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CHAPTER 1

Chainer Tutorial

1.1 Introduction to Chainer

This is the first section of the Chainer Tutorial. In this section, you will learn about the following things:

• Pros and cons of existing frameworks and why we are developing Chainer

• Simple example of forward and backward computation

• Usage of parameterized functions and their gradient computation

• Management of a set of parameterized functions (a.k.a. “model” in most frameworks)

• Parameter optimization

After reading this section, you will be able to:

• Compute gradients of some arithmetics

• Write a multi-layer perceptron with Chainer

1.1.1 Core Concept

As mentioned on the front page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so
it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with minibatches. Since the network is statically defined before any
forward/backward computation, all the logic must be embedded into the network architecture as data. Consequently,
defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note that one can still
produce such a static network definition using imperative languages (e.g. Torch7 and Theano-based frameworks).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined on-the-fly via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

Note: In example codes of this tutorial, we assume for simplicity that the following symbols are already imported:
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import numpy as np
from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers
import chainer.functions as F

These imports appear widely in Chainer’s codes and examples. For simplicity, we omit this idiom in this tutorial.

1.1.2 Forward/Backward Computation

As described above, Chainer uses “Define-by-Run” scheme, so forward computation itself defines the network. In
order to start forward computation, we have to set the input array to Variable object. Here we start with simple
ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)

Warning: Chainer currently only supports 32-bit float for most computations.

A Variable object has basic arithmetic operators. In order to compute 𝑦 = 𝑥2 − 2𝑥+ 1, just write

>>> y = x**2 - 2 * x + 1

The resulting y is also Variable object, whose value can be extracted by accessing the data attribute:

>>> y.data
array([ 16.], dtype=float32)

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its differentiation. This is done by calling its backward() method:

>>> y.backward()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([ 8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)

All these computations are easily generalized to multi-element array input. Note that if we want to start backward
computation from a variable holding a multi-element array, we must set the initial error manually. This is simply done
by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad

4 Chapter 1. Chainer Tutorial
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array([[ 0., 2., 4.],
[ 6., 8., 10.]], dtype=float32)

Note: Many functions taking Variable object(s) are defined in the functions module. You can combine them
to realize complicated functions with automatic backward computation.

1.1.3 Parameterized functions

In order to write neural networks, we have to use some parameterized functions and optimize their parameters. As
noted above, functions are predefined in functions module, which also includes parameterized functions.

One of the most fundamental parameterized functions is the Linear function (a.k.a. fully-connected layer or affine
transformation). It represents a mathematical function 𝑓(𝑥) = 𝑊𝑥 + 𝑏, where the matrix 𝑊 and the vector 𝑏 are
parameters. A linear function from three-dimensional space to two-dimensional space is defined by:

>>> f = F.Linear(3, 2)

Note: Most functions only accept minibatch input, where the first dimension of input arrays is considered as the batch
dimension. In the above Linear function case, input must has shape of (N, 3), where N is the minibatch size.

The parameters of Linear function are stored in W and b attributes. By default, the matrix W is initialized randomly,
while the vector b is initialized with zeros.

>>> f.W
array([[ 1.33545339, -0.01839679, 0.7662735 ],

[-1.21562171, -0.44784674, -0.07128379]], dtype=float32)
>>> f.b
array([ 0., 0.], dtype=float32)

Instances of a parameterized function class act like usual functions:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[ 3.5974803 , -2.3251667 ],

[ 9.84747124, -7.52942371]], dtype=float32)

Gradients of parameters are computed by backward() method. Note that gradients are accumulated by the method
rather than overwritten. So first you must initialize gradients to zero to renew the computation. Gradients of Linear
function are stored in gW and gb attributes:

>>> f.gW.fill(0)
>>> f.gb.fill(0)

Note: This procedure is simplified by FunctionSet and Optimizer, which we will see in the next seciton.

Now we can compute the gradients of parameters by simply calling backward method:

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>>
>>> f.gW
array([[ 5., 7., 9.],

[ 5., 7., 9.]], dtype=float32)

1.1. Introduction to Chainer 5
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>>> f.gb
array([ 2., 2.], dtype=float32)

1.1.4 FunctionSet

Most neural network architectures contain multiple parameterized functions. FunctionSetmakes it easy to manage
them. This class acts like a simple object, with attributes initialized by keyword arguments of the initializer:

>>> model = FunctionSet(
... l1 = F.Linear(4, 3),
... l2 = F.Linear(3, 2),
... )
>>> model.l1
<chainer.functions.linear.Linear object at 0x7f7f03e4f350>
>>> model.l2
<chainer.functions.linear.Linear object at 0x7f7f03e4f590>

You can also add additional functions later by setting attributes:

>>> model.l3 = F.Linear(2, 2)

Since the model is just an object with functions stored as its attributes, we can use these functions in forward compu-
tation:

>>> x = Variable(np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.float32))
>>> h1 = model.l1(x)
>>> h2 = model.l2(h1)
>>> h3 = model.l3(h2)

One of the features of FunctionSet is the ability to collect parameters and gradients. A tuple of all parameters and a
tuple of all gradients are extracted by FunctionSet.parameters and FunctionSet.gradients properties,
respectively.

1.1.5 Optimizer

Optimizer is the last core feature of Chainer described in this section. It runs a numerical optimization algorithm
given tuples of parameters and gradients. Many algorithms are implemented in optimizers module. Here we use
the simplest one, called Stochastic Gradient Descent:

>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model.collect_parameters())

The method setup() prepares for the optimization given parameters and gradients. The interface is designed to
match the return values of the FunctionSet.collect_parameters() method.

Note: Since Optimizer does not know the functions that actually own the parameters and gradients, once parameters
and gradients are given to Optimizer, functions must use same parameter and gradient array objects throughout all
forward/backward computations.

In order to run optimization, you first have to compute gradients. Zeroing the initial gradient arrays are simply done
by calling zero_grads() method:

>>> optimizer.zero_grads()

We have done the zeroing manually in the previous section. The line above is an equivalent and simpler way to
initialize the gradients.

6 Chapter 1. Chainer Tutorial
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Then, after computing gradient of each parameter, update() method runs one iteration of optimization:

>>> (compute gradient)
>>> optimizer.update()

Optimizer also contains some features related to parameter and gradient manipulation, e.g. weight decay and gradient
clipping.

1.1.6 Example: Multi-layer Perceptron on MNIST

Now you can solve a multiclass classification task using a multi-layer perceptron. Here we use hand-written digits
dataset called MNIST, which is the long-standing de-facto “hello world” of machine learning. This MNIST example
is also found in examples/mnist directory of the official repository.

In order to use MNIST, we prepared load_mnist_data function at examples/mnist/data.py:

>>> import data
>>> mnist = data.load_mnist_data()

The mnist dataset consists of 70,000 grayscale images of size 28x28 (i.e. 784 pixels) and corresponding digit labels.
First, we scale pixels to [0, 1] values, and divide the dataset into 60,000 training samples and 10,000 test samples.

>>> x_all = mnist['data'].astype(np.float32) / 255
>>> y_all = mnist['target'].astype(np.int32)
>>> x_train, x_test = np.split(x_all, [60000])
>>> y_train, y_test = np.split(y_all, [60000])

Next, we want to define the architecture. We use a simple three-layer rectifier network with 100 units per layer as an
example. Before defining the forward routine, we have to prepare our parameterized functions:

>>> model = FunctionSet(
... l1 = F.Linear(784, 100),
... l2 = F.Linear(100, 100),
... l3 = F.Linear(100, 10),
... )
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model.collect_parameters())

Note that model.l3 is the final linear layer whose output corresponds to the ten digits. We also set up the optimizer
here.

Now we can define the forward routine using these Linear functions. Typically it is defined as a simple python function
given input arrays:

>>> def forward(x_data, y_data):
... x = Variable(x_data)
... t = Variable(y_data)
... h1 = F.relu(model.l1(x))
... h2 = F.relu(model.l2(h1))
... y = model.l3(h2)
... return F.softmax_cross_entropy(y, t), F.accuracy(y, t)

This function uses functions.relu() as an activation function. Since ReLU does not have parameters to opti-
mize, it does not need to be included in model. functions.softmax_cross_entropy() computes the loss
function of softmax regression. functions.accuracy() computes the classification accuracy of this minibatch.

Finally, we can write a learning loop as following:

1.1. Introduction to Chainer 7
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>>> batchsize = 100
>>> for epoch in xrange(20):
... print 'epoch', epoch
... indexes = np.random.permutation(60000)
... for i in xrange(0, 60000, batchsize):
... x_batch = x_train[indexes[i : i + batchsize]]
... y_batch = y_train[indexes[i : i + batchsize]]
...
... optimizer.zero_grads()
... loss, accuracy = forward(x_batch, y_batch)
... loss.backward()
... optimizer.update()

Only the last four lines are the code related to Chainer, which are already described above.

Here you find that, at each iteration, the network is defined by forward computation, used for backprop, and then
disposed. By leveraging this “Define-by-Run” scheme, you can imagine that recurrent nets with variable length input
are simply handled by just using loop over different length input for each iteration.

After or during optimization, we want to evaluate the model on the test set. It can be achieved simply by calling
forward function:

>>> sum_loss, sum_accuracy = 0, 0
>>> for i in xrange(0, 10000, batchsize):
... x_batch = x_test[i : i + batchsize]
... y_batch = y_test[i : i + batchsize]
... loss, accuracy = forward(x_batch, y_batch)
... sum_loss += loss.data * batchsize
... sum_accuracy += accuracy.data * batchsize
...
>>> mean_loss = sum_loss / 10000
>>> mean_accuracy = sum_accuracy / 10000

The example code contains GPU support, though the essential part is same as the code in this tutorial. We will review
in later sections how to use GPU(s).

1.2 Recurrent Nets and their Computational Graph

In this section, you will learn how to write

• recurrent nets with full backprop,

• recurrent nets with truncated backprop,

• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length

• Truncate upper stream of the network during forward computation

• Use volatile variables to prevent network construction

1.2.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . and the initial state ℎ0, a recurrent net iteratively updates its state by ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1),

8 Chapter 1. Chainer Tutorial
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and at some or every point in time 𝑡, it outputs 𝑦𝑡 = 𝑔(ℎ𝑡). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are periodically used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose that there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Before writing the forward computation, we have to define parameterized functions:

model = FunctionSet(
embed = F.EmbedID(1000, 100),
x_to_h = F.Linear(100, 50),
h_to_h = F.Linear( 50, 50),
h_to_y = F.Linear( 50, 1000),

)
optimizer = optimizers.SGD()
optimizer.setup(model.collect_parameters())

Here EmbedID is a parameterized function class for word embedding. It converts input integers into corresponding
fixed-dimensional embedding vectors. Other Linear layers represent the transformation as their names indicate. Here
we use 50 hidden units.

Then, we can write down the forward computation. Suppose that the input word sequence is given as a list of integer
arrays. The forward computation is simply written with a for loop:

def forward_one_step(h, cur_word, next_word, volatile=False):
word = Variable(cur_word, volatile=volatile)
t = Variable(next_word, volatile=volatile)
x = F.tanh(model.embed(word))
h = F.tanh(model.x_to_h(x) + model.h_to_h(h))
y = model.h_to_y(h)
loss = F.softmax_cross_entropy(y, t)
return h, loss

def forward(x_list, volatile=False):
h = Variable(np.zeros((1, 50), dtype=np.float32), volatile=volatile)
loss = 0
for cur_word, next_word in zip(x_list, x_list[1:]):

h, new_loss = forward_one_step(h, cur_word, next_word, volatile=volatile)
loss += new_loss

return loss

Note that the first dimension of h and x_list is always the mini-batch size. The mini-batch size is assumed to
be 1 here. We implemented the one-step-forward computation as a separate function, which is a best practice of
writing recurrent nets for higher extensibility. Ignore the argument volatile for now, we will review it in the next
subsection. The forward function is very simple and no special care needs to be taken with respect to the length of
the input sequence. This code actually handles variable length input sequences without any tricks.

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward() method to compute gradients of the total loss according to the model parameters:

optimizer.zero_grads()
loss = forward(x_list)
loss.backward()
optimizer.update()

Do not forget to call Optimizer.zero_grads() before the backward computation!

1.2. Recurrent Nets and their Computational Graph 9
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1.2.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose that the input and state
sequence is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range.
This technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward() method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose that we are given a very long sequence, and we want to run backprop truncated at every 30 time steps.
We can write truncated backprop using the forward_one_step function that we wrote above.

h = Variable(np.zeros((1, 50), dtype=np.float32))
loss = 0
count = 0
seqlen = len(x_list[1:])

for cur_word, next_word in zip(x_list, x_list[1:]):
h, new_loss = forward_one_step(h, cur_word, next_word)
loss += new_loss
count += 1
if count % 30 == 0 or count == seqlen:

optimizer.zero_grads()
loss.backward()
loss.unchain_backward()
optimizer.update()

State is updated at foward_one_step, and the losses are accumulated to loss variable. At each 30 steps, back-
prop takes place at the accumulated loss. Then, the unchain_backward() method is called, which deletes the
computation history backward from the accumulated loss. Note that the latest state h itself is not lost, since above
code holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

1.2.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just passing volatile flag to all input variables. Such variables are called volatile
variables.

Warning: It is not allowed to mix volatile and non-volatile variables as arguments to same function.

Remember that our forward function accepts volatile argument. So we can enable volatile forward computation
by just passing volatile=True to this function:

loss = forward(x_list, volatile=True)

10 Chapter 1. Chainer Tutorial
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Volatile variables are also useful to evaluate feed-forward networks.

Variable’s volatility can be changed directly by setting the Variable.volatile attribute. This enables us to
combine a fixed feature extractor network and a trainable predictor network. For example, suppose that we want
to train a feed-forward network predictor_func, which is located on top of another fixed pretrained network
fixed_func. We want to train predictor_func without storing the computation history for fixed_func.
This is simply done by following code snippets (suppose x_data and y_data indicate input data and label, respec-
tively):

x = Variable(x_data, volatile=True)
feat = fixed_func(x)
feat.volatile = False
y = predictor_func(feat)
y.backward()

At first, the input variable x is volatile, so fixed_func is executed in volatile mode, i.e. without memorizing the
computation history. Then the intermediate variable feat is manually set to non-volatile, so predictor_func is
executed in non-volatile mode, i.e., with memorizing the history of computation. Since the history of computation is
only memorized between variables feat and y, the backward computation stops at the feat variable.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to
manage the history of computation (a.k.a. computational graph). The example in the examples/ptb directory
implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next
section, we will review how to use GPU(s) in Chainer.

1.3 Using GPU(s) in Chainer

In this section, you will learn about the following things:

• Relationship between Chainer and PyCUDA

• Basics of GPUArray

• Single-GPU usage of Chainer

• Multi-GPU usage of model-parallel computing

• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:

• Use Chainer on a CUDA-enabled GPU

• Write model-parallel computing in Chainer

• Write data-parallel computing in Chainer

1.3.1 Relationship between Chainer and PyCUDA

Chainer uses PyCUDA as its backend for GPU computation and the pycuda.gpuarray.GPUArray class as the
GPU array implementation. GPUArray has far less features compared to numpy.ndarray, though it is still enough
to implement the required features for Chainer.

Note: chainer.cuda module imports many important symbols from PyCUDA. For example, the GPUArray class
is referred as cuda.GPUArray in the Chainer code.

1.3. Using GPU(s) in Chainer 11
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Chainer provides wrappers of many PyCUDA functions and classes, mainly in order to support customized default al-
location mechanism. As shown in the previous sections, Chainer constructs and destructs many arrays during learning
and evaluating iterations. It is not well suited for CUDA architecture, since memory allocation and release in CUDA
(i.e. cuMemAlloc and cuMemFree functions) synchronize CPU and GPU computations, which hurts performance.
In order to avoid memory allocation and deallocation during the computation, Chainer uses PyCUDA’s memory pool
utilities as the standard memory allocator. Since memory pool is not the default allocator in PyCUDA, Chainer pro-
vides many wrapper functions and classes to use memory pools in a simple way. At the same time, Chainer’s wrapper
functions and classes make it easy to handle multiple GPUs.

Note: Chainer also uses scikit-cuda for a wrapper of CUBLAS, and some functions use CuDNN v2 if available. We
omit their usage in this tutorial.

Note: We also do not touch the detail of PyCUDA. See PyCUDA’s documentation instead.

1.3.2 Basics of GPUArray in Chainer

In order to use GPU in Chainer, we must initialize chainer.cuda module before any GPU-related operations:

cuda.init()

The cuda.init() function initializes global state and PyCUDA. This function accepts an optional argument
device, which indicates the GPU device ID to select initially.

Warning: If you are using multiprocessing, the initialization must take place for each process after the
fork. The main process is no exception, i.e., cuda.init() should not be called before all the children that use
GPU have been forked.

Then we can create a GPUArray object using functions of the cuda module. Chainer provides many construc-
tor functions resembling the ones of NumPy: empty(), empty_like(), full(), full_like(), zeros(),
zeros_like(), ones(), ones_like().

Another useful function to create a GPUArray object is to_gpu(). This function copies a numpy.ndarray object
to a newly allocated GPUArray object. For example, the following code

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu)

generates the same x_gpu as the following code:

x_gpu = cuda.ones((5, 4, 3))

Note: Allocation functions of the cuda module use numpy.float32 as the default element type.

The cuda module also has to_cpu() function to copy a GPUArray object to an ndarray object:

x_cpu = cuda.to_cpu(x_gpu)

All GPUArray constructors allocate memory on the current device. In order to allocate memory on a different device,
we can use device switching utilities. cuda.use_device() function changes the current device:

cuda.use_device(1)
x_gpu1 = cuda.empty((4, 3))

There are many situations in which we want to temporarily switch the device, where the cuda.using_device()
function is useful. It returns an resource object that can be combinated with the with statement:
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with cuda.using_device(1):
x_gpu1 = cuda.empty((4, 3))

These device switching utilities also accepts a GPUArray object as a device specifier. In this case, Chainer switches
the current device to one that the array is allocated on:

with cuda.using_device(x_gpu1):
y_gpu1 = x_gpu1 + 1

Warning: An array that is not allocated by Chainer’s allocator cannot be used as a device specifier.

A GPUArray object allocated by Chainer can be copied between GPUs by cuda.copy() function:

cuda.use_device(0)
x0 = cuda.ones((4, 3))
x1 = cuda.copy(x0, out_device=1)

1.3.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring FunctionSet and input arrays to the GPU
beforehand. In this subsection, the code is based on our first MNIST example in this tutorial.

A FunctionSet object can be transferred to the specified GPU using the to_gpu() method. Make sure to give
parameters and gradients of the GPU version to the optimizer.

model = FunctionSet(
l1 = F.Linear(784, 100),
l2 = F.Linear(100, 100),
l3 = F.Linear(100, 10),

).to_gpu()

optimizer = optimizers.SGD()
optimizer.setup(model.collect_parameters())

Note that this method returns the function set itself. The device specifier can be omitted, in which case it uses the
current device.

Then, all we have to do is transferring each minibatch to the GPU:

batchsize = 100
for epoch in xrange(20):

print 'epoch', epoch
indexes = np.random.permutation(60000)
for i in xrange(0, 60000, batchsize):

x_batch = cuda.to_gpu(x_train[indexes[i : i + batchsize]])
y_batch = cuda.to_gpu(y_train[indexes[i : i + batchsize]])

optimizer.zero_grads()
loss, accuracy = forward(x_batch, y_batch)
loss.backward()
optimizer.update()

This is almost identical to the code of the original example, we just inserted a call to the cuda.to_gpu() function
to the minibatch arrays.
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1.3.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
| | |

(GPU1) +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+

We first have to define a FunctionSet. Be careful that parameters that will be used on a device must reside on that
device. Here is a simple example of the model definition:

model = FunctionSet(
gpu0 = FunctionSet(

l1=F.Linear( 784, 1000),
l2=F.Linear(1000, 1000),
l3=F.Linear(1000, 2000),
l4=F.Linear(2000, 1000),
l5=F.Linear(1000, 1000),
l6=F.Linear(1000, 10)

).to_gpu(0),
gpu1 = FunctionSet(

l1=F.Linear( 784, 1000),
l2=F.Linear(1000, 1000),
l3=F.Linear(1000, 2000),
l4=F.Linear(2000, 1000),
l5=F.Linear(1000, 1000),
l6=F.Linear(1000, 10)

).to_gpu(1)
)

Recall that FunctionSet.to_gpu() returns the FunctionSet object itself. Note that FunctionSet can be nested as
above.

Now we can define the network architecture that we have shown in the diagram:

def forward(x_data, y_data):
x_0 = Variable(cuda.to_gpu(x_data, 0))
x_1 = Variable(cuda.to_gpu(x_data, 1))
t = Variable(cuda.to_gpu(y_data, 0))

h1_0 = F.relu(model.gpu0.l1(x_0))
h1_1 = F.relu(model.gpu1.l1(x_1))

h2_0 = F.relu(model.gpu0.l2(h1_0))
h2_1 = F.relu(model.gpu1.l2(h1_1))

h3_0 = F.relu(model.gpu0.l3(h2_0))
h3_1 = F.relu(model.gpu1.l3(h2_1))

# Synchronize
h3_0 += F.copy(h3_1, 0)
h3_1 = F.copy(h3_0, 1)
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h4_0 = F.relu(model.gpu0.l4(h3_0))
h4_1 = F.relu(model.gpu1.l4(h3_1))

h5_0 = F.relu(model.gpu0.l5(h4_0))
h5_1 = F.relu(model.gpu1.l5(h4_1))

h6_0 = F.relu(model.gpu0.l6(h5_0))
h6_1 = F.relu(model.gpu1.l6(h5_1))

# Synchronize
y = h6_0 + F.copy(h6_1, 0)
return F.softmax_cross_entropy(y, t), F.accuracy(y, t)

First, recall that cuda.to_gpu() accepts an optional argument to specify the device identifier. We use this to
transfer the input minibatch to both the 0th and the 1st devices. Then, we can write this model-parallel example
employing the functions.copy() function. This function transfers an input array to another device. Since it is
a function on Variable, the operation supports backprop, which reversely transfers an output gradient to the input
device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because most of the GPU compu-
tation is asynchronous to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

1.3.5 Data-parallel Computation on Multiple GPUs

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
the model:

model = FunctionSet(
l1 = F.Linear(784, 100),
l2 = F.Linear(100, 100),
l3 = F.Linear(100, 10),

)

We have to copy this model into two different devices. This is done by using copy.deepcopy() and
FunctionSet.to_gpu() method:

import copy
model_0 = copy.deepcopy(model).to_gpu(0)
model_1 = model.to_gpu(1)

Then, set up optimizer as:

optimizer = optimizers.SGD()
optimizer.setup(model_0.collect_parameters())

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Forward function is almost same as the original example:
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def forward(x_data, y_data, model):
x = Variable(x_data)
t = Variable(y_data)
h1 = F.relu(model.l1(x))
h2 = F.relu(model.l2(h1))
y = model.l3(h2)
return F.softmax_cross_entropy(y, t), F.accuracy(y, t)

The only difference is that forward accepts model as an argument. We can feed it with a model and arrays on an
appropriate device. Then, we can write a data-parallel learning loop as follows:

batchsize = 100
for epoch in xrange(20):

print 'epoch', epoch
indexes = np.random.permutation(60000)
for i in xrange(0, 60000, batchsize):

x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

optimizer.zero_grads()

loss_0, accuracy_0 = forward(
cuda.to_gpu(x_batch[:batchsize//2], 0),
cuda.to_gpu(y_batch[:batchsize//2], 0),
model_0)

loss_0.backward()

loss_1, accuracy_1 = forward(
cuda.to_gpu(x_batch[batchsize//2:], 1),
cuda.to_gpu(y_batch[batchsize//2:], 1),
model_1)

loss_1.backward()

optimizer.acumulate_grads(model_1.gradients)
optimizer.update()

model_1.copy_parameters_from(model_0.parameters)

One half of the minibatch is forwarded to GPU 0, the other half to GPU 1. Then the gradients are accumulated by
the Optimizer.accumulate_grads() method. After the gradients are prepared, we can update the optimizer
in usual way. Note that the update only modifies the parameters of model_0. So we must manually copy them to
model_1 using FunctionSet.copy_parameters_from() method.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

1.4 Define your own function

In this section, you will learn about the following things:

• How to define a non-parameterized function

• Useful tools to write a function using a GPU
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• How to define a parameterized function

• How to test the function definition

After reading this section, you will be able to:

• Write your own non-parameterized function

• Define simple kernels in the function definition

• Write your own parameterized function

1.4.1 Non-parameterized Functions

Chainer provides a collection of functions in the functions module. It covers typical use cases in deep learning,
so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we
cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own
functions.

Since they are simpler, we first show how to define non-parameterized functions. First, suppose we want to define an
elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥*𝑦+𝑧. While it is possible to implement this equation using a combination of the
* and + functions, defining it as a single function may reduce memory consumption, so it is not only a toy example.
Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Any function must inherit the Function class. The skeleton
of a non-parameterized function looks like:

class MulAdd(Function):
def forward_cpu(self, inputs):

# do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
# do backward computation on CPU
return some_tuple

We must implement forward_cpu() and backward_cpu()methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward_cpu(self, inputs, grad_outputs):
x, y, z = inputs
gw = grad_outputs[0]

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz
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As per the warning above, forward_cpu function returns a tuple of single element. Note that all arrays appearing in
CPU functions are numpy.ndarray. The forward function is straightforward: It unpacks the input tuple, computes
the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of differentiation
of multiplication. This example just implements the rule. Look at the return values, the function just packs the gradient
of each input in same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e.
storing the history of computation, etc.).

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward_gpu() and backward_gpu():

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = x * y + z
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw = grad_outputs[0]

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

In GPU methods, arrays are of type pycuda.gpuarray.GPUArray We use arithmetic operators defined for
GPUArray. These operators implement the basic elementwise arithmetics.

You maybe find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward() and backward() methods:

class MulAdd(Function):
def forward(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw = grad_outputs[0]

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Note that this is a very rare case, since GPUArray does not implement most features of numpy.ndarray.
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1.4.2 Write an Elementwise Kernel Function

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward and backward computations, which may hurt performance. We can reduce
the number of invocations by defining our own kernel.

Most functions only require elementwise operations like MulAdd. PyCUDA provides a useful tool to de-
fine elementwise kernels, the pycuda.elementwise.ElementwiseKernel class, and Chainer wraps it by
cuda.elementwise() function. Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = cuda.empty_like(x)
cuda.elementwise(

'float* w, const float* x, const float* y, const float* z',
'w[i] = x[i] * y[i] + z[i]',
'muladd_fwd')(w, x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw = grad_outputs[0]

gx = cuda.empty_like(x)
gy = cuda.empty_like(y)
cuda.elementwise(

'''
float* gx, float* gy,
const float* x, const float* y, const float* gw

''', '''
gx[i] = gy[i] * gw[i];
gy[i] = gx[i] * gw[i];

''', 'muladd_bwd')(gx, gy, x, y, gw)

gz = gw # no copy
return gx, gy, gz

cuda.elementwise() function accepts the essential implentation of the kernel function, and returns a kernel
invokation function (actually, it returns ElementwiseKernel object, which is callable). In typical usage, we pass
three arguments to this function. The first is an argument list of the kernel function. The second is a body of parallel
loop, where the variable i indicates the index in the loop. Note that i runs through all indexes of the first array
argument by default. The third is the name of the kernel function, which is shown in debugger and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
cuda.elementwise().

The first one is binary caching: cuda.elementwise() function caches the compiled binary in the /tmp directory
with a hash value of the CUDA code, and reuses it if the given code matches the hash value. This caching mechanism
is actually implemented in PyCUDA.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order to
execute it. cuda.elementwise() function memoizes the arguments and the curent context, and if it is called with
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the same arguments and the same context, it reuses the previously uploaded kernel code.

1.4.3 Parameterized Functions

Next we show how to define a parameterized function. At this time, suppose that we want to implement elementwise
product function between the input array and the parameter array.

Note: Note that the elementwise product between a variable and parameters can be simply implemented by
functions.Parameter function:

p = F.Parameter(np.random.rand((4, 3), dtype=np.float32))
x = Variable(...)
y = p() * x

The Parameter function takes no arguments and just returns a variable holding the parameter array. The example in
this subsection may be slightly more efficient with respect to memory consumption, though.

There are two differences between parameterized functions and non-parameterized functions:

• Parameterized functions have parameter arrays and corresponding gradient arrays. They are typically
stored as attributes of the function class, where the function should provide parameter_names and
gradient_names attributes (or properties). Otherwise, the function must override parameters and
gradients properties directly.

• Parameterized functions must accumulate gradients on backward.

Note that gradient arrays are automatically zeroed by an optimizer, so function implementation only need to initialize
their shapes. Then, the implementation of elementwise product may be as following:

class EltwiseParamProduct(Function):
parameter_names = 'w',
gradient_names = 'gw',

def __init__(self, shape):
self.w = np.random.randn(shape).astype(np.float32)
self.gw = np.empty_like(self.w)

def forward(self, inputs):
x = inputs[0]
y = self.w * x
return y,

def backward(self, inputs, grad_outputs):
x = inputs[0]
gy = grad_outputs[0]

self.gw += gy * x
gx = gy * self.w

return gx,

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. It does not make any trouble even
if the function object is used more than once in the same network, since Function.__call__() operator copies
itself before the forward computation.
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Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

1.4.4 Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical_grad() function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows:

x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad() are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum(f(x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical_grad() function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad() function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is assert_allclose() function. This is similar to numpy.testing.assert_allclose()
function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We can mix them in one
invocation of assert_allclose. The default values of optional arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu() function:

class TestReLU(TestCase):
def test_backward_cpu(self):

x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward()

func = y.creator
f = lambda: func.forward((x.data,))
gx, = gradient_check.numerical_grad(f, (x.data,), (y.grad,))

gradient_check.assert_allclose(gx, x.grad)

We used Variable.creator to extract creator function object of a variable. The first four lines of the test code
are simple forward and backward computation of ReLU function. The next three lines compute numerical gradient
using the same forward function without backward routine. And at last, we compare these two results elementwise.
Note that above test code can be easily modified to test GPU version just by replacing CPU arrays to GPU arrays.

You can find many examples of function tests under tests/function_tests directory.
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1.5 Type check

In this section, you will learn about the following things:

• Basic usage of type check

• Detail of type information

• Internal mechanism of type check

• More complicated cases

• Call functions

• Typical type check example

After reading this section, you will be able to:

• Write a code to check types of input arguments of your own functions

1.5.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is
called just before the forward() method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

def check_type_forward(self, in_types):
...

in_types is an instance of utils.type_check.TypeInfoTuple, which is a sub-class of tuple. To get type
information about the first argument, use in_types[0]. If the function gets multiple arguments, we recommend to
use new variables for readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and a user gets a message like
this:

Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.
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1.5.2 Detail of type information

You can access three information of x_type.

• .shape is a tuple of ints. Each value is size of each dimension.

• .ndim is int value representing the number of dimensions. Note that ndim == len(shape)

• .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)

You can also check data types with .dtype:

utils.type_check.expect(x_type.dtype == numpy.float32)

And an error is like this:

Expect: in_types[0].dtype == numpy.float32
Actual: numpy.float64 != numpy.float32

You can also check kind of dtype. This code checks if the type is floating point:

utils.type_check.expect(x_type.dtype.kind == 'f')

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0])

1.5.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containtnig
ndim member variable, we cannot show such an error message because this equation is evaluated as a boolean value
by Python interpreter.

Actually x_type is a utils.type_check.Expr objects, and doesn’t have a ndim member variable itself.
utils.type_check.Expr represents a syntax tree. x_type.ndim makes a utils.type_check.Expr
object representing (getattr, x_type, ’ndim’). x_type.ndim == 2 makes an object like (eq,
(getattr, x_type, ’ndim’), 2). type_check.expect() gets a utils.type_check.Expr ob-
ject and evaluate it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable
error message.

If you want to evaluate a utils.type_check.Expr object, call eval() method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of utils.type_check.Expr. In
the same way, x_type.shape[0].eval() returns an int value.

1.5.4 More powerfull methods

utils.type_check.Expr class is more powerfull. It supports all mathematical operators such as + and *. You
can write a condition that the first dimension of x_type is the first dimension of y_type times four:
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x_type.shape[0] == y_type.shape[0] * 4

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with utils.type_check.Variable to show
readable error message:

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")

This code can check the equivalent condition below:

x_type.shape[0] == self.in_size

However, the latter condition doesn’t know meanig of this value. When this condition is not satisfied, the latter code
shows unreadable error message:

Expect: in_types[0].shape[0] == 4 # what does '4' mean?
Actual: 3 != 4

Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

Expect: in_types[0].shape[0] == in_size # OK, `in_size` is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here

1.5.5 Call functions

How to check summation of all values of shape? utils.type_check.Expr also supports function call.

sum = utils.type_check.Variable('sum', numpy.sum)
utils.type_check.expect(sum(x_type.shape) == 10)

Why do we need to wrap the function numpy.sum with utils.type_check.Variable? x_type.shape
is not a tuple but an object of utils.type_check.Expr as we have seen before. Therefore,
numpy.sum(x_type.shape) fails. We need to evaluate this function lazily.

The above example makes an error message like this:

Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

1.5.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate
utils.type_check.Expr and get its result value with eval() method. And, check the condition and show
warning message by your hand:

x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):

expect_msg = 'Shape is expected to be ...'
actual_msg = 'Shape is ...'
raise utils.type_check.InvalidType(expect_msg, actual_msg)

Please make a readable error message. This code generates an error below:
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Expect: Shape is expected to be ...
Actual: Shape is ...

1.5.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)

in_types.size() returns a utils.type_check.Expr object representing a number of arguments. You can
check it in the same way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before check in_types.size(). When the number of argument is illegal, this process may
fail. For example, this code doesn’t work when the size of in_types is zero:

utils.type_check.expect(
in_types.size() == 1,
in_types[0].ndim == 1,

)

After that, check each type:

utils.type_check.expect(
x_type.dtype == numpy.float32,
x_type.ndim == 2,
x_type.shape[1] == 4,

)

The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.
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CHAPTER 2

Chainer Reference Manual

2.1 Core functionalities

2.1.1 Variable

class chainer.Variable(data, volatile=False)
Array with a structure to keep track of computation.

Every variable holds a data array of type either ndarray or GPUArray.

A Variable object may be constructed in two ways: by the user or by some function. When a variable is created
by some function as one of its outputs, the variable holds a reference to that function. This reference is used in
error backpropagation (a.k.a. backprop). It is also used in backward unchaining. A variable that does not hold
a reference to its creator is called a root variable. A variable is root if it is created by the user, or if the reference
is deleted by unchain_backward().

Users can disable this chaining behavior by setting the volatile flag for the initial variables. When a function
gets volatile variables as its inputs, the output variables do not hold references to the function. This acts like
unchaining on every function application.

data
Data array of type either ndarray or GPUArray.

grad
Gradient array. It is None until backprop reaches this variable.

creator
The function who creates this variable. It is None if the variable is not created by any function.

volatile
Boolean flag. If True, the variable does not keep track of any function applications.

__len__()
Returns the number of elements of the data array.

Returns the number of elements of the data array.

Return type int

backward(retain_grad=False)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, Function.backward() is called on each Function object appearing in the backward
graph starting from this variable. The backward graph is represented by backward references from vari-
ables to their creators, and from functions to their inputs. The backprop stops at all root variables. Some
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functions set None as gradients of some inputs, where further backprop does not take place at such input
variables.

This method uses grad as the initial error array. User can manually set a gradient array before calling
this method. If data contains only one element (i.e., it is scalar) and grad is None, then this method
automatically complement 1.0 as the initial error. This is useful on starting backprop from some scalar
loss value.

Parameters retain_grad (bool) – If True, the gradient arrays of all intermediate variables
are kept. Otherwise, grad of the intermediate variables are set to None on appropriate
timing, which may reduce the maximum memory consumption.

In most cases of training some model, the purpose of backprop is to compute gradients of
parameters, not of variables, so it is recommended to set this flag False.

label
Short text that represents the function.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

unchain_backward()
Deletes references between variables and functions backward.

After this method completes, intermediate variables and functions that are not referenced from anywhere
are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function,
i.e. this variable becomes root in the computation graph. It indicates that backprop after unchaining stops
at this variable. This behavior is useful to implement truncated BPTT.

2.1.2 Function

class chainer.Function
Function on variables with backpropagation ability.

All function implementations defined in chainer.functions inherit this class.

The main feature of this class is keeping track of function applications as a backward graph. When a function
is applied to Variable objects, the function is copied, and its forward() method is called on data fields
of input variables, and at the same time it chains references from output variables to the function and from the
function to its inputs.

Note: Strictly speaking, when a function is applied to some variable, a special Function object called splitter
is inserted between the variable and the function. The splitter is used to manipulate multiple function applica-
tions on the same variable, where gradients from different backward paths are accumulated at the variable.

Note: __call__() copies the function instance before the forward computation and chaining. This enables
us to reuse one function object for multiple function applications, where the different calls must use different
references to the function object. Note that the copy is shallow, so implementations of Function must take
care of any member attributes shared accross forward and backward computations.

Example
Let x an instance of Variable and f an instance of Function taking only one argument. Then a line
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>>> y = f(x)

computes a new variable y and creates backward references. Actually, backward references are set as per the
following diagram:

x <--- (splitter) <--- x' <--- f' <--- y

where prime “”’ indicates a copy of the original object. If another application the function occurs as

>>> z = f(x)

then the splitter acts like a branch as the following new diagram:

|--- x' <--- f' <--- y
x <--- (splitter) <-+

|--- x'' <--- f'' <--- z

Note that the splitter is implicitly inserted and user does not need to take any special care of it; just remember
that such branching is correctly managed by chainer.

Every function implementation should provide forward_cpu(), forward_gpu(), backward_cpu()
and backward_gpu(). Alternatively, one can provide forward() and backward() instead of separate
methods. Backward methods have default implementations that just return None, which indicates that the
function is non- differentiable.

Function implementations are classified into two types: parameterized ones and non-parameterized ones. A
parameterized function holds parameter arrays and coresponding gradient arrays. Implementation can choose
any way to keep these arrays, but it is recommended to keep them as attributes to easily migrate between
CPU and GPU. Parameterized function must provide accessors to these arrays called parameters() and
gradients().

inputs
A tuple or list of input variables.

outputs
A tuple or list of output variables.

parameter_names
A tuple or list of names of parameter attributes. It is set to an empty tuple by default. This attribute is
used by the default implementation of parameters() property to gather the collection of parameter
arrays. Implementation of parameterized function should override this field as an attribute or a property,
or otherwise it should override parameters() property.

gradient_names
A tuple or list of names of gradient attributes. The detail is same as parameter_names.

__call__(*inputs)
Applies forward propagation with chaining backward references.

Basic behavior is also expressed in documentation of Function class. This function first copies itself to
avoid conflict over multiple invokations.

Note: If the data attribute of input variables reside on GPU device, then, before it calls forward()
method, the appropriate device is selected, so in most cases implementor does not need to take care of
device selection.

Parameters inputs – Tuple of input Variable objects. All input variables must have same
volatile flag.
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Returns One Variable object or a tuple of multiple Variable objects.

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Function must
implement either cpu/gpu methods or this method, if the function is intended to be backprop-ed.

Parameters

• inputs – Tuple of input arrays.

• grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

• inputs – Tuple of input ndarray object(s).

• grad_outputs – Tuple of output gradient ndarray object(s).

Returns Tuple of input gradient ndarray object(s). Some or all of them can be None, if the
function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

• inputs – Tuple of input GPUArray object(s).

• grad_outputs – Tuple of output gradient GPUArray object(s).

Returns Tuple of input gradient GPUArray object(s). Some or all of them can be None, if the
function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_backward(in_types, grad_types)
Checks types of gradient data before back propagation.

Before backward() is called, this function is called. You need to validate types of gradient data in this
function using the type checking utilities.
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check_type_backward() is always called after check_type_forward(), so each function does
not need to check the same condition here.

Parameters

• in_types (TypeInfoTuple) – The type information of input data for backward().

• grad_types (TypeInfoTuple) – The type information of gradient data for
backward().

check_type_forward(in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

forward(inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either cpu/gpu
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu(inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of ndarray object(s).

Returns Tuple of ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of GPUArray object(s).

Returns Tuple of GPUArray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

gradients
A tuple of gradient arrays.

Default implementation collects gradient arrays based on gradient_names attribute.
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label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

parameters
A tuple of parameter arrays.

Default implementation collects parameter arrays based on parameter_names attribute.

to_cpu()
Migrates the function to CPU and returns self.

The default implementation moves all fields of type pycuda.gpuarray.GPUArray onto CPU.

Returns self.

to_gpu(device=None)
Migrates the function to GPU and returns self.

The default implementation moves all fields of type ndarray onto GPU.

Parameters device (int or pycuda.driver.Device or None) – Device ID of GPU that
the function will be migrated on. If this is None, the current device is used.

Returns self.

unchain()
Purges in/out variables and this function itself from the graph.

This method is called from Variable.unchain_backward() method.

2.1.3 FunctionSet

class chainer.FunctionSet(**functions)
Set of objects with parameters and gradients properties.

FunctionSet is useful to collect parameters and gradients of multiple parameterized Function objects.
FunctionSet itself also implements parameters and gradients, so it can be nested in another
FunctionSet object.

Function registration is done by just adding an attribute to FunctionSet object.

collect_parameters()
Returns a tuple of parameters and gradients.

Returns Tuple (pair) of two tuples. The first element is a tuple of parameter arrays, and the
second is a tuple of gradient arrays.

copy_parameters_from(params)
Copies parameters from another source without reallocation.

Parameters params (Iterable) – Iterable of parameter arrays.

gradients
Tuple of gradient arrays of all registered functions.

The order of gradients is consistent with parameters() property.

parameters
Tuple of parameter arrays of all registered functions.

The order of parameters is consistent with gradients() property.
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to_cpu()
Migrates all parameters and gradients onto CPU.

This method calls to_cpu method of each registered object.

Returns self

to_gpu(device=None)
Migrates all parameters and gradients onto GPU.

This method calls to_gpu method of each registered object.

Parameters device (int or pycuda.driver.Device or None) – Device ID of GPU. If
None is given, it uses the current device.

Returns self

2.1.4 Optimizer

class chainer.Optimizer
Base class of all numerical optimizers.

Optimizer is set up with references to parameters and gradients, and then on every call of update(), it updates
parameters based on corresponding gradients. Optimizer implementations must override update_one()
method, which updates one parameter array using the corresponding gradient array.

Optimizer can optionally use state for each parameter/gradient pair. It is initialized by init_state()method
at set up.

t
int

Number of update steps. It can be used in update_one() implementation, where t is incremented
beforehand.

accumulate_grads(grads)
Accumulates gradients from other source.

This method just adds given gradient arrays to gradients that this optimizer holds. It is typically used in
data-parallel optimization, where gradients for different shards are computed in parallel and aggregated by
this method. This method correctly treats multiple GPU devices.

Parameters grads (Iterable) – Iterable of gradient arrays to be accumulated.

clip_grads(maxnorm)
Clips the norm of whole gradients up to given threshold.

Parameters maxnorm (float) – Threshold of gradient L2 norm.

See also:

compute_grads_norm() It uses this method to compute the gradient norm to be clipped.

compute_grads_norm()
Computes the norm of whole gradients.

Returns L2 norm of whole gradients, i.e. square root of sum of square of all gradient elements.

Return type float
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Warning: This method returns a CPU-computed value, which means that this method synchronizes
between CPU and GPU if at least one of the gradients reside on the GPU.

init_state(param, grad)
Returns the initial state for given parameter and gradient.

Default implementation delegates the procedure to init_state_cpu() or init_state_gpu() de-
pending on the type of param.

Parameters

• param – Parameter array.

• grad – Gradient array corresponding to param.

Returns

Initial state value.

Warning: Note that, on every call of update_one(), the state value is passed by value
and then the method updates its content, so the state must be a reference. Especiallly,
one cannot use a value of built-in numeric type. If the state is one scalar value, it is
recommended to use scalar array, i.e. ndarray with shape ().

init_state_cpu(param, grad)
Returns the initial state for given parameter and gradient on GPU.

Parameters

• param (ndarray) – Parameter array.

• grad (ndarray) – Gradient array.

Returns Initial state value.

See also:

init_state(), init_state_gpu()

init_state_gpu(param, grad)
Returns the initial state for given parameter and gradient on CPU.

Parameters

• param (GPUArray) – Parameter array.

• grad (GPUArray) – Gradient array.

Returns Initial state value.

See also:

init_state(), init_state_gpu()

setup(params_grads)
Prepares states for all given parameter/gradient pairs.

Parameters params_grads – Tuple (pair) of two tuples. The first element is a tuple of pa-
rameter arrays, and the second is a tuple of corresponding gradient arrays. Return value of
FunctionSet.collect_parameters() method can be used.

update()
Updates all parameters and states using corresponding gradients.
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This method iteratively calls update_one() for each parameter/ gradient/state tuple. Beforehand, t
attribute is incremented.

update_one(param, grad, state)
Updates a parameter array and its state using given gradient.

The default implementation delegates the procedure to update_one_cpu() or update_one_gpu()
depending on the type of the parameter array. Optimizer implmentation must override these type-specific
methods or this update_one() method directly.

Parameters

• param – Parameter array.

• grad – Gradient array.

• state – State value.

See also:

update_one_cpu(), update_one_gpu()

update_one_cpu(param, grad, state)
Updates a parameter array and its state using given gradient on CPU.

Parameters

• param (ndarray) – Parameter array.

• grad (ndarray) – Gradient array.

• state – State value.

See also:

update_one(), update_one_gpu()

update_one_gpu(param, grad, state)
Updates a parameter array and its state using given gradient on GPU.

Parameters

• param (GPUArray) – Parameter array.

• grad (GPUArray) – Gradient array.

• state – State value.

See also:

update_one(), update_one_cpu()

weight_decay(decay)
Applies weight decay to the parameter/gradient pairs.

Parameters decay (float) – Coefficient of weight decay

zero_grads()
Fills all gradient arrays by zeros.

This method should be call before backprop takes place, since gradients are accumulated on backprop.

2.1. Core functionalities 35

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://documen.tician.de/pycuda/array.html#pycuda.gpuarray.GPUArray
http://documen.tician.de/pycuda/array.html#pycuda.gpuarray.GPUArray
https://docs.python.org/2/library/functions.html#float


Chainer Documentation, Release 1.1.2

2.2 Utilities

2.2.1 CUDA utilities

Device, context and memory management on PyCUDA and scikit-cuda.

Chainer uses PyCUDA facilities (with very thin wrapper) to exploit the speed of GPU computation. Following modules
and classes are imported to cuda module for convenience (refer to this table when reading chainer’s source codes).

imported name original name
chainer.cuda.cublas skcuda.cublas
chainer.cuda.cumath pycuda.cumath
chainer.cuda.curandom pycuda.curandom
chainer.cuda.culinalg skcuda.linalg
chainer.cuda.cumisc skcuda.misc
chainer.cuda.gpuarray pycuda.gpuarray
chainer.cuda.Context pycuda.driver.Context
chainer.cuda.Device pycuda.driver.Device
chainer.cuda.Event pycuda.driver.Event
chainer.cuda.GPUArray pycuda.gpuarray.GPUArray
chainer.cuda.Stream pycuda.driver.Stream

Chainer provides thin wrappers of GPUArray allocation routines, which use mem_alloc() as the allocator. This al-
locator uses device-wise instance of DeviceMemoryPool, which enables the reuse of device memory over multiple
forward/backward computations. mem_alloc() also inserts an additional attribute to the allocated memory called
device, which indicates the device that the memory is allocated on. Functions of cuda uses this attribute to select
appropriate device on each manipulation routine.

Initialization and global states

chainer.cuda.init(device=None)
Initializes CUDA global state.

Chainer maintains CUDA context, CUBLAS context, random number generator and device memory pool for
each GPU device and for each process (the main process or a process forked by multiprocessing) as global
states. When called for the first time on the process, this function initializes these global states.

Warning: This function also initializes PyCUDA and scikit-cuda. Since these packages do not support
forking after initialization, do not call this function before forking the process.

This function also registers shutdown() to atexit slot.

It also initializes random number generator. User can set fixed seed with CHAINER_SEED environment vari-
able.

Parameters device (int or Device or None) – Device ID to initialize on.

chainer.cuda.shutdown()
Finalizes CUDA global state.

This function is automatically called by atexit. Multiple calls are allowed, so user can manually call this
function if necessary.

chainer.cuda.mem_alloc(nbytes)
Allocates device memory of given size from memory pool.

This function chooses memory pool corresponding to the current device.
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Parameters nbytes (int) – The size of memory in bytes.

Returns Allocated memory with additional device attribute. This attribute is used to determine
on which GPU the memory resides.

Return type pycuda.tools.PooledDeviceAllocation

Devices and contexts

chainer.cuda.get_device(arg=None)
Gets the device from ID arg or given chainer’s.

GPUArray.

Args: arg: Value to specify a GPU device.

Returns: Device object specified by given arg.

The rule of device selection is following.

Type of arg Return value
None Current device
int Device of ID arg
Device arg
GPUArray Device given array was allocated on
ndarray None

chainer.cuda.use_device(arg, pop=True)
Switches the CUDA context to use given device.

Parameters

• arg – Argument of get_device().

• pop (bool) – If True, pop the current context from context stack.

chainer.cuda.using_device(*args)
Returns a DeviceUser object of the first GPUArray argument.

If none of the arguments specifies a GPU device, then it returns a dummy DeviceUser object which is
inactive.

Parameters *args – Objects based on which an appropriate device should be selected.

Returns Device user instance of selected argument.

Return type DeviceUser

Example
Suppose arrays is a list of arrays of type either ndarray or GPUArray. Then, the following code invokes
do_something_on with an appropriate context:

with using_device(*arrays):
do_something_on(arrays)

class chainer.cuda.DeviceUser(arg)
RAII-style CUDA context swithcer.

Parameters arg – Argument of get_device().
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device
~pycuda.driver.Device

Selected device.

chainer.cuda.get_context(arg=None)
Gets the context corresponding to the specified device.

Parameters arg – Argument of get_device().

Returns Context object corresponding to the specified device.

Return type Context

chainer.cuda.get_cublas_handle()
Gets CUBLAS handle for the current device.

Returns CUBLAS handle.

chainer.cuda.using_cumisc(handle=None)
Temporarily set chainer’s CUBLAS handle to scikit-cuda.

The usage is similar to using_device().

Parameters handle – CUBLAS handle. If None is specified, it uses CUBLAS handle for the
current device.

Returns Misc user object.

Return type CumiscUser

class chainer.cuda.CumiscUser(handle)
RAII-style switcher of scikits-cuda’s default CUBLAS handle.

GPUArray allocation and copy

chainer.cuda.copy(array, out=None, out_device=None)
Copies a GPUArray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

• array (GPUArray) – Array to be copied.

• out (GPUArray) – Destination array. If it is not None, then out_device argument is
ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type GPUArray

chainer.cuda.copy_async(array, out=None, out_device=None, stream=None)
Copies a GPUArray object using the given stream.

This function can copy the device array to the destination array on another device.

Parameters
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• array (GPUArray) – Array to be copied.

• out (GPUArray) – Destination array. If it is not None, then out_device argument is
ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

• stream (Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type GPUArray

Warning: Currently, copy_async over different devices raises exception, since PyCUDA drops the defini-
tion of pycuda.driver.memcopy_peer_async().

chainer.cuda.empty(shape, dtype=<type ‘numpy.float32’>)
Creates an uninitialized GPUArray object.

Parameters

• shape (tuple of ints) – The shape of array.

• dtype (numpy.dtype) – Element type.

Returns Uninitialized GPU array allocated by memory pool.

Return type GPUArray

chainer.cuda.empty_like(array)
Alias to pycuda.gpuarray.empty_like().

chainer.cuda.full(shape, fill_value, dtype=<type ‘numpy.float32’>, stream=None)
Creates a constant-filled GPUArray object.

Parameters

• shape (tuple of ints) – The shape of array.

• fill_value – Constant to fill the array by.

• dtype (numpy.dtype) – Element type.

• stream (Stream) – CUDA stream.

Returns Constant-filled GPU array allocated by memory pool.

Return type GPUArray

chainer.cuda.full_like(array, fill_value, stream=None)
Creates a constant-filled GPUArray object like the given array.

Parameters

• array (GPUArray) – Base array.

• fill_value – Constant value to fill the array by.

• stream (Stream) – CUDA stream.

Returns Constant-filled array.
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Return type GPUArray

chainer.cuda.zeros(shape, dtype=<type ‘numpy.float32’>, stream=None)
Creates a zero-filled GPUArray object.

This function is equivalent to full(shape, 0, dtype, stream).

chainer.cuda.zeros_like(array, stream=None)
Creates a zero-filled GPUArray object like the given array.

This function is equivalent to full_like(array, 0, stream).

chainer.cuda.ones(shape, dtype=<type ‘numpy.float32’>, stream=None)
Creates a zero-filled GPUArray object.

This function is equivalent to full(shape, 1, dtype, stream).

chainer.cuda.ones_like(array, stream=None)
Creates a one-filled GPUArray object like the given array.

This function is equivalent to full_like(array, 1, stream).

chainer.cuda.to_cpu(array)
Copies the given GPU array to host CPU.

Parameters array – Array to be sent to GPU.

Returns

Array on CPU.

If given array is already on CPU, then this function just returns array without performing
any copy.

Return type ndarray

chainer.cuda.to_cpu_async(array, stream=None)
Copies the given GPU array asynchronously to host CPU.

Parameters

• array – Array to be sent to GPU.

• stream (Stream) – CUDA stream.

Returns

Array on CPU.

If given array is already on CPU, then this function just returns array without performing
any copy.

Return type ndarray

chainer.cuda.to_gpu(array, device=None)
Copies the given CPU array to specified device.

Parameters

• array – Array to be sent to GPU.

• device – Device specifier.

Returns

Array on GPU.
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If array is already on GPU, then this function just returns array without performing any
copy. Note that this function does not copy GPUArray into specified device.

Return type GPUArray

chainer.cuda.to_gpu_async(array, stream=None)
Copies the given CPU array asynchronously to the current device.

Parameters

• array – Array to be sent to GPU. If it is ndarray, then its memory must be pagelocked.

• stream (Stream) – CUDA stream.

Returns

Array on GPU.

If given array is already on GPU, then this function just returns array without performing
any copy.

Return type GPUArray

Random number generators

chainer.cuda.get_generator(device=None)
Gets the random number generator for the given device.

Parameters device – Device specifier (an arugment of get_device())

Returns Random number generator.

Return type pycuda.curandom.XORWOWRandomNumberGenerator

chainer.cuda.seed(s=None, device=None)
Resets the random number generator of the specified device.

Parameters

• s (int or None) – Seed value. If it is None, it initializes the generator without fixed seed.

• device – Device specifier (i.e. argument of get_device()).

Kernel definition utilities

chainer.cuda.elementwise(arguments, operation, name, keep=False, options=None, preamble=’‘,
loop_prep=’‘, after_loop=’‘)

Creates an elementwise kernel function.

This function uses pycuda.tools.context_dependent_memoize() to cache the resulting kernel ob-
ject, i.e. the resulting kernel object is cached for each arguments and CUDA context.

The arguments are the same as those for pycuda.elementwise.ElementwiseKernel(), except that
name argument is mandatory.

chainer.cuda.reduce(arguments, map_expr, reduce_expr, neutral, name, dtype_out=<type
‘numpy.float32’>, keep=False, options=None, preamble=’‘)

Creates a global reduction kernel function.

This function uses pycuda.tools.context_dependent_memoize() to cache the resulting kernel ob-
ject, i.e. the resulting kernel object is cached for each argument and CUDA context.
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The arguments are the same as those for pycuda.reduction.ReductionKernel(), except that their
order is different and name argument is mandatory.

Interprocess communication on GPU

class chainer.cuda.IPCEvent
Event object for interprocess synchronization on GPU.

class chainer.cuda.IPCArrayHandle(array)
Converter between GPUArray and its Inter-Process Communication handle.

It holds IPC memory handle with shape and dtype information. The instance can be pickled, which means it
can be passed through IPC path way, e.g. Pipe and Queue. The other process can extract shared GPUArray by
calling get(). Also, the extracted array can be re-converted into another IPCArrayHandle.

2.2.2 Common algorithms

class chainer.utils.WalkerAlias(probs)
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities 𝑝1, . . . , 𝑝𝑛 in 𝑂(1) time. It is more efficient
than choice(). This class has sampling methods in CPU and in GPU.

Parameters probs (float list) – Probabilities of entries. They are normalized with sum(probs).

See: Wikipedia article

sample(shape)
Generates a random sample based on given probabilities.

Parameters shape (tuple of int) – Shape of a return value.

Returns Returns a generated array with the given shape. If a sampler is in CPU mode the return
value is ndarray, and if it is in GPU mode the return value is GPUArray.

to_gpu()
Make a sampler GPU mode.

2.3 Assertion and Testing

Chainer provides some facilities to make debugging easy.

Function uses a systematic type checking of the chainer.utils.type_check module. It enables users to
easily find bugs of forward and backward implementations. You can find examples of type checking in some function
implementations.

Most function implementations are numerically tested by gradient checking. This method computes numerical gradi-
ents of forward routines and compares their results with the corresponding backward routines. It enables us to make
the source of issues clear when we hit an error of gradient computations. The chainer.gradient_check module
makes it easy to implement the gradient checking.

2.3.1 Type checking utilites

class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.
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It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.

Example
Let x and y be instances of Expr, then

>>> c = (x == y)

is also an instance of Expr. To evaluate and get its value, call eval() method:

>>> c.eval()
True # when x.eval() == y.eval()

Call str function to get a representation of the original equaltion:

>>> str(c)
'x + y' # when str(x) == 'x' and str(y) == 'y'

You can actually compare an expression with a value:

>>> (x == 1).eval()

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:

>>> x == y and y == z # raises an error

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() funciton.

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False,
that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to evaluate.

class chainer.utils.type_check.TypeInfo(shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This infor-
mation is independent of CPU or GPU array.

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the
i-th input/gradinent data. As each element is Expr, you can easily check its validity.

size()
Returns an expression representing its length.

Returns An expression object representig length of the tuple.

Return type Expr
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2.3.2 Gradient checking utilities

chainer.gradient_check.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)
Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• x – Left-hand-side array.

• y – Right-hand-side array.

• atol (float) – Absolute tolerance.

• rtol (float) – Relative tolerance.

• verbose (bool) – If True, it outputs verbose messages on error.

chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001)
Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of
chainer.functions.

Parameters

• f (function) – Python function with no arguments that runs forward computation and returns
the result.

• inputs (tuple of arrays) – Tuple of arrays that should be treated as inputs. Each element
of them is slightly modified to realize numerical gradient by finite differences.

• grad_outputs (tuple of arrays) – Tuple of arrays that are treated as output gradients.

• eps (float) – Epsilon value of finite differences.

Returns Numerical gradient arrays corresponding to inputs.

Return type tuple

2.4 Standard Function implementations

Chainer provides basic Function implementations in the chainer.functions package.

Non-parameterized functions are provided as plain Python functions. These can be used directly in forward computa-
tion without explicit handling of Function objects. On the other hand, parameterized functions should be used with
explicit handling of Function objects.

2.4.1 Learnable connections

class chainer.functions.BinaryHierarchicalSoftmax(in_size, tree)
Implementation of hierarchical softmax (HSM).

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical
softmax uses product of sigmoid functions. It costs only 𝑂(log(𝑛)) time where 𝑛 is the vocabulary size in
average.

At first a user need to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When
a word 𝑥 is given, exactly one path from the root of the tree to the leaf of the word exists. Let path(𝑥) =
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((𝑒1, 𝑏1), . . . , (𝑒𝑚, 𝑏𝑚)) be the path of 𝑥, where 𝑒𝑖 is an index of 𝑖-th internal node, and 𝑏𝑖 ∈ {−1, 1} indicates
direction to move at 𝑖-th internal node (-1 is left, and 1 is right). Then, the probability of 𝑥 is given as below:

𝑃 (𝑥) =
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝑃 (𝑏𝑖|𝑒𝑖)

=
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝜎(𝑏𝑖𝑥

⊤𝑤𝑒𝑖),

where 𝜎(·) is a sigmoid function, and 𝑤 is a weight matrix.

This function costs 𝑂(log(𝑛)) time as an average length of paths is 𝑂(log(𝑛)), and 𝑂(𝑛) memory as the number
of internal nodes equals 𝑛− 1.

Parameters

• in_size (int) – Dimension of input vectors.

• tree – A binary tree made with tuples like ((1, 2), 3).

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

class chainer.functions.Convolution2D(in_channels, out_channels, ksize, stride=1, pad=0, ws-
cale=1, bias=0, nobias=False, use_cudnn=True, ini-
tialW=None, initial_bias=None)

Two-dimensional convolution function.

The details of this function are described below the arguments description.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or (int, int)) – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k)
are equivalent.

• stride (int or (int, int)) – Stride of filter applications. stride=s and stride=(s,
s) are equivalent.

• pad (int or (int, int)) – Spatial padding width for input arrays. pad=p and pad=(p, p)
are equivalent.

• wscale (float) – Scaling factor of the initial weight.

• bias (float) – Initial bias value.

• nobias (bool) – If True, then this function does not use the bias term.

• use_cudnn (bool) – If True, then this function uses CuDNN if available.

• initialW (4-D array) – Initial weight value. If None, then this function uses to initialize
wscale.

• initial_bias (1-D array) – Initial bias value. If None, then this function uses to ini-
tialize bias.

This function holds at most two parameter arrays: W and b, which indicate the filter weight and the bias vector,
respectively.

The filter weight has four dimensions (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊 ) which indicate the number of output channels, the num-
ber of input channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d.
Gaussian random samples, each of which has zero mean and deviation

√︀
1/(𝑐𝐼𝑘𝐻𝑘𝑊 ) by default. The deviation

is scaled by wscale if specified.
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The bias vector is of size 𝑐𝑂. Each element of it is initialized by bias argument. If nobias argument is set to
True, then this function does not hold the bias parameter.

The two-dimensional convolution function is defined as follows. Let 𝑋 be the input tensor of dimensions
(𝑛, 𝑐𝐼 , ℎ, 𝑤), where 𝑛 is the batch size, and (ℎ,𝑤) is spatial size of the input image. Then the Convolution2D
function computes correlations between filters and patches of size (𝑘𝐻 , 𝑘𝑊 ) in 𝑋 . Note that correlation here is
equivalent to the inner product between expanded vectors. Patches are extracted at positions shifted by multiples
of stride from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not
run over the padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application, and (𝑝𝐻 , 𝑝𝑊 ) the spatial padding size. Then, the output size
(ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 )/𝑠𝑋 + 1.

class chainer.functions.EmbedID(in_size, out_size)
Efficient linear function for one-hot input.

This is a parameterized function to embed the given discrete identifier (e.g. word) into a continuous vector
space. This function just holds embedding vectors for all identifiers as one large matrix W, which is learnable.
The identifiers are directly used as indexes of the matrix W.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

Note: This function is non-differentiable with respect to the input identifiers.

class chainer.functions.Linear(in_size, out_size, wscale=1, bias=0, nobias=False, initialW=None,
initial_bias=None)

Linear function (a.k.a. fully-connected layer or affine transformation).

This function holds a weight matrix W and a bias vector b.

The weight matrix W has shape (out_size, in_size). This matrix is initialized with i.i.d. Gaussian
samples, each of which has zero mean and deviation

√︀
1/

Parameters
•in_size (int) – Dimension of input vectors.
•out_size (int) – Dimension of output vectors.
•wscale (float) – Scaling factor of the weight matrix.
•bias (float) – Initial bias value.
•nobias (bool) – If True, then this function does not use the bias.
•initialW (2-D array) – Initial weight value. If None, then this function uses to initialize wscale.
•initial_bias (1-D array) – Initial bias value. If None, then this function uses to initialize bias.

Note: This function accepts an input variable of a non-matrix array. In this case, the leading dimension is treated as
the batch dimension, and the other dimensions are reduced to one dimension.

class chainer.functions.NegativeSampling(in_size, counts, sample_size, power=0.75)
Implementation of negative sampling.

In natural language processing, especially language modeling, the number of vocabulary is very large. There-
fore, you need to spend a lot of time to calculate the gradient of the embedding matrix.
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Instead, in negative sampling trick, you only need to calculate the gradient for a few sampled negative examples.

The objective function is below:

𝑓(𝑥, 𝑝) = log 𝜎(𝑥⊤𝑤𝑝) + 𝑘𝐸𝑖∼𝑃 (𝑖)[log 𝜎(−𝑥⊤𝑤𝑖)],

where 𝜎(·) is a sigmoid function, 𝑤𝑖 is the weight vector for the word 𝑖, and 𝑝 is a positive example. It is
approximeted with 𝑘 examples 𝑁 sampled from probability 𝑃 (𝑖), like this:

𝑓(𝑥, 𝑝) ≈ log 𝜎(𝑥⊤𝑤𝑝) +
∑︁
𝑛∈𝑁

log 𝜎(−𝑥⊤𝑤𝑛).

Each sample of 𝑁 is drawn from the word distribution 𝑃 (𝑤). This is calculated as 𝑃 (𝑤) = 1
𝑍 𝑐(𝑤)𝛼, where

𝑐(𝑤) is the unigram count of the word 𝑤, 𝛼 is a hyper-parameter, and 𝑍 is the normalization constant.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor 𝛼.

See: Distributed Representations of Words and Phrases and their Compositionality

class chainer.functions.Parameter(array)
Function that outputs its weight array.

This is a parameterized function that takes no input and returns a variable holding a shallow copy of the param-
eter array.

Parameters array – Initial parameter array.

2.4.2 Array commputation functions

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, use_cudnn=True)
Two-dimensional convolution function.

Parameters

• x (Variable) – Input variable.

• W (Variable) – Weight variable.

• b (Variable) – Bias variable.

• stride (int or (int, int)) – Stride of filter applications. stride=s and stride=(s,
s) are equivalent.

• pad (int or (int, int)) – Spatial padding width for input arrays. pad=p and pad=(p, p)
are equivalent.

• use_cudnn (bool) – If True, then this function uses CuDNN if available.

Returns Output variable.

Return type Variable

See also:

Convolution2D
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chainer.functions.linear(x, W, b=None, stride=1, pad=0, use_cudnn=True)
Nonparameterized linear function.

Parameters

• x (Variable) – Input variable.

• W (Variable) – Weight variable.

• b (Variable) – Bias variable.

Returns Output variable.

Return type Variable

See also:

Linear

2.4.3 Array manipulation functions

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

• xs (tuple of Variables) – Variables to be concatenated.

• axis (int) – Axis that the input arrays are concatenated along.

Returns Output variable.

Return type Variable

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.

This function copies the array of input variable onto the device specified by dst if the original array is on GPU,
and otherwise just copies the array within host memory.

Parameters

• x (Variable) – Variable to be copied.

• dst – Target device specifier.

Returns Output variable.

Return type Variable

chainer.functions.dropout(x, ratio=0.5, train=True)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode, it does nothing and just returns x.

Parameters

• x (Variable) – Input variable.

• ratio (float) – Dropout ratio.

• train (bool) – If True, executes dropout. Otherwise, does nothing.

Returns Output variable.

Return type Variable
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See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters

• x (Variable) – Input variable.

• shape (tuple of ints) – Target shape.

Returns Variable that holds a reshaped version of the input variable.

Return type Variable

chainer.functions.split_axis(x, indices_or_sections, axis)
Splits given variables along an axis.

Parameters

• x (tuple of Variables) – Variables to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N, the array
will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers, it
indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable other-
wise.

Return type tuple or Variable

Note: This function raises ValueError if at least one of the outputs is splitted to zero-size (i.e. axis-th value
of its shape is zero).

2.4.4 Array computations

chainer.functions.matmul(a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

• a (Variable) – The left operand of the matrix multiplication. A 1-D array of shape (N,) is
considered as an Nx1 matrix. A 2-D array of shape (M, N) is considered as an MxN matrix.

• b (Variable) – The right operand of the matrix multiplication. Its array is treated as a matrix
in the same way as a‘s array.

• transa (bool) – If true, transpose a.

• transb (bool) – If true, transpose b.

Returns The result of the matrix multiplication as a 2-D array.

Return type Variable

chainer.functions.batch_matmul(a, b, transa=False, transb=False)
Computes the batch matrix multiplications of two sets of arrays.

Parameters
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• a (Variable) – The left operand of the batch matrix multiplications. A 2-D array of shape
(B, N,) is considered as B Nx1 matrices. A 3-D array of shape (B, M, N) is considered as B
MxN matrices.

• b (Variable) – The right operand of the batch matrix multiplications. Its array is treated as
matrices in the same way as a‘s array.

• transa (bool) – If true, transpose each matrix in a.

• transb (bool) – If true, transpose each matrix in b.

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

2.4.5 Activation functions

chainer.functions.exp(x)
Elementwise exponential function.

chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as 𝑓(𝑥) = max(𝑥, 𝑎𝑥), where 𝑎 is a configurable slope value.

Parameters

• x (Variable) – Input variable.

• slope (float) – Slope value 𝑎.

Returns Output variable.

Return type Variable

chainer.functions.log(x)
Elementwise natural logarithm function.

chainer.functions.lstm(c_prev, x)
Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state 𝑐prev and the incoming signal
𝑥.

First, the incoming signal 𝑥 is split into four arrays 𝑎, 𝑖, 𝑓, 𝑜 of the same shapes along the second axis. It means
that 𝑥 ‘s second axis must have 4 times the length of 𝑐prev.

The splitted input signals are corresponding to:

•𝑎 : sources of cell input

•𝑖 : sources of input gate

•𝑓 : sources of forget gate

•𝑜 : sources of output gate

Second, it computes outputs as:

𝑐 = tanh(𝑎)sigmoid(𝑖) + 𝑐prevsigmoid(𝑓),
ℎ = tanh(𝑐)sigmoid(𝑜).

These are returned as a tuple of two variables.

Parameters
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• c_prev (Variable) – Variable that holds the previous cell state. The cell state should be a
zero array or the output of the previous call of LSTM.

• x (Variable) – Variable that holds the incoming signal. It must have the second dimension
four times of that of the cell state,

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

Example
Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an
lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> model = FunctionSet(w=F.Linear(n_units, 4 * n_units),
... v=F.Linear(n_units, 4 * n_units),
... ...)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)

It corresponds to calculate the input sources 𝑎, 𝑖, 𝑓, 𝑜 from the current input y and the previous output h. Differ-
ent parameters are used for different kind of input sources.

class chainer.functions.PReLU(shape=(), init=0.25)
Parametric ReLU function.

PReLU function is written in elementwise equation as 𝑃𝑅𝑒𝐿𝑈(𝑥) = max(𝑥, 𝑎𝑥), where 𝑎 is a parameter array.

When the PReLU function is combined with two-dimensional convolution, the elements of parameter 𝑎 are
typically shared across the same filter of different pixels. In order to support such usage, this function supports
the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

Parameters

• shape (tuple of ints) – Shape of the parameter array.

• init (float) – Initial parameter value.

See detail in paper: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifi-
cation.

chainer.functions.relu(x, use_cudnn=True)
Rectified Linear Unit function 𝑓(𝑥) = max(0, 𝑥).

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.sigmoid(x, use_cudnn=True)
Elementwise sigmoid logistic function 𝑓(𝑥) = (1 + exp(−𝑥))−1.

Parameters
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• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.softmax(x, use_cudnn=True)
Channelwise softmax function.

This function only accepts a two dimensional input array, and computes its softmax along the second axis. For
each index 𝑖, 𝑗 of the input matrix 𝑥, it computes 𝑓𝑖𝑗(𝑥) =

exp(𝑥𝑖𝑗)∑︀
𝑗 exp(𝑥𝑖𝑗)

.

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.tanh(x, use_cudnn=True)
Elementwise hyperbolic tangent function.

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

2.4.6 Pooling functions

chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0, use_cudnn=True)
Spatial average pooling function.

This function acts similarly to Convolution2D, but it computes the average of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or (int, int)) – Size of pooling window. ksize=k and ksize=(k, k) are
equivalent.

• stride (int or (int, int) or None) – Stride of pooling applications. ksize=k and
ksize=(k, k) are equivalent. If None is specified, then it uses same stride as the pooling
window size.

• pad (int or (int, int)) – Spatial padding width for the input array. pad=p and pad=(p,
p) are equivalent.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.
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Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_2d(). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True,
use_cudnn=True)

Spatial max pooling function.

This function acts similarly to Convolution2D, but it computes the maximum of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or (int, int)) – Size of pooling window. ksize=k and ksize=(k, k) are
equivalent.

• stride (int or (int, int) or None) – Stride of pooling applications. ksize=k and
ksize=(k, k) are equivalent. If None is specified, then it uses same stride as the pooling
window size.

• pad (int or (int, int)) – Spatial padding width for the input array. pad=p and pad=(p,
p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Ouptut variable.

Return type Variable

2.4.7 Normalization functions

class chainer.functions.BatchNormalization(size, decay=0.9, eps=1e-05)
Batch normalization on outputs of linear or convolution functions.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• decay (float) – Decay rate of moving average.

• eps (float) – Epsilon value for numerical stability.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

__call__(x, test=False, finetune=False)
Invokes the forward propagation of BatchNormalization.

BatchNormalization accepts additional arguments, which controlls three different running mode.

Parameters

• x (Variable) – An input variable.

• test (bool) – If True, BatchNormalization runs in testing mode; it normalizes the input
using precomputed statistics.
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• finetune (bool) – If True, BatchNormalization runs in finetuning mode; it accumu-
lates the input array to compute population statistics for normalization, and normalizes the
input using batch statistics.

If test and finetune are both False, then BatchNormalization runs in training mode; it computes
moving averages of mean and variance for evaluation during training, and normalizes the input using batch
statistics.

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let 𝑥 an input image with 𝑁 channels. Then, this
function computes an output image 𝑦 by following formula:

𝑦𝑖 =
𝑥𝑖(︁

𝑘 + 𝛼
∑︀min𝑁,𝑖+𝑛/2

𝑗=max 1,𝑖−𝑛/2 𝑥2
𝑗

)︁𝛽
.

Parameters

• x (Variable) – Input variable.

• n (int) – Normalization window width.

• k (float) – Smoothing parameter.

• alpha (float) – Normalizer scaling parameter.

• beta (float) – Normalizer power parameter.

Returns Output variable.

Return type Variable

See: SSec. 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

2.4.8 Loss, evaluation and aggregation

chainer.functions.accuracy(y, t)
Computes muticlass classification accuracy of the minibatch.

Parameters

• y (Variable) – Variable holding a matrix whose (i, j)-th element indicates the score of the
class j at the i-th example.

• t (Variable) – Variable holding an int32 vector of groundtruth labels.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.mean_squared_error(x0, x1)
Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

chainer.functions.sigmoid_cross_entropy(x, t, use_cudnn=True)
Computes cross entropy loss for sigmoid activations.

Parameters
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• x (Variable) – A variable object holding a matrix whose (i, j)-th element indicates the un-
normalized log probability of the j-th unit at the i-th example.

• t (Variable) – A variable object holding an int32 vector of groundtruth binary labels.

Returns A variable object holding a scalar array of the cross entropy loss.

Return type Variable

Note: This function is differentiable only by x.

chainer.functions.softmax_cross_entropy(x, t, use_cudnn=True)
Computes cross entropy loss for pre-softmax activations.

Parameters

• x (Variable) – Variable holding a matrix whose (i, j)-th element indicates unnormalized log
probability of the class j at the i-th example.

• t (Variable) – Variable holding an int32 vector of groundtruth labels.

Returns A variable holding a scalar array of the cross entropy loss.

Return type Variable

Note: This function is differentiable only by x.

chainer.functions.sum(x)
Computes sum of all elements.

2.4.9 Reusable subnetwork of complex architectures

class chainer.functions.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool)
Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out1 (int) – Output size of 1x1 convolution path.

• proj3 (int) – Projection size of 3x3 convolution path.

• out3 (int) – Output size of 3x3 convolution path.

• proj5 (int) – Projection size of 5x5 convolution path.

• out5 (int) – Output size of 5x5 convolution path.

• proj_pool (int) – Projection size of max pooling path.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the input
array. The channel dimension has size out1 + out3 + out5 + proj_pool.
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Return type Variable

Note: This function inserts the full computation graph of the Inception module behind the input array. This
function itself is not inserted into the computation graph.

class chainer.functions.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1)

Inception module of the new GoogLeNet with BatchNormalization.

This class acts like Inception, while InceptionBN uses the BatchNormalization on top of each convo-
lution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out1 (int) – Output size of the 1x1 convolution path.

• proj3 (int) – Projection size of the single 3x3 convolution path.

• out3 (int) – Output size of the single 3x3 convolution path.

• proj33 (int) – Projection size of the double 3x3 convolutions path.

• out33 (int) – Output size of the double 3x3 convolutions path.

• pooltype (str) – Pooling type. It must be either ’max’ or ’avg’.

• proj_pool (bool) – If True, do projection in the pooling path.

• stride (int) – Stride parameter of the last convolution of each path.

See also:

Inception

2.5 Optimizers

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)
Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad implementation.

See: http://jmlr.org/papers/v12/duchi11a.html

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, lam=0.99999999, eps=1e-
08)

Adam optimization algorithm.

See: http://arxiv.org/abs/1412.6980

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
Classical momentum SGD.

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08)
Hinton’s RMSprop.
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class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

2.6 Caffe Reference Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities,
and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference
models in their Model Zoo, one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by Function implementations. This functionality
is provided by the chainer.functions.caffe.CaffeFunction class.

class chainer.functions.caffe.CaffeFunction(model_path)
Function using the model file of Caffe.

Given a binary protobuf file of a Caffe model, this function loads and emulates it on Variable objects. It
supports the official reference models provided by BVLC.

Note: This function only supports Python 2.7, since the compiled module for protocol buffers only supports
Python 2. The __init__ function raises an exception in Python 3.

Note: CaffeFunction ignores the following layers:

•Layers that CaffeFunction does not support (including data layers)

•Layers that have no top blobs

•Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not
implemented in Chainer yet, though the reference models provided by the BVLC team are supported except
data layers.

Example
Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference
CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
... # (Fill the minibatch here)

# Forward the pretrained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a
usual forward computation in Chainer, so we can run backprop through this pretrained net.
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Parameters model_path (str) – Path to the binary-proto model file of Caffe.

fs
FunctionSet

A set of functions corresponding to parameterized layers of Caffe. The names of its attributes are same as
the layer names of the given network.

forwards
dict

A mapping from layer names to corresponding functions.

__call__(inputs, outputs, disable=[], train=True)
Executes a subnetwork of the network.

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each
layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output
blobs as Variable objects.

Parameters

• inputs (dict) – A dictionary whose key-value pairs indicate initial correspondences be-
tween blob names and Variable objects.

• outputs (Iterable) – A list of blob names whose corresponding Variable objects are
returned.

• disable (Iterable) – A list of layer names that will be ignored during the forward com-
putation.

• train (bool) – If True, this function emulates the TRAIN phase of the Caffe layers.
Otherwise, it emulates the TEST phase.

Returns A tuple of output Variable objects corresponding to elements of the outputs argu-
ment.

Return type tuple

2.7 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harger to confirm if their architectures are constructed
properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by in-
voking build_computational_graph(). Generated computational graphs are dumped to specified format
(Currently Dot Language is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:

o.write(g.dump())

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the
computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of
vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from
example/imagenet.
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chainer.computational_graph.build_computational_graph(outputs, remove_split=True)
Builds a graph of functions and variables backward-reachable from outputs.

Parameters

• outputs (list) – nodes from which the graph is constructed. Each element of outputs must
be either Variable object or Function object.

• remove_split (bool) – If it is True, this function hides Split functions and related
variables from the graph.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of
outputs.

If unchain_backward was called in some variable in the computational graph before this
function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

|--> x' ---> f ---> y
x ---> (splitter) --+

|--> x'' ---> g ---> z

Let outputs = [y, z]. If remove_split is False, this method generates the graph
itself. On the other hand, if remove_split is True, splitter, x’ and x’’ are removed
from the graph and x is directly connected to f and g. Resulting graph will be:

|--> f ---> y
x -+

|--> g ---> z

Next, let outputs = [y]. Note that z, g, and x’’ are not backward-reachable from y. If
remove_split is False, this function removes these unreachable nodes to get:
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x ---> (splitter) ---> x' ---> f ---> y

If remove_split is True, we further remove splitter and x’ to get:

x ---> f ---> y

See TestGraphBfuilder for details.

Return type ComputationalGraph

class chainer.computational_graph.ComputationalGraph(nodes, edges)
Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

dump(format=’dot’)
Dumps graph as a text.

Parameters

• format (str) – The graph language name of the output.

• it must be ’dot’. (Currently,) –

Returns The graph in specified format.

Return type str
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CHAPTER 3

Chainer Contribution Guide

This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at
GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

3.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue

2. Sending a pull request (PR)

3. Sending a question to Chainer User Group

4. Open-sourcing an external example

5. Writing a post about Chainer

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

3.2 Release and Milestone

We are using GitHub Flow as our basic working process. In particular, we are using the master branch for our
development, and releases are made as tags.

Releases are classified into three groups: major, minor, and revision. This classification is based on following criteria:

• A major release contains catastrophic changes on the interface that may break existing user codes.

• A minor release contains additions and modifications on the interface. It may break some existing user codes,
though they must be fixed by small efforts.

• A revision release contains changes that does not affect the documented interface. It mainly consists of bug
fixes, implementation improvements, and test/document/example updates.

The release classification is reflected into the version number x.y.z, where x, y, and z corresponds to major, minor, and
revision updates, respectively.

We sets milestones for some future releases. A milestone for a revision release is set right after the last release. On the
other hand, a milestone for a minor or major release is set four weeks prior to its due.
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3.3 Issues and PRs

Issues and PRs are classified into following categories:

• Bug: bug reports (isseus) and bug fixes (PRs)

• Enhancement: implementation improvements without breaking the interface

• Feature: feature requests (issues) and their implementations (PRs)

• Test: test fixes and updates

• Document: document fixes and improvements

• Example: fixes and improvements on the examples

• Other: other issues and PRs

Issues and PRs are labeled by these categories. This classification is often reflected into its corresponding release
category: Feature issues/PRs are contained into minor/major releases, while other issues/PRs can be contained into
any releases including revision ones.

On registering an issue, write precise explanations on what you want Chainer to be. Bug reports must include necessary
and sufficient conditions to reproduce the bugs. Feature requests must include what you want to do (and why you
want to do, if needed). You can contain your thoughts on how to realize it into the feature requests, though what part
is most important for discussions.

Warning: If you have a question on usages of Chainer, it is highly recommended to send a post to Chainer User
Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices. We may
redirect question issues to Chainer User Group.

If you can write codes to fix an issue, send a PR to the master branch. Before writing your codes for PRs, read through
the Coding Guidelines. The description of any PR must contain a precise explanation of what and how you want to
do; it is the first documentation of your codes for developers, a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI. After the automatic test passes, some of the core developers
will start reviewing your codes. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integrations with GPU tests for the master branch. Since this service is running
on our internal server, we do not use it for automatic PR tests to keep the server secure.

Even if your codes are not complete, you can send a pull request as a work-in-progress PR by putting the [WIP]
prefix to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join
the discussion about how to proceed the PR.

3.4 Coding Guidelines

We use PEP8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

Before checking your code, you can use automatic formatter to set appropriate spacing, etc. We recommend you to
install the pyformat and isort packages, and run the following commands:

$ pyformat -i path/to/your/code.py
$ isort path/to/your/code.py

Note that these formatters do not cover all part of the style guidelines.

To check your code, use flake8 command installed by hacking package:
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$ pip install hacking
$ flake8 path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines. Before sending a pull
request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-complete)
list of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut symbols in our code base. They are symbols im-
ported by packages and subpackages of chainer. For example, chainer.Variable is a shortcut of
chainer.variable.Variable. It is not allowed to use such shortcuts in the ‘‘chainer‘‘ library imple-
mentation. Note that you can still use them in tests and examples directories.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts
after the check passes.

3.5 Testing Guidelines

Testing is one of the most important part of your code. You must test your code by unit tests following our testing
guidelines.

We are using nose package to run unit tests. You can run unit tests simply by running nosetests command
under the repository root. It requires CUDA by default. In order to run unit tests that do not require CUDA, pass
--attr=’!gpu’ option to the nosetests command:

$ nosetests path/to/your/test.py --attr='!gpu'

Tests are put into the tests directory. This directory has the same structure as the chainer directory. In order to
enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and
the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

Following this naming convention, you can run all the tests by just typing nosetests at the repository root:

$ nosetests

If you modify the code related to existing unit tests, you must run this command.

There are many examples of unit tests under the tests directory. They simply use the unittest package of the
standard library.

If your patch includes GPU-related code, your tests must run with and without GPU capability. Test functions that
requires CUDA must be tagged by the chainer.testing.attr.gpu decorator:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...
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@attr.gpu
def test_my_gpu_func(self):

...

The functions tagged by the chainer.testing.attr.gpu decorator are skipped if --attr=’!gpu’ is given.
We also have the chainer.testing.attr.cudnn decorator to let nosetests know that the test depends on
CuDNN.

Once you send a pull request, your code is automatically tested by Travis-CI with –attr=’!gpu’ option. Since Travis-
CI does not support CUDA, we cannot check you CUDA-related code automatically. The reviewing process starts
after the test passes. Note that reviewers will test your code without the option to check CUDA-related code.
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CHAPTER 4

Tips and FAQs

4.1 Installation

4.1.1 I cannot install pycuda

You need to set PATH to CUDA bin path if you get the error below when you use pip install
chainer-cuda-deps:

src/cpp/cuda.hpp:14:18: fatal error: cuda.h: No such file or directory
#include <cuda.h>

^
compilation terminated.
error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

chainer-cuda-deps only installs pycuda and other dependent libraries. In setup.py
of pycuda, it checks the path of nvcc command and guesses the path of CUDA
(https://github.com/inducer/pycuda/blob/v2015.1.2/setup.py#L30). If setup.py couldn’t find CUDA, it causes an
error like that.

Please try to set PATH before pip install chainer-cuda-deps. If you use NVIDIA’s official installer,
nvcc command is located at /usr/local/cuda/bin:

$ export PATH=/usr/local/cuda/bin:$PATH
$ pip install chainer-cuda-deps

4.1.2 I cannot install pycuda with sudo

sudo changes PATH environment variable for security. You need to set PATH inside sudo. For example use sh
command:

$ sudo sh -c "PATH=/usr/local/cuda/bin:\$PATH pip install chainer-cuda-deps"

Or, install as a root user:

$ su - root
% export PATH=/usr/local/cuda/bin:$PATH
% pip install chainer-cuda-deps

We recommend to install Chainer in your local environment with --user option if possible. You don’t need to use
sudo in this case:
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$ pip install --user chainer-cuda-deps

You can also use pyenv to create your local environment.
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CHAPTER 5

Comparison with Other Frameworks

5.1 A table for quick comparison

This table compares Chainer with other popular deep learning frameworks. We hope it helps you to choose an appro-
priate framework for the demand.

Note: This chart may be out-dated, since the developers of Chainer do not perfectly follow the latest development
status of each framework. Please report us if you find an out-dated cell. Requests for new comparison axes are also
welcome.
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Chainer Theano-based Torch7Caffe

Specs

Scripting Python Python Lu-
a-
JIT

Python

Net definition language Python Python Lu-
a-
JIT

Pro-
to-
col
Buffers

Define-by-Run scheme Y
CPU Array backend NumPy NumPy Ten-

sor
GPU Array backend PyCUDA 1 CudaNdarray 2 Cu-

d-
aTen-
sor

NNs

Reverse-mode AD Y Y Y Y
Basic RNN support Y Y Y

(nnx)
#2033

Variable-length loops Y Y (scan)
Stateful RNNs 3 Y
Per-batch architectures Y

Perf

CUDA support Y Y Y Y
cuDNN support Y Y Y

(cudnn.torch)
Y

FFT-based convolution Y Y
(fb-
cunn)

#544

CPU/GPU generic coding 4 1 5 Y
Multi GPU (data parallel) Y Y

(fb-
cunn)

#2114

Multi GPU (model parallel) Y Y
(fb-
cunn)

Misc
Type checking Y Y N/A
Model serialization Y (pickle) Y (pickle) Y Y
Caffe reference model Y 6 Y

(load-
caffe)

Y

5.2 Benchmarks

We are preparing for the benchmarks.

1We are preparing for changing the GPU array backend to CuPy. It enables us to write one code for both CPU and GPU arrays.
2They are also developing libgpuarray
3Stateful RNN is a type of RNN implementation that maintains states in the loops. It should enable us to use the states arbitrarily to update

them.
4This row shows whether each array API supports unified codes for CPU and GPU.
5The array backend of Theano does not have compatible interface with NumPy, though most users write code on theano variables, which is

generic for CPU and GPU.
6Depending on the frameworks.
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CHAPTER 6

Indices and tables

• genindex

• modindex

• search
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chainer, 27
chainer.computational_graph, 58
chainer.cuda, 36
chainer.functions, 44
chainer.functions.caffe, 57
chainer.gradient_check, 44
chainer.utils, 42
chainer.utils.type_check, 42
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__call__() (chainer.functions.BatchNormalization

method), 53
__call__() (chainer.functions.caffe.CaffeFunction

method), 58
__len__() (chainer.Variable method), 27

A
accumulate_grads() (chainer.Optimizer method), 33
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AdaGrad (class in chainer.optimizers), 56
Adam (class in chainer.optimizers), 56
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B
backward() (chainer.Function method), 30
backward() (chainer.Variable method), 27
backward_cpu() (chainer.Function method), 30
backward_gpu() (chainer.Function method), 30
batch_matmul() (in module chainer.functions), 49
BatchNormalization (class in chainer.functions), 53
BinaryHierarchicalSoftmax (class in chainer.functions),
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C
CaffeFunction (class in chainer.functions.caffe), 57
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clip_grads() (chainer.Optimizer method), 33
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Convolution2D (class in chainer.functions), 45
convolution_2d() (in module chainer.functions), 47
copy() (in module chainer.cuda), 38
copy() (in module chainer.functions), 48
copy_async() (in module chainer.cuda), 38
copy_parameters_from() (chainer.FunctionSet method),

32
creator (chainer.Variable attribute), 27
CumiscUser (class in chainer.cuda), 38

D
data (chainer.Variable attribute), 27
device (chainer.cuda.DeviceUser attribute), 37
DeviceUser (class in chainer.cuda), 37
dropout() (in module chainer.functions), 48
dump() (chainer.computational_graph.ComputationalGraph

method), 60

E
elementwise() (in module chainer.cuda), 41
EmbedID (class in chainer.functions), 46
empty() (in module chainer.cuda), 39
empty_like() (in module chainer.cuda), 39
eval() (chainer.utils.type_check.Expr method), 43
exp() (in module chainer.functions), 50
expect() (in module chainer.utils.type_check), 43
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F
forward() (chainer.Function method), 31
forward_cpu() (chainer.Function method), 31
forward_gpu() (chainer.Function method), 31
forwards (chainer.functions.caffe.CaffeFunction at-

tribute), 58

73



Chainer Documentation, Release 1.1.2

fs (chainer.functions.caffe.CaffeFunction attribute), 58
full() (in module chainer.cuda), 39
full_like() (in module chainer.cuda), 39
Function (class in chainer), 28
FunctionSet (class in chainer), 32

G
get_context() (in module chainer.cuda), 38
get_cublas_handle() (in module chainer.cuda), 38
get_device() (in module chainer.cuda), 37
get_generator() (in module chainer.cuda), 41
grad (chainer.Variable attribute), 27
gradient_names (chainer.Function attribute), 29
gradients (chainer.Function attribute), 31
gradients (chainer.FunctionSet attribute), 32

I
identity() (in module chainer.functions), 49
Inception (class in chainer.functions), 55
InceptionBN (class in chainer.functions), 56
init() (in module chainer.cuda), 36
init_state() (chainer.Optimizer method), 34
init_state_cpu() (chainer.Optimizer method), 34
init_state_gpu() (chainer.Optimizer method), 34
inputs (chainer.Function attribute), 29
IPCArrayHandle (class in chainer.cuda), 42
IPCEvent (class in chainer.cuda), 42

L
label (chainer.Function attribute), 31
label (chainer.Variable attribute), 28
leaky_relu() (in module chainer.functions), 50
Linear (class in chainer.functions), 46
linear() (in module chainer.functions), 47
local_response_normalization() (in module

chainer.functions), 54
log() (in module chainer.functions), 50
lstm() (in module chainer.functions), 50

M
matmul() (in module chainer.functions), 49
max_pooling_2d() (in module chainer.functions), 53
mean_squared_error() (in module chainer.functions), 54
mem_alloc() (in module chainer.cuda), 36
MomentumSGD (class in chainer.optimizers), 56

N
NegativeSampling (class in chainer.functions), 46
numerical_grad() (in module chainer.gradient_check), 44

O
ones() (in module chainer.cuda), 40
ones_like() (in module chainer.cuda), 40

Optimizer (class in chainer), 33
outputs (chainer.Function attribute), 29

P
Parameter (class in chainer.functions), 47
parameter_names (chainer.Function attribute), 29
parameters (chainer.Function attribute), 32
parameters (chainer.FunctionSet attribute), 32
PReLU (class in chainer.functions), 51

R
reduce() (in module chainer.cuda), 41
relu() (in module chainer.functions), 51
reshape() (in module chainer.functions), 49
RMSprop (class in chainer.optimizers), 56

S
sample() (chainer.utils.WalkerAlias method), 42
seed() (in module chainer.cuda), 41
set_creator() (chainer.Variable method), 28
setup() (chainer.Optimizer method), 34
SGD (class in chainer.optimizers), 56
shutdown() (in module chainer.cuda), 36
sigmoid() (in module chainer.functions), 51
sigmoid_cross_entropy() (in module chainer.functions),

54
size() (chainer.utils.type_check.TypeInfoTuple method),

43
softmax() (in module chainer.functions), 52
softmax_cross_entropy() (in module chainer.functions),

55
split_axis() (in module chainer.functions), 49
sum() (in module chainer.functions), 55

T
t (chainer.Optimizer attribute), 33
tanh() (in module chainer.functions), 52
to_cpu() (chainer.Function method), 32
to_cpu() (chainer.FunctionSet method), 32
to_cpu() (in module chainer.cuda), 40
to_cpu_async() (in module chainer.cuda), 40
to_gpu() (chainer.Function method), 32
to_gpu() (chainer.FunctionSet method), 33
to_gpu() (chainer.utils.WalkerAlias method), 42
to_gpu() (in module chainer.cuda), 40
to_gpu_async() (in module chainer.cuda), 41
TypeInfo (class in chainer.utils.type_check), 43
TypeInfoTuple (class in chainer.utils.type_check), 43

U
unchain() (chainer.Function method), 32
unchain_backward() (chainer.Variable method), 28
update() (chainer.Optimizer method), 34
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update_one() (chainer.Optimizer method), 35
update_one_cpu() (chainer.Optimizer method), 35
update_one_gpu() (chainer.Optimizer method), 35
use_device() (in module chainer.cuda), 37
using_cumisc() (in module chainer.cuda), 38
using_device() (in module chainer.cuda), 37

V
Variable (class in chainer), 27
volatile (chainer.Variable attribute), 27

W
WalkerAlias (class in chainer.utils), 42
weight_decay() (chainer.Optimizer method), 35

Z
zero_grads() (chainer.Optimizer method), 35
zeros() (in module chainer.cuda), 40
zeros_like() (in module chainer.cuda), 40
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