\texttt{value}, \texttt{weight}=1)}

Adds a scalar value.

\begin{itemize}
  \item \texttt{value} – Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional array (on CPU or GPU).
  \item \texttt{weight} – An optional weight for the value. It is a NumPy scalar or a zero-dimensional array (on CPU or GPU). Default is 1 (integer).
\end{itemize}

\texttt{compute\_mean()}  
Computes the mean.

\texttt{make\_statistics()}  
Computes and returns the mean and standard deviation values.

\begin{itemize}
  \item \texttt{Returns} Mean and standard deviation values.
  \item \texttt{Return type} tuple
\end{itemize}

\texttt{serialize(\texttt{serializer})}

\texttt{__eq__()}  
Return self==value.

\texttt{__ne__()}  
Return self!=value.

\texttt{__lt__()}  
Return self<value.

\texttt{__le__()}  
Return self<=value.
class chainer.DictSummary

Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar values and variables of scalar values in the dictionaries.

Methods

add(d)

Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-dimensional arrays, and variables of zero-dimensional arrays are accumulated. When the value is a tuple, the second element is interpreted as a weight.

compute_mean()

Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.

Return type dict

make_statistics()

Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and 'key.std', respectively.

Returns Dictionary of statistics of all entries.

Return type dict

serialize(serializer)

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
4.13.6 Sparse utilities

A `chainer.Variable` can be converted into a sparse matrix in e.g. COO (Coordinate list) format. A sparse matrix stores the same data as the original object but with a different internal representation, optimized for efficient operations on sparse data, i.e. data with many zero elements.

Following are a list of supported sparse matrix formats and utilities for converting between a `chainer.Variable` and these representations.

**Note:** Please be aware that only certain functions accept sparse matrices as inputs, such as `chainer.functions.sparse_matmul()`.

---

**chainer.utils.CooMatrix**

`chainer.utils.CooMatrix(data, row, col, shape, order=None, requires_grad=False)`

A sparse matrix in COO format.

**Parameters**

- **data** *(N-dimensional array)*: The entries of the matrix. The entries are usually non-zero-elements in the matrix.
- **row** *(N-dimensional array)*: The row indices of the matrix entries.
- **col** *(N-dimensional array)*: The column indices of the matrix entries.
- **shape** *(tuple of int)*: The shape of the matrix in dense format.
- **order** *(‘C’, ‘F’, ‘other’ or None)*: If ‘C’, the matrix is assumed that its row indices are sorted. If ‘F’, the matrix is assumed that its column indices are sorted. If ‘other’, the matrix is assumed as neither ‘C’ order nor ‘F’ order. If None (this is the default), the matrix is automatically checked if it is ‘C’ order, ‘F’ order or another. This information will be used by some functions like `sparse_matmul()` as a hint to improve performance.
- **requires_grad** *(bool)*: If True, gradient of this sparse matrix will be computed in back-propagation.

**See also:**

See `to_coo()` for how to construct a COO matrix from an array.

**Methods**

- **to_dense()**
  Returns a dense matrix format of this sparse matrix.
- **__eq__()**
  Return self==value.
- **__ne__()**
  Return self!=value.
__lt__(self, value)
    Return self<value.
__le__(self, value)
    Return self<=value.
__gt__(self, value)
    Return self>value.
__ge__(self, value)
    Return self>=value.

chainer.utils.to_coo

chainer.utils.to_coo(x, ldnz=None, requires_grad=False)
    Returns a single or a batch of matrices in COO format.

    Parameters
    - x (N-dimensional array) -- Input dense matrix. The ndim of x must be two or three. If ndim
      is two, it is treated as a single matrix. If three, it is treated as batched matrices.
    - ldnz (int) -- Size of arrays for data, row index and column index to be created. The Actual
      size becomes max(nnz, ldnz) where nnz is number of non-zero elements in a input dense
      matrix.
    - requires_grad (bool) -- If True, gradient of sparse matrix will be computed in back-
      propagation.

    Returns A sparse matrix or batched sparse matrices in COO format of a given dense matrix or
    batched dense matrices.

    Return type  CooMatrix

Example
Create a CooMatrix from an array with 2 non-zero elements and 4 zeros and access its attributes. No batch
dimension is involved.

```python
>>> data = np.array([[0, 2, 0], [-1, 0, 0]], np.float32)
>>> x = chainer.utils.to_coo(data)
>>> x.data
variable([2., -1.])
>>> x.row
array([0, 1], dtype=int32)
>>> x.col
array([1, 0], dtype=int32)
>>> x.shape
(2, 3)
```
4.13.7 Experimental feature annotation

chainer.utils.experimental

chainer.utils.experimental(api_name)
Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

```python
from chainer import utils

def f(x):
 utils.experimental('chainer.foo.bar.f')
 # concrete implementation of f follows
f(1)
```

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__ method.

```python
class C:
 def __init__(self):
 utils.experimental('chainer.foo.C')
C()
```

... FutureWarning: chainer.foo.C is experimental. The interface can change in the future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed its API name.

```python
class D():
 def __init__(self):
 utils.experimental('D.__init__')
D()
```

... FutureWarning: D.__init__ is experimental. The interface can change in the future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experimental. But we can support such usage by explicitly branching it.
```python
def g(x, experimental_arg=None):
 if experimental_arg is not None:
 utils.experimental('experimental_arg of chainer.foo.g')
```

Parameters `api_name (str)` – The name of an API marked as experimental.

### 4.14 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured using the unified configuration system. The system provides a transparent way to manage the configuration for each process and for each thread.

The configuration is managed by two global objects: `chainer.global_config` and `chainer.config`.

- The `global_config` object maintains the configuration shared in the Python process. This is an instance of the `GlobalConfig` class. It can be used just as a plain object, and users can freely set any attributes on it.
- The `config` object, on the other hand, maintains the configuration for the current thread. This is an instance of the `LocalConfig` class. It behaves like a thread-local object, and any attribute modifications are only visible to the current thread.

If no value is set to `config` for a given key, `global_config` is transparently referred. Thanks to this transparent lookup, users can always use `config` to read any configuration so that the thread-local configuration is used if available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment variables to set the default values. Note that the default values are set in the global config.

#### 4.14.1 Configuration Keys

- `cudnn_deterministic (default: False)` Flag to configure deterministic computations in cuDNN APIs.
  
  If it is `True`, convolution functions that use cuDNN use the deterministic mode (i.e., the computation is reproducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in exchange for better performance.

- `debug (default: False)` Debug mode flag.
  
  If it is `True`, Chainer runs in debug mode. Enabling debug mode may introduce some performance overhead. See `Debug Mode` for more information of the debug mode.

  You can change the default value to `True` by setting `CHAINER_DEBUG` environment variable to 1.

- `dtype (default: numpy.float32)` Default floating point data type.
  
  Chainer uses this dtype to construct arrays when the dtype is not specified (e.g. initializers).

  You can change the default value by setting `CHAINER_DTYPE` environment variable to `mixed16`, `float16`, `float32`, `float64`.

  **Note:** If you want to use float16 for better performance, it is recommended that you use `mixed16` instead of `float16`.

- `enable_backprop (default: True)` Flag to enable backpropagation support.
If it is `True`, computational graphs are created during forward passes by `FunctionNodes`, allowing backpropagation to start from any `Variable` in the graph. Otherwise, computational graphs are not created but memory consumptions are reduced. So calling `backward()` on the results of a function will not compute any gradients of any input.

- **keep_graph_on_report (default: False)** Flag to configure whether or not to let `report()` keep the computational graph.

  If it is `False`, `report()` does not keep the computational graph when a `Variable` object is reported. It means that `report()` stores a copy of the `Variable` object which is purged from the computational graph. If it is `True`, `report()` just stores the `Variable` object as is with the computational graph left attached.

  You can change the default value to `True` by setting `CHAINER_KEEP_GRAPH_ON_REPORT` environment variable to 1.

- **warn_nondeterministic (default: False)** Flag to give warning when a non-deterministic function is used. This function is experimental.

  If it is `True`, then functions that use non-deterministic functions and cannot be given a seed, such as atomicAdd, will give a warning when executed. For functions that can take a seed argument, such as `split_dataset_random()`, setting the seed should be done when the function is called and will not be flagged by this setting.

  Note that this feature is provided as best-effort. It cannot assure that every nondeterministic function can be detected. For example, SSE computations in CPU mode may cause non-deterministic behavior that would not raise a warning.

  Also, deterministic outputs may still result, even if this flag produces a non-deterministic warning. For example, reduction on 1-dim axis should always be deterministic, but it may raise a warning.

- **train (default: True)** Training mode flag.

  If it is `True`, Chainer runs in training mode. Otherwise, it runs in the testing (evaluation) mode.

  This configuration is used by Functions and Links that need to behave differently between training phase and evaluation (inference) phase. One example is `chainer.links.BatchNormalization` updates statistics using input data only when `train` is set to `True`. The other example is `chainer.functions.dropout()`, which does nothing when `train` is set to `False`.

  Generally, you are responsible to change the configuration to `False` during evaluation. If you are using `Trainer` with `Evaluator` extension, `train` configuration will automatically be switched to `False` during evaluation in the training loop.

  Note that this parameter does not reduce memory consumption or affect the creation of computational graphs required in order to compute gradients.

- **type_check (default: True)** Type checking mode flag.

  If it is `True`, Chainer checks the types (data types and shapes) of inputs on `Function` applications. Otherwise, it skips type checking.

  You can change the default value to `False` by setting `CHAINER_TYPE_CHECK` environment variable to 0.

- **use_cudnn (default: 'auto')** Flag to configure whether or not to use cuDNN.

  This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.

  - If it is 'always', Chainer will try to use cuDNN everywhere if possible.
- If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the performance.
- If it is 'never', Chainer will never use cuDNN anywhere.

You can change the default value by setting CHAINER_USE_CUDNN environment variable to any of 'always', 'auto' or 'never'.

- **use_ideep (default: 'never')** Flag to configure whether or not to use iDeep.

  This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.

  - If it is 'always', Chainer will try to use iDeep everywhere if possible.
  - If it is 'auto', Chainer will use iDeep only if it is known that the usage does not degrade the performance.
  - If it is 'never', Chainer will never use iDeep anywhere.

  You can change the default value by setting CHAINER_USE_IDEEP environment variable to any of 'always', 'auto' or 'never'.

  Note that in spite of the configuration, optimizers will use iDeep if and only if the link is converted manually to iDeep (e.g., model.to_intel64()).

- **lazy_grad_sum (default: False)** Flag to control the behavior of gradient accumulation.

  If it is True, gradients are accumulated in batch for performance. Otherwise gradients are accumulated one by one.

  You can change the default value to True by setting CHAINER_LAZY_GRAD_SUM environment variable to 1.

- **use_cudnn_tensor_core (default: 'auto')** Flag to configure whether or not to enable Tensor Core operations in cuDNN.

  This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.

  - If it is always, Chainer uses cuDNN’s Tensor Core operations.
  - If it is never, Chainer does not use cuDNN’s Tensor Core operations.
  - If it is auto, Chainer checks cuDNN version, the data type of input, the compute capability of the GPU used, and configures whether or not to use cuDNN’s Tensor Core operations.

- **autotune (default: False)** Autotune for convolutional networks flag.

  If it is True, Chainer uses the cuDNN autotune feature to find the fastest calculation process for chainer.links.Convolution2D, ConvolutionND, Deconvolution2D, or DeconvolutionND links.

- **cudnn_fast_batch_normalization (default: False)** Flag to configure whether or not to enable use of fast implementation for batch normalization in cuDNN.

  If True, Chainer will try to use the fast implementation for batch normalization in cuDNN by setting cuDNN’s batch normalization mode to CUDNN_BATCHNORM_SPATIAL_PERSISTENT. You can change the default value to True by setting CHAINER_CUDNN_FAST_BATCH_NORMALIZATION environment variable to 1.

- **in_recomputing (default: False)** This flag is automatically set by chainer.functions. forget() and not intended to be changed by users. You can use this flag when implementing
your own Link to avoid updating the internal states during recomputation done by `chainer.
functions.forget()`. See the documentation of `chainer.functions.forget()` for details.

### 4.14.2 User-defined Keys

Users can also define their own configurations. There are two ways:

1. Use Chainer’s configuration objects. In this case, it is strongly recommended that the name be prefixed by “user_” to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using `chainer.
configuration.GlobalConfig` and `chainer.configuration.LocalConfig`. In this case, there is no need to take care of the name conflicts.

### 4.14.3 Changing Configuration

If you want to share a setting within the process, set an attribute to the global configuration. This value is automatically extracted by referring to the local config.

```python
>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.global_config.train = False

>>> chainer.global_config.train
False
>>> chainer.config.train
False
```

If you set an attribute to the local configuration, the value is only visible to the current thread.

```python
>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.config.train = False

>>> chainer.global_config.train
True
>>> chainer.config.train
False
```

If you want to temporarily modify the configuration for the specific scope, you can use `using_config()`. For example, if you only want to enable debug mode in a fragment of code, write as follows.

```python
>>> with chainer.using_config('debug', True):
... pass # code running in debug mode
```

If you want to switch to the test mode for an evaluation, you can do that in the same way.
>>> # Do training here
>>> with chainer.using_config('train', False):
...   pass  # Perform evaluation here

Note that `Evaluator` automatically switches to the test mode, and thus you do not need to manually switch in the loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

```python
if chainer.config.train:
 pass # code only running in the training mode
else:
 pass # code only running in the test mode
```

<table>
<thead>
<tr>
<th>chainer.global_config</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.config</td>
</tr>
<tr>
<td>chainer.using_config</td>
</tr>
<tr>
<td>chainer.configuration.GlobalConfig</td>
</tr>
<tr>
<td>chainer.configuration.LocalConfig</td>
</tr>
</tbody>
</table>

**chainer.global_config**

```python
chainer.global_config = <chainer.configuration.GlobalConfig object>
```

**chainer.config**

```python
chainer.config = <chainer.configuration.LocalConfig object>
```

Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically retrieves a value from the global configuration.

**chainer.using_config**

```python
chainer.using_config(name, value, config=chainer.config)
```

Context manager to temporarily change the thread-local configuration.

**Parameters**

- `name` ([str](https://docs.python.org/3/library/stdtypes.html#str)) -- Name of the configuration to change.
- `value` -- Temporary value of the configuration entry.
- `config` ([LocalConfig](https://docs.chainer.org/en/6.7.0/chainer/configuration.html#localconfig)) -- Configuration object. Chainer’s thread-local configuration is used by default.

**See also:**

- [Configuring Chainer](https://docs.chainer.org/en/6.7.0/chainer/configuration.html)
chainer.configuration.GlobalConfig

class chainer.configuration.GlobalConfig

Methods

show (file=sys.stdout)
    Prints the global config entries.
    The entries are sorted in the lexicographical order of the entry name.
    Parameters file – Output file-like object.

__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

__gt__()
    Return self>value.

__ge__()
    Return self>=value.

Attributes

autotune = None
    cudnn_deterministic = None
    cudnn_fast_batch_normalization = None
dict = None
dtype = None
    enable_backprop = None
    in_recomputing = None
    The plain object that represents the global configuration of Chainer.
    keep_graph_on_report = None
    lazy_grad_sum = None
    schedule_func = None
    train = None
type_check = None
    use_cudnn = None
    use_cudnn_tensor_core = None
    use_ideep = None
warn_nondeterministic = None

chainer.configuration.LocalConfig

class chainer.configuration.LocalConfig(global_config)
    Thread-local configuration of Chainer.

    This class implements the local configuration. When a value is set to this object, the configuration is only
    updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
    retrieves a value from the global configuration.

Methods

show (file=sys.stdout)
    Prints the config entries.

    The entries are sorted in the lexicographical order of the entry names.

    Parameters file – Output file-like object.

Example

You can easily print the list of configurations used in the current thread.

```python
>>> chainer.config.show()
default debug False
enable_backprop True
train True
type_check True
```

__eq__()
    Return self==value.

__ne__()
    Return self!=value.

__lt__()
    Return self<value.

__le__()
    Return self<=value.

__gt__()
    Return self>value.

__ge__()
    Return self>=value.
Related functions

<table>
<thead>
<tr>
<th>chainer.get_dtype</th>
<th>Resolves Chainer’s default dtype.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.mixed16</td>
<td>Dtype-like object that represents 16/32 bits mixed precision float.</td>
</tr>
</tbody>
</table>

**chainer.get_dtype**

`chainer.get_dtype(dtype=None, map_mixed16=None)`

Resolves Chainer’s default dtype.

**Parameters**

- `dtype` – Dtype specifier. If this value is specified (not None), this function returns the dtype object corresponding to it.
- `map_mixed16` – Dtype specifier. When `chainer.config.dtype` is `mixed16`, this option is used. If this value is `None`, `float16` is used.

**Returns** If `dtype` is not `None`, it returns the dtype normalized by `numpy.dtype()`. Otherwise, it returns `chainer.config.dtype` (see Configuring Chainer) normalized as well. When `chainer.config.dtype` is `mixed16` and `map_mixed16` is specified, it returns the normalized version of `map_mixed16`.

**chainer.mixed16**

`chainer.mixed16 = dtype('mixed16')`

Dtype-like object that represents 16/32 bits mixed precision float.

### 4.14.4 Environment Variables

Here are the environment variables Chainer uses.
CHAINER_SEED | Default seed value of random number generators for CUDA. If it is not set, the seed value is generated from Python random module. Set an integer value in decimal format.

CHAINER_DATASET_ROOT | Default directory path to store the downloaded datasets. See Datasets for details.

CHAINER_CUDNN | Set 0 to completely disable cuDNN in Chainer. In this case, cuDNN will not be used regardless of CHAINER_USE_CUDNN and chainer.config.use_cudnn configuration. Otherwise cuDNN is enabled automatically.

CHAINER_USE_CUDNN | Used as the default value for chainer.config.use_cudnn configuration. The value must be any of 'always', 'auto' or 'never'. If CHAINER_CUDNN is set to 0, this environment variable has no effect. See Configuring Chainer for details.

CHAINER_CUDNN_FAST_BATCH_NORMALIZATION | Used as the default value for chainer.config.cudnn_fast_batch_normalization configuration. Set 1 to enable use of fast implementation for batch normalization in cuDNN. See Configuring Chainer for details.

CHAINER_USE_IDEEP | Used as the default value for chainer.config.use_ideep configuration. The value must be any of 'always', 'auto' or 'never'. See Configuring Chainer for details.

CHAINER_LAZY_GRAD_SUM | Used as the default value for chainer.config.lazy_grad_sum configuration. Set 1 to enable batch accumulation of gradients. See Configuring Chainer for details.

CHAINER_DTYPE | Used as the default value for chainer.config.dtype configuration. The value must be any of 'mixed16', 'float16', 'float32' or 'float64'. See Configuring Chainer for details.

CHAINER_TYPE_CHECK | Used as the default value for chainer.config.type_check configuration. Set 0 to disable type checking. Otherwise type checking is enabled automatically. See Configuring Chainer and Type checking utilities for details.

CHAINER_DEBUG | Used as the default value for chainer.config.debug configuration. Set 1 to enable debug mode. It is disabled by default. In debug mode, Chainer performs various runtime checks that can help debug user’s code at the cost of some overhead. See Configuring Chainer and Debug Mode for details.

CHAINER_KEEP_GRAPH_ON_REPORT | Used as the default value for chainer.config.keep_graph_on_report configuration. Set 1 to let report() keep the computational graph. See Configuring Chainer for details.

CHAINER_PYTHON_350_FORCE | Set 1 to force using Chainer with Python 3.5.0. Note that Chainer does not work with Python 3.5.0. Use Python 3.5.1+ or other supported versions (see Installation).

The following environment variables are only effective when running unit tests.

CHAINER_TEST_GPU | Number of GPUs available for unit tests. When running unit test, test cases that require more GPUs than the specified value will be skipped. Set 0 to skip all test cases that require GPU. See Unit Testing for details.

CHAINER_TEST_RANDOM_NONDETERMINISTIC | Set 1 to use non-fixed seed for random number generators, even for test cases annotated with fix_random.

4.15 Debug Mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you to debug your programs. However, it requires some additional overhead time.

If you want to enable debug mode for the entire code, you can set CHAINER_DEBUG environment variable to 1.

You can also enable or disable debug mode for the specific scope of code with chainer.using_config() or by changing chainer.config.debug configuration.
with chainer.using_config('debug', True):
...

See *Configuring Chainer* for the details of Chainer’s configuration mechanism.

In debug mode, Chainer checks all results of forward and backward computation, and if it finds a NaN value, it raises a `RuntimeError`. Some functions and links also check validity of input values more strictly.

You can check if debug mode is enabled with `chainer.is_debug()` function.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.is_debug</code></td>
<td>Returns if the debug mode is enabled or not in the current thread.</td>
</tr>
<tr>
<td><code>chainer.set_debug</code></td>
<td>Enables or disables the debug mode in the current thread.</td>
</tr>
</tbody>
</table>

### 4.15.1 `chainer.is_debug`

`chainer.is_debug()`

Returns if the debug mode is enabled or not in the current thread.

**Returns** True if the debug mode is enabled.

**Return type** bool

### 4.15.2 `chainer.set_debug`

`chainer.set_debug(debug)`

Enables or disables the debug mode in the current thread.

**Note:** `chainer.set_debug(value)` is equivalent to `chainer.config.debug = value`.

**Parameters** `debug` (bool) – New debug mode.

### 4.16 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by invoking `build_computational_graph()`. Generated computational graphs are dumped to specified format (Currently Dot Language is supported).

Basic usage is as follows:

```python
import chainer.computational_graph as c
...
vs = ...
vs = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:
 o.write(g.dump())
```

where `vs` is list of `Variable` instances and `g` is an instance of `ComputationalGraph`. This code generates the computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of `vs`.

### 4.16. Visualization of Computational Graph
Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from example/imagenet.

**chainer.computational_graph.**

**build_computational_graph**

Builds a graph of functions and variables backward-reachable from outputs.

**chainer.computational_graph.**

**ComputationalGraph**

Class that represents computational graph.

### 4.16.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True, variable_style={'fillcolor': '#E0E0E0', 'shape': 'octagon', 'style': 'filled'}, function_style={'fillcolor': '#6495ED', 'shape': 'record', 'style': 'filled'}, rankdir='TB', remove_variable=False, show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

**Parameters**

- **outputs** *(Variable, VariableNode, FunctionNode, or list)* – node(s) from which the graph is constructed. Each element of outputs must be either Variable object, VariableNode object, or FunctionNode object.
- **remove_split** *(bool)* – It must be True. This argument is left for backward compatibility.
- **variable_style** *(dict)* – Dot node style for variable. Possible keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’, and etc.
- **function_style** *(dict)* – Dot node style for function.
- **rankdir** *(str)* – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).
- **remove_variable** *(bool)* – If True, VariableNodes are removed from the resulting computational graph. Only FunctionNodes are shown in the output.
• `show_name (bool)` – If True, the `name` attribute of each node is added to the label of the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of outputs.

If `unchain_backward` was called in some variable in the computational graph before this function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

```
x --+
|--> f ---> y
|--> g ---> z
```

Let `outputs = [y, z]`. Then the full graph is emitted.

Next, let `outputs = [y]`. Note that `z` and `g` are not backward-reachable from `y`. The resulting graph would be following:

```
x ---> f ---> y
```

See `TestGraphBuilder` for details.

Return type `ComputationalGraph`

Note: The default behavior of `ComputationalGraph` has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify `variable_style=None`, `function_style=None`, and `show_name=False` explicitly.

### 4.16.2 chainer.computational_graph.ComputationalGraph

```python
class chainer.computational_graph.ComputationalGraph(nodes, edges, variable_style={'fillcolor': '#E0E0E0', 'shape': 'octagon', 'style': 'filled'}, function_style={'fillcolor': '#6495ED', 'shape': 'record', 'style': 'filled'}, rankdir='TB', remove_variable=False, show_name=True)
```

Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

Parameters

- `nodes (list)` – List of nodes. Each node is either `VariableNode` object or `FunctionNode` object.
- `edges (list)` – List of edges. Each edge consists of pair of nodes.
- `variable_style (dict)` – Dot node style for variable.
• **function_style**(dict) – Dot node style for function.

• **rankdir**(str) – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).

• **remove_variable**(bool) – If True, VariableNodes are removed from the resulting computational graph. Only FunctionNodes are shown in the output.

• **show_name**(bool) – If True, the name attribute of each node is added to the label of the node. Default is True.

**Note:** The default behavior of ComputationalGraph has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify `variable_style=None`, `function_style=None`, and `show_name=False` explicitly.

**Methods**

dump (format='dot')

Dumps graph as a text.

Parameters

• **format**(str) – The graph language name of the output.

• it must be 'dot'(Currently,)

Returns The graph in specified format.

Return type str

__eq__()

Return self==value.

__ne__()

Return self!=value.

__lt__()

Return self<value.

__le__()

Return self<=value.

__gt__()

Return self>value.

__ge__()

Return self>=value.
4.17 Static Subgraph Optimizations: Usage

Note: This is an experimental feature and so the API might change in the future as it is developed.

This feature intends to improve runtime performance by optimizing the execution of the static subgraphs in a model. When this feature is enabled, the first iteration runs as normal except that an execution trace is also collected. The trace is then used to generate optimized code that is will be called instead of the define-by-run code starting from the second iteration.

```python
chainer.static_graph
```

Decorator to mark a Chain’s `__call__() as a static sub-graph.

4.17.1 chainer.static_graph

```python
chainer.static_graph(*args, **kwargs)
```

Decorator to mark a Chain’s `__call__()` as a static sub-graph.

This decorator marks the define-by-run code inside the `__call__()` method of a Chain instance as corresponding to a static computation graph or sub-graph. Such a chain will be referred to as a ‘static chain’. This allows various “static graph” optimizations to be performed, which can result in significant speedups for some models.

When this decorator is used, the chain’s define-by-run code executes during the first iteration as usual. However, while the define-by-run code is executing, a trace is also performed to incrementally create a corresponding static schedule. This static schedule will only contain the subset of the computations inside the define-by-run code that actually needs to run every iteration. Specifically, this will contain the code inside any functions called that were annotated with the `@static_code` decorator, which will include all Chainer built-in functions, as well as any user-defined functions that use `@static_code`. Then, starting from the second iteration, when the static chain is called, its static schedule code will be executed instead of its define-by-run code.

However, the user must also be careful of the following: - The user is responsible for applying this decorator correctly. The framework does not check that the define-by-run code corresponds to a static graph. The graph can be different between training and evaluation mode (such as when dropout and/or batch normalization are used), but should otherwise be static. - When `chainer.config.enable_backprop` is enabled, if a backward pass is not performed each iteration, then the user code must call a method `chain.schedule_manager.end_forward()` on the static chain each iteration. - Static graphs allow tradeoffs between computation and memory usage. For example, the `minimize_cache_size` argument will typically result in higher memory usage when set to `False` because all cached schedules are retained. - When this feature is enabled, only the Chainer function and/or link calls inside the chain’s `__call__()` method will be included in the static schedule by default. An other code that the user puts in `__call__()`, such as a print statement or code to increment a counter for example, will not automatically get added. We will refer to such code other than Chainer function/link calls as “side-effect” code. Since side-effect code does not get included in the static schedule by default, this means that it will only every execute once, during the first iteration. There is a way to force side-effect code to be included in the static schedule, however: the user can wrap such code inside a function that is decorated with `@static_code` to ensure that it gets added to the static schedule. For an example of this, refer to the documentation. - This feature is experimental and advanced optimizations such as kernel fusion and various memory optimizations are not implemented yet.

Usage:

This decorator should only be applied to define-by-run code that actually corresponds to a static subgraph. Refer to the documentation for additional details and examples of correct usage. This decorator should be applied to each of the largest static subgraphs in the model; it can also be applied to a static subgraph that is not the largest subgraph, but that could result in reduced performance. It is not currently allowed to mark a chain as static if
it is contained within another chain that is also marked as being static. For example, suppose a static graph \( A \) contains a static sub-graph \( B \). Then, only the chain corresponding to \( A \) should be marked as static and the chain corresponding to \( B \) should not be marked as static.

The behavior of a static chain depends on the training mode flag, \texttt{chainer.config.train}. If it is \texttt{True}, then a static chain that is called multiple times will try to use a distinct static schedule object (that is, call a distinct instance of a FunctionNode that implements that static schedule) on each call. The same schedule instance cannot be reused until the forward pass has completed, which is signaled by performing a backward pass through the model. It is therefore important that the backward pass be performed after each forward pass during training. Since this is usually the case, most usages of static chain will not required any modifications to existing code other than applying this decorator. However, if you would like to perform multiple forward passes during training before performing a backward pass, then you must call \texttt{chain.schedule_manager.end_forward()} after the end of each forward pass.

If test mode is active (\texttt{chainer.config.train is False}) then it is not necessary to inform the chain at the end of each forward pass because in test mode, a static chain always attempts to reuse existing static schedule objects. The same static schedule can be reused during a single forward pass, because it is not necessary to compute gradients. It is also possible to disable static optimizations while in test mode by setting the decorator argument \texttt{force_test_define_by_run=True}.

Note: If either ‘chainer.config.enable_backprop’ or ‘chainer.config.train’ is set to ‘False’, then cached static schedules will be reused when possible to reduce memory usage.

\textbf{Double-backprop:} Double-backpropagation is not enabled by default. It can be enabled by supplying the keyword argument \texttt{enable_double_backprop=True} to this decorator. Note: this feature has not been tested yet.

\textbf{Restrictions on input arguments and return values of a static chain:} Recall that unlike a function, there is no restrictions on the arguments to a chain. However, there currently are some restrictions when a static chain is used. Specifically, the arguments to a static chain must consist of a variable, list or tuple. In the case of a list or tuple, the elements are required to be an instance of variable, list, or tuple. There can be an arbitrary number of nested lists/ tuples. No other object types are allowed. In addition, keyword arguments are not allowed. The return value of a static chain must be a variable, list, or tuple in which each element of the list or tuple is also a variable, list, or tuple.

This decorator can be supplied with the following optional keyword arguments. This is an experimental feature, and the API and arguments might change

\textbf{Parameters}

- \texttt{force_test_define_by_run (bool)} – If \texttt{True}, disable static graph optimizations during test mode (that is, when \texttt{chainer.config.train} is \texttt{False}). This may be needed in order for some existing RNN links such as LSTM to work correctly, since some existing links do not correspond to a static graph in some cases. The default is \texttt{False}.

- \texttt{minimize_cache_size (bool)} – If \texttt{True}, minimize the number of cached static schedules in order to reduce memory usage. For example, if the mini-batch size changes or the training mode changes, the schedules will need to be recomputed, but memory is also saved by not retaining all cached schedules. The default value is \texttt{True}.

- \texttt{verbosity_level (int)} – Depending on the value, print additional information: 0: Warnings only. (the default value) 1: Show only information that is collected during the first iteration and when a new static schedule is created. 2: Detailed debugging information, possibly showing new information every iteration.

- \texttt{enable_double_backprop (bool)} – If \texttt{True}, enable double-backprop. The default value is \texttt{False} (not enabled).

\textbf{Returns} Wrapped \texttt{__call__()} method with static chain support.
4.17.2 Basic usage

To enable static graph optimizations, it is only necessary to add the `chainer.static_graph()` decorator to a chain's `__call__()` method. We will now show how the Chainer MNIST example can be modified to use this feature. The modified version with static subgraph optimizations is located at examples/static_graph_optimizations/mnist.

The first step is to import the necessary packages:

```python
from chainer import static_code
from chainer import static_graph
```

Since the neural network model MLP corresponds to a static graph, we can annotate it as a static graph by using the `chainer.static_graph()` decorator on the chain's `__call__()` method. This lets the framework know that the define-by-run code of the chain always creates the same graph (that is, it always performs the same sequence of computations) each time it is called. We will refer to such a chain as a static chain in the documentation.

```python
Network definition
class MLP(chainer.Chain):

 def __init__(self, n_units, n_out):
 super(MLP, self).__init__()
 with self.init_scope():
 # the size of the inputs to each layer will be inferred
 self.l1 = L.Linear(None, n_units) # n_in -> n_units
 self.l2 = L.Linear(None, n_units) # n_units -> n_units
 self.l3 = L.Linear(None, n_out) # n_units -> n_out

 @static_graph
 def __call__(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 return self.l3(h2)
```

Note: If your model's define-by-run code has any control flow operations that could cause it to potentially call different Chainer functions/links each time it is called, then you cannot use this decorator.

Note: There are currently some restrictions on how variables can be passed into a static chain's `__call__()` method. Refer to the documentation of `chainer.static_graph()` for details.

Recall that the define-by-run code of a static chain's `__call__()` method only actually runs during the first iteration and is then replaced by optimized static schedule code. The current implementation only knows how to do this auto-replacement for calls to Chainer functions and links. Any other code that the user puts in `__call__()` (which we refer to as "side-effect code") will only ever get called once by default, since the define-by-run code is only executed during the first iteration. In order to make sure such "side effect" code actually gets called each iteration, we need to put it inside a function or method decorated by `static_code()`. We expect there will rarely be a need to use side-effect code but for completeness, an example of a model that uses it is available in the MLPSideEffect Chain
of the static graph MNIST example.

In this example, we only need to use `chainer.static_graph()` on the model chain, since the whole model is static. However, in more general dynamic models, each of the largest static subgraphs (which should each be written as a chain) should also use `chainer.static_graph()`.

**Note:** Nested application of `chainer.static_graph()` is not allowed. That is, if a `chainer.static_graph()`-decorated chain calls another chains, only the outermost chain should use the decorator.

### 4.17.3 Calling a static chain multiple times in the same iteration

In a general dynamic graph network, it is not possible to know in advance how many times a static chain will be called in any particular iteration. Note that during training, it is necessary to maintain separate internal state (such as intermediate activations) for each of these calls so that the gradients can be computed in the backward pass. So, although the layer functions of the static schedule will be identical each time the same static chain is called, any internal state must be distinct. It is also possible that a static chain could be called multiple times with inputs of different shapes and/or types during the same iteration. To avoid confusion, “static schedule” will refer to both the functions and any corresponding internal state such as activations.

If backpropagation mode is disabled (`chainer.config.enable_backprop` is `False`), it is safe for the implementation to simply compute a static schedule for the first call and reuse it for subsequent calls, provided that the cached schedule is compatible with the input shapes/types. However, during training, it is necessary to maintain distinct internal state for each call in order to compute the gradients for the backward pass, which prevents us from reusing the same static schedule for each of the multiple calls of a static chain in an iteration.

The current implementation handles this issues as follows. A cache of static schedules, which is initially empty, is associated with each static chain. The size of this cache will be equal to the maximum number of times that the static chain has been called in any previous iteration, and the cache is reset whenever certain chain configuration flags change, such as training mode and backpropagation model. At the start of a given iteration, all cached schedules are available for use and the number of available schedules is decremented each time the static chain is called. If the chain is called when the cache is size zero, then its define-by-run code will execute to create a new schedule cache.

In order for such an implementation to work, each static chain must be notified when the forward pass has ended (or when the forward pass is started) so that all cached schedules can be made available for use again. In the current implementation, this is accomplished by calling the `backward()` method on a loss variable in the model. This is expected to handle the typical use cases. However, in some models it may be necessary to perform multiple forward passes before calling `backward()`. In such a case, to signal to a static chain that the forward pass (and the iteration) has ended, call `my_chain.schedule_manager.end_forward()`. The `schedule_manager` attribute of a static chain is an instance of a class called `StaticScheduleFunction` that will be available after the chain has been called.

### 4.17.4 Effects on model debugging

Note that since the code in the static chain’s `__call__()` only runs during the first iteration, you will only be able to debug this code as define-by-run during the first iteration. It is assumed that if the chain is actually static, any problems in its define-by-run code should be apparent during the first iteration and it should not be (as) necessary to debug this code in later iterations. However, this feature does provide some functionality to help with debugging. For example, it is possible to obtain and inspect the current static schedules. It is also possible to directly step through the code of the static schedule if you wish (by debugging the `forward()` method of `StaticScheduleFunction` in `static_graph`).

1088 Chapter 4. API Reference
4.17.5 Limitations and future work

- Optimization switches to let the user select the trade-off between runtime performance and memory usage: The current implementation achieves its speedups mainly by reducing the amount of Python code that needs to run, but does not yet implement advanced optimizations for memory usage or runtime performance. Ideally, the user should be able to adjust performance tuning parameters to control the trade-off between memory consumption and runtime performance.

- Incompatibility with GRU and LSTM links: This feature requires that all input variables to a chain need to explicitly appear in the arguments to the chain’s __call__() method. However, the GRU and LSTM links with state maintain variable attributes of the chain for the RNN state variables. Design changes to support such links and/or modifications to these links are being considered. These links may still be used with the current implementation, as long as the corresponding RNN is unrolled inside of a static chain. For an example of this, see the modified ptb example at examples/static_graph_optimizations/ptb

- Memory usage: The current implementation caches all static schedules which can lead to high memory usage in some cases. For example, separate schedules are created when the training mode or mini-batch size changes.

- Advanced graph optimizations: Advanced optimizations such as fusion of operations is not yet implemented.

- Constraints on arguments to a static chain: The current version requires that all input variables used inside __call__() of a static chain must either appear in the arguments of this method or be defined in the define-by-run code. Furthermore, any variables that appear in the arguments list must appear by themselves or be contained inside a list or tuple. Arbitrary levels of nesting are allowed.

- Model export: In the case where the complete computation graph for the model is static, it should be possible in principle to export the static schedule in a format that can be run on other platforms and languages. One of the other original motivations for this feature was to support exporting static Chainer models to run on C/C++ and/or optimize the static schedule execution code in Cython/C/C++. However, it seems that ONNX is now fulfilling this purpose and there is a separate ONNX exporter already in development for Chainer. Perhaps these two features can be merged at some point in the future.

- Double-backward support: This feature was designed to support double-backward (gradient of gradient) but it has not been tested.

4.17.6 Examples

For additional examples that use this feature, refer to the examples in examples/static_graph_optimizations.

4.18 Static Subgraph Optimizations: Design Notes

This documentation is intended to provide information on the architecture and design of the static subgraph optimizations feature for those who are interested in contributing to its development. This documentation also describes how existing Chainer functions can be modified to run more efficiently when static subgraph optimizations are enabled.
4.18.1 Overview of dynamic and static graph frameworks

Existing deep learning frameworks can roughly be classified as either a “static graph” or “dynamic graph” framework. In a static graph framework, which we also call “define-and-run”, the computation graph is defined before the model is run. This implies that the same neural network model will be used each iteration without modifications, hence the name “static.” This allows various graph optimizations to potentially be performed to improve the runtime performance and/or reduce memory usage. The optimized code for the computation graph is then used when the model is run.

However, in a “dynamic graph” (also called “define-by-run”) framework such as Chainer, the computation graph is not defined before the model is run. Rather, it is constructed incrementally and automatically by the framework as the computations of the forward pass are executed. In Chainer, the user writes code to perform the computations of the forward pass in terms of Chainer functions, which have an API similar to an array library like NumPy. As these functions execute, the computation graph is incrementally built so that it will be available after the last function in the forward pass has been called. This has some advantages, such as allowing easier debugging compared to a static graph framework, since the user can step through the computations of the forward pass in a debugger. Define-by-run also provides the flexibility to include control flow operations so that a modified or even completely different graph can be constructed each iteration. Unfortunately, this flexibility also tends to make dynamic graph frameworks slower than static graph frameworks. For example, in Chainer there is a performance penalty involved in dynamically constructing the graph each iteration, since it involves creating many objects; each function call creates a new FunctionNode object as well as creating new VariableNode and array memory allocation for each output of the function. There are also various dynamic type checks and graph traversal that need to be performed, adding to the runtime overhead. Further, we cannot perform some optimizations such as function/kernel fusion and in-place operations.

4.18.2 Static subgraph optimizations feature

This feature is motivated by the observation that typical deep neural networks correspond to a static computation graph and that even those that correspond to a dynamic graph are typically mostly static. By “mostly static”, we mean that the largest static subgraphs each tend to contain many function nodes (that is, layers) so that the total number of function nodes in the graph tends to be much larger than the total number of largest static subgraphs. If the graph is at least mostly static, then a naive implementation of define-by-run will result in a large amount of redundant operations being performed each iteration to rebuild exactly the same subgraphs, perform the same dynamic type-checking operations, etc., which can sometimes be slow in Python; it will also result in lost opportunities to perform potential graph optimizations. A key assumption motivating this feature is that the main performance bottlenecks tend to occur inside the largest static subgraphs. So, if we can optimize these static subgraphs, it might be fine for any remaining framework code to remain implemented in pure Python. Although such Python code would be slow, it could have negligible runtime overhead.

The solution proposed by this feature is to retain the existing define-by-run style for specifying the model, but to also optionally allow the user to annotate the largest static subgraphs in a model. These “static graph” annotations will then allow the framework to automatically replace the define-by-run code of the static subgraphs with more performance-optimized code. The define-by-run code will still execute during the first iteration, to retain ease of debugging. However, as this code executes, a trace of the needed computations is also collected so that optimized static schedules can be generated for the annotated static subgraphs. Then, starting from the second iteration, this optimized code will automatically be run in place of the original define-by-run code. Note that in the common case in which the whole model is static, the user only needs to add a single “static graph” annotation and their code will then run with the performance of a static graph framework, while still supporting the define-by-run coding style.

The benefit of annotating the static subgraphs in the model is that it allows the define-by-run code to be replaced with an optimized static schedule, which can then potentially support a user-controllable trade-off between runtime performance and memory usage. This is possible because having the full computation graph available enables various optimizations that cannot safely or automatically be performed in define-by-run. Examples (which we have not yet implemented; contributions from the open source community are welcomed) include sub-linear memory usage [1], exploiting graph parallelism, operator fusion, and in-place optimizations.

The current implementation achieves its speedup by retaining only the code that is actually needed to compute the
forward pass, backward pass, and so on. This allows us to remove most of the Python interpreter overhead because the Python code that performs dynamic operations such as allocating `FunctionNode` and `Variable` objects, checking types, and traversing the backward graph is not included in the optimized static schedule code.

### 4.18.3 Adding support to existing functions

Most functions and links will not need to be modified at all in order to support this feature, since the framework code will attempt to auto-wrap them inside a `@static_code`-decorated function. However, some functions might see a performance benefit if static graph support is added manually, since it may result in less redundant code being included in the static schedule. For example, any dynamic checking code that will return the same result every iteration does not need to be included in the static schedule.

An existing function (that is, a subclass of `FunctionNode`) can be modified to support static graph optimizations as follows. The basic idea is to wrap any code that needs to be called each iteration inside a method that is decorated with `@static_code`. Note that code that should only run once, such as initializing parameters, should not be wrapped.

It is also necessary to set the `_supports_static_optimizations = True` class attribute. Note that this attribute is `False` by default in `FunctionNode`.

Since the function is part of a static graph, any parameters and output arrays should ideally be statically allocated during the first iteration (while the define-by-run code is executing) and then reused starting from the second iteration. The `@static_code`-decorated functions that are called each iteration will perform the various deep learning computations, writing results in-place into these static arrays. Since the results are written in-place, there is no need for an `@static_code`-decorated function to explicitly return a result. Rather, any results arrays should be passed as inputs along with any other input arguments to the function. However, it also is allowed to return dynamically allocated arrays so that existing Chainer functions can be easily supported. The following code shows the typical pattern for performing the forward computations in a `FunctionNode`:

```python
@static_code
def static_forward(self, inputs, outputs):
 # This function will get included in the static
 # schedule and called each iteration.
 # Any input arrays must be passed in a list
 # to the `inputs` keyword argument.
 x = inputs[0]
 # Any output arrays must be passed in a list
 # to the `outputs` keyword argument, and must
 # have already been initialized to the required
 # shape. Results are written in-place into output
 # arrays.
 y = outputs[0]

 # Read from x, write results into y in-place.
 # Don't forget to zero y if necessary.
 y *= 0.0 # (if necessary)
 y[:] = 3.0*x # for example

def forward(self, inputs):
 # Initialization/type checking code.
 # (only gets called once, during first iteration)
 type_check_blah(inputs)

 # Allocate output array. Note that since this line
 # is not wrapped using @static_code, it
 # will only ever get called once, during the first
```

(continues on next page)
# iteration.
    y = xp.empty(y_shape).astype(x.dtype)

    # Call static function
    # (it will get called every iteration from optimized schedule)
    self.static_forward(inputs=[x], outputs=[y])
    return y,

It should not be necessary to modify the `backward()` implementation. As of Chainer v3 when double-backward (i.e., grad of grad) support was added, the `backward()` method of `FunctionNode` actually calls the `forward()` method of other `FunctionNode`'s, and so it is only necessary that the `forward()` functions be wrapped.

For an example of how to add support to an existing function, see the `Linear` function.

## 4.18.4 Adding support to existing links

Most existing links will work as-is and do not need to be modified. However, if a link needs to perform computations each iteration that are performed in code other than calling chainer functions, this code will need to be manually placed in a `@static_code`-decorated function or method of the link.

If a link performs different computations depending on the training mode but is otherwise static, then it does not need to be modified.

## 4.18.5 Reference

[1] Training deep nets with sublinear memory cost

## 4.19 Caffe Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities, and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference models in their Model Zoo, which can reduce training time required for a new task.

### 4.19.1 Import

Chainer can import the reference models and emulate the network by `Link` implementations. This functionality is provided by the `chainer.links.caffe.CaffeFunction` class.

| chainer.links.caffe.CaffeFunction | Caffe emulator based on the model file of Caffe. |
4.19.2 Export

Chainer can export a model from `Link`.

**chainer.exporters.caffe.export**  
(Experimental) Export a computational graph as Caffe format.

**chainer.exporters.caffe.export**

chainer.exporters.caffe.export(model, args, directory=None, export_params=True, graph_name='Graph')  
(Experimental) Export a computational graph as Caffe format.

**Parameters**

- **model** (*Chain*) – The model object you want to export in Caffe format. It should have `__call__()` method because the second argument `args` is directly given to the model by the `()` accessor.
- **args** (*list of ~chainer.Variable*) – The arguments which are given to the model directly.
- **directory** (*str*) – The directory used for saving the resulting Caffe model. If None, nothing is saved to the disk.
- **export_params** (*bool*) – If True, this function exports all the parameters included in the given model at the same time. If False, the exported Caffe model doesn’t include any parameter values.
- **graph_name** (*str*) – A string to be used for the `name` field of the graph in the exported Caffe model.

**Note:** Currently, this function supports networks that created by following layer functions.

- `linear()`  
- `convolution_2d()`  
- `deconvolution_2d()`  
- `max_pooling_2d()`  
- `average_pooling_2d()`  
- `batch_normalization()`  
- `local_response_normalization()`  
- `relu()`  
- `leaky_relu()`  
- `concat()`  
- `softmax()`  
- `reshape()`  
- `add()`

This function can export at least following networks.

- GoogLeNet
• ResNet
• VGG

And, this function use testing (evaluation) mode.

Example

```python
>>> from chainer.exporters import caffe

>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
... self.b2 = L.BatchNormalization(1)
... self.l3 = L.Linear(None, 1)
...
... def __call__(self, x):
... h = F.relu(self.l1(x))
... h = self.b2(h)
... return self.l3(h)

global x
x = chainer.Variable(np.zeros((1, 10, 10, 10), np.float32))

>>> caffe.export(Model(), [x], None, True, 'test')
```

## 4.20 Assertion and Testing

Chainer provides some facilities to make debugging easy.

### 4.20.1 Type checking utilities

`FunctionNode` uses a systematic type checking of the `chainer.utils.type_check` module. It enables users to easily find bugs of forward and backward implementations. You can find examples of type checking in some function implementations.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.utils.type_check.Expr</code></td>
<td>Abstract syntax tree of an expression.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.eval</code></td>
<td>Evaluates and tests all given expressions.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.expect</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.utils.type_check TypeInfo</code></td>
<td>Type information of an input/gradient array.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check TypeInfoTuple</code></td>
<td>Type information of input/gradient tuples.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.Variable</code></td>
<td></td>
</tr>
</tbody>
</table>
Chainer Documentation, Release 6.7.0

chainer.utils.type_check.Expr
class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.
It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.
Example
Let x and y be instances of Expr, then
>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)

is also an instance of Expr. To evaluate and get its value, call eval() method:
>>> c.eval()
True

Call str function to get a representation of the original equation:
>>> str(c)
'x == y'

You can actually compare an expression with a value:
>>> (x == 1).eval()
True

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:
>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to
˓→evaluate expression.

Methods
__call__(*args)
Call self as a function.
__getitem__(key)
eval()
Evaluates the tree to get actual value.
Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.
__eq__(y)
__ne__(y)

4.20. Assertion and Testing

1095


chainer.utils.type_check.eval

chainer.utils.type_check.eval(exp)

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
   Evaluates and tests all given expressions.
   This function evaluates given boolean expressions in order. When at least one expression is evaluated as False, that means the given condition is not satisfied. You can check conditions with this function.
   Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to evaluate.

chainer.utils.type_check.TypeInfo

class chainer.utils.type_check.TypeInfo(shape, dtype)
   Type information of an input/gradient array.
   It contains type information of an array, such as the shape of array and the number of dimensions. This information is independent of CPU or GPU array.
Methods

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

size

chainer.utils.type_check.TypeInfoTuple

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the i-th input/gradient data. As each element is Expr, you can easily check its validity.

Methods

__getitem__()
Return self[key].

__len__()
Return len(self).

__iter__()
Implement iter(self).

count(value) → integer -- return number of occurrences of value

index(value[, start[, stop]]) → integer -- return first index of value.
    Raises ValueError if the value is not present.

size()
Returns an expression representing its length.

    Returns An expression object representing length of the tuple.

    Return type Expr

__eq__()
Return self==value.
__ne__()  
Return self!=value.

__lt__()  
Return self<value.

__le__()  
Return self<=value.

__gt__()  
Return self>value.

__ge__()  
Return self>=value.

__add__()  
Return self+value.

__mul__()  
Return self*value.n

__radd__()  
Return self*value.

chainer.utils.type_check.Variable

class chainer.utils.type_check.Variable(value, name)

Methods

__call__(*args)  
Call self as a function.

__getitem__(key)  

eval()  
Evaluates the tree to get actual value.

   Behavior of this function depends on an implementation class. For example, a binary operator + calls the 
   __add__ function with the two results of eval() function.

__eq__(y)  

__ne__(y)  

__lt__(y)  

__le__(y)  

__gt__(y)  

__ge__(y)  

__nonzero__()  

__bool__()  

__neg__()  

__add__(y)  

__radd__(y)  

__sub__(y)
Most function implementations are numerically tested by gradient checking. This method computes numerical gradients of forward routines and compares their results with the corresponding backward routines. It enables us to make the source of issues clear when we hit an error of gradient computations. The `chainer.gradient_check` module makes it easy to implement the gradient checking.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.gradient_check.check_backward</code></td>
<td>Test backward procedure of a given function.</td>
</tr>
<tr>
<td><code>chainer.gradient_check.check_double_backward</code></td>
<td>Test twice differentiation of a given procedure.</td>
</tr>
<tr>
<td><code>chainer.gradient_check.numerical_grad</code></td>
<td>Computes numerical gradient by finite differences.</td>
</tr>
</tbody>
</table>

**chainer.gradient_check.check_backward**

This function automatically checks the backward-process of a given function to ensure that the computed gradients are approximately correct. For example, assuming you’ve defined a `FunctionNode` class `MyFunc`, that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient computations as follows:

```python
def func(xs):
 y, = MyFunc().apply(xs)
 return y

x1_data = xp.array(...)
x2_data = xp.array(...)
gy_data = xp.array(...)
check_backward(func, (x1_data, x2_data), gy_data)
```

This function creates `Variable` objects with `x_data` and calls `func` with the `Variables` to get its result as `Variable`. Then, it sets `y_grad` array to `grad` attribute of the result and calls `backward` method to get gradients of the inputs. To check correctness of the gradients, the function calls `numerical_grad()` to calculate numerically the gradients and compares the types of gradients with `chainer.testing.assert_allclose()`.
To reduce computational time, it uses directional derivative along a random vector. A function $g : \mathbb{R} \to \mathbb{R}^n$ is defined as $g(\delta) = f(x + \delta r)$, where $\delta \in \mathbb{R}$, $r \in \mathbb{R}^n$ is a random vector and $f$ is a function which you want to test. Its gradient is

$$g'(\delta) = f'(x + \delta r) \cdot r.$$ 

Therefore, $g'(0) = f'(x) \cdot r$. So we can check the correctness of back propagation of $f$ indirectly by comparing this equation with the gradient of $g$ numerically calculated and that of $f$ computed by backprop. If $r$ is chosen from uniform distribution, we can conclude with high probability that the gradient of $f$ itself is correct.

If the function is non-differentiable with respect to some input objects, we can check its backprop to such objects by no_grads argument. gradient_check computes numerical backward to inputs that correspond to False in no_grads. It also asserts that the backprop leaves gradients None for inputs that correspond to True in no_grads. The default of no_grads argument is the tuple of truth values whether input objects (x1_data or/and x2_data in this example) represent integer variables.

You can simplify a test when MyFunc gets only one argument:

```python
check_backward(func, x1_data, gy_data)
```

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it sets 1 to grad attribute of the result:

```python
check_backward(my_loss_func,
 (x1_data, x2_data), None)
```

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

```python
gy1_data = xp.array(...)
gy2_data = xp.array(...)
check_backward(func, x1_data, (gy1_data, gy2_data))
```

You can also test a `Link`. To check gradients of parameters of the link, set a tuple of the parameters to params arguments:

```python
check_backward(my_link, (x1_data, x2_data), gy_data,
 (my_link.W, my_link.b))
```

Note that params are not ndarrays, but Variables.

Function objects are acceptable as func argument:

```python
check_backward(lambda x1, x2: f(x1, x2),
 (x1_data, x2_data), gy_data)
```

Note: func is called many times to get numerical gradients for all inputs. This function doesn’t work correctly when func behaves randomly as it gets different gradients.

### Parameters

- **func (callable)** – A function which gets Variables and returns Variables. func must returns a tuple of Variables or one Variable. You can use a Function, FunctionNode or a Link object or any other function satisfying the condition.

- **x_data (ndarray or tuple of ndarrays)** – A set of ndarrays to be passed to func. If x_data is one ndarray object, it is treated as (x_data,).
• **y_grad** *(ndarray or tuple of ndarrays or None)* – A set of ndarrays representing gradients of return-values of func. If `y_grad` is one `ndarray` object, it is treated as `(y_grad,)`. If `func` is a loss-function, `y_grad` should be set to `None`.

• **params** *(Variable or tuple of ~chainer.Variable)* – A set of Variables whose gradients are checked. When `func` is a `Link` object, set its parameters as `params`. If `params` is one `Variable` object, it is treated as `(params,)`.

• **eps** *(float)* – Epsilon value to be passed to `numerical_grad()`.

• **atol** *(float)* – Absolute tolerance to be passed to `chainer.testing.assert_allclose()`.

• **rtol** *(float)* – Relative tolerance to be passed to `chainer.testing.assert_allclose()`.

• **no_grads** *(list of bool)* – Flag to skip variable for gradient assertion. It should be same length as `x_data`.

• **dtype** *(dtype)* – `x_data`, `y_grad` and `params` are casted to this dtype when calculating numerical gradients. Only float types and `None` are allowed.

• **detect_nondifferentiable** *(bool)* – If `True`, check for non-differentiable inputs is enabled. If `func` is non-differentiable at `x_data`, `check_backward` raises `NondifferentiableError`.

See also:

`numerical_grad()`

**chainer.gradient_check.check_double_backward**

Test twice differentiation of a given procedure.

This function automatically checks if the backward procedure of `func` is correctly implemented for further differentiation. It first computes the gradient of `func` w.r.t. its inputs in the same way as `check_backward()`. This function then further invokes the backward procedure against the gradient variables, starting from the initial gradient given by `x_grad_grad`. It also computes the second gradient using `numerical_grad()`. The resulting gradients are compared to confirm if the second-order gradients are approximately correct.

Note that this function **DOES NOT** check if the first-order differentiation is correct; the numerical gradient assumes that the first-order gradient given by the usual `chainer.Variable.backward()` is correct. The implementation of each differentiable function should be tested by `check_backward()` first, and then should be tested by this function if necessary.

For the details of the arguments, see `check_backward()`. The additional arguments `x_grad_grad` and `params_grad_grad` are (tuples of) `Variable(s)` that include the initial gradient corresponding to the first-order gradient of each input and parameter. Note that the default error tolerance `atol` and `rtol` are slightly larger than those of `check_backward()` because the numerical gradients of the second order differentiation are less accurate than those of the first order gradients.
Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of `chainer.functions`.

By default, `numerical_grad` computes the gradient to the first order of `eps`.

**Parameters**

- **`f` (callable)** – Python function with no arguments that runs forward computation and returns the result.
- **`inputs` (tuple of arrays)** – Tuple of arrays that should be treated as inputs. Each element of them is slightly modified to realize numerical gradient by finite differences.
- **`grad_outputs` (tuple of arrays or scalars)** – Tuple of arrays or scalars that are treated as output gradients.
- **`eps` (float)** – Epsilon value of finite differences.
- **`detect_nondifferentiable` (bool)** – False by default. If True, `numerical_grad` checks whether `f` is differentiable at `inputs`. It requires evaluation of `f` at 5 points instead of 2. As a side effect, the accuracy of numerical gradient will be increased to the third order of `eps`. If it turns out that `f` is non-differentiable at `input`, `numerical_grad` raises `NondifferentiableError`.
- **`diff_atol` (float)** – Absolute tolerance of fitting error of non-differentiable point detection.
- **`diff_rtol` (float)** – Tolerance of fitting error of non-differentiable point detection relative to the output values of `f`.
- **`center_outputs` (tuple of arrays or None)** – Only used if `detect_nondifferentiable` is True. If specified, these arrays are used as the outputs of `f` at `inputs`. Otherwise, it is calculated. It can be used to reduce the computation if these arrays are already calculated before calling `numerical_grad`.

**Returns** Numerical gradient arrays corresponding to `inputs`.

**Return type** tuple

### 4.20.3 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both `numpy.ndarray` and `cupy.ndarray`.

<table>
<thead>
<tr>
<th><code>chainer.testing.assert_allclose</code></th>
<th>Asserts if some corresponding element of <code>x</code> and <code>y</code> differs too much.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.testing.assert_warns</code></td>
<td></td>
</tr>
</tbody>
</table>

1102 Chapter 4. API Reference
**Chainer Documentation, Release 6.7.0**

**chainer.testing.assert_allclose**

chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)

Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

**Parameters**

- x – Left-hand-side array.
- y – Right-hand-side array.
- atol (float) – Absolute tolerance.
- rtol (float) – Relative tolerance.
- verbose (bool) – If True, it outputs verbose messages on error.

**chainer.testing.assert_warns**

chainer.testing.assert_warns(expected)

### 4.20.4 Function testing utilities

Utilities for testing functions.

<table>
<thead>
<tr>
<th>chainer.testing.FunctionTestCase</th>
<th>A base class for function test cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.testing.unary_math_function_unittest</td>
<td>Decorator for testing unary mathematical Chainer functions.</td>
</tr>
</tbody>
</table>

**chainer.testing.FunctionTestCase**

class chainer.testing.FunctionTestCase(*args, **kwargs)

A base class for function test cases.

Function test cases can inherit from this class to define a set of function tests.

**Required methods**

Each concrete class must at least override the following three methods.

- **forward(self, inputs, device)** Implements the target forward function. inputs is a tuple of Variables. This method is expected to return the output Variables with the same array types as the inputs. device is the device corresponding to the input arrays.

- **forward_expected(self, inputs)** Implements the expectation of the target forward function. inputs is a tuple of numpy.ndarray. This method is expected to return the output numpy.ndarray.

- **generate_inputs(self)** Returns a tuple of input arrays of type numpy.ndarray.
Optional methods

Additionally the concrete class can override the following methods.

```
before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is one of
'test_forward', 'test_backward', and 'test_double_backward'.
```

```
generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of
type numpy.ndarray. outputs_template is a tuple of template arrays. The returned arrays are
expected to have the same shapes and dtypes as the template arrays.
```

```
generate_grad_grad_inputs(self, inputs_template) Returns a tuple of the second order in-
put gradient arrays of type numpy.ndarray. input_template is a tuple of template arrays. The
returned arrays are expected to have the same shapes and dtypes as the template arrays.
```

```
check_forward_outputs(self, outputs, expected_outputs) Implements check
logic of forward outputs. Typically additional check can be done after calling super().
check_forward_outputs. outputs and expected_outputs are tuples of arrays. In
case the check fails, FunctionTestError should be raised.
```

Configurable attributes

The concrete class can override the following attributes to control the behavior of the tests.

```
skip_forward_test (bool): Whether to skip forward computation test. False by default.
```

```
skip_backward_test (bool): Whether to skip backward computation test. False by default.
```

```
skip_double_backward_test (bool): Whether to skip double-backward computation test. False by
default.
```

```
dodge_nondifferentiable (bool): Enable non-differentiable point detection in numerical gradient cal-
culation. If the inputs returned by generate_inputs turns out to be a non-differentiable point, the test
will repeatedly resample inputs until a differentiable point will be finally sampled. False by default.
```

```
contiguous (None or 'C'): Specifies the contiguousness of incoming arrays (i.e. inputs, output gradients,
and the second order input gradients). If None, the arrays will be non-contiguous as long as possible. If
'C', the arrays will be C-contiguous. None by default.
```

Passive attributes

These attributes are automatically set.

```
test_name (str): The name of the test being run. It is one of 'test_forward', 'test_backward',
and 'test_double_backward'.
```

```
backend_config (BackendConfig): The backend configuration.
```

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Example
@chainer.testing.inject_backend_tests(
    None,
    [  # CPU
        {},  # GPU
        {'use_cuda': True}
    ])
class TestReLU(chainer.testing.FunctionTestCase):
    # ReLU function has a non-differentiable point around zero, so
dodge_nondifferentiable = True
    # dodge_nondifferentiable should be set to True.

def generate_inputs(self):
    x = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32)
    return x,

def forward(self, inputs, device):
    x, = inputs
    return F.relu(x),

def forward_expected(self, inputs):
    x, = inputs
    expected = x.copy()
    expected[expected < 0] = 0
    return expected,

See also:
LinkTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

- **typeobj** – The data type to call this function on when both values are of the same type
  in assertEqual().
- **function** – The callable taking two arguments and an optional msg= argument that
  raises self.failureException with a useful error message when the two arguments are not
  equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

```
assertAlmostEquals (**kwargs)
```

```
assertCountEqual (first, second, msg=None)
```

An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

```
self.assertEqual(Counter(list(first)), Counter(list(second)))
```

Example:

- [0, 1, 1] and [1, 0, 1] compare equal.
- [0, 0, 1] and [0, 1] compare unequal.

```
assertDictContainsSubset (subset, dictionary, msg=None)
```

Checks whether dictionary is a superset of subset.

```
assertDictEqual (d1, d2, msg=None)
```

```
assertEqual (first, second, msg=None)
```

Fail if the two objects are unequal as determined by the ‘==’ operator.

```
assertEquals (**kwargs)
```

```
assertFalse (expr, msg=None)
```

Check that the expression is false.

```
assertGreater (a, b, msg=None)
```

Just like self.assertTrue(a > b), but with a nicer default message.

```
assertGreaterEqual (a, b, msg=None)
```

Just like self.assertTrue(a >= b), but with a nicer default message.

```
assertIn (member, container, msg=None)
```

Just like self.assertTrue(a in b), but with a nicer default message.

```
assertIs (expr1, expr2, msg=None)
```

Just like self.assertTrue(expr1 is expr2), but with a nicer default message.

```
assertIsInstance (obj, cls, msg=None)
```

Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

```
assertIsNone (obj, msg=None)
```

Same as self.assertTrue(obj is None), with a nicer default message.

```
assertIsNot (expr1, expr2, msg=None)
```

Just like self.assertTrue(expr1 is not expr2), but with a nicer default message.

```
assertIsNotNone (obj, msg=None)
```

Included for symmetry with assertIsNone.

```
assertLess (a, b, msg=None)
```

Just like self.assertTrue(a < b), but with a nicer default message.

```
assertLessEqual (a, b, msg=None)
```

Just like self.assertTrue(a <= b), but with a nicer default message.
assertListEqual (list1, list2, msg=None)
A list-specific equality assertion.

Parameters
- list1 – The first list to compare.
- list2 – The second list to compare.
- msg – Optional message to use on failure instead of a list of differences.

assertLogs (logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes: output and records. At the end of the context manager, the output attribute will be a list of the matching formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

```python
with self.assertLogs('foo', level='INFO') as cm:
 logging.getLogger('foo').info('first message')
 logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
```

assertMultiLineEqual (first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual (first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals (**kwargs)

assertNotEqual (first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals (**kwargs)

assertNotIn (member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance (obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex (text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches (**kwargs)

assertRaises (expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException):
    do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
    do_something()
    the_exception = cm.exception
    self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)

Asserts that the message in a raised exception matches a regex.

Parameters

- expected_exception – Exception class expected to be raised.
- expected_regex – Regex (re pattern object or string) expected to be found in error message.
- args – Function to be called and extra positional args.
- kwargs – Extra kwargs.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)

Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)

An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

- seq1 – The first sequence to compare.
- seq2 – The second sequence to compare.
- seq_type – The expected datatype of the sequences, or None if no datatype should be
  enforced.
- msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)

A set-specific equality assertion.

Parameters

- set1 – The first set to compare.
- set2 – The second set to compare.
- msg – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).

**assertTrue** *(expr, msg=None)*
Check that the expression is true.

**assertTupleEqual** *(tuple1, tuple2, msg=None)*
A tuple-specific equality assertion.

**Parameters**
- **tuple1** – The first tuple to compare.
- **tuple2** – The second tuple to compare.
- **msg** – Optional message to use on failure instead of a list of differences.

**assertWarns** *(expected_warning, *args, **kwargs)*
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

```
with self.assertWarns(SomeWarning):
do_something()
```

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:

```
with self.assertWarns(SomeWarning) as cm:
do_something()
the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)
```

**assertWarnsRegex** *(expected_warning, expected_regex, *args, **kwargs)*
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.

**Parameters**
- **expected_warning** – Warning class expected to be triggered.
- **expected_regex** – Regex (re pattern object or string) expected to be found in error message.
- **args** – Function to be called and extra positional args.
- **kwargs** – Extra kwargs.
- **msg** – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.

**assert_** *(**kwargs)*

**before_test** *(test_name)*

**check_forward_outputs** *(outputs, expected_outputs)*

**countTestCases** ()
debug()
    Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
    Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
    Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(inputs, device)

forward_expected(inputs)

generate_grad_grad_inputs(inputs_template)

generate_grad_outputs(outputs_template)

generate_inputs()

id()

run(result=None)

run_test_backward(backend_config)

run_test_double_backward(backend_config)

run_test_forward(backend_config)

setUp()
    Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
    Hook method for setting up class fixture before running tests in the class.

shortDescription()
    Returns a one-line description of the test, or None if no description has been provided.

    The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
    Skip this test.

subTest(msg=<object object>, **params)
    Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
    Hook method for deconstructing the test fixture after testing it.
classmethod tearDownClass()
    Hook method for deconstructing the class fixture after running all tests in the class.

test_backward(backend_config)
    Tests backward computation.

test_double_backward(backend_config)
    Tests double-backward computation.

test_forward(backend_config)
    Tests forward computation.

    __eq__(other)
        Return self==value.

    __ne__()
        Return self!=value.

    __lt__()
        Return self<value.

    __le__()
        Return self<=value.

    __gt__()
        Return self>value.

    __ge__()
        Return self>=value.

Attributes

backend_config = None
check_backward_options = None
check_double_backward_options = None
check_forward_options = None
contiguous = None
dodge_nondifferentiable = False
longMessage = True
maxDiff = 640
skip_backward_test = False
skip_double_backward_test = False
skip_forward_test = False
chainer.testing.unary_math_function_unittest

chainer.testing.unary_math_function_unittest(func, func_expected=None, label_expected=None, make_data=None, is_linear=None, forward_options=None, backward_options=None, double_backward_options=None)

Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward, including double backward, computations on CPU and GPU across parameterized shape and dtype.

Parameters

- **func** (*function or Function*) – Chainer function to be tested by the decorated test class. Taking Function is for backward compatibility.

- **func_expected** – Function used to provide expected values for testing forward computation. If not given, a corresponding numpy function for func is implicitly picked up by its name.

- **label_expected** (*string*) – String used to test labels of Chainer functions. If not given, the name of func is implicitly used.

- **make_data** – Function to customize input and gradient data used in the tests. It takes shape and dtype as its arguments, and returns a tuple of input, gradient and double gradient data. By default, uniform distribution ranged \([-1, 1]\) is used for all of them.

- **is_linear** – Tells the decorator that func is a linear function so that it wraps func as a non-linear function to perform double backward test. This argument is left for backward compatibility. Linear functions can be tested by default without specifying is_linear in Chainer v5 or later.

- **forward_options** (*dict*) – Options to be specified as an argument of chainer.testing.assert_allclose() function. If not given, preset tolerance values are automatically selected.

- **backward_options** (*dict*) – Options to be specified as an argument of chainer.gradient_check.check_backward() function. If not given, preset tolerance values are automatically selected depending on dtype.

- **double_backward_options** (*dict*) – Options to be specified as an argument of chainer.gradient_check.check_double_backward() function. If not given, preset tolerance values are automatically selected depending on dtype.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across the following parameterized parameters:

- **shape**: rank of zero, and rank of more than zero

- **dtype**: numpy.float16, numpy.float32 and numpy.float64

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

- Unary, taking one parameter and returning one value

- dtype of input and output are the same

- Elementwise operation for the supplied ndarray
Example

The following code defines a test class that tests sin() Chainer function, which takes a parameter with dtype of float and returns a value with the same dtype.

```python
>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F
... @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass

Because the test methods are implicitly injected to TestSin class by the decorator, it is enough to place pass in the class definition.

To customize test data, make_data optional parameter can be used. The following is an example of testing sqrt Chainer function, which is tested in positive value domain here instead of the default input.

```python
>>> import numpy

>>> def make_data(shape, dtype):
...     x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
...     gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
...     ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)
...     return x, gy, ggx

>>> @testing.unary_math_function_unittest(F.sqrt, make_data=make_data)
... class TestSqrt(unittest.TestCase):
...     pass
```

make_data function which returns input, gradient and double gradient data generated in proper value domains with given shape and dtype parameters is defined, then passed to the decorator’s make_data parameter.

4.20.5 Link testing utilities

Utilities for testing links.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.testing</code></td>
<td></td>
</tr>
<tr>
<td><code>LinkInitializersTestCase</code></td>
<td>A base class for link parameter initializer test cases.</td>
</tr>
<tr>
<td><code>chainer.testing.LinkTestCase</code></td>
<td>A base class for link forward and backward test cases.</td>
</tr>
</tbody>
</table>
chainer.testing.LinkInitializersTestCase

class chainer.testing.LinkInitializersTestCase(*args, **kwargs)
 A base class for link parameter initializer test cases.

 Link test cases can inherit from this class to define a set of link tests for parameter initialization.

 Required methods

 Each concrete class must at least override the following methods.

 generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like
 for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to
 create_link.

 create_link(self, initializers) Returns a link. The link should be initialized with the given
 initializer-likes initializers. initializers is a tuple of same length as the number of param-
 eters.

 generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

 forward(self, link, inputs, device) Implements the target forward function. link is a link
 created by create_link and inputs is a tuple of Variables. This method is expected to return
 the output Variables with the same array types as the inputs. device is the device corresponding
 to the input arrays. A default implementation is provided for links that only takes the inputs defined
 in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its
 forward computation.

 get_initializers(self) Returns a tuple with the same length as the number of initializers that the con-
 structor of the link accepts. Each element in the tuple is a container itself, listing all initializers-likes
 that should be tested. Each initializer-like in the tuple is tested one at a time by being passed to create_link.
 When the length of the tuple is greater than one (i.e. if the link accepts multiple initializers), the ones not
 being tested are replaced by the ones returned by generate_params. Initializer-likes returned here should
 be deterministic since test will invoke them multiple times to test the correctness.

 For testing initializer arguments that can be non-initializer values such as None, one can use the
 InitializerArgument, defining a pair of the link constructor argument and actual initializer-like
 used by the link. This method must be implemented if skip_initializers_test is False in
 which case the initializers test is executed.

 Optional methods

 Each concrete class may override the following methods.

 before_test(self, test_name) A callback method called before each test. Typically a skip
 logic is implemented by conditionally raising unittest.SkipTest. test_name is always of
 'test_initializers'.
Attributes

The concrete class can override the following attributes to control the behavior of the tests.

param_names (list of str): A list of strings with all the names of the parameters that should be tested. E.g. `['gamma', 'beta']` for the batch normalization link. `[]` by default.

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and gradients). If `None`, the arrays will be non-contiguous as long as possible. If `'C'`, the arrays will be C-contiguous. `None` by default.

Note: This class assumes `chainer.testing.inject_backend_tests()` is used together. See the example below.

Note: When implementing `LinkTestCase` and `LinkInitializersTestCase` to test both forward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

```python
@chainer.testing.inject_backend_tests(
    None,
    [  # CPU
        {},  # CPU
        {'use_cuda': True},  # GPU
    ]
)
class TestLinear(chainer.testing.LinkInitializersTestCase):
    param_names = ['W', 'b']

    def generate_params(self):
        initialW = numpy.random.uniform(-1, 1, (3, 2)).astype(numpy.float32)
        initial_bias = numpy.random.uniform(-1, 1, (3,)).astype(numpy.float32)
        return initialW, initial_bias

    def generate_inputs(self):
        x = numpy.random.uniform(-1, 1, (1, 2)).astype(numpy.float32)
        return x,

    def create_link(self, initializers):
        initialW, initial_bias = initializers
        link = chainer.links.Linear(2, 3, initialW=initialW, initial_bias=initial_bias)
        return link

    def forward(self, link, inputs, device):
        x, = inputs
        return link(x),

    def get_initializers(self):
        initialW = [initializers.Constant(1), 2]
        initial_bias = [initializers.Constant(2), 3,
```
chainer.testing.link.InitializerArgument(None, 0)

return initialW, initial_bias

See also:
LinkTestCase FunctionTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
 in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
 raises self.failureException with a useful error message when the two arguments are not
 equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.
assertDictEqual (d1, d2, msg=None)
assertEqual (first, second, msg=None)
 Fail if the two objects are unequal as determined by the ‘==’ operator.
assertEquals (**kwargs)
assertFalse (expr, msg=None)
 Check that the expression is false.
assertGreater (a, b, msg=None)
 Just like self.assertTrue(a > b), but with a nicer default message.
assertGreaterEqual (a, b, msg=None)
 Just like self.assertTrue(a >= b), but with a nicer default message.
assertIn (member, container, msg=None)
 Just like self.assertTrue(a in b), but with a nice default message.
assertIs (expr1, expr2, msg=None)
 Just like self.assertTrue(a is b), but with a nicer default message.
assertIsInstance (obj, cls, msg=None)
 Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.
assertIsNone (obj, msg=None)
 Same as self.assertTrue(obj is None), with a nicer default message.
assertIsNot (expr1, expr2, msg=None)
 Just like self.assertTrue(a is not b), but with a nicer default message.
assertIsNotNone (obj, msg=None)
 Included for symmetry with assertIsNone.
assertLess (a, b, msg=None)
 Just like self.assertTrue(a < b), but with a nicer default message.
assertLessEqual (a, b, msg=None)
 Just like self assertTrue(a <= b), but with a nicer default message.
assertListEqual (list1, list2, msg=None)
 A list-specific equality assertion.

Parameters
- list1 – The first list to compare.
- list2 – The second list to compare.
- msg – Optional message to use on failure instead of a list of differences.

assertLogs (logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes: output and records. At the end of the context manager, the output attribute will be a list of the matching formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

```python
with self.assertLogs('foo', level='INFO') as cm:
    logging.getLogger('foo').info('first message')
    logging.getLogger('foo.bar').error('second message')
```

(continues on next page)
self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])

assertMultiLineEqual (first, second, msg=None)
 Assert that two multi-line strings are equal.

assertNotAlmostEqual (first, second, places=None, msg=None, delta=None)
 Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the given delta.

 Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

 Objects that are equal automatically fail.

assertNotAlmostEquals (**kwargs)

assertNotEqual (first, second, msg=None)
 Fail if the two objects are equal as determined by the ‘!’=’ operator.

assertNotEquals (**kwargs)

assertNotIn (member, container, msg=None)
 Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance (obj, cls, msg=None)
 Included for symmetry with assertIsInstance.

assertNotRegex (text, unexpected_regex, msg=None)
 Fail the test if the text matches the regular expression.

assertNotRegexpMatches (**kwargs)

assertRaises (expected_exception, *args, **kwargs)
 Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.

 If called with the callable and arguments omitted, will return a context object used like this:

    ```python
    with self.assertRaises(SomeException):
        do_something()
    ```

 An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

 The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to inspect the exception after the assertion:

    ```python
    with self.assertRaises(SomeException) as cm:
        do_something()
    the_exception = cm.exception
    self.assertEqual(the_exception.error_code, 3)
    ```

assertRaisesRegex (expected_exception, expected_regex, *args, **kwargs)
 Asserts that the message in a raised exception matches a regex.

 Parameters

 - expected_exception – Exception class expected to be raised.
• `expected_regex` – Regex (re pattern object or string) expected to be found in error message.

• `args` – Function to be called and extra positional args.

• `kwargs` – Extra kwargs.

• `msg` – Optional message used in case of failure. Can only be used when `assertRaisesRegex` is used as a context manager.

`assertRaisesRegexp (**kwargs)`

`assertRegex (text, expected_regex, msg=None)`
Fail the test unless the text matches the regular expression.

`assertRegexpMatches (**kwargs)`

`assertSequenceEqual (seq1, seq2, msg=None, seq_type=None)`
An equality assertion for ordered sequences (like lists and tuples).
For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.

Parameters

• `seq1` – The first sequence to compare.

• `seq2` – The second sequence to compare.

• `seq_type` – The expected datatype of the sequences, or None if no datatype should be enforced.

• `msg` – Optional message to use on failure instead of a list of differences.

`assertSetEqual (set1, set2, msg=None)`
A set-specific equality assertion.

Parameters

• `set1` – The first set to compare.

• `set2` – The second set to compare.

• `msg` – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).

`assertTrue (expr, msg=None)`
Check that the expression is true.

`assertTupleEqual (tuple1, tuple2, msg=None)`
A tuple-specific equality assertion.

Parameters

• `tuple1` – The first tuple to compare.

• `tuple2` – The second tuple to compare.

• `msg` – Optional message to use on failure instead of a list of differences.

`assertWarns (expected_warning, *args, **kwargs)`
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.
If called with the callable and arguments omitted, will return a context object used like this:

```python
with self.assertWarns(SomeWarning):
    do_something()
```

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:

```python
with self.assertWarns(SomeWarning) as cm:
    do_something()
    the_warning = cm.warning
    self.assertEqual(the_warning.some_attribute, 147)
```

`assertWarnsRegex` *(expected_warning, expected_regex, *args, **kwargs)*

Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.

Parameters

- `expected_warning` – Warning class expected to be triggered.
- `expected_regex` – Regex (re pattern object or string) expected to be found in error message.
- `args` – Function to be called and extra positional args.
- `kwargs` – Extra kwargs.
- `msg` – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.

```python
assert_(**kwargs)
```

`before_test` *(test_name)*

`check_forward_outputs` *(outputs, expected_outputs)*

`countTestCases` *

`create_link` *(initializers)*

`debug` *

Run the test without collecting errors in a TestResult

`defaultTestResult` *

`doCleanups` *

Execute all cleanup functions. Normally called for you after tearDown.

`fail` *(msg=None)*

Fail immediately, with the given message.

`failIf` *(**kwargs)*

`failIfAlmostEqual` *(**kwargs)*

`failIfEqual` *(**kwargs)*

`failUnless` *(**kwargs)*

`failUnlessAlmostEqual` *(**kwargs)*

`failUnlessAlmostEqual` *(**kwargs)*
failUnlessEqual (**kwargs)
failUnlessRaises (**kwargs)
forward (link, inputs, device)
generate_inputs ()
generate_params ()
get_initializers ()
id ()
run (result=None)
setUp ()
 Hook method for setting up the test fixture before exercising it.
classmethod setUpClass ()
 Hook method for setting up class fixture before running tests in the class.
shortDescription ()
 Returns a one-line description of the test, or None if no description has been provided.

 The default implementation of this method returns the first line of the specified test method’s docstring.
skipTest (reason)
 Skip this test.
subTest (msg=<object object>, **params)
 Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.
tearDown ()
 Hook method for deconstructing the test fixture after testing it.
classmethod tearDownClass ()
 Hook method for deconstructing the class fixture after running all tests in the class.
test_initializers (backend_config)
 Tests that the parameters of a links are correctly initialized.
__eq__ (other)
 Return self==value.
__ne__ ()
 Return self!=value.
__lt__ ()
 Return self<value.
__le__ ()
 Return self<=value.
__gt__ ()
 Return self>value.
__ge__ ()
 Return self>=value.
Attributes

backend_config = None
check_initializers_options = None
contiguous = None
longMessage = True
maxDiff = 640
param_names = ()

chainer.testing.LinkTestCase

class chainer.testing.LinkTestCase(*args, **kwargs)
A base class for link forward and backward test cases.

Link test cases can inherit from this class to define a set of link tests for forward and backward computations.

Required methods

Each concrete class must at least override the following methods.

generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to create_link.

create_link(self, initializers) Returns a link. The link should be initialized with the given initializer-likes initializers. initializers is a tuple of same length as the number of parameters.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

forward(self, link, inputs, device) Implements the target forward function. link is a link created by create_link and inputs is a tuple of Variables. This method is expected to return the output Variables with the same array types as the inputs. device is the device corresponding to the input arrays. A default implementation is provided for links that only takes the inputs defined in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its forward computation.

Optional methods

Each concrete class may override the following methods depending on the skip flags skip_forward_test and skip_backward_test.

before_test(self, test_name) A callback method called before each test. Typically a skip logic is implemented by conditionally raising unittest.SkipTest. test_name is one of 'test_forward' and 'test_backward'.

forward_expected(self, link, inputs) Implements the expectation of the target forward function. link is the initialized link that was used to compute the actual forward which the results of this method will be compared against. The link is guaranteed to reside on the CPU. inputs is a tuple of numpy.ndarrays. This method is expected to return the output numpy.ndarrays. This method must be implemented if either skip_forward_test or skip_backward_test is False in which case forward or backward tests are executed.
generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of type \texttt{numpy.ndarray}. \texttt{outputs_template} is a tuple of template arrays. The returned arrays are expected to have the same shapes and dtypes as the template arrays.

check_forward_outputs(self, outputs, expected_outputs) Implements check logic of forward outputs. Typically additional check can be done after calling \texttt{super().check_forward_outputs}. \texttt{outputs} and \texttt{expected_outputs} are tuples of arrays. In case the check fails, \texttt{LinkTestError} should be raised.

Attributes

The concrete class can override the following attributes to control the behavior of the tests.

\begin{itemize}
 \item \texttt{param_names} (tuple of str): A tuple of strings with all the names of the parameters that should be tested. E.g. ('gamma', 'beta') for the batch normalization link. () by default.
 \item \texttt{skip_forward_test} (bool): Whether to skip forward computation test. False by default.
 \item \texttt{skip_backward_test} (bool): Whether to skip backward computation test. False by default.
 \item \texttt{dodge_nondifferentiable} (bool): Enable non-differentiable point detection in numerical gradient calculation. If the data returned by \texttt{generate_params, create_link} and \texttt{generate_inputs} turns out to be a non-differentiable point, the test will repeatedly resample those until a differentiable point will be finally sampled. False by default.
 \item \texttt{contiguous} (None or 'C'): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and gradients. If None, the arrays will be non-contiguous as long as possible. If 'C', the arrays will be C-contiguous. None by default.
\end{itemize}

Note: This class assumes \texttt{chainer.testing.inject_backend_tests()} is used together. See the example below.

Note: When implementing \texttt{LinkTestCase} and \texttt{LinkInitializersTest} to test both forward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

```python
@chainer.testing.inject_backend_tests(
    None,
    [  # CPU
        {},  # CPU
        {'use_cuda': True},  # GPU
    ])
class TestLinear(chainer.testing.LinkTestCase):

    param_names = ('W', 'b')

    def generate_params(self):
        initialW = numpy.random.uniform(-1, 1, (3, 2)).astype(numpy.float32)
        initial_bias = numpy.random.uniform(-1, 1, (3,)).astype(numpy.float32)
        return initialW, initial_bias
```

(continues on next page)
def generate_inputs(self):
 x = numpy.random.uniform(-1, 1, (1, 2)).astype(numpy.float32)
 return x,

def create_link(self, initializers):
 initialW, initial_bias = initializers
 link = chainer.links.Linear(2, 3, initialW=initialW, initial_bias=initial_bias)
 return link

def forward(self, link, inputs, device):
 x, = inputs
 return link(x),

def forward_expected(self, link, inputs):
 W = link.W.array
 b = link.b.array
 x, = inputs
 expected = x.dot(W.T) + b
 return expected,

See also:

LinkInitializersTestCase FunctionTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
 in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
 raises self.failureException with a useful error message when the two arguments are not
 equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.
Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

If the two objects compare equal then they will automatically compare almost equal.

```python
assertAlmostEquals(**kwargs)
```

```python
assertCountEqual(first, second, msg=None)
```

An unordered sequence comparison asserting that the same elements, regardless of order. If the same element occurs more than once, it verifies that the elements occur the same number of times.

```python
self.assertEqual(Counter(list(first)), Counter(list(second)))
```

Example:

- [0, 1, 1] and [1, 0, 1] compare equal.
- [0, 0, 1] and [0, 1] compare unequal.

```python
assertDictContainsSubset(subset, dictionary, msg=None)
```

Checks whether dictionary is a superset of subset.

```python
assertDictEqual(d1, d2, msg=None)
```

```python
assertEquals(**kwargs)
```

```python
assertFalse(expr, msg=None)
```

Check that the expression is false.

```python
assertGreater(a, b, msg=None)
```

Just like self.assertTrue(a > b), but with a nicer default message.

```python
assertGreaterEqual(a, b, msg=None)
```

Just like self.assertTrue(a >= b), but with a nicer default message.

```python
assertIn(member, container, msg=None)
```

Just like self.assertTrue(a in b), but with a nicer default message.

```python
assertIs(expr1, expr2, msg=None)
```

Just like selfassertTrue(a is b), but with a nicer default message.

```python
assertIsInstance(obj, cls, msg=None)
```

Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

```python
assertIsNone(obj, msg=None)
```

Same as self.assertTrue(obj is None), with a nicer default message.

```python
assertIsNot(expr1, expr2, msg=None)
```

Just like self.assertTrue(a is not b), but with a nicer default message.

```python
assertIsNotNone(obj, msg=None)
```

Included for symmetry with assertIsNone.

```python
assertLess(a, b, msg=None)
```

Just like self.assertTrue(a < b), but with a nicer default message.

```python
assertLessEqual(a, b, msg=None)
```

Just like self.assertTrue(a <= b), but with a nicer default message.

```python
assertListEqual(list1, list2, msg=None)
```

A list-specific equality assertion.
Parameters

- `list1` – The first list to compare.
- `list2` – The second list to compare.
- `msg` – Optional message to use on failure instead of a list of differences.

```python
assertLogsWithDifference
```

This method must be used as a context manager, and will yield a recording object with two attributes: `output` and `records`. At the end of the context manager, the `output` attribute will be a list of the matching formatted log messages and the `records` attribute will be a list of the corresponding LogRecord objects.

Example:

```python
with self.assertLogs('foo', level='INFO') as cm:
    logging.getLogger('foo').info('first message')
    logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message', 'ERROR:foo.bar:second message'])
```

assertMultiLineEqual

```
assertMultiLineEqual
```

```
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted, level defaults to INFO and logger defaults to the root logger.
```

assertNotAlmostEqual

```
assertNotAlmostEqual
```

Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals

```
assertNotAlmostEquals
```

```
Fail if the two objects are equal as determined by the ‘!~’ operator.
```

assertNotEqual

```
assertNotEqual
```

```
Fail if the two objects are equal as determined by the ‘!’ operator.
```

assertNotIsInstance

```
assertNotIsInstance
```

```
Included for symmetry with assertIsInstance.
```

assertNotRegex

```
assertNotRegex
```

Fail the test if the text matches the regular expression.

assertNotRegexpMatches

```
assertNotRegexpMatches
```

```
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:
with self.assertRaises(SomeException):
    do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

```python
with self.assertRaises(SomeException) as cm:
 do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)
```

**assertRaisesRegex** *(expected_exception, expected_regex, *args, **kwargs)*

Asserts that the message in a raised exception matches a regex.

### Parameters

- **expected_exception** – Exception class expected to be raised.
- **expected_regex** – Regex (re pattern object or string) expected to be found in error
  message.
- **args** – Function to be called and extra positional args.
- **kwargs** – Extra kwargs.
- **msg** – Optional message used in case of failure. Can only be used when assertRaisesRegex
  is used as a context manager.

**assertRaisesRegexp** (**kwargs)**

**assertRegex** *(text, expected_regex, msg=None)*

Fail the test unless the text matches the regular expression.

**assertRegexpMatches** (**kwargs)**

**assertSequenceEqual** *(seq1, seq2, msg=None, seq_type=None)*

An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

### Parameters

- **seq1** – The first sequence to compare.
- **seq2** – The second sequence to compare.
- **seq_type** – The expected datatype of the sequences, or None if no datatype should be
  enforced.
- **msg** – Optional message to use on failure instead of a list of differences.

**assertSetEqual** *(set1, set2, msg=None)*

A set-specific equality assertion.

### Parameters

- **set1** – The first set to compare.
- **set2** – The second set to compare.
- **msg** – Optional message to use on failure instead of a list of differences.
assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).

**assertTrue (expr, msg=None)**
Check that the expression is true.

**assertTupleEqual (tuple1, tuple2, msg=None)**
A tuple-specific equality assertion.

**Parameters**
- **tuple1** – The first tuple to compare.
- **tuple2** – The second tuple to compare.
- **msg** – Optional message to use on failure instead of a list of differences.

**assertWarns (expected_warning, *args, **kwargs)**
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

```python
with self.assertWarns(SomeWarning):
 do_something()
```

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly, the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:

```python
with self.assertWarns(SomeWarning) as cm:
 do_something()
 the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)
```

**assertWarnsRegex (expected_warning, expected_regex, *args, **kwargs)**
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.

**Parameters**
- **expected_warning** – Warning class expected to be triggered.
- **expected_regex** – Regex (re pattern object or string) expected to be found in error message.
- **args** – Function to be called and extra positional args.
- **kwargs** – Extra kwargs.
- **msg** – Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.

**assert_ (**kwargs)**
**before_test (test_name)**
**check_forward_outputs (outputs, expected_outputs)**
**countTestCases()**
create_link(initializers)

debg()          # Run the test without collecting errors in a TestResult
defaultTestResult()

doCleanups()     # Execute all cleanup functions. Normally called for you after tearDown.
fail(msg=None)  # Fail immediately, with the given message.
failIf(**kwargs)
failIfAlmostEqual(**kwargs)
failIfEqual(**kwargs)
failUnless(**kwargs)
failUnlessAlmostEqual(**kwargs)
failUnlessEqual(**kwargs)
failUnlessRaises(**kwargs)

forward(link, inputs, device)
forward_expected(link, inputs)
generate_grad_outputs(outputs_template)
generate_inputs()
generate_params()

id()
run(result=None)

setUp()         # Hook method for setting up the test fixture before exercising it.
classmethod setUpClass() # Hook method for setting up class fixture before running tests in the class.

shortDescription()  # Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)     # Skip this test.

subTest(msg=<object object>, **params)  # Return a context manager that will return the enclosed block of code in a subtest identified by the optional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()          # Hook method for deconstructing the test fixture after testing it.
classmethod tearDownClass() # Hook method for deconstructing the class fixture after running all tests in the class.
**test_backward** *(backend_config)*
Tests backward computation.

**test_forward** *(backend_config)*
Tests forward computation.

__eq__ *(other)*
Return self==value.

__ne__ *
Return self!=value.

__lt__ *
Return self<value.

__le__ *
Return self<=value.

__gt__ *
Return self>value.

__ge__ *
Return self>=value.

**Attributes**

backend_config = None
check_backward_options = None
check_forward_options = None
contiguous = None
dodge_nondifferentiable = False
longMessage = True
maxDiff = 640
param_names = ()
skip_backward_test = False
skip_forward_test = False

### 4.20.6 Serialization testing utilities
Utilities for testing serializable objects.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.testing.save_and_load</td>
<td>Saves src and loads it to dst using a de/serializer.</td>
</tr>
<tr>
<td>chainer.testing.save_and_load_hdf5</td>
<td>Saves src to an HDF5 file and loads it to dst.</td>
</tr>
<tr>
<td>chainer.testing.save_and_load_npz</td>
<td>Saves src to an NPZ file and loads it to dst.</td>
</tr>
</tbody>
</table>
chainer.testing.save_and_load
c
chainer.testing.save_and_load(src, dst, filename, saver, loader)
Saves src and loads it to dst using a de/serializer.

This function simply runs a serialization and deserialization to check if the serialization code is correctly implemented. The save and load are done within a temporary directory.

Parameters
- src – An object to save from.
- dst – An object to load into.
- filename (str) – File name used during the save/load.
- saver (callable) – Function that saves the source object.
- loader (callable) – Function that loads the file into the destination object.

c
chainer.testing.save_and_load_hdf5
c
chainer.testing.save_and_load_hdf5(src, dst)
Saves src to an HDF5 file and loads it to dst.

This is a short cut of save_and_load() using HDF5 de/serializers.

Parameters
- src – An object to save.
- dst – An object to load to.

c
chainer.testing.save_and_load_npz
c
chainer.testing.save_and_load_npz(src, dst)
Saves src to an NPZ file and loads it to dst.

This is a short cut of save_and_load() using NPZ de/serializers.

Parameters
- src – An object to save.
- dst – An object to load to.

4.20.7 Trainer Extension Testing Utilities

Utilities for testing trainer extensions.

chainer.testing.get_trainer_with_mock_updater
Returns a Trainer object with mock updater.
**chainer.testing.get_trainer_with_mock_updater**

`chainer.testing.get_trainer_with_mock_updater(stop_trigger=(10, 'iteration'), iter_per_epoch=10, extensions=None)`

Returns a `Trainer` object with mock updater.

The returned trainer can be used for testing the trainer itself and the extensions. A mock object is used as its updater. The update function set to the mock correctly increments the iteration counts (`updater.iteration`), and thus you can write a test relying on it.

**Parameters**

- `stop_trigger` – Stop trigger of the trainer.
- `iter_per_epoch` – The number of iterations per epoch.
- `extensions` – Extensions registered to the trainer.

**Returns** Trainer object with a mock updater.

### 4.20.8 Repeat decorators

These decorators have a decorated test run multiple times in a single invocation. Criteria of passing / failing of the test changes according to the type of decorators. See the documentation of each decorator for details.

<table>
<thead>
<tr>
<th>Decorator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.testing.condition.repeat_with_success_at_least()</code></td>
<td>Decorator for multiple trial of the test case.</td>
</tr>
<tr>
<td><code>chainer.testing.condition.repeat()</code></td>
<td>Decorator that imposes the test to be successful in a row.</td>
</tr>
<tr>
<td><code>chainer.testing.condition.retry()</code></td>
<td>Decorator that imposes the test to be successful at least once.</td>
</tr>
</tbody>
</table>

**chainer.testing.condition.repeat_with_success_at_least**

`chainer.testing.condition.repeat_with_success_at_least(times, min_success)`

Decorator for multiple trial of the test case.

The decorated test case is launched multiple times. The case is judged as passed at least specified number of trials. If the number of successful trials exceeds `min_success`, the remaining trials are skipped.

**Parameters**

- `times (int)` – The number of trials.
- `min_success (int)` – Threshold that the decorated test case is regarded as passed.

**chainer.testing.condition.repeat**

`chainer.testing.condition.repeat(times)`

Decorator that imposes the test to be successful in a row.

Decorated test case is launched multiple times. The case is regarded as passed only if it is successful specified times in a row.

**Note:** In current implementation, this decorator grasps the failure information of each trial.
Parameters **times** (*int*) – The number of trials.

**chainer.testing.condition.retry**

`chainer.testing.condition.retry(times)`

Decorator that imposes the test to be successful at least once.

Decorated test case is launched multiple times. The case is regarded as passed if it is successful at least once.

**Note:** In current implementation, this decorator grasps the failure information of each trial.

Parameters **times** (*int*) – The number of trials.

### 4.20.9 Unit test annotation

Decorators for annotating unit tests.

<table>
<thead>
<tr>
<th>Decorator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.testing.attr.gpu</code></td>
<td>Decorator to indicate that GPU is required to run the test. Tests can be annotated with this decorator (e.g., <code>@gpu</code>) to declare that one GPU is required to run.</td>
</tr>
<tr>
<td><code>chainer.testing.attr.multi_gpu</code></td>
<td>Decorator to indicate number of GPUs required to run the test.</td>
</tr>
<tr>
<td><code>chainer.testing.with_requires</code></td>
<td>Run a test case only when given requirements are satisfied.</td>
</tr>
<tr>
<td><code>chainer.testing.fix_random</code></td>
<td>Decorator that fixes random numbers in a test.</td>
</tr>
</tbody>
</table>

**chainer.testing.attr.gpu**

`chainer.testing.attr.gpu(f)`

Decorator to indicate that GPU is required to run the test.

Tests can be annotated with this decorator (e.g., `@gpu`) to declare that one GPU is required to run.

**chainer.testing.attr.multi_gpu**

`chainer.testing.attr.multi_gpu(gpu_num)`

Decorator to indicate number of GPUs required to run the test.

Tests can be annotated with this decorator (e.g., `@multi_gpu(2)`) to declare number of GPUs required to run. When running tests, if `CHAINER_TEST_GPU_LIMIT` environment variable is set to value greater than or equals to 0, test cases that require GPUs more than the limit will be skipped.
chainer.testing.with_requires

chainer.testing.with_requires(*requirements)
   Run a test case only when given requirements are satisfied.

Example

This test case runs only when numpy>=1.10 is installed.

```python
>>> import unittest
>>> from chainer import testing
>>> class Test(unittest.TestCase):
... @testing.with_requires('numpy>=1.10')
... def test_for_numpy_1_10(self):
... pass
```

Parameters requirements – A list of string representing requirement condition to run a given test case.

chainer.testing.fix_random

chainer.testing.fix_random()
   Decorator that fixes random numbers in a test.

   This decorator can be applied to either a test case class or a test method. It should not be applied within condition.retry or condition.repeat.

4.20.10 Parameterized test

Decorators for making a unit test parameterized.

chainer.testing.parameterize
chainer.testing.product
chainer.testing.product_dict
chainer.testing.inject_backend_tests

chainer.testing.parameterize

chainer.testing.parameterize(*params)
chainer.testing.product

chainer.testing.product(parameter)

chainer.testing.product_dict

chainer.testing.product_dict(*parameters)

chainer.testing.inject_backend_tests

chainer.testing.inject_backend_tests(method_names, params)
5.1 Recommended Environments

We recommend the following Linux distributions.

- Ubuntu 14.04 / 16.04 LTS (64-bit)
- CentOS 7 (64-bit)

**Note:** We are automatically testing Chainer on all the recommended environments above. We cannot guarantee that Chainer works on other environments including Windows and macOS (especially with CUDA support), even if Chainer may seem to be running correctly.

5.2 Requirements

You need to have the following components to use Chainer.

- **Python**
  - Supported Versions: 2.7.6+, 3.5.1+, 3.6.0+, 3.7.0+ and 3.8.0+.

- **NumPy**
  - Supported Versions: 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16 and 1.17 (*).
  - NumPy will be installed automatically during the installation of Chainer.

Before installing Chainer, we recommend that you upgrade `setuptools` and `pip`:

```bash
$ pip install -U setuptools pip
```

5.2.1 Hardware Acceleration Support

You can accelerate performance of Chainer by installing the following optional components.

- **NVIDIA CUDA / cuDNN**
  - CuPy 5.0+
  - See CuPy Installation Guide for instructions.

- **Intel CPU (experimental)**
5.2.2 Optional Features

The following packages are optional dependencies. Chainer can be installed without them, in which case the corresponding features are not available.

- **Image dataset support**
  - pillow 2.3+
  - Run `pip install pillow` to install.

- **HDF5 serialization support**
  - h5py 2.5+
  - Run `pip install h5py` to install.

- **Distributed Deep Learning using ChainerMN**
  - CUDA-aware MPI
  - mpi4py
  - See [ChainerMN installation guide](#) for installation instructions.

5.3 Install Chainer

5.3.1 Using pip

We recommend to install Chainer via pip:

```
$ pip install chainer
```

**Note:** Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically detects the available packages and enables/disables the optional features appropriately.

5.3.2 Using Tarball

The tarball of the source tree is available via `pip download chainer` or from the release notes page. You can install Chainer from the tarball:

```
$ pip install chainer-x.x.x.tar.gz
```

You can also install the development version of Chainer from a cloned Git repository:

```
$ git clone https://github.com/chainer/chainer.git
$ cd chainer
$ pip install .
```
5.3.3 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up, Chainer will automatically enable CUDA support.

You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

- `chainer.backends.cuda.available` True if Chainer successfully imports `cupy`.
- `chainer.backends.cuda.cudnn_enabled` True if cuDNN support is available.

5.3.4 Google Colaboratory

You can install Chainer and CuPy using the following snippet on Google Colaboratory:

```bash
!curl https://colab.chainer.org/install | sh -
```

See chainer/google-colaboratory for more details and examples.

5.4 Uninstall Chainer

Use pip to uninstall Chainer:

```bash
$ pip uninstall chainer
```

**Note:** When you upgrade Chainer, pip sometimes install the new version without removing the old one in `site-packages`. In this case, pip uninstall only removes the latest one. To ensure that Chainer is completely removed, run the above command repeatedly until pip returns an error.

5.5 Upgrade Chainer

Just use `pip` with `-U` option:

```bash
$ pip install -U chainer
```

5.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use `--no-cache-dir` option as pip sometimes uses cache:

```bash
$ pip uninstall chainer
$ pip install chainer --no-cache-dir
```
5.7 Run Chainer with Docker

We are providing the official Docker image. Use `nvidia-docker` command to run Chainer image with GPU. You can login to the environment with bash, and run the Python interpreter:

```bash
$ nvidia-docker run -it chainer/chainer /bin/bash
```

Or run the interpreter directly:

```bash
$ nvidia-docker run -it chainer/chainer /usr/bin/python
```

5.8 FAQ

5.8.1 Warning message “cuDNN is not enabled” appears

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install CuPy with cuDNN. `pip install -vvvv` option helps you. There is no need of re-installing Chainer itself. See CuPy’s installation guide for more details.

5.8.2 CuPy always raises `cupy.cuda.compiler.CompileException`

See FAQ section of CuPy’s installation guide for details.

5.8.3 h5py installation failed

If the installation failed with error saying `hdf5.h is not found`, you need to install `libhdf5` first. The way to install it depends on your environment:

```
Ubuntu 14.04/16.04
$ apt-get install libhdf5-dev

CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel
```

Note that h5py is not required unless you need HDF5 serialization support.
Warning: This feature is still in the earliest stage of its development. The behavior and interface are subject to change.

ChainerX is an ndarray implementation with Define-by-Run automatic differentiation capability. It roughly corresponds to “NumPy/CuPy + Chainer Variable”, while some additional features follow:

- **Speed**: The whole ndarray and autograd implementation is written in C++, with a thin Python binding. It lowers the overhead existing in the pure Python implementation of Chainer.
- **Extensibility**: The backend is pluggable so that it is much easier to add a support of new devices.

The speed is best achieved by directly using ChainerX APIs, while it also provides a compatibility layer through the conventional `chainer.Variable` interface for easier adoption of ChainerX in existing projects. See ChainerX Tutorial for more details.

### 6.1 Installation

ChainerX, or `chainerx`, can be installed as a top level Python package along with Chainer by configuring the environment variables below.

**Note**: Chainer must currently be installed from source in order to include ChainerX, but this is expected to change in the near future.

#### 6.1.1 Environment variables

Configure the following environment variables before installing Chainer.

<table>
<thead>
<tr>
<th>Environment variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAINER_BUILD_CHAINERX</td>
<td>1 to build the chainerx package along with chainer. 0 to skip. Default is 0.</td>
</tr>
<tr>
<td>CHAINERX_BUILD_CUDA</td>
<td>1 to build chainerx with CUDA support. 0 to skip. Default is 0.</td>
</tr>
<tr>
<td>CUDNN_ROOT_DIR</td>
<td>Path to your cuDNN installation. Required when CHAINERX_BUILD_CUDA=1.</td>
</tr>
<tr>
<td>CHAINERX_ENABLE_BLAS</td>
<td>1 to make BLAS enabled. 0 to disabled. Default is 1.</td>
</tr>
</tbody>
</table>
6.1.2 Installing from source

Simply run `pip install --pre chainer` after configuring the above environment variables.

Example

For instance, to install ChainerX without CUDA support, run the following:

```bash
$ export CHAINER_BUILD_CHAINERX=1
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre chainer
```

6.1.3 CUDA support

When installing with the CUDA support, you also need to specify the cuDNN installation path since CUDA without cuDNN is currently not supported.

To support the NumPy/CuPy fallback mechanism, currently ChainerX with the CUDA support requires CuPy to be installed together.

Note: For ChainerX, we suggest that you do not install CuPy with a CuPy wheel (precompiled binary) package because it contains a cuDNN library. Installation would fail if the versions of the cuDNN library contained in the CuPy wheel package and the one specified in `CUDNN_ROOT_DIR` were different.

```bash
$ export CHAINER_BUILD_CHAINERX=1
$ export CHAINERX_BUILD_CUDA=1
$ export CUDNN_ROOT_DIR=path/to/cudnn
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre cupy
$ pip install --pre chainer
```

6.2 ChainerX Tutorial

ChainerX, or `chainerx`, is meant to be a drop-in replacement for NumPy and CuPy, with additional operations specific to neural networks. As its core is implemented in C++, you can reduce the Python overhead for both the forward and backward passes compared to Chainer, speeding up your training and inference. This section will guide you through the essential APIs of Chainer to utilize ChainerX, but also how to use ChainerX on its own.

6.2.1 Introduction to ChainerX

The module `chainerx` aims to support a NumPy compatible interface with additional operations specific to neural networks. It for instance provides `chainerx.conv()` for N-dimensional convolutions and `chainerx.batch_norm()` for batch normalization. Additionally, and most importantly, the array in ChainerX `chainerx.ndarray` distinguishes itself from NumPy and CuPy arrays in the following two aspects.

**Automatic differentiation** Graph construction and backpropagation is built into the array, meaning that any function, including the NumPy-like functions, can be backpropagated through. In Chainer terms, it is a NumPy/CuPy array with `chainer.Variable` properties.
**Device agnostic** Arrays can be allocated on any device belonging to any backend, in contrast to NumPy/CuPy arrays which are implemented for specific computing platforms (i.e. CPUs/GPUs respectively).

These differences are explained more in details by the sections further down.

**The array `chainerx.ndarray`**

The following example demonstrates how you can create an array and access its most basic attributes. Note that the APIs are identical to that of NumPy and CuPy. Other array creation routines including `chainerx.ones()`, `chainerx.ones_like()` and `chainerx.random.normal()` are all listed in [here](#).

```python
import chainerx as chx
x = chx.array([[0, 1, 2], [3, 4, 5]], dtype=chx.float32)

x.shape # (2, 3)
x.dtype # dtype('float32')
x.size # 6
x.ndim # 2
```

**Backends and devices**

Chainer distinguishes between CPU and GPU arrays using NumPy and CuPy but ChainerX arrays may be allocated on any device on any backend. You can specify the device during instantiation or transfer the array to a different device after it has been created.

```python
x = chx.array([1, 2, 3])
x.device # native:0

x = chx.array([1, 2, 3], device='cuda:0')
x.device # cuda:0

x = x.to_device('cuda:1')
x.device # cuda:1
```

The left-hand-side of the colon shows the name of the backend to which the device belongs. `native` in this case refers to the CPU and `cuda` to CUDA GPUs. The integer on the right-hand-side shows the device index. Together, they uniquely identify a physical device on which an array is allocated.

If you do not want to specify the device each time you create an array, it is possible to change the default device with `chainerx.using_device()`.

```python
with chx.using_device('cuda:0')
 x = chx.array([1, 2, 3])
x.device # cuda:0
```

**Note:** Currently, two backends are built into ChainerX.

1. The `native` backend, which is built by default.
2. The `cuda` backend which is optional (See installation).

This backend abstraction allows developers to implement their own backends and plug them into ChainerX to perform computations on basically any other platform.
Array operations and backpropagation

Arrays support basic arithmetics and can be passed to functions just as you would expect. By marking an array to require gradients with `chainerx.ndarray.require_grad()`, further computations involving that array will construct a computational graph allowing backpropagation directly from the array. The following code shows how you could implement an affine transformation and backpropagate through it to compute the gradient of the output w.r.t. the input weight and bias.

```python
x = chx.ones(784, dtype=chx.float32)
W = chx.random.normal(size=(784, 1000)).astype(chx.float32).require_grad()
b = chx.random.normal(size=(1000)).astype(chx.float32).require_grad()
y = x.dot(W) + b
y.grad = chx.ones_like(y) # Initial upstream gradients, i.e. 'grad_outputs'.
y.backward()

assert type(W.grad) is chx.ndarray
assert type(b.grad) is chx.ndarray
```

**Note:** The code above is device agnostic, meaning that you can execute it on any backend by simply wrapping the code with a `chainerx.using_device()`.

6.2.2 Relation to Chainer

A `chainerx.ndarray` can be wrapped in a `chainer.Variable` and passed to any existing Chainer code.

```python
var = ch.Variable(x) # x is a chainerx.ndarray.
Your Chainer code...
```

When further applying functions to the `var`, the computational graph is recorded in the underlying `ndarray` in C++ implementation, not in the `chainer.Variable` or the `chainer.FunctionNode`, as in the conventional Chainer. This eliminates the heavy Python overhead of the graph construction. Similarly, calling `chainer.Variable.backward()` on any resulting variable will delegate the work to C++ by calling `chainerx.ndarray.backward()` spending no time in the Python world.

NumPy/CuPy fallback

As the features above require ChainerX to provide an implementation corresponding to every `chainer.FunctionNode` implementation in Chainer, ChainerX utilizes a fallback mechanism while gradually extending the support. This approach is taken because the integration with Chainer takes time and we do not want existing Chainer users to have to make severe changes to their code bases in order to try ChainerX. The fallback logic simply casts the `chainerx.ndarrays` inside the `chainer.Variable` to `numpy.ndarrays` or `cupy.ndarrays` (without copy) and calls the forward and backward methods respectively.
Run your Chainer code with ChainerX

In order to utilize chainerx, you first need to transfer your model to a ChainerX device using chainer.Link.to_device(). This is a new method that has been introduced to replace chainer.Link.to_cpu() and chainer.Link.to_gpu(), extending device transfer to arbitrary devices. Similarly, you have to transfer the data (chainer.Variables) to the same device before feeding them to the model.

Will my FunctionNode work with ChainerX?

Our expectation is that it should work because of the fallback mechanism explained above, but in practice you may need some occasional fixes, depending on how the function was implemented. Also, you will not see any performance improvements from the fallback (but most likely a degradation because of the additional conversions).

To support ChainerX with your chainer.FunctionNode, you need to implement chainer.FunctionNode.forward_chainerx() with the same signature as chainer.FunctionNode.forward(), but where given inputs are of type chainerx.ndarray. It is expected to return a tuple just like chainer.FunctionNode.forward().

The example below shows how chainer.functions.matmul() is extended to support ChainerX. Note that chainerFallback can be returned in case the function cannot be implemented using ChainerX functions. This is also the default behavior in case the method is not implemented at all.

```python
class MatMul(function_node.FunctionNode):

 def forward_chainerx(self, x):
 a, b = x
 if self.transa or self.transb or self.transc:
 return chainer.Fallback
 if a.dtype != b.dtype:
 return chainer.Fallback
 if a.ndim != 2 or b.ndim != 2:
 return chainer.Fallback
 if self.dtype is not None and self.dtype != a.dtype:
 return chainer.Fallback
 return chainerx.dot(a, b), # Fast C++ implementation
```

6.3 Limitations

There are some non-obvious limitations in ChainerX:

- ChainerX only supports a limited set of dtypes: bool int8 int16 int32 int64 uint8 float32 float64.
- Operations with mixed dtypes are not supported. You need to explicitly convert dtypes using either chainerx.astype() or F.cast().
- True division of Python, where 2/3 returns .66 rather than 0, is not supported yet. Given an ndarray a of the dtype int32, a / a does not return an array of float64, but returns an array of int32.
- Only a limited set of Chainer functions are well tested with the ChainerX integration.
- ChainerX CUDA backend requires cuDNN. See installation for details.
- As ChainerX arrays have a computational graph in their own, some operations are prohibited for safety:
  - Unless an array is free from the computational graph, in-place modification of its data is prohibited.
a = chainerx.zeros((2,), chainerx.float32)
a.require_grad()  # install the computational graph on `a`.
a += 1  # ! error

The reason of this limitation is that, as backward operations may depend on the value of a, the backward gradients might be unexpectedly affected if it would be altered.

You may circumvent this limitation by making a disconnected view:

# A memory-shared view of `a` which is disconnected from the computational...
b = a.as_grad_stopped()
b += 1

Note however that this operation is inherently dangerous. You should be super careful to ensure that that does not affect backward computations.

Note also that we may restrict further in the future so that even in-place modification on a disconnected view is only allowed if it is actually safe.

- If an array is wrapped with a Variable with requires_grad=True (which is default), you won’t be able to re-assign the array:

a = chainerx.zeros((2,), chainerx.float32)
b = chainerx.zeros((2,), chainerx.float32)
var = chainer.Variable(a)

var.array = b  # ! error

You may circumvent this by using in-place assignment on var.array:

var.array[:] = b

This workaround may also be dangerous just as in the previous limitation.

6.4 Reference

6.4.1 Multi-Dimensional Array (ndarray)

| chainerx.ndarray | Multi-dimensional array, the central data structure of ChainerX. |
chainerx.ndarray

class chainerx.ndarray (shape, dtype, device=None)
Multi-dimensional array, the central data structure of ChainerX.

This class, along with other APIs in the chainerx module, provides a subset of NumPy APIs. This class works similar to numpy.ndarray, except for some differences including the following noticeable points:

- chainerx.ndarray has a device attribute. It indicates on which device the array is allocated.
- chainerx.ndarray supports Define-by-Run backpropagation. Once you call require_grad(), the array starts recording the operations applied to it recursively. Gradient of the result with respect to the original array can be computed then with the backward() method or the chainerx.backward() function.

Parameters

- shape (tuple of ints) – Shape of the new array.
- dtype – Data type.
- device (Device) – Device on which the array is allocated. If omitted, the default device is chosen.

See also:
numpy.ndarray

Methods

__getitem__ (key)
__getitem__(self, key) Returns self[key].

Note: Currently, only basic indexing is supported not advanced indexing.

__setitem__ (key, value)

__len__ ()

Returns the length of the first axis.

all (*args, **kwargs)

any (*args, **kwargs)

argmax (axis=None)

Returns the indices of the maximum elements along a given axis.

See chainerx.argmax() for the full documentation.

as_grad_stopped (copy=False)

Creates a view or a copy of the array that stops gradient propagation.

This method behaves similar to view() and copy(), except that the gradient is not propagated through this operation (internally, this method creates a copy or view of the array without connecting the computational graph for backprop).

Parameters copy (bool) – If True, it copies the array. Otherwise, it returns a view of the original array.

Returns A view or a copy of the array without propagating the gradient on backprop.
Return type *ndarray*

**astype** (*dtype*, *copy=True*)

Casts each element to the specified data type.

**Parameters**

- **dtype** – Data type of the new array.
- **copy** (*bool*) – If True, this method always copies the data. Otherwise, it creates a view of the array if possible.

**Returns** An array with the specified dtype.

Return type *ndarray*

**backward** (*backprop_id=None, enable_double_backprop=False*)

Performs backpropagation starting from this array.

This method is equivalent to `chainerx.backward([self], *args)`. See `chainerx.backward()` for the full documentation.

**cleargrad**()

Clears the gradient held by this array.

**clip** (*a_min, a_max*)

Returns an array with values limited to `[a_min, a_max]`.

See also:

- `chainerx.clip()` for full documentation, `numpy.ndarray.clip()`

**copy**()

Creates an array and copies all the elements to it.

The copied array is allocated on the same device as `self`.

See also:

- `chainerx.copy()`

**dot** (*b*)

Returns the dot product with a given array.

See `chainerx.dot()` for the full documentation.

**fill** (*value*)

Fills the array with a scalar value in place.

**Parameters**

- **value** – Scalar value with which the array will be filled.

**get_grad**()

Returns the gradient held by the array.

If the gradient is not available, it returns None.

**is_backprop_required**()

Returns True if gradient propagates through this array on backprop.

See the note on `require_grad()` for details.

**is_grad_required**()

Returns True if the gradient will be set after backprop.

See the note on `require_grad()` for details.
item()
Copies an element of an array to a standard Python scalar and returns it.

Returns A copy of the specified element of the array as a suitable Python scalar.

Return type z
See also:
numpy.item()

max(axis=None, keepdims=False)
Returns the maximum along a given axis.

See chainerx.amax() for the full documentation.

min(*args, **kwargs)
ravel()
Returns an array flattened into one dimension.

See also:
chainerx.ravel() for full documentation, numpy.ndarray.ravel()

require_grad()
Declares that a gradient for this array will be made available after backprop.

Once calling this method, any operations applied to this array are recorded for later backprop. After backprop, the grad attribute holds the gradient array.

Note: ChainerX distinguishes gradient requirements and backprop requirements strictly. They are strongly related, but different concepts as follows.

- **Gradient requirement** indicates that the gradient array should be made available after backprop. This attribute is not propagated through any operations. It implicates the backprop requirement.
- **Backprop requirement** indicates that the gradient should be propagated through the array during backprop. This attribute is propagated through differentiable operations.

require_grad() sets the gradient requirement flag. If you need to extract the gradient after backprop, you have to call require_grad() on the array even if the array is an intermediate result of differentiable computations.

Returns self

Return type ndarray

reshape(newshape)
Creates an array with a new shape and the same data.

See chainerx.reshape() for the full documentation.

set_grad(grad)
Sets a gradient to the array.

This method overwrites the gradient with a given array.

Parameters grad(ndarray) – New gradient array.

squeeze(axis=None)
Removes size-one axes from an array.
See `chainerx.squeeze()` for the full documentation.

**sum** *(axis=None, keepdims=False)*

Returns the sum of an array along given axes.

See `chainerx.sum()` for the full documentation.

**take** *(indices, axis)*

Takes elements from the array along an axis.

See `chainerx.take()` for the full documentation.

**to_device** *(device, index=None)*

Transfers the array to the specified device.

Parameters

- **device** (*Device or str*) – Device to which the array is transferred, or a backend name. If it is a backend name, *index* should also be specified.
- **index** (*int*) – Index of the device for the backend specified by *device*.

Returns

An array on the target device. If the original array is already on the device, it is a view of that. Otherwise, it is a copy of the array on the target device.

Return type

`ndarray`

**tolist** *

**transpose** *(axes=None)*

Creates a view of an array with permuted axes.

See `chainerx.transpose()` for the full documentation.

**view** *

Returns a view of the array.

The returned array shares the underlying buffer, though it has a different identity as a Python object.

**__eq__**(other)

Computes \( x = y \) elementwise.

**__ne__**(other)

Computes \( x \neq y \) elementwise.

**__lt__**(other)

Computes \( x < y \) elementwise.

**__le__**(other)

Computes \( x \leq y \) elementwise.

**__gt__**(other)

Computes \( x > y \) elementwise.

**__ge__**(other)

Computes \( x \geq y \) elementwise.

**__bool__** *

Casts a size-one array into a `bool` value.

**__neg__** *

Computes \( -x \) elementwise.

**__add__**(other)

Computes \( x + y \) elementwise.
__radd__(other)
    Computes y + x elementwise.

__sub__(other)
    Computes x - y elementwise.

__rsub__(other)
    Computes y - x elementwise.

__mul__(other)
    Computes x * y elementwise.

__rmul__(other)
    Computes y * x elementwise.

__truediv__(other)
    Computes x / y elementwise.

__floordiv__()

Attributes

T
    Shape-reversed view of the array.
    New array is created at every access to this property. x.T is just a shorthand of x.transpose().
    
    Type ndarray

data_ptr
    Address of the underlying memory allocation.
    The meaning of the address is device-dependent.
    
    Type int

data_size
    Total size of the underlying memory allocation.
    
    Type int
device
    Device on which the data exists.
    
    Type Device
dtype
    Data type of the array.

grad
    Gradient held by the array.
    It is None if the gradient is not available. Setter of this property overwrites the gradient.
    
    Type ndarray

is_contiguous
    True iff the array is stored in the C-contiguous order.
    
    Type bool

itemsize
    Size of each element in bytes.
    
    Type int
nbytes
Total size of all elements in bytes.
It does not count skips between elements.
Type int

ndim
Number of dimensions.
Type int

offset
Offset of the first element from the memory allocation in bytes.
Type int

shape
Lengths of axes.

Note: Currently, this property does not support setter.

Type tuple of int

size
Number of elements in the array.
Type int

strides
Strides of axes in bytes.
Type tuple of int

6.4.2 Array Operations

Array creation routines

<table>
<thead>
<tr>
<th>chainerx.empty</th>
<th>Returns an array without initializing the elements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.empty_like</td>
<td>Returns a new array with same shape and dtype of a given array.</td>
</tr>
<tr>
<td>chainerx.eye</td>
<td>Returns a 2-D array with ones on the diagonals and zeros elsewhere.</td>
</tr>
<tr>
<td>chainerx.identity</td>
<td>Returns a 2-D identity array.</td>
</tr>
<tr>
<td>chainerx.ones</td>
<td>Returns a new array of given shape and dtype, filled with ones.</td>
</tr>
<tr>
<td>chainerx.ones_like</td>
<td>Returns an array of ones with same shape and dtype as a given array.</td>
</tr>
<tr>
<td>chainerx.zeros</td>
<td>Returns a new array of given shape and dtype, filled with zeros.</td>
</tr>
<tr>
<td>chainerx.zeros_like</td>
<td>Returns an array of zeros with same shape and dtype as a given array.</td>
</tr>
<tr>
<td>chainerx.full</td>
<td>Returns a new array of given shape and dtype, filled with a given value.</td>
</tr>
</tbody>
</table>
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainerx.full_like</code></td>
<td>Returns a full array with same shape and dtype as a given array.</td>
</tr>
<tr>
<td><code>chainerx.array</code></td>
<td>Creates an array.</td>
</tr>
<tr>
<td><code>chainerx.asarray</code></td>
<td>Converts an object to an array.</td>
</tr>
<tr>
<td><code>chainerx.asanyarray</code></td>
<td>Converts an object to an array.</td>
</tr>
<tr>
<td><code>chainerx.ascontiguousarray</code></td>
<td>Returns a C-contiguous array.</td>
</tr>
<tr>
<td><code>chainerx.copy</code></td>
<td>Creates a copy of a given array.</td>
</tr>
<tr>
<td><code>chainerx.frombuffer</code></td>
<td>Returns a 1-D array interpretation of a buffer.</td>
</tr>
<tr>
<td><code>chainerx.fromfile</code></td>
<td>Constructs an array from data in a text or binary file.</td>
</tr>
<tr>
<td><code>chainerx.fromfunction</code></td>
<td>Constructs an array by executing a function over each coordinate.</td>
</tr>
<tr>
<td><code>chainerx.fromiter</code></td>
<td>Constructs a new 1-D array from an iterable object.</td>
</tr>
<tr>
<td><code>chainerx.fromstring</code></td>
<td>Constructs a new 1-D array initialized from text data in a string.</td>
</tr>
<tr>
<td><code>chainerx.loadtxt</code></td>
<td>Constructs an array by loading data from a text file.</td>
</tr>
<tr>
<td><code>chainerx.arange</code></td>
<td>Returns an array with evenly spaced values within a given interval.</td>
</tr>
<tr>
<td><code>chainerx.linspace</code></td>
<td>Returns an array with evenly spaced numbers over a specified interval.</td>
</tr>
<tr>
<td><code>chainerx.diag</code></td>
<td>Returns a diagonal or a diagonal array.</td>
</tr>
<tr>
<td><code>chainerx.diagflat</code></td>
<td>Creates a diagonal array from the flattened input.</td>
</tr>
</tbody>
</table>

**chainerx.empty**

`chainerx.empty(shape, dtype, device=None)`

Returns an array without initializing the elements.

**Parameters**

- **shape** *(tuple of ints)* – Shape of the array.
- **dtype** – Data type of the array.
- **device** *(Device)* – Device on which the array is allocated. If omitted, the default device is chosen.

**Returns** New array with elements not initialized.

**Return type** *ndarray*

**See also:**

`numpy.empty()`

**chainerx.empty_like**

`chainerx.empty_like(a, device=None)`

Returns a new array with same shape and dtype of a given array.

**Parameters**

- **a** *(ndarray)* – Prototype array.
- **device** *(Device)* – Device on which the array is allocated. If omitted, the default device is chosen.
Returns New array with same shape and dtype as `a` with elements not initialized.

Return type `ndarray`

| Warning: | If `device` argument is omitted, the new array is created on the default device, not the device of the prototype array. |

See also:

`numpy.empty_like()`

**chainerx.eye**

`chainerx.eye(N, M=None, k=0, dtype=float64, device=None)`

Returns a 2-D array with ones on the diagonals and zeros elsewhere.

Parameters

- `N (int)` – Number of rows.
- `M (int)` – Number of columns. `M == N` by default.
- `k (int)` – Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal.
- `dtype` – Data type.
- `device (Device)` – Device on which the array is allocated. If omitted, the default device is chosen.

Returns A 2-D array with given diagonals filled with ones and zeros elsewhere.

Return type `ndarray`

See also:

`numpy.eye()`

**chainerx.identity**

`chainerx.identity(n, dtype=None, device=None)`

Returns a 2-D identity array.

It is equivalent to `eye(n, n, dtype)`.

Parameters

- `n (int)` – Number of rows and columns.
- `dtype` – Data type.
- `device (Device)` – Device on which the array is allocated. If omitted, the default device is chosen.

Returns A 2-D identity array.

Return type `ndarray`

See also:

`numpy.identity()`
chainerx.ones

chainerx.ones\(shape, dtype, device=None\)

Returns a new array of given shape and dtype, filled with ones.

Parameters

- \(shape\) (tuple of ints) – Shape of the array.
- \(dtype\) – Data type.
- \(device\) (Device) – Device on which the array is allocated. If omitted, \textit{the default device} is chosen.

Returns New array.

Return type \texttt{ndarray}

See also:

numpy.ones()

chainerx.ones_like

chainerx.ones_like\(a, device=None\)

Returns an array of ones with same shape and dtype as a given array.

Parameters

- \(a\) (ndarray) – Prototype array.
- \(device\) (Device) – Device on which the array is allocated. If omitted, \textit{the default device} is chosen.

Returns New array.

Return type \texttt{ndarray}

Warning: If \textit{device} argument is omitted, the new array is created on the default device, not the device of the prototype array.

See also:

numpy.ones_like()

chainerx.zeros

chainerx.zeros\(shape, dtype, device=None\)

Returns a new array of given shape and dtype, filled with zeros.

Parameters

- \(shape\) (tuple of ints) – Shape of the array.
- \(dtype\) – Data type.
- \(device\) (Device) – Device on which the array is allocated. If omitted, \textit{the default device} is chosen.

Returns New array.
Return type *ndarray*

See also:

numpy.zeros()

**chainerx.zeros_like**

chainerx.zeros_like(*a, device=None*)

Returns an array of zeros with same shape and dtype as a given array.

Parameters

• *a* (*ndarray*) – Prototype array.

• *device* (*Device*) – Device on which the array is allocated. If omitted, the default device is chosen.

Returns New array.

Return type *ndarray*

**Warning:** If *device* argument is omitted, the new array is created on the default device, not the device of the prototype array.

See also:

numpy.zeros_like()

**chainerx.full**

chainerx.full(*shape, fill_value, dtype, device=None*)

Returns a new array of given shape and dtype, filled with a given value.

Parameters

• *shape* (*tuple of ints*) – Shape of the array.

• *dtype* – Data type.

• *device* (*Device*) – Device on which the array is allocated. If omitted, the default device is chosen.

Returns New array.

Return type *ndarray*

See also:

numpy.full()
chainerx.full_like

chainerx.full_like(a, fill_value, dtype=None, device=None)
Returns a full array with same shape and dtype as a given array.

Parameters

- `a (ndarray)` – Prototype array.
- `dtype` – Data type.
- `device (Device)` – Device on which the array is allocated. If omitted, the default device is chosen.

Returns New array.

Return type ndarray

Warning: If `device` argument is omitted, the new array is created on the default device, not the device of the prototype array.

See also:

numpy.full_like()

chainerx.array

chainerx.array(object, dtype=None, copy=True, device=None)
Creates an array.

Parameters

- `object` – A ndarray object or any other object that can be passed to numpy.array().
- `dtype` – Data type. If omitted, it’s inferred from the input.
- `copy (bool)` – If True, the object is always copied. Otherwise, a copy will only be made if it is needed to satisfy any of the other requirements (dtype, device, etc.).
- `device (Device)` – Device on which the array is allocated. If omitted, the default device is chosen.

Returns New array.

Return type ndarray

Warning: If `device` argument is omitted, the new array is created on the default device, not the device of the input array.

See also:

numpy.array()
chainerx.asarray

\texttt{chainerx.asarray}(a, dtype=\texttt{None}, device=\texttt{None})

Converts an object to an array.

\begin{itemize}
  \item \texttt{a} – The source object.
  \item \texttt{dtype} – Data type. If omitted, it’s inferred from the input.
  \item \texttt{device} (Device) – Device on which the array is allocated. If omitted, \textit{the default device} is chosen.
\end{itemize}

\textbf{Returns} Array interpretation of \texttt{a}. If \texttt{a} is already an \texttt{ndarray} on the given device with matching \texttt{dtype}, no copy is performed.

\textbf{Return type} \texttt{ndarray}

\textbf{Warning:} If \texttt{device} argument is omitted, the new array is created on the default device, not the device of the input array.

\textbf{See also:}
\begin{itemize}
  \item \texttt{numpy.asarray()}
\end{itemize}

\chainerx.asanyarray

\texttt{chainerx.asanyarray}(a, dtype=\texttt{None}, device=\texttt{None})

Converts an object to an array.

This is currently equivalent to \texttt{asarray()}, since there are no subclasses of \texttt{ndarray} in ChainerX. Note that the original \texttt{numpy.asanyarray()} returns the input array as is, if it is an instance of a subtype of \texttt{numpy. ndarray}.

\textbf{See also:}
\begin{itemize}
  \item \texttt{chainerx.asarray()}, \texttt{numpy.asanyarray()}
\end{itemize}

\chainerx.ascontiguousarray

\texttt{chainerx.ascontiguousarray}(a, dtype=\texttt{None}, device=\texttt{None})

Returns a C-contiguous array.

\begin{itemize}
  \item \texttt{a} (\texttt{ndarray}) – Source array.
  \item \texttt{dtype} – Data type.
  \item \texttt{device} (Device) – Device on which the array is allocated. If omitted, \textit{the default device} is chosen.
\end{itemize}

\textbf{Returns} C-contiguous array. A copy will be made only if needed.

\textbf{Return type} \texttt{ndarray}
Warning: If device argument is omitted, the new array is created on the default device, not the device of the input array.

See also:

numpy.ascontiguousarray()

chainerx.copy

chainerx.copy(a)
Creates a copy of a given array.

Parameters a (ndarray) – Source array.

Returns A copy array on the same device as a.

Returns type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.copy()

chainerx.frombuffer

chainerx.frombuffer(buffer, dtype=float, count=-1, offset=0, device=None)
Returns a 1-D array interpretation of a buffer.

The given buffer memory must be usable on the given device, otherwise, an error is raised.

Note: The native backend requires a buffer of main memory, and the cuda backend requires a buffer of CUDA memory. No copy is performed.

Parameters

• buffer – An object that exposes the buffer interface.
• dtype – Data type of the returned array.
• count (int) – Number of items to read. -1 means all data in the buffer.
• offset (int) – Start reading the buffer from this offset (in bytes).
• device (Device) – Device of the returned array. If omitted, the default device is chosen.

Returns 1-D array interpretation of buffer.

Returns type ndarray

See also:

numpy.frombuffer()
chainerx.fromfile

chainerx.fromfile (file, dtype=<class 'float'>, count=-1, sep='", device=None)
   Constructs an array from data in a text or binary file.
   This is currently equivalent to numpy.fromfile() wrapped by chainerx.array(), given the device argument.
   See also:
   numpy.fromfile()

chainerx.fromfunction

chainerx.fromfunction (function, shape, **kwargs)
   Constructs an array by executing a function over each coordinate.
   This is currently equivalent to numpy.fromfunction() wrapped by chainerx.array(), given the device argument.

   Note: Keywords other than dtype and device are passed to `function`.

   See also:
   numpy.fromfunction()

chainerx.fromiter

chainerx.fromiter (iterable, dtype, count=-1, device=None)
   Constructs a new 1-D array from an iterable object.
   This is currently equivalent to numpy.fromiter() wrapped by chainerx.array(), given the device argument.
   See also:
   numpy.fromiter()

chainerx.fromstring

chainerx.fromstring (string, dtype=<class 'float'>, count=-1, sep='", device=None)
   Constructs a new 1-D array initialized from text data in a string.
   This is currently equivalent to numpy.fromstring() wrapped by chainerx.array(), given the device argument.
   See also:
   numpy.fromstring()
**chainerx.loadtxt**

`chainerx.loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', device=None)`

Constructs an array by loading data from a text file.

This is currently equivalent to `numpy.loadtxt()` wrapped by `chainerx.array()`, given the device argument.

See also:

`numpy.loadtxt()`

**chainerx.arange**

`chainerx.arange([start=0], stop[, step=1], dtype=None, device=None)`

Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval `[start, stop)`. The first three arguments are mapped like the `range` built-in function, i.e. `start` and `step` are optional.

Parameters

- `start` – Start of the interval.
- `stop` – End of the interval.
- `step` – Step width between each pair of consecutive values.
- `dtype` – Data type specifier. It is inferred from other arguments by default.
- `device` (Device) – Device on which the array is allocated. If omitted, the default device is chosen.

Returns The 1-D array of range values.

Return type `ndarray`

See also:

`numpy.arange()`

**chainerx.linspace**

`chainerx.linspace(start, stop, num=50, endpoint=True, dtype=None, device=None)`

Returns an array with evenly spaced numbers over a specified interval.

Instead of specifying the step width like `chainerx.arange()`, this function requires the total number of elements specified.

Parameters

- `start` – Start of the interval.
- `stop` – End of the interval.
- `num` – Number of elements.
- `endpoint` (bool) – If True, the stop value is included as the last element. Otherwise, the stop value is omitted.
• **dtype** – Data type specifier. It is inferred from the start and stop arguments by default.
• **device** (*Device*) – Device on which the array is allocated. If omitted, the default device is chosen.

**Returns**  
The 1-D array of ranged values.

**Return type**  
`ndarray`

See also:

`numpy.linspace()`

### `chainerx.diag`

`chainerx.diag(v, k=0, device=None)`  
Returns a diagonal or a diagonal array.

**Parameters**

• **v** (*ndarray*) – Array object.
• **k** (*int*) – Index of diagonals. Zero indicates the main diagonal, a positive value an upper diagonal, and a negative value a lower diagonal.
• **device** (*Device*) – Device on which the array is allocated. If omitted, the default device is chosen.

**Returns**  
If `v` is a 1-D array, then it returns a 2-D array with the specified diagonal filled by `v`. If `v` is a 2-D array, then it returns the specified diagonal of `v`. In latter case, if `v` is a `chainerx.ndarray` object, then its view is returned.

**Return type**  
`ndarray`

**Note:** The argument `v` does not support array-like objects yet.

See also:

`numpy.diag()`

### `chainerx.diagflat`

`chainerx.diagflat(v, k=0, device=None)`  
Creates a diagonal array from the flattened input.

**Parameters**

• **v** (*ndarray*) – Array object.
• **k** (*int*) – Index of diagonals. See `chainerx.diag()`.
• **device** (*Device*) – Device on which the array is allocated. If omitted, the default device is chosen.

**Returns**  
A 2-D diagonal array with the diagonal copied from `v`.

**Return type**  
`ndarray`
**Note:** The argument v does not support array-like objects yet.

See also:

numpy.diagflat()  

### Activation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.log_softmax</td>
<td>The log of the softmax of input array.</td>
</tr>
<tr>
<td>chainerx.tanh</td>
<td>Hyperbolic tangent, element-wise</td>
</tr>
<tr>
<td>chainerx.relu</td>
<td>Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainerx.sigmoid</td>
<td></td>
</tr>
</tbody>
</table>

#### chainerx.log_softmax

chainerx.log_softmax(x, axis=None)

The log of the softmax of input array.

**Parameters**

- **x (ndarray)** – Input array.
- **axis (None or int or tuple of ints)** – Axis or axes along which a sum is performed. The flattened array is used by default.

**Returns**

The log of the softmax of input elements over a given axis.

**Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array x.

#### chainerx.tanh

chainerx.tanh(x)

Hyperbolic tangent, element-wise

**Parameters** x (ndarray) – Input array.

**Returns** Returned array: \( y = \tanh x \).

**Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.tanh
chainerx.relu

chainerx.relu(x)
Rectified Linear Unit function.

Parameters  x (ndarray) – Input array.
Returns  Returned array:  \( y = \max(0, x) \).
Return type  ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

chainerx.sigmoid

chainerx.sigmoid()

Array manipulation routines

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.reshape</td>
<td>Returns a reshaped array.</td>
</tr>
<tr>
<td>chainerx.ravel</td>
<td>Returns a flattened array.</td>
</tr>
<tr>
<td>chainerx.transpose</td>
<td>Permutes the dimensions of an array.</td>
</tr>
<tr>
<td>chainerx.broadcast_to</td>
<td>Broadcasts an array to a given shape.</td>
</tr>
<tr>
<td>chainerx.squeeze</td>
<td>Removes size-one axes from the shape of an array.</td>
</tr>
<tr>
<td>chainerx.asarray</td>
<td>Converts an object to an array.</td>
</tr>
<tr>
<td>chainerx.ascontiguousarray</td>
<td>Returns a C-contiguous array.</td>
</tr>
<tr>
<td>chainerx.concatenate</td>
<td>Joins arrays along an axis.</td>
</tr>
<tr>
<td>chainerx.stack</td>
<td>Stacks arrays along a new axis.</td>
</tr>
<tr>
<td>chainerx.split</td>
<td>Splits an array into multiple sub arrays along a given axis.</td>
</tr>
</tbody>
</table>

chainerx.reshape

chainerx.reshape(a, newshape)
Returns a reshaped array.

Parameters

- a (ndarray) – Array to be reshaped.
- newshape (int or tuple of ints) – The new shape of the array to return. If it is an integer, then it is treated as a tuple of length one. It should be compatible with \( a.size \). One of the elements can be -1, which is automatically replaced with the appropriate value to make the shape compatible with \( a.size \).

Returns  A reshaped view of \( a \) if possible, otherwise a copy.

Return type  ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( a \).
See also:

numpy.reshape()

**chainerx.ravel**

**chainerx.ravel**(a)

Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

- **Parameters**
  - `a` *(ndarray)* – Array to be flattened.
- **Returns**
  - A flattened view of `a` if possible, otherwise a copy.
- **Return type** `ndarray`

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array `a`.

See also:

numpy.ravel()

**chainerx.transpose**

**chainerx.transpose**(a, axes=None)

Permutes the dimensions of an array.

- **Parameters**
  - `a` *(ndarray)* – Array to permute the dimensions.
  - `axes` *(tuple of ints)* – Permutation of the dimensions. This function reverses the shape by default.
- **Returns**
  - A view of `a` with the dimensions permuted.
- **Return type** `ndarray`

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array `a`.

See also:

numpy.transpose()

**chainerx.broadcast_to**

**chainerx.broadcast_to**(array, shape)

Broadcasts an array to a given shape.

- **Parameters**
  - `array` *(ndarray)* – Array to broadcast.
  - `shape` *(tuple of ints)* – The shape of the desired array.
- **Returns**
  - Broadcasted view.
Return type  ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array.

See also:

numpy.broadcast_to()

chainerx.squeeze

chainerx.squeeze(a, axis=None)

Removes size-one axes from the shape of an array.

Parameters

- a (ndarray) – Array to be reshaped.
- axis (int or tuple of ints) – Axes to be removed. This function removes all size-one axes by default. If one of the specified axes is not of size one, an exception is raised.

Returns An array without (specified) size-one axes.

Return type  ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.squeeze()

chainerx.concatenate

chainerx.concatenate(arrays, axis=0)

Joins arrays along an axis.

Parameters

- arrays (sequence of ndarrays) – Arrays to be joined. All of these should have the same dimensionalities except the specified axis.
- axis (int) – The axis to join arrays along.

Returns Joined array.

Return type  ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in arrays.

See also:

numpy.concatenate()
**chainerx.stack**

**chainerx.stack**(*arrays, axis=0*)

Stacks arrays along a new axis.

**Parameters**

- **arrays** (sequence of *ndarrays*) – Arrays to be stacked.
- **axis** (*int*) – Axis along which the arrays are stacked.

**Returns** Stacked array.

**Return type** *ndarray*

**Note:** During backpropagation, this function propagates the gradient of the output array to the input arrays in *arrays*.

**See also:**

`numpy.stack()`

**chainerx.split**

**chainerx.split**(*ary, indices_or_sections, axis=0*)

Splits an array into multiple sub arrays along a given axis.

**Parameters**

- **ary** (*ndarray*) – Array to split.
- **indices_or_sections** (*int* or *sequence of ints*) – A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed.
- **axis** (*int*) – Axis along which the array is split.

**Returns** A list of sub arrays. Each array is a partial view of the input array.

**Return type** *list of ndarrays*

**Note:** During backpropagation, this function propagates the gradients of the output arrays to the input array *ary*.

**See also:**

`numpy.split()`
Indexing routines

chainerx.take

chainerx.take($a$, $indices$, $axis$)

Takes elements from an array along an axis.

Parameters

- $a$ (ndarray) – Source array.
- $indices$ (ndarray) – The indices of the values to extract. When indices are out of bounds, they are wrapped around.
- $axis$ (int) – The axis over which to select values.

Returns

Output array.

Return type

ndarray()

Note: This function currently only supports indices of int64 array.

Note: This function currently does not support $axis=None$

Note: During backpropagation, this function propagates the gradient of the output array to the input array $a$.

See also:

numpy.take()

Linear algebra

chainerx.dot

chainerx.dot($a$, $b$

Returns a dot product of two arrays.

Parameters

- $a$ (ndarray) – The left argument.
- $b$ (ndarray) – The right argument.

For arrays with more than one axis, it computes the dot product along the last axis of $a$ and the second-to-last axis of $b$. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over.
Returns  Output array.

Return type  ndarray

Note:  This function currently does not support N > 2 dimensional arrays.

Note:  During backpropagation, this function propagates the gradient of the output array to input arrays $a$ and $b$.

See also:

numpy.dot()

Logic functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.isinf</td>
<td>Test element-wise for positive or negative infinity.</td>
</tr>
<tr>
<td>chainerx.isnan</td>
<td>Test element-wise for NaN and return result as a boolean array.</td>
</tr>
<tr>
<td>chainerx.logical_and</td>
<td>Returns an array of $x_1$ AND $x_2$ element-wise.</td>
</tr>
<tr>
<td>chainerx.logical_or</td>
<td>Returns an array of $x_1$ OR $x_2$ element-wise.</td>
</tr>
<tr>
<td>chainerx.logical_not</td>
<td>Returns an array of NOT $x$ element-wise.</td>
</tr>
<tr>
<td>chainerx.greater</td>
<td>Returns an array of ($x_1 &gt; x_2$) element-wise.</td>
</tr>
<tr>
<td>chainerx.greater_equal</td>
<td>Returns an array of ($x_1 \geq x_2$) element-wise.</td>
</tr>
<tr>
<td>chainerx.less</td>
<td>Returns an array of ($x_1 &lt; x_2$) element-wise.</td>
</tr>
<tr>
<td>chainerx.less_equal</td>
<td>Returns an array of ($x_1 \leq x_2$) element-wise.</td>
</tr>
<tr>
<td>chainerx.equal</td>
<td>Returns an array of ($x_1 == x_2$) element-wise.</td>
</tr>
<tr>
<td>chainerx.not_equal</td>
<td>Returns an array of ($x_1 != x_2$) element-wise.</td>
</tr>
</tbody>
</table>

chainerx.isinf

c cherishx.isinf($x$)
Test element-wise for positive or negative infinity.

Parameters  $x$ (ndarray) – Input array.

Returns  True where $x$ is positive or negative infinity, false otherwise.

Return type  ndarray

Note:  During backpropagation, this function does not propagate gradients.

See also:

numpy.isinf

6.4. Reference
chainerx.isnan

chainerx.isnan(x)
Test element-wise for NaN and return result as a boolean array.

Parameters  
\(x\) (ndarray) – Input array.

Returns  
True where \(x\) is NaN, false otherwise

Return type  
ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.isnan

chainerx.logical_and

chainerx.logical_and(x1, x2)
Returns an array of x1 AND x2 element-wise.

Parameters  
\(x1\) (ndarray) – Input array.
\(x2\) (ndarray) – Input array.

Returns  
Output array of type bool.

Return type  
ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.logical_and

chainerx.logical_or

chainerx.logical_or(x1, x2)
Returns an array of x1 OR x2 element-wise.

Parameters  
\(x1\) (ndarray) – Input array.
\(x2\) (ndarray) – Input array.

Returns  
Output array of type bool.

Return type  
ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:
numpy.logical_or

chainerx.logical_not

chainerx.logical_not(x)
   Returns an array of NOT x element-wise.
   Parameters x (ndarray) – Input array.
   Returns Output array of type bool.
   Return type ndarray

   Note: During backpropagation, this function does not propagate gradients.

See also:
   numpy.logical_not

chainerx.greater

chainerx.greater(x1, x2)
   Returns an array of (x1 > x2) element-wise.
   Parameters
      • x1 (ndarray) – Input array.
      • x2 (ndarray) – Input array.
   Returns Output array of type bool.
   Return type ndarray

   Note: During backpropagation, this function does not propagate gradients.

See also:
   numpy.greater

chainerx.greater_equal

chainerx.greater_equal(x1, x2)
   Returns an array of (x1 >= x2) element-wise.
   Parameters
      • x1 (ndarray) – Input array.
      • x2 (ndarray) – Input array.
   Returns Output array of type bool.
   Return type ndarray
Note: During backpropagation, this function does not propagate gradients.

See also:

`numpy.greater_equal`

**chainerx.less**

chainerx.less(x1, x2)

Returns an array of (x1 < x2) element-wise.

Parameters

- **x1** (`ndarray`) – Input array.
- **x2** (`ndarray`) – Input array.

Returns: Output array of type bool.

Return type: `ndarray`

Note: During backpropagation, this function does not propagate gradients.

See also:

`numpy.less`

**chainerx.less_equal**

chainerx.less_equal(x1, x2)

Returns an array of (x1 <= x2) element-wise.

Parameters

- **x1** (`ndarray`) – Input array.
- **x2** (`ndarray`) – Input array.

Returns: Output array of type bool.

Return type: `ndarray`

Note: During backpropagation, this function does not propagate gradients.

See also:

`numpy.less_equal`
chainerx.equal

chainerx.equal(x1, x2)
Returns an array of (x1 == x2) element-wise.

Parameters
- **x1** (ndarray) – Input array.
- **x2** (ndarray) – Input array.

Returns Output array of type bool.
Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:
numpy.equal

chainerx.not_equal

chainerx.not_equal(x1, x2)
Returns an array of (x1 != x2) element-wise.

Parameters
- **x1** (ndarray) – Input array.
- **x2** (ndarray) – Input array.

Returns Output array of type bool.
Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:
numpy.not_equal

Mathematical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.negative</td>
<td>Numerical negative, element-wise.</td>
</tr>
<tr>
<td>chainerx.add</td>
<td>Add arguments, element-wise.</td>
</tr>
<tr>
<td>chainerx.subtract</td>
<td>Subtract arguments, element-wise.</td>
</tr>
<tr>
<td>chainerx.multiply</td>
<td>Multiply arguments, element-wise.</td>
</tr>
<tr>
<td>chainerx.divide</td>
<td>Divide arguments, element-wise.</td>
</tr>
<tr>
<td>chainerx.sum</td>
<td>Sum of array elements over a given axis.</td>
</tr>
<tr>
<td>chainerx.maximum</td>
<td>Maximum arguments, element-wise.</td>
</tr>
<tr>
<td>chainerx.exp</td>
<td>Numerical exponential, element-wise.</td>
</tr>
<tr>
<td>chainerx.log</td>
<td>Natural logarithm, element-wise.</td>
</tr>
<tr>
<td>chainerx.logsumexp</td>
<td>The log of the sum of exponentials of input array.</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainerx.log_softmax</code></td>
<td>The log of the softmax of input array.</td>
</tr>
<tr>
<td><code>chainerx.sqrt</code></td>
<td>Non-negative square-root, element-wise</td>
</tr>
<tr>
<td><code>chainerx.sin</code></td>
<td>Sine, element-wise</td>
</tr>
<tr>
<td><code>chainerx.cos</code></td>
<td>Cosine, element-wise</td>
</tr>
<tr>
<td><code>chainerx.tan</code></td>
<td>Tangent, element-wise</td>
</tr>
<tr>
<td><code>chainerx.arcsin</code></td>
<td>Inverse sine, element-wise</td>
</tr>
<tr>
<td><code>chainerx.arccos</code></td>
<td>Trigonometric inverse cosine, element-wise</td>
</tr>
<tr>
<td><code>chainerx.arctan</code></td>
<td>Trigonometric inverse tangent, element-wise</td>
</tr>
<tr>
<td><code>chainerx.tanh</code></td>
<td>Hyperbolic tangent, element-wise</td>
</tr>
<tr>
<td><code>chainerx.square</code></td>
<td>Returns the element-wise square of the input.</td>
</tr>
<tr>
<td><code>chainerx.clip</code></td>
<td>Clips the values of an array to a given interval.</td>
</tr>
<tr>
<td><code>chainerx.ceil</code></td>
<td>Return the ceiling of the input, element-wise.</td>
</tr>
</tbody>
</table>

### Chainerx.negative

For **Chainerx.negative**(x)

Numerical negative, element-wise.

**Parameters**

- **x** *(ndarray)* – Input array.

**Returns**

- Returned array: \( y = -x \).

**Return type** *ndarray*

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

**See also:**

`numpy.negative`

### Chainerx.add

For **Chainerx.add**(x₁, x₂)

Add arguments, element-wise.

**Parameters**

- **x₁** *(ndarray or scalar)* – Input array.
- **x₂** *(ndarray or scalar)* – Input array.

**Returns**

- Returned array: \( y = x_1 + x_2 \).

**Return type** *ndarray*

**Note:** During backpropagation, this function propagates the gradient of the output array to the input arrays \( x₁ \) and \( x₂ \).

**See also:**

`numpy.add`
chainerx.subtract

chainerx.subtract(x1, x2)
Subtract arguments, element-wise.

- **Parameters**
  - x1 (ndarray or scalar) – Input array.
  - x2 (ndarray or scalar) – Input array.
- **Returns** Returned array: $y = x_1 - x_2$.
- **Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input arrays x1 and x2.

**See also:**
- numpy.subtract

chainerx.multiply

chainerx.multiply(x1, x2)
Multiply arguments, element-wise.

- **Parameters**
  - x1 (ndarray or scalar) – Input array.
  - x2 (ndarray or scalar) – Input array.
- **Returns** Returned array: $y = x_1 \times x_2$.
- **Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input arrays x1 and x2.

**See also:**
- numpy.multiply

chainerx.divide

chainerx.divide(x1, x2)
Divide arguments, element-wise.

- **Parameters**
  - x1 (ndarray or scalar) – Input array.
  - x2 (ndarray or scalar) – Input array.
- **Returns** Returned array: $y = \frac{x_1}{x_2}$.
- **Return type** ndarray
Note: During backpropagation, this function propagates the gradient of the output array to the input arrays \(x1\) and \(x2\).

See also:

numpy.divide

chainerx.sum

chainerx.sum\((a, \text{axis}=\text{None}, \text{keepdims}=\text{False})\)
Sum of array elements over a given axis.

Parameters

- \(a\) (ndarray) – Input array.
- \(\text{axis}\) (None or int or tuple of ints) – Axis or axes along which a sum is performed. The flattened array is used by default.
- \(\text{keepdims}\) (bool) – If this is set to True, the reduced axes are left in the result as dimensions with size one.

Returns The sum of input elements over a given axis.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \(a\).

See also:

numpy.sum()

chainerx.maximum

chainerx.maximum\((x1, x2)\)
Maximum arguments, element-wise.

Parameters

- \(x1\) (ndarray or scalar) – Input array.
- \(x2\) (ndarray or scalar) – Input array.

Returns Returned array: \(y = \max\{x1, x2\}\).

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays \(x1\) and \(x2\).

Note: \(\text{maximum of ndarray and ndarray}\) is not supported yet.

See also:
numpy.maximum

**chainerx.exp**

chainerx.exp(x)

Numerical exponential, element-wise.

- **Parameters** x (ndarray) – Input array.
- **Returns** Returned array: \( y = \exp x \).
- **Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

**See also:**

numpy.exp

**chainerx.log**

chainerx.log(x)

Natural logarithm, element-wise.

- **Parameters** x (ndarray) – Input array.
- **Returns** Returned array: \( y = \ln x \).
- **Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

**See also:**

numpy.log

**chainerx.logsumexp**

chainerx.logsumexp(x, axis=None, keepdims=False)

The log of the sum of exponentials of input array.

- **Parameters**

  - x (ndarray) – Input array.
  - axis (None or int or tuple of ints) – Axis or axes along which a sum is performed. The flattened array is used by default.
  - keepdims (bool) – If this is set to True, the reduced axes are left in the result as dimensions with size one.

- **Returns** The log of the sum of exponentials of input elements over a given axis.

- **Return type** ndarray

6.4. Reference
**chainerx.sqrt**

`chainerx.sqrt(x)`

Non-negative square-root, element-wise

**Parameters**
- `x (ndarray)` – Input array.

**Returns**
- Returned array: $y = \sqrt{x}$.

**Return type** `ndarray`

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array $x$.

**See also:**
- `numpy.sqrt`

**chainerx.sin**

`chainerx.sin(x)`

Sine, element-wise

**Parameters**
- `x (ndarray)` – Input array.

**Returns**
- Returned array: $y = \sin x$.

**Return type** `ndarray`

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array $x$.

**See also:**
- `numpy.sin`

**chainerx.cos**

`chainerx.cos(x)`

Cosine, element-wise

**Parameters**
- `x (ndarray)` – Input array.

**Returns**
- Returned array: $y = \cos x$.

**Return type** `ndarray`

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array $x$.

**See also:**
- `numpy.cos`
chainerx.tan

chainerx.tan(x)
Tangent, element-wise

Parameters  

\( x \) (ndarray) – Input array.

Returns  

Returned array: \( y = \tan x \).

Return type  

ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

See also:

numpy.tan

chainerx.arcsin

chainerx.arcsin(x)
Inverse sine, element-wise

Parameters  

\( x \) (ndarray) – Input array.

Returns  

Returned array: \( y = \arcsin x \).

Return type  

ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

See also:

numpy.arcsin

chainerx.arccos

chainerx.arccos(x)
Trigonometric inverse cosine, element-wise

Parameters  

\( x \) (ndarray) – Input array.

Returns  

Returned array: \( y = \arccos x \).

Return type  

ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

See also:

numpy.arccos

6.4. Reference
chainerx.arctan

chainerx.arctan(x)
Trigonometric inverse tangent, element-wise

Parameters
x (ndarray) – Input array.

Returns
Returned array: \( y = \arctan x \).

Return type
ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

See also:
numpy.arctan

chainerx.square

chainerx.square(x)
Returns the element-wise square of the input.

Parameters
x (ndarray or scalar) – Input data

Returns
Returned array: \( y = x \times x \). A scalar is returned if \( x \) is a scalar.

Return type
ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array \( x \).

See also:
numpy.square

chainerx.clip

chainerx.clip(a, a_min, a_max)
Clips the values of an array to a given interval.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of \([0, 1]\) is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters

- a (ndarray) – Array containing elements to clip.
- a_min (scalar) – Maximum value.
- a_max (scalar) – Minimum value.

Returns
An array with the elements of \( a \), but where values \( < a_{\text{min}} \) are replaced with \( a_{\text{min}} \), and those \( > a_{\text{max}} \) with \( a_{\text{max}} \).

Return type
ndarray
Note: The *ndarray* typed *a_min* and *a_max* are not supported yet.

Note: During backpropagation, this function propagates the gradient of the output array to the input array *a*.

See also:

- `numpy.clip()`

**chainerx.ceil**

`chainerx.ceil(x)`

Return the ceiling of the input, element-wise.

- **Parameters** `x` (ndarray) – Input array.
- **Returns** The ceiling of each element in array.
- **Return type** ndarray

See also:

- `numpy.ceil`

**Random sampling**

<table>
<thead>
<tr>
<th><code>chainerx.random.normal</code></th>
<th>Draws random samples from a normal (Gaussian) distribution.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainerx.random.uniform</code></td>
<td>Draws samples from a uniform distribution.</td>
</tr>
</tbody>
</table>

**chainerx.random.normal**

`chainerx.random.normal(*args, **kwargs, device=None)`

Draws random samples from a normal (Gaussian) distribution.

This is currently equivalent to `numpy.random.normal()` wrapped by `chainerx.array()`, given the device argument.

See also:

- `numpy.random.normal()`

**chainerx.random.uniform**

`chainerx.random.uniform(*args, **kwargs, device=None)`

Draws samples from a uniform distribution.

This is currently equivalent to `numpy.random.normal()` wrapped by `chainerx.array()`, given the device argument.

See also:

- `numpy.random.uniform()`
Sorting, searching, and counting

chainerx.argmax

Returns the indices of the maximum along an axis.

Parameters

• \(a\) (ndarray) – Array to take the indices of the maximum of.
• \(axis\) (None or int) – Along which axis to compute the maximum. The flattened array is used by default.

Returns

The indices of the maximum of \(a\), along the axis if specified.

Return type ndarray

See also:

numpy.argmax()

Statistics

chainerx.amax

Returns the maximum of an array or the maximum along an axis.

Parameters

• \(a\) (ndarray) – Array to take the maximum.
• \(axis\) (None or int or tuple of ints) – Along which axis to take the maximum. The flattened array is used by default. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes.
• \(keepdims\) (bool) – If True, the axis is remained as an axis of size one.

Returns

The maximum of \(a\), along the axis if specified.

Return type ndarray

Note: When at least one element is NaN, the corresponding max value will be NaN.

Note: During backpropagation, this function propagates the gradient of the output array to the input array \(a\).
Chainer Documentation, Release 6.7.0

See also:
numpy.amax()

Connection

<table>
<thead>
<tr>
<th>chainerx.conv</th>
<th>N-dimensional convolution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.conv_transpose</td>
<td>N-dimensional transposed convolution.</td>
</tr>
<tr>
<td>chainerx.linear</td>
<td>Linear function, or affine transformation.</td>
</tr>
</tbody>
</table>

**chainerx.conv**

chainerx.conv(x, w=None, b=None, stride=1, pad=0, cover_all=False)

N-dimensional convolution.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three arrays: the input x, the filter weight w and the bias vector b.

Notation: here is a notation for dimensionalities.

- \(N\) is the number of spatial dimensions.
- \(n\) is the batch size.
- \(c_I\) and \(c_O\) are the number of the input and output channels, respectively.
- \(d_1, d_2, ..., d_N\) are the size of each axis of the input’s spatial dimensions, respectively.
- \(k_1, k_2, ..., k_N\) are the size of each axis of the filters, respectively.
- \(l_1, l_2, ..., l_N\) are the size of each axis of the output’s spatial dimensions, respectively.
- \(p_1, p_2, ..., p_N\) are the size of each axis of the spatial padding size, respectively.

Then the conv function computes correlations between filters and patches of size \((k_1, k_2, ..., k_N)\) in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of stride from the first position \((-p_1, -p_2, ..., -p_N)\) for each spatial axis.

Let \((s_1, s_2, ..., s_N)\) be the stride of filter application. Then, the output size \((l_1, l_2, ..., l_N)\) is determined by the following equations:

\[
l_n = (d_n + 2p_n - k_n)/s_n + 1 \quad (n = 1, ..., N)
\]

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations:

\[
l_n = (d_n + 2p_n - k_n + s_n - 1)/s_n + 1 \quad (n = 1, ..., N)
\]

**Parameters**

- **x (ndarray)** – Input array of shape \((n, c_I, d_1, d_2, ..., d_N)\).
- **w (ndarray)** – Weight array of shape \((c_O, c_I, k_1, k_2, ..., k_N)\).
- **b (None or ndarray)** – One-dimensional bias array with length \(c_O\) (optional).
- **stride (int or tuple of int s)** – Stride of filter applications \((s_1, s_2, ..., s_N)\). stride=s is equivalent to \((s, s, ..., s)\).
• **pad** *(int or tuple of int)* – Spatial padding width for input arrays \((p_1, p_2, \ldots, p_N)\).
  
  \(\text{pad}=p\) is equivalent to \((p, p, \ldots, p)\).

• **cover_all** *(bool)* – If True, all spatial locations are convoluted into some output pixels.
  
  It may make the output size larger. **cover_all** needs to be **False** if you want to use cuda backend.

**Returns** Output array of shape \((n, c_O, l_1, l_2, \ldots, l_N)\).

**Return type** *ndarray*

**Note:** In cuda backend, this function uses cuDNN implementation for its forward and backward computation.

**Note:** In cuda backend, this function has following limitations yet:

- The **cover_all=True** option is not supported yet.
- The **dtype** must be **float32** or **float64** (**float16** is not supported yet.)

**Note:** During backpropagation, this function propagates the gradient of the output array to input arrays \(x\), \(w\), and \(b\).

**See also:**

*chainer.functions.convolution_nd()*

**Example**

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> w = chainerx.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> w.shape
(1, 3, 10, 10, 10)
>>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> 11 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> 12 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> 13 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, 11, 12, 13)
True
>>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_all=True)
>>> y.shape == (n, c_o, 11, 12, 13 + 1)
```

(continues on next page)
chainerx.conv_transpose

chainerx.conv_transpose(x, w, b=None, stride=1, pad=0, outsize=None)
N-dimensional transposed convolution.

This is an implementation of N-dimensional transposed convolution, which is previously known as deconvolution in Chainer.

It takes three arrays: the input \( x \), the filter weight \( w \), and the bias vector \( b \).

Notation: here is a notation for dimensionalities.

- \( N \) is the number of spatial dimensions.
- \( n \) is the batch size.
- \( c_I \) and \( c_O \) are the number of the input and output channels, respectively.
- \( d_1, d_2, ..., d_N \) are the size of each axis of the input’s spatial dimensions, respectively.
- \( k_1, k_2, ..., k_N \) are the size of each axis of the filters, respectively.
- \( p_1, p_2, ..., p_N \) are the size of each axis of the spatial padding size, respectively.
- \( s_1, s_2, ..., s_N \) are the stride of each axis of filter application, respectively.

If \( \text{outsize} \) option is \( \text{None} \), the output size \((l_1, l_2, ..., l_N)\) is determined by the following equations with the items in the above list:

\[
l_n = s_n(d_n - 1) + k_n - 2p_n \quad (n = 1, ..., N)
\]

If \( \text{outsize} \) option is given, the output size is determined by \( \text{outsize} \). In this case, the \( \text{outsize} \) \((l_1, l_2, ..., l_N)\) must satisfy the following equations:

\[
d_n = \left\lfloor \frac{(l_n + 2p_n - k_n)}{s_n} \right\rfloor + 1 \quad (n = 1, ..., N)
\]

Parameters

- \( x \) (ndarray) – Input array of shape \((n, c_I, d_1, d_2, ..., d_N)\).
- \( w \) (ndarray) – Weight array of shape \((c_I, c_O, k_1, k_2, ..., k_N)\).
- \( b \) (None or ndarray) – One-dimensional bias array with length \( c_O \) (optional).
- \( \text{stride} \) (int or tuple of int) – Stride of filter applications \((s_1, s_2, ..., s_N)\). \( \text{stride} = s \) is equivalent to \((s, s, ..., s)\).
- \( \text{pad} \) (int or tuple of int) – Spatial padding width for input arrays \((p_1, p_2, ..., p_N)\). \( \text{pad} = p \) is equivalent to \((p, p, ..., p)\).
- \( \text{outsize} \) (None or tuple of int) – Expected output size of deconvolutional operation. It should be a tuple of ints \((l_1, l_2, ..., l_N)\). Default value is \( \text{None} \) and the \( \text{outsize} \) is estimated by input size, stride and pad.

Returns Output array of shape \((n, c_O, l_1, l_2, ..., l_N)\).

Return type ndarray
Note: During backpropagation, this function propagates the gradient of the output array to input arrays \( x \), \( w \), and \( b \).

See also:

```
chainer.functions.deconvolution_nd()
```

Example

**Example1**: the case when `outsize` is not given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> w = chainerx.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> w.shape
(3, 1, 10, 10, 10)
>>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True
```

**Example2**: the case when `outsize` is given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.array(np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32))
>>> x.shape
(10, 3, 5, 10, 15)
>>> w = chainerx.array(np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32))
>>> w.shape
(3, 1, 10, 10, 10)
>>> b = chainerx.array(np.random.uniform(0, 1, (c_o))).astype(np.float32))
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
(continues on next page)
```
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True

```python
>>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3),...
˓
→outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True
```

chainerx.linear

chainerx.linear(x, W, b=None, n_batch_axis=1)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It computes

\[ Y = xW^\top + b. \]

Parameters

- **x (ndarray)** – Input array, which is a \((s_1, s_2, ..., s_n)\)-shaped array.
- **W (ndarray)** – Weight variable of shape \((M, N)\), where \((N = s_{n\_batch\_axes} \ast \ldots \ast s_n)\).
- **b (ndarray)** – Bias variable (optional) of shape \((M,)\).
- **n\_batch\_axes (int)** – The number of batch axes. The default is 1. The input variable is reshaped into \((n\_batch\_axes + 1)\)-dimensional tensor. This should be greater than 0.

Returns

Output array with shape of \((s_1, ..., s_{n\_batch\_axes}, M)\).

Return type

ndarray

Note:
During backpropagation, this function propagates the gradient of the output array to input arrays x, W and b.

Normalization

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.batch_norm</td>
<td>Batch normalization function.</td>
</tr>
<tr>
<td>chainerx.fixed_batch_norm</td>
<td>Batch normalization function with fixed statistics.</td>
</tr>
</tbody>
</table>
**chainerx.batch_norm**

`chainerx.batch_norm(x, gamma, beta, running_mean, running_var, eps=2e-5, decay=0.9, axis=None)`

Batch normalization function.

It takes the input array `x` and two parameter arrays `gamma` and `beta`. The parameter arrays must both have the same size.

**Parameters**

- `x (ndarray)` – Input array.
- `gamma (ndarray)` – Scaling parameter of normalized data.
- `beta (ndarray)` – Shifting parameter of scaled normalized data.
- `running_mean (ndarray)` – Running average of the mean. This is a running average of the mean over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average.
- `running_var (ndarray)` – Running average of the variance. This is a running average of the variance over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average.
- `eps (float)` – Epsilon value for numerical stability.
- `decay (float)` – Decay rate of moving average. It is used during training.
- `axis (int, tuple of int or None)` – Axis over which normalization is performed. When axis is `None`, the first axis is treated as the batch axis and will be reduced during normalization.

**Note:** During backpropagation, this function propagates the gradient of the output array to the input arrays `x`, `gamma` and `beta`.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

**chainerx.fixed_batch_norm**

`chainerx.fixed_batch_norm(x, gamma, beta, mean, var, eps=2e-5, axis=None)`

Batch normalization function with fixed statistics.

This is a variant of `batch_norm()`, where the mean and array statistics are given by the caller as fixed variables.

**Parameters**

- `x (ndarray)` – Input array.
- `gamma (ndarray)` – Scaling parameter of normalized data.
- `beta (ndarray)` – Shifting parameter of scaled normalized data.
- `mean (ndarray)` – Shifting parameter of input.
- `var (ndarray)` – Square of scaling parameter of input.
- `eps (float)` – Epsilon value for numerical stability.
- **axis** (*int, tuple of int or None*) – Axis over which normalization is performed. When axis is None, the first axis is treated as the batch axis and will be reduced during normalization.

**Note:** During backpropagation, this function does not propagate gradients.

---

**Pooling**

- **chainerx.max_pool**
  - **chainerx.average_pool**

**chainerx.max_pool**

*chainerx.max_pool((x, ksize, stride=None, pad=0, cover_all=False))*

Spatial max pooling function.

This acts similarly to **conv()**, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

**Parameters**

- **x** (*ndarray*) – Input array.
- **ksize** (*int or tuple of ints*) – Size of pooling window. ksize=k and ksize=(k, k, ..., k) are equivalent.
- **stride** (*int or tuple of ints or None*) – Stride of pooling applications. stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad** (*int or tuple of ints*) – Spatial padding width for the input array. pad=p and pad=(p, p, ..., p) are equivalent.
- **cover_all** (*bool*) – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.

**Returns** Output array.

**Return type** *ndarray*

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array x. This function is only differentiable up to the second order.

**Note:** In cuda backend, only 2 and 3 dim arrays are supported as x because cuDNN pooling supports 2 and 3 spatial dimensions.
**chainerx.average_pool**

chainerx.average_pool(x, ksize, stride=None, pad=0, pad_mode='ignore')

Spatial average pooling function.

This acts similarly to conv(), but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

**Parameters**

- **x (ndarray)** – Input array.
- **ksize (int or tuple of ints)** – Size of pooling window. ksize=k and ksize=(k, k, ..., k) are equivalent.
- **stride (int or tuple of ints or None)** – Stride of pooling applications. stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad (int or tuple of ints)** – Spatial padding width for the input array. pad=p and pad=(p, p, ..., p) are equivalent.
- **pad_mode ({'zero', 'ignore'})** – Specifies how padded region is treated.
  - 'zero' – the values in the padded region are treated as 0
  - 'ignore' – padded region is ignored (default)

**Returns** Output array.

**Return type** ndarray

**Note:** During backpropagation, this function propagates the gradient of the output array to the input array x.

**Note:** In cuda backend, only 2 and 3 dim arrays are supported as x because cuDNN pooling supports 2 and 3 spatial dimensions.

### 6.4.3 Context

**chainerx.Context**

An isolated execution environment of ChainerX.

**chainerx.Context**

**class chainerx.Context**

An isolated execution environment of ChainerX.

In Python binding, a single context is automatically created and set as the global default context on import. Only advanced users will have to care about contexts.
Methods

get_backend()
get_device()
make_backprop_id()
release_backprop_id()

___eq___()
    Return self==value.

___ne___()
    Return self!=value.

___lt___()
    Return self<value.

___le___()
    Return self<=value.

___gt___()
    Return self>value.

___ge___()
    Return self>=value.

6.4.4 Backend and Device

ChainerX adds a level of abstraction between the higher level array operations and the lower level computations and resource management. This abstraction is managed by the Backend and the Device classes. Native (CPU) and CUDA backends are two concrete implementations currently provided by ChainerX but the abstraction allows you to plug any backend into the framework.

Backend

<table>
<thead>
<tr>
<th>chainerx.Backend</th>
<th>Pluggable entity that abstracts various computing platforms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.get_backend</td>
<td>Returns a backend specified by the name.</td>
</tr>
</tbody>
</table>

chainerx.Backend

class chainerx.Backend
    Pluggable entity that abstracts various computing platforms.

    A backend holds one or more Devices, each of which represents a physical computing unit.
Methods

**get_device** \((\text{index})\)

Returns a device specified by the given index.

**Parameters**

- **index** \((\text{int})\) – Device index.

**Returns**

Device object.

**Return type**

Device

**get_device_count**

Returns the number of devices available in this backend.

**Returns**

Number of devices.

**Return type**

int

**__eq__**

Return self==value.

**__ne__**

Return self!=value.

**__lt__**

Return self<value.

**__le__**

Return self<=value.

**__gt__**

Return self>value.

**__ge__**

Return self>=value.

Attributes

**context**

Context to which this backend belongs.

**Returns**

Context object.

**Return type**

Context

**name**

Backend name.

**Returns**

Backend name.

**Return type**

str
**chainerx.get_backend**

`chainerx.get_backend(backend_name)`

Returns a backend specified by the name.

**Parameters**

`backend_name (str)` – Backend name.

**Returns**

Backend object.

**Return type**

`Backend`

---

**Device**

<table>
<thead>
<tr>
<th><code>chainerx.Device</code></th>
<th>Represents a physical computing unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainerx.get_device</code></td>
<td>Returns a device specified by the arguments.</td>
</tr>
<tr>
<td><code>chainerx.get_default_device</code></td>
<td>Returns the default device associated with the current thread.</td>
</tr>
<tr>
<td><code>chainerx.set_default_device</code></td>
<td>Sets the given device as the default device of the current thread.</td>
</tr>
<tr>
<td><code>chainerx.using_device</code></td>
<td>Creates a context manager to temporarily set the default device.</td>
</tr>
</tbody>
</table>

---

**chainerx.Device**

```python
class chainerx.Device
 Represents a physical computing unit.

 Methods

 synchronize()
 Synchronizes the device.

 __eq__(value)
 Return self==value.

 __ne__(value)
 Return self!=value.

 __lt__(value)
 Return self<value.

 __le__(value)
 Return self<=value.

 __gt__(value)
 Return self>value.

 __ge__(value)
 Return self>=value.
```

---

6.4. Reference
Attributes

backend
Backend to which this device belongs.
Returns Backend object.
Return type Backend

context
Context to which this device belongs.
Returns Context object.
Return type Context

index
Index of this device.
Returns Index of this device.
Return type int

name
Device name.
It is the backend name and the device index concatenated with a colon, e.g. native:0.
Returns Device name.
Return type str

chainerx.get_device

chainerx.get_device(*device)
Returns a device specified by the arguments.
If the argument is a single Device instance, it’s simply returned.
Otherwise, there are three ways to specify a device:

# Specify a backend name and a device index separately.
chainerx.get_device('native', 0)

# Specify a backend name and a device index in a single string.
chainerx.get_device('native:0')

# Specify only a backend name. In this case device index 0 is chosen.
chainerx.get_device('native')

Returns Device object.
Return type Device
chainerx.get_default_device

chainerx.get_default_device()
Returns the default device associated with the current thread.

Returns: The default device.
Return type: Device

See also:
- chainerx.set_default_device()
- chainerx.using_device()

chainerx.set_default_device

chainerx.set_default_device(device)
Sets the given device as the default device of the current thread.

Parameters:
- **device** (Device or str) – Device object or device name to set as the default device.

See also:
- chainerx.get_default_device()
- chainerx.using_device()

chainerx.using_device

chainerx.using_device(device)
Creates a context manager to temporarily set the default device.

Parameters:
- **device** (Device or str) – Device object or device name to set as the default device during the context. See chainerx.Device.name for the specification of device names.

See also:
- chainerx.get_default_device()
- chainerx.set_default_device()

### 6.4.5 Utilities for Backpropagation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainerx.backward</td>
<td>Runs backpropagation.</td>
</tr>
<tr>
<td>chainerx.no_backprop_mode</td>
<td>Creates a context manager which temporarily disables backpropagation.</td>
</tr>
<tr>
<td>chainerx.force_backprop_mode</td>
<td>Creates a context manager which temporarily enables backpropagation.</td>
</tr>
<tr>
<td>chainerx.is_backprop_required</td>
<td>Returns whether the backpropagation is enabled in the current thread.</td>
</tr>
</tbody>
</table>
chainerx.backward

chainerx.backward(outputs, *, enable_double_backprop=False)
Runs backpropagation.

On backpropagation (a.k.a. backprop), the computational graph is traversed backward starting from the output arrays, up until the root arrays on which ndarray.require_grad() have been called.

Backpropagation uses ndarray.grad held by the output arrays as the initial gradients. You can manually assign them before calling this function. Otherwise, they are assumed to be 1.

To enable higher order differentiation, pass enable_double_backprop=True so that you can further run backpropagation from the resulting gradient arrays. Note that enabling it results in larger memory consumption needed to store the gradients w.r.t intermediate arrays that are required for the second gradient computation.

---

**Note:** The whole process of backpropagation is executed in C++, except those operations whose backward computation falls back to the corresponding Python implementation. Currently this function does not release the GIL at all.

---

**Parameters**

- **outputs** (ndarray or list of ndarrays) – Output arrays from which backpropagation starts.
- **enable_double_backprop** (bool) – If True, a computational trace of the whole backpropagation procedure is recorded to the computational graph so that one can further do backpropagation from the resulting gradients.

**See also:**

- chainerx.ndarray.backward()

---

chainerx.no_backprop_mode

chainerx.no_backprop_mode()

Creates a context manager which temporarily disables backpropagation.

Within this context, no computational graph will be formed unless force_backprop_mode() is used.

Arrays resulting from operations enclosed with this context will be disconnected from the computational graph. Trying to perform backpropagation from such arrays would result in an error.

```python
x = chainerx.array([4, 3], numpy.float32)
x.require_grad()

with chainerx.no_backprop_mode():
 y = 2 * x + 1
y.backward() # ! error
```

Benefits of no_backprop_mode include reduced CPU overhead of building computational graphs, and reduced consumption of device memory that would be otherwise retained for backward propagation.

---

**See also:**

- chainerx.force_backprop_mode()
• `chainerx.is_backprop_required()`
• `chainer.no_backprop_mode()`

### chainerx.force_backprop_mode

`chainerx.force_backprop_mode()`

Creates a context manager which temporarily enables backpropagation.

This context re-enables backpropagation that is disabled by any surrounding `no_backprop_mode()` context.

```python
x = chainerx.array([4, 3], numpy.float32)
x.require_grad()

with chainerx.no_backprop_mode():
 with chainerx.force_backprop_mode():
 y = 2 * x + 1

y.backward()
x.grad
array([2., 2.], shape=(2,), dtype=float32, device='native:0')
```

See also:

• `chainerx.no_backprop_mode()`
• `chainerx.is_backprop_required()`
• `chainer.force_backprop_mode()`

### chainerx.is_backprop_required

`chainerx.is_backprop_required()`

Returns whether the backpropagation is enabled in the current thread.

The result is affect by `chainerx.no_backprop_mode()` and `chainerx.force_backprop_mode()`.

See also:

• `chainerx.no_backprop_mode()`
• `chainerx.force_backprop_mode()`

## 6.5 Contribution Guide

This is a guide aimed towards contributors of ChainerX which is mostly implemented in C++. It describes how to build the project and how to run the test suite so that you can get started contributing.

**Note:** Please refer to the *Chainer Contribution Guide* for the more general contribution guideline that is not specific to ChainerX. E.g. how to download the source code, manage git branches, send pull requests or contribute to Chainer’s Python code base.
6.5.1 Building the shared library

You can build the C++ ChainerX project to generate a shared library similar to any other cmake project. Run the following command from the root of the project to generate `chainerx_cc/build/chainerx/libchainerx.so`.

```bash
$ mkdir chainerx_cc/build
$ cd chainerx_cc/build
$ cmake ..
$ make
```

The CUDA support is enabled by, either setting `CHAINERX_BUILD_CUDA=1` as an environment variable or specifying `-DCHAINERX_BUILD_CUDA=1` in `cmake`. When building with the CUDA support, either the `CUDNN_ROOT_DIR` environment variable or `-DCUDNN_ROOT_DIR` is required to locate the cuDNN installation path.

Note: CUDA without cuDNN is currently not supported.

Then, to install the headers and the library, run:

```bash
$ make install
```

You can specify the installation path using the prefix `-DCMAKE_INSTALL_PREFIX=<...>` in `cmake`.

6.5.2 Running the test suite

The test suite can be built by passing `-DCHAINERX_BUILD_TEST=ON` to `cmake`. It is not built by default. Once built, run the suite with the following command from within the build directory.

```bash
$ cd chainerx_cc/build
$ ctest -V
```

6.5.3 Coding standards

The ChainerX C++ coding standard is mostly based on the Google C++ Style Guide and principles.

Formatting

ChainerX is formatted using `clang-format`. To fix the formatting in-place, run the following command from `chainerx_cc` directory:

```bash
$ cd chainerx_cc
$ scripts/run-clang-format.sh --in-place
```
ChainerX uses the cpplint and clang-tidy for lint checking. Note that clang-tidy requires that you’ve finished running cmake. To run cpplint, run `scripts/run-cpplint.sh` from `chainerx_cc` directory:

```bash
$ cd chainerx_cc
$ scripts/run-cpplint.sh
```

To run clang-tidy, run `make clang-tidy` from the build directory:

```bash
$ cd chainerx_cc/build
$ make clang-tidy
```

### 6.5.4 Thread sanitizer

The thread sanitizer can be used to detect thread-related bugs, such as data races. To enable the thread sanitizer, pass `-DCHAINERX_ENABLE_THREAD_SANITIZER=ON` to `cmake`.

You can run the test with `ctest -V` as usual and you will get warnings if the thread sanitizer detects any issues.

CUDA runtime is known to cause a thread leak error as a false alarm. In such case, disable the thread leak detection using environment variable `TSAN_OPTIONS='report_thread_leaks=0'`.

### 6.5.5 Python contributions and unit tests

To test the Python binding, run the following command at the repository root:

```bash
$ pytest
```

The above command runs all the tests in the repository, including Chainer and ChainerMN. To run only ChainerX tests, specify the test directory:

```bash
$ pytest tests/chainerx_tests
```

Run tests with coverage:

```bash
$ pytest --cov --no-cov-on-fail --cov-fail-under=80 tests/chainerx_tests
```

Run tests without CUDA GPU:

```bash
$ pytest -m 'not cuda' tests/chainerx_tests
```

### 6.6 Tips and FAQs

#### 6.6.1 Can I use ChainerX without Chainer?

Yes, it is possible. See the code samples below.

- Train an MLP with MNIST dataset ([chainerx_cc/examples/mnist_py](chainerx_cc/examples/mnist_py))
- Train a CNN with ImageNet dataset ([chainerx_cc/examples/imagenet_py](chainerx_cc/examples/imagenet_py))
6.6.2 What does the C++ interface look like?

It is almost identical to the Python interface with a 1-to-1 mapping. The interface is still subject to change, but there is an example code:

- Train an MLP with MNIST dataset in C++ (chainerx_cc/examples/mnist)

6.6.3 GPU memory consumption is too high when used with CuPy

Both ChainerX and CuPy use their own GPU memory pools, meaning that GPU memory is not efficiently utilized (unused memory is kept without being freed by both ChainerX and CuPy). You can run your script after setting the environment variable `CHAINERX_CUDA_CUPY_SHARE_ALLOCATOR` to 1 to use the experimental feature which makes sure that both ChainerX and CuPy share the same memory pool, hence reducing your peak GPU memory-usage. You may also invoke `chainerx._cuda.cupy_share_allocator` instead of setting the environment variable for the same effect. In this case, it is recommended that you call the function prior to any GPU memory allocation.
DISTRIBUTED DEEP LEARNING WITH CHAINERMN

ChainerMN enables multi-node distributed deep learning with the following features:

- **Scalable** — it makes full use of the latest technologies such as NVIDIA NCCL and CUDA-Aware MPI,
- **Flexible** — even dynamic neural networks can be trained in parallel thanks to Chainer’s flexibility, and
- **Easy** — minimal changes to existing user code are required.

This blog post provides our benchmark results using up to 128 GPUs.

ChainerMN can be used for both inner-node (i.e., multiple GPUs inside a node) and inter-node settings. For inter-node settings, we highly recommend to use high-speed interconnects such as InfiniBand.

ChainerMN examples are available on GitHub. These examples are based on the examples of Chainer and the differences are highlighted.

### 7.1 Installation

#### 7.1.1 Installation Guide

**Requirements**

ChainerMN depends on the following software libraries: CUDA-Aware MPI, NVIDIA NCCL, and a few Python packages including CuPy and MPI4py.

**Note:** In Chainer v5, ChainerMN became a part of Chainer package. Installing Chainer (pip install chainer) automatically makes ChainerMN available. Note that you still need to separately install requirements described below to actually run code using ChainerMN.

Before upgrading from Chainer v4 to v5 or later, make sure to remove existing chainermn package (pip uninstall chainermn).
CUDA-Aware MPI

ChainerMN relies on MPI. In particular, for efficient communication between GPUs, it uses CUDA-aware MPI. For details about CUDA-aware MPI, see this introduction article. (If you use only the CPU mode, MPI does not need to be CUDA-Aware. See Installation on Non-GPU Environments for more details.)

The CUDA-aware features depend on several MPI packages, which need to be configured and built properly. The following are examples of Open MPI and MVAPICH.

Open MPI (for details, see Open MPI’s official instructions):

```bash
$./configure --with-cuda
$ make -j4
$ sudo make install
```

MVAPICH (for details, see Mvapich’s official instructions):

```bash
$./configure --enable-cuda
$ make -j4
$ sudo make install
$ export MV2_USE_CUDA=1 # Should be set all the time when using ChainerMN
```

NCCL

Note: If you are installing CuPy using wheels (i.e., `pip install cupy-cudaXX` where XX is the CUDA version), you don’t have to install NCCL manually. The latest NCCL 2.x library is bundled with CuPy wheels.

See CuPy Installation Guide for the detailed steps to install CuPy.

To enable efficient intra- and inter-node GPU-to-GPU communication, we use NVIDIA Collective Communications Library (NCCL). See NCCL’s official instructions for installation.

ChainerMN requires NCCL even if you have only one GPU per node. The only exception is when you run ChainerMN on CPU-only environments. See Installation on Non-GPU Environments for more details.

Note: We recommend NCCL 2 but NCCL 1 can be used. However, for NCCL 1, PureNcclCommunicator is not supported in ChainerMN. If you use NCCL 1, please properly configure environment variables to expose NCCL both when you install and use ChainerMN. Typical configurations should look like the following:

```bash
export NCCL_ROOT=<path to NCCL directory>
export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH
```

If you change the version of NCCL installed, you have to reinstall CuPy. Because, current ChainerMN applies CuPy to use NCCL. See CuPy official instructions for reinstallation.
MPI4py

You can install MPI4py by:

```bash
$ pip install mpi4py
```

Please make sure to properly configure environment variables so that MPI is available at installation time, because MPI4py links to MPI library at installation time. In particular, if you have multiple MPI implementations installed in your environment, please expose the implementation that you want to use both when you install and use ChainerMN.

As of writing, MPI4py does not support Open MPI 4.x. Please use versions from the Tested Environments section below.

CuPy

Chainer and ChainerMN rely on CuPy to use GPUs. Please refer to CuPy Installation Guide for the detailed steps to install CuPy.

In most cases it is recommended that you install CuPy using wheel distribution (precompiled binary) rather than source distribution. If you are installing from source, NCCL library must be installed before installing CuPy to enable NCCL feature in CuPy. Refer to NCCL for the installation steps of NCCL library. See Check if NCCL is enabled in CuPy, if you want to check whether NCCL is enabled in your CuPy.

Chainer and ChainerMN can be installed without CuPy, in which case the corresponding features are not available. See Installation on Non-GPU Environments for more details.

Tested Environments

We tested ChainerMN on all the following environments.

- OS
  - Ubuntu 14.04 LTS 64bit
  - Ubuntu 16.04 LTS 64bit
- Python 2.7.13, 3.5.1, 3.6.1
- MPI
  - Open MPI 2.1.6, 3.0.4, 3.1.4
- MPI4py 3.0.0
- NCCL 2.3.2 2.4.2

Note: Note that the following versions of Open MPI have some bugs that might cause ChainerMN programs to hang: 3.0.0-2 and 3.1.0-2. For more details, see Open MPI Issue #3972 and Chainer Issue #5740.

Also, mpi4py does not support Open MPI 4.0.x.
Installation on Non-GPU Environments

Users who want to try ChainerMN in CPU-only environment may skip installation of CuPy. Non-GPU set up may not be performant as GPU-enabled set up, but would be useful for testing or debugging training program in non-GPU environment such as laptops or CI jobs.

In this case, the MPI does not have to be CUDA-aware. Only naive communicator works with the CPU mode.

7.1.2 Step-by-Step Troubleshooting

This section is a step-by-step troubleshooting guide for ChainerMN. Please follow these steps to identify and fix your problem.

We assume that you are using Linux or another Unix-like environment.

Single-node environment

Basic MPI installation

Although ChainerMN stands for “Chainer MultiNode,” it is good to start from single-node execution. First of all, you need MPI. If MPI is correctly installed, you will see the mpicc and mpiexec commands in your PATH.

Below is an example of the output from Mvapich on Linux:

```
$ which mpicc
/usr/local/bin/mpicc

$ mpicc -show
gcc -I/usr/local/include ...(snip)... -lmpi

$ which mpiexec
/usr/local/bin/mpiexec

$ mpiexec --version
HYDRA build details:
Version: 3.1.4
Release Date: Wed Sep 7 14:33:43 EDT 2016
CC: gcc
CXX: g++
F77:
F90:
Configure options: (snip)
Process Manager: pmi
Launchers available: ssh rsh fork slurm l1 lsf sge manual persist
Topology libraries available: hwloc
Resource management kernels available: user slurm l1 lsf sge pbs cobalt
Checkpointing libraries available:
Demux engines available: poll select
```

If you see any error in above commands, please go back to the CUDA-Aware MPI and check your MPI installation.
Check what MPI you are using

In **CUDA-Aware MPI**, we mention both of **Open MPI** and **Mvapich**. If the MPI is provided by the system administrator and you are not really sure which MPI you are using, check the output of `mpiexec --version`.

- If the output contains **HYDRA**, then it’s **MVAPICH** (or possibly **MPICH**).
- If the output contains **OpenRTE**, then it’s **Open MPI**.

However, in such a case, you should make sure that the MPI is **CUDA-aware**, as mentioned below. We recommend to build your own MPI.

Check if MPI is CUDA-aware

Your MPI must be configured as **CUDA-aware**. You can use the following C program to check it.

```c
/* check_cuda_aware.c */
#include <cassert>
#include <stdio.h>
#include <mpi.h>
#include <cuda_runtime.h>

#define CUDA_CALL(expr) do {
 cudaError_t err;
 err = expr;
 assert(err == cudaSuccess);
} while(0)

int main(int argc, char **argv) {
 int rank, size;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int *sendbuf_d = NULL;
 int *recvbuf_d = NULL;

 CUDA_CALL(cudaMalloc((void**)&sendbuf_d, sizeof(int)));
 CUDA_CALL(cudaMalloc((void**)&recvbuf_d, sizeof(int)));
 CUDA_CALL(cudaMemcpy(sendbuf_d, &rank, sizeof(int), cudaMemcpyDefault));

 MPI_Reduce(sendbuf_d, recvbuf_d, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

 if (rank == 0) {
 int sum = -1;
 CUDA_CALL(cudaMemcpy(&sum, recvbuf_d, sizeof(int), cudaMemcpyDefault));
 if (sum == (size-1) * size / 2) {
 printf("OK.\n");
 } else {
 printf("Error.\n");
 }
 }

 cudaFree(sendbuf_d);
 cudaFree(recvbuf_d);
}
```

(continues on next page)
Save the code to a file named `check_cuda_aware.c`. You can compile and run it with the following command:

```bash
$ export MPICH_CC=nvcc # if you use Mvapich
$ export OMPI_CC=nvcc # if you use Open MPI
$ $(mpicc -show check_cuda_aware.c -arch sm_53 | sed -e 's/-Wl,-Xlinker /-Xlinker /g' | sed -e 's/-pthread/-Xcompiler -pthread/')
$./a.out
OK.
```

If the program prints `OK.`, your MPI is correctly configured.

### Check mpi4py

Next, let’s check that mpi4py is correctly installed. You can use the following script to check it:

```python
coding: utf-8
import os
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
 if i == rank:
 print("{} {}".format(os.uname()[1], i))

comm.Barrier()
```

Save the script into a file named `check_mpi4py.py` and run it. The output from the script should look like this:

```bash
$ mpiexec -np 4 python check_mpi4py.py
host00 0
host00 1
host00 2
host00 3
```

The script prints hostnames and ranks (process id in MPI) from each MPI process in a sequential manner. `host00` is the host name of the machine your are running the process. If you get an output like below, it indicates something is wrong with your installation:

```
Wrong output!
$ mpiexec -n 4 python check_mpi4py.py
host00 0
host00 0
host00 0
host00 0
```

A common problem is that the `mpicc` used to build `mpi4py` and `mpiexec` used to run the script are from different MPI installations.

Finally, run `pytest` to check the single-node configuration is ready:
$ git clone git@github.com:chainer/chainer.git
Cloning into 'chainer'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 168242 (delta 1), reused 2 (delta 0), pack-reused 168235
Receiving objects: 100% (168242/168242), 41.15 MiB | 1.65 MiB/s, done.
Resolving deltas: 100% (123696/123696), done.
Checking connectivity... done.
$ cd chainer/
$ pytest tests/chainermn_tests/
Also, you need to pay attention to the environment variables on remote hosts. The MPI runtime connects to the remote hosts in non-interactive mode, and environment variables may differ from your interactive login sessions:

```
$ ssh host00 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.
$ ssh host01 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.
...
```

In particular, check the following variables, which are critical to executing MPI programs:

- PATH
- LD_LIBRARY_PATH
- MV2_USE_CUDA (if you use MVAPICH)
- MV2_SMP_USE_CMA (if you use MVAPICH)

Besides, you need to make sure the same `mpiexec` binary is used to run MPI programs:

```
$ ssh host00 'which mpiexec'
/usr/local/bin/mpiexec
$ ssh host01 'which mpiexec'
/usr/local/bin/mpiexec
```

All the commands should give the same `mpiexec` binary path.

**Program files and data**

When you run MPI programs, all hosts must have the same Python binary and script files in the same path. First, check that the python binary and version are identical among hosts. Be careful if you are using *pyenv* or *Anaconda*:

```
$ ssh host00 'which python; python --version'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)
$ ssh host01 'which python'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)
...
```

Also, the script file (and possibly data files) must be in the same path on each host.

```
$ ls yourscript.py # in the current directory
yourscript.py
$ ssh host00 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py
$ ssh host01 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py
...
```
If you are using NFS, everything should be okay. If not, you need to transfer all the necessary files manually. In particular, when you run the ImageNet example in ChainerMN repository, all data files must be available on all computing hosts.

**hostfile**

The next step is to create a hostfile. A hostfile is a list of hosts on which MPI processes run.:

```bash
$ vi hostfile
$ cat hostfile
host00
host01
host02
host03
```

Then, you can run your MPI program using the hostfile. To check if the MPI processes run over multiple hosts, save the following script to a file and run it via `mpiexec`:

```python
print_rank.py
import os

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
 if i == rank:
 print("{} {}").format(os.uname()[1], i)
comm.Barrier()
```

If you get an output like below, it is working correctly.:

```
$ mpiexec -n 4 --hostfile hostfile python print_rank.py
host00 0
host01 1
host02 2
host03 3
```

If you have multiple GPUs, you may want to run multiple processes on each host. You can modify hostfile and specify the number of processes to run on each host.:

```bash
If you are using Mvapich:
$ cat hostfile
host00:4
host01:4
host02:4
host03:4

If you are using Open MPI
$ cat hostfile
host00 cpu=4
host01 cpu=4
host02 cpu=4
host03 cpu=4
```
With this hostfile, try running mpiexec again:

```
$ mpiexec -n 8 --hostfile hostfile python print_rank.py
host00 0
guest01 1
guest00 2
guest00 3
host01 4
host01 5
host01 6
host01 7
```

You will find that the first 4 processes run on host00 and the latter 4 on host01.

You can also specify computing hosts and resource mapping/binding using command line options of mpiexec. Please refer to the MPI manual for the more advanced use of mpiexec command.

### If you get runtime error:

If you get the following error messages, please check the specified section of the troubleshooting or installation guide.

```
[hostxxx:mpi_rank_0] [MPIDM] CMA is not available. Set MV2_SMP_USE_CMA=0 to disable CMA.
[cli_0]: aborting job:
Fatal error in MPI_Init_thread:
Other MPI error, error stack:
MPIR_Init_thread(514)....:
MPID_Init(365)............: channel initialization failed
MPIDM_Init(404).......:
MPIDM_Init(2132): process_vm_readv: Operation not permitted
```

```
==
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20327 RUNNING AT hostxxx
= EXIT CODE: 1
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
==
-> Check the value of MV2_SMP_USE_CMA (see CUDA-Aware MPI and Check SSH connection and environment variables).
```

```
[hostxxx:mpi_rank_0] [error_sighandler] Caught error: Segmentation fault (signal 11)
```

```
==
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20643 RUNNING AT hostxxx
= EXIT CODE: 11
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
==
YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)
This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions.
```
7.2 Tutorial

7.2.1 Overview

Data Parallelism

ChainerMN employs the data parallel approach for distributed training. In the data parallel approach, each worker has a model copy, and computes a gradient against a batch. Then, the workers collaborate to update the model using the gradients of all workers.

Training Iterations

What ChainerMN does for distributed training is actually quite simple. Let us look at what we do in each iteration. The following figure illustrates an iteration of standard training using Chainer (without ChainerMN). It consists of three steps: forward, backward and optimize.

When using ChainerMN, an additional step all-reduce is inserted after the backward step. In this step, workers communicate to obtain the averaged gradient over gradients of all workers. Then, the aggregated gradient is used to improve the model in the optimization step.
ChainerMN is built on MPI. MPI invokes our training script in the SPMD (single program, multiple data) way. ChainerMN is designed to create a process on each GPU. For example, let us suppose you have two nodes with four GPUs each, and want to run `train_imagenet.py`. Then, you will invoke eight Python processes running `train_imagenet.py` by using `mpiexec` or `mpirun`.

### 7.2.2 Step 1: Communicators and Optimizers

In the following, we explain how to modify your code using Chainer to enable distributed training with ChainerMN. We take Chainer's MNIST example and modify it in a step-by-step manner to see the standard way of using ChainerMN.

#### Creating a Communicator

We first need to create a `communicator`. A communicator is in charge of communication between workers. A communicator can be created as follows:

```python
comm = chainermn.create_communicator()
```

Workers in a node have to use different GPUs. For this purpose, `intra_rank` property of communicators is useful. Each worker in a node is assigned a unique `intra_rank` starting from zero. Therefore, it is often convenient to use the `intra_rank`-th GPU.

The following line of code is found in the original MNIST example:

```python
chainer.cuda.get_device_from_id(args.gpu).use()
```

which we modify as follows:

```python
device = comm.intra_rank
chainer.cuda.get_device_from_id(device).use()
```
Creating a Multi-Node Optimizer

This is the most important step. We need to insert the communication right after backprop and right before optimization. In ChainerMN, it is done by creating a multi-node optimizer.

Method `create_multi_node_optimizer` receives a standard Chainer optimizer, and it returns a new optimizer. The returned optimizer is called multi-node optimizer. It behaves exactly same as the supplied original standard optimizer (e.g., you can add hooks such as `WeightDecay`), except that it communicates model parameters and gradients properly in a multi-node setting.

The following is the code line found in the original MNIST example:

```python
optimizer = chainer.optimizers.Adam()
```

To obtain a multi-node optimizer, we modify that part as follows:

```python
optimizer = chainermn.create_multi_node_optimizer(
 chainer.optimizers.Adam(), comm)
```

Run

With the above two changes, your script is ready for distributed training. Invoke your script with `mpiexec` or `mpirun` (see your MPI’s manual for details). The following is an example of executing the training with four processes at localhost:

```bash
$ mpiexec -n 4 python train_mnist.py
```

In the non-GPU mode, you may see a warning like shown below, but this message is harmless, and you can ignore it for now.

```plaintext
Warning: using naive communicator because only naive supports CPU-only execution
```

If you have multiple GPUs on the localhost, 4 for example, you may also want to try:

```bash
$ mpiexec -n 4 python train_mnist.py --gpu
```

Multi-node execution

If you can successfully run the multi-process version of the MNIST example, you are almost ready for multi-node execution. The simplest way is to specify the `--host` argument to the `mpiexec` command. Let’s suppose you have two GPU-equipped computing nodes: `host00` and `host01`, each of which has 4 GPUs, and so you have 8 GPUs in total:

```bash
$ mpiexec -n 8 -host host00,host01 python train_mnist.py
```

The script should print similar results to the previous intra-node execution.
Copying datasets

In the MNIST example, the rank 0 process reads the entire portion of the dataset and scatters it to other processes. In some applications, such as the ImageNet ChainerMN example, however, only the paths to each data file are scattered and each process reads the actual data files. In such cases, all datasets must be readable on all computing nodes in the same location. You don’t need to worry about this if you use NFS (Network File System) or any other similar data synchronizing system. Otherwise, you need to manually copy data files between nodes using `scp` or `rsync`.

If you have trouble

If you have any trouble running the sample programs in your environment, go to the Step-by-Step Troubleshooting page and follow the steps to check your environment and configuration.

Next Steps

With only the above two changes distributed training is already performed. Thus, the model parameters are updated by using gradients that are aggregated over all the workers. However, this MNIST example still has a few areas in need of improvement. In the next page, we will see how to address the following problems:

- Training period is wrong; ‘one epoch’ is not one epoch.
- Evaluation is not parallelized.
- Status outputs to stdout are repeated and annoying.

7.2.3 Step 2: Datasets and Evaluators

Following from the previous step, we continue to explain general steps to modify your code for ChainerMN through the MNIST example. All of the steps below are optional, although useful for many cases.

Scattering Datasets

If you want to keep the definition of ‘one epoch’ correct, we need to scatter the dataset to all workers.

For this purpose, ChainerMN provides a method `scatter_dataset`. It scatters the dataset of worker 0 (i.e., the worker whose `comm.rank` is 0) to all workers. The given dataset of other workers are ignored. The dataset is split into sub datasets of almost equal sizes and scattered to the workers. To create a sub dataset, `chainer.datasets.SubDataset` is used.

The following line of code from the original MNIST example loads the dataset:

```python
train, test = chainer.datasets.get_mnist()
```

We modify it as follows. Only worker 0 loads the dataset, and then it is scattered to all the workers:

```python
if comm.rank == 0:
 train, test = chainer.datasets.get_mnist()
else:
 train, test = None, None

train = chainermn.scatter_dataset(train, comm)
test = chainermn.scatter_dataset(test, comm)
```
Creating A Multi-Node Evaluator

This step is also an optional step, but useful when validation is taking a considerable amount of time. In this case, you can also parallelize the validation by using multi-node evaluators.

Similarly to multi-node optimizers, you can create a multi-node evaluator from a standard evaluator by using method `create_multi_node_evaluator`. It behaves exactly the same as the given original evaluator except that it reports the average of results over all workers.

The following line from the original MNIST example adds an evaluator extension to the trainer:
```
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))
```

To create and use a multi-node evaluator, we modify that part as follows:
```
evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)
```

Suppressing Unnecessary Extensions

Some of extensions should be invoked only by one of the workers. For example, if the `PrintReport` extension is invoked by all of the workers, many redundant lines will appear in your console. Therefore, it is convenient to register these extensions only at workers of rank zero as follows:
```
if comm.rank == 0:
 trainer.extend(extensions.DumpGraph('main/loss'))
 trainer.extend(extensions.LogReport())
 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
 trainer.extend(extensions.ProgressBar())
```

7.2.4 Tips and FAQs

Using MultiprocessIterator

If you are using `MultiprocessIterator` and communication goes through InfiniBand, you would probably face crashing problems. This is because `MultiprocessIterator` creates child processes by the `fork` system call, which has incompatibilities with the design of MPI and InfiniBand. To cope with this issue, use `multiprocessing.set_start_method` to start child processes, with a process explicitly forked right after, before communicator is created as follows:
```
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()

communicator = chainermn.create_communicator(...)
```

Either `forkserver` mode or `spawn` mode should work. See our ImageNet example script for working sample code of `MultiprocessIterator` and `forkserver`. Unfortunately, `multiprocessing.set_start_method` is only available in Python 3.4+.
Using Your Own Evaluator

Method `create_multi_node_evaluator` can also be used for customized evaluator classes that inherit from `chainer.training.extensions.Evaluator`. Specifically, it wraps the `evaluate` method and returns the averaged values over all workers. Please also refer to our ImageNet example, where a customized evaluator is used.

Using MPI4py Communicator

ChainerMN is based on MPI4py. For advanced users (e.g., those who want to parallelize preprocessing, create custom extension, etc.), we encourage you to make use of MPI4py communicators. Let `comm` be a ChainerMN communicator, then you can obtain MPI4py communicator by `comm.mpi_comm`. Please refer to MPI4py API reference.

Using FP16

FP16 (16-bit half precision floating point values) is supported in `pure_nccl` of a ChainerMN communicator.

MPI process hangs after an unhandled Python exception.

An MPI runtime is expected to kill all of its child processes if one of them exits abnormally or without calling `MPI_Finalize()`. However, when a Python program runs on `mpi4py`, the MPI runtime often fails to detect the process failure, and the rest of the processes hang infinitely. It is especially problematic when you run your ChainerMN program on a cloud environment, in which you are charged on time basis.

This tiny program demonstrates the issue (note that it is not specific to ChainerMN):

```python
test.py

def func():
 import mpi4py.MPI
 mpi_comm = mpi4py.MPI.COMM_WORLD
 if mpi_comm.rank == 0:
 raise ValueError('failure!')
 mpi4py.MPI.COMM_WORLD.Barrier()

if __name__ == '__main__':
 func()

$ mpiexec -n 2 python test.py
```

`mpi4py` offers a solution to force all processes to abort if an uncaught exception occurs.

```
$ mpiexec -n 2 python -m mpi4py yourschart.py ...
```

This also works well with ChainerMN. See here for more details.

If you cannot apply the solution (i.e. you don’t have a control of how Python interpreter is invoked), you can inject the following code snippet into your script file:

```python
import sys

== begin code snippet
_old_hook = sys.excepthook
Global error handler
```

(continues on next page)
def global_except_hook(exctype, value, traceback):
    import sys
    try:
        import mpi4py.MPI
    $ mpiexec -n 2 -x CHAINERMN_FORCE_ABORT_ON_EXCEPTION=1 python yourscript.py ...

Alternatively, you can explicitly call chainermn.global_except_hook.add_hook() from your code:

    import chainermn
    chainermn.global_except_hook.add_hook()

The handler hooks uncaught exceptions and call MPI_Abort() to ensure that all process are terminated.

You can choose any of these solutions depending on your environment and restrictions.

NOTE: These techniques are effective only for unhandled Python exceptions. If your program crashes due to lower-level issues such as SIGSEGV, the MPI process may still hang.

7.3 Model Parallel

7.3.1 Overview

Model Parallelism

Even though ChainerMN mainly supports the data parallel approach for distributed training, it also has experimental APIs for the model parallel approach. The model parallel approach splits a given model into subcomponents loaded on several processes. This approach is useful in cases where

- large mini-batch or high-resolution is needed.
- the model is too huge to run on a single process.
- the mixture of experts are trained.

Philosophy

ChainerMN takes the following three approaches to realize the model parallelism.

1. Communication as Function

ChainerMN provides several special functions for communications such as chainermn.functions.bcast and chainermn.functions.alltoall, which wraps raw MPI communications. Users define communications between processes as Chainer function calls in the model definitions. This enables highly flexible communication patterns. Moreover, parameter updates in backward propagation are automatically invoked through backward defined in those functions for communications.
Data Parallel

Model Parallel

Bcast

Convolution2d

ReLU

Allgather
2. Synchronous Model Parallel

ChainerMN restricts itself to synchronous SGD. Though the asynchronous counterpart seems to be more computationally efficient, asynchronous SGD often suffer from the stale gradients problem and results in difficulty while debugging. ChainerMN’s synchronous communication model makes SGD simpler.

3. Single-Program-Multiple-Data (SPMD)

In principle, ChainerMN supports single-program-multiple-data (SPMD), which means the same program is invoked and different data are used on each process.

![Diagram showing SPMD](image)

Synchronous model-parallelism suits well with MPI programming style and SPMD model.

References

- More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server
- Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
- AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks
- Deep Mixture of Experts via Shallow Embedding
- Mesh-TensorFlow: Deep Learning for Supercomputers
- GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

7.3.2 Model Parallel on ChainerMN

Step 1: Communicators

To perform multi-node communications, a *communicator* is needed. Basic usages are the same with the case of the data parallel, see *Step 1: Communicators and Optimizers*:

```python
comm = chainermn.create_communicator()
```
If you want to define collective communications among limited number of processes later, it is useful to split the communicator:

```python
subcomm = comm.split(comm.rank % 2, comm.rank)
```

For further detail about the communicator split, please refer to MPI tutorial.

**Step 2: Datasets and Iterators**

In model parallel training, all processes belong to at least one of the following dataset input patterns.

1. model inputs come from datasets, and each process takes different mini-batches
2. model inputs come from datasets, and several processes share the same mini-batches
3. model inputs come from other processes

**1. scatter_dataset**

For the first case, you may use `scatter_dataset` as is introduced in *Step 2: Datasets and Evaluators*. 
2. multi node iterator

For the second case, iterator need to be modified, where `create_multi_node_iterator` is useful:

```python
train, test = chainer.datasets.get_mnist()
train_iter = chainermn.iterators.create_multi_node_iterator(chainer.iterators.SerialIterator(train, batchsize), comm)
test_iter = chainermn.iterators.create_multi_node_iterator(chainer.iterators.SerialIterator(test, batchsize), comm)
```

The resulting iterators return the same mini-batches among processes specified by the communicator.
3. empty dataset

For the last case, you may use `create_empty_dataset`, which returns a dataset with the same number of empty tuples as the original dataset:

```python
train, test = chainer.datasets.get_mnist()
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)
```

This input pattern appears in the subsequent examples such as **Example 1: Simple MLP**. Note that datasets are required in Chainer’s updater API. The empty dataset can be used as a dummy dataset.

---

**Step 3: Define Communications**

ChainerMN supports most of the MPI communications as *Chainer functions*, including point-to-point and collective communications. To know usages of each communication, please refer to *API Reference*.

**Example 1: Point-to-point Communication**

This is an example to use point-to-point communications:

```python
def __call__(self, x):
 h = f(x)
 h = chainermn.functions.send(x, comm, rank=1)
 return h
```
The communication target is specified by `rank` parameter. Note that the return value of `send` is often not negligible. Please refer to *Note: Define-by-Run and Model Parallelism*.

**Example 2: Collective Communication**

Here is another example to use collective communications:

```python
def __call__(self, x):
 h = f(x)
 h = chainermn.functions.allgather(comm, h)
 h = F.stack(h, axis=0)
 h = F.average(h, axis=0)
 return h
```

This pattern often appears in the averaging ensemble training.

**Note: Define-by-Run and Model Parallelism**

In model-parallel training, a model on each process may become *non-connected* computational graph. Let’s take a look at an example.

Naive implementation of a model on process #0 could be:

```python
class Model_0(chainer.Chain):
 def __call__(self, x):
 # first component
 z = f(x)
 chainermn.functions.send(z, comm, rank=1)

 # second component
 z = chainermn.functions.recv(comm, rank=1)
 y = h(z)
 return y
```

One may notice that there is no connection between the first and second components of computational graph. As we rely on defined-by-run framework, we cannot build a backward path from the second component to the first component. In order to build the backward path, a dummy variable, which we call `delegate_variable`, is needed.

The variable $\phi$ in the above figure is `delegate_variable`, which is a return value of `send` and passed to an argument of `recv`:

```python
class Model_0(chainer.Chain):
 def __call__(self, x):
 # first component
 z = f(x)
 phi = chainermn.functions.send(z, comm, rank=1)

 # second component
 z = chainermn.functions.recv(comm, rank=1, delegate_variable=phi)
 y = h(z)
 return y
```

```python
class Model_1(chainer.Chain):
 def __call__(self, _):
```

(continues on next page)
Model_1 also need to return a delegate variable \( \phi \) to backtrack its computational graph to compute gradients. Thus, the backward computation is guaranteed. Otherwise, backward computation will cause deadlock.

**Note: Delegate Variable and Pseudo Connect**

As we just see above, delegate variables must be appropriately handled to avoid potential deadlock. However, there are still some pathological cases. Let’s consider to send variables twice.

Here, we must guarantee that backward tracking can find two send, but we can only return one delegate variable from each model. pseudo_connect is a special function to combine one delegate variable to another variable.

In the above case, the returned variable \( \psi \) from pseudo_connect behaves as if it is \( \phi_2 \), while its backward backtracks both \( \phi_1 \) and \( \phi_2 \):

```python
class Model_0(chainer.Chain):
 def __call__(self, x):
 z1, z2 = f(x)
 phi1 = chainermn.functions.send(z1, comm, rank=1)
 phi2 = chainermn.functions.send(z2, comm, rank=1)
 psi = chainermn.functions.pseudo_connect(phi1, phi2)
 return psi
```
7.3.3 Example 1: Simple MLP

Here is the first example of model parallel, a simple MLP separated on two processes.

First, let’s create a ChainerMN communicator:

```python
if args.gpu:
 comm = chainermn.create_communicator('hierarchical')
 device = comm.intra_rank
else:
 comm = chainermn.create_communicator('naive')
 device = -1
```

As we saw in *Model Parallel on ChainerMN*, one naive implementation would be to use the point-to-point communication such as `send` and `recv`:  

```python
class Model_1(chainer.Chain):
 def __call__(self, _):
 z1 = chainermn.functions.recv(comm, rank=0)
 z2 = chainermn.functions.recv(comm, rank=0)
 y = g(z1, z2)
 return y
```
Chapter 7. Distributed Deep Learning with ChainerMN
class MLP0(chainer.Chain):
    def __init__(self, comm, n_out):
        super(MLP0SubA, self).__init__(
            l1=L.Linear(784, n_out))

    def __call__(self, x):
        h0 = F.relu(self.l1(x))
        phi = chainermn.functions.send(h0, self.comm, rank=1)
        y = chainermn.functions.recv(self.comm, rank=1, delegate_variable=phi)
        return y

class MLP1(chainer.Chain):
    def __init__(self, n_units, n_out):
        super(MLP1Sub, self).__init__(
            l2=L.Linear(None, n_units),
            l3=L.Linear(None, n_out))

    def __call__(self, _):
        h0 = chainermn.functions.recv(self.comm, rank=0)
        h1 = F.relu(self.l2(h0))
        return chainermn.functions.send(self.l3(h1), self.comm, rank=0)

One should note that

- MLP0: delegate variable is indispensable which is passed from send to recv.
- MLP1: the return value from send must be returned in __call__, which is used to track back the computational graph.

On each process, different models are trained:

```python
if comm.rank == 0:
 model = L.Classifier(MLP0(comm, 100))
elif comm.rank == 1:
 model = MLP1(comm, 100, 10)
```

Since MLP1 receives its inputs from MLP0 over the point-to-point communication, let’s use `empty_dataset` instead of the usual dataset:

```python
Iterate dataset only on worker 0.
train, test = chainer.datasets.get_mnist()
if comm.rank == 1:
 train = chainermn.datasets.create_empty_dataset(train)
 test = chainermn.datasets.create_empty_dataset(test)
```

Now we can run a model parallel architecture.

There is an alternative API to define the same model without explicitly defining communication paths:

```python
class MLP0SubA(chainer.Chain):
 def __init__(self, comm, n_out):
 super(MLP0SubA, self).__init__(
 l1=L.Linear(784, n_out))

 def __call__(self, x):
 return F.relu(self.l1(x))
```

(continues on next page)
class MLP0SubB(chainer.Chain):
    def __init__(self, comm):
        super(MLP0SubB, self).__init__()

    def __call__(self, y):
        return y

class MLP0(chainermn.MultiNodeChainList):
    # Model on worker 0.
    def __init__(self, comm, n_out):
        super(MLP0, self).__init__(comm=comm)
        self.add_link(MLP0SubA(comm, n_out), rank_in=None, rank_out=1)
        self.add_link(MLP0SubB(comm), rank_in=1, rank_out=None)

class MLP1Sub(chainer.Chain):
    def __init__(self, n_units, n_out):
        super(MLP1Sub, self).__init__(
            l2=L.Linear(None, n_units),
            l3=L.Linear(None, n_out))

    def __call__(self, h0):
        h1 = F.relu(self.l2(h0))
        return self.l3(h1)

class MLP1(chainermn.MultiNodeChainList):
    # Model on worker 1.
    def __init__(self, comm, n_units, n_out):
        super(MLP1, self).__init__(comm=comm)
        self.add_link(MLP1Sub(n_units, n_out), rank_in=0, rank_out=0)

MultiNodeChainList enables to define a multi model architecture, by adding non-connected component with add_link. Two arguments rank_in and rank_out specifies from which process the added link receives their inputs, and to which process it sends their outputs.

Although it may seems that there is no necessity to parallelize MLP with this size, it can be useful to train a MLP with many layers and parameters so that the entire model cannot be loaded on a single GPU. The entire training code is available here.

7.3.4 Example 2: seq2seq

This example shows how to parallelize models that involves RNN.

Above figure depicts a typical encoder-decoder model, where the model is split up to encoder and decoder, both running respectively in two processes. When f or g are large models that consume huge memory such as CNN, model parallelism like this would be useful. In the forward computation, the encoder invokes send function to send its context vectors, and the decoder invokes recv to receive them. The backward computation must be built by pseudo_connect. As this communication pattern is very popular in RNNs, MultiNodeNStepRNN is a ready-made utility link for this pattern. It can replace this complicated communication pattern.

MultiNodeNStepRNN can be created by create_multi_node_n_step_rnn:

```python
rnn = chainermn.links.create_multi_node_n_step_rnn(
 L.NStepLSTM(n_layers, n_units, n_units, 0.1),
 comm, rank_in=None, rank_out=1)
```

where comm is a ChainerMN communicator (see Step 1: Communicators).
The overall model definition can be written as follows:

```python
class Encoder(chainer.Chain):
 def __init__(self, comm, n_layers, n_units):
 super(Encoder, self).__init__(
 mn_encoder=chainermn.links.create_multi_node_n_step_rnn(
 L.NStepLSTM(n_layers, n_units, n_units, 0.1),
 comm, rank_in=None, rank_out=1
),
)
 self.comm = comm
 self.n_layers = n_layers
 self.n_units = n_units

 def __call__(self, *xs):
 exs = f(xs)
 c, h, _, phi = self.mn_encoder(exs)
 return phi

class Decoder(chainer.Chain):
 def __init__(self, comm, n_layers, n_units):
 super(Decoder, self).__init__(
 mn_decoder=chainermn.links.create_multi_node_n_step_rnn(
 L.NStepLSTM(n_layers, n_units, n_units, 0.1),
 comm, rank_in=0, rank_out=None
),
)
 self.comm = comm
 self.n_layers = n_layers
 self.n_units = n_units

 def __call__(self, *ys):
 c, h, os, _ = self.mn_decoder(ys)
 # compute loss (omitted)
```

An example code with a training script is available [here](#).

### 7.3.5 Example 3: Channel-wise Parallel Convolution

This is an example to parallelize CNN in channel-wise manner. This parallelization is useful with large batch size, or with high resolution images.

The basic strategy is

1. to pick channels that each process is responsible for
2. to apply convolution, and
3. to use `allgather` to combine outputs of all channels into a single tensor on each process. Parallel convolution model implementation could be like this:

```python
class ParallelConvolution2D(chainer.links.Convolution2D):
 def __init__(self, comm, in_channels, out_channels, *args, **kwargs):
 self.comm = comm
```

(continues on next page)
self.in_channels = in_channels
self.out_channels = out_channels
super(ParallelConvolution2D, self).__init__(  
    self._in_channel_size, self._out_channel_size, *args, **kwargs)

def __call__(self, x):
x = x[:, self._channel_indices, :, :]
y = super(ParallelConvolution2D, self).__call__(x)
ys = chainermn.functions.allgather(self.comm, y)
return F.concat(ys, axis=1)

def _channel_size(self, n_channel):
    # Return the size of the corresponding channels.
    n_proc = self.comm.size
    i_proc = self.comm.rank
    return n_channel // n_proc + (1 if i_proc < n_channel % n_proc else 0)

@property
def _in_channel_size(self):
    return self._channel_size(self.in_channels)

@property
def _out_channel_size(self):
    return self._channel_size(self.out_channels)

@property
def _channel_indices(self):
    # Return the indices of the corresponding channel.
indices = np.arange(self.in_channels)
indices = indices[indices % self.comm.size == 0] + self.comm.rank
return [i for i in indices if i < self.in_channels]

where `comm` is a ChainerMN communicator (see Step 1: Communicators).

ParallelConvolution2D can simply replace with the original Convolution2D. For the first convolution layer, all processes must input the same images to the model. MultiNodeIterator distributes the same batches to all processes every iteration:

```python
if comm.rank != 0:
 train = chainermn.datasets.create_empty_dataset(train)
 test = chainermn.datasets.create_empty_dataset(test)

train_iter = chainermn.iterators.create_multi_node_iterator(
 chainer.iterators.SerialIterator(train, args.batchsize), comm)

if not chainer.config.train:
 y = chainermn.functions.allgather(comm, y)
y = F.stack(y, axis=0)
y = F.average(y, axis=0)
return y
```

An example code with a training script for VGG16 parallelization is available here.

### 7.3.6 Example 4: Ensemble

Ensemble is a training technique to obtain better classification performance by combining multiple base classifiers. Averaging ensemble is one of the simplest examples of ensemble, which takes average of all classifier outputs in the test phase. Model parallelism and collective communications can effectively help to implement it.

The following wrapper makes model parallel averaging ensemble easier:

```python
class Averaging(chainer.Chain):
 def __init__(self, comm, block):
 super(Averaging, self).__init__()
 self.comm = comm
 with self.init_scope():
 self.block = block

 def __call__(self, x):
 y = self.block(x)

 if not chainer.config.train:
 y = chainermn.functions.allgather(comm, y)
 y = F.stack(y, axis=0)
 y = F.average(y, axis=0)
 return y
```

Then, any links wrapped by `Averaging` are ready to be parallelized and averaged:

```python
class Model(chainer.Chain):
 def __init__(self, comm):
 super(Model, self).__init__()
 self.comm = comm
 with self.init_scope():
 self.l1 = L.Linear(d0, d1)
```

def __call__(self, x):
    h = F.relu(self.l1(x))
    h = F.relu(self.l2(h))
    y = F.relu(self.l3(h))
    return y

From the perspective of model inputs/outputs, the averaged model is compatible with the original model. Thus, we only need to replace the last layer with the averaged layer.

In averaging ensemble, each base classifier is trained independently and ensembled in the test phase. This can be implemented by using MultiNodeIterator only for the test iterator:

```python
train = (training dataset)
test = (test dataset)

if comm.rank != 0:
 train = chainermn.datasets.create_empty_dataset(train)
 test = chainermn.datasets.create_empty_dataset(test)

train_iter = chainer.iterators.SerialIterator(train, batchsize)
test_iter = chainermn.iterators.create_multi_node_iterator(
 chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False),
 comm)```
7.4 API Reference

7.4.1 Communicators

```python
chainermn.create_communicator(communicator_name='pure_nccl', mpi_comm=None, allreduce_grad_dtype=None, batched_copy=False)
```

Create a ChainerMN communicator.

Different communicators provide different approaches of communication, so they have different performance characteristics. The default communicator `hierarchical` is expected to generally perform well on a variety of environments, so one need not to change communicators in most cases. However, choosing proper communicator may give better performance. The following communicators are available.

<table>
<thead>
<tr>
<th>Name</th>
<th>CPU</th>
<th>GPU</th>
<th>NCCL</th>
<th>Recommended Use Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure_nccl</td>
<td>OK</td>
<td></td>
<td>Required (>=v2)</td>
<td>pure_nccl is recommended when NCCL2 is available in the environment.</td>
</tr>
<tr>
<td>hierarchical</td>
<td>OK</td>
<td></td>
<td>Required</td>
<td>Each node has a single NIC or HCA</td>
</tr>
<tr>
<td>two_dimensional</td>
<td>OK</td>
<td></td>
<td>Required</td>
<td>Each node has multiple NICs or HCAs</td>
</tr>
<tr>
<td>single_node</td>
<td>OK</td>
<td></td>
<td>Required</td>
<td>Single node with multiple GPUs</td>
</tr>
<tr>
<td>flat</td>
<td>OK</td>
<td>OK</td>
<td>N/A</td>
<td>Testing on CPU mode</td>
</tr>
<tr>
<td>naive</td>
<td>OK</td>
<td>OK</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

pure_nccl communicator supports multiple data types, FP32 and FP16, in gradient exchange. The communication data type is determined based on `chainer.global_config.dtype` and `allreduce_grad_dtype`. When `allreduce_grad_dtype` is the default value `None`, FP32 is used when `chainer.global_config.dtype` is `numpy.float32` and FP16 otherwise. `allreduce_grad_dtype` parameter, which is either `numpy.float16` or `numpy.float32`, overwrites the `chainer.global_config.dtype`.

The table blow summarizes the data type selection in gradient exchange.

<table>
<thead>
<tr>
<th>global_config.dtype</th>
<th>allreduce_grad_dtype</th>
<th>ChainerMN communicator that implements methods defined in <code>chainermn.CommunicatorBase</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.mixed16</code></td>
<td>FP16</td>
<td></td>
</tr>
<tr>
<td><code>numpy.float16</code></td>
<td>FP16</td>
<td></td>
</tr>
<tr>
<td><code>numpy.float32</code></td>
<td>FP32</td>
<td></td>
</tr>
<tr>
<td><code>numpy.float32</code></td>
<td>FP32</td>
<td></td>
</tr>
</tbody>
</table>

Other communicator, including flat and hierarchical, support only float32 communication, no matter what the model is. This is due to MPI’s limited support of float16.

Parameters

- `communicator_name` – The name of communicator (naive, flat, hierarchical, two_dimensional, pure_nccl, or single_node)
- `mpi_comm` – MPI4py communicator
- `allreduce_grad_dtype` – Data type of gradient used in All-Reduce. If None, the dtype of a model is used.

Returns ChainerMN communicator that implements methods defined in `chainermn.CommunicatorBase`.

class `chainermn.CommunicatorBase` Interface definition of all communicators.
All communicators that have compatible set of methods with this class is supposed to work in ChainerMN’s parallel computation implementation. The methods are named after MPI functions, such as `bcast()` came from `MPI_Bcast()`.

There are two types of methods: one that treats Python objects have _obj suffix. The other has methods without any suffix and it handles ndarray and arrays filled with scaler values. So the number of methods would be

```
[send, recv, bcast, gather, allreduce] * ['_obj', '']
```

(with single exception alltoall, allreduce_grad, split and bcast_data so far). Also methods are supposed to be written in this order. All those methods must be implemented in its implementation class, or otherwise it cannot be instantiated in runtime.

Note: As most implementation of _obj-sufficed methods involves Python object pickling and unpickling, there is an implicit size limit.

TODO(kuenishi): as of now no implementation class actually has allreduce method.

abstract allgather(x)
A primitive of inter-process all-gather communication.

This method tries to invoke all-gather communication within the communicator. All processes in the communicator are expected to invoke `allgather()`. This method relies on mpi4py fast communication optimized for numpy arrays, as well as `send()` and `recv()`.

Note that this method can only handle the same shapes of data over all processes, and cannot handle tuple data.

Parameters

- **x** *(numpy/cupy array)* – Array to be gathered.

Returns

- **Received arrays.**

Return type

- **ys** *(tuple of numpy/cupy array)*

abstract allreduce(data)
Allreduce operation among processes

Processes one of several aggregation operations using all data from all processes and returns the result of the aggregation to all processes.

TODO(kuenishi): add op argument once we find a use case for operations other than ‘SUM’.

Parameters

- **data** *(ndarray)* – the data to aggregate among all nodes.

Returns

- **Sum of all data from all processes.**

abstract allreduce_grad(model)
Works as same as allreduce_obj but for Chainer model gradients

Note: this only supports SUM same as allreduce_obj.

abstract allreduce_obj(obj)
Apply a reduce operation to all objects and spread the result.

For example of integers and summation, equivalent local code is:

```
>>> from functools import reduce
>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15
```
The only operation currently supported is summation.

TODO(kuenishi): support other operations such as ‘MAX’, ‘MIN’ and ‘PROD’ with op argument once we need any of them.

Parameters
- **obj** – An arbitrary object to apply reduce operation. Must have corresponding operation method e.g. `__plus__()`.

Returns
- The result of the operation applied to all objects.

abstract alltoall(xs)
All-to-all implementation for ndarray

Parameters
- **xs** (*tuple of numpy/cupy array*)

Returns
- Received arrays. The length of tuple equals to the communicator size.

Return type
- **ys** (*tuple of numpy/cupy array*)

abstract bcast(data, max_buf_len=None, root=0)
Broadcasts an ndarray from root process to all processes

Parameters
- **data** (*numpy/cupy array*) – for root process, the data to broadcast. For non-root processes, this argument is ignored.
- **max_buf_len** (*int*) – Length of send buffer.
- **root** (*int*) – the process who has the data to broadcast.

Returns
- The data sent from root process

Return type
- **ys** (*numpy/cupy array*)

abstract bcast_data(model)
Broadcast Chainer model parameter data

abstract bcast_obj(obj, max_buf_len=None, root=0)
Broadcasts an arbitrary object from root to all non-root processes.

Parameters
- **obj** – arbitrary object to broadcast to all other non-root processes. Will be ignored at all non-root processes.
- **max_buf_len** (*int*) – max length of the send buffer
- **root** (*int*) – rank of the process who sends an object

Returns
- an object sent from the root process.

abstract gather(data, root=0)
Gathers an ndarray from all processes to root process

Parameters
- **data** (*ndarray, or scaler*) – for root process this is ignored. For For non-root processes, the data to send to root process.
- **root** (*int*) – rank of the process who receives the data.

Returns
- For root process, the ndarray sent from non-root processes. For non-root processes, what?

abstract gather_obj(obj, root=0)
Gathers arbitrary objects from all non-root processes to root process.
Parameters

- **obj** – arbitrary object to send to root process. Root process will receive this argument included in returned list.
- **root (int)** – rank of the root node who receives all objects.

Returns

A list of objects sent from all processes.

TODO(kuenishi): make sure the ordering of objects in the returned list.

property inter_rank

The rank of this node in the cluster.

property inter_size

Number of nodes that participates the cluster.

property intra_rank

Intra rank (process id in the machine) of this process.

property rank

Rank (process id in the cluster) of this process in integer.

abstract recv(source, tag)

Receives an ndarray from source.

To receive the message, sender must send the data.

Parameters

- **source (int)** – Rank of the source process
- **tag (int)** – The tag to specifically receive the message

Returns

The data sent from source process

abstract recv_obj(source, tag)

Receives an arbitrary Python object from source process with a tag.

Parameters

- **source (int)** – Rank number of sender process, to selectively receive the object.
- **tag** – tag to identify the message.

Returns

an object sent from the source by send_obj.

abstract send(data, dest, tag)

Sends an ndarray to destination

Receiver must invoke recv() to wait for the message.

Parameters

- **data** – data to be sent (tuple, list or raw numpy/cupy array)
- **dest (int)** – Rank of the destination process
- **tag (int)** – The tag to identify the message

abstract send_obj(obj, dest, tag)

Sends an arbitrary Python object to destination with a tag.

Parameters

- **obj** – Arbitrary object to send to receiver.
- **dest (int)** – Rank number of receiver process (destination).
• **tag** – tag to identify the message.

property size
Number of processes of the cluster.

abstract split *(color, key)*
A function analogous to MPI_Comm_Split.

This method splits the inter MPI communicator and return a wrapped ChainerMN communicator.

Parameters

• **color (int)** – Index of new group. The process with the same color will be assigned to the same group.

• **key (int)** – Control of rank assignment. The process will be assigned a rank in the new group ordered by the value of key. If you do not care of the rank, you can just simply specify the original rank.

Returns CommunicatorBase

7.4.2 Optimizers and Evaluators

chainermn.**create_multi_node_optimizer** *(actual_optimizer, communicator, double_buffering=False, zero_fill=True)*

Create a multi node optimizer from a Chainer optimizer.

Parameters

• **actual_optimizer** – Chainer optimizer (e.g., chainer.optimizers.Adam).

• **communicator** – ChainerMN communicator.

• **double_buffering** – If True, all-reduce and other processing (such as forward and backward) are overlapped using double buffering. There are cases where accuracy is affected because the gradients of the previous iteration are used for update. This flag is supported by PureNcclCommunicator only.

• **zero_fill** – A knob to control whether to fill gradients of initialized and unused Link (which is None internally) with zero-valued array, because the all gradients must be an array among processes for performing all-reduce, which might be an array or None after backward computation. Gradients of uninitialized Link are skipped. If it is False, gradients of unused Link are just skipped.

Returns The multi node optimizer based on actual_optimizer.

chainermn.**create_multi_node_evaluator** *(actual_evaluator, communicator)*

Create a multi node evaluator from a normal evaluator.

Actually this method patches the evaluator to work in multi node environment. This method adds several hidden attributes starting with _mn_ prefix.

Parameters

• **actual_evaluator** – evaluator to be patched (e.g., chainer.training.extensions.Evaluator)

• **communicator** – ChainerMN communicator

Returns The multi-node patched actual_evaluator.
Note: After patched, original evaluator does not work correctly in non-MPI environment.

7.4.3 Dataset Utilities

chainermn.scatter_dataset(dataset, comm, root=0, shuffle=False, seed=None, max_buf_len=268435456)

Scatter the given dataset to the workers in the communicator.

The dataset of worker root (i.e., the worker whose comm.rank is root) is scattered to all workers. The given dataset of other workers are ignored. The dataset is split to sub datasets of almost equal sizes and scattered to workers. To create a sub dataset, chainer.datasets.SubDataset is used.

Parameters

- **dataset** – A dataset (e.g., list, numpy.ndarray, chainer.datasets.TupleDataset,...).
- **comm** – ChainerMN communicator or MPI4py communicator.
- **shuffle (bool)** – If True, the order of examples is shuffled before being scattered.
- **root (int)** – The root process of the scatter operation.
- **seed (int)** – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If None, the permutation is changed randomly.
- **max_buf_len (int)** – Max buffer size to be used at broadcasting binaries. Must not be larger than 2147483647.

Returns Scattered dataset.

chainermn.datasets.create_empty_dataset(dataset)

Creates an empty dataset for models with no inputs and outputs.

This function generates an empty dataset, i.e., __getitem__() only returns None. Its dataset is compatible with the original one. Such datasets used for models which do not take any inputs, neither return any outputs. We expect models, e.g., whose forward() is starting with chainermn.functions.recv() and ending with chainermn.functions.send().

Parameters dataset – Dataset to convert.

Returns Dataset consists of only patterns in the original one.

Return type TransformDataset

7.4.4 Links

class chainermn.MultiNodeChainList(comm)

Combining multiple non-connected components of computational graph.

This class combines each chainer.Chain, which represents one of the non-connected component in computational graph. In __call__(), the returned object of chainer.Chain (which represents pointer) are passed to the next chainer.Chain, in order to retain the computational graph connected and make backprop work properly.
Users add each `chainer.Chain` by `add_link()` method. Each chain is invoked in forward computation according to the order they are added, and in backward computation according to the reversed order.

Example (basic usage)

This is a simple example of the model which sends its outputs to rank=1 machine:

```python
import chainer
import chainer.functions as F
import chainermn

class SimpleModelSub(chainer.Chain):
    def __init__(self, n_in, n_hidden, n_out):
        super(SimpleModelSub, self).__init__(
            l1=L.Linear(n_in, n_hidden),
            l2=L.Linear(n_hidden, n_out))
    def __call__(self, x):
        h1 = F.relu(self.l1(x))
        return self.l2(h1)

class SimpleModel(chainermn.MultiNodeChainList):
    def __init__(self, comm, n_in, n_hidden, n_out):
        super(SimpleModel, self).__init__(comm)
        self.add_link(
            SimpleModelSub(n_in, n_hidden, n_out),
            rank_in=None,
            rank_out=1)
```

Example (split MLP on 2 processes)

This is the other example of two models interacting each other:

```python
import chainer
import chainer.functions as F
import chainermn

class MLP(chainer.Chain):
    def __init__(self, n_in, n_hidden, n_out):
        super(MLP, self).__init__(
            l1=L.Linear(n_in, n_hidden),
            l2=L.Linear(n_hidden, n_hidden),
            l3=L.Linear(n_hidden, n_out))
    def __call__(self, x):
        h1 = F.relu(self.l1(x))
        h2 = F.relu(self.l2(h1))
        return self.l3(h2)
```

(continues on next page)
class Model0(chainermn.MultiNodeChainList):
 def __init__(self, comm):
 super(Model0, self).__init__(comm)
 self.add_link(MLP(10000, 5000, 2000),
 rank_in=None,
 rank_out=1)
 self.add_link(MLP(100, 50, 10),
 rank_in=1,
 rank_out=None)

class Model1(chainermn.MultiNodeChainList):
 def __init__(self, comm):
 super(Model1, self).__init__(comm)
 self.add_link(MLP(2000, 500, 100), rank_in=0, rank_out=0)

Model0 is expected to be on rank=0, and Model1 is expected to be on rank=1. The first MLP in Model0 will send its outputs to Model1, then MLP in Model1 will receive it and send its outputs to the second MLP in Model0.

Example (sending tuples)

This is the example for sending a tuple:

```python
import chainer
import chainer.functions as F
import chainermn

class NN0(chainer.Chain):
    def __call__(self, x):
        y0 = some_calculation_nn0_0(x)
        y1 = some_calculation_nn1_1(x)
        return y0, y1

class NN1(chainer.Chain):
    def __call__(self, y):
        y0, y1 = y  # unpack tuple from NN0
        return some_calculation_nn1(y0, y1)

class Model_on_Process_0(chainermn.MultiNodeChainList):
    def __init__(self, comm):
        super(Model_on_Process_0, self).__init__(comm=comm)
        self.add_link(NN0(), rank_in=None, rank_out=1)

class Model_on_Process_1(chainermn.MultiNodeChainList):
    def __init__(self, comm):
        super(Model_on_Process_1, self).__init__(comm=comm)
        self.add_link(NN1(), rank_in=0, rank_out=None)
```

In this example, Model_on_Process_0 sends two elemental tuple (y0, y1) (returned by NN0.
__call__) to Model_on_Process_1, which can be unpacked as shown in NN1.__call__.

Parameters

- **comm** (*chainermn.communicators._base.CommunicatorBase*) – ChainerMN communicator.

add_link (*link, rank_in=None, rank_out=None*)

Register one connected link with its inout rank.

Parameters

- **link** (*chainer.Link*) – The link object to be registered.
- **rank_in** (*int, list, or None*) – Ranks from which it receives data. If None is specified, the model does not receive from any machines.
- **rank_out** (*int, list, or None*) – Ranks to which it sends data. If None is specified, the model will not send to any machine.

class **chainermn.links.MultiNodeBatchNormalization** (*size, comm, decay=0.9, eps=2e-05, dtype=None, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None, communication_backend='auto'*)

Batch normalization layer that can use the whole batch stats.

When using chainer.link.BatchNormalization, batch mean and std are computed independently for the local batch in each worker. When local batch size is too small, training is unstable due to unreliable batch stats.

In contrast, when using this MultiNodeBatchNormalization, workers communicate to conduct ‘correct’ batch normalization (e.g., obtaining mean and std for the whole global batch).

This link works only with Chainer >= 2.0.0.

Parameters

- **size** (*int or tuple of ints*) – Size (or shape) of channel dimensions.
- **comm** (*ChainerMN communicator*) – communicator to share the batch stats.
- **decay** (*float*) – Decay rate of moving average. It is used on training.
- **eps** (*float*) – Epsilon value for numerical stability.
- **dtype** (*numpy.dtype*) – Type to use in computing.
- **use_gamma** (*bool*) – If True, use scaling parameter. Otherwise, use unit(1) which makes no effect.
- **use_beta** (*bool*) – If True, use shifting parameter. Otherwise, use unit(0) which makes no effect.
- **communication_backend** (*str*) – mpi, nccl or auto. It is used to determine communication backend. If auto, use the best communication backend for each communicator.

chainermn.links.create_mnbn_model (*link, comm, communication_backend='auto'*)

Create a link object with MultiNodeBatchNormalization.

Returns a copy of *link*, where BatchNormalization is replaced by MultiNodeBatchNormalization.

Parameters

- **link** – Link object
• **comm** – ChainerMN communicator

• **communication_backend** *(str)* – mpi, nccl or auto. It is used to determine communication backend of MultiNodeBatchNormalization. If auto, use the best communication backend for each communicator.

Returns Link object where BatchNormalization is replaced by MultiNodeBatchNormalization.

7.4.5 Functions

chainermn.functions.send *(x, communicator, rank, tag=0)*

Send elements to target process.

This function returns a dummy variable only holding the computational graph. If backward() is invoked by this dummy variable, it will try to receive gradients from the target process and send them back to the parent nodes.

Parameters

• **x** *(Variable)* – Variable holding a matrix which you would like to send.

• **communicator** *(chainer.communicators.CommunicatorBase)* – ChainerMN communicator.

• **rank** *(int)* – Target process specifier.

• **tag** *(int)* – Optional message ID (MPI feature).

Returns A dummy variable with no actual data, only holding the computational graph. Please refer chainermn.functions.pseudo_connect for detail.

Return type *Variable*

chainermn.functions.recv *(communicator, rank, delegate_variable=None, tag=0, force_tuple=False)*

Receive elements from target process.

This function returns data received from target process. If backward() is invoked, it will try to send gradients to the target process. The received array will be on the current CUDA device if the corresponding send() is invoked with arrays on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Note: If you define non-connected computational graph on one process, you have to use delegate_variable to specify the output of previous computational graph component. Otherwise backward() does not work well. Please refer chainermn.functions.pseudo_connect for detail.

Parameters

• **communicator** *(chainer.communicators.CommunicatorBase)* – ChainerMN communicator.

• **rank** *(int)* – Target process specifier.

• **delegate_variable** *(chainer.Variable)* – Pointer to the other non-connected component.

• **tag** *(int)* – Optional message ID (MPI feature).
• **force_tuple** *(bool)* – If False (the default) a Variable will be returned when the number of outputs is one. Otherwise, this method returns a tuple even when the number of outputs is one.

Returns Data received from target process. If `backward()` is invoked by this variable, it will send gradients to the target process.

Return type *Variable*

`chainermn.functions.pseudo_connect(delegate_variable, *actual_variables)`

Connect independent connected graph component.

This function is implemented to return received arguments directly, except the first `delegate_variable`. In backward computation, it returns received gradients directly, adding a zero grad corresponding to `delegate_variable`. The detail of `delegate_variable` is described in the following notes.

Note: In model-parallel framework, models on each process might have many non-connected components. Here we call a given graph non-connected when multiple inter-process communications are needed for its computation. For example, consider the following example:

```python
class ConnectedGraph(chainermn.MultiNodeChainList):
    def __init__(self, comm):
        super(ConnectedGraph, self).__init__(comm)
        self.add_link(ConnectedGraphSub(), rank_in=3, rank_out=1)
```

This model receives inputs from rank=3 process and sends its outputs to rank=1 process. The entire graph can be seen as one connected component `ConnectedGraphSub`. Please refer the documentation of `MultiNodeChainList` for detail.

On the other hand, see the next example:

```python
class NonConnectedGraph(chainermn.MultiNodeChainList):
    def __init__(self, comm):
        super(NonConnectedGraph, self).__init__(comm)
        self.add_link(NonConnectedGraphSubA(), rank_in=3, rank_out=1)
        self.add_link(NonConnectedGraphSubB(), rank_in=1, rank_out=2)
```

This model consists of two components: at first, `NonConnectedGraphSubA` receives inputs from rank=3 process and sends its outputs to rank=1 process, and then `NonConnectedGraphSubB` receives inputs from rank=1 process and sends its outputs to rank=2 process. Here multiple inter-process communications are invoked between `NonConnectedGraphSubA` and `NonConnectedGraphSubB`, so it is regarded as non-connected.

Such kind of non-connected models can be problematic in backward computation. Chainer traces back the computational graph from the output variable, however naive implementation of `chainermn.functions.recv` does not take any inputs rather receives inputs by `MPI_Recv`, where backward path vanishes.

To prevent this, dummy variables what we call `delegate_variable` are used. In principle, `chainermn.functions.send` does not return any outputs because it sends data to the other process by `MPI_Send`. However, `chainermn.functions.send` returns a dummy / empty variable in our implementation, which is called `delegate_variable`. This variable does not hold any data, just used for retaining backward computation path. We can guarantee the backward computation just by putting `delegate_variable` to the next `chainermn.functions.recv` (`chainermn.functions.recv` has an optional argument to receive `delegate_variable`).

1246 Chapter 7. Distributed Deep Learning with ChainerMN
Note: In some cases the intermediate graph component returns model outputs. See the next example:

```python
class NonConnectedGraph2(chainermn.MultiNodeChainList):
    def __init__(self, comm):
        super(NonConnectedGraph2, self).__init__(comm)
        self.add_link(NonConnectedGraphSubA(), rank_in=1, rank_out=None)
        self.add_link(NonConnectedGraphSubB(), rank_in=None, rank_out=1)
```

This model first receives inputs from rank=1 process and makes model outputs (specified by `rank_out=None`) in `NonConnectedGraphSubA`. Then using model inputs (specified by `rank_in=None`), `NonConnectedGraphSubB` sends its outputs to rank=1 process. Since `MultiNodeChainList.__call__` returns outputs of the last component (in this case, outputs of `NonConnectedGraphSubB`), naive implementation cannot output the returned value of `NonConnectedGraphSubA` as the model outputs. In this case, `pseudo_connect` should be used.

`pseudo_connect` takes two arguments. The first one `delegate_variable` is what we explained in above note. In this case, returned value of `NonConnectedGraphSubB` corresponds to `delegate_variable`. The second one `actual_variables` is "what we want `delegate_variable` to imitate". In `NonConnectedGraph2`, we obtain returned value of `NonConnectedGraphSubB` as the model outputs, but what we actually want is returned value of `NonConnectedGraphSubA`. At the same time we want to trace back this resulted variable in backward computation. Using `pseudo_connect`, we can make a variable whose data is the same as the returned value of `NonConnectedGraphSubA`, and which traces back `NonConnectedGraphSubB` first.

`pseudo_connect` should also be used in some pathological cases, for example, where multiple `chainermn.functions.send` occurs sequentially.

Parameters

- `delegate_variable (chainer.Variable)` – Pointer to the previous non-connected graph component.
- `actual_variables (tuple of chainer.Variable)` – Actual values which `delegate_variable` imitate.

Returns A variable with the given values combined with delegating variable.

Return type `tuple of chainer.Variable`

`chainermn.functions.bcast (comm, x, root=0)`

Differentiable broadcast communication between workers.

This function invokes broadcast communications among processes specified by the communicator. Backward will be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process and summed up.

The received array will be on the current CUDA device if `x` on the invoking process is on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Parameters

- `comm` – ChainerMN communicator.
- `x (chainer.Variable)` – Variable to be sent.

Returns Broadcasted variable.
Differentiable gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will be invoked as well as the ordinary chainer functions, where gradients are scattered from the root process to each slave.

The received array will be on the current CUDA device if x on the root process is on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Parameters

- **comm** – ChainerMN communicator.
- **x** (chainer.Variable) – Variable to be sent.

Returns Gathered variables. None for slaves.

Return type y (chainer.Variable)

Differentiable scatter communication between workers.

This function invokes scatter communications among processes specified by the communicator. Backward will be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process.

The received array will be on the current CUDA device if xs on the root process is on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Parameters

- **comm** – ChainerMN communicator.
- **xs** (list of chainer.Variable) – Variables to be scattered for master process. None for slave process.

Returns Scattered variable.

Return type y (chainer.Variable)

Differentiable all-to-all communication between workers.

This function invokes all-to-all communications among processes specified by the communicator. Backward will be invoked as well as the ordinary chainer functions, just passing input gradients back. Unlike point-to-point communication such as chainermn.functions.send and chainermn.functions.recv, users need not to care about delegate variables, since backward() will not be invoked until all gradients from output direction arrive. Please refer to chainermn.functions.pseudo_connect about the detail of delegate variables.

The received array will be on the current CUDA device on the invoking process if xs is on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Parameters

- **comm** – ChainerMN communicator.
- **xs** (list of chainer.Variables) – Variables to send.

Returns Received variables.
Return type ys (list of chainer.Variables)

chainermn.functions.allgather(comm, x)

Differentiable all-gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will be invoked as well as the ordinary chainer functions, where gradients are reduced to each process.

The received array will be on the current CUDA device on the invoking process if x is on GPU. Please be aware that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Parameters

- comm – ChainerMN communicator.
- x (chainer.Variables) – Variables to send.

Returns Received variables.

Return type ys (list of chainer.Variables)

7.4.6 Iterators

chainermn.iterators.create_multi_node_iterator(actual_iterator, communicator, rank_master=0)

Create a multi node iterator from a Chainer iterator.

This iterator shares the same batches on multiple processes, simply broadcasting batches from master process to slave processes in each iteration. Master process obtains batches from actual_iterator, which you can specify any Chainer iterator (e.g. chainer.iterators.SerialIterator).

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder is located on two different processes, we want to share the same batches on each process, thus inputs for the encoder and output teacher signals for the decoder become consistent.

In order to use the multi node iterator, first create the iterator from Chainer iterator and ChainerMN communicator:

```python
iterator = chainermn.iterators.create_multi_node_iterator(
    chainer.iterators.SerialIterator(
        dataset, batch_size, shuffle=True),
    communicator)
```

Then you can use it as the ordinary Chainer iterator:

```python
updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()
```

Since this iterator shares batches through network in each iteration, communication might be large. If you train your model-parallel network on extremely large dataset, you can also consider to use chainermn.iterators.create_synchronized_iterator.

Current multi node iterator supports numpy.float32 or tuple of numpy.float32 as the data type of the batch element.

Note: create_multi_node_iterator and serialize of created iterators must be called at the same time by master and slaves, unless it falls into deadlock because they synchronize internal states of iterators.
chainermn.iterators.create_synchronized_iterator(actual_iterator, communicator)

Create a synchronized iterator from a Chainer iterator. This iterator shares the same batches on multiple processes, using the same random number generators to maintain the order of batch shuffling same.

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder is located on two different processes, we want to share the same batches on each process, thus inputs for the encoder and output teacher signals for the decoder become consistent.

In order to use the synchronized iterator, first create the iterator from Chainer iterator and ChainerMN communicator:

```python
iterator = chainermn.iterators.create_synchronized_iterator(
    chainer.iterators.SerialIterator(
        dataset, batch_size, shuffle=True),
    communicator)
```

Then you can use it as the ordinary Chainer iterator:

```python
updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()
```

The resulting iterator shares the same shuffling order among processes in the specified communicator.

Parameters

- **actual_iterator** – Chainer iterator (e.g., `chainer.iterators.SerialIterator`).
- **communicator** – ChainerMN communicator.

Returns The synchronized iterator based on actual_iterator.

7.4.7 Trainer extensions

class chainermn.extensions.AllreducePersistent(model, comm)

Chainer extension to averagize persistents over workers.

When called, this extension invokes all-reduce communication among workers to compute averages of persistent variables in the model. Persistent variables are updated to the averages. Currently, we ignore integer persistent variables, and only float persistent variables are handled.

This extension is mainly to improve the running mean and variance of BatchNormalization by increasing the effective number of examples. We do not need to call this frequently; call just before storing or evaluating the model.

Parameters

- **model** (chainer.link.Link) – Target link object.
comm *(ChainerMN communicator)* – communicator to compute averages.

```python
chainermn.create_multi_node_checkpointer(name, comm, cp_interval=5, gc_interval=5, path=None)
```

Create multi-node checkpoint object

Generational snapshot extension to allow fault tolerance; It keeps several old snapshots to rollback synchronized snapshot at each MPI process. Snapshot files are identified as `<name>..<rank>..<iteration>`.

- `<name>` … identifier of the run where snapshot is kept for
- `<rank>` … which process owned the model
- `<iteration>` … number of iteration.

This extension keeps several files for each execution and allows users to resume the whole job at the latest snapshots of each MPI process, and the iteration where all snapshots agrees.

As this object is a usual Chainer extension, users can just create this object and pass to the trainer as an extension:

```python
checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
trainer.extend(checkpointer, trigger=(25, 'iteration'))
```

To run recovery at startup, before first iteration, run

```python
checkpointer.maybe_load(trainer, optimizer)
```

before `trainer.run()` . If nothing is recovered (i.e. no snapshot found), `trainer.updater.iteration` will remain 0 . Otherwise it will have the value of snapshot and the training will resume from that iteration. `optimizer` is optional but this will let multi node optimizer avoid initial broadcast when all snapshot data among nodes are all in sync.

Note: Make sure that `checkpointer.maybe_load` is called after all extensions with states, such as `ExponentialShift`, set to the trainer.

After training finished without errors all those temporary checkpoints will be cleaned up at all nodes.

Another example to use checkpointer without trainer would be:

```python
checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
checkpointer.maybe_load(obj_you_want_to_snap, optimizer)

while True: ## Training loop
    ...
    updater.update()
    ...
    checkpointer.save(obj_you_want_to_snap)  # Make a checkpoint
```

Parameters

- **name** *(str)* – unique id of the run
- **comm** – communicator in ChainerMN
- **cp_interval** *(int)* – minimum number of checkpoints to preserve
- **gc_interval** *(int)* – interval to collect non-preserved checkpoints
7.4.8 Configurations

Environmental Variables

`CHAINERMN_FORCE_ABORT_ON_EXCEPTIONS` If this variable is set to a non-empty value, ChainerMN installs a global hook to Python’s `sys.excepthook` to call `MPI_Abort()` when an unhandled exception occurs. See *MPI process hangs after an unhandled Python exception*. ChainerMN issue #236 may also help to understand the problem.

Execution Control

`chainermn.global_except_hook.add_hook()`
Add a global hook function that captures all unhandled exceptions.

The function calls `MPI_Abort()` to force all processes abort. It is useful when you run your training script on a cloud platform.
CHAPTER EIGHT

API COMPATIBILITY POLICY

This documentation explains the design policy on compatibilities of Chainer APIs. Development team should follow this policy on deciding to add, extend, and change APIs and their behaviors.

This documentation is written for both users and developers. Users can decide the level of dependencies on Chainer’s implementations in their codes based on this document. Developers should read through this documentation before creating pull requests that contain changes on the interface. Note that this documentation may contain ambiguities on the level of supported compatibilities.

8.1 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version. A major update from the latest release candidate basically keeps the backward compatibility, although it is not guaranteed. Any pre-releases may break the backward compatibility.

8.2 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and sometimes into the major update.

A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what kind of actions we can take depends on the situation).

- When an argument is removed from an existing API, passing the argument to the updated API will emit an error with a special error message. The error message tells you how to fix your code.

- When a function or a class is removed, we make the current stable version emit a deprecation warning. Note that the deprecation warning is not printed by default in Python. You have to manually turn on the deprecation warning by `warnings.simplefilter('always', DeprecationWarning)`.

- When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable by an older version of Chainer.
8.3 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate. In particular, we sometimes know that the API is likely to be modified in the near future because we do not have enough knowledge about how well the current design fits to the real usages. **The objective of experimental APIs is to declare that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.**

Any newly added API can be marked as *experimental*. Any API that is not experimental is called *stable* in this document.

Note: Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision update). The treatment of undocumented behaviors are described in *Undocumented behaviors* section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users explicitly disable the emission of the warnings in advance.

See the documentation of `chainer.utils.experimental()` to know how developers mark APIs as experimental and how users enable or disable the warnings practically.

Note: It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs experimental if they implement large modules or make a decision from several design choices.

8.4 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.

8.4.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features. We support backward compatibilities of documented features. In other words, codes only based on the documented features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.

Note: Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore and the API is not experimental, the API should be kept over revision updates even if it is not documented.
8.4.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation. As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.

8.4.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers should not fix the documentation and implementation of the same functionality at the same time in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version correctly.

8.4.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the codes depend on how the attributes and properties are implemented.

8.4.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not break the user codes, except the codes depend on how the methods and callable attributes are implemented.

8.4.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception is raised in the future revision versions with correct usages that the documentation allows.

On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep backward compatibility of warnings.

8.5 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions. They might not be correctly loaded with Chainer of the lower versions.

Note: Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of objects that support serialization. We are discussing versioning in serialization APIs.
8.6 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in pre-releases and major updates. Such changes include following cases:

- dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)
- adding new mandatory dependencies (e.g. adding h5py to setup_requires)

Note: We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.
This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

9.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue
2. Sending a pull request (PR)
3. Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group
4. Open-sourcing an external example
5. Writing a post about Chainer

This documentation mainly focuses on 1 and 2, though other contributions are also appreciated.

9.2 Development Cycle

This section explains the development process of Chainer. Before contributing to Chainer, it is strongly recommended that you understand the development cycle.

9.2.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three or four parts: \(X.Y.Zw\) where \(X\) denotes the major version, \(Y\) denotes the minor version, \(Z\) denotes the revision number, and the optional \(w\) denotes the pre-release suffix. While the major, minor, and revision numbers follow the rule of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release candidate (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.
9.2.2 Release Cycle

We develop two tracks of versions at the same time. The first one is the track of stable versions, which is a series of revision updates for the latest major version. The second one is the track of development versions, which is a series of pre-releases for the upcoming major version.

Consider that $X.0.0$ is the latest major version and $Y.0.0, Z.0.0$ are the succeeding major versions. Then, the timeline of the updates is depicted by the following table.

<table>
<thead>
<tr>
<th>Date</th>
<th>ver X</th>
<th>ver Y</th>
<th>ver Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 weeks</td>
<td>X.0.0rc1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4 weeks</td>
<td>X.0.0</td>
<td>Y.0.0a1</td>
<td>–</td>
</tr>
<tr>
<td>8 weeks</td>
<td>X.1.0*</td>
<td>Y.0.0b1</td>
<td>–</td>
</tr>
<tr>
<td>12 weeks</td>
<td>X.2.0*</td>
<td>Y.0.0rc1</td>
<td>–</td>
</tr>
<tr>
<td>16 weeks</td>
<td>–</td>
<td>Y.0.0</td>
<td>Z.0.0a1</td>
</tr>
</tbody>
</table>

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of $X.0.0rc1$. In particular, each revision/minor release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major version is made at the same time. Whether these releases are revision or minor is determined based on the contents of each update.

Note that there are only three stable releases for the versions $X.x.x$. During the parallel development of $Y.0.0$ and $Z.0.0a1$, the version Y is treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in $X.x.x$ after stopping the development of version X, we may release a hot-fix for this version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the issues and PRs resolved in the release.

9.2.3 Git Branches

The master branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are developed at the master branch. This branch contains the most up-to-date source tree that includes features newly added after the latest major version.

The stable version is developed at the individual branch named as vN where “N” reflects the version number (we call it a versioned branch). For example, v3.0.0, v3.0.1, and v3.0.2 will be developed at the v3 branch.

Notes for contributors: When you send a pull request, you basically have to send it to the master branch. If the change can also be applied to the stable version, a core team member will apply the same change to the stable version so that the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the master branch, please send it to the versioned branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless the fix is critical.

If you want to make a new feature of the master branch available in the current stable version, please send a backport PR to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the master branch. Each release of the stable version is also merged to the development version so that the change is also reflected to the next major version.
9.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire to include the feature to the current stable version and you can work on the backport work, we welcome such a contribution. In such a case, you have to send a backport PR to the latest vN branch. **Note that we do not accept any feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for older versions so that we cannot ensure that the PR is correctly ported.**

There are some rules on sending a backport PR:

- Start the PR title from the prefix `[backport]`.
- Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).
- (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so that the overall development proceeds more smoothly!

9.3 Issues and Pull Requests

In this section, we explain how to file issues and send pull requests (PRs).

9.3.1 Issue/PR Labels

Issues and PRs are labeled by the following tags:

- **Bug**: bug reports (issues) and bug fixes (PRs)
- **Enhancement**: implementation improvements without breaking the interface
- **Feature**: feature requests (issues) and their implementations (PRs)
- **NoCompat**: disrupts backward compatibility
- **Test**: test fixes and updates
- **Document**: documentation fixes and improvements
- **Example**: fixes and improvements on the examples
- **Install**: fixes installation script
- **Contribution-Welcome**: issues that we request for contribution (only issues are categorized to this)
- **Other**: other issues and PRs

Multiple tags might be labeled to one issue/PR. **Note that revision releases cannot include PRs in Feature and NoCompat categories.**
9.3.2 How to File an Issue

On registering an issue, write precise explanations on how you want Chainer to be. Bug reports must include necessary and sufficient conditions to reproduce the bugs. Feature requests must include what you want to do (and why you want to do, if needed) with Chainer. You can contain your thoughts on how to realize it into the feature requests, though what part is most important for discussions.

Warning: If you have a question on usages of Chainer, it is highly recommended that you send a post to StackOverflow or Chainer User Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices. We may suggest these places and immediately close how-to question issues.

9.3.3 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

- Read through the Coding Guidelines and Unit Testing.
- Check the appropriate branch that you should send the PR following Git Branches. If you do not have any idea about selecting a branch, please choose the master branch.

In particular, check the branch before writing any code. The current source tree of the chosen branch is the starting point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub. You have to write a precise explanation of what and how you fix; it is the first documentation of your code that developers read, which is a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI for Linux and Mac OS X, and on AppVeyor for Windows. Your PR needs to pass at least the test for Linux on Travis CI. After the automatic test passes, some of the core developers will start reviewing your code. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integration with GPU tests for the master branch and the versioned branch of the latest major version. Since this service is currently running on our internal server, we do not use it for automatic PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, it is recommended that you open an issue and discuss the design first. The design discussion needs lower cost for the core developers than code review. Following the consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.
9.4 Coding Guidelines

Note: Coding guidelines are updated at v3.0. Those who have contributed to older versions should read the guidelines again.

We use PEP 8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

You can use `autopep8` and `flake8` commands to check your code.

In order to avoid confusion from using different tool versions, we pin the versions of those tools. Install them with the following command (from within the top directory of Chainer repository):

```
$ pip install -e '.[stylecheck]'
```

And check your code with:

```
$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py
```

The `autopep8` supports automatically correct Python code to conform to the PEP 8 style guide:

```
$ autopep8 --in-place path/to/your/code.py
```

The `flake8` command lets you know the part of your code not obeying our style guidelines. Before sending a pull request, be sure to check that your code passes the `flake8` checking.

Note that `flake8` command is not perfect. It does not check some of the style guidelines. Here is a (not-complete) list of the rules that `flake8` cannot check.

- Relative imports are prohibited. [H304]
- Importing non-module symbols is prohibited.
- Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]

In addition, we restrict the usage of shortcut aliases in any global-scope code. In particular, you cannot use shortcut aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another class defined in another module, you have to spell out the full module name instead of importing a module that provides an alias.

For example, the following code is not allowed.

```
import chainer

class MyLink(chainer.Link): ...
```

Instead, import `chainer.link` and use that.

```
import chainer.link

class MyLink(chainer.link.Link): ...
```

If you feel the code too verbose, you can also use `from import` or `import as`.

```
from chainer import link

class MyLink(link.Link): ...
```
Note: From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global scope code. For example, you can write `chainer.Variable` instead of `chainer.variable.Variable` inside of functions and methods. Use of such aliases is prohibited in the past for avoiding confusing errors related to cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.

When you use such shortcut aliases, please be careful with cyclic imports. One of the typical pitfalls is a way to import `chainer.functions`. An import like `import chainer.functions as F` within modules under `chainer.functions` does not work. An import like `from chainer import functions` works well with Python 3, but does not with Python 2. We recommend that you use `import chainer.functions` and spell out like `chainer.functions.foo` in your methods.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts after the check passes.

9.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

```bash
$ pip install pytest mock
```

9.5.1 How to Run Tests

You can run unit tests simply by running `python -m pytest` command at the repository root:

```bash
$ python -m pytest
```

or specify the test script that you want to run:

```bash
$ python -m pytest path/to/your/test.py
```

You can also run all unit tests under a specified directory:

```bash
$ python -m pytest tests/chainer_tests/<directory name>
```

It requires CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, use `CHAINER_TEST_GPU_LIMIT=0` environment variable and `-m='not cudnn'` option:

```bash
$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'
```

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs to `CHAINER_TEST_GPU_LIMIT`. For example, if you have only one GPU, launch `pytest` by the following command to skip multi-GPU tests:

```bash
$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py
```

Some tests spend too much time. If you want to skip such tests, pass `-m='not slow'` option to the command:
If you modify the code related to existing unit tests, you must run appropriate commands and confirm that the tests pass.

9.5.2 Test File and Directory Naming Conventions

Tests are put into the `tests/chainer_tests` directory. In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.

- The name of each subdirectory of `tests` must end with the `_tests` suffix.
- The name of each test script must start with the `test_` prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence to the tested module is clear. For example, if you want to write a test for a module `chainer.x.y.z`, the test script must be located at `tests/chainer_tests/x_tests/y_tests/test_z.py`.

9.5.3 How to Write Tests

There are many examples of unit tests under the `tests` directory, so reading some of them is a good and recommended way to learn how to write tests for Chainer. They simply use the `unittest` package of the standard library, while some tests are using utilities from `chainer.testing`.

In addition to the Coding Guidelines mentioned above, the following rules are applied to the test code:

- All test classes must inherit from `unittest.TestCase`.
- Use `unittest` features to write tests, except for the following cases:
 - Use `assert` statement instead of `self.assert*` methods (e.g., write `assert x == 1` instead of `self.assertEqual(x, 1)`).
 - Use `with pytest.raises(...):` instead of `with self.assertRaises(...):`.

Note: We are incrementally applying the above style. Some existing tests may be using the old style (`.assertRaises`, etc.), but all newly written tests should follow the above style.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that require CUDA must be tagged by `chainer.testing.attr.gpu` decorator:

```python
import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
    ...

    @attr.gpu
    def test_my_gpu_func(self):
        ...
```

The functions tagged by the `gpu` decorator are skipped if `CHAINER_TEST_GPU_LIMIT=0` environment variable is set. We also have the `chainer.testing.attr.cudnn` decorator to let `pytest` know that the test depends on cuDNN. The test functions decorated by `cudnn` are skipped if `-m='not cudnn'` is given.
The test functions decorated by `gpu` must not depend on multiple GPUs. In order to write tests for multiple GPUs, use `chainer.testing.attr.multi_gpu()` decorator instead:

```python
import unittest
from chainer.testing import attr
class TestMyFunc(unittest.TestCase):
    ...
    @attr.multi_gpu(2)  # specify the number of required GPUs here
    def test_my_two_gpu_func(self):
        ...
```

If your test requires too much time, add `chainer.testing.attr.slow` decorator. The test functions decorated by `slow` are skipped if `-m='not slow'` is given:

```python
import unittest
from chainer.testing import attr
class TestMyFunc(unittest.TestCase):
    ...
    @attr.slow
    def test_my_slow_func(self):
        ...
```

Note: If you want to specify more than two attributes, use `and` operator like `-m='not cudnn and not slow'`. See detail in the documentation of pytest.

Once you send a pull request, your code is automatically tested by Travis-CI except for tests annotated with `gpu`, `multi_gpu` and `slow`. Since Travis-CI does not support CUDA, we cannot check your CUDA-related code automatically. The reviewing process starts after the test passes. Note that reviewers will test your code without the option to check CUDA-related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the failures and go on to the review process, so do not worry about it!

9.6 Documentation

When adding a new feature to the framework, you also need to document it in the reference. For example, if you are adding a new function under `chainer.functions`, you need to add it to the *Functions* page.

Note: If you are unsure about how to fix the documentation, you can submit a pull request without doing so. Reviewers will help you fix the documentation appropriately.

The documentation source is stored under `docs` directory and written in reStructuredText format. To build the documentation, you need to install Sphinx:

```bash
$ pip install sphinx sphinx_rtd_theme
```
Note: Docstrings (documentation comments in the source code) are collected from the installed Chainer module. If you have edited docstrings in checked-out source files and want to see those changes reflected in the generated HTML, Chainer must be installed in develop mode to see those changes reflected in the generated documentation. To do this, use `pip install -e` from the top of the Chainer directory.

Then you can build the documentation in HTML format locally:

```
$ cd docs
$ make html
```

HTML files are generated under `build/html` directory. Open `index.html` with the browser and see if it is rendered as expected.
10.1 It takes too long time to compile a computational graph. Can I skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available, because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the $(HOME)/.cupy/kernel_cache directory by default. If you see that compilations run every time you run the same script, then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview for more details.

10.2 MNIST example does not converge in CPU mode on Mac OS X

Note: Mac OS X is not an officially supported OS.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here are instructions to install NumPy with OpenBLAS using Conda.

```bash
$ conda install -c conda-forge numpy
```

Otherwise, to install NumPy without Conda, you may need to install NumPy from source.

Use Homebrew to install OpenBLAS.

```bash
$ brew install openblas
```

Uninstall existing NumPy installation
$ pip uninstall numpy

You'll to create a file called .numpy-site.cfg in your home (~/) directory with the following:

```ini
[openblas]
libraries = openblas
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include
```

Install NumPy from the source code

```
pip install --no-binary :all: numpy
```

Confirm NumPy has been installed with OpenBLAS by running this command:

```
$ python -c "import numpy; print(numpy.show_config())"
```

You should see the following information:

```python
blas_mkl_info:
   NOT AVAILABLE
blis_info:
   NOT AVAILABLE
openblas_info:
   libraries = ['openblas', 'openblas']
   library_dirs = ['/usr/local/opt/openblas/lib']
   language = c
   define_macros = [('HAVE_CBLAS', None)]
   runtime_library_dirs = ['/usr/local/opt/openblas/lib']
```

Once this is done, you should be able to import chainer without OpenBLAS errors.

For details of this problem, see issue #704.

10.3 How do I fix `InvalidType` error?

Chainer raises an InvalidType exception when invalid inputs are given to Functions. If you got InvalidType, generally you need to check if `dtype` and/or `shape` of inputs are valid for the function.

Here are some examples of InvalidType errors:

```python
import chainer.functions as F
import numpy as np

arr = np.arange(10) - 5
F.relu(arr)
```

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: ReLU (Forward)

Expect: x.dtype.kind == f
Actual: i != f
In this case, kind of x (the first argument of the function \texttt{relu()}) is expected to be \texttt{f} (floating-point), whereas the input was \texttt{i} (signed integer). You need to cast the input appropriately before passing to the function (e.g., \texttt{x.astype(np.float32)}).

```python
import chainer.functions as F
import numpy as np

x = np.ones((4, 4))
y = np.ones((3, 3))
F.concat([x, y])
```

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Concat (Forward)

Expect: in_types[0].shape[0] == in_types[1].shape[0]
Actual: 4 != 3

In this case, the function expects that \texttt{x.shape[0]} is equal to \texttt{y.shape[0]}, but actually it was 4 and 3, respectively.

See Type Checks for the detailed behavior of type checking system in Chainer.

10.4 How do I accelerate my model using Chainer Backend for Intel Architecture?

Follow these steps to utilize Chainer Backend for Intel Architecture in your model.

10.4.1 Install Chainer Backend for Intel Architecture

The following environments are recommended by Chainer Backend for Intel Architecture.

- Ubuntu 14.04 / 16.04 LTS (64-bit) and CentOS 7 (64-bit)
- Python 2.7.6+, 3.5.2+, and 3.6.0+

On recommended systems, you can install Chainer Backend for Intel Architecture wheel (binary distribution) by:

```bash
$ pip install 'ideep4py<2.1'
```

Note: \texttt{ideep4py} v1.0.x is incompatible with v2.0.x, and is not supported in Chainer v5.0 or later.
10.4.2 Enable Chainer Backend for Intel Architecture Configuration

Currently Chainer Backend for Intel Architecture is disabled by default because it is an experimental feature. You need to manually enable it by changing `chainer.config.use_ideep` configuration to 'auto'. See Configuring Chainer for details.

The easiest way to change the configuration is to set environment variable as follows:

```
export CHAINER_USE_IDEEP="auto"
```

You can also use `chainer.using_config()` to change the configuration.

```
x = np.ones((3, 3), dtype='f')
with chainer.using_config('use_ideep', 'auto'):
    y = chainer.functions.relu(x)
print(type(y.data))
```

```
<class 'ideep4py.mdarray'>
```

10.4.3 Convert Your Model to Chainer Backend for Intel Architecture

You need to call `model.to_intel64()` (in the same way you call `model.to_gpu()` to transfer your link to GPU) to convert the link to Chainer Backend for Intel Architecture.

10.4.4 Run Your Model

Now your model is accelerated by Chainer Backend for Intel Architecture!

Please note that not all functions and optimizers support Chainer Backend for Intel Architecture acceleration. Also note that Chainer Backend for Intel Architecture will not be used depending on the shape and data type of the input data.

10.5 My training process gets stuck when using MultiprocessIterator

When you are using OpenCV somewhere in your code and the `MultiprocessIterator` is used in the training code, the training loop may get stuck at some point. In such situation, there are several workarounds to prevent the process got stuck.

1. Set the environment variable as follows: `OMP_NUM_THREADS=1`
2. Add `cv2.setNumThreads(0)` right after `import cv2` in your training script.
3. Use `MultithreadIterator` instead of `MultiprocessIterator`.

This problem is originally reported here: A training loop got stuck in a certain condition with multi-processing updater and opencv for Chainer and the discussion on related problems is still going here: OpenCV + Python multiprocessing breaks on OSX.
This guide explains some tips and advice for maximizing the performance of Chainer.

11.1 Use the Latest Version

It is generally recommended that you use the latest version of Chainer and its dependent libraries (CUDA, cuDNN, iDeep, etc.). Some of the new features and performance optimizations introduced in newer versions of dependent libraries may not be available in older versions of Chainer. Also, Chainer itself is incrementally being improved to provide better performance.

If you are using Chainer v4 or later, you can check the version configuration by:

```python
chainer.print_runtime_info()
```

<table>
<thead>
<tr>
<th>Chainer: 4.0.0</th>
<th>NumPy: 1.14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPy:</td>
<td></td>
</tr>
<tr>
<td>CuPy Version</td>
<td>4.0.0</td>
</tr>
<tr>
<td>CUDA Root</td>
<td>/usr/local/cuda</td>
</tr>
<tr>
<td>CUDA Build Version</td>
<td>9000</td>
</tr>
<tr>
<td>CUDA Driver Version</td>
<td>9000</td>
</tr>
<tr>
<td>CUDA Runtime Version</td>
<td>9000</td>
</tr>
<tr>
<td>cuDNN Build Version</td>
<td>7100</td>
</tr>
<tr>
<td>cuDNN Version</td>
<td>7100</td>
</tr>
<tr>
<td>NCCL Build Version</td>
<td>2102</td>
</tr>
</tbody>
</table>

Generally, the Chainer team is maintaining the API between minor updates (e.g., v4.0 to v4.1) so that users can upgrade Chainer without modifying their code (see *API Compatibility Policy* for our policy). As for major updates, please refer to the *Upgrade Guide* to understand what should be done for migration.

11.2 Enable Hardware Accelerations

11.2.1 Using GPU

In most cases, running on GPU will give you better performance than on CPU. When using GPU, also make sure to install cuDNN, which is a library to accelerate deep neural network computations.

Note: You don’t have to manually install cuDNN if you are using CuPy wheels, which includes the latest version of cuDNN. Check the output of `chainer.print_runtime_info();` if you see the cuDNN version number, it is
installed properly and will be used by Chainer automatically.

Note: If you wish, you can manually disable use of cuDNN using `chainer.config.use_cudnn` configuration option. See [Configuring Chainer](#) for details.

11.2.2 Using CPU

If you are running Chainer on CPU, you can use **iDeep** to utilize vector instructions of CPU. See [Tips and FAQs](#) for steps to run your model with iDeep.

You can also improve performance by building NumPy linked to **Intel MKL**. See [Numpy/Scipy with Intel® MKL and Intel® Compilers](#) for the detailed instructions.

Note: If you installed **numpy** package using Anaconda, you may already have MKL-linked NumPy. Check the output of `numpy.show_config()` to see what linear algebra library is linked.

Note: Use of iDeep and MKL-linked NumPy are orthogonal. You can use both of them at once to maximize the performance.

11.3 Migrate Data Preprocessing Code from NumPy to CuPy

If you are preprocessing your dataset or running data augmentation using NumPy, you may be able to use CuPy as a substitution to improve performance.

Note: It is **not always** efficient to use CuPy instead of NumPy, especially when the computation is not very heavy, or it cannot be done in batch.

11.4 Avoid Data Transfer

If you are using GPU, be aware of data transfer between CPU and GPU. For example, printing `chainer.Variable` on GPU (e.g., for debugging) will cause memory transfer from GPU to CPU, which will incur synchronization overhead.

You can use **NVIDIA Visual Profiler** to diagnose this kind of issue.
11.5 Optimize cuDNN Convolution

11.5.1 Workspace Size

Some convolution algorithms in cuDNN use additional GPU memory as a temporary buffer. This is called “workspace,” and users can adjust the upper limit of its size. By increasing the limit of workspace size, cuDNN may be able to use better (i.e., memory consuming but faster) algorithm.

The default size (in bytes) is:

```python
>>> chainer.backends.cuda.get_max_workspace_size()
8388608
```

and can be adjusted using `chainer.backends.cuda.set_max_workspace_size()`.

Maximum required workspace size may vary depending on various conditions such as GPU hardware and batch size of inputs.

11.5.2 Auto-Tuner

Some convolution algorithms in cuDNN support the auto-tuner feature that finds the fastest convolution algorithm for given inputs. You can turn on this feature by setting `autotune` configuration to `True`.

See [Configuring Chainer](#) for detailed descriptions.

Note: Auto-tuner tries to find the best algorithm for every first observation of the input shape combination. Therefore, the first batch will become slower when auto-tuner is enabled. The result of auto-tuner is cached on memory so that it can be reused for data with the same input shape combination. In other words, algorithm selected in the first batch will be reused for the second and later batches, as long as the input shape combination is the same.

If you set `autotune` configuration to `False`, the default convolution algorithm will always be selected, regardless of the previous auto-tuner results.

Note: Auto-tuner always use the maximum workspace size.

11.6 Fine-Tune Configuration

There are some Chainer configuration values that affect performance. Although the default values work well in most cases, you can adjust the following configurations for better performance.

- `enable_backprop`

 If you are running your model for inference (i.e., you don’t have to use back propagation because you are not training the model), you can set this configuration to `False` to improve performance and reduce memory consumption.

- `type_check`

 By default, Chainer checks the integrity between input data and functions. This makes possible to display friendly message when, for example, data with invalid dtype or shape is given to a function. By setting this configuration to `False`, you can let Chainer skip such check to improve performance. It is recommended that you turn off the check only for well-tested code and input data.
See *Configuring Chainer* for detailed descriptions.

11.7 Load Datasets Concurrently

If loading process of your dataset is I/O-bound or CPU-bound, consider using `chainer.iterators.MultithreadIterator` or `chainer.iterators.MultiprocessIterator` to load dataset concurrently using multiple threads or processes, instead of `chainer.iterators.SerialIterator` which works in a single thread in a single process.

11.8 Use Multiple GPUs

You can utilize multiple GPUs to make the training process faster.

For data parallelism, you can use `chainer.training.updaters.ParallelUpdater` or `chainer.training.updaters.MultiprocessParallelUpdater` instead of `chainer.training.updaters.StandardUpdater`. For model parallelism, you need to manually transfer each `chainer.Link` in your model to each device.

See *Using GPU(s) in Chainer* for the working examples of each case.

11.9 Use Multiple Nodes

You can scale-out the training process of your Chainer model to multiple-node cluster by using `ChainerMN` module which enables distributed deep learning.
This is a list of changes introduced in each release that users should be aware of when migrating from older versions. Most changes are carefully designed not to break existing code; however, changes that may possibly break them are highlighted with a box.

12.1 Chainer v6

12.1.1 Dropping Python 3.4

Starting from Chainer v6, Python 3.4 will no longer be supported as it reaches its end-of-life (EOL) and Python 3.5.1 will become the minimum Python 3 version supported by Chainer. Please upgrade the Python version if you are using Python 3.4 to any version listed under Installation.

12.1.2 CuPy Needs To Be Manually Updated

Prior to Chainer v6, CuPy is automatically updated to the appropriate version when updating Chainer (i.e., \texttt{pip install -U chainer} updates CuPy package). In Chainer v6, Chainer does not perform this automatic update. You need to manually update CuPy package when updating Chainer package.

This is because the automatic update made users difficult to switch between CuPy packages (e.g., \texttt{cupy-cuda90} and \texttt{cupy-cuda92} etc). See \#5425 for details.

12.1.3 Deprecation Notice on Communicators and Old NCCL versions

Chainer v6 only supports NCCL 2.3 and newer versions. Old NCCL versions are to be deprecated and will be removed in future versions. As of old NCCL deprecation, several communicators built for them are to be deprecated as well:

- hierarchical
- two_dimensional
- single_node

They will be removed in future versions. Also, default communicator changed to \texttt{pure_nccl} from \texttt{hierarchical}.
12.1.4 CuPy v6

Chainer v6 requires CuPy v6 if you need GPU support. Please see the Upgrade Guide for CuPy v6 for details.

12.2 Chainer v5

12.2.1 ChainerMN Became Part of Chainer

ChainerMN, which enables multi-node distributed deep learning using Chainer, has been merged to Chainer v5.

Prior to Chainer v4, ChainerMN was provided as a separate chainermn package. In Chainer v5, ChainerMN now became a part of Chainer; ChainerMN will be installed just by installing chainer package. If you are using chainermn package, make sure to remove it by `pip uninstall chainermn` before upgrading to Chainer v5 or later.

For documentation of ChainerMN, see *Distributed Deep Learning with ChainerMN*.

12.2.2 Use forward Instead of __call__ in Links

Prior to Chainer v5, __call__ method is used to define the behavior of Link. In Chainer v5, forward method has been introduced, and is now recommended that you use it instead of __call__. The base class (Link) provides __call__ method implementation that invokes forward method defined in the subclass; the only thing you need to do is to rename the method name (replace `def __call__(...)` with `def forward(...)`).

For backward compatibility, you can still use __call__ to define your own link. However, new features introduced in Chainer v5 (e.g., LinkHook) may not be available for such links.

12.2.3 FunctionNode Classes are Hidden from chainer.functions

Prior to Chainer v5, FunctionNode classes (e.g., chainer.functions.MaxPooling2D) are exposed under chainer.functions. In Chainer v5, these classes are hidden from chainer.functions. Use the equivalent wrapper functions listed in Functions (e.g., chainer.functions.max_pooling_2d()) instead.

Some wrapper functions now provide options to access internal states to avoid directly using FunctionNode classes.

- `chainer.functions.max_pooling_2d()`: return_indices
- `chainer.functions.max_pooling_nd()`: return_indices
- `chainer.functions.dropout()`: mask, return_mask
- `chainer.functions.gaussian()`: eps, return_eps

For example, suppose your existing code needs to access MaxPooling2D.indexes to later perform upsampling:

```python
p = F.MaxPooling2D(2, 2)
h = p.apply((x,))[0]
...
y = F.upsampling_2d(h, p.indexes, ksize=2)
```

The above code may raise this error in Chainer v5:

```
AttributeError: module 'chainer.functions' has no attribute 'MaxPooling2D'
```

You can rewrite the above code using return_indices option of chainer.functions.max_pooling_2d():

```python
p = F.max_pooling_2d(x, 2, return_indices=True)
indices = p.indexes
h = F.upsampling_2d(h, indices, ksize=2)
```
```
h, indices = F.max_pooling_2d(x, 2, 2, return_indices=True)
...
y = F.upsampling_2d(h, indices, ksize=2)
```

12.2.4 Persistent Values are Copied in `Link.copyparams`

`chainer.Link.copyparams()` is a method to copy all parameters of the link to another link. This method can be used, for example, to copy parameters between two chains that partially share the same network structure to reuse pretrained weights.

Prior to Chainer v5, only parameters are copied between links. In Chainer v5, in addition to parameters, persistent values (see Serializers – saving and loading for details) are also copied between links. This is especially beneficial when copying parameters of `BatchNormalization`, as it uses persistent values to record running statistics.

You can skip copying persistent values by passing newly introduced `copy_persistent=False` option to `copyparams()` so that it behaves as in Chainer v4.

12.2.5 Updaters Automatically Call `Optimizer.new_epoch`

This change should affect only a minority of users (who call `new_epoch()` while using a trainer, or who implement their own `Updater` class).

Optimizers provide `new_epoch()` method, which can be used to change the behavior of optimizers depending on the current epoch number. Prior to Chainer v5, this method was expected to be called by users. In Chainer v5, updaters have been changed to call `new_epoch()` automatically. If you have been calling `new_epoch()` method manually while using a trainer (or an updater), you may need any of the following fixes:

- Pass `auto_new_epoch=False` to the constructor of the updater (e.g., `StandardUpdater`) to stop `new_epoch()` from being called automatically by the updater.
- Avoid calling `new_epoch()` method manually.

If you implement your own `Updater` class, you may need to update your code to automatically call `new_epoch()` (you can refer to the changes introduced in #4608 to understand how to fix your updater).

12.2.6 Extending the Backend Namespace

In addition to `chainer.backends`, we introduced `chainer.backend`. This subpackage contains utility functions that span several backends. For instance, it includes `chainer.backend.get_array_module()` which used to be defined in `chainer.backends.cuda.get_array_module()`. Both can be used but the latter will be deprecated.

12.2.7 `get_device_from_array` Returns Actual Device for Empty Arrays

Prior to Chainer v5, `chainer.backends.cuda.get_device_from_array()` returned `chainer.backends.cuda.DummyDeviceType` if the array is empty. In Chainer v5, it has been changed to return the actual `cupy.cuda.Device` object:

```
>>> x = cupy.array([])
>>> chainer.backends.cuda.get_device_from_array(x)
<CUDA Device 0>
```
12.2.8 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 9.2 and cuDNN 7.
To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

12.2.9 CuPy v5

Chainer v5 requires CuPy v5 if you need GPU support. Please see the Upgrade Guide for CuPy v5 for details.

12.3 Chainer v4

12.3.1 Introduction of Backend Namespace

We introduced chainer.backends subpackage for future support of various backend libraries other than NumPy
and CuPy. By this change, chainer.cuda module is now moved to chainer.backends.cuda.
This does not break the existing code; you can safely continue to use chainer.cuda (e.g., from chainer
import cuda) but it is now encouraged to use from chainer.backends import cuda instead.

12.3.2 Namespace Changes for Updaters

chainer.training.StandardUpdater and chainer.training.ParallelUpdater are now
moved to chainer.training.updaters.StandardUpdater and chainer.training.updaters.
ParallelUpdater respectively, to align with the namespace convention of other subpackages. See the discussion
in #2982 for more details.
This change does not break the existing code; you can safely continue to use updater classes directly under chainer.
training but it is now encouraged to use chainer.training.updaters instead.

12.3.3 Namespace Changes for Optimizer Hooks

Optimizer hook functions are moved from chainer.optimizer.* to chainer.optimizer_hooks.
*. For example, chainer.optimizer.WeightDecay is now located chainer.optimizer_hooks.
WeightDecay.
If the existing code is using hooks directly under chainer.optimizer, DeprecationWarning will be shown.
You are now encouraged to use chainer.optimizer_hooks instead.

12.3.4 Prohibition of Mixed Use of Arrays on Different Devices in Function Argu-
ments

Argument validation of functions is now strictened to check device consistency of argument variables to provide better
error messages to users. Suppose the following code:

```python
v1 = chainer.Variable(np.arange(10, dtype=np.float32))  # CPU
v2 = chainer.Variable(cupy.arange(10, dtype=cupy.float32))  # GPU

# The line below raises an exception, because arguments are on different device.
F.maximum(v1, v2)
```
Prior to v4, the above code raises an exception like `ValueError: object __array__ method not producing an array`, which was difficult to understand. In v4, the error message would become `TypeError: incompatible array types are mixed in the forward input (Maximum)`. This kind of error usually occurs by mistake (for example, not performing `to_gpu` for some variables).

Attention: As the argument validation is strictened, call of functions intentionally mixing NumPy/CuPy arrays in arguments will not work in Chainer v4. Please transfer all arrays to the same device before calling functions.

12.3.5 References to Function Nodes Not Retained in TimerHook and CupyMemoryProfilerHook

To reduce memory consumption, references to the function nodes will no longer be retained in the `chainer.function_hooks.CupyMemoryProfileHook` and `chainer.function_hooks.TimerHook`. See the discussion in #4300 for more details.

Attention: The existing code using function nodes retained in `call_history` attribute of these hooks will not work. The first element of `call_history` became the name of the function, instead of the function node instance itself. You can define your own function hook if you need to access the function node instances.

12.3.6 Update of Docker Images

Chainer official Docker images (see *Installation* for details) are now updated to use CUDA 8.0 and cuDNN 6.0. This change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker for details.

12.3.7 CuPy v4

Chainer v4 requires CuPy v4 if you need GPU support. Please see the Upgrade Guide for CuPy v4 for details.

12.4 Chainer v3

12.4.1 Introduction of New-style Functions

This release introduces new-style functions (classes inheriting from `FunctionNode`) that support double backward (gradient of gradient). See the Release Note for v3.0.0 for the usage of this feature.

Many of `Functions` are already migrated to new-style, although some of functions are still old-style (classes inheriting from `Function`). We are going to migrate more old-style functions to new-style in upcoming minor releases.

This does not break the existing code. Old-style functions (classes inheriting from `Function`) are still supported in v3 and future versions of Chainer.

If you are going to write new functions, it is encouraged to use `FunctionNode` to support double backward.
Attention: Users relying on undocumented function APIs (directly instantiating old-style classes) may experience an error like TypeError: 'SomeFunction' object is not callable after upgrading to v3. Please use the function APIs documented in Functions.

12.4.2 Changed Behavior of matmul Function

The behavior of `chainer.functions.matmul()` has been changed to behave like the corresponding NumPy function (`numpy.matmul()`). See the discussion in #2426 for more details.

Attention: The existing code using `chainer.functions.matmul()` may require modification to work with Chainer v3.

Also note that `chainer.functions.batch_matmul()` is now deprecated by this change. You can rewrite it using `chainer.functions.matmul()`.

12.4.3 Removed use_cudnn Argument in spatial_transformer_grid and spatial_transformer_sampler Functions

`use_cudnn` argument has been removed from `chainer.functions.spatial_transformer_grid()` and `chainer.functions.spatial_transformer_sampler()`. See the discussion in #2955 for more details.

Attention: The existing code using `use_cudnn` argument of `chainer.functions.spatial_transformer_grid()` and `chainer.functions.spatial_transformer_sampler()` require modification to work with Chainer v3. Please use the configuration context (e.g., with `chainer.using_config('use_cudnn', 'auto'):`) to enable or disable use of cuDNN. See Configuring Chainer for details.

12.4.4 CuPy v2

Chainer v3 requires CuPy v2 if you need GPU support. Please see the Upgrade Guide for CuPy v2 for details.

12.5 Chainer v2

See Upgrade Guide from v1 to v2 for the changes introduced in Chainer v2.

12.5.1 Upgrade Guide from v1 to v2

This documentation provides detailed information of differences between Chainer v1 and v2. You will know by reading it which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

- CuPy
 - CuPy has been separated from Chainer into a separate package
• Global configurations
 – Training mode is configured by a thread-local flag
 – Configurations are added and replace some of existing global flags

• Variable
 – Volatile flag is removed
 – Variable is not a part of a computational graph anymore
 – Parameter has to be an instance of Parameter class
 – Small changes to Variable

• Function
 – The force_tuple option of split_axis is True by default
 – Type check APIs are updated to enable lazy building of the error messages
 – Methods to release unneeded arrays are added

• Link/Chain/ChainList
 – wscale option is removed from links
 – bias option is removed from links
 – The bias vector is enabled by default in N-dimensional convolution links
 – init_weight function is removed
 – The order of arguments of GRU is changed
 – The default value of the forget bias for LSTM and StatelessLSTM is changed to 1
 – The interfaces of GRU and LSTM are aligned
 – Aliases of links in chainer.functions are removed
 – Parameter link is removed
 – New-style parameter registration APIs are added to Link
 – New-style child link registration APIs are added to Chain
 – The input-size placeholder of links are made optional

• Optimizer
 – Deprecated methods of Optimizer are removed
 – GradientMethod uses Link.cleargrads instead of Link.zerograd by default
 – GradientMethod is redesigned to allow parameter-specific update rules

• Serializer
 – None is serializable

• Trainer and Extension
 – Updater and Evaluator pass raw data arrays to the loss function
 – trigger option is removed from snapshot and snapshot_object
 – Extension.invoke_before_training is removed
- The dump_graph extension dumps the valid graph only at its first invocation
- Reporter
- When a variable is reported, the variable is copied with the graph purged
- Other utilities
- Some obsolete classes and functions are removed

CuPy

CuPy has been separated from Chainer into a separate package

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to enable CUDA support. See Installation for the recommended installation steps.

Fortunately, there is no need of updating your source code to catch up with this change.

Global configurations

Training mode is configured by a thread-local flag

In Chainer v2, the concept of training mode is added. It is represented by a thread-local flag chainer.config.train, which is a part of the unified configuration. When chainer.config.train is True, functions of Chainer run in the training mode, and otherwise they run in the test mode. For example, BatchNormalization and dropout() behave differently in each mode.

In Chainer v1, such a behavior was configured by the train or test argument of each function. This train/test argument has been removed in Chainer v2. If your code is using the train or test argument, you have to update it. In most cases, what you have to do is just removing the train/test argument from any function calls.

Example

Consider the following model definition and the code to call it in test mode written for Chainer v1.

```python
# Chainer v1
import chainer.functions as F

class MyModel(chainer.Link):
    ...
    def __call__(self, x, train=True):
        return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)
```

In Chainer v2, it should be updated into the following code:

```python
# Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
    ...
    def __call__(self, x):
        return f(F.dropout(x))

m = MyModel(...)
y = m(x)
```
def __call__(self, x):
 return f(F.dropout(x))

m = MyModel(...)
with chainer.using_config('train', False):
 y = m(x)

Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the complete list of the configuration entries that have corresponding features in Chainer v1.

chainer.config.cudnn_deterministic It is corresponding to the deterministic argument of some convolution functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this argument, you have to use the chainer.config.cudnn_deterministic flag to change the behavior of the convolution functions.

chainer.config.debug It is corresponding to the debug mode in Chainer v1, which was configured by set_debug() and extracted by is_debug(). These functions are also available in Chainer v2, so you basically do not need to update the code related to the debug mode.

chainer.config.enable_backprop It is corresponding to the backprop mode in Chainer v1. The functions no_backprop_mode() and force_backprop_mode() are still available in Chainer v2, which automatically turns on/off the enable_backprop flag. One important difference from Chainer v1 is that the volatile flag is removed from Variable. Therefore, there are more situations that you need to modify the enable_backprop flag.

chainer.config.keep_graph_on_report This flag configures whether or not to keep the computational graph alive for a reported variable. In Chainer v2, when a Variable object is reported by report(), a copy of the variable isolated from the computational graph is created and stored by default. Setting True to this flag, you can change this behavior and then the original Variable object is stored as is. See When a variable is reported, the variable is copied with the graph purged for more details.

chainer.config.train It is corresponding to the train or test argument of some functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this argument, you have to use the chainer.config.train flag instead. See Training mode is configured by a thread-local flag for more details.

chainer.config.type_check It is corresponding to the Function.type_check_enable flag. If your code touches this flag, you have to use chainer.config.type_check instead. Note that the environment variable CHAINER_TYPE_CHECK is still available in Chainer v2, so if you are only using the environment variable, there is no need of updating your code.

chainer.config.use_cudnn It is corresponding to the use_cudnn argument of many functions that have cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument, you have to use the chainer.config.use_cudnn flag instead. Note that this flag is ternary, not binary. See Configuring Chainer for more details.

These configurations can be modified in two ways.

- Simply substituting a new value to an entry, like chainer.config.train = False.
- Using the chainer.using_config context manager. It can be used with the with statement of Python as follows:
with chainer.using_config('train', False):
 do something # this code runs with chainer.config.train == False

It recovers the original configuration after quitting the with block.

The chainer.config manages the thread-local configuration. You can also set the global configuration by modifying chainer.global_config. Note that the global configuration is used only if the entry of the thread-local configuration is not explicitly set up.

Variable

Volatile flag is removed

The Variable.volatile flag has been removed since Chainer v2.

Instead, the configuration chainer.config.enable_backprop can be used to enable/disable the automatic differentiation feature. If it is True, Chainer always creates a computational graph on the forward propagation, which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile == 'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

```python
# Chainer v1
x_data = ...  # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)
```

In Chainer v2, it should be updated as follows.

```python
# Chainer v2
x_data = ...  # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():
    y = model(x)
```
Variable is not a part of a computational graph anymore

The `Variable` class has been separated into two distinct classes, the `Variable` class and the `VariableNode` class, since Chainer v2. Every `Variable` object owns its own `VariableNode` object. A computational graph consists of `Function` objects and `VariableNode` objects. When one applies a `Function` to a `Variable`, the `VariableNode` object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is still held by the `Variable` object. It allows each `Function` implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory consumption.

This change does not affect most users’ code. If you are directly traversing the computational graph by yourself or modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change `Variable` into `VariableNode` in the code traversing the computational graph.

Parameter has to be an instance of Parameter class

Chainer v2 has a subclass of `Variable` called `Parameter`. This class has an interface convenient on setting up a parameter variable registered to `Link`.

You basically do not need to update your code because `Link.add_param()` creates a `Parameter` object in Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for the recommended way of parameter registration.

Small changes to Variable

There are some changes on the interface and specification of methods.

- `len(variable)` returns the length of the first axis of the underlying array in Chainer v2. This is equivalent to `len(variable.data)`. It is different from the behavior of Chainer v1, in which `len` returned the total number of elements in the underlying array.
- `repr(variable)` returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer v1, it just returns a string that shows the name of the variable.

Function

The force_tuple option of split_axis is True by default

In Chainer v2, the `force_tuple` argument of `functions.split_axis()` is set to `True` by default. Therefore, it always returns a tuple regardless of the number of sections made after the split. It was `False` by default in Chainer v1.
Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The following list shows which part has to be updated.

- Use `utils.type_check.eval()` instead of `Expr.eval`.
- Use `utils.type_check.make_variable()` to create a `utils.type_check.Variable` object instead of directly constructing it by yourself.
- Stop using `.name` attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each expression that tests some condition. The AST is used to emit a kind error message. However, building an AST requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the `Function.type_check_forward()` method is called once or twice. At the first call, the type checking APIs run in lightweight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster, while keeping the kind error messages.

Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function implementation. In many cases, a Function implementation does not need some input arrays in its backward computation. A new method called `Function.retain_inputs()` can be used to specify which input arrays are actually needed. This method must not be called from the outside of `Function.forward()`.

Example

For example, consider the following simple addition function.

```python
class AddFunction(chainer.Function):
    def forward(self, inputs):
        return inputs[0] + inputs[1],

    def backward(self, inputs, grad_outputs):
        return grad_outputs[0], grad_outputs[0]
```

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an empty tuple of indexes to `retain_inputs()` will reduce the memory overhead.

```python
class AddFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_inputs(()), # does not retain both inputs
        return inputs[0] + inputs[1],

    def backward(self, inputs, grad_outputs):
        return grad_outputs[0], grad_outputs[0]
```

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation. In Chainer v1, we have written code that store the output arrays to attributes of the Function object and reuse them in the `backward()` method. In Chainer v2, it is recommended that you use `Function.retain_outputs()`
to declare which outputs are required in the backward computation. The retained output arrays can be accessed via `Function.output_data`.

Note: The existing `Function` implementations that store the output arrays to its attributes will run correctly in Chainer v2. There is no any memory overhead right now. It is recommended that you use `retain_outputs()`, though, so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

```python
class TanhFunction(chainer.Function):
    def forward(self, inputs):
        xp = chainer.cuda.get_array_module(inputs[0])
        self.y = xp.tanh(inputs[0])
        return self.y,

    def backward(self, inputs, grad_outputs):
        one = self.y.dtype.type(1)  # avoid type promotion
        return grad_outputs[0] * (one - self.y * self.y),
```

We can use `retain_outputs()` instead of preserving the output array by ourselves as follows.

```python
class TanhFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_outputs((0,))
        xp = chainer.cuda.get_array_module(inputs[0])
        return xp.tanh(inputs[0]),

    def backward(self, inputs, grad_outputs):
        y = self.output_data[0]
        one = y.dtype.type(1)  # avoid type promotion
        return grad_outputs[0] * (one - y * y)
```

Link/Chain/ChainList

wscale option is removed from links

The `wscale` option has been removed from links since Chainer v2. **If you are using wscale option, you have to update your code.** The recommended way is to explicitly set the initializer.

Example

Consider the case of adding a `Linear` link with the weight initialized by 0.5x of the default initialization.

```python
# Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)
```

Note that the default initializer of the weight matrix of `Linear` is a normal distribution of the standard deviation $1/\sqrt{fanin}$. Therefore, it can be fixed as follows.
Chainer Documentation, Release 6.7.0

```python
# Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.sqrt(10)))
```

Or, by using the fact that `initializers.HeNormal` provides the initialization with a normal distribution of the standard deviation $\text{scale} \times \sqrt{2/fanin}$, the following code is also equivalent to the original.

```python
# Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 / math.sqrt(2))
```

bias option is removed from links

In Chainer v2, the `bias` option is removed from the following links: `Linear`, `Convolution2D`, `Deconvolution2D`, and `DilatedConvolution2D`. The effect of this argument was duplicated with the `initial_bias` option. Use `initial_bias` instead.

The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in `ConvolutionND` and `DeconvolutionND`. It was unintentionally disabled by default in Chainer v1.

If you are using ConvolutionND or DeconvolutionND without specifying the `initial_bias` argument, you have to fix your code. If you want to keep the old behavior (i.e., no bias vector is created by the link), pass `nobias=True` to the link at the construction. Otherwise it will automatically create a bias vector.

init_weight function is removed

The `chainer.initializers.init_weight` function that was used on weight initialization has been removed since Chainer v2.

You have to update your code if you are using init_weight. In most cases, the update is simple: pass an initializer to `Parameter`.

Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

```python
# Chainer v1
class MyLink(chainer.Link):
    def __init__(self):
        super(MyLink, self).__init__(
            W=(10, 5),
            b=(5,),
        )
        chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
        self.b.data.fill(0)

...```

This code should be fixed as follows (see the next topic for the use of `Parameter`).
The order of arguments of GRU is changed

In Chainer v2, the first two arguments of `GRU` is the input size and the output size. It was reversed in Chainer v1, causing an inconsistent interface compared to other links including `LSTM`. **If you are using `GRU`, you have to update your code.** The update is done by simply flipping the first two arguments.

**Example**

Consider the following code that creates a `GRU` link.

```python
Chainer v1
gru = chainer.links.GRU(20, 10)
```

It should be fixed into the following code.

```python
Chainer v2
gru = chainer.links.GRU(10, 20)
```

Note that if you were omitting the output size, the code works as is because `GRU` supports the omitted input size.

```python
Chainer v1/v2
gru = chainer.links.GRU(20)
```

The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of `LSTM` and `StatelessLSTM` links is changed to 1. This change is based on the paper reporting that using a large forget bias improves the training performance. The new behavior is also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing experiments. **If you want to keep the same initialization procedure, you have to update your code.** The change is simple: pass `forget_bias_init=0` to `LSTM` and `StatelessLSTM`.
The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.links.GRU in v1.

Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These aliases are removed in Chainer v2. Use chainer.links instead.

Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the backward compatibility. Use chainer.Parameter instead (for the new Parameter class, see Parameter has to be an instance of Parameter class).

New-style parameter registration APIs are added to Link

In Chainer v2, Link.init_scope() method returns a context manager that automatically registers a Parameter object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended that you use this new-style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

For example, the following link initialization code

```python
Chainer v1
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__(
 W=(10, 5),
 b=(5,),
)
 chainer.initializers.Normal(0.05)(self.W.data)
 self.b.data.fill(0)
...
```

is recommended to be updated as follows.

```python
Chainer v2
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
```

(continues on next page)
Note: To keep a `Parameter` object as an attribute without registration, you can set the attribute without using the `with self.init_scope():` block.

New-style child link registration APIs are added to Chain

Like `Parameter`, a `Link` object is also automatically registered to a `Chain` object by substitution to an attribute within a `init_scope()` scope. If you are using IDE like PyCharm, it is recommended that you use the new-style child link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering child links are still valid.

Example

For example, the following chain initialization code

```python
Chainer v1
class MyMLP(chainer.Chain):
 def __init__(self):
 super(MyMLP, self).__init__(
 layer1=L.Linear(None, 20),
 layer2=L.Linear(None, 30),
)
...
```

is recommended to be updated as follows.

```python
Chainer v2
class MyMLP(chainer.Chain):
 def __init__(self):
 super(MyMLP, self).__init__()
 with self.init_scope():
 self.layer1 = L.Linear(20)
 self.layer2 = L.Linear(30)
```

Note that this example also demonstrates the use of new APIs with the **omitted input size**, explained below.

Note: To keep a `Link` object as an attribute without registration, you can set the attribute without using the `with self.init_scope():` block.
The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including `Linear` and `Convolution2D`, is made optional. In Chainer v1, we had to use `None` as the placeholder to specify that the input size should be determined at the first iteration. The placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of `Linear`. The following links currently support the omitted input size.

- `Convolution2D`
- `Deconvolution2D`
- `DilatedConvolution2D`
- `Linear`
- `LSTM`
- `MLPConvolution2D`
- `StatelessLSTM`

Optimizer

Deprecated methods of Optimizer are removed

The following methods are removed from `Optimizer`. These methods have been already deprecated in the past versions. **If you are using these methods, you have to update your code.**

- `zero_grads`: use `Link.zerograds()` instead.
- `compute_grads_norm`: you can compute the gradient norm by iterating the list of parameters by `Link.params()`.
- `clip_grads`: use `GradientClipping` instead.
- `weight_decay`: use `WeightDecay` instead.
- `accumulate_grads`: use `Link.addgrads()` instead.

GradientMethod uses `Link.cleargrads` instead of `Link.zerograds` by default

In Chainer v2, `GradientMethod` clears the gradient before running backprop by `Link.cleargrads()`. It means that the gradient of each parameter is initialized by `None` instead of a zero array. Note that all the optimizer implementations provided by Chainer are subclasses of `GradientMethod`, and therefore this change affects all of them.

**In most cases, you do not need to update your code.** If your code relies on the zeroing initialization, you have to fix your code to explicitly initialize the gradient by zero, or to pass `False` to `GradientMethod.use_cleargrads()`. 
GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class `UpdateRule` is used to define an update rule specific to each `Parameter` object. The `UpdateRule` is set to each `Parameter` object, and is used at each update step. This object implements an *update formula* using the data and gradient arrays.

Each `UpdateRule` object has an *enabled* flag, which configures if the update rule should be applied to that parameter on update. By setting the flag to `False`, you can `freeze` the parameter. There is also a convenient method `Link.enable_update()` and `Link.disable_update()`, which configure the flag of each parameter under the link hierarchy. In other frameworks, a similar feature is called *layer freezing*. In Chainer v2, this is officially supported by these methods.

Each `UpdateRule` object can also hold its own hook functions similar to `Optimizer`. The built-in hook functions except for GradientClipping can also be used as a hook function of `UpdateRule`.

**In most cases, you do not have to update your code** because each optimizer automatically sets up an appropriate `UpdaterRule` object to each parameter.

**If you are using a custom gradient-based optimizer implementation, you need to update the implementation.** The following list shows what you have to do.

- Write a subclass of `UpdateRule` that implements the update rule.
- Rewrite your `GradientMethod` implementation. The new implementation only has to set up the update rule for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

**Serializer**

**None is serializable**

In Chainer v2, all serializers start supporting `None` value to be serialized and deserialized. Users’ code can rely on this feature, i.e., it can serialize and deserialize `None` value with any given serializer. This change only affects your code if it provides its own serializer implementations.

**Trainer and Extension**

**Updater and Evaluator pass raw data arrays to the loss function**

In Chainer v2, `Updater` and `Evaluator` pass raw data arrays to the loss function without wrapping them with `Variable`. You might need to update your code so that the loss function (in most cases, the model’s `__call__`) accepts raw arrays.

Note that raw arrays can be directly passed to any `Function`; they are automatically wrapped by `Variable`. For example, if the input is directly passed to a `Function` object (or any function under `chainer.functions`), you do not need to update the code.

**Example**

Consider the following code that obtains the shape of the input via `Variable.data`.

```python
Chainer v1
class MyLink(chainer.Link):
 def __call__(self, x):
 # (continues on next page)
```
It should be updated so that the link also accepts a raw array as the input. In this case, we have `Variable.shape` which is equivalent to `data.shape`, so you can simply write as follows.

```python
Chainer v2
class MyLink(chainer.Link):
 def __call__(self, x):
 shape = x.shape # valid regardless of x being Variable or ndarray
 ...
```

trigger option is removed from snapshot and snapshot_object

In Chainer v2, the trigger option is removed from the `snapshot()` and `snapshot_object()` extensions. The effect of the option was duplicated with the trigger option of `Trainer.extend`. If you are passing the trigger argument to these extensions, you have to update your code. The update can be done by passing the value to the corresponding `Trainer.extend`.

Example

Assume that `trainer` is an instance of `Trainer`, and consider that you were adding a `snapshot()` extension as follows.

```python
Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))
```

It should be updated as follows (note that this code also works with Chainer v1).

```python
Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))
```

Extension.invoke_before_training is removed

In Chainer v2, the attribute `invoke_before_training` of `Extension` is removed. Instead, the `Extension.initialize` method is added. This method is called by `Trainer.run` before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when `invoke_before_training` is True. If you have a custom extension that has `invoke_before_training=True`, you have to update the code. What you have to do is to remove the `invoke_before_training` flag and override `initialize()` method. If you are using the `make_extension()` decorator, you can set the initialize function by passing the `initializer` argument to `make_extension()`.
The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the dump_graph() extension dumps the valid computational graph only at its first invocation. **If you want to dump the graph more than once, you have to fix the code.** The easiest fix is setting the chainer.config.keep_graph_on_report flag to True. **Note that this fix will cancel the improvement on the memory consumption made in Chainer v2.** More memory-efficient fix is to dump the graph without using an extension, e.g. by customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the computational graph by default. On the other hand, the dump_graph() extension requires the computational graph reachable from the reported variable. In order to make the graph available, the dump_graph() extension turns on the chainer.config.keep_graph_on_report flag at its initializer (i.e., it turns on the graph before entering the training loop). Since we also wanted to achieve the memory efficiency, the dump_graph() extension turns off the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result, the computational graph is not available from the second invocation.

Since the dump_graph() recovers the original flag value at its invocation, you can keep the graph dumped more than once by changing the original flag value.

**Reporter**

When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a Variable object is reported using report() function (or directly using Reporter), a copy of the variable is made without preserving the computational graph. **If your code depends on the reachability of the computational graph from the reported variable, you have to update your code.** The easiest way to update your code is setting chainer.config.keep_graph_on_report to True, then Chainer will keep the computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

- A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the reachability of the computational graph from the reported variable.
- An extension that visualizes the computational graph from a reported variable. If you are writing such an extension by yourself, you have to turn on the keep_graph_on_report flag. The dump_graph() extension is another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational graph for training is immediately released before invoking extensions. Therefore, **changing the behavior by overwriting chainer.config.keep_graph_on_report may increase the memory consumption.** It may cause an out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your environment and there is an extension that uses a certain amount of memory (e.g. Evaluator).

**Other utilities**

Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

- chainer.Flag
- chainer.FunctionSet (Use Chain or ChainList instead)
- chainer.cuda.init (It did nothing except for calling check_cuda_available())
- chainer.cuda.empty (Use cupy.empty())
- `chainer.cuda.empty_like` (Use `cupy.empty_like()`)  
- `chainer.cuda.full` (Use `cupy.full()`)  
- `chainer.cuda.full_like` (Use `cupy.full_like()`)  
- `chainer.cuda.ones` (Use `cupy.ones()`)  
- `chainer.cuda.ones_like` (Use `cupy.ones_like()`)  
- `chainer.cuda.zeros` (Use `cupy.zeros()`)  
- `chainer.cuda.zeros_like` (Use `cupy.zeros_like()`)
Copyright (c) 2015 Preferred Infrastructure, Inc.
Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
INDICES AND TABLES

- genindex
- modindex
- search


[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks
C
chainer, 1039
chainer.backend, 1043
chainer.backends.cudnn, 1053
chainer.backends.intel64, 1059
chainer.computational_graph, 1081
chainer.dataset, 985
chainer.datasets, 993
chainer.distributions, 785
chainer.exporters, 1093
chainer.function_hooks, 305
chainer.functions, 153
chainer.gradient_check, 1099
chainer.initializers, 902
chainer.iterators, 1022
chainer.link_hooks, 778
chainer.links, 316
chainer.links.caffe, 1092
chainer.optimizers, 852
chainer.serializers, 1032
chainer.testing, 1102
chainer.training, 914
chainer.training.extensions.snapshot_writers, 914
chainer.utils, 1253
chainer.utils.type_check, 1094
chainermn, 1211
chainerx, 1152
Symbols

__abs__() (chainer.Parameter method), 146
__abs__() (chainer.Variable method), 138
__add__() (chainer.Parameter method), 146
__add__() (chainer.Sequential method), 777
__add__() (chainer.Variable method), 138
__add__() (chainer.utils.type_check.Expr method), 1096
__add__() (chainer.utils.type_check.TypeInfoTuple method), 1098
__add__() (chainer.utils.type_check.Variable method), 1098
__add__() (chainer.xndarray method), 1150
__call__() (chainer.AbstractSerializer method), 1041
__call__() (chainer.Chain method), 757
__call__() (chainer.ChainList method), 763
__call__() (chainer.Deserializer method), 1042
__call__() (chainer.Function method), 289
__call__() (chainer.FunctionAdapter method), 293
__call__() (chainer.FunctionNode method), 299
__call__() (chainer.Initializer method), 902
__call__() (chainer.Link method), 750
__call__() (chainer.Sequential method), 771
__call__() (chainer.Seminar method), 1040
__call__() (chainer.dataset.ConcatWithAsyncTransfer method), 991
__call__() (chainer.initializers.Constant method), 904
__call__() (chainer.initializers.GlorotNormal method), 908
__call__() (chainer.initializers.GlorotUniform method), 912
__call__() (chainer.initializers.NaN method), 906
__call__() (chainer.initializers.Normal method), 907
__call__() (chainer.initializers.One method), 905
__call__() (chainer.initializers.Orthogonal method), 910
__call__() (chainer.initializers.Uniform method), 911
__call__() (chainer.initializers.Zero method), 905
__call__() (chainer.iterators.OrderSampler method), 1030
__call__() (chainer.iterators.ShuffleOrderSampler method), 1031
__call__() (chainer.links.BatchNormalization method), 592
__call__() (chainer.links.BatchRenormalization method), 598
__call__() (chainer.links.Bias method), 318
__call__() (chainer.links.Bilinear method), 324
__call__() (chainer.links.BinaryHierarchicalSoftmax method), 623
__call__() (chainer.links.BlackOut method), 630
__call__() (chainer.links.CRF1d method), 636
__call__() (chainer.links.ChildSumTreeLSTM method), 331
__call__() (chainer.links.Classifier method), 675
__call__() (chainer.links.Convolution1D method), 337
__call__() (chainer.links.Convolution2D method), 344
__call__() (chainer.links.Convolution3D method), 350
__call__() (chainer.links.ConvolutionND method), 357
__call__() (chainer.links.Deconvolution1D method), 363
__call__() (chainer.links.Deconvolution2D method), 1305
<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__enter__()</code> (chainer.iterators.SerialIterator method)</td>
<td>1023</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.link_hooks.SpectralNormalization method)</td>
<td>779</td>
</tr>
<tr>
<td><code>__enter__()</code> (chainer.link_hooks.TimerHook method)</td>
<td>781</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.abstract_serializer.TimerHook method)</td>
<td>1041</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.chain_method)</td>
<td>762</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.chainlist_method)</td>
<td>768</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.deserializer_method)</td>
<td>1042</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.device_resident_method)</td>
<td>1047</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.dict_summary_method)</td>
<td>1068</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distribution_method)</td>
<td>850</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_method)</td>
<td>291</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_adapter_method)</td>
<td>296</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_hook_method)</td>
<td>316</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_node_method)</td>
<td>302</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.gradient_method)</td>
<td>894</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.initializer_method)</td>
<td>902</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.link_method)</td>
<td>755</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.link_hook_method)</td>
<td>784</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.optimizer_method)</td>
<td>888</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.parameter_method)</td>
<td>146</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.reporter_method)</td>
<td>1065</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.sequential_method)</td>
<td>777</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.serializer_method)</td>
<td>1040</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.summary_method)</td>
<td>1067</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.update_rule_method)</td>
<td>890</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.variable_method)</td>
<td>137</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.backend.chainerx_device_method)</td>
<td>1052</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.backend.cpu_device_method)</td>
<td>1049</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.backend.device_method)</td>
<td>1044</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.backend.gpu_device_method)</td>
<td>1050</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.backend.intel64_device_method)</td>
<td>1051</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.computational_graph.computational_graph_method)</td>
<td>1084</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.configuration.global_config_method)</td>
<td>1077</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.configuration.local_config_method)</td>
<td>1078</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.dataset.concat_with_async_transfer_method)</td>
<td>991</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.dataset.dataset_mixin_method)</td>
<td>987</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.dataset.iterator_method)</td>
<td>988</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.concatenated_dataset_method)</td>
<td>997</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.dict_dataset_method)</td>
<td>994</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.image_dataset_method)</td>
<td>1004</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.labeled_image_dataset_method)</td>
<td>1009</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.labeled_zipped_image_dataset_method)</td>
<td>1011</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.multi_zipped_image_dataset_method)</td>
<td>1007</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.pickle_dataset_method)</td>
<td>1015</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.pickle_dataset_writer_method)</td>
<td>1016</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.sub_dataset_method)</td>
<td>999</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.text_dataset_method)</td>
<td>1013</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.transform_dataset_method)</td>
<td>1002</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.tuple_dataset_method)</td>
<td>995</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.datasets.zipped_image_dataset_method)</td>
<td>1006</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.device_resident.device_residents_visitor_method)</td>
<td>1048</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.bernoulli_method)</td>
<td>787</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.beta_method)</td>
<td>790</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.categorical_method)</td>
<td>794</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.cauchy_method)</td>
<td>797</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.chisquare_method)</td>
<td>800</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.dirichlet_method)</td>
<td>803</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.exponential_method)</td>
<td>806</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.gamma_method)</td>
<td>809</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.geometric_method)</td>
<td>812</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.gumbel_method)</td>
<td>816</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.independent_method)</td>
<td>819</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.laplace_method)</td>
<td>822</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.log_normal_method)</td>
<td>825</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.multivariate_normal_method)</td>
<td>829</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.normal_method)</td>
<td>832</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.one_hot_categorical_method)</td>
<td>835</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.pareto_method)</td>
<td>838</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.poisson_method)</td>
<td>841</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.distributions.uniform_method)</td>
<td>845</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_hooks.cuda_profile_hook_method)</td>
<td>307</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_hooks.cupy_memory_profile_hook_method)</td>
<td>309</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_hooks.print_hook_method)</td>
<td>311</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.function_hooks.timer_hook_method)</td>
<td>313</td>
</tr>
<tr>
<td><code>__eq__()</code> (chainer.initializers.constant_method)</td>
<td>904</td>
</tr>
</tbody>
</table>
__eq__() (chainer.initializers.GlorotNormal method), 908
__eq__() (chainer.initializers.GlorotUniform method), 912
__eq__() (chainer.initializers.HeNormal method), 909
__eq__() (chainer.initializers.HeUniform method), 913
__eq__() (chainer.initializers.Identity method), 903
__eq__() (chainer.initializers.LeCunNormal method), 908
__eq__() (chainer.initializers.LeCunUniform method), 912
__eq__() (chainer.initializers.NaN method), 906
__eq__() (chainer.initializers.Normal method), 907
__eq__() (chainer.initializers.One method), 905
__eq__() (chainer.initializers.Orthogonal method), 910
__eq__() (chainer.initializers.Uniform method), 911
__eq__() (chainer.initializers.Zero method), 905
__eq__() (chainer.iterators.DaliIterator method), 466
__eq__() (chainer.iterators.MultiprocessIterator method), 1026
__eq__() (chainer.iterators.NStepBiRNNReLU method), 473
__eq__() (chainer.iterators.NStepBiRNNReLU method), 1028
__eq__() (chainer.iterators.OrderSampler method), 1030
__eq__() (chainer.iterators.SequentialIterator method), 1024
__eq__() (chainer.iterators.ShuffleOrderSampler method), 1031
__eq__() (chainer.iterators.SerialIterator method), 780
__eq__() (chainer.iterators.SerialIterator method), 782
__eq__() (chainer.links.BatchNormalization method), 596
__eq__() (chainer.links.BatchRenormalization method), 603
__eq__() (chainer.links.Bias method), 323
__eq__() (chainer.links.Bilinear method), 329
__eq__() (chainer.links.BinaryHierarchicalSoftmax method), 628
__eq__() (chainer.links.BlackOut method), 634
__eq__() (chainer.links.CRF1d method), 640
__eq__() (chainer.links.ChildSumTreeLSTM method), 335
__eq__() (chainer.links.Classifier method), 680
__eq__() (chainer.links.Convolution1D method), 341
__eq__() (chainer.links.Convolution2D method), 348
__eq__() (chainer.links.Convolution3D method), 354
__eq__() (chainer.links.ConvolutionND method), 361
__eq__() (chainer.links.Deconvolution1D method), 367
__eq__() (chainer.links.Deconvolution2D method), 374
__eq__() (chainer.links.Deconvolution3D method), 380
__eq__() (chainer.links.DeconvolutionND method), 387
__eq__() (chainer.links.DecorrelatedBatchNormalization method), 609
__eq__() (chainer.links.DeformableConvolution2D method), 394
__eq__() (chainer.links.DepthwiseConvolution2D method), 400
__eq__() (chainer.links.DilatedConvolution2D method), 407
__eq__() (chainer.links.EmbedID method), 414
__eq__() (chainer.links.GRU method), 420
__eq__() (chainer.links.GoogLeNet method), 703
__eq__() (chainer.links.GroupNormalization method), 616
__eq__() (chainer.links.Highway method), 426
__eq__() (chainer.links.Inception method), 432
__eq__() (chainer.links.InceptionBN method), 439
__eq__() (chainer.links.LSTM method), 460
__eq__() (chainer.links.LayerNormalization method), 622
__eq__() (chainer.links.Linear method), 446
__eq__() (chainer.links.LocalConvolution2D method), 452
__eq__() (chainer.links.MLPConvolution2D method), 466
__eq__() (chainer.links.Maxout method), 666
__eq__() (chainer.links.NStepBiGRU method), 480
__eq__() (chainer.links.NStepBiLSTM method), 487
__eq__() (chainer.links.NStepBiRNNReLU method), 494
__eq__() (chainer.links.NStepBiRNNTanH method), 501
__eq__() (chainer.links.NStepGRU method), 508
__eq__() (chainer.links.NStepLSTM method), 515
__eq__() (chainer.links.NStepRNNReLU method), 523
__eq__() (chainer.links.NStepRNNTanH method), 530
__eq__() (chainer.links.NaryTreeLSTM method), 473
__eq__() (chainer.links.NegativeSampling method), 673
__eq__() (chainer.links.PReLU method), 653
__eq__() (chainer.links.Parameter method), 535
__eq__() (chainer.links.ResNet101Layers method), 726
__eq__() (chainer.links.ResNet152Layers method), 733
__eq__() (chainer.links.ResNet50Layers method), 718
__eq__() (chainer.links.Scale method), 542
__eq__() (chainer.links.SimplifiedDropconnect method), 647
<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizer_hooks.WeightDecay method</td>
<td>895</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.AdadaDelta method</td>
<td>855</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.AdamGrad method</td>
<td>857</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.Adam method</td>
<td>861</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.CorrectedMomentumSGD method</td>
<td>864</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.MSVMAG method</td>
<td>873</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.MomentumSGD method</td>
<td>867</td>
</tr>
<tr>
<td>chainer.optimizer.NesterovAG method</td>
<td>870</td>
</tr>
<tr>
<td>chainer.optimizer.RMSprop method</td>
<td>876</td>
</tr>
<tr>
<td>chainer.optimizer.RMSpropGraves method</td>
<td>879</td>
</tr>
<tr>
<td>chainer.optimizer.SGD method</td>
<td>882</td>
</tr>
<tr>
<td>chainer.optimizer.SMORM3 method</td>
<td>885</td>
</tr>
<tr>
<td>chainer.serializers.DictionarySerializer method</td>
<td>1033</td>
</tr>
<tr>
<td>chainer.serializers.HDF5Deserializer method</td>
<td>1038</td>
</tr>
<tr>
<td>chainer.serializers.HDF5Serializer method</td>
<td>1037</td>
</tr>
<tr>
<td>chainer.serializers.NpzDeserializer method</td>
<td>1035</td>
</tr>
<tr>
<td>chainer.testing.FunctionTestCase method</td>
<td>1111</td>
</tr>
<tr>
<td>chainer.testing.LinkInitializersTestCase method</td>
<td>1121</td>
</tr>
<tr>
<td>chainer.testing.LinkInitializersTestCases method</td>
<td>1130</td>
</tr>
<tr>
<td>chainer.training.Extension method</td>
<td>935</td>
</tr>
<tr>
<td>chainer.training.Trainer method</td>
<td>925</td>
</tr>
<tr>
<td>chainer.training.Updater method</td>
<td>927</td>
</tr>
<tr>
<td>chainer.training.extensions.DumpGraph method</td>
<td>972</td>
</tr>
<tr>
<td>chainer.training.extensions.Evaluator method</td>
<td>939</td>
</tr>
<tr>
<td>chainer.training.extensions.ExponentialShift method</td>
<td>948</td>
</tr>
<tr>
<td>chainer.training.extensions.FailOnNonNumber method</td>
<td>943</td>
</tr>
<tr>
<td>chainer.training.extensions.InverseShift method</td>
<td>950</td>
</tr>
<tr>
<td>chainer.training.extensions.LinearShift method</td>
<td>952</td>
</tr>
<tr>
<td>chainer.training.extensions.LogReport method</td>
<td>965</td>
</tr>
<tr>
<td>chainer.training.extensions.MicroAverage method</td>
<td>941</td>
</tr>
<tr>
<td>chainer.training.extensions.MultistepShift method</td>
<td>954</td>
</tr>
<tr>
<td>chainer.training.extensions.ParameterStatistics method</td>
<td>946</td>
</tr>
<tr>
<td>chainer.training.extensions.ProgressBar method</td>
<td>963</td>
</tr>
<tr>
<td>chainer.training.extensions.PrintReport method</td>
<td>961</td>
</tr>
<tr>
<td>chainer.training.extensions.PolynomialShift method</td>
<td>956</td>
</tr>
<tr>
<td>chainer.training.extensions.StepShift method</td>
<td>970</td>
</tr>
<tr>
<td>chainer.training.extensions.WarmupShift method</td>
<td>958</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.PolynomialShift</td>
<td>922</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.ProcessWriter</td>
<td>919</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.QueueWriter</td>
<td>920</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.SimpleWriter</td>
<td>916</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.ThreadWriter</td>
<td>921</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_writers.ThreadQueueWriter</td>
<td>918</td>
</tr>
<tr>
<td>chainer.training.extensions.unchain_variables method</td>
<td>977</td>
</tr>
<tr>
<td>chainer.training.triggers.BestValueTrigger method</td>
<td>979</td>
</tr>
<tr>
<td>chainer.training.triggers.EarlyStoppingTrigger method</td>
<td>980</td>
</tr>
<tr>
<td>chainer.training.triggers.IntervalTrigger method</td>
<td>981</td>
</tr>
<tr>
<td>chainer.training.triggers.ManualScheduleTrigger method</td>
<td>981</td>
</tr>
<tr>
<td>chainer.training.triggers.MaxValueTrigger method</td>
<td>982</td>
</tr>
<tr>
<td>chainer.training.triggers.MinValueTrigger method</td>
<td>983</td>
</tr>
<tr>
<td>chainer.training.triggers.OnceTrigger method</td>
<td>984</td>
</tr>
<tr>
<td>chainer.training.triggers.TimeTrigger method</td>
<td>985</td>
</tr>
<tr>
<td>chainer.training.updaters.MultiprocessParallelUpdater method</td>
<td>933</td>
</tr>
<tr>
<td>chainer.training.updaters.ParallelUpdater method</td>
<td>931</td>
</tr>
<tr>
<td>chainer.training.updaters.StandardUpdater method</td>
<td>929</td>
</tr>
<tr>
<td>chainer.utils.CooMatrix method</td>
<td>1070</td>
</tr>
<tr>
<td>chainer.utils.WalkerAlias method</td>
<td>1062</td>
</tr>
<tr>
<td>chainer.utils.type_check.Expr method</td>
<td></td>
</tr>
<tr>
<td>Method Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>chainer.links.BatchNormalization method</td>
<td>782</td>
</tr>
<tr>
<td>chainer.links.BatchRenormalization method</td>
<td>597</td>
</tr>
<tr>
<td>chainer.links.BatchRenormalization method, (method)</td>
<td>603</td>
</tr>
<tr>
<td>chainer.links.Bias method</td>
<td>323</td>
</tr>
<tr>
<td>chainer.links.Bilinear method</td>
<td>329</td>
</tr>
<tr>
<td>chainer.links.BinaryHierarchicalSoftmax method, (method)</td>
<td>628</td>
</tr>
<tr>
<td>chainer.links.BlackOut method</td>
<td>634</td>
</tr>
<tr>
<td>chainer.links.CRF1d method</td>
<td>640</td>
</tr>
<tr>
<td>chainer.links.ChildSumTreeLSTM method</td>
<td>336</td>
</tr>
<tr>
<td>chainer.links.Classifier method</td>
<td>680</td>
</tr>
<tr>
<td>chainer.links.Convolution1D method</td>
<td>341</td>
</tr>
<tr>
<td>chainer.links.Convolution2D method</td>
<td>349</td>
</tr>
<tr>
<td>chainer.links.Convolution3D method</td>
<td>354</td>
</tr>
<tr>
<td>chainer.links.ConvolutionND method</td>
<td>362</td>
</tr>
<tr>
<td>chainer.links.Deconvolution1D method</td>
<td>367</td>
</tr>
<tr>
<td>chainer.links.Deconvolution2D method</td>
<td>375</td>
</tr>
<tr>
<td>chainer.links.Deconvolution3D method</td>
<td>380</td>
</tr>
<tr>
<td>chainer.links.DeconvolutionND method</td>
<td>387</td>
</tr>
<tr>
<td>chainer.links.DecorrelatedBatchNormalization method, (method)</td>
<td>610</td>
</tr>
<tr>
<td>chainer.links.DeformableConvolution2D method, (method)</td>
<td>394</td>
</tr>
<tr>
<td>chainer.links.DepthwiseConvolution2D method, (method)</td>
<td>400</td>
</tr>
<tr>
<td>chainer.links.DilatedConvolution2D method, (method)</td>
<td>408</td>
</tr>
<tr>
<td>chainer.links.EmbedID method</td>
<td>414</td>
</tr>
<tr>
<td>chainer.links.GRU method</td>
<td>420</td>
</tr>
<tr>
<td>chainer.links.GoogLeNet method</td>
<td>703</td>
</tr>
<tr>
<td>chainer.links.GroupNormalization method, (method)</td>
<td>616</td>
</tr>
<tr>
<td>chainer.links.Highway method</td>
<td>426</td>
</tr>
<tr>
<td>chainer.links.Inception method</td>
<td>433</td>
</tr>
<tr>
<td>chainer.links.InceptionBN method</td>
<td>439</td>
</tr>
<tr>
<td>chainer.links.LSTM method</td>
<td>460</td>
</tr>
<tr>
<td>chainer.links.LayerNormalization method, (method)</td>
<td>622</td>
</tr>
<tr>
<td>chainer.links.Linear method</td>
<td>446</td>
</tr>
<tr>
<td>chainer.links.LocalConvolution2D method, (method)</td>
<td>452</td>
</tr>
<tr>
<td>chainer.links.MLPConvolution2D method, (method)</td>
<td>467</td>
</tr>
<tr>
<td>chainer.links.Maxout method</td>
<td>667</td>
</tr>
<tr>
<td>chainer.links.NStepBiGRU method</td>
<td>480</td>
</tr>
<tr>
<td>chainer.links.NStepBiLSTM method</td>
<td>487</td>
</tr>
<tr>
<td>chainer.links.NStepBiRNNTanh method, (method)</td>
<td>501</td>
</tr>
<tr>
<td>chainer.links.NStepGRU method</td>
<td>508</td>
</tr>
<tr>
<td>chainer.links.NStepLSTM method</td>
<td>516</td>
</tr>
<tr>
<td>chainer.links.NStepRNNReLU method, (method)</td>
<td>523</td>
</tr>
<tr>
<td>chainer.links.NStepRNNTanh method, (method)</td>
<td>530</td>
</tr>
<tr>
<td>chainer.links.NaryTreeLSTM method, (method)</td>
<td>473</td>
</tr>
<tr>
<td>chainer.links.NegativeSampling method, (method)</td>
<td>673</td>
</tr>
<tr>
<td>chainer.links.PReLU method</td>
<td>653</td>
</tr>
<tr>
<td>chainer.links.Parameter method</td>
<td>536</td>
</tr>
<tr>
<td>chainer.links.ResNet152Layers method, (method)</td>
<td>734</td>
</tr>
<tr>
<td>chainer.links.Scale method</td>
<td>542</td>
</tr>
<tr>
<td>chainer.links.SimplifiedDropconnect method, (method)</td>
<td>647</td>
</tr>
<tr>
<td>chainer.links.StatefulGRU method, (method)</td>
<td>549</td>
</tr>
<tr>
<td>chainer.links.StatefulMGU method, (method)</td>
<td>562</td>
</tr>
<tr>
<td>chainer.links.StatefulPeepholeLSTM method, (method)</td>
<td>574</td>
</tr>
<tr>
<td>chainer.links.StatefulZoneoutLSTM method, (method)</td>
<td>580</td>
</tr>
<tr>
<td>chainer.links.StatelessGRU method, (method)</td>
<td>556</td>
</tr>
<tr>
<td>chainer.links.StatelessLSTM method, (method)</td>
<td>587</td>
</tr>
<tr>
<td>chainer.links.StatelessMGU method, (method)</td>
<td>567</td>
</tr>
<tr>
<td>chainer.links.Swish method</td>
<td>660</td>
</tr>
<tr>
<td>chainer.links.TheanoFunction method, (method)</td>
<td>741</td>
</tr>
<tr>
<td>chainer.links.VGG16Layers method, (method)</td>
<td>688</td>
</tr>
<tr>
<td>chainer.links.VGG19Layers method, (method)</td>
<td>695</td>
</tr>
<tr>
<td>chainer.links.caffe.CaffeFunction method, (method)</td>
<td>748</td>
</tr>
<tr>
<td>chainer.links.model.vision.resnet.ResNetLayers method</td>
<td>711</td>
</tr>
<tr>
<td>chainer.optimizer.Hyperparameter method, (method)</td>
<td>891</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientClipping method, (method)</td>
<td>897</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientHardClipping method, (method)</td>
<td>898</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientLARS method, (method)</td>
<td>901</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.GradientNoise method, (method)</td>
<td>899</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.Lasso method, (method)</td>
<td>896</td>
</tr>
<tr>
<td>chainer.optimizer_hooks.WeightDecay method, (method)</td>
<td>895</td>
</tr>
<tr>
<td>chainer.optimizers.Adam method, (method)</td>
<td>855</td>
</tr>
<tr>
<td>chainer.optimizers.AdamGrad method, (method)</td>
<td>857</td>
</tr>
<tr>
<td>chainer.optimizers.Adam method, (method)</td>
<td>861</td>
</tr>
<tr>
<td>Class</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>chainer.links.NStepRNNReLU</td>
<td>660</td>
</tr>
<tr>
<td>chainer.links.NStepLSTM</td>
<td>688</td>
</tr>
<tr>
<td>chainer.links.NStepGRU</td>
<td>695</td>
</tr>
<tr>
<td>chainer.links.NaryTreeLSTM</td>
<td>748</td>
</tr>
<tr>
<td>chainer.links.NStepRNNTanh</td>
<td>394</td>
</tr>
<tr>
<td>chainer.links.NStepBiLSTM</td>
<td>408</td>
</tr>
<tr>
<td>chainer.links.NStepBiGRU</td>
<td>400</td>
</tr>
<tr>
<td>chainer.links.Maxout</td>
<td>408</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>414</td>
</tr>
<tr>
<td>chainer.links.LocalConvolution2D</td>
<td>420</td>
</tr>
<tr>
<td>chainer.links.MLPConvolution2D</td>
<td>426</td>
</tr>
<tr>
<td>chainer.links.MLPbiLSTM</td>
<td>432</td>
</tr>
<tr>
<td>chainer.links.InceptionBN</td>
<td>439</td>
</tr>
<tr>
<td>chainer.links.LayerNormalization</td>
<td>446</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>446</td>
</tr>
<tr>
<td>chainer.links.LocalConvolution2D</td>
<td>452</td>
</tr>
<tr>
<td>chainer.links.NStepBiRNNReLU</td>
<td>622</td>
</tr>
<tr>
<td>chainer.links.NStepBiGRU</td>
<td>666</td>
</tr>
<tr>
<td>chainer.links.NStepLSTM</td>
<td>501</td>
</tr>
<tr>
<td>chainer.links.NStepGRU</td>
<td>508</td>
</tr>
<tr>
<td>chainer.links.NStepLSTM</td>
<td>516</td>
</tr>
<tr>
<td>chainer.links.NStepRNNReLU</td>
<td>523</td>
</tr>
<tr>
<td>chainer.links.NStepRNNTanH</td>
<td>530</td>
</tr>
<tr>
<td>chainer.links.NaryTreeLSTM</td>
<td>494</td>
</tr>
<tr>
<td>chainer.links.NaryTreeLSTM</td>
<td>473</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>462</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>467</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>474</td>
</tr>
<tr>
<td>chainer.links.LayerNormalization</td>
<td>501</td>
</tr>
<tr>
<td>chainer.links.LayerNormalization</td>
<td>508</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>516</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>523</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>530</td>
</tr>
<tr>
<td>chainer.links.Linear</td>
<td>535</td>
</tr>
<tr>
<td>chainer.links.ResNet101Layers</td>
<td>726</td>
</tr>
<tr>
<td>chainer.links.ResNet152Layers</td>
<td>733</td>
</tr>
<tr>
<td>chainer.links.ResNet50Layers</td>
<td>739</td>
</tr>
<tr>
<td>chainer.links.SimplifiedDropconnect</td>
<td>542</td>
</tr>
<tr>
<td>chainer.links.SimplifiedDropconnect</td>
<td>647</td>
</tr>
<tr>
<td>chainer.links.StatefulGRU</td>
<td>549</td>
</tr>
<tr>
<td>chainer.links.StatefulMGU</td>
<td>562</td>
</tr>
<tr>
<td>chainer.links.StatefulPeepholeLSTM</td>
<td>574</td>
</tr>
<tr>
<td>chainer.links.StatefulZoneoutLSTM</td>
<td>580</td>
</tr>
<tr>
<td>chainer.links.StatelessGRU</td>
<td>556</td>
</tr>
<tr>
<td>chainer.links.StatelessMGU</td>
<td>587</td>
</tr>
<tr>
<td>chainer.links.StatelessMGU</td>
<td>567</td>
</tr>
</tbody>
</table>

**Index**

1325
method), 972
\_\_lt\_\_ (chainer.training.extensions.Evaluator method), 939
\_\_lt\_\_ (chainer.training.extensions.ExponentialShift method), 948
\_\_lt\_\_ (chainer.training.extensions.FailOnNonNumber method), 943
\_\_lt\_\_ (chainer.training.extensions.InverseShift method), 950
\_\_lt\_\_ (chainer.training.extensions.LinearShift method), 952
\_\_lt\_\_ (chainer.training.extensions.LogReport method), 965
\_\_lt\_\_ (chainer.training.extensions.MultiAverage method), 941
\_\_lt\_\_ (chainer.training.extensions.MultistepShift method), 954
\_\_lt\_\_ (chainer.training.extensions.ParameterStatistics method), 946
\_\_lt\_\_ (chainer.training.extensions.PlotReport method), 967
\_\_lt\_\_ (chainer.training.extensions.PolynomialShift method), 956
\_\_lt\_\_ (chainer.training.extensions.PrintReport method), 961
\_\_lt\_\_ (chainer.training.extensions.ProgressBar method), 963
\_\_lt\_\_ (chainer.training.extensions.StepShift method), 959
\_\_lt\_\_ (chainer.training.extensions.VariableStatisticsPlot method), 970
\_\_lt\_\_ (chainerx.Backend method), 1192
\_\_lt\_\_ (chainerx.Context method), 1191
\_\_lt\_\_ (chainerx.Device method), 1193
\_\_lt\_\_ (chainerx.ndarray method), 1150
\_\_matmul\_\_ (chainer.Parameter method), 148
\_\_mul\_\_ (chainer.Variable method), 139
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 147
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 139
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 138
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 137
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 136
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 135
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 134
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 133
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 132
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 131
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 130
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 129
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 128
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 127
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 126
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 125
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 124
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 123
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 122
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 121
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 120
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 119
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 118
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 117
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 116
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 115
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 114
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 113
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 112
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 111
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 110
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 109
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 108
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 107
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 106
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 105
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 104
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 103
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 102
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 101
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 100
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 99
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 98
\_\_\_\_\_\_\_\_ (chainer.datasets.Dataset method), 97
Index 1327

__ne__ () (chainer.FunctionNode method), 302  
__ne__ () (chainer.GradientMethod method), 894  
__ne__ () (chainer.Initializer method), 902  
__ne__ () (chainer.Link method), 755  
__ne__ () (chainer.LinkHook method), 784  
__ne__ () (chainer.Optimizer method), 888  
__ne__ () (chainer.Parameter method), 146  
__ne__ () (chainer.Reporter method), 1065  
__ne__ () (chainer.Sequential method), 777  
__ne__ () (chainer.Serialized method), 1040  
__ne__ () (chainer.Summary method), 1067  
__ne__ () (chainer.UpdateRule method), 890  
__ne__ () (chainer.Variabl method), 137  
__ne__ () (chainer.backend.ChainerDevice method), 1053  
__ne__ () (chainer.backend.CpuDevice method), 1049  
__ne__ () (chainer.backend.Device method), 1044  
__ne__ () (chainer.backend.GpuDevice method), 1050  
__ne__ () (chainer.backend.Intel64Device method), 1051  
__ne__ () (chainer.computational_graph.ComputationalGraph method), 1084  
__ne__ () (chainer.configuration.GlobalConfig method), 1077  
__ne__ () (chainer.configuration.LocalConfig method), 1078  
__ne__ () (chainer.dataset.ConcatWithAsyncTransfer method), 991  
__ne__ () (chainer.dataset.DatasetMixin method), 987  
__ne__ () (chainer.dataset.Iterator method), 988  
__ne__ () (chainer.datasets.ConcatenatedDataset method), 997  
__ne__ () (chainer.datasets.DictDataset method), 994  
__ne__ () (chainer.datasets.ImageDataset method), 1004  
__ne__ () (chainer.datasets.LabeledImageDataset method), 1009  
__ne__ () (chainer.datasets.LabeledZippedImageDataset method), 1011  
__ne__ () (chainer.datasets.MultiZippedImageDataset method), 1007  
__ne__ () (chainer.datasets.PickleDataset method), 1015  
__ne__ () (chainer.datasets.PickleDatasetWriter method), 1016  
__ne__ () (chainer.datasets.SubDataset method), 999  
__ne__ () (chainer.datasets.TextDataset method), 1013  
__ne__ () (chainer.datasets.TransformDataset method), 1002  
__ne__ () (chainer.datasets.TupleDataset method), 995  
__ne__ () (chainer.datasets.ZippedImageDataset method), 1006  
__ne__ () (chainer.device_resident.DeviceResidentsVisitor method), 1048  
__ne__ () (chainer.distributions.Bernoulli method), 787  
__ne__ () (chainer.distributions.Beta method), 790  
__ne__ () (chainer.distributions.Categorical method), 794  
__ne__ () (chainer.distributions.Cauchy method), 797  
__ne__ () (chainer.distributions.Chisquare method), 800  
__ne__ () (chainer.distributions.Dirichlet method), 803  
__ne__ () (chainer.distributions.Exponential method), 806  
__ne__ () (chainer.distributions.Gamma method), 809  
__ne__ () (chainer.distributions.Geometric method), 812  
__ne__ () (chainer.distributions.Gumbel method), 816  
__ne__ () (chainer.distributions.Independent method), 819  
__ne__ () (chainer.distributions.Laplace method), 822  
__ne__ () (chainer.distributions.LogNormal method), 825  
__ne__ () (chainer.distributions.MultivariateNormal method), 829  
__ne__ () (chainer.distributions.Normal method), 832  
__ne__ () (chainer.distributions.ONEHotCategorical method), 835  
__ne__ () (chainer.distributions.Pareto method), 838  
__ne__ () (chainer.distributions.Poisson method), 842  
__ne__ () (chainer.distributions.Uniform method), 845  
__ne__ () (chainer.function_hooks.CUDAProfileHook method), 307  
__ne__ () (chainer.function_hooks.CupyMemoryProfileHook method), 309  
__ne__ () (chainer.function_hooks.TimerHook method), 311  
__ne__ () (chainer.initializers.Constant method), 904  
__ne__ () (chainer.initializers.GlorotNormal method), 908  
__ne__ () (chainer.initializers.GlorotUniform method), 912  
__ne__ () (chainer.initializers.HeNormal method), 909  
__ne__ () (chainer.initializers.HeUniform method), 913  
__ne__ () (chainer.initializers.Identity method), 903  
__ne__ () (chainer.initializers.LeCunNormal method), 908  
__ne__ () (chainer.initializers.LeCunUniform method), 912  
__ne__ () (chainer.initializers.NaN method), 906  
__ne__ () (chainer.initializers.Normal method), 907  
__ne__ () (chainer.initializers.One method), 905  
__ne__ () (chainer.initializers.Orthogonal method), 910
(chainer.optimizer.Hyperparameter method), 900
(chainer.optimizer_hooks.GradientClipping method), 891
(chainer.optimizer_hooks.GradientHardClipping method), 898
(chainer.optimizer_hooks.GradientLARS method), 901
(chainer.optimizer_hooks.GradientNoise method), 899
(chainer.optimizer_hooks.Lasso method), 896
(chainer.optimizer_hooks.WeightDecay method), 895
(chainer.optimizers.Adadelta method), 855
(chainer.optimizers.Adam method), 861
(chainer.optimizers.CorrectedMomentumSGD method), 864
(chainer.optimizers.MSVAG method), 873
(chainer.optimizers.MomentumSGD method), 867
(chainer.optimizers.NesterovAG method), 870
(chainer.optimizers.RMSprop method), 876
(chainer.optimizers.RMSpropGraves method), 879
(chainer.optimizers.SGD method), 882
(chainer.optimizers.SMORMS3 method), 885
(chainer.serializers.DictionarySerializer method), 1033
(chainer.serializers.HDF5Deserializer method), 1038
(chainer.serializers.HDF5Serializer method), 1037
(chainer.serializers.NpzDeserializer method), 1035
(chainer.testing.FunctionTestCase method), 1111
(chainer.testing.LinkInitializersTestCase method), 1121
(chainer.testing.LinkTestCase method), 1130
(chainer.training.Extension method), 935
(chainer.training.Trainer method), 925
(chainer.training.Updater method), 927
(chainer.training.extensions.DumpGraph method), 972
(chainer.training.extensions.Evaluator method), 939
(chainer.training.extensions.ExponentialShift method), 948
(chainer.training.extensions.FailOnNonNumber method), 943
(chainer.training.extensions.InverseShift method), 950
(chainer.training.extensions.LinearShift method), 952
(chainer.training.extensions.LogReport method), 965
(chainer.training.extensions.MicroAverage method), 941
(chainer.training.extensions.MultistepShift method), 954
(chainer.training.extensions.ParameterStatistics method), 946
(chainer.training.extensions.PlotStatistics method), 951
(chainer.training.extensions.PolynomialShift method), 956
(chainer.training.extensions.PrintReport method), 961
(chainer.training.extensions.ProgressBar method), 963
(chainer.training.extensions.StepShift method), 959
(chainer.training.extensions.VariableStatisticsPlot method), 970
(chainer.training.extensions.WarmupShift method), 957
(chainer.training.extensions.snapshot_writers.ProcessQueueWriter method), 922
(chainer.training.extensions.snapshot_writers.ProcessWriter method), 919
(chainer.training.extensions.snapshot_writers.QueueWriter method), 920
(chainer.training.extensions.snapshot_writers.SimpleWriter method), 916
(chainer.training.extensions.snapshot_writers.ThreadQueueWriter method), 921
(chainer.training.extensions.snapshot_writers.ThreadWriter method), 917
(chainer.training.extensions.snapshot_writers.Writer method), 915
(chainer.training.extensions.unchain_variables method), 976
(chainer.training.triggers.BestValueTrigger method), 978
(chainer.training.triggers.EarlyStoppingTrigger method), 979
(chainer.training.triggers.IntervalTrigger method), 980
(chainer.training.triggers.ManualScheduleTrigger method), 981
(chainer.training.triggers.MaxValueTrigger method), 982
(chainer.training.triggers.MinValueTrigger method), 983
(chainer.training.triggers.OnceTrigger method), 984
(chainer.training.triggers.VariableShift method), 985
(chainer.training.triggers.ZeroValueTrigger method), 986
(chainer.trainer.ManualScheduleTrigger method), 987
(chainer.trainer.MaxValueTrigger method), 988
(chainer.trainer.MinValueTrigger method), 989
(chainer.trainer.VariableShift method), 990
(chainer.trainer.ZeroValueTrigger method), 991
(chainer.training.triggers.ManualScheduleTrigger method), 992
(chainer.training.triggers.KeepLengthTrigger method), 993
(chainer.training.triggers.MaxValueTrigger method), 994
(chainer.training.triggers.MinValueTrigger method), 995
(chainer.training.triggers.VariableShift method), 996
(chainer.training.triggers.ZeroValueTrigger method), 997
(chainer.trainer.ManualScheduleTrigger method), 998
(chainer.trainer.MaxValueTrigger method), 999
(chainer.trainer.MinValueTrigger method), 1000
(chainer.trainer.VariableShift method), 1001
(chainer.trainer.ZeroValueTrigger method), 1002
chainer.training.triggers.KeepLengthTrigger method, 1003
chainer.training.triggers.ManualScheduleTrigger method, 1004
chainer.training.triggers.MaxValueTrigger method, 1005
chainer.training.triggers.MinValueTrigger method, 1006
chainer.training.triggers.VariableShift method, 1007
chainer.trainer.ManualScheduleTrigger method, 1008
chainer.trainer.MaxValueTrigger method, 1009
chainer.trainer.MinValueTrigger method, 1010
chainer.trainer.VariableShift method, 1011
chainer.trainer.ZeroValueTrigger method, 1012
Index
<p>| add_hook() (chainer.links.NStepBiLSTM method), 481 | add_hook() (chainer.optimizers.RMSprop method), 874 |
| add_hook() (chainer.links.NStepBiRNNTanh method), 495 | add_hook() (chainer.optimizers.RMSpropGraves method), 877 |
| add_hook() (chainer.links.NStepBiRNNReLU method), 502 | add_hook() (chainer.optimizers.SGD method), 880 |
| add_hook() (chainer.links.NStepLSTM method), 510 | add_hook() (chainer.optimizers.SMORMS3 method), 883 |
| add_hook() (chainer.optimizers.Adam method), 517 | add_hook() (chainer.Sequential method), 771 |
| add_hook() (chainer.optimizers.MomentumSGD method), 524 | add_hook() (chainer.UpdateRule method), 889 |
| add_hook() (chainer.optimizers.AdaGrad method), 529 | add_hook() (chainer.Chain method), 757 |
| add_hook() (chainer.optimizers.AdaDelta method), 531 | add_hook() (chainer.ChainList method), 763 |
| add_hook() (chainer.links.ResNet152Layers method), 728 | add_link() (chainer.links.ChildSumTreeLSTM method), 331 |
| add_hook() (chainer.links.ResNet50Layers method), 713 | add_link() (chainer.links.DeformableConvolution2D method), 389 |
| add_hook() (chainer.links.Scale method), 537 | add_link() (chainer.links.GoogLeNet method), 697 |
| add_hook() (chainer.links.SimplifiedDropconnect method), 642 | add_link() (chainer.links.GRU method), 415 |
| add_hook() (chainer.links.StatefulGRU method), 544 | add_link() (chainer.links.Highway method), 421 |
| add_hook() (chainer.links.StatefulMGU method), 557 | add_link() (chainer.links.Inception method), 428 |
| add_hook() (chainer.links.StatefulPeepholeLSTM method), 569 | add_link() (chainer.links.InceptionBN method), 434 |
| add_hook() (chainer.links.StatefulZoneoutLSTM method), 575 | add_link() (chainer.links.LSTM method), 455 |
| add_hook() (chainer.links.StatelessGRU method), 551 | add_link() (chainer.links.Maxout method), 662 |
| add_hook() (chainer.links.StatelessLSTM method), 582 | add_link() (chainer.links.MLPConvolution2D method), 462 |
| add_hook() (chainer.links.StatelessMGU method), 563 | add_link() (chainer.links.model.vision.resnet.ResNetLayers method), 705 |
| add_hook() (chainer.links.Swish method), 655 | add_link() (chainer.links.NaryTreeLSTM method), 468 |
| add_hook() (chainer.links.TheanoFunction method), 737 | add_link() (chainer.links.NStepBiGRU method), 475 |
| add_hook() (chainer.links.VGG16Layers method), 682 | add_link() (chainer.links.NStepBiLSTM method), 482 |
| add_hook() (chainer.links.VGG19Layers method), 689 | add_link() (chainer.links.NStepBiRNNReLU method), 489 |
| add_hook() (chainer.Optimizer method), 886 | add_link() (chainer.links.NStepGRU method), 503 |
| add_hook() (chainer.optimizers.Optimizer method), 886 | add_link() (chainer.links.NStepLSTM method), 510 |
| add_hook() (chainer.optimizers.Adam method), 859 | add_link() (chainer.links.NStepRNNReLU method), 517 |
| add_hook() (chainer.optimizers.AdaDelta method), 853 | add_link() (chainer.links.NStepRNNTanh method), 524 |
| add_hook() (chainer.optimizers.MomentumSGD method), 862 | add_link() (chainer.links.ResNet152Layers method), 728 |
| add_hook() (chainer.optimizers.MomentumSGD method), 865 | add_link() (chainer.links.ResNet50Layers method), 713 |
| add_hook() (chainer.optimizers.MSVAG method), 871 | add_link() (chainer.links.Scale method), 537 |
| add_hook() (chainer.optimizers.NesterovAG method), 868 | add_link() (chainer.links.StatefulGRU method), 544 |</p>
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Method Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatefulMGU method), 557</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatefulPeepholeLSTM method), 569</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatefulZoneoutLSTM method), 575</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatelessGRU method), 551</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatelessLSTM method), 582</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.StatelessMGU method), 563</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.VGG16Layers method), 682</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.links.VGG19Layers method), 689</td>
</tr>
<tr>
<td>add_link()</td>
<td>(chainer.Sequential method), 771</td>
</tr>
<tr>
<td>add_observer()</td>
<td>(chainerReporter method), 1064</td>
</tr>
<tr>
<td>add_observers()</td>
<td>(chainer.Reporter method), 1064</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.Chain method), 757</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.ChainList method), 763</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.Link method), 751</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.BatchNormalization method), 592</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.BatchRenormalization method), 598</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Bias method), 318</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Bilinear method), 324</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.BinaryHierarchicalSoftmax method), 624</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.BlackOut method), 630</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.caffe.CaffeFunction method), 743</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.ChildSumTreeLSTM method), 331</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Classifier method), 675</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Convolution1D method), 337</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Convolution2D method), 344</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Convolution3D method), 350</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.ConvolutionND method), 357</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.CRFF1d method), 636</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Deconvolution1D method), 363</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Deconvolution2D method), 370</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Deconvolution3D method), 376</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.DeconvolutionND method), 383</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.DecorrelatedBatchNormalization method), 605</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.DeformableConvolution2D method), 389</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.DepthwiseConvolution2D method), 396</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.DilatedConvolution2D method), 403</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.EmbedID method), 409</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.GoogLeNet method), 697</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.GroupNormalization method), 611</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.GRU method), 415</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Highway method), 422</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Inception method), 428</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.InceptionBN method), 434</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.LayerNormalization method), 617</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Linear method), 441</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.LocalConvolution2D method), 448</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.LSTM method), 455</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Maxout method), 662</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.MLPConvolution2D method), 462</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.model.vision.resnet.ResNetLayers method), 705</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NaryTreeLSTM method), 468</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NegativeSampling method), 648</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepBiGRU method), 475</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepBiLSTM method), 482</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepBiGRNNReLU method), 489</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepBiGRNNReLU method), 496</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepBiGRU method), 503</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepLSTM method), 510</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepRNNTanh method), 517</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.NStepRNNTanh method), 524</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Parameter method), 531</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.PreLU method), 649</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.ResNet101Layers method), 720</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.ResNet152Layers method), 728</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.ResNet50Layers method), 731</td>
</tr>
<tr>
<td>add_param()</td>
<td>(chainer.links.Scale method), 537</td>
</tr>
</tbody>
</table>
add_param() (chainer.links.StatefulGRU method), 544
add_param() (chainer.links.StatelessMGU method), 557
add_param() (chainer.links.StatefulPeepholeLSTM method), 570
add_param() (chainer.links.StatefulZoneoutLSTM method), 576
add_param() (chainer.links.StatelessGRU method), 551
add_param() (chainer.links.StatelessLSTM method), 583
add_param() (chainer.links.StatelessMGU method), 563
add_param() (chainer.links.Swish method), 655
add_param() (chainer.links.TheanoFunction method), 737
add_param() (chainer.links.VGG16Layers method), 682
add_param() (chainer.links.VGG19Layers method), 689
add_param() (chainer.Sequential method), 771
add_persistent() (chainer.Chain method), 575
add_persistent() (chainer.ChainList method), 764
add_persistent() (chainer.Link method), 751
add_persistent() (chainer.links.BatchNormalization method), 592
add_persistent() (chainer.links.BatchNormalization method), 598
add_persistent() (chainer.links.Bias method), 318
add_persistent() (chainer.links.Bilinear method), 325
add_persistent() (chainer.links.BinaryHierarchicalSoftmax method), 624
add_persistent() (chainer.links.BlackOut method), 630
add_persistent() (chainer.links.caffe.CaffeFunction method), 744
add_persistent() (chainer.links.ChildSumTreeLSTM method), 331
add_persistent() (chainer.links.Classifier method), 675
add_persistent() (chainer.links.Convolution1D method), 337
add_persistent() (chainer.links.Convolution2D method), 344
add_persistent() (chainer.links.Convolution3D method), 350
add_persistent() (chainer.links.ConvolutionND method), 357
add_persistent() (chainer.links.CRF1d method), 636
add_persistent() (chainer.links.Deconvolution1D method), 363
add_persistent() (chainer.links.Deconvolution2D method), 370
add_persistent() (chainer.links.Deconvolution3D method), 376
add_persistent() (chainer.links.DeconvolutionND method), 383
add_persistent() (chainer.links.DecorrelatedBatchNormalization method), 605
add_persistent() (chainer.links.DeformableConvolution2D method), 390
add_persistent() (chainer.links.DepthwiseConvolution2D method), 396
add_persistent() (chainer.links.DilatedConvolution2D method), 403
add_persistent() (chainer.links.EmbedID method), 410
add_persistent() (chainer.links.GoogLeNet method), 698
add_persistent() (chainer.links.GroupNormalization method), 611
add_persistent() (chainer.links.GRU method), 416
add_persistent() (chainer.links.Highway method), 422
add_persistent() (chainer.links.Inception method), 428
add_persistent() (chainer.links.InceptionBN method), 435
add_persistent() (chainer.links.LayerNormalization method), 618
add_persistent() (chainer.links.Linear method), 441
add_persistent() (chainer.links.LocalConvolution2D method), 448
add_persistent() (chainer.links.LSTM method), 455
add_persistent() (chainer.links.Maxout method), 662
add_persistent() (chainer.links.MLPConvolution2D method), 462
add_persistent() (chainer.links.model.vision.resnet.ResNetLayers method), 706
add_persistent() (chainer.links.NaryTreeLSTM method), 469
add_persistent() (chainer.links.NegativeSampling method), 668
add_persistent() (chainer.links.NStepBiGRU method), 475
add_persistent() (chainer.links.NStepBiLSTM method), 482
add_persistent() (chainer.links.NStepBiRNNReLU method), 489
add_persistent() (chainer.links.NStepBiRNNTanH method), 496
add_persistent() (chainer.links.NStepGRU method), 605
append () (chainer.links.NStepGRU method), 503
append () (chainer.links.NStepLSTM method), 511
append () (chainer.links.NStepRNNReLU method), 518
append () (chainer.links.NStepRNNTanH method), 525
append () (chainer.Sequential method), 772
apply () (chainer.FunctionAdapter method), 293
apply () (chainer.FunctionNode method), 299
arange () (in module chainerx), 1161
arccos () (in module chainer.functions), 246
arccos () (in module chainerx), 1179
arcsin () (in module chainer.functions), 246
arcsin () (in module chainerx), 1179
arctan () (in module chainer.functions), 247
arctan () (in module chainerx), 1180
arctan2 () (in module chainer.functions), 247
argmax () (chainer.links.CRF1d method), 636
argmax () (chainerx.ndarray method), 1147
argmax () (in module chainer.functions), 247
argmax () (in module chainerx), 1182
argmax_crf1d () (in module chainer.functions), 233
argmin () (in module chainer.functions), 247
array (chainer.Parameter attribute), 148
array (chainer.Variable attribute), 140
array () (in module chainerx), 1157
as_grad_stopped () (chainerx.ndarray method), 1147
as_strided () (in module chainer.functions), 170
as_variable () (in module chainer), 141
asanyarray () (in module chainerx), 1158
asarray () (in module chainerx), 1158
ascontiguousarray () (in module chainerx), 1158
assert () (chainer.testing.FunctionTestCase method), 1109
assert () (chainer.testing.LinkInitializersTestCase method), 1120
assert () (chainer.testing.LinkTestCase method), 1128
assert_allclose () (in module chainer.testing), 1103
assert_warns () (in module chainer.testing), 1103
assertAlmostEquals () (chainer.testing.FunctionTestCase method), 1105
assertAlmostEquals () (chainer.testing.LinkInitializersTestCase method), 1116
assertAlmostEquals () (chainer.testing.LinkTestCase method), 1124
assertAlmostEquals () (chainer.testing.FunctionTestCase method), 1106
assertAlmostEquals () (chainer.testing.LinkInitializersTestCase method), 1116
assertCountEqual () (chainer.testing.FunctionTestCase method), 1106
assertCountEqual () (chainer.testing.LinkInitializersTestCase method), 1116
assertCountEqual () (chainer.testing.LinkTestCase method), 1125
assertDictContainsSubset () (chainer.testing.FunctionTestCase method), 1106
assertDictContainsSubset () (chainer.testing.LinkInitializersTestCase method), 1116
assertDictContainsSubset () (chainer.testing.LinkTestCase method), 1125
assertDictEqual () (chainer.testing.FunctionTestCase method), 1106
assertDictEqual () (chainer.testing.LinkInitializersTestCase method), 1116
assertDictEqual () (chainer.testing.LinkTestCase method), 1125
assertDictEqual () (chainer.testing.FunctionTestCase method), 1106
assertDictEqual () (chainer.testing.LinkInitializersTestCase method), 1116
assertDictContainsSubset () (chainer.testing.FunctionTestCase method), 1106
assertEqual () (chainer.testing.LinkInitializersTestCase method), 1117
assertEqual () (chainer.testing.LinkTestCase method), 1109
assertEqual () (chainer.testing.FunctionTestCase method), 1106
assertEqual () (chainer.testing.LinkInitializersTestCase method), 1117
assertEqual () (chainer.testing.LinkTestCase method), 1125
assertEqual () (chainer.testing.FunctionTestCase method), 1106
assertEqual () (chainer.testing.LinkInitializersTestCase method), 1117
assertEqual () (chainer.testing.LinkTestCase method), 1125
assertFalse () (chainer.testing.FunctionTestCase method), 1106
assertFalse () (chainer.testing.LinkInitializersTestCase method), 1117
assertFalse () (chainer.testing.LinkTestCase method), 1106
assertFloorDivide () (chainer.testing.FunctionTestCase method), 1106
assertFloorDivide () (chainer.testing.LinkInitializersTestCase method), 1117
assertFloorDivide () (chainer.testing.LinkTestCase method), 1125
assertGreater () (chainer.testing.FunctionTestCase method), 1106
assertGreater () (chainer.testing.LinkInitializersTestCase method), 1117
assertGreater () (chainer.testing.LinkTestCase method), 1125
assertGreaterEqual () (chainer.testing.FunctionTestCase method), 1106
assertGreaterEqual ()

Index

1337
assertNotEquals() (chainer.testing.LinkTestCase method), 1126
assertNotIn() (chainer.testing.FunctionTestCase method), 1107
assertNotIn() (chainer.testing.LinkInitializersTestCase method), 1118
assertNotIsInstance() (chainer.testing.FunctionTestCase method), 1107
assertNotIsInstance() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotIsInstance() (chainer.testing.LinkTestCase method), 1126
assertNotIn() (chainer.testing.LinkTestCase method), 1126
assertNotIsInstance() (chainer.testing.FunctionTestCase method), 1107
assertNotIsInstance() (chainer.testing.FunctionTestCase method), 1108
assertNotIsInstance() (chainer.testing.FunctionTestCase method), 1108
assertNotIsInstance() (chainer.testing.LinkInitializersTestCase method), 1118
assertNotIsInstance() (chainer.testing.FunctionTestCase method), 1108
assertNotIsInstance() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotIsInstance() (chainer.testing.LinkTestCase method), 1127
assertNotRegex() (chainer.testing.FunctionTestCase method), 1107
assertNotRegex() (chainer.testing.LinkInitializersTestCase method), 1118
assertNotRegex() (chainer.testing.LinkTestCase method), 1126
assertNotRegex() (chainer.testing.FunctionTestCase method), 1107
assertNotRegex() (chainer.testing.FunctionTestCase method), 1108
assertNotRegex() (chainer.testing.FunctionTestCase method), 1108
assertNotRegex() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotRegex() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotRegex() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotRegexpMatches() (chainer.testing.FunctionTestCase method), 1107
assertNotRegexpMatches() (chainer.testing.LinkInitializersTestCase method), 1118
assertNotRegexpMatches() (chainer.testing.LinkTestCase method), 1126
assertNotRegexpMatches() (chainer.testing.FunctionTestCase method), 1107
assertNotRegexpMatches() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotRegexpMatches() (chainer.testing.LinkInitializersTestCase method), 1119
assertNotRegexpMatches() (chainer.testing.LinkTestCase method), 1127
assertNotRegexpMatches() (chainer.testing.LinkTestCase method), 1127
assertRaises() (chainer.testing.FunctionTestCase method), 1107
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1118
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1126
assertRaises() (chainer.testing.LinkTestCase method), 1126
assertRaises() (chainer.testing.FunctionTestCase method), 1107
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1118
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1126
assertRaises() (chainer.testing.LinkTestCase method), 1126
assertRaises() (chainer.testing.FunctionTestCase method), 1107
assertRaises() (chainer.testing.FunctionTestCase method), 1108
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1119
assertRaises() (chainer.testing.LinkInitializersTestCase method), 1120
assertRaises() (chainer.testing/linkInitializersTestCase method), 1120
assertTrue() (chainer.testing.FunctionTestCase method), 1109
assertTrue() (chainer.testing.LinkInitializersTestCase method), 1127
assertTrue() (chainer.testing.FunctionTestCase method), 1109
assertTrue() (chainer.testing.LinkInitializersTestCase method), 1119
assertTrue() (chainer.testing.LinkInitializersTestCase method), 1128
assertTupleEqual() (chainer.testing.FunctionTestCase method), 1109
assertTupleEqual() (chainer.testing.FunctionTestCase method), 1109
assertTupleEqual() (chainer.testing.FunctionTestCase method), 1119
assertTupleEqual() (chainer.testing.FunctionTestCase method), 1128
assertWarns() (chainer/testing/FunctionTestCase method), 1109
assertWarns() (chainer/testing/LinkInitializersTestCase method), 1119
assertWarns() (chainer/testing/LinkInitializersTestCase method), 1128
assertWarns() (chainer/testing/LinkInitializersTestCase method), 1128
assertWarnsRegex() (chainer/testing/FunctionTestCase method), 1109
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1127
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1127
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1127
assertWarnsRegex() (chainer/testing/FunctionTestCase method), 1108
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1120
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1128
assertWarnsRegex() (chainer/testing/LinkInitializersTestCase method), 1128
Index
batch_shape (chainer.distributions.Exponential attribute), 807
batch_shape (chainer.distributions.Gamma attribute), 810
batch_shape (chainer.distributions.Geometric attribute), 813
batch_shape (chainer.distributions.Gumbel attribute), 816
batch_shape (chainer.distributions.Independent attribute), 819
batch_shape (chainer.distributions.Laplace attribute), 823
batch_shape (chainer.distributions.LogNormal attribute), 826
batch_shape (chainer.distributions.MultivariateNormal attribute), 829
batch_shape (chainer.distributions.Normal attribute), 833
batch_shape (chainer.distributions.OneHotCategorical attribute), 836
batch_shape (chainer.distributions.Pareto attribute), 839
batch_shape (chainer.distributions.Poisson attribute), 842
batch_shape (chainer.distributions.Uniform attribute), 845
batch_size (chainer.iterators.DaliIterator attribute), 1030
BatchNormalization (class in chainer.links), 589
BatchRenormalization (class in chainer.links), 598
bcast() (chainermn.CommunicatorBase method), 1238
bcast() (in module chainermn.functions), 1247
bcast_data() (chainermn.CommunicatorBase method), 1238
bcast_obj() (chainermn.CommunicatorBase method), 1238
before_test() (chainer.testing.FunctionTestCase method), 1109
before_test() (chainer.testing.LinkInitializersTestCase method), 1120
before_test() (chainer.testing.LinkTestCase method), 1128
Bernoulli (class in chainer.distributions), 785
bernoulli_nll() (in module chainer.functions), 228
BestValueTrigger (class in chainer.training.triggers), 978
beta (chainer.links.BatchNormalization attribute), 597
beta (chainer.links.BatchRenormalization attribute), 603
beta (chainer.optimizers.MSVAG attribute), 873
Beta (class in chainer.distributions), 789
beta1 (chainer.optimizers.Adam attribute), 861
beta2 (chainer.optimizers.Adam attribute), 861
Bias (class in chainer.links), 318
bias() (in module chainer.functions), 249
Bilinear (class in chainer.links), 324
bilinear() (in module chainer.functions), 199
binary_accuracy() (in module chainer.functions), 225
BinaryHierarchicalSoftmax (class in chainer.links), 623
black_out() (in module chainer.functions), 229
Blackout (class in chainer.links), 629
broadcast() (in module chainer.functions), 171
broadcast_to() (in module chainer.functions), 171
broadcast_to() (in module chainer), 1165
build_computational_graph() (in module chainer.computational_graph), 1082

C

cache_or_load_file() (in module chainer.dataset), 993
cached_download() (in module chainer.dataset), 993
CaffeFunction (class in chainer.links.caffe), 742
call_for_each_param (chainer.optimizer_hooks.GradientHardClipping attribute), 899
call_for_each_param (chainer.optimizer_hooks.GradientLARS attribute), 901
call_for_each_param (chainer.optimizer_hooks.GradientNoise attribute), 900
call_for_each_param (chainer.optimizer_hooks.Lasso attribute), 897
call_for_each_param (chainer.optimizer_hooks.WeightDecay attribute), 896
call_hook() (chainer.GradientMethod method), 892
call_hook() (chainer.Optimizer method), 886
call_hook() (chainer.optimizers.Adam method), 853
call_hook() (chainer.optimizers.AdaGrad method), 856
call_hook() (chainer.optimizers.Adam method), 859
call_hook() (chainer.optimizers.CorrectedMomentumSGD method), 862
call_hook() (chainer.optimizers.MomentumSGD method), 865
call_hook() (chainer.optimizers.MSVAG method), 871
call_hook() (chainer.optimizers.NesterovAG method), 868
call_hook() (chainer.optimizers.RMSprop method), 874
call_hook() (chainer.optimizers.RMSpropGraves method), 877
call_hook() (chainer.optimizers.SGD method), 880
call_hook() (chainer.optimizers.SMORMS3 method), 883
call_hooks() (chainer.GradientMethod method), 892
call_hooks() (chainer.Optimizer method), 886
call_hooks() (chainer.optimizers.RMSprop method), 877
call_hooks() (chainer.optimizers.RMSpropGraves method), 883
call_hooks() (chainer.optimizers.SMORMS3 method), 886
call_hooks() (chainer.optimizers.Adam method), 859
call_hooks() (chainer.optimizers.SGD method), 880
call_hooks() (chainer.optimizers.SMORMS3 method), 883
cast() (in module chainer.functions), 172
Categorical (class in chainer.distributions), 792
Cauchy (class in chainer.distributions), 795
cdf() (chainer.Distribution method), 849
cdf() (chainer.distributions.Bernoulli method), 786
cdf() (chainer.distributions.Beta method), 789
cdf() (chainer.distributions.Categorical method), 792
cdf() (chainer.distributions.Cauchy method), 795
cdf() (chainer.distributions.Chisquare method), 799
cdf() (chainer.distributions.Dirichlet method), 802
cdf() (chainer.distributions.Exponential method), 805
cdf() (chainer.distributions.Gamma method), 808
cdf() (chainer.distributions.Geometric method), 811
cdf() (chainer.distributions.Gumbel method), 814
cdf() (chainer.distributions.Independent method), 817
cdf() (chainer.distributions.Laplace method), 821
cdf() (chainer.distributions.LogNormal method), 824
cdf() (chainer.distributions.MultivariateNormal method), 827
cdf() (chainer.distributions.Normal method), 831
cdf() (chainer.distributions.OneHotCategorical method), 834
cdf() (chainer.distributions.Pareto method), 837
cdf() (chainer.distributions.Poisson method), 840
cdf() (chainer.distributions.Uniform method), 843
ceil() (in module chainer.functions), 250
ceil() (in module chainer), 1181
Chain (class in chainer), 756
chainer (module), 133, 749, 1039
chainer.backend (module), 1043
chainer.backends.cuda (module), 1053
chainer.backends.intel64 (module), 1059
chainer.computational_graph (module), 1081
chainer.dataset (module), 985
chainer.datasets (module), 993
chainer.distributions (module), 785
chainer.exporters (module), 1093
chainer.function_hooks (module), 305
chainer.functions (module), 153
chainer.gradient_check (module), 1099
chainer.initializers (module), 902
chainer.iterators (module), 1022
chainer.link_hooks (module), 778
chainer.links (module), 316
chainer.links.caffe (module), 1092
chainer.optimizers (module), 852
chainer.serializers (module), 1032
chainer.testing (module), 1102
chainer.training (module), 914
chainer.training.extensions.snapshot_writers (module), 914
chainer.util (module), 1253
chainer.util.type_check (module), 1094
chainermn (module), 1201, 1211, 1217, 1235
chainerx (module), 1146, 1152, 1191, 1195
chainerx_device (chainer.FunctionAdapter attribute), 297
chainerx_device (chainer.FunctionNode attribute), 303
ChainerxDevice (class in chainer.backend), 1052
ChainList (class in chainer), 763
check_backward() (in module chainer.gradient_check), 1099
check_backward_options (chainer.testing.FunctionTestCase attribute), 1111
check_backward_options (chainer.testing.LinkTestCase attribute), 1130
check_double_backward() (in module chainer.gradient_check), 1101
check_double_backward_options (chainer.testing.FunctionTestCase attribute), 1111
check_forward_options (chainer.testing.FunctionTestCase attribute), 1111
cleargrads() (chainer.links.DeconvolutionND method), 384
cleargrads() (chainer.links.DecorrelatedBatchNormalization method), 605
cleargrads() (chainer.links.DeformableConvolution2D method), 390
cleargrads() (chainer.links.DepthwiseConvolution2D method), 396
cleargrads() (chainer.links.DilatedConvolution2D method), 404
cleargrads() (chainer.links.EmbedID method), 410
cleargrads() (chainer.links.GoogLeNet method), 698
cleargrads() (chainer.links.GroupNormalization method), 612
cleargrads() (chainer.links.GRU method), 416
cleargrads() (chainer.links.Highway method), 422
cleargrads() (chainer.links.Inception method), 429
cleargrads() (chainer.links.InceptionBN method), 435
cleargrads() (chainer.links.LayerNormalization method), 618
cleargrads() (chainer.links.Linear method), 442
cleargrads() (chainer.links.LocalConvolution2D method), 448
cleargrads() (chainer.links.LSTM method), 456
cleargrads() (chainer.links.Maxout method), 663
cleargrads() (chainer.links.MLPConvolution2D method), 463
cleargrads() (chainer.links.model.vision.resnet.ResNet11Layers method), 706
cleargrads() (chainer.links.NaryTreeLSTM method), 469
cleargrads() (chainer.links.NegativeSampling method), 669
cleargrads() (chainer.links.NStepBiGRU method), 475
cleargrads() (chainer.links.NStepBiLSTM method), 482
cleargrads() (chainer.links.NStepBiRNNReLU method), 489
cleargrads() (chainer.links.NStepBiRNNTanH method), 496
cleargrads() (chainer.links.NStepGRU method), 503
cleargrads() (chainer.links.NStepLSTM method), 511
cleargrads() (chainer.links.NStepRNNReLU method), 518
cleargrads() (chainer.links.NStepRNNTanH method), 525
cleargrads() (chainer.links.Parameter method), 532
cleargrads() (chainer.links.PReLU method), 649
cleargrads() (chainer.links.ResNet101Layers method), 721
cleargrads() (chainer.links.ResNet152Layers method), 729
cleargrads() (chainer.links.ResNet50Layers method), 714
cleargrads() (chainer.links.Scale method), 538
cleargrads() (chainer.links.SimplifiedDropconnect method), 643
cleargrads() (chainer.links.StatefulGRU method), 545
cleargrads() (chainer.links.StatefulMGU method), 558
cleargrads() (chainer.links.StatefulPeepholeLSTM method), 570
cleargrads() (chainer.links.StatefulZoneoutLSTM method), 576
cleargrads() (chainer.links.StatelessGRU method), 552
cleargrads() (chainer.links.StatelessLSTM method), 583
cleargrads() (chainer.links.StatelessMGU method), 564
cleargrads() (chainer.links.Swish method), 656
cleargrads() (chainer.links.TheanoFunction method), 737
cleargrads() (chainer.links.VGG16Layers method), 683
cleargrads() (chainer.links.VGG19Layers method), 690
cleargrads() (chainer.Sequential method), 772
cleargrads() (chainerx.ndarray method), 1148
cleargrads() (in module chainer.functions), 250
cleargrads() (in module chainerx), 1180
cleargrads() (clip method), 1454
close() (chainer.datasets.PickleDataset method), 1015
close() (chainer.datasets.PickleDatasetWriter method), 1016
close() (chainer.datasets.TextDataset method), 1013
CommunicatorBase (class in chainermn), 1326
ComputationalGraph (class in chainer.computational_graph), 1083
correct (chainer.functions.Classifier attribute), 680
correct_mean () (chainer.DictSummary method), 1068
correct_mean () (chainer.Summary method), 1067
concat (in module chainer.functions), 172
concat_examples () (in module chainer.dataset), 989
concatenate () (in module chainerx), 1166
ConcatenatedDataset (class in chainer.datasets), 996
ConcatWithAsyncTransfer (class in chainer.dataset), 991
config (in module chainer), 1076
connect_trainer() (chainer.training.Updater method), 926
connect_trainer() (chainer.training.updaters.MultiprocessParallelUpdater method), 932
connect_trainer() (chainer.training.updaters.ParallelUpdater method), 930
connect_trainer() (chainer.training.updaters.StandardUpdater method), 928
Context (class in chainerx), 1194
Context (class in chainerx), 1190
contiguous (chainer.testing.FunctionTestCase attribute), 1111
contiguous (chainer.testing.LinkInitializersTestCase attribute), 1122
contiguous (chainer.testing.LinkTestCase attribute), 1130
contrastive () (module chainer.functions), 231
conv() (module chainerx), 1183
conv_transpose() (module chainerx), 1185
convert_caffemodel_to_npz() (chainer.links.GoogLeNet class method), 698
convert_caffemodel_to_npz() (chainer.links.model.vision.resnet.ResNetLayers class method), 706
convert_caffemodel_to_npz() (chainer.links.ResNet101Layers class method), 721
convert_caffemodel_to_npz() (chainer.links.ResNet152Layers class method), 729
convert_caffemodel_to_npz() (chainer.links.ResNet50Layers class method), 714
convert_caffemodel_to_npz() (chainer.links.VGG16Layers class method), 683
convert_caffemodel_to_npz() (chainer.links.VGG19Layers class method), 690
converter() (module chainer.dataset), 989
Convolution1D (class in chainer.links), 336
Convolution2D (class in chainer.links), 342
Convolution3D (class in chainer.links), 349
convolution_1d() (module chainer.functions), 200
convolution_2d() (module chainer.functions), 200
convolution_3d() (module chainer.functions), 202
convolution_nd() (module chainer.functions), 202
ConvolutionND (class in chainer.links), 355
CooMatrix (class in chainer.utils), 1069
copy() (chainer.Chain method), 758
CopyOnWriteChainList method), 764
copy() (chainer.Link method), 751
CopyOnWriteChainer.links.BatchNormalization method), 593
copy() (chainer.links.BatchNormalization method), 593
copy() (chainer.links.Bias method), 319
copy() (chainer.links.Bilinear method), 325
copy() (chainer.links.BinaryHierarchicalSoftmax method), 624
copy() (chainer.links.BlackOut method), 630
copy() (chainer.links.caffe.CaffeFunction method), 744
copy() (chainer.links.ChildSumTreeLSTM method), 332
copy() (chainer.links.Classifier method), 676
copy() (chainer.links.Convolution1D method), 337
copy() (chainer.links.Convolution2D method), 345
copy() (chainer.links.Convolution3D method), 350
copy() (chainer.links.ConvolutionND method), 358
copy() (chainer.links.CRF1d method), 637
copy() (chainer.links.Deconvolution1D method), 363
copy() (chainer.links.Deconvolution2D method), 371
copy() (chainer.links.Deconvolution3D method), 376
copy() (chainer.links.DeconvolutionND method), 384
copy() (chainer.links.DecorrelatedBatchNormalization method), 605
copy() (chainer.links.DeformableConvolution2D method), 390
copy() (chainer.links.DepthwiseConvolution2D method), 396
copy() (chainer.links.DilatedConvolution2D method), 404
copy() (chainer.links.EmbedID method), 410
copy() (chainer.links.GoogLeNet method), 698
copy() (chainer.links.GroupNormalization method), 612
copy() (chainer.links.GRU method), 416
copy() (chainer.links.Highway method), 422
copy() (chainer.links.Inception method), 429
copy() (chainer.links.InceptionBN method), 435
Index
copyparams () (chainer.links.MLPConvolution2D method), 463
copyparams () (chainer.links.model.vision.resnet.ResNet Layers) (chainer.optimizers), 862
copyparams () (chainer.Sequential method), 772
copyparams () (chainer.model.vision.alexnet.AlexNet method), 1048
CorrectedMomentumSGD (class in chainer.optimizers), 862
cos () (in module chainer.functions), 250
cos () (in module chainerx), 1178
cosh () (in module chainer.functions), 250
count () (chainer.ChainList method), 764
count () (chainer.links.MLPConvolution2D method), 463
count () (chainer.links.NStepBiGRU method), 476
count () (chainer.links.NStepBiLSTM method), 483
count () (chainer.links.NStepBiRNReLU method), 490
count () (chainer.links.NStepBiRNNTanh method), 497
count () (chainer.links.NStepGRU method), 504
count () (chainer.links.NStepLSTM method), 511
count () (chainer.links.NStepLN method), 518
count () (chainer.links.NStepRNReLU method), 525
count () (chainer.links.NStepRNNTanh method), 529
count () (chainer.links.ResNet101Layers method), 714
count () (chainer.links.ResNet50Layers method), 732
count () (chainer.links.Scale method), 538
count () (chainer.links.SimplifiedDropconnect method), 643
count () (chainer.links.StatefulGRU method), 545
count () (chainer.links.StatefulMGU method), 558
count () (chainer.links.StatefulPeepholeLSTM method), 571
count () (chainer.links.StatefulZoneoutLSTM method), 577
count () (chainer.links.StatelessGRU method), 584
count () (chainer.links.StatelessLSTM method), 592
count () (chainer.links.StatelessMGU method), 599
count () (chainer.links.StatelessMGU method), 604
count () (chainer.links.Swish method), 613
count () (chainer.links.TheanoFunction method), 620
count () (chainer.links.VGG16Layers method), 631
count () (chainer.links.VGG19Layers method), 637

1348 Index
tribute), 801

covariance (chainer.distributions.Dirichlet attribute), 804

covariance (chainer.distributions.Exponential attribute), 807

covariance (chainer.distributions.Gamma attribute), 810

covariance (chainer.distributions.Geometric attribute), 813

covariance (chainer.distributions.Gumbel attribute), 816

covariance (chainer.distributions.Independent attribute), 819

covariance (chainer.distributions.Laplace attribute), 823

covariance (chainer.distributions.LogNormal attribute), 826

covariance (chainer.distributions.MultivariateNormal attribute), 829

covariance (chainer.distributions.Normal attribute), 832

covariance (chainer.distributions.OneHotCategorical attribute), 836

covariance (chainer.distributions.Pareto attribute), 839

covariance (chainer.distributions.Poisson attribute), 842

covariance (chainer.distributions.Uniform attribute), 845

CpuDevice (class in chainer.backend), 1049

create_communicator() (in module chainermn), 1236

create_consumer() (in module chainermn), 1241

create_context() (in module chainermn), 1052

create_context() (chainer.backend.ChainerxDevice method), 1052

create_context() (chainer.backend.CpuDevice method), 1049

create_context() (chainer.backend.Device method), 1044

create_context() (chainer.backend.GpuDevice method), 1050

create_context() (chainer.backend.Intel64Device method), 1051

create_empty_dataset() (in module chainermn.datasets), 1241

create_huffman_tree() (chainer.links.BinaryHierarchicalSoftmax static method), 625

create_link() (chainer.testing.LinkInitializersTestCase method), 1120

create_link() (chainer.testing.LinkTestCase method), 1128

create_multi_node_checkpointer() (in module chainermn), 1244

create_multi_node_evaluator() (in module chainermn), 1240

create_multi_node_iterator() (in module chainermn.iterators), 1249

create_multi_node_optimizer() (in module chainermn), 1240

create_queue() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter method), 922

create_queue() (chainer.training.extensions.snapshot_writers.QueueWriter method), 920

create_queue() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter method), 920

create_synchronized_iterator() (in module chainermn.iterators), 1250

create_task() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter method), 922

create_task() (chainer.training.extensions.snapshot_writers.QueueWriter method), 920

create_task() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter method), 921

create_update_rule() (chainer.GradientMethod method), 892

create_update_rule() (chainer.optimizers.AdaDelta method), 853

create_update_rule() (chainer.optimizers.AdaGrad method), 856

create_update_rule() (chainer.optimizers.Adam method), 859

create_update_rule() (chainer.optimizers.CorrectedMomentumSGD method), 862

create_update_rule() (chainer.optimizers.MomentumSGD method), 865

create_update_rule() (chainer.optimizers.MSVAG method), 871

create_update_rule() (chainer.optimizers.NesterovAG method), 868

create_update_rule() (chainer.optimizers.RMSprop method), 874

create_update_rule() (chainer.optimizers.RMSpropGraves method), 877
create_update_rule()  (chainer.optimizers.SGD method), 880
create_update_rule()  (chainer.optimizers.SMORMS3 method), 883
create_worker()  (chainer.training.extensions.snapshot_writers.ProcessWriter method), 918
create_worker()  (chainer.training.extensions.snapshot_writers.ThreadWriter method), 917
creator (chainer.Parameter attribute), 148
creator (chainer.Variable attribute), 140
creator (chainer.variable.VariableNode attribute), 151
creator_node (chainer.Parameter attribute), 149
creator_node (chainer.Variable attribute), 140
creator_node  (chainer.variable.VariableNode attribute), 152
crelu()  (in module chainer.functions), 155
CRF1d  (class in chainer.links), 635
crf1d()  (in module chainer.functions), 232
cross_covariance()  (in module chainer.functions), 234
cross_entropy()  (in module chainer), 846
CUDAProfileHook  (class in chainer.function_hooks), 306
cudnn_deterministic  (chainer.configuration.GlobalConfig attribute), 1077
cudnn_fast_batch_normalization  (chainer.configuration.GlobalConfig attribute), 1077
cumprod()  (in module chainer.functions), 251
cumsum()  (in module chainer.functions), 251
CupyMemoryProfileHook  (class in chainer.function_hooks), 307
current_position  (chainer.iterators.MultiprocessIterator attribute), 1027
current_position  (chainer.iterators.MultithreadIterator attribute), 1028
current_position  (chainer.iterators.SerialIterator attribute), 1024
d  (chainer.distributions.MultivariateNormal attribute), 829
DaliIterator  (class in chainer.iterators), 1029
data  (chainer.Parameter attribute), 149
data  (chainer.Variable attribute), 140
data  (chainer.variable.VariableNode attribute), 152
data_ptr  (chainerx.ndarray attribute), 1151
data_size  (chainerx.ndarray attribute), 1151
DatasetMixin  (class in chainer.dataset), 986
default_name  (chainer.training.extensions.LinearShift attribute), 952
default_name  (chainer.training.extensions.LogReport attribute), 965
default_name  (chainer.training.extensions.LinearShift attribute), 952
default_name  (chainer.training.extensions.InverseShift attribute), 951
default_name  (chainer.training.extensions.MultistepShift attribute), 951
default_name  (chainer.training.extensions.MicroAverage attribute), 949
default_name  (chainer.training.extensions.Evaluator attribute), 940
default_name  (chainer.training.extensions.DumpGraph attribute), 972
default_name  (chainer.training.extensions.ParameterStatistics attribute), 946
default_name  (chainer.training.extensions.FailOnNonNumber attribute), 943
default_name  (chainer.training.extensions.PolynomialShift attribute), 919
default_name  (chainer.training.extensions.PlotReport attribute), 968
default_name  (chainer.training.extensions.PrintReport attribute), 962
default_name  (chainer.training.extensions.ProgressBar attribute), 965
debug()  (chainer.testing.FunctionTestCase method), 1109
debug()  (chainer.testing.LinkInitializersTestCase method), 1120
decov()  (module chainer.functions), 234
default_name  (chainer.training.extensions.DestroyProcess attribute), 942
default_name  (chainer.training.extensions.MicroAverage attribute), 942
default_name  (chainer.training.extensions.LinearShift attribute), 952
default_name  (chainer.training.extensions.MicroAverage attribute), 949
debug_print()  (chainer.Parameter method), 136
deconv()  (chainer.Parameter method), 144
deconvolution_1d()  (module chainer.functions), 204
deconvolution_2d()  (module chainer.functions), 205
deconvolution_3d()  (module chainer.functions), 206
deconvolution_nd()  (module chainer.functions), 206
Deconvolution2D  (class in chainer.links), 368
Deconvolution3D  (class in chainer.links), 375
deconvolution_1d()  (module chainer.functions), 204
deconvolution_2d()  (module chainer.functions), 205
deconvolution_3d()  (module chainer.functions), 206
deconvolution_nd()  (module chainer.functions), 206
DeconvolutionND  (class in chainer.links), 381
DecorrelatedBatchNormalization  (class in chainer.links), 272
DecorrelatedBatchNormalization  (class in chainer.links), 604
decov()  (module chainer.functions), 234
default_name (chainer.training.extensions.StepShift attribute), 960
delete_hook () (chainer.links.Deconvolution2D method), 364
default_name (chainer.training.extensions.unlink_variables attribute), 977
delete_hook () (chainer.links.Deconvolution3D method), 372
default_name (chainer.training.extensions.VariableStatisticsPlot attribute), 970
delete_hook () (chainer.links.DeformableConvolution2D method), 397
default_name (chainer.training.extensions.WarmupShift attribute), 958
delete_hook () (chainer.links.DeformableConvolutionND method), 384
default_statistics (chainer.training.extensions.ParameterStatistics attribute), 946
delete_hook () (chainer.links.DepthwiseConvolution2D method), 397
defaultTestResult () (chainer:testing.FunctionTestCase method), 1110
delete_hook () (chainer.links.CRF1d method), 637
defaultTestResult () (chainer:testing.LinkInitializersTestCase method), 1120
delete_hook () (chainer.links.EmbedID method), 512
defaultTestResult () (chainer:testing.LinkTestCase method), 1129
defective_convention_2d_sampler () (in module chainer.functions), 210
DeformableConvolution2D (class in chainer:links), 388
delete_hook () (chainer.Chain method), 759
defdelete_hook () (chainer.ChainList method), 765
delete_hook () (chainer:Function method), 290
defdelete_hook () (chainer:FunctionAdapter method), 294
defdelete_hook () (chainer:FunctionNode method), 300
defdelete_hook () (chainer:LayerNormalization method), 593
defdelete_hook () (chainer:links.BatchNormalization method), 752
defdelete_hook () (chainer:links.BatchRenormalization method), 600
defdelete_hook () (chainer:links.Bias method), 320
defdelete_hook () (chainer:links.Bilinear method), 326
defdelete_hook () (chainer:links.BinaryHierarchicalSoftmax method), 625
defdelete_hook () (chainer:links.BlackOut method), 631
defdelete_hook () (chainer:links.CaffeCaffeFunction method), 745
defdelete_hook () (chainer:links.ChildSumTreeLSTM method), 332
defdelete_hook () (chainer:links.Classifier method), 677
defdelete_hook () (chainer:links.Convolution1D method), 338
defdelete_hook () (chainer:links.Convolution2D method), 346
defdelete_hook () (chainer:links.Convolution3D method), 351
defdelete_hook () (chainer:links.ConvolutionND method), 359
defdelete_hook () (chainer:links.CRF1d method), 637
defdelete_hook () (chainer:links.Decoration2D method), 519
delete_hook()
(chainer.links.NStepRNNTanh method), 526

delete_hook()
(chainer.links.Parameter method), 532

delete_hook()
(chainer.links.PReLU method), 650

delete_hook()
(chainer.links.ResNet101Layers method), 722

delete_hook()
(chainer.links.ResNet152Layers method), 730

delete_hook()
(chainer.links.ResNet50Layers method), 715

delete_hook()
(chainer.links.Scale method), 539

delete_hook()
(chainer.links.SimplifiedDropconnect method), 644

delete_hook()
(chainer.links.StatefulGRU method), 546

delete_hook()
(chainer.links.StatefulMGU method), 559

delete_hook()
(chainer.links.StatefulPeepholeLSTM method), 571

delete_hook()
(chainer.links.StatefulZoneoutLSTM method), 577

delete_hook()
(chainer.links.StatelessGRU method), 553

delete_hook()
(chainer.links.StatelessLSTM method), 584

delete_hook()
(chainer.links.StatelessMGU method), 564

delete_hook()
(chainer.links.Swish method), 657

delete_hook()
(chainer.links.TheanoFunction method), 738

delete_hook()
(chainer.links.VGG16Layers method), 684

delete_hook()
(chainer.links.VGG19Layers method), 691

delete_hook()
(chainer.Sequential method), 773

deleted()
(chainer.function_hooks.CUDAProfileHook method), 306

deleted()
(chainer.function_hooks.CupyMemoryProfileHook method), 308

deleted()
(chainer.function_hooks.PrintHook method), 310

deleted()
(chainer.function_hooks.TimerHook method), 312

deleted()
(chainer.FunctionHook method), 315

deleted()
(chainer.link_hooks.SpectralNormalization method), 779

deleted()
(chainer.link_hooks.TimerHook method), 781

deleted()
(chainer.LinkHook method), 784

depth2space() (in module chainer.functions), 174

depthwise_convolution_2d() (in module chainer.functions), 209

DepthwiseConvolution2D (class in chainer.links), 395

Deserializer (class in chainer), 1042
det() (in module chainer.functions), 251
device (chainer.Chain attribute), 762
device (chainer.ChainList attribute), 768
device (chainer.DeviceResident attribute), 1047
device (chainer.Link attribute), 755
device (chainer.links.BatchNormalization attribute), 597
device (chainer.links.BatchRenormalization attribute), 603
device (chainer.links.Bias attribute), 323
device (chainer.links.Bilinear attribute), 329
device (chainer.links.BinaryHierarchicalSoftmax attribute), 629

device (chainer.links.BlackOut attribute), 635
device (chainer.links.caffe.CaffeFunction attribute), 748

device (chainer.links.ChildSumTreeLSTM attribute), 336

device (chainer.links.Classifier attribute), 680
device (chainer.links.Convolution1D attribute), 342
device (chainer.links.Convolution2D attribute), 349
device (chainer.links.Convolution3D attribute), 355
device (chainer.links.ConvolutionND attribute), 362
device (chainer.links.CRF1d attribute), 641

device (chainer.links.Deconvolution1D attribute), 368

device (chainer.links.Deconvolution2D attribute), 375

device (chainer.links.Deconvolution3D attribute), 381

device (chainer.links.DeconvolutionND attribute), 388

device (chainer.links.DecorrelatedBatchNormalization attribute), 610

device (chainer.links.DeformableConvolution2D attribute), 394

device (chainer.links.DepthwiseConvolution2D attribute), 401

device (chainer.links.DilatedConvolution2D attribute), 408

device (chainer.links.EmbedID attribute), 414

device (chainer.links.GoogLeNet attribute), 703

device (chainer.links.GroupNormalization attribute), 616

device (chainer.links.GRU attribute), 420

device (chainer.links.Highway attribute), 426

device (chainer.links.Inception attribute), 433

device (chainer.links.InceptionBN attribute), 439

device (chainer.links.LayerNormalization attribute), 622

device (chainer.links.Linear attribute), 446

device (chainer.links.LocalConvolution2D attribute), 453

device (chainer.links.LSTM attribute), 460

device (chainer.links.Maxout attribute), 667
diagonal()

DictDataset

DictionarySerializer

DictSummary

digamma()

dilated_convolution_2d()

DilatedConvolution2D

Dirichlet

disable_update()

disable_update()

disable_update()

disable_update()

DilatedConvolution2D

disable_update()

chainer.Chain method

chainer.ChainList method

disable_update()

chainer.Chain method

chainer.Chain method

chainer.Chain method

chainer.Chain method

chainer.Chain method

chainer.Chainer method

disable_update()

chainer.Chainer method

disable_update()

disable_update()

disable_update()

disable_update()

disable_update()

chainer.CaffeFunction method

disable_update()

disable_update()
disable_update() (chainer.links.ResNet152Layers method), 730
disable_update() (chainer.links.ResNet50Layers method), 715
disable_update() (chainer.links.Scale method), 539
disable_update() (chainer.links.SimplifiedDropconnectDumpGraph (class in chainer.training.extensions), 970
disable_update() (chainer.links.StatefulGRU DumpGraph()), 62
disable_update() (chainer.links.StatefulMGU EarlyStoppingTrigger (class in chainer.training.triggers), 979
disable_update() (chainer.links.StatefulPeepholeLSTM Minsum (in module chainer.functions), 252
disable_update() (chainer.links.StatefulZoneoutLSTM elapsed_time (chainer.training.Trainer attribute), 925
disable_update() (chainer.links.StatelessGRU elementwise() (in module chainer.backends.cuda), 1057
disable_update() (chainer.links.StatelessLSTM elu() (in module chainer.functions), 155
embed_id() (in module chainer.functions), 212
EmbedID (class in chainer.links), 408
empty() (in module chainerx), 1153
empty_like() (in module chainerx), 1153
discriminative_margin_based_clustering_ EnableBackprop(chainer.configuration.GlobalConfig attribute), 1077
dot() (chainerx.ndarray method), 565
dot() (in module chainerx, 1175
dolist() (in module chainer.functions), 267
elementwise() (in module chainer.backends.cuda), 1110
dot() (chainerx.ndarray method), 1120
dot() (in module chainerx, 1168
dropout() (in module chainer.functions), 1111
enable_update() (chainer.links.Bias method), 320
enable_update() (chainer.links.Bilinear method), 326
distribute() (in module chainer.functions), 235
dispose() (in module chainerx, 320
divide() (in module chainerx), 1175
doCleanups() (chainer.testing.FunctionTestCase method), 1110
doCleanups() (chainer.testing.LinkInitializersTestCase method), 1120
doCleanups() (chainer.testing.LinkTestCase method), 1129
dodge_nondifferentiable (chainer.testing.FunctionTestCase attribute), 1111
dodge_nondifferentiable (chainer.testing.LinkTestCase attribute), 1130
dump() (chainer.computational_graph.ComputationalGraph method), 1084
dump() (chainerx.ndarray attribute), 1151
dtstack() (in module chainer.functions), 175
dtype (chainer.configuration.GlobalConfig attribute), 1077
dtype (chainer.Parameter attribute), 149
dtype (chainer.Variable attribute), 140
dtype (chainerx.ndarray attribute), 1151
dtype (chainerx.ndarray attribute), 1115
dtype (chainerx.ctype attribute), 1151
dtype (chainerx.ctype attribute), 1115
dtype (chainerx.ctype attribute), 1115
dtype (chainerx.ctype attribute), 1115
EarlyStoppingTrigger (class in chainer.training.triggers), 979
elapse_time (chainer.training.Trainer attribute), 925
elemwise() (in module chainer.backends.cuda), 1057
elu() (in module chainer.functions), 155
EmbedID (class in chainer.links), 408
empty() (in module chainerx), 1153
empty_like() (in module chainerx), 1153
elementswise() (in module chainer.backends.cuda), 1057
enable_update() (chainer.Chain method), 759
enable_update() (chainer.ChainList method), 765
elementwise() (in module chainer.backends.cuda), 1057
enable_update() (chainer.ChainList method), 765
enable_update() (chainer.Link method), 752
enable_update() (chainer.links.BatchNormalization method), 594
enable_update() (chainer.links.BatchRenormalization method), 600
enable_update() (chainer.links.Bias method), 320
enable_update() (chainer.links.Bilinear method), 326
enable_update() (chainerlinks.BinaryHierarchicalSoftmax method), 625
enable_update() (chainer.links.BlackOut method), 632
enable_update() (chainer.links.caffe.CaffeFunction method), 745
enable_update() (chainer.links.ChildSumTreeLSTM method), 333
enable_update() (chainer.links.Classifier method), 677
enable_update() (chainer.links.Convolution1D method), 339
enable_update() (chainer.links.Convolution2D method), 346
enable_update() (chainer.links.Convolution3D method), 352
enable_update() (chainer.links.ConvolutionND method), 359

enable_update() (chainer.links.CRF1d method), 638	enable_update() (chainer.links.Deconvolution1D method), 365	enable_update() (chainer.links.Deconvolution2D method), 372
enable_update() (chainer.links.Deconvolution3D method), 378	enable_update() (chainer.links.DeconvolutionND method), 385	
enable_update() (chainer.links.DecorrelatedBatchNormalization method), 607	enable_update() (chainer.links.DeformableConvolution2D method), 391	
enable_update() (chainer.links.DepthwiseConvolution2D method), 398	enable_update() (chainer.links.DilatedConvolution2D method), 405	
enable_update() (chainer.links.GRU method), 417	enable_update() (chainer.links.Inception method), 430	
enable_update() (chainer.links.InceptionBN method), 436	enable_update() (chainer.links.Inception method), 430	
enable_update() (chainer.links.LayerNormalization method), 619	enable_update() (chainer.links.LayerNormalization method), 699	
enable_update() (chainer.links.Linear method), 443	enable_update() (chainer.links.Linear method), 450	
enable_update() (chainer.links.LocalConvolution2D method), 457	enable_update() (chainer.links.LSTM method), 470	
enable_update() (chainer.links.LSTM method), 457	enable_update() (chainer.links.Maxout method), 670	
enable_update() (chainer.links.MLPConvolution2D method), 463	enable_update() (chainer.links.MLPConvolution2D method), 664	
enable_update() (chainer.links.NaryTreeLSTM method), 470	enable_update() (chainer.links.NaryTreeLSTM method), 691	
enable_update() (chainer.links.NegativeSampling method), 670	enable_update() (chainer.Sequential method), 773	
enable_update() (chainer.links.NStepBiGRU method), 483	enable_update() (chainer.Sequential method), 684	
enable_update() (chainer.links.NStepBiLSTM method), 483	enable_update() (chainer.Sequential method), 691	
enable_update() (chainer.links.NStepBiRNNReLU method), 490	enable_update() (chainer.Sequential method), 773	
enable_update() (chainer.links.NStepBiRNNReLU method), 490	enable_update() (chainer.Sequential method), 684	

### Distribution Attributes

chainer.distributions.Bernoulli attribute, 851	chainer.distributions.Bernoulli attribute, 851
chainer.distributions.Cauchy attribute, 794	chainer.distributions.Categorical attribute, 794
chainer.distributions.Dirichlet attribute, 804	chainer.distributions.Exponential attribute, 804
chainer.distributions.Bernoulli attribute, 788	chainer.distributions.Beta attribute, 791
chainer.distributions.Chisquare attribute, 801	chainer.distributions.Chisquare attribute, 801
chainer.distributions.Bernoulli attribute, 804	chainer.distributions.Exponential attribute, 804
chainer.distributions.Categorical attribute, 794	chainer.distributions.Categorical attribute, 794
chainer.distributions.Dirichlet attribute, 804	chainer.distributions.Exponential attribute, 804
failUnlessEqual() (chainer.testing.LinkTestCase method), 1129
failUnlessRaises()
  (chainer.testing.FunctionTestCase method), 1110
failUnlessRaises()
  (chainer.testing.LinkInitializersTestCase method), 1121
failback_device (chainer.backend.ChainerxDevice attribute), 1053
fft() (in module chainer.functions), 254
fill() (chainer.ndarray method), 1148
fill_value (chainer.initializers.Constant attribute), 904
fill_value (chainer.initializers.NaN attribute), 907
fill_value (chainer.initializers.One attribute), 906
fill_value (chainer.initializers.Zero attribute), 905
final_lr (chainer.optimizers.Adam attribute), 861
finalize() (chainer.dataset.Iterator method), 988
finalize() (chainer.iterators.Iterator method), 1029
finalize() (chainer.iterators.MultiprocessIterator method), 1026
finalize() (chainer.iterators.MultithreadIterator method), 1028
finalize() (chainer.iterators.SerialIterator method), 1023
finalize() (chainer.training.Extension method), 934
finalize() (chainer.training.extensions.DumpGraph method), 971
finalize() (chainer.training.extensions.Evaluator method), 938
finalize() (chainer.training.extensions.ExponentialShift method), 948
finalize() (chainer.training.extensions.FailOnNonNumber method), 942
finalize() (chainer.training.extensions.InverseShift method), 949
finalize() (chainer.training.extensions.LinearShift method), 951
finalize() (chainer.training.extensions.LogReport method), 964
finalize() (chainer.training.extensions.MicroAverage method), 941
finalize() (chainer.training.extensions.MultistepShift method), 953
finalize() (chainer.training.extensions.ParameterStatistics method), 945
finalize() (chainer.training.extensions.PlotReport method), 967
finalize() (chainer.training.extensions.PolynomialShift method), 955
finalize() (chainer.training.extensions.PrintReport method), 961
finalize() (chainer.training.extensions.ProgressBar method), 962
finalize() (chainer.training.extensions.snapshot_writers.QueueWriter method), 920
finalize() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter method), 921
finalize() (chainer.training.extensions.snapshot_writers.ThreadWriter method), 917
finalize() (chainer.training.extensions.snapshot_writers.Writer method), 915
finalize() (chainer.training.extensions.WarmupShift method), 959
finalize() (chainer.training.extensions.unchain_variables method), 976
finalize() (chainer.training.extensions.VariableStatisticsPlot method), 969
finalize() (chainer.training.extensions.WarmupShift method), 957
finalize() (chainer.training.updaters.StandardUpdater method), 926
finalize() (chainer.training.updaters.MultiprocessParallelUpdater method), 932
finalize() (chainer.training.updaters.ParallelUpdater method), 930
finalize() (chainer.training.updaters.StandardUpdater method), 928
finished (chainer.training.triggers.OnceTrigger attribute), 984
fix() (in module chainer.functions), 255
fixed_batch_norm() (in module chainer), 1188
fixed_batch_normalization() (in module chainer.functions), 273
fixed_batch_renormalization() (in module chainer.functions), 273
fixed_decorrelated_batch_normalization() (in module chainer.functions), 273
flush() (chainer.datasets.pickle_dataset_writer method), 1016
floor() (in module chainer.functions), 178
floordiv() (in module chainer.functions), 178
flip() (in module chainer.functions), 178
flplr() (in module chainer.functions), 178
floor() (in module chainer.functions), 255
flush() (chainer.datasets.pickle_dataset_writer method), 1016
fmod() (in module chainer.functions), 255
force_backprop_mode() (in module chainer), 303
forward()  (in module chainerx), 1197
forward()  (in module chainer.functions), 287
forward()  (chainer.Function method), 290
forward()  (chainer.FunctionAdapter method), 295
forward()  (chainer.FunctionNode method), 301
forward()  (chainer.links.BatchNormalization method), 594
forward()  (chainer.links.BatchNormalization method), 600
forward()  (chainer.links.Bias method), 320
forward()  (chainer.links.Bilinear method), 326
forward()  (chainer.links.BinaryHierarchicalSoftmax method), 626
forward()  (chainer.links.BlackOut method), 632
forward()  (chainer.links.caffe.CaffeFunction method), 745
forward()  (chainer.links.ChidSumTreeLSTM method), 333
forward()  (chainer.links.Classifier method), 677
forward()  (chainer.links.Convolution1D method), 339
forward()  (chainer.links.Convolution2D method), 346
forward()  (chainer.links.Convolution3D method), 352
forward()  (chainer.links.ConvolutionND method), 359
forward()  (chainer.links.CRF1d method), 638
forward()  (chainer.links.Deconvolution1D method), 365
forward()  (chainer.links.Deconvolution2D method), 372
forward()  (chainer.links.Deconvolution3D method), 378
forward()  (chainer.links.DeconvolutionND method), 385
forward()  (chainer.links.DecorrelatedBatchNormalization method), 607
forward()  (chainer.links.DeformableConvolution2D method), 391
forward()  (chainer.links.DepthwiseConvolution2D method), 398
forward()  (chainer.links.DilatedConvolution2D method), 405
forward()  (chainer.links.EmbedID method), 411
forward()  (chainer.links.GoogLeNet method), 700
forward()  (chainer.links.GroupNormalization method), 613
forward()  (chainer.links.GRU method), 417
forward()  (chainer.links.Highway method), 423
forward()  (chainer.links.Inception method), 430
forward()  (chainer.links.InceptionBN method), 436
forward()  (chainer.links.LayerNormalization method), 619
forward()  (chainer.links.Linear method), 443
forward()  (chainer.links.LocalConvolution2D method), 450
forward()  (chainer.links.LSTM method), 457
forward()  (chainer.links.Maxout method), 664
forward()  (chainer.links.MLPConvolution2D method), 464
forward()  (chainer.links.model.vision.resnet.ResNetLayers method), 708
forward()  (chainer.links.NaryTreeLSTM method), 470
forward()  (chainer.links.NegativeSampling method), 670
forward()  (chainer.links.NStepBiGRU method), 476
forward()  (chainer.links.NStepBiLSTM method), 483
forward()  (chainer.links.NStepBiRNNTanh method), 490
forward()  (chainer.links.NStepBiRNNTanh method), 497
forward()  (chainer.links.NStepGRU method), 504
forward()  (chainer.links.NStepLSTM method), 512
forward()  (chainer.links.NStepRNNTanh method), 519
forward()  (chainer.links.NaryTreeLSTM method), 526
forward()  (chainer.links.Parameter method), 533
forward()  (chainer.links.PReLU method), 615
forward()  (chainer.links.ResNet101Layers method), 723
forward()  (chainer.links.ResNet152Layers method), 730
forward()  (chainer.links.ResNet50Layers method), 716
forward()  (chainer.links.Scale method), 539
forward()  (chainer.links.SimplifiedDropconnect method), 644
forward()  (chainer.links.StatefulGRU method), 546
forward()  (chainer.links.StatefulMGU method), 559
forward()  (chainer.links.StatefulPeepholeLSTM method), 571
forward()  (chainer.links.StatefulZoneoutLSTM method), 577
forward()  (chainer.links.StatelessGRU method), 553
forward()  (chainer.links.StatelessLSTM method), 584
forward()  (chainer.links.StatelessMGU method), 565
forward()  (chainer.links.StatefulMGU method), 567
forward()  (chainer.links.TheanoFunction method), 739
forward()  (chainer.links.VGG16Layers method), 685
forward()  (chainer.links.VGG19Layers method), 692
forward()  (chainer.Sequential method), 773
forward()  (chainer.testing.FunctionTestCase method), 1110
forward()  (chainer.testing.LinkInitializersTestCase method), 1121
forward()  (chainer.testing.LinkTestCase method), 1129
forward_chainerx()  (chainer.FunctionAdapter method), 295
from_chx()  (chainer.links.DilatedConvolution2D method), 405
from_chx()  (chainer.links.EmbedID method), 411
from_chx()  (chainer.links.GoogLeNet method), 700
from_chx()  (chainer.links.GroupNormalization method), 613
from_chx()  (chainer.links.GRU method), 417
from_chx()  (chainer.links.Highway method), 424
from_chx()  (chainer.links.Inception method), 430
from_chx()  (chainer.links.InceptionBN method), 436
from_chx()  (chainer.links.LayerNormalization method), 619
from_chx()  (chainer.links.Linear method), 443
from_chx()  (chainer.links.LocalConvolution2D method), 450
from_chx()  (chainer.links.LSTM method), 457
from_chx()  (chainer.links.Maxout method), 664
from_chx()  (chainer.links.MLPConvolution2D method), 464
from_chx()  (chainer links.model.vision.resnet.ResNetLayers method), 708
from_chx()  (chainer.links.NaryTreeLSTM method), 470
from_chx()  (chainer.links.NegativeSampling method), 470
from_chx()  (chainer.links.NStepBiGRU method), 477
from_chx()  (chainer.links.NStepBiLSTM method), 484
from_chx()  (chainer.links.NStepBiRNNReLU method), 491
from_chx()  (chainer.links.NStepBiRNN tanh method), 498
from_chx()  (chainer.links.NStepBiRNNTanh method), 505
from_chx()  (chainer links.NStepLSTM method), 512
from_chx()  (chainer.links.NStepRNNReLU method), 520
from_chx()  (chainer.links.NStepRNN tanh method), 527
from_chx()  (chainer.links.Parameter method), 533
from_chx()  (chainer.links.PReLU method), 561
from_chx()  (chainer.links.ResNet101Layers method), 723
from_chx()  (chainer.links.ResNet152Layers method), 731
from_chx()  (chainer.links.ResNet50Layers method), 716
from_chx()  (chainer.links.Scale method), 539
from_chx()  (chainer.links.SimplifiedDropconnect method), 644
from_chx()  (chainer.links.StatefulGRU method), 546
from_chx()  (chainer.links.StatefulMGU method), 559
from_chx()  (chainer.links.StatefulPeepholeLSTM method), 572
from_chx()  (chainer.links.StatefulZoneoutLSTM method), 577
from_chx()  (chainer.links.StatelessGRU method), 553
from_chx()  (chainer.links.StatelessLSTM method), 585
from_chx()  (chainer.links.StatelessMGU method), 565
from_chx()  (chainer.links.Swish method), 657
from_chx()  (chainer.links.TheanoFunction method), 739
from_chx()  (chainer.links.VGG16Layers method), 685
from_chx()  (chainer.links.VGG19Layers method), 692
from_chx()  (chainer.Parameter method), 144
from_chx()  (chainer.Sequential method), 774
from_chx()  (chainer unfolds WalkerAlias method), 1061
from_chx()  (chainer.Variable method), 136
from_chx()  (in module chainer_backend), 1059
from_device_id()  (chainer_backend.gpu_device static method), 1050
from_fallback_device()  (chainer_backend.ChainerxDevice static method), 1052
frombuffer()  (in module chainerx), 1159
fromfile()  (in module chainerx), 1160
fromfunction()  (in module chainerx), 1160
fromiter()  (in module chainerx), 1160
fromstring()  (in module chainerx), 1160
full()  (in module chainerx), 1156
full_like()  (in module chainerx), 1157
function  (chainer.FunctionAdapter attribute), 297
Function  (class in chainer), 288
FunctionAdapter  (class in chainer), 292
FunctionHook  (class in chainer), 314
FunctionNode  (class in chainer), 297
functions  (chainer.links.GoogLeNet attribute), 703
functions  (chainer.links.model.vision.resnet.ResNetLayers attribute), 711
functions  (chainer.links.ResNet101Layers attribute), 726
functions  (chainer.links.ResNet152Layers attribute), 734
functions  (chainer.links.ResNet50Layers attribute), 719
functions  (chainer.links.VGG16Layers attribute), 688
functions  (chainer.links.VGG19Layers attribute), 695
FunctionTestCase  (class in chainer.testing), 1103
G
gamma  (chainer.links.BatchNormalization attribute), 597
G
gamma  (chainer.links.BatchRenormalization attribute), 603
G
gamma  (chainer.optimizers.Adam attribute), 861
G
Gamma (class in chainer.distributions), 808
gather() (chainermn.CommunicatorBase method), 1238
gather() (in module chainermn.functions), 1248
gather_obj() (chainermn.CommunicatorBase method), 1238
gaussian() (in module chainer.functions), 268
gaussian_kl_divergence() (in module chainer.functions), 236
gaussian_nll() (in module chainer.functions), 236
generate_array() (in module chainer.initializers), 914
generate_grad_grad_inputs() (chainer.testing.FunctionTestCase method), 1110
generate_grad_outputs() (chainer.testing.FunctionTestCase method), 1110
generate_grad_outputs() (chainer.testing.LinkTestCase method), 1129
generate_inputs() (chainer.testing.FunctionTestCase method), 1110
generate_inputs() (chainer.testing.LinkInitializersTestCase method), 1121
generate_inputs() (chainer.testing.LinkTestCase method), 1129
generate_params() (chainer.testing.LinkInitializersTestCase method), 1121
generate_params() (chainer.testing.LinkTestCase method), 1129
Geometric (class in chainer.distributions), 811
get_all_iterators() (chainer.training.extensions.Evaluator method), 938
get_all_optimizers() (chainer.training.Updater method), 926
get_all_optimizers() (chainer.training.updaters.MultiprocessParallelUpdater method), 932
get_all_optimizers() (chainer.training.updaters.ParallelUpdater method), 930
get_all_optimizers() (chainer.training.updaters.StandardUpdater method), 928
get_all_targets() (chainer.training.extensions.Evaluator method), 938
get_array_module() (in module chainer.backend), 1046
get_array_module() (in module chainer.backends.cuda), 1058
get_backend() (chainerx.Context method), 1191
get_backend() (in module chainerx), 1193
get_cifar10() (in module chainer.datasets), 1020
get_cifar100() (in module chainer.datasets), 1020
get_conv_outsize() (in module chainer.utils), 1060
get_cross_validation_datasets() (in module chainer.datasets), 1000
get_cross_validation_datasets_random() (in module chainer.datasets), 1000
get_current_reporter() (in module chainer), 1065
get_dataset_root() (in module chainer.dataset), 992
get_deconv_outsize() (in module chainer.utils), 1060
get_default_device() (in module chainerx), 1195
get_device() (chainerx.Context method), 1192
get_device() (chainerx.Background method), 1191
get_device() (in module chainer), 1045
get_device() (in module chainer.backends.cuda), 1054
get_device() (in module chainerx), 1194
get_device_count() (chainerx.Background method), 1192
get_device_from_array() (in module chainerx), 1045
get_device_from_array() (in module chainer.backends.cuda), 1055
get_device_from_id() (in module chainer.backends.cuda), 1054
get_dict() (chainer.optimizer.Hyperparameter method), 891
get_dtype() (in module chainer), 1079
get_example() (chainer.dataset.DatasetMixin method), 986
get_example() (chainer.datasets.ConcatenatedDataset method), 997
get_example() (chainer.datasets.ImageDataset method), 1004
get_example() (chainer.datasets.LabeledImageDataset method), 1009
get_example() (chainer.datasets.LabeledZippedImageDataset method), 1011
get_example() (chainer.datasets.MultiZippedImageDataset method), 1007
get_example() (chainer.datasets.PickleDataset method), 1015
get_example() (chainer.datasets.SubDataset method), 999
get_example() (chainer.datasets.TextDataset method), 1013
get_example() (chainer.datasets.TransformDataset method), 1002
get_example() (chainer.datasets.ZippedImageDataset method), 1006
get_extension() (chainer.training.Trainer method), 925
get_fashion_mnist() (in module chainer.datasets), 1019
get_fashion_mnist_labels() (in module chainer.datasets), 1019
get_grad() (chainer.datasets.ndarray method), 1148
get_initializers() (chainer.testing.LinkInitializersTestCase method), 1121
get_item() (in module chainer.functions), 179
get_iterator() (chainer.training.extensions.Evaluator method), 938
get_iterator() (chainer.training.updaters.ParallelUpdater method), 932
get_iterator() (chainer.training.updaters.ParallelUpdater method), 930
get_iterator() (chainer.training.updaters.StandardUpdater method), 928
get_kuzushiji_mnist() (in module chainer.datasets), 1018
get_kuzushiji_mnist_labels() (in module chainer.datasets), 1019
get_max_workspace_size() (in module chainer.backends.cuda), 1058
get_mnist() (in module chainer.datasets), 1017
get_optimizer() (chainer.training.Updater method), 926
get_optimizer() (chainer.training.updaters.MultiprocessParallelUpdater method), 932
get_optimizer() (chainer.training.updaters.ParallelUpdater method), 930
get_optimizer() (chainer.training.updaters.StandardUpdater method), 928
get_ptb_words() (in module chainer.datasets), 1021
get_ptb_words_vocabulary() (in module chainer.datasets), 1021
get_retained_inputs() (chainer.FunctionAdapter method), 295
get_retained_outputs() (chainer.FunctionAdapter method), 295
get_retained_outputs() (chainer.FunctionNode method), 301
get_retained_outputs() (chainer.FunctionNode method), 301
get_svhn() (in module chainer.datasets), 1021
get_target() (chainer.training.extensions.Evaluator method), 938
get_trainer_with_mock_updater() (in module chainer.testing), 1132
get_training_length() (chainer.training.triggers.EarlyStoppingTrigger method), 979
get_trigger() (in module chainer.training), 978
get_variable() (chainer.variable.VariableNode method), 150
get_variable_or_none() (chainer.variable.VariableNode method), 150
GlobalConfig (in module chainer), 1076
GlobalConfig (class in chainer.configuration), 1077
GlorotNormal (class in chainer.initializers), 908
GlorotUniform (class in chainer.initializers), 912
GoogLeNet (class in chainer.links), 696
GpuDevice (class in chainer.backend), 1050
GpuDevice (chainer.Parameter attribute), 149
GpuDevice (chainer.Variable attribute), 140
grad() (in module chainer), 304
grad() (in module chainer), 304
grad() (chainer.Variable attribute), 144
grad() (chainer.ndarray attribute), 1151
grad() (chainer.Parameter attribute), 149
grad() (chainer.Variable attribute), 141
grad() (chainer.variable.VariableNode attribute), 152
GradientClipping (class in chainer.optimizer_hooks), 897
GradientHardClipping (class in chainer.optimizer_hooks), 898
GradientMethod (class in chainer.optimizer_hooks), 900
GradientMethod (chainer.optimizer_hooks), 899
Gumbel (class in chainer.distributions), 814
gumbel_softmax() (in module chainer.functions), 268
Hinge (class in chainer.distributions), 237
Hinge (in module chainer.functions), 237
HDF5Deserializer (class in chainer.serializers), 1037
HDF5Deserializer (class in chainer.serializers), 1036
HeNormal (class in chainer.initializers), 909
HeUniform (class in chainer.initializers), 913
Highway (class in chainer.links), 421
GlobalConfig (in module chainer), 1076
GlobalConfig (class in chainer.configuration), 1077
GlorotNormal (class in chainer.initializers), 908
GlorotUniform (class in chainer.initializers), 912
GoogLeNet (class in chainer.links), 696
GpuDevice (class in chainer.backend), 1050
GpuDevice (chainer.Parameter attribute), 149
GpuDevice (chainer.Variable attribute), 140
grad() (in module chainer), 304
grad() (in module chainer), 304
grad() (chainer.Variable attribute), 144
grad() (chainer.ndarray attribute), 1151
grad() (chainer.Parameter attribute), 149
grad() (chainer.Variable attribute), 141
grad() (chainer.variable.VariableNode attribute), 152
GradientClipping (class in chainer.optimizer_hooks), 897
GradientHardClipping (class in chainer.optimizer_hooks), 898
GradientMethod (class in chainer.optimizer_hooks), 900
GradientMethod (chainer.optimizer_hooks), 899
Gumbel (class in chainer.distributions), 814
gumbel_softmax() (in module chainer.functions), 268
Hinge (class in chainer.distributions), 237
Hinge (in module chainer.functions), 237
HDF5Deserializer (class in chainer.serializers), 1037
HDF5Deserializer (class in chainer.serializers), 1036
HeNormal (class in chainer.initializers), 909
HeUniform (class in chainer.initializers), 913
Highway (class in chainer.links), 421
Hinge (class in chainer.distributions), 237
initialize() (chainer.training.extensions.StepShift method), 959
initialize() (chainer.training.extensions.uncchain_variables method), 976
initialize() (chainer.training.extensions.VariableStatisticPlot method), 957
initializer (chainer.Parameter attribute), 149
Initializer (class in chainer), 902
inject_backend_tests() (in module chainer.testing), 1135
inputs (chainer.Function attribute), 292
inputs (chainer.FunctionAdapter attribute), 297
insert() (chainer.ChainList method), 765
insert() (chainer.links.NStepLSTM method), 484
insert() (chainer.links.NStepBiRNNReLU method), 491
insert() (chainer.links.NStepBiRNNNTanh method), 498
insert() (chainer.links.NStepGRU method), 505
insert() (chainer.links.NStepLSTM method), 513
insert() (chainer.links.NStepRONNReLU method), 520
insert() (chainer.links.NStepRONNTanh method), 527
insert() (chainer.Sequential method), 774
Intel64Device (class in chainer.backend), 1051
inter_rank() (chainermn.CommunicatorBase property), 1239
inter_size() (chainermn.CommunicatorBase property), 1239
IntervalTrigger (class in chainer.training.triggers), 980
intra_rank() (chainermn.CommunicatorBase property), 1239
inv() (in module chainer.functions), 256
InverseShift (class in chainer.training.extensions), 949
invoke_before_training (chainer.training.extensions.PolynomialShift attribute), 956
is_backprop_required() (chainerx.ndarray method), 1148
is_backprop_required() (in module chainerx), 1197
is_contiguous (chainerx.ndarray attribute), 1151
is_debug() (in module chainer), 1081
is_grad_required() (chainerx.ndarray method), 1148
is_ideep_available() (in module chainer.backends.intel64), 1059
is_new_epoch (chainer.iterators.ParallelUpdater attribute), 1027
is_new_epoch (chainer.iterators.MultiprocessParallelUpdater attribute), 1024
is_new_epoch (chainer.iterators.SerialUpdater attribute), 1029
is_safe_to_update() (chainer.GradientMethod method), 892
is_safe_to_update() (chainer.Optimizer method), 886
is_safe_to_update() (chainer.optimizers.SMORMS3 method), 874
is_safe_to_update() (chainer.optimizers.RMSpropGraves method), 877
is_safe_to_update() (chainer.optimizers.Adam method), 859
is_safe_to_update() (chainer.optimizers.CorrectedMomentumSGD method), 863
is_safe_to_update() (chainer.optimizers.MomentumSGD method), 866
is_safe_to_update() (chainer.optimizers.MSAG method), 871
is_safe_to_update() (chainer.optimizers.NesterovAG method), 868
is_safe_to_update() (chainer.optimizers.RMSprop method), 874
is_safe_to_update() (chainer.optimizers.RMSpropGraves method), 877
is_safe_to_update() (chainer.optimizers.SGD method), 880
is_safe_to_update() (chainer.optimizers.SMORMS3 method), 883
isinf() (in module chainerx), 1169
isnan() (in module chainerx), 1170
item() (chainer.Parameter method), 144
item() (chainer.Variable method), 136
item() (chainerx.ndarray method), 1148
itemsize (chainerx.ndarray attribute), 1151
Iterator (class in chainer.dataset), 987
K (chainer.distributions.Chisquare attribute), 801
kl_divergence() (in module chainer), 847
layers() (chainer.links.BatchNormalization method), 601
layers() (chainer.links.Bias method), 320
layers() (chainer.links.Bilinear method), 327
layers() (chainer.links.BinaryHierarchicalSoftmax method), 626
layers() (chainer.links.BlackOut method), 632
layers() (chainer.links.caffe.CaffeFunction method), 746
layers() (chainer.links.ChildSumTreeLSTM method), 333
layers() (chainer.links.Classifier method), 678
layers() (chainer.links.Convolution1D method), 339
layers() (chainer.links.Convolution2D method), 346
layers() (chainer.links.Convolution3D method), 352
layers() (chainer.links.ConvolutionND method), 359
layers() (chainer.links.CRF1d method), 638
layers() (chainer.links.Deconvolution1D method), 365
layers() (chainer.links.Deconvolution2D method), 372
layers() (chainer.links.Deconvolution3D method), 378
layers() (chainer.links.DeconvolutionND method), 385
layers() (chainer.links.DecorrelatedBatchNormalization method), 607
layers() (chainer.links.DeformableConvolution2D method), 392
layers() (chainer.links.DepthwiseConvolution2D method), 398
layers() (chainer.links.DilatedConvolution2D method), 405
layers() (chainer.links.EmbedID method), 412
layers() (chainer.links.GoogLeNet method), 700
layers() (chainer.links.GroupNormalization method), 613
layers() (chainer.links.GRU method), 417
layers() (chainer.links.Highway method), 424
layers() (chainer.links.Inception method), 430
layers() (chainer.links.InceptionBN method), 437
layers() (chainer.links.LayerNormalization method), 620
layers() (chainer.links.Linear method), 444
layers() (chainer.links.LocalConvolution2D method), 450
layers() (chainer.links.LSTM method), 457
layers() (chainer.links.Maxout method), 664
layers() (chainer.links.MLPConvolution2D method), 464
layers() (chainer.links.model.vision.resnet.ResNetLayers method), 709
layers() (chainer.links.NaryTreeLSTM method), 471
layers() (chainer.links.NegativeSampling method), 670
layers() (chainer.links.NStepBiGRU method), 478
layers() (chainer.links.NStepBiLSTM method), 485
layers() (chainer.links.NStepBiRNNReLU method), 492

L

label (chainer.Function attribute), 292
label (chainer.FunctionAdapter attribute), 297
label (chainer.FunctionNode attribute), 303
label (chainer.Parameter attribute), 149
label (chainer.Variable attribute), 141
label (chainer.variable.VariableNode attribute), 152
LabeledImageDataset (class in chainer.datasets), 1008
LabeledZippedImageDataset (class in chainer.datasets), 1010
lam (chainer.distributions.Exponential attribute), 807
lam (chainer.distributions.Poisson attribute), 842
Laplace (class in chainer.distributions), 821
Lasso (class in chainer.optimizers), 846
layer_normalization() (in module chainer.functions), 274
LayerNormalization (class in chainer.links), 617
lazy_grad_sum (chainer.configuration.GlobalConfig attribute), 1077
lazy_grad_sum (chainer.FunctionAdapter attribute), 297
lazy_grad_sum (chainer.FunctionNode attribute), 303
LD_LIBRARY_PATH, 1208
leaky_relu() (in module chainer.functions), 156
LeCunNormal (class in chainer.initializers), 907
LeCunUniform (class in chainer.initializers), 911
less() (in module chainerx), 1172
less_equal() (in module chainerx), 1172
lgamma() (in module chainer.functions), 256
Linear (class in chainer.links), 440
linear() (in module chainer.functions), 213
linear() (in module chainerx), 1187
linear_interpolate() (in module chainer.functions), 256
LinearShift (class in chainer.training.extensions), 951
Link (class in chainer), 749
LinkHook (class in chainer), 782
LinkInitializersTestCase (class in chainer.testing), 1114
links() (chainer.Chain method), 759
links() (chainer.ChainList method), 766
links() (chainer.Linked method), 753
links() (chainer.links.BatchNormalization method), 594
Index
local_link_hooks, 426
local_link_hooks, 433
local_link_hooks, 453
local_link_hooks, 460
local_link_hooks, 467
local_link_hooks, 480
local_link_hooks, 487
local_link_hooks, 494
local_link_hooks, 501
local_link_hooks, 508
local_link_hooks, 516
local_link_hooks, 523
local_link_hooks, 530
local_link_hooks, 536
local_link_hooks, 542

(chainer.links.Highway attribute), 647
(chainer.links.Inception attribute), 549
(chainer.links.Inception attribute), 562
(chainer.links.InceptionBN attribute), 575
(chainer.links.LayerNormalization attribute), 581
(chainer.links.Linear attribute), 556
(chainer.links.LocalConvolution2D attribute), 588
(chainer.links.LocalConvolution2D attribute), 568
(chainer.links.MLPConvolution2D attribute), 660
(chainer.links.VGG19Layers attribute), 742
(chainer.links.VGG16Layers attribute), 688
(chainer.links.VGG19Layers attribute), 695
(chainer.Sequential attribute), 777
(chainer.functions, attribute), 1177
LocalConfig (in module chainer.configuration), 1078
LocalConvolution2D (in class chainer.links), 447
log (chainer.training.extensions.LogReport attribute), 965
log() (in module chainer.functions), 257
log() (in module chainer.functions), 257
log10() (in module chainer.functions), 257
log1p() (in module chainer.functions), 257
log2() (in module chainer.functions), 257
log_cdf() (chainer.Distribution method), 849
log_cdf() (chainer.distributions.Bernoulli method), 786
log_cdf() (chainer.distributions.Beta method), 792
log_cdf() (chainer.distributions.Categorical method), 792
log_cdf() (chainer.distributions.Convex method), 799
log_cdf() (chainer.distributions.Dirichlet method), 802
log_cdf() (chainer.distributions.Distribution method), 802
log_cdf() (chainer.distributions.Distribution method), 802
log_cdf() (chainer.distributions.Exponential method), 805
log_cdf() (chainer.distributions.Gamma method), 808
log_cdf() (chainer.distributions.Geometric method), 811
log_cdf() (chainer.distributions.Gumbel method), 811
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>logsumexp()</td>
<td>(chainer.distributions.Poisson method)</td>
<td>841</td>
</tr>
<tr>
<td>logsumexp()</td>
<td>(chainer.distributions.Uniform method)</td>
<td>844</td>
</tr>
<tr>
<td>logical_and() (in module chainerx)</td>
<td></td>
<td>1170</td>
</tr>
<tr>
<td>logical_not() (in module chainerx)</td>
<td></td>
<td>1171</td>
</tr>
<tr>
<td>logical_or() (in module chainerx)</td>
<td></td>
<td>1170</td>
</tr>
<tr>
<td>logit (chainer.distributions.Bernoulli attribute)</td>
<td></td>
<td>788</td>
</tr>
<tr>
<td>LogNormal (class in chainer.distributions)</td>
<td></td>
<td>824</td>
</tr>
<tr>
<td>LogReport</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>LogReport (class in chainer.trainings.extensions)</td>
<td></td>
<td>964</td>
</tr>
<tr>
<td>logsumexp() (in module chainer.functions)</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>logsumexp() (in module chainerx)</td>
<td></td>
<td>1177</td>
</tr>
<tr>
<td>longMessage (chainer.testing.FunctionTestCase attribute)</td>
<td></td>
<td>1111</td>
</tr>
<tr>
<td>longMessage (chainer.testing.LinkInitializersTestCase attribute)</td>
<td></td>
<td>1122</td>
</tr>
<tr>
<td>longMessage (chainer.testing.LinkTestCase attribute)</td>
<td></td>
<td>1130</td>
</tr>
<tr>
<td>loss_scaling() (chainer.GradientMethod method)</td>
<td></td>
<td>892</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.Adam method)</td>
<td>(chainer.optimizers.Adam method)</td>
<td>859</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.MomentumSGD method)</td>
<td>(chainer.optimizers.MomentumSGD method)</td>
<td>866</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.MSVAG method)</td>
<td>(chainer.optimizers.MSVAG method)</td>
<td>871</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.RMSprop method)</td>
<td>(chainer.optimizers.RMSprop method)</td>
<td>874</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.RMSpropGraves method)</td>
<td>(chainer.optimizers.RMSpropGraves method)</td>
<td>877</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.SGD method)</td>
<td>(chainer.optimizers.SGD method)</td>
<td>880</td>
</tr>
<tr>
<td>loss_scaling() (chainer.optimizers.SMORMS3 method)</td>
<td>(chainer.optimizers.SMORMS3 method)</td>
<td>883</td>
</tr>
<tr>
<td>low (chainer.distributions.Uniform attribute)</td>
<td>(chainer.distributions.Uniform attribute)</td>
<td>845</td>
</tr>
<tr>
<td>lr (chainer.optimizers.AdaGrad attribute)</td>
<td>(chainer.optimizers.AdaGrad attribute)</td>
<td>858</td>
</tr>
<tr>
<td>lr (chainer.optimizers.Adam attribute)</td>
<td>(chainer.optimizers.Adam attribute)</td>
<td>861</td>
</tr>
<tr>
<td>lr (chainer.optimizers.CorrectedMomentumSGD attribute)</td>
<td>(chainer.optimizers.CorrectedMomentumSGD attribute)</td>
<td>865</td>
</tr>
<tr>
<td>lr (chainer.optimizers.MomentumSGD attribute)</td>
<td>(chainer.optimizers.MomentumSGD attribute)</td>
<td>867</td>
</tr>
<tr>
<td>lr (chainer.optimizers.MSVAG attribute)</td>
<td>(chainer.optimizers.MSVAG attribute)</td>
<td>873</td>
</tr>
<tr>
<td>lr (chainer.optimizers.NesterovAG attribute)</td>
<td>(chainer.optimizers.NesterovAG attribute)</td>
<td>870</td>
</tr>
<tr>
<td>lr (chainer.optimizers.RMSprop attribute)</td>
<td>(chainer.optimizers.RMSprop attribute)</td>
<td>876</td>
</tr>
<tr>
<td>lr (chainer.optimizers.RMSpropGraves attribute)</td>
<td>(chainer.optimizers.RMSpropGraves attribute)</td>
<td>879</td>
</tr>
<tr>
<td>lr (chainer.optimizers.SGD attribute)</td>
<td>(chainer.optimizers.SGD attribute)</td>
<td>882</td>
</tr>
<tr>
<td>lr (chainer.optimizers.SMORMS3 attribute)</td>
<td>(chainer.optimizers.SMORMS3 attribute)</td>
<td>885</td>
</tr>
<tr>
<td>LSTM (class in chainerlinks)</td>
<td></td>
<td>453</td>
</tr>
<tr>
<td>lstm() (in module chainer.functions)</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>make_backprop_id() (chainerx.Context method)</td>
<td></td>
<td>1191</td>
</tr>
<tr>
<td>make_extension() (in module chainer.trainings)</td>
<td></td>
<td>936</td>
</tr>
<tr>
<td>make_statistics() (chainer.DictSummary method)</td>
<td></td>
<td>1068</td>
</tr>
<tr>
<td>make_statistics() (chainer.Summary method)</td>
<td></td>
<td>1067</td>
</tr>
<tr>
<td>ManualScheduleTrigger (class in chainer.trainings.triggers)</td>
<td></td>
<td>981</td>
</tr>
<tr>
<td>matmul() (in module chainer.functions)</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>max() (chainerx.ndarray method)</td>
<td></td>
<td>1149</td>
</tr>
<tr>
<td>max() (in module chainerx.functions)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>max_pool() (in module chainerx)</td>
<td></td>
<td>1189</td>
</tr>
<tr>
<td>max_pooling_1d() (in module chainer.functions)</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>max_pooling_2d() (in module chainer.functions)</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>max_pooling_3d() (in module chainer.functions)</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>max_pooling_nd() (in module chainer.functions)</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>maxDiff (chainer.testing.FunctionTestCase attribute)</td>
<td></td>
<td>1111</td>
</tr>
<tr>
<td>maxDiff (chainer.testing.LinkInitializersTestCase attribute)</td>
<td></td>
<td>1122</td>
</tr>
<tr>
<td>maxDiff (chainer.testing.LinkTestCase attribute)</td>
<td></td>
<td>1130</td>
</tr>
<tr>
<td>maximum() (in module chainer.functions)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>maximum() (in module chainerx)</td>
<td></td>
<td>1176</td>
</tr>
<tr>
<td>Maxout (class in chainerlinks)</td>
<td></td>
<td>661</td>
</tr>
<tr>
<td>maxout() (in module chainer.functions)</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>MaxValueTrigger (class in chainer.trainings.triggers)</td>
<td></td>
<td>982</td>
</tr>
<tr>
<td>mean (chainer.distribution attribute)</td>
<td>(chainer.distribution attribute)</td>
<td>851</td>
</tr>
<tr>
<td>mean (chainer.distributions.Bernoulli attribute)</td>
<td>(chainer.distributions.Bernoulli attribute)</td>
<td>788</td>
</tr>
<tr>
<td>mean (chainer.distributions.Beta attribute)</td>
<td>(chainer.distributions.Beta attribute)</td>
<td>791</td>
</tr>
<tr>
<td>mean (chainer.distributions.Categorical attribute)</td>
<td>(chainer.distributions.Categorical attribute)</td>
<td>794</td>
</tr>
<tr>
<td>mean (chainer.distributions.Cauchy attribute)</td>
<td>(chainer.distributions.Cauchy attribute)</td>
<td>798</td>
</tr>
<tr>
<td>mean (chainer.distributions.Chisquare attribute)</td>
<td>(chainer.distributions.Chisquare attribute)</td>
<td>801</td>
</tr>
<tr>
<td>mean (chainer.distributions.Dirichlet attribute)</td>
<td>(chainer.distributions.Dirichlet attribute)</td>
<td>804</td>
</tr>
<tr>
<td>mean (chainer.distributions.Exponential attribute)</td>
<td>(chainer.distributions.Exponential attribute)</td>
<td>807</td>
</tr>
<tr>
<td>mean (chainer.distributions.Gamma attribute)</td>
<td>(chainer.distributions.Gamma attribute)</td>
<td>810</td>
</tr>
<tr>
<td>mean (chainer.distributions.Geometric attribute)</td>
<td>(chainer.distributions.Geometric attribute)</td>
<td>813</td>
</tr>
<tr>
<td>mean (chainer.distributions.Gumbel attribute)</td>
<td>(chainer.distributions.Gumbel attribute)</td>
<td>816</td>
</tr>
<tr>
<td>mean (chainer.distributions.Independent attribute)</td>
<td>(chainer.distributions.Independent attribute)</td>
<td>820</td>
</tr>
<tr>
<td>mean (chainer.distributions.Laplace attribute)</td>
<td>(chainer.distributions.Laplace attribute)</td>
<td>823</td>
</tr>
<tr>
<td>mean (chainer.distributions.LogNormal attribute)</td>
<td>(chainer.distributions.LogNormal attribute)</td>
<td>826</td>
</tr>
</tbody>
</table>
name (chainer.function_hooks.CupyMemoryProfileHook attribute), 309
name (chainer.function_hooks.PrintHook attribute), 311
name (chainer.function_hooks.TimerHook attribute), 313
name (chainer.FunctionHook attribute), 316
name (chainer.link_hooks.SpectralNormalization attribute), 780
name (chainer.link_hooks.TimerHook attribute), 782
name (chainer.LinkHook attribute), 785
name (chainer.optimizer_hooks.GradientClipping attribute), 898
name (chainer.optimizer_hooks.GradientHardClipping attribute), 899
name (chainer.optimizer_hooks.GradientLARS attribute), 901
name (chainer.optimizer_hooks.GradientNoise attribute), 900
name (chainer.optimizer_hooks.Lasso attribute), 897
name (chainer.optimizer_hooks.WeightDecay attribute), 896
name (chainer.Parameter attribute), 149
name (chainer.training.Extension attribute), 936
name (chainer.training.extensions.DumpGraph attribute), 972
name (chainer.training.extensions.Evaluator attribute), 940
name (chainer.training.extensions.ExponentialShift attribute), 949
name (chainer.training.extensions.FailOnNonNumber attribute), 943
name (chainer.training.extensions.InverseShift attribute), 951
name (chainer.training.extensions.LinearShift attribute), 952
name (chainer.training.extensions.LogReport attribute), 965
name (chainer.training.extensions.MicroAverage attribute), 942
name (chainer.training.extensions.MultistepShift attribute), 954
name (chainer.training.extensions.ParameterStatistics attribute), 946
name (chainer.training.extensions.PlotReport attribute), 968
name (chainer.training.extensions.PolynomialShift attribute), 956
name (chainer.training.extensions.PrintReport attribute), 962
name (chainer.training.extensions.ProgressBar attribute), 963
name (chainer.training.extensions.StepShift attribute), 960
name (chainer.training.extensions.unchain_variables attribute), 977
name (chainer.training.extensions.VariableStatisticsPlot attribute), 970
name (chainer.training.extensions.WarmupShift attribute), 958
name (chainer.Variable attribute), 141
name (chainerx.Backend attribute), 1192
name (chainerx.Device attribute), 1194
namedlinks (chainer.Chain method), 760
namedlinks (chainer.ChainList method), 766
namedlinks (chainer.Link method), 753
namedlinks (chainer.links.BatchNormalization method), 594
namedlinks (chainer.links.BatchRenormalization method), 601
namedlinks (chainer.links.Bias method), 321
namedlinks (chainer.links.Bilinear method), 327
namedlinks (chainer.links.BinaryHierarchicalSoftmax method), 626
namedlinks (chainer.links.BlackOut method), 632
namedlinks (chainer.links.caffe.CaffeFunction method), 746
namedlinks (chainer.links.ChildSumTreeLSTM method), 333
namedlinks (chainer.links.Classifier method), 678
namedlinks (chainer.links.Convolution1D method), 339
namedlinks (chainer.links.Convolution2D method), 347
namedlinks (chainer.links.Convolution3D method), 352
namedlinks (chainer.links.ConvolutionND method), 360
namedlinks (chainer.links.CRF1d method), 638
namedlinks (chainer.links.Convolution1D method), 365
namedlinks (chainer.links.Convolution2D method), 373
namedlinks (chainer.links.Convolution3D method), 378
namedlinks (chainer.links.DecorrelatedBatchNormalization method), 385
namedlinks (chainer.links.DeformableConvolution2D method), 392
namedlinks (chainer.links.DepthwiseConvolution2D method), 398
namedlinks (chainer.links.DilatedConvolution2D method), 405
namedlinks (chainer.links.EmbedID method), 412
namedlinks (chainer.links.GoogLeNet method), 701
namedlinks (chainer.links.GroupNormalization method), 614
(namedlinks() (chainer.links.GRU method), 418)
(namedlinks() (chainer.links.Highway method), 424)
(namedlinks() (chainer.links.Inception method), 430)
(namedlinks() (chainer.links.InceptionBN method), 437)
(namedlinks() (chainer.links.LayerNormalization method), 620)
(namedlinks() (chainer.links.Linear method), 444)
(namedlinks() (chainer.links.NaryTreeLSTM method), 471)
(namedlinks() (chainer.links.NegativeSampling method), 671)
(namedlinks() (chainer.links.NStepBiGRU method), 478)
(namedlinks() (chainer.links.NStepBiLSTM method), 485)
(namedlinks() (chainer.links.NStepBiRNNReLU method), 492)
(namedlinks() (chainer.links.NStepBiRNNNTanh method), 499)
(namedlinks() (chainer.links.NStepGRU method), 506)
(namedlinks() (chainer.links.NStepLSTM method), 513)
(namedlinks() (chainer.links.NStepRNReLU method), 520)
(namedlinks() (chainer.links.NStepRNNNTanh method), 527)
(namedlinks() (chainer.links.Parameter method), 533)
(namedlinks() (chainer.links.PReLU method), 651)
(namedlinks() (chainer.links.ResNet101Layers method), 724)
(namedlinks() (chainer.links.ResNet152Layers method), 731)
(namedlinks() (chainer.links.ResNet50Layers method), 716)
(namedlinks() (chainer.links.Scale method), 540)
(namedlinks() (chainer.links.SimplifiedDropconnect method), 645)
(namedlinks() (chainer.links.StatefulGRU method), 554)
(namedlinks() (chainer.links.StatelessGRU method), 554)
(namedlinks() (chainer.links.StatelessLSTM method), 585)
(namedlinks() (chainer.links.StatelessMGU method), 565)
(namedlinks() (chainer.links.Swish method), 658)
(namedlinks() (chainer.links.TheanoFunction method), 739)
(namedlinks() (chainer.links.VGG16Layers method), 685)
(namedlinks() (chainer.links.VGG19Layers method), 693)
(namedlinks() (chainer.Sequential method), 774)
(namedparams() (chainer.Chain method), 760)
(namedparams() (chainer.ChainList method), 766)
(namedparams() (chainer.Link method), 753)
(namedparams() (chainer.links.BatchNormalization method), 595)
(namedparams() (chainer.links.BatchRenormalization method), 601)
(namedparams() (chainer.links.Bias method), 321)
(namedparams() (chainer.links.Bilinear method), 327)
(namedparams() (chainer.links.BinaryHierarchicalSoftmax method), 626)
(namedparams() (chainer.links.BlackOut method), 632)
(namedparams() (chainer.links.caffe.CaffeFunction method), 746)
(namedparams() (chainer.links.ChildSumTreeLSTM method), 334)
(namedparams() (chainer.links.Classifier method), 678)
(namedparams() (chainer.links.Conv2dNdk method), 399)
(namedparams() (chainer.links.Conv2dNdk method), 639)
(namedparams() (chainer.links.Convolution2D method), 347)
(namedparams() (chainer.links.Convolution3D method), 352)
(namedparams() (chainer.links.ConvolutionND method), 360)
(namedparams() (chainer.links.CRF1d method), 638)
(namedparams() (chainer.links.Deconvolution1d method), 365)
(namedparams() (chainer.links.Deconvolution2D method), 373)
(namedparams() (chainer.links.Deconvolution3D method), 378)
(namedparams() (chainer.links.DecorrelatedBatchNormalization method), 385)
(namedparams() (chainer.links.DecorrelatedBatchNormalization method), 607)
(namedparams() (chainer.links.DepthwiseConvolution2D method), 392)
(namedparams() (chainer.links.DepthwiseConvolution2D method), 398)
namedparams() (chainer.links.DilatedConvolution2D method), 406
namedparams() (chainer.links.EmbedID method), 412
namedparams() (chainer.links.GoogLeNet method), 701
namedparams() (chainer.links.GroupNormalization method), 614
namedparams() (chainer.links.GRU method), 418
namedparams() (chainer.links.Highway method), 424
namedparams() (chainer.links.Inception method), 431
namedparams() (chainer.links.InceptionBN method), 437
namedparams() (chainer.links.LayerNormalization method), 620
namedparams() (chainer.links.Linear method), 444
namedparams() (chainer.links.LocalConvolution2D method), 450
namedparams() (chainer.links.LSTM method), 458
namedparams() (chainer.links.Maxout method), 465
namedparams() (chainer.links.MLPConvolution2D method), 465
namedparams() (chainer.links.model.vision.resnet.ResNetLayers method), 693
namedparams() (chainer.links.NaryTreeLSTM method), 471
namedparams() (chainer.links.NegativeSampling method), 671
namedparams() (chainer.links.NStepBiGRU method), 478
namedparams() (chainer.links.NStepBiLSTM method), 485
namedparams() (chainer.links.NStepBiRNNReLU method), 492
namedparams() (chainer.links.NStepBiRNNTanh method), 499
namedparams() (chainer.links.NStepGRU method), 506
namedparams() (chainer.links.NStepLSTM method), 513
namedparams() (chainer.links.NStepRNNReLU method), 520
namedparams() (chainer.links.NStepRNNTanh method), 527
namedparams() (chainer.links.Parameter method), 534
namedparams() (chainer.links.PReLU method), 651
namedparams() (chainer.links.ResNet101Layers method), 724
namedparams() (chainer.links.ResNet152Layers method), 731
namedparams() (chainer.links.ResNet50Layers method), 716
namedparams() (chainer.links.Scale method), 540
namedparams() (chainer.links.SimplifiedDropconnect method), 645
namedparams() (chainer.links.StatefulGRU method), 547
namedparams() (chainer.links.StatefulMGU method), 560
namedparams() (chainer.links.StatefulPeepholeLSTM method), 572
namedparams() (chainer.links.StatefulZoneoutLSTM method), 578
namedparams() (chainer.links.StatelessGRU method), 554
namedparams() (chainer.links.StatelessLSTM method), 585
namedparams() (chainer.links.StatelessMGU method), 565
namedparams() (chainer.links.Swish method), 658
namedparams() (chainer.links.TheanoFunction method), 739
namedparams() (chainer.links.VGG16Layers method), 686
namedparams() (chainer.links.VGG19Layers method), 693
namedparams() (chainer.Sequential method), 774
NaN (class in chainer.initializers), 906
NaryTreeLSTM (class in chainer.links), 467
ndarray (chainerx.ndarray attribute), 1151
ndarray (class in chainerx), 1147
ndim (chainer.Parameter attribute), 149
ndim (chainer.Variable attribute), 141
ndim (chainer.xp.ndarray attribute), 1152
ndtr() (in module chainer.functions), 260
ndtri() (in module chainer.functions), 260
negative() (in module chainerx), 1174
negative_sampling() (in module chainer.functions), 240
NegativeSampling (class in chainer.links), 667
NesterovAG (class in chainer.optimizers), 868
new_epoch() (chainer.GradientMethod method), 893
new_epoch() (chainer.Optimizer method), 886
new_epoch() (chainer.optimizers.AdaDelta method), 853
new_epoch() (chainer.optimizers.AdaGrad method), 856
new_epoch() (chainer.optimizers.Adam method), 859
new_epoch() (chainer.optimizers.CorrectedMomentumSGD method), 863
new_epoch() (chainer.optimizers.MomentumSGD method), 866
new_epoch() (chainer.optimizers.MSVAG method), 872
new_epoch() (chainer.optimizers.NesterovAG method), 869
new_epoch() (chainer.optimizers.RMSprop method), 875
params() (in module chainer.functions), 183
ParallelUpdater (class in chainer.training.updaters), 929
param_names (chainer.testing.LinkInitializersTestCase), 1122
param_names (chainer.testing.LinkTestCase), 1130
Parameter (class in chainer), 142
Parameter (class in chainer.links), 531
parameterize() (in module chainer.testing), 1134
ParameterStatistics (class in chainer.training.extensions), 944
params (chainer.Distribution), 851
params (chainer.distributions.Bernoulli), 788
params (chainer.distributions.Beta), 791
params (chainer.distributions.Categorical), 794
params (chainer.distributions.Cauchy), 798
params (chainer.distributions.Chisquare), 801
params (chainer.distributions.Dirichlet), 804
params (chainer.distributions.Exponential), 807
params (chainer.distributions.Gamma), 810
params (chainer.distributions.Geometric), 813
params (chainer.distributions.Gumbel), 816
params (chainer.distributions.Independent), 820
params (chainer.distributions.Laplace), 823
params (chainer.distributions.LogNormal), 826
params (chainer.distributions.MultivariateNormal), 829
params (chainer.distributions.Normal), 833
params (chainer.distributions.OneHotCategorical), 836
params (chainer.distributions.Pareto), 839
params (chainer.distributions.Poisson), 842
params (chainer.distributions.Uniform), 846
params () (chainer.Chain method), 760
params () (chainer.ChainList method), 766
params () (chainer.Link method), 753
params () (chainer.links.BatchNormalization method), 595
params () (chainer.links.BatchRenormalization method), 601
params () (chainer.links.Bias method), 321
params () (chainer.links.Bilinear method), 327
params () (chainer.links.BinaryHierarchicalSoftmax method), 627
params () (chainer.links.BlackOut method), 633
params () (chainer.links.caffe.CaffeFunction method), 746
params () (chainer.links.ChildSumTreeLSTM method), 334
params () (chainer.links.Classifier method), 678
params () (chainer.links.Convolution1D method), 339
params () (chainer.links.Convolution2D method), 347
params () (chainer.links.Convolution3D method), 352
params () (chainer.links.ConvolutionND method), 360
params () (chainer.links.CRF1d method), 639
params () (chainer.links.Deconvolution1D method), 365
params () (chainer.links.Deconvolution2D method), 373
params () (chainer.links.Deconvolution3D method), 378
params () (chainer.links.DeconvolutionND method), 386
params () (chainer.links.DecorrelatedBatchNormalization method), 608
params () (chainer.links.DeformableConvolution2D method), 392
params () (chainer.links.DepthwiseConvolution2D method), 398
params () (chainer.links.DilatedConvolution2D method), 406
params () (chainer.links.EmbedID method), 412
params () (chainer.links.GoogLeNet method), 701
params () (chainer.links.GroupNormalization method), 614
params () (chainer.links.GRU method), 418
params () (chainer.links.Highway method), 424
params () (chainer.links.Inception method), 431
params () (chainer.links.InceptionBN method), 437
params () (chainer.links.LayerNormalization method), 620
params () (chainer.links.Linear method), 444
params () (chainer.links.LocalConvolution2D method), 450
params () (chainer.links.LSTM method), 458
params () (chainer.links.Maxout method), 665
params () (chainer.links.MLPConvolution2D method), 465
params () (chainer.links.model.vision.resnet.ResNetLayers method), 709
params () (chainer.links.NaryTreeLSTM method), 471
params () (chainer.links.NegativeSampling method), 671
params () (chainer.links.NStepBiGRU method), 478
params () (chainer.links.NStepBiLSTM method), 485
params () (chainer.links.NStepBiRNNReLU method), 492
params () (chainer.links.NStepBiRNNTanh method), 499
params () (chainer.links.NStepGRU method), 506
params () (chainer.links.NStepLSTM method), 513
params () (chainer.links.NStepRNNReLU method), 521
params () (chainer.links.NStepRNNTanh method), 528
Index 1381

params() (chainer.links.Parameter method), 534
params() (chainer.links.PReLU method), 652
params() (chainer.links.ResNet101Layers method), 724
params() (chainer.links.ResNet152Layers method), 731
params() (chainer.links.ResNet50Layers method), 716
params() (chainer.links.Scale method), 540
params() (chainer.links.SimplifiedDropconnect method), 645
params() (chainer.links.StatefulGRU method), 547
params() (chainer.links.StatefulMGU method), 560
params() (chainer.links.StatefulPeepholeLSTM method), 572
params() (chainer.links.StatefulZoneoutLSTM method), 578
params() (chainer.links.StatelessGRU method), 554
params() (chainer.links.StatelessLSTM method), 585
params() (chainer.links.StatelessMGU method), 566
params() (chainer.links.Swish method), 658
params() (chainer.links.TheanoFunction method), 739
params() (chainer.links.VGG16Layers method), 686
params() (chainer.links.VGG19Layers method), 693
params() (chainer.Sequential method), 775
parent (chainer.optimizer.Hyperparameter attribute), 891
Pareto (class in chainer.distributions), 837
PATH, 1208
permutate() (in module chainer.functions), 183
perplexity() (chainer.Distribution method), 850
perplexity() (chainer.distributions.Bernoulli method), 790
perplexity() (chainer.distributions.Categorical method), 793
perplexity() (chainer.distributions.Cauchy method), 796
perplexity() (chainer.distributions.Chisquare method), 799
perplexity() (chainer.distributions.Dirichlet method), 802
perplexity() (chainer.distributions.Exponential method), 806
perplexity() (chainer.distributions.Gamma method), 809
perplexity() (chainer.distributions.Geometric method), 812
perplexity() (chainer.distributions.Gumbel method), 815
perplexity() (chainer.distributions.Independent method), 818
perplexity() (chainer.distributions.Laplace method), 822
perplexity() (chainer.distributions.LogNormal method), 825
perplexity() (chainer.distributions.MultivariateNormal method), 828
perplexity() (chainer.distributions.Normal method), 831
perplexity() (chainer.distributions.OneHotCategorical method), 834
perplexity() (chainer.distributions.Pareto method), 838
perplexity() (chainer.distributions.Poisson method), 841
perplexity() (chainer.distributions.Uniform method), 844
PickleDataset (class in chainer.datasets), 1014
PickleDatasetWriter (class in chainer.datasets), 1016
PlotReport, 62
PlotReport (class in chainer.training.extensions), 966
Poisson (class in chainer.distributions), 840
polygamma() (in module chainer.functions), 261
PolynomialShift (class in chainer.training.extensions), 954
pop() (chainer.ChainList method), 766
pop() (chainer.links.MLPConvolution2D method), 465
pop() (chainer.links.NStepBiGRU method), 478
pop() (chainer.links.NStepBiLSTM method), 485
pop() (chainer.links.NStepBiRNNelu method), 492
pop() (chainer.links.NStepBiRNNtanh method), 499
pop() (chainer.links.NStepGRU method), 506
pop() (chainer.links.NStepLSTM method), 514
pop() (chainer.links.NStepRNNelu method), 521
pop() (chainer.links.NStepRNNtanh method), 528
pop() (chainer.Sequential method), 775
precision() (in module chainer.functions), 227
predict() (chainer.links.GoogLeNet method), 701
predict() (chainer.links.model.vision.resnet.ResNetLayers method), 709
predict() (chainer.links.ResNet101Layers method), 724
predict() (chainer.links.ResNet152Layers method), 731
predict() (chainer.links.ResNet50Layers method), 717
predict() (chainer.links.VGG16Layers method), 686
predict() (chainer.links.VGG19Layers method), 693
PreLU (class in chainer.links), 648
prelu() (in module chainer.functions), 160
prepare() (in module chainer.links.model.vision.googlenet), 704
prepare() (in module chainer.links.model.vision.resnet), 734
prepare() (in module chainer.links.model.vision.vgg), 696
method), 835
prob() (chainer.distributions.Pareto method), 838
prob() (chainer.distributions.Poisson method), 841
prob() (chainer.distributions.Uniform method), 844
ProcessQueueWriter (class in chainer.training.extensions.snapshot_writers), 921
ProcessWriter (class in chainer.training.extensions.snapshot_writers), 918
prod() (in module chainer.functions), 261
product() (in module chainer.testing), 1135
product_dict() (in module chainer.testing), 1135
ProgressBar (class in chainer.training.extensions), 962
pseudo_connect() (in module chainermn.functions), 1246
Q
QueueWriter (class in chainer.training.extensions.snapshot_writers), 919
R
r2_score() (in module chainer.functions), 227
rank (chainer.Function attribute), 292
rank (chainer.FunctionAdapter attribute), 297
rank (chainer.FunctionNode attribute), 303
rank (chainer.Parameter attribute), 149
rank (chainer.Variable attribute), 141
rank (chainer.VariableNode attribute), 152
rank() (chainermnCommunicatorBase property), 1239
ravel() (chainerx.ndarray method), 1149
ravel() (in module chainerx), 1165
raw() (in module chainerx), 1057
reallocate_cleared_grads() (chainer.GradientMethod method), 893
reallocate_cleared_grads() (chainer.optimizers.Adadelta method), 853
reallocate_cleared_grads() (chainer.optimizers.AdamGrad method), 856
reallocate_cleared_grads() (chainer.optimizers.Adam method), 859
reallocate_cleared_grads() (chainer.optimizers.CorrectedMomentumSGD method), 863
reallocate_cleared_grads() (chainer.optimizers.MomentumSGD method), 866
reallocate_cleared_grads() (chainer.optimizers.MSVA method), 872
reallocate_cleared_grads() (chainer.optimizers.NesterovAG method), 869
reallocate_cleared_grads() (chainer.optimizers.RMSprop method), 875
reallocate_cleared_grads() (chainer.optimizers.RMSpropGraves method), 878
reallocate_cleared_grads() (chainer.optimizers.SGD method), 881
reallocate_cleared_grads() (chainer.optimizers.SMORMS3 method), 883
recv() (chainermnCommunicatorBase method), 1239
recv() (in module chainermn.functions), 1245
recv_obj() (chainermnCommunicatorBase method), 1239
reduce() (in module chainer.backends.cuda), 1057
register_kl() (in module chainer), 847
register_persistent() (chainer.Chain method), 760
register_persistent() (chainer.ChainList method), 766
register_persistent() (chainer.Link method), 753
register_persistent() (chainer.links.BatchNorm method), 595
register_persistent() (chainer.links.BatchNormalization method), 595
register_persistent() (chainer.links.BatchRenormalization method), 601
register_persistent() (chainer.links.Bilinear method), 327
register_persistent() (chainerlinks.BinaryHierarchicalSoftmax method), 627
register_persistent() (chainerlinks.BlackOut method), 633
register_persistent() (chainerlinks.CaffeCaffeFunction method), 746
register_persistent() (chainerlinks.ChildSumTreeLSTM method), 334
register_persistent() (chainerlinks.Classifier method), 678
register_persistent() (chainerlinks.Convolution1D method), 340
register_persistent() (chainerlinks.Convolution2D method), 347
register_persistent() (chainerlinks.Convolution3D method), 353
register_persistent() (chainerlinks.ConvolutionND method), 360
<table>
<thead>
<tr>
<th>Function</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.CRF1d method)</td>
<td>639</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Deconvolution1D method),</td>
<td>365</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Deconvolution2D method),</td>
<td>373</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Deconvolution3D method),</td>
<td>378</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.DeconvolutionND method),</td>
<td>386</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.DecorrelatedBatchNormalization method),</td>
<td>608</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.DeformableConvolution2D method),</td>
<td>392</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.DepthwiseConvolution2D method),</td>
<td>399</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.DilatedConvolution2D method),</td>
<td>406</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.EmbedID method),</td>
<td>412</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.GoogLeNet method),</td>
<td>701</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.GroupNormalization method),</td>
<td>614</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.GRU method),</td>
<td>418</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Highway method),</td>
<td>424</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Inception method),</td>
<td>431</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.InceptionBN method),</td>
<td>437</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.LayerNormalization method),</td>
<td>620</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Linear method),</td>
<td>444</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.LocalConvolution2D method),</td>
<td>451</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.LSTM method),</td>
<td>458</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Maxout method),</td>
<td>665</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.MLPConvolution2D method),</td>
<td>465</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.model.vision.resnet.ResNetLayers method),</td>
<td>709</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NaryTreeLSTM method),</td>
<td>471</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NegativeSampling method),</td>
<td>671</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepBiGRU method),</td>
<td>478</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepBiLSTM method),</td>
<td>485</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepBiRNNReLU method),</td>
<td>492</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepBiRNNTanh method),</td>
<td>499</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepLSTM method),</td>
<td>514</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepRNNReLU method),</td>
<td>521</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.NStepRNNTanh method),</td>
<td>528</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Parameter method),</td>
<td>534</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.PReLU method),</td>
<td>652</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.ResNet101Layers method),</td>
<td>724</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.ResNet152Layers method),</td>
<td>732</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.ResNet50Layers method),</td>
<td>717</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.Scale method),</td>
<td>540</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.SimplifiedDropconnect method),</td>
<td>645</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.StatefulGRU method),</td>
<td>547</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.StatefulMGU method),</td>
<td>560</td>
</tr>
<tr>
<td>register_persistent()</td>
<td>(chainer.links.StatefulPeepholeLSTM method),</td>
<td>572</td>
</tr>
</tbody>
</table>
register_persistent()
(chainer.links.StatefulZoneoutLSTM method), 578
remove()
remove()

remove()
register_persistent()
(chainer.links.StatelessGRU method), 554
register_persistent()
(chainer.links.StatelessLSTM method), 585
register_persistent()
(chainer.links.StatelessMGU method), 566
register_persistent() (chainer.links.Swish method), 658
register_persistent()
(chainer.links.TheanoFunction method), 739
register_persistent()
(chainer.links.VGG16Layers method), 686
register_persistent()
(chainer.links.VGG19Layers method), 693
register_persistent() (chainer.Sequential method), 775
register_statistics()
(chainer.training.extensions.ParameterStatistics method), 945
reinterpreted_batch_ndims
(chainer.distributions.Independent attribute), 820
release_backprop_id() (chainerx.Context method), 1191
relu() (in module chainer.functions), 162
relu() (in module chainer), 1164
relu6() (in module chainer.functions), 163
remove() (chainer.ChainList method), 766
remove() (chainer.links.MLPConvolution2D method), 465
remove() (chainer.links.NStepBiGRU method), 478
remove() (chainer.links.NStepBiLSTM method), 485
remove() (chainer.links.NStepBiRNNReLU method), 492
remove() (chainer.links.NStepBiRNNTanh method), 499
remove() (chainer.links.NStepGRU method), 506
remove() (chainer.links.NStepLSTM method), 514
remove() (chainer.links.NStepRNNTanh method), 521
remove() (chainer.links.NStepRNNTanh method), 528
remove() (chainer.Sequential method), 775
remove_by_layer_type() (chainer.Sequential method), 775
remove_hook() (chainer.optimizers.Adam method), 860
remove_hook() (chainer.optimizers.CorrectedMomentumSGD method), 863
remove_hook() (chainer.optimizers.MomentumSGD method), 866
remove_hook() (chainer.optimizers.MSVAG method), 872
remove_hook() (chainer.optimizers.RMSpropGraves method), 875
remove_hook() (chainer.optimizers.RMSprop method), 878
remove_hook() (chainer.optimizers.SGD method), 881
remove_hook() (chainer.optimizers.SMORMS3 method), 884
remove_hook() (chainer.UpdateRule method), 889
repeat () (chainer.operators.DalIterator attribute), 1030
repeat () (chainer.operators.MultithreadIterator attribute), 1028
repeat () (chainer.operators.SerialIterator attribute), 1024
repeat () (chainer.operators.BinaryGridTupleSoftmax method), 627
repeat () (chainer.operators.BinaryHierarchicalSoftmax method), 633
repeat () (chainer.operators.CaffeFunction method), 747
repeat () (chainer.operators.ChildSumTreeLSTM method), 334
repeat () (chainer.operators.Classifier method), 678
repeat () (chainer.operators.Convolution1D method), 340
repeat () (chainer.operators.Convolution2D method), 347
repeat () (chainer.operators.Convolution3D method), 353
repeat () (chainer.operators.ConvolutionND method), 360
repeat () (chainer.operators.CRF1d method), 639
repeat () (chainer.operators.DecoupledBatchNormalization method), 366
repeat () (chainer.operators.Deconvolution1D method), 366
repeat () (chainer.operators.Deconvolution2D method), 373
repeat () (chainer.operators.Deconvolution3D method), 379
repeat () (chainer.operators.DecoupledBatchNormalization method), 386
repeat () (chainer.operators.DecoupledBatchNormalization method), 386
repeat () (chainer.operators.Optimizer method), 887
repeat () (chainer.operators.Adam method), 854
repeat () (chainer.operators.AdaDelta method), 854
remove_hook() (chainer.optimizers.Adam method), 854
remove_hook() (chainer.optimizers.AdaDelta method), 854
remove_hook() (chainer.optimizers.Adam method), 854
Index 1387
ResNetLayers (class in chainer.links.model.vision.resnet), 704
retain_data() (chainer.Parameter method), 145
retain_data() (chainer.Variable method), 136
retain_data() (chainer.variable.VariableNode method), 150
retain_inputs() (chainer.Function method), 291
retain_inputs() (chainer.FunctionAdapter method), 296
retain_inputs() (chainer.FunctionNode method), 302
retain_outputs() (chainer.Function method), 291
retain_outputs() (chainer.FunctionAdapter method), 296
retain_outputs() (chainer.FunctionNode method), 302
retry() (in module chainer.testing.condition), 1133
reverse() (chainer.ChainList method), 767
reverse() (chainer.links.MLPConvolution2D method), 466
reverse() (chainer.links.NStepBiGRUConvolution2D method), 479
reverse() (chainer.links.NStepBiLSTM method), 486
reverse() (chainer.links.NStepBiRNNReLU method), 493
reverse() (chainer.links.NStepBiRNNReLUTanh method), 500
reverse() (chainer.links.NStepGRU method), 507
reverse() (chainer.links.NStepLSTM method), 515
reverse() (chainer.links.NStepRNNReLU method), 522
reverse() (chainer.links.NStepRNNReLUTanh method), 529
rho (chainer.optimizers.RMSprop class in chainer.optimizers), 855
RMSprop (chainer.optimizers.RMSpropGraves class in chainer.optimizers), 877
rnn() (chainer.links.NStepBiGRU method), 479
rnn() (chainer.links.NStepBiLSTM method), 486
rnn() (chainer.links.NStepBiRNNReLU method), 493
rnn() (chainer.links.NStepGRU method), 507
rnn() (chainer.links.NStepLSTM method), 515
rnn() (chainer.links.NStepRNNReLU method), 522
rnn() (chainer.links.NStepRNNReLUTanh method), 529
roi_average_align_2d() (in module chainer.functions), 280
roi_average_pooling_2d() (in module chainer.functions), 280
roi_max_align_2d() (in module chainer.functions), 281
roi_max_pooling_2d() (in module chainer.functions), 282
roi_pooling_2d() (in module chainer.functions), 282
rollaxis() (in module chainer.functions), 186
rrelu() (in module chainer.functions), 161
rsqrt() (in module chainer.functions), 261
run() (chainer.testing.FunctionTestCase method), 1110
run() (chainer.testing.LinkInitializersTestCase method), 1121
run() (chainer.testing.LinkTestCase method), 1129
run() (chainer.training.Trainer method), 925
run_test_backward() (chainer.testing.FunctionTestCase method), 1110
run_test_double_backward() (chainer.testing.FunctionTestCase method), 1110
run_test_forward() (chainer.testing.FunctionTestCase method), 1110
S
sample() (chainer.Distribution method), 850
sample() (chainer.distributions.Bernoulli method), 787
sample() (chainer.distributions.Beta method), 790
sample() (chainer.distributions.Categorical method), 793
sample() (chainer.distributions.Cauchy method), 796
sample() (chainer.distributions.Chisquare method), 800
sample() (chainer.distributions.Dirichlet method), 803
sample() (chainer.distributions.Exponential method), 806
sample() (chainer.distributions.Gamma method), 809
sample() (chainer.distributions.Geometric method), 812
sample() (chainer.distributions.Gumbel method), 815
sample() (chainer.distributions.Independent method), 818
sample() (chainer.distributions.Laplace method), 822
sample() (chainer.distributions.LogNormal method), 825
sample() (chainer.distributions.MultivariateNormal method), 828
sample() (chainer.distributions.Normal method), 832
sample() (chainer.distributions.OneHotCategorical method), 835
sample() (chainer.distributions.Pareto method), 838
sample() (chainer.distributions.Poisson method), 841
sample() (chainer.distributions.Uniform method), 844
sample() (chainer.utils.WalkerAlias method), 1061
sample_data (chainer.links.BlackOutAttribute method), 635
sample_gpu() (chainer.utils.WalkerAlias method), 1061
sample_n() (chainer.Distribution method), 850
sample_n() (chainer.distributions.Bernoulli method), 787
sample_n() (chainer.distributions.Beta method), 790
sample_n() (chainer.distributions.Categorical method), 793
sample_n() (chainer.distributions.Cauchy method), 797
sample_n() (chainer.distributions.Chisquare method), 800
sample_n() (chainer.distributions.Dirichlet method), 803
sample_n() (chainer.distributions.Exponential method), 806
sample_n() (chainer.distributions.Gamma method), 809
sample_n() (chainer.distributions.Geometric method), 812
sample_n() (chainer.distributions.Gumbel method), 815
sample_n() (chainer.distributions.Independent method), 818
sample_n() (chainer.distributions.Laplace method), 822
sample_n() (chainer.distributions.LogNormal method), 825
sample_n() (chainer.distributions.MultivariateNormal method), 828
sample_n() (chainer.distributions.Normal method), 832
sample_n() (chainer.distributions.OneHotCategorical method), 835
sample_n() (chainer.distributions.Pareto method), 838
sample_n() (chainer.distributions.Poisson method), 841
sample_n() (chainer.distributions.Uniform method), 844
sample_n() (chainer.rutils.WalkerAlias method), 1061
save() (chainer.Serializer method), 1040
save() (chainer.serializers.DictionarySerializer method), 1033
save() (chainer.serializers.HDF5Serializer method), 1037
save() (chainer.training.extensions.snapshot_writers.BufferQueueWriter) (chainer.backend.CpuDevice method), 1049
save() (chainer.training.extensions.snapshot_writers.BufferQueueWriter) (chainer.backend.Intel64Device method), 1050
save() (chainer.training.extensions.snapshot_writers.BufferQueueWriter) (chainermn.CommunicatorBase method), 1239
save() (chainer.training.extensions.snapshot_writers.SnapshotWriter) (chainer.Chain method), 916
save() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter) (chainer.Chain method), 921
save() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter) (chainer.datasets.Iterator method), 988
serialize() (chainer.DictSummary method), 1068
serialize() (chainer.GradientMethod method), 893
serialize() (chainer.iterators.DaliIterator method), 1029
serialize() (chainer.iterators.MultiprocessIterator method), 1026
serialize() (chainer.iterators.SerialIterator method), 1028
serialize() (chainer.iterators.TreadletIterator method), 1024
serialize() (chainer.Link method), 754
serialize() (chainer.links.Bilinear method), 596
serialize() (chainer.links.BatchNormalization method), 602
serialize() (chainer.links.Bias method), 322
serialize() (chainer.links.Bilinear method), 328
serialize() (chainer.links.BinaryHierarchicalSoftmax method), 628
serialize() (chainer.links.BlackOut method), 634
serialize() (chainer.links.caffe.CaffeFunction method), 747
serialize() (chainer.links.ChildSumTreeLSTM method), 335
serialize() (chainer.links.Classifier method), 679
serialize() (chainer.links.Convolution1D method), 340
serialize() (chainer.links.Convolution2D method), 348
serialize() (chainer.links.Convolution3D method), 353
serialize() (chainer.links.ConvolutionND method), 361
serialize() (chainerlinks.CRF1d method), 640
serialize() (chainerlinks.Deconvolution1D method), 366
serialize() (chainerlinks.Deconvolution2D method), 374
serialize() (chainerlinks.Deconvolution3D method), 379
serialize() (chainerlinks.DeconvolutionND method), 387
serialize() (chainerlinks.DecorrelatedBatchNormalization method), 609
serialize() (chainerlinks.DeformableConvolution2D method), 393
serialize() (chainerlinks.DepthwiseConvolution2D method), 399
serialize() (chainerlinks.DilatedConvolution2D method), 407
serialize() (chainerlinks.EmbedID method), 413
serialize() (chainerlinks.GoogLeNet method), 702
serialize() (chainerlinks.GroupNormalization method), 615
serialize() (chainer.links.GRU method), 419
serialize() (chainer.links.Highway method), 425
serialize() (chainer.links.Inception method), 432
serialize() (chainer.links.InceptionBN method), 438
serialize() (chainer.links.LayerNormalization method), 621
serialize() (chainer.links.Linear method), 445
serialize() (chainer.links.LocalConvolution2D method), 451
serialize() (chainer.links.LSTM method), 459
serialize() (chainer.links.Maxout method), 666
serialize() (chainer.links.MLPConvolution2D method), 466
serialize() (chainer.links.model.vision.resnet.ResNetLayers method), 710
serialize() (chainer.links.NaryTreeLSTM method), 472
serialize() (chainer.links.NegativeSampling method), 672
serialize() (chainer.links.NStepBiGRU method), 479
serialize() (chainer.links.NStepBiLSTM method), 486
serialize() (chainer.links.NStepBiRNNReLU method), 493
serialize() (chainer.links.NStepBiRNNTanh method), 500
serialize() (chainer.links.NStepBiGRU method), 507
serialize() (chainer.links.NStepLSTM method), 515
serialize() (chainer.links.NStepRNNReLU method), 522
serialize() (chainer.links.NStepRNNTanh method), 529
serialize() (chainer.links.Parameter method), 535
serialize() (chainer.links.PReLU method), 653
serialize() (chainer.links.ResNet101Layers method), 725
serialize() (chainer.links.ResNet152Layers method), 733
serialize() (chainerlinks.ResNet50Layers method), 718
serialize() (chainerlinks.Scale method), 541
serialize() (chainerlinks.SimplifiedDropconnect method), 646
serialize() (chainerlinks.StatefulGRU method), 548
serialize() (chainerlinks.StatefulMGU method), 561
serialize() (chainerlinks.StatefulPeepholeLSTM method), 573
serialize() (chainerlinks.StatefulZoneoutLSTM method), 579
serialize() (chainerlinks.StatelessGRU method), 555
serialize() (chainerlinks.StatelessLSTM method),
serialize() (chainer.links.StatelessMGU method), 945
serialize() (chainer.training.extensions.PlotReport method), 967
serialize() (chainer.training.extensions.PrintReport method), 967
serialize() (chainer.training.extensions.PolynomialShift method), 956
serialize() (chainer.training.extensions.PrintReport method), 967
serialize() (chainer.training.extensions.ProgressBar method), 963
serialize() (chainer.training.extensions.InverseShift method), 959
serialize() (chainer.training.extensions.VariableStatisticsPlot method), 970
serialize() (chainer.training.extensions.WarmupShift method), 957
serialize() (chainer.training.Trainer method), 925
serialize() (chainer.training.triggers.MaxValueTrigger method), 978
serialize() (chainer.training.triggers.IntervalTrigger method), 980
serialize() (chainer.training.triggers.TimeTrigger method), 984
serialize() (chainer.training.triggers.ManualScheduleTrigger method), 981
serialize() (chainer.training.triggers.MinValueTrigger method), 982
serialize() (chainer.training.triggers.OnceTrigger method), 984
serialize() (chainer.training.triggers.TimeTrigger method), 984
serialize() (chainer.training.Trainer method), 926
serialize() (chainer.training.updaters.MultithreadedUpdater method), 933
serialize() (chainer.training.updaters.StandardUpdater method), 929
serialize() (chainer.training.updaters.ParallelUpdater method), 931
serialize() (chainer.training.updaters.StandardUpdater method), 929
serialize() (chainer.UpdateRule method), 889
Serializer (class in chainer), 1040
serialize() (chainer.training.extensions.NoNeedCreator method), 145
serialize() (chainer.Parameter method), 136
set_creator() (chainer.Parameter method), 136
set_creator() (chainer.Variable method), 136
set_creator() (chainer.Variable method), 151
set_creator() (chainer.Variable method), 145
set_creator_node() (chainer.Parameter method), 136
set_creator_node() (chainer.Parameter method), 136
set_dataset_root() (in module chainer.dataset), 992
set_debug() (in module chainer), 1081
set_default_device() (in module chainerx), 1195
set_grad() (chainerx.ndarray method), 1149
set_loss_scale() (chainer.GradientMethod method), 893
set_loss_scale() (chainer.Optimizer method), 887
set_loss_scale() (chainer.optimizers.AdaDelta method), 854
set_loss_scale() (chainer.optimizers.AdaGrad method), 857
set_loss_scale() (chainer.optimizers.Adam method), 860
set_loss_scale() (chainer.optimizers.CorrectedMomentumSGD method), 863
set_loss_scale() (chainer.optimizers.MomentumSGD method), 866
set_loss_scale() (chainer.optimizers.MSVAG method), 872
set_loss_scale() (chainer.optimizers.NesterovAG method), 869
set_loss_scale() (chainer.optimizers.RMSprop method), 875
set_loss_scale() (chainer.optimizers.RMSpropGraves method), 878
set_loss_scale() (chainer.optimizers.SGD method), 881
set_loss_scale() (chainer.optimizers.SMORMS3 method), 884
setUp() (chainer.testing.LinkInitializersTestCase method), 1110
setUp() (chainer.testing.LinkTestCase method), 1121
setUpWorkers() (chainer.training.updaters.MultiprocessParallelUpdater method), 933
setUpClass() (chainer.testing.FunctionTestCase class method), 1110
setUpClass() (chainer.testing.LinkInitializersTestCase class method), 1129
setUpClass() (chainer.testing.LinkTestCase class method), 1129
setUpClass() (chainer.testing.LinkTestCase class method), 1129
set_max_workspace_size() (in module chainer.backends.cuda), 1058
setUp() (chainer.GradientMethod method), 893
setUp() (chainer.Optimizer method), 887
setUp() (chainer.optimizers.AdaDelta method), 854
setUp() (chainer.optimizers.AdaGrad method), 857
setUp() (chainer.optimizers.Adam method), 860
setUp() (chainer.optimizers.CorrectedMomentumSGD method), 863
setUp() (chainer.optimizers.MomentumSGD method), 866
setUp() (chainer.optimizers.MSVAG method), 872
setUp() (chainer.optimizers.NesterovAG method), 869
setUp() (chainer.optimizers.RMSprop method), 875
setUp() (chainer.optimizers.RMSpropGraves method), 878
setUp() (chainer.optimizers.SGD method), 881
setUp() (chainer.optimizers.SMORMS3 method), 884
setUp() (chainer.testing.FunctionTestCase method), 1110
show() (chainer.configuration.GlobalConfig method), 1031
show() (chainer.configuration.LocalConfig method), 1077
show() (chainer.testing.LinkTestCase method), 1129
ShuffleOrderSampler (class in chainer.iterators), 1031
sigma (chainer.distributions.LogNormal attribute), 826
sigmoid() (in module chainer.functions), 224
sigmoid() (in module chainerx), 1152
sigmoid_cross_entropy() (in module chainer.functions), 241
shortDescription() (chainer.testing.FunctionTestCase method), 1110
shortDescription() (chainer.testing.LinkInitializersTestCase method), 1121
shortDescription() (chainer.testing.LinkTestCase method), 1129
SimpleWriter (class in chainer.training.extensions.snapshot_writers), 916
SimplifiedDropconnect (class in chainer.links), 641
sign() (in module chainer.functions), 263
sin() (in module chainer.functions), 262
sin() (in module chainerx), 1178
sinh() (in module chainer.functions), 262
size (chainer.Parameter attribute), 149
size (chainer.Variable attribute), 141
size (chainerx.ndarray attribute), 1152
size() (chainerx.ndtypes.TypeInfoTuple method), 1097
size() (chainer.nnCommunicatorBase property), 1240
<table>
<thead>
<tr>
<th>Method</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>stddev</td>
<td>842</td>
</tr>
<tr>
<td>stddev</td>
<td>846</td>
</tr>
<tr>
<td>StepShift</td>
<td>958</td>
</tr>
<tr>
<td>strides</td>
<td>1152</td>
</tr>
<tr>
<td>SubDataset</td>
<td>1152</td>
</tr>
<tr>
<td>subTest()</td>
<td>1110</td>
</tr>
<tr>
<td>subTest()</td>
<td>1121</td>
</tr>
<tr>
<td>subTest()</td>
<td>1129</td>
</tr>
<tr>
<td>subtract()</td>
<td>1175</td>
</tr>
<tr>
<td>sum()</td>
<td>1176</td>
</tr>
<tr>
<td>sum()</td>
<td>1180</td>
</tr>
<tr>
<td>sum_to()</td>
<td>1185</td>
</tr>
<tr>
<td>Summary</td>
<td>1067</td>
</tr>
<tr>
<td>summary()</td>
<td>1186</td>
</tr>
<tr>
<td>summary()</td>
<td>1192</td>
</tr>
<tr>
<td>summary()</td>
<td>1194</td>
</tr>
<tr>
<td>summary()</td>
<td>1196</td>
</tr>
<tr>
<td>summary()</td>
<td>1198</td>
</tr>
<tr>
<td>summary()</td>
<td>1200</td>
</tr>
<tr>
<td>support()</td>
<td>852</td>
</tr>
<tr>
<td>support()</td>
<td>788</td>
</tr>
<tr>
<td>support()</td>
<td>791</td>
</tr>
<tr>
<td>support()</td>
<td>795</td>
</tr>
<tr>
<td>support()</td>
<td>798</td>
</tr>
<tr>
<td>support()</td>
<td>801</td>
</tr>
<tr>
<td>support()</td>
<td>804</td>
</tr>
<tr>
<td>support()</td>
<td>807</td>
</tr>
<tr>
<td>support()</td>
<td>810</td>
</tr>
<tr>
<td>support()</td>
<td>814</td>
</tr>
<tr>
<td>support()</td>
<td>817</td>
</tr>
<tr>
<td>support()</td>
<td>820</td>
</tr>
<tr>
<td>support()</td>
<td>823</td>
</tr>
<tr>
<td>support()</td>
<td>826</td>
</tr>
<tr>
<td>support()</td>
<td>830</td>
</tr>
<tr>
<td>support()</td>
<td>833</td>
</tr>
<tr>
<td>support()</td>
<td>836</td>
</tr>
<tr>
<td>support()</td>
<td>839</td>
</tr>
<tr>
<td>support()</td>
<td>843</td>
</tr>
<tr>
<td>supported_array_types</td>
<td>1053</td>
</tr>
<tr>
<td>supported_array_types</td>
<td>1050</td>
</tr>
<tr>
<td>supported_array_types</td>
<td>1044</td>
</tr>
<tr>
<td>supported_array_types</td>
<td>1051</td>
</tr>
<tr>
<td>supported_array_types</td>
<td>1052</td>
</tr>
<tr>
<td>survival_function()</td>
<td>1040</td>
</tr>
<tr>
<td>survival_function()</td>
<td>850</td>
</tr>
<tr>
<td>survival_function()</td>
<td>790</td>
</tr>
<tr>
<td>survival_function()</td>
<td>793</td>
</tr>
<tr>
<td>survival_function()</td>
<td>797</td>
</tr>
<tr>
<td>survival_function()</td>
<td>800</td>
</tr>
<tr>
<td>survival_function()</td>
<td>803</td>
</tr>
<tr>
<td>survival_function()</td>
<td>806</td>
</tr>
<tr>
<td>survival_function()</td>
<td>809</td>
</tr>
<tr>
<td>survival_function()</td>
<td>812</td>
</tr>
<tr>
<td>survival_function()</td>
<td>815</td>
</tr>
<tr>
<td>survival_function()</td>
<td>819</td>
</tr>
<tr>
<td>survival_function()</td>
<td>822</td>
</tr>
<tr>
<td>survival_function()</td>
<td>825</td>
</tr>
<tr>
<td>survival_function()</td>
<td>828</td>
</tr>
<tr>
<td>survival_function()</td>
<td>832</td>
</tr>
<tr>
<td>survival_function()</td>
<td>836</td>
</tr>
</tbody>
</table>

---

**Supported Array Types**

- `chainer.backend.ChainerxDevice attribute`
- `chainer.backend.CpuDevice attribute`
- `chainer.backend.Intel64Device attribute`
- `chainer.backend.ChainerxDevice attribute`
- `chainer.backend.GpuDevice attribute`
method), 835
survival_function()
(chainer.distributions.Pareto method), 838
survival_function()
(chainer.distributions.Poisson method), 841
survival_function()
(chainer.distributions.Uniform method), 845
swapaxes() (in module chainer.functions), 194
Swish (class in chainer.links), 654
swish() (in module chainer.functions), 167
synchronize() (chainerx.Device method), 1193
T
t (chainer.GradientMethod attribute), 894
t (chainer.Optimizer attribute), 888
t (chainer.optimizers.Adadelta attribute), 855
t (chainer.optimizers.Adam attribute), 858
t (chainer.optimizers.AdamGradd attribute), 861
t (chainer.optimizers.CorrectedMomentumSGD attribute), 865
t (chainer.optimizers.MomentumSGD attribute), 867
t (chainer.optimizers.MSVAG attribute), 873
t (chainer.optimizers.NesterovAG attribute), 870
t (chainer.optimizers.RMSprop attribute), 876
t (chainer.optimizers.RMSpropGraves attribute), 879
t (chainer.optimizers.RMSpropGraves attribute), 876
t (chainer.optimizers.RMSpropGraves attribute), 879
t (chainer.optimizers.SMORMS3 attribute), 885
t (chainer.optimizers.SMORMS3 attribute), 885
tearDown () (chainer.testing.FunctionTestCase method), 1110
tearDown () (chainer.testing.LinkInitializersTestCase method), 1121
tearDown () (chainer.testing.LinkTestCase method), 1129
tearDownClass () (chainer.testing.FunctionTestCase class method), 1110
tearDownClass () (chainer.testing.LinkInitializersTestCase class method), 1121
tearDownClass () (chainer.testing.LinkTestCase class method), 1129
tensordot() (in module chainer.functions), 266
test_backward() (chainer.testing.FunctionTestCase method), 1111
test_backward() (chainer.testing.LinkTestCase method), 1129
test_double_backward() (chainer.testing.FunctionTestCase method), 1111
test_forward() (chainer.testing.FunctionTestCase method), 1111
test_forward() (chainer.testing.LinkTestCase method), 1130
test_initializers () (chainer.testing.LinkInitializersTestCase method), 1121
TextDataset (class in chainer.datasets), 1012
TheanoFunction (class in chainer.links), 736
theta (chainer.distributions.Gamma attribute), 811
ThreadQueueWriter (class in chainer.training.extensions.snapshot_writers), 920
ThreadWriter (class in chainer.training.extensions.snapshot_writers), 917
tile() (in module chainer.functions), 194
TimerHook (class in chainer.function_hooks), 311
TimerHook (class in chainer.link_hooks), 780
TimeTrigger (class in chainer.training.triggers), 984
timing (chainer.optimizer_hooks.GradientClipping attribute), 898
timing (chainer.optimizer_hooks.GradientHardClipping attribute), 899
timing (chainer.optimizer_hooks.GradientLARS attribute), 901
timing (chainer.optimizer_hooks.GradientNoise attribute), 900
timing (chainer.optimizer_hooks.Lasso attribute), 897
timing (chainer.optimizer_hooks.WeightDecay attribute), 896
to_chx() (chainer.Chain method), 761
to_chx() (chainer.ChainList method), 767
to_chx() (chainer.DeviceResident method), 1046
to_chx() (chainer.Link method), 754
to_chx() (chainer.links.BatchNormalization method), 596
to_chx() (chainer.links.BatchRenormalization method), 602
to_chx() (chainer.links.Bias method), 322
to_chx() (chainer.links.Bilinear method), 328
to_chx() (chainer.links.BinaryHierarchicalSoftmax method), 628
to_chx() (chainer.links.BlackOut method), 634
to_chx() (chainer.links.caffe.CaffeFunction method), 747
to_chx() (chainer.links.ChildSumTreeLSTM method), 335
to_chx() (chainer.links.Classifier method), 679
to_chx() (chainer.links.Convolution1D method), 341
to_chx() (chainer.links.Convolution2D method), 348
to_chx() (chainer.links.Convolution3D method), 354
to_chx() (chainer.links.ConvolutionND method), 361
to_chx() (chainer.links.CRF1d method), 640
to_chx() (chainer.links.Deconvolution1D method), 366
to_chx() (chainer.links.Deconvolution2D method), 374
to_chx() (chainer.links.Deconvolution3D method), 379
to_chx() (chainer.links.DeconvolutionND method), 387
to_chx() (chainer.links.DecorrelatedBatchNormalization method), 466
to_chx() (chainer.links.DeviceResident method), 1046
to_chx() (chainer.links.NStepGRU method), 507
to_chx() (chainer.links.NStepLSTM method), 515
to_chx() (chainer.links.NStepRNNReLU method), 522
to_chx() (chainer.links.NStepRNNTanh method), 529
to_chx() (chainer.links.Parameter method), 535
to_chx() (chainer.links.PReLU method), 653
to_chx() (chainer.links.ResNet101Layers method), 725
to_chx() (chainer.links.ResNet152Layers method), 733
to_chx() (chainer.links.ResNet50Layers method), 718
to_chx() (chainer.links.Scale method), 541
to_chx() (chainer.links.SimplifiedDropconnect method), 646
to_chx() (chainer.links.StatefulGRU method), 548
to_chx() (chainer.links.StatefulMGU method), 561
to_chx() (chainer.links.StatefulPeepholeLSTM method), 573
to_chx() (chainer.links.ScalingLayer method), 580
to_chx() (chainer.links.StatelessGRU method), 555
to_chx() (chainer.links.StatelessLSTM method), 586
to_chx() (chainer.links.StatelessMGU method), 567
to_chx() (chainer.links.Swish method), 659
to_chx() (chainer.links.TheanoFunction method), 740
to_chx() (chainer.links.VGG16Layers method), 687
to_chx() (chainer.links.VGG19Layers method), 694
to_chx() (chainer.Parameter method), 145
to_chx() (chainer.Sequential method), 776
to_chx() (chainer.uitls.WalkerAlias method), 1061
to_chx() (chainer.Variable method), 136
in module chainer.backends

Index
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>to_device() (chainer.links.Classifier method)</td>
<td>679</td>
</tr>
<tr>
<td>to_device() (chainer.links.Convolution1D method)</td>
<td>341</td>
</tr>
<tr>
<td>to_device() (chainer.links.Convolution2D method)</td>
<td>348</td>
</tr>
<tr>
<td>to_device() (chainer.links.Convolution3D method)</td>
<td>354</td>
</tr>
<tr>
<td>to_device() (chainer.links.ConvolutionND method)</td>
<td>361</td>
</tr>
<tr>
<td>to_device() (chainer.links.CRF1d method)</td>
<td>640</td>
</tr>
<tr>
<td>to_device() (chainer.links.Deconvolution1D method)</td>
<td>367</td>
</tr>
<tr>
<td>to_device() (chainer.links.Deconvolution2D method)</td>
<td>374</td>
</tr>
<tr>
<td>to_device() (chainer.links.Deconvolution3D method)</td>
<td>380</td>
</tr>
<tr>
<td>to_device() (chainer.links.DeconvolutionND method)</td>
<td>387</td>
</tr>
<tr>
<td>to_device() (chainer.links.DecorrelatedBatchNormalization method)</td>
<td>609</td>
</tr>
<tr>
<td>to_device() (chainer.links.DeformableConvolution2D method)</td>
<td>394</td>
</tr>
<tr>
<td>to_device() (chainer.links.DepthwiseConvolution2D method)</td>
<td>400</td>
</tr>
<tr>
<td>to_device() (chainer.links.DilatedConvolution2D method)</td>
<td>407</td>
</tr>
<tr>
<td>to_device() (chainer.links.EmbedID method)</td>
<td>413</td>
</tr>
<tr>
<td>to_device() (chainer.links.GoogLeNet method)</td>
<td>702</td>
</tr>
<tr>
<td>to_device() (chainer.links.GroupNormalization method)</td>
<td>615</td>
</tr>
<tr>
<td>to_device() (chainer.links.GRU method)</td>
<td>419</td>
</tr>
<tr>
<td>to_device() (chainer.links.Highway method)</td>
<td>426</td>
</tr>
<tr>
<td>to_device() (chainer.links.Inception method)</td>
<td>432</td>
</tr>
<tr>
<td>to_device() (chainer.links.InceptionBN method)</td>
<td>438</td>
</tr>
<tr>
<td>to_device() (chainer.links.LayerNormalization method)</td>
<td>621</td>
</tr>
<tr>
<td>to_device() (chainer.links.Linear method)</td>
<td>445</td>
</tr>
<tr>
<td>to_device() (chainer.links.LocalConvolution2D method)</td>
<td>452</td>
</tr>
<tr>
<td>to_device() (chainer.links.LSTM method)</td>
<td>459</td>
</tr>
<tr>
<td>to_device() (chainer.links.Maxout method)</td>
<td>666</td>
</tr>
<tr>
<td>to_device() (chainer.links.MLPConvolution2D method)</td>
<td>466</td>
</tr>
<tr>
<td>to_device() (chainer.links.model.vision.resnet.ResNetLayers method)</td>
<td>710</td>
</tr>
<tr>
<td>to_device() (chainer.links.NaryTreeLSTM method)</td>
<td>473</td>
</tr>
<tr>
<td>to_device() (chainer.links.NegativeSampling method)</td>
<td>672</td>
</tr>
<tr>
<td>to_device() (chainer.links.NStepBiGRU method)</td>
<td>479</td>
</tr>
<tr>
<td>to_device() (chainer.links.NStepBiLSTM method)</td>
<td>486</td>
</tr>
<tr>
<td>to_device() (chainer.links.NStepBiRNNReLU method)</td>
<td>522</td>
</tr>
<tr>
<td>to_device() (chainer.links.NStepBiRNNRelu method)</td>
<td>535</td>
</tr>
<tr>
<td>to_device() (chainer.links.PReLU method)</td>
<td>653</td>
</tr>
<tr>
<td>to_device() (chainer.links.ResNet101Layers method)</td>
<td>725</td>
</tr>
<tr>
<td>to_device() (chainer.links.ResNet50Layers method)</td>
<td>733</td>
</tr>
<tr>
<td>to_device() (chainer.links.ResNet101Layers method)</td>
<td>718</td>
</tr>
<tr>
<td>to_device() (chainer.links.ResNet152Layers method)</td>
<td>541</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatefulGRU method)</td>
<td>548</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatefulMGU method)</td>
<td>561</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatefulPeepholeLSTM method)</td>
<td>574</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatefulLSTM method)</td>
<td>580</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatelessLSTM method)</td>
<td>587</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatelessMGU method)</td>
<td>567</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatelessPeepholeLSTM method)</td>
<td>659</td>
</tr>
<tr>
<td>to_device() (chainer.links.StatelessZoneoutLSTM method)</td>
<td>741</td>
</tr>
<tr>
<td>to_device() (chainer.links.VGG16Layers method)</td>
<td>687</td>
</tr>
<tr>
<td>to_device() (chainer.links.VGG19Layers method)</td>
<td>694</td>
</tr>
<tr>
<td>to_device() (chainer.Parameter method)</td>
<td>145</td>
</tr>
<tr>
<td>to_device() (chainer.Sequential method)</td>
<td>776</td>
</tr>
<tr>
<td>to_device() (chainer.utils.WalkerAlias method)</td>
<td>1061</td>
</tr>
<tr>
<td>to_device() (chainer.Variable method)</td>
<td>137</td>
</tr>
<tr>
<td>to_device() (chainerx.ndarray method)</td>
<td>1150</td>
</tr>
<tr>
<td>to_device() (in module chainer.dataset)</td>
<td>992</td>
</tr>
<tr>
<td>to_device() (chainer.Chain method)</td>
<td>761</td>
</tr>
<tr>
<td>to_device() (chainer.ChainList method)</td>
<td>768</td>
</tr>
<tr>
<td>to_device() (chainer.DeviceResident method)</td>
<td>1046</td>
</tr>
<tr>
<td>to_device() (chainer.List method)</td>
<td>755</td>
</tr>
<tr>
<td>to_device() (chainer.BatchNormalization method)</td>
<td>596</td>
</tr>
</tbody>
</table>

Index
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>to_intel64() (chainer.links.ChildSumTreeLSTM method)</td>
<td>335</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Classifier method)</td>
<td>341</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Convolution1D method)</td>
<td>348</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Convolution2D method)</td>
<td>348</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Convolution3D method)</td>
<td>354</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DeformableConvolution2D method)</td>
<td>374</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DeformableConvolution3D method)</td>
<td>380</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Deconvolution1D method)</td>
<td>387</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Deconvolution2D method)</td>
<td>387</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Deconvolution3D method)</td>
<td>387</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DecorrelatedBatchNormalization method)</td>
<td></td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DepthwiseConvolution2D method)</td>
<td>394</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DepthwiseConvolution2D method)</td>
<td>394</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DilatedConvolution2D method)</td>
<td>407</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.DilatedConvolution2D method)</td>
<td>407</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.EmbedID method)</td>
<td>414</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.GoogLeNet method)</td>
<td>703</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.GroupNormalization method)</td>
<td>615</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.GRU method)</td>
<td>419</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Highway method)</td>
<td>426</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Inception method)</td>
<td>432</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.InceptionBN method)</td>
<td>439</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.LayerNormalization method)</td>
<td>622</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Linear method)</td>
<td>446</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.LocalConvolution2D method)</td>
<td>452</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.LSTM method)</td>
<td>459</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Maxout method)</td>
<td>666</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.MLPConvolution2D method)</td>
<td>466</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.model.vision.resnet.ResNetLayers method)</td>
<td>711</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NaryTreeLSTM method)</td>
<td>473</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NegativeSampling method)</td>
<td>672</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiGRU method)</td>
<td></td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiLSTM method)</td>
<td>480</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiRNNReLU method)</td>
<td>487</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiRNNTanh method)</td>
<td>494</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepGRU method)</td>
<td>508</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepLSTM method)</td>
<td>515</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepRNNReLU method)</td>
<td>522</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepRNNTanh method)</td>
<td>529</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiLSTM method)</td>
<td>1062</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiRNNReLU method)</td>
<td>1150</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.NStepBiRNNTanh method)</td>
<td>1150</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Parameter method)</td>
<td>535</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.PReLU method)</td>
<td>653</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.ResNet101Layers method)</td>
<td>726</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.ResNet152Layers method)</td>
<td>733</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.ResNet50Layers method)</td>
<td>718</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Scale method)</td>
<td>542</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.SimplifiedDropconnect method)</td>
<td>647</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatefulDropconnect method)</td>
<td></td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatefulGRU method)</td>
<td>549</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatefulMGU method)</td>
<td>561</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatefulPeepholeLSTM method)</td>
<td>574</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatefulZoneoutLSTM method)</td>
<td>580</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatelessGRU method)</td>
<td>555</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatelessLSTM method)</td>
<td>587</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.StatelessMGU method)</td>
<td>567</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.Swish method)</td>
<td>660</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.TheanoFunction method)</td>
<td>741</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.VGG16Layers method)</td>
<td>688</td>
</tr>
<tr>
<td>to_intel64() (chainer.links.VGG19Layers method)</td>
<td>695</td>
</tr>
<tr>
<td>to_intel64() (chainer.Parameter method)</td>
<td>145</td>
</tr>
<tr>
<td>to_intel64() (chainer.Sequential method)</td>
<td>776</td>
</tr>
<tr>
<td>to_intel64() (chainer.utils.WalkerAlias method)</td>
<td>1062</td>
</tr>
<tr>
<td>to_intel64() (chainer.NegativeSampling method)</td>
<td>137</td>
</tr>
<tr>
<td>tolist() (chainerx.ndarray method)</td>
<td>1150</td>
</tr>
<tr>
<td>total_acquired_bytes() (chainer.function_hooks.CupyMemoryProfileHook)</td>
<td></td>
</tr>
</tbody>
</table>
Chainer Documentation, Release 6.7.0

method), 309
method), 972
total_time() (chainer.function_hooks.TimerHook trigger() (chainer.training.extensions.unchain_variables
method), 313
method), 976
total_time()
(chainer.link_hooks.TimerHook triplet() (in module chainer.functions), 243
method), 782
TupleDataset (class in chainer.datasets), 995
total_used_bytes()
type_check (chainer.configuration.GlobalConfig at(chainer.function_hooks.CupyMemoryProfileHook
tribute), 1077
method), 309
TypeInfo (class in chainer.utils.type_check), 1096
train (chainer.configuration.GlobalConfig attribute), TypeInfoTuple (class in chainer.utils.type_check),
1077
1097
Trainer (class in chainer.training), 923
TransformDataset (class in chainer.datasets), 1001 U
transpose() (chainer.Parameter method), 145
unary_math_function_unittest() (in module
transpose() (chainer.Variable method), 137
chainer.testing), 1112
transpose() (chainerx.ndarray method), 1150
unchain() (chainer.Function method), 291
transpose() (in module chainer.functions), 196
unchain() (chainer.FunctionAdapter method), 296
transpose() (in module chainerx), 1165
unchain() (chainer.FunctionNode method), 302
transpose_sequence()
(in
module unchain() (chainer.Parameter method), 145
chainer.functions), 196
unchain() (chainer.Variable method), 137
tree_lstm() (in module chainer.functions), 168
unchain() (chainer.variable.VariableNode method),
trigger (chainer.training.Extension attribute), 936
151
trigger (chainer.training.extensions.Evaluator at- unchain_backward() (chainer.Parameter method),
tribute), 940
146
trigger (chainer.training.extensions.ExponentialShift unchain_backward() (chainer.Variable method),
attribute), 949
137
trigger (chainer.training.extensions.FailOnNonNumber unchain_variables
(class
in
attribute), 943
chainer.training.extensions), 975
trigger (chainer.training.extensions.InverseShift at- Uniform (class in chainer.distributions), 843
tribute), 951
Uniform (class in chainer.initializers), 911
trigger
(chainer.training.extensions.LinearShift uniform() (in module chainerx.random), 1181
attribute), 952
unpooling_1d() (in module chainer.functions), 283
trigger (chainer.training.extensions.LogReport at- unpooling_2d() (in module chainer.functions), 284
tribute), 965
unpooling_3d() (in module chainer.functions), 284
trigger (chainer.training.extensions.MicroAverage at- unpooling_nd() (in module chainer.functions), 285
tribute), 942
update() (chainer.GradientMethod method), 893
trigger (chainer.training.extensions.MultistepShift at- update() (chainer.Optimizer method), 887
tribute), 954
update() (chainer.optimizers.AdaDelta method), 854
attribute), 946
update() (chainer.optimizers.Adam method), 860
trigger
(chainer.training.extensions.PlotReport update() (chainer.optimizers.CorrectedMomentumSGD
attribute), 968
method), 864
trigger (chainer.training.extensions.PolynomialShift update()
(chainer.optimizers.MomentumSGD
attribute), 956
method), 867
trigger (chainer.training.extensions.PrintReport at- update() (chainer.optimizers.MSVAG method), 872
tribute), 962
update() (chainer.optimizers.NesterovAG method),
trigger (chainer.training.extensions.ProgressBar at869
tribute), 963
update() (chainer.optimizers.RMSprop method), 875
trigger (chainer.training.extensions.StepShift at- update()
(chainer.optimizers.RMSpropGraves
tribute), 960
method), 878
trigger (chainer.training.extensions.VariableStatisticsPlotupdate() (chainer.optimizers.SGD method), 881
attribute), 970
update() (chainer.optimizers.SMORMS3 method), 884
trigger (chainer.training.extensions.WarmupShift at- update() (chainer.Parameter method), 146
tribute), 958
update() (chainer.training.Updater method), 927
trigger() (chainer.training.extensions.DumpGraph

Index

1401


update() (chainer.training.updaters.MultiprocessParallelUpdater method), 933
update() (chainer.training.updaters.ParallelUpdater method), 931
update() (chainer.training.updaters.StandardUpdater method), 929
update() (chainer.UpdateRule method), 889
update_core() (chainer.training.updaters.MultiprocessParallelUpdater method), 933
update_core() (chainer.training.updaters.ParallelUpdater method), 931
update_core() (chainer.training.updaters.StandardUpdater method), 929
update_core() (chainer.UpdateRule method), 889
update_core_chainerx() (chainer.UpdateRule method), 889
update_core_cpu() (chainer.UpdateRule method), 890
update_core_gpu() (chainer.UpdateRule method), 890
update_enabled (chainer.Chain attribute), 762
update_enabled (chainer.ChainList attribute), 768
update_enabled (chainer.Link attribute), 755
update_enabled (chainer.links.BatchNormalization attribute), 597
update_enabled (chainer.links.BatchRenormalization attribute), 603
update_enabled (chainer.links.Bias attribute), 323
update_enabled (chainer.links.Bilinear attribute), 330
update_enabled (chainer.links.BinaryHierarchicalSoftmax attribute), 629
update_enabled (chainer.links.BlackOut attribute), 635
update_enabled (chainer.links.caffe.CaffeFunction attribute), 749
update_enabled (chainer.links.ChildSumTreeLSTM attribute), 336
update_enabled (chainer.links.Classifier attribute), 680
update_enabled (chainer.links.Convolution1D attribute), 342
update_enabled (chainer.links.Convolution2D attribute), 349
update_enabled (chainer.links.Convolution3D attribute), 355
update_enabled (chainer.links.ConvolutionND attribute), 362
update_enabled (chainer.links.CRF1d attribute), 641
update_enabled (chainer.links.Deconvolution1D attribute), 368
update_enabled (chainer.links.Deconvolution2D attribute), 375
update_enabled (chainer.links.Deconvolution3D attribute), 381
update_enabled (chainer.links.DeconvolutionND attribute), 388
update_enabled (chainer.links.DecorrelatedBatchNormalization attribute), 401
update_enabled (chainer.links.DepthwiseConvolution2D attribute), 408
update_enabled (chainer.links.DilatedConvolution2D attribute), 414
update_enabled (chainer.links.DilatedConvolution3D attribute), 420
update_enabled (chainer.links.GroupNormalization attribute), 427
update_enabled (chainer.links.Inception attribute), 433
update_enabled (chainer.links.InceptionBN attribute), 439
update_enabled (chainer.links.LayerNormalization attribute), 462
update_enabled (chainer.links.Linear attribute), 481
update_enabled (chainer.links.LocalConvolution2D attribute), 534
update_enabled (chainer.links.LSTM attribute), 460
update_enabled (chainer.links.Maxout attribute), 667
update_enabled (chainer.links.MLPConvolution2D attribute), 467
update_enabled (chainer.links.NaryTreeLSTM attribute), 474
update_enabled (chainer.links.NegativeSampling attribute), 673
update_enabled (chainer.links.NStepBiGRU attribute), 481
update_enabled (chainer.links.NStepBiLSTM attribute), 488
update_enabled (chainer.links.NStepBiRNNTanh attribute), 495
update_enabled (chainer.links.NStepBiRNNReLU attribute), 501
update_enabled (chainer.links.NStepGRU attribute), 508
update_enabled (chainer.links.NStepLSTM attribute), 516
update_enabled (chainer.links.NStepRNNReLU attribute), 523

1402 Index
update_enabled (chainer.links.NStepRNNTanh attribute), 523
update_enabled (chainer.links.Parameter attribute), 536
update_enabled (chainer.links.PReLU attribute), 654
update_enabled (chainer.links.ResNet101Layers attribute), 726
update_enabled (chainer.links.ResNet152Layers attribute), 734
update_enabled (chainer.links.ResNet50Layers attribute), 719
update_enabled (chainer.links.Scale attribute), 542
update_enabled (chainer.links.SimplifiedDropconnect attribute), 647
update_enabled (chainer.links.StatefulGRU attribute), 549
update_enabled (chainer.links.StatefulMGU attribute), 562
update_enabled (chainer.links.StatefulPeepholeLSTM attribute), 575
update_enabled (chainer.links.StatefulZoneoutLSTM attribute), 581
update_enabled (chainer.links.StatelessGRU attribute), 556
update_enabled (chainer.links.StatelessLSTM attribute), 588
update_enabled (chainer.links.StatelessMGU attribute), 568
update_enabled (chainer.links.Swish attribute), 660
update_enabled (chainer.links.TheanoFunction attribute), 742
update_enabled (chainer.links.VGG16Layers attribute), 688
update_enabled (chainer.links.VGG19Layers attribute), 695
update_enabled (chainer.Sequential attribute), 777
update_loss_scale() (chainer.optimizers.MSVAG method), 873
update_loss_scale() (chainer.optimizers.NesterovAG method), 870
update_loss_scale() (chainer.optimizers.RMSprop method), 876
update_loss_scale() (chainer.optimizers.RMSpropGraves method), 879
update_loss_scale() (chainer.optimizers.SGD method), 881
update_loss_scale() (chainer.optimizers.SMORMS3 method), 884
Updater (class in chainer.training), 926
UpdateRule (class in chainer), 888
upsampling_2d() (in module chainer.functions), 285
use() (chainer.backend.ChainerxDevice method), 1052
use() (chainer.backend.CpuDevice method), 1049
use() (chainer.backend.Device method), 1044
use() (chainer.backend.GpuDevice method), 1050
use() (chainer.backend.Intel64Device method), 1051
use_auto_new_epoch (chainer.GradientMethod attribute), 894
use_auto_new_epoch (chainer.Optimizer attribute), 888
use_auto_new_epoch (chainer.optimizers.AdaDelta attribute), 855
use_auto_new_epoch (chainer.optimizers.AdaGrad attribute), 858
use_auto_new_epoch (chainer.optimizers.Adam attribute), 861
use_auto_new_epoch (chainer.optimizers.CorrectedMomentumSGD attribute), 865
use_auto_new_epoch (chainer.optimizers.MomentumSGD attribute), 867
use_auto_new_epoch (chainer.optimizers.MSVAG attribute), 873
use_auto_new_epoch (chainer.optimizers.NesterovAG attribute), 870
use_auto_new_epoch (chainer.optimizers.RMSprop attribute), 876
use_auto_new_epoch (chainer.optimizers.RMSpropGraves attribute), 879
use_auto_new_epoch (chainer.optimizers.SGD attribute), 882
use_auto_new_epoch (chainer.optimizers.SMORMS3 attribute), 885
use_bi_direction (chainer.links.NStepBiGRU attribute), 481
use_bi_direction (chainer.links.NStepBiLSTM attribute), 488
use_bi_direction (chainer.links.NStepBiRNNReLU attribute), 495
use_bi_direction (chainer.links.NStepBiRNNTanh attribute), 501
use_bi_direction (chainer.links.NStepBiRNN attribute), 508
use_bi_direction (chainer.links.NStepLSTM attribute), 516
use_bi_direction (chainer.links.NStepRNNTanh attribute), 523
use_bi_direction (chainer.links.NStepRNNTanh attribute), 530
use_cleargrads() (chainer.GradientMethod method), 894
use_cleargrads() (chainer.optimizers.AdaDelta method), 854
use_cleargrads() (chainer.optimizers.AdaGrad method), 857
use_cleargrads() (chainer.optimizers.Adam method), 860
use_cleargrads() (chainer.optimizers.CorrectedMomentumSGD method), 864
use_fp32_update() (chainer.optimizers.MomentumSGD method), 867
use_fp32_update() (chainer.optimizers.MSAG method), 873
use_fp32_update() (chainer.optimizers.NesterovAG method), 870
use_fp32_update() (chainer.optimizers.RMSprop method), 876
use_fp32_update() (chainer.optimizers.RMSpropGraves method), 879
use_fp32_update() (chainer.optimizers.SGD method), 882
use_fp32_update() (chainer.optimizers.SMORMS3 method), 884
use_fp32_update() (chainer.UpdateRule method), 890
use_fp32_update() (chainer.optimizers.CorrectedMomentumSGDConfig() in module chainer), 1076
use_fp32_update() (chainer.optimizers.MomentumSGD using_device() in module chainerx), 1195
use_fp32_update() (chainer.optimizers.MVAG method), 873
use_fp32_update() (chainer.optimizers.NesterovAG method), 870
use_fp32_update() (chainer.optimizers.RMSprop method), 876
use_fp32_update() (chainer.optimizers.RMSpropGraves method), 879
use_fp32_update() (chainer.optimizers.SGD method), 882
use_fp32_update() (chainer.optimizers.SMORMS3 method), 884
use_fp32_update() (chainer.UpdateRule method), 890
use_gpu (chainer.utils.WalkerAlias attribute), 1062
use_ideep (chainer.configuration.GlobalConfig attribute), 1077
use_ideep (chainer.utils.WalkerAlias attribute), 1062
using_config() (in module chainer), 1076
using_device() (in module chainer), 1045
variable (class in chainer), 133
variable (class in chainer.utils.type_check), 1098
VariableNode (class in chainer.variable), 150
VariableStatisticsPlot (class in chainer.training.extensions), 968
Variance (chainer.Distribution attribute), 852
Variance (chainer.distributions.Bernoulli attribute), 788
Variance (chainer.distributions.Beta attribute), 792
Variance (chainer.distributions.Categorical attribute), 795
Variance (chainer.distributions.Cauchy attribute), 798
Variance (chainer.distributions.Chisquare attribute), 801
Variance (chainer.distributions.Dirichlet attribute), 804
Variance (chainer.distributions.Exponential attribute), 808
Variance (chainer.distributions.Gamma attribute), 811
Variance (chainer.distributions.Geometric attribute), 814
Variance (chainer.distributions.Gumbel attribute), 817
Variance (chainer.distributions.Independent attribute), 820
Variance (chainer.distributions.Laplace attribute), 823
Index
zerograds() (chainer.links.BlackOut method), 634
zerograds() (chainer.links.caffe.CaffeFunction method), 748
zerograds() (chainer.links.ChildSumTreeLSTM method), 335
zerograds() (chainer.links.Classifier method), 680
zerograds() (chainer.links.Convolution1D method), 341
zerograds() (chainer.links.Convolution2D method), 348
zerograds() (chainer.links.Convolution3D method), 354
zerograds() (chainer.links.ConvolutionND method), 361
zerograds() (chainer.links.CRF1d method), 640
zerograds() (chainer.links.Deconvolution1D method), 367
zerograds() (chainer.links.Deconvolution2D method), 374
zerograds() (chainer.links.Deconvolution3D method), 380
zerograds() (chainer.links.DeconvolutionND method), 387
zerograds() (chainer.links.DecorrelatedBatchNormalization method), 609
zerograds() (chainer.links.DeformableConvolution2D method), 394
zerograds() (chainer.links.DepthwiseConvolution2D method), 400
zerograds() (chainer.links.DilatedConvolution2D method), 407
zerograds() (chainer.links.EmbedID method), 414
zerograds() (chainer.links.GoogLeNet method), 703
zerograds() (chainer.links.GroupNormalization method), 615
zerograds() (chainer.links.GRU method), 420
zerograds() (chainer.links.Highway method), 426
zerograds() (chainer.links.Inception method), 432
zerograds() (chainer.links.InceptionBN method), 439
zerograds() (chainer.links.LayerNormalization method), 622
zerograds() (chainer.links.Linear method), 446
zerograds() (chainer.links.LocalConvolution2D method), 452
zerograds() (chainer.links.LSTM method), 460
zerograds() (chainer.links.Maxout method), 466
zerograds() (chainer.links.MLPConvolution2D method), 466
zerograds() (chainer.links.model.vision.resnet.ResNetLayers method), 711
zerograds() (chainer.links.NaryTreeLSTM method), 473
zerograds() (chainer.links.NegativeSampling method), 672
zerograds() (chainer.links.NStepBiGRU method), 480
zerograds() (chainer.links.NStepBiLSTM method), 487
zerograds() (chainer.links.NStepBiRNNTanh method), 494
zerograds() (chainer.links.NStepBiRNNTanh method), 501
zerograds() (chainer.links.NStepBiRNNTanh method), 508
zerograds() (chainer.links.NStepBiRNNTanh method), 515
zerograds() (chainer.links.NStepBiRNNTanh method), 522
zerograds() (chainer.links.NStepRNNTanh method), 529
zerograds() (chainer.links.Parameter method), 535
zerograds() (chainer.links.PReLU method), 653
zerograds() (chainer.links.ResNet101Layers method), 726
zerograds() (chainer.links.ResNet152Layers method), 733
zerograds() (chainer.links.ResNet50Layers method), 718
zerograds() (chainer.links.Scale method), 542
zerograds() (chainer.links.SimplifiedDropconnect method), 647
zerograds() (chainer.links.StatefulDropconnect method), 549
zerograds() (chainer.links.StatefulMGU method), 561
zerograds() (chainer.links.StatefulPeepholeLSTM method), 574
zerograds() (chainer.links.StatefulZoneoutLSTM method), 580
zerograds() (chainer.links.StatelessDropconnect method), 555
zerograds() (chainer.links.StatelessMGU method), 587
zerograds() (chainer.links.StatelessLSTM method), 567
zerograds() (chainer.links.StatelessMGU method), 567
zerograds() (chainer.links.StatefulLSTM method), 660
zerograds() (chainer.links.Swish method), 741
zerograds() (chainer.links.TheanoFunction method), 741
zerograds() (chainer.links.VGG16Layers method), 688
zerograds() (chainer.links.VGG19Layers method), 695
zerograds() (chainer.Sequential method), 776
zeros() (in module chainerx), 1155
zeros_like() (in module chainerx), 1156
ZippedImageDataset (class in chainer.datasets), 1005
zoneout() (in module chainer.functions), 270