

Chainer Chemistry: Chainer extension library for Biology and Chemistry

Chainer Chemistry [https://github.com/pfnet-research/chainer-chemistry] is a collection of tools to train and run neural networks for tasks in biology and chemistry using Chainer [https://chainer.org] .

Features

	State-of-the-art deep learning neural network models (especially graph convolutions) for chemical molecules (NFP, GGNN, Weave, SchNet etc.)

	Preprocessors of molecules tailored for these models

	Parsers for several standard file formats (CSV, SDF etc.)

	Loaders for several well-known datasets (QM9, Tox21 etc.)

Introductory to deep learning for molecules and Chainer Chemistry is also available here (SlideShare) [https://www.slideshare.net/KentaOono/deep-learning-for-molecules-introduction-to-chainer-chemistry-93288837].

Contents

	Installation

	Tutorial

	Contribution guide

	Development policy

	API Reference

Installation

Dependency

Following packages are required to install Chainer Chemistry and are automatically
installed when you install the library by pip command.

	chainer [https://docs.chainer.org/en/stable/index.html]

	pandas [https://pandas.pydata.org]

	scikit-learn [http://scikit-learn.org/stable/]

	tqdm [https://pypi.python.org/pypi/tqdm]

Also, it uses following library, which you need to manually install.

	rdkit [https://github.com/rdkit/rdkit]

See the official document [http://www.rdkit.org/docs/Install.html] for installation.
If you have setup anaconda, you may install rdkit by following command:

$ conda install -c rdkit rdkit

Install via pip

It can be installed by pip command:

$ pip install chainer-chemistry

Install from source

The tarball of the source tree is available via pip download chainer-chemistry.
You can use setup.py to install Chainer Chemistry from the tarball:

$ tar zxf chainer-chemistry-x.x.x.tar.gz
$ cd chainer-chemistry-x.x.x
$ python setup.py install

Install from the latest source from the master branch:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git
$ pip install -e chainer-chemistry

Run example training code

The official repository [https://github.com/pfnet-research/chainer-chemistry] provides examples
of training several graph convolution networks. The code can be obtained by cloning the repository:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git

The following code is how to train Neural Fingerprint (NFP) with the Tox21 dataset on CPU:

$ cd chainer-chemistry/examples/tox21
$ python train_tox21.py --method=nfp --gpu=-1 # set --gpu=0 if you have GPU

Tutorial

Abstract

In this tutorial, we predict Highest Occupied Molecular Orbital (HOMO) level of the molecules in QM9 dataset [http://quantum-machine.org/datasets/] [1][2] by Neural Finger Print (NFP) [https://arxiv.org/abs/1509.09292] [3][4].
We concentrate on exaplaining usage of Chainer Chemistry briefly and do not look over the detail of NFP implementation.

Tested Environment

	Chainer Chemistry >= 0.0.1 (See Installation)

	Chainer >= 2.0.2

	CUDA == 8.0, CuPy >= 1.0.3 (Required only when using GPU)

	For CUDA 9.0, CuPy >= 2.0.0 is required

	sklearn >= 0.17.1 (Only for preprocessing)

QM9 Dataset

QM9 is a publicly available dataset of small organic molecule structures and their simulated properties for data driven researches of material property prediction and chemical space exploration.
It contains 133,885 stable small organic molecules made up of CHONF.
The available properties are geometric, energetic, electronic, and thermodynamic ones.

In this tutorial, we predict HOMO level in the properties.
Physically, we need quantum chemical calculations to compute HOMO level.
From mathematical viewpoint it requires a solution of an internal eigenvalue problem for a Hamiltonian matrix.
It is a big challenge to predict HOMO level accurately by a neural network,
because the network should approximate both calculating the Hamiltonian matrix and solving the internal eigenvalue problem.

HOMO prediction by NFP

At first you should clone the library repository from GitHub [https://github.com/pfnet-research/chainer-chemistry].
There is a Python script examples/qm9/train_qm9.py in the repository.
It executes a whole training procedure, that is, downloads QM9 dataset, preprocess it, define an NFP model and run trainning on them.

Execute the following commands on a machine satisfying the tested environment in environment.

~$ git clone git@github.com:pfnet-research/chainer-chemistry.git
~$ cd chainer-chemistry/examples/qm9/

Hereafter all shell commands should be executed in this directory.

If you are a beginner for Chainer, Chainer handson [https://github.com/mitmul/chainer-handson] will greatly help you.
Especially the explanation of inclusion relationship of Chainer classes in Sec. 4 in Chap. 2 [https://github.com/mitmul/chainer-notebooks/blob/master/2_how_to_use_trainer.ipynb] is helpful when you read the sample script.

Next the dataset preparation part and the model definition part in train_qm9.py are explained.
If you are not interested in them, skip Dataset Preparation and Model Definition, and jump to Run.

Dataset Preparation

Chainer Chemistry accepts the same dataset type with Chainer, such as chainer.datasets.SubDataset.
In this section we learn how to download QM9 dataset and use it as a Chainer dataset.

The following Python script downloads and saves the dataset in .npz format.

#!/usr/bin/env python
from chainer_chemistry import datasets as D
from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

preprocessor = preprocess_method_dict['nfp']()
dataset = D.get_qm9(preprocessor, labels='homo')
cache_dir = 'input/nfp_homo/'
os.makedirs(cache_dir)
NumpyTupleDataset.save(cache_dir + 'data.npz', dataset)

The last two lines save the dataset to input/nfp_homo/data.npz and we need not to download the dataset next time.

The following Python script read the dataset from the saved .npz file and split the data points into training and validation sets.

#!/usr/bin/env python
from chainer.datasets import split_dataset_random
from chainer_chemistry import datasets as D
from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

cache_dir = 'input/nfp_homo/'
dataset = NumpyTupleDataset.load(cache_dir + 'data.npz')
train_data_ratio = 0.7
train_data_size = int(len(dataset) * train_data_ratio)
train, val = split_dataset_random(dataset, train_data_size, 777)
print('train dataset size:', len(train))
print('validation dataset size:', len(val))

The function split_dataset_random() returns a tuple of two chainer.datasets.SubDataset objects (training and validation set).
Now you have prepared training and validation data points and you can construct chainer.iterator.Iterator objects, needed for updaters in Chainer.

Model Definition

In Chainer, a neural network model is defined as a chainer.Chain object.

Graph convolutional networks such as NFP are generally connection of graph convolution layers and multi perceptron layers.
Therefore it is convenient to define a class which inherits chainer.Chain and compose two chainer.Chain objects corresponding to the two kind of layers.

Execute the following Python script and check you can define such a class.
NFP and MLP are already defined chainer.Chain classes.

#!/usr/bin/env python
import chainer
from chainer_chemistry.models import MLP, NFP

class GraphConvPredictor(chainer.Chain):

 def __init__(self, graph_conv, mlp):
 super(GraphConvPredictor, self).__init__()
 with self.init_scope():
 self.graph_conv = graph_conv
 self.mlp = mlp

 def __call__(self, atoms, adjs):
 x = self.graph_conv(atoms, adjs)
 x = self.mlp(x)
 return x

n_unit = 16
conv_layers = 4
model = GraphConvPredictor(NFP(n_unit, n_unit, conv_layers),
 MLP(n_unit, 1))

Run

You have defined the dataset and the NFP model on Chainer.
There are no other procedures specific to Chainer Chemistry.
Hereafter you should just follow the usual procedures in Chainer to execute training.

The sample script examples/qm9/train_qm9.py contains all the procedures and you can execute training just by invoking the script.
The following command starts training for 20 epochs and reports loss and accuracy during training.
They are reported for each of main (dataset for training) and validation (dataset for validation).

The --gpu 0 option is to utilize a GPU with device id = 0.
If you do not have a GPU, set --gpu -1 or just drop --gpu 0 to use CPU for all the calculation.
In most cases, calculation with GPU is much faster than that only with CPU.

~/chainer-chemistry/examples/qm9$ python train_qm9.py --method nfp --label homo --gpu 0 # If GPU is unavailable, set --gpu -1

Train NFP model...
epoch main/loss main/accuracy validation/main/loss validation/main/accuracy elapsed_time
1 0.746135 0.0336724 0.680088 0.0322597 58.4605
2 0.642823 0.0311715 0.622942 0.0307055 113.748
(...)
19 0.540646 0.0277585 0.532406 0.0276445 1052.41
20 0.537062 0.0276631 0.551695 0.0277499 1107.29

After finished, you will find log file in result/ directory.

Evaluation

In the loss and accuracy report, we are mainly interested in validation/main/accuracy.
Although it decreases during training, the accuracy field is actually mean absolute error.
The unit is Hartree.
Therefore the last line means validation mean absolute error is 0.0277499 Hartree.
See scaled_abs_error() function in train_qm9.py for the detailed definition of mean absolute error.

You can also train other type models like GGNN, SchNet or WeaveNet, and other target values like LUMO, dipole moment and internal energy, just by changing --model and --label options, respectively.
See output of python train_qm9.py --help.

Using your own dataset

You can use your own dataset in Chainer Chemistry.
example/own_dataset [https://github.com/pfnet-research/chainer-chemistry/tree/master/examples/own_dataset/] shows an example.

Reference

[1] L. Ruddigkeit, R. van Deursen, L. C. Blum, J.-L. Reymond, Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, J. Chem. Inf. Model. 52, 2864–2875, 2012.

[2] R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules, Scientific Data 1, 140022, 2014.

[3] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems (pp. 2224-2232).

[4] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.

Contribution guide

We welcome any type of contribution that helps to improve and promote Chainer Chemistry.
Typical contribution includes:

	Send pull requests (PRs) to the repository [https://github.com/pfnet-research/chainer-chemistry] (We recommend developers making PRs to read the Development policy before starting to implement).

	Report bugs or problems as issues [https://github.com/pfnet-research/chainer-chemistry/issues].

	Send questions to developer community sites like Stackoverflow [https://stackoverflow.com] or Chainer Slack (en [https://docs.google.com/forms/d/1yYoDBNDm1s21sDcLZZIODU34XHDSEhXU_rRl8QoupZc/viewform], jp [https://docs.google.com/forms/d/e/1FAIpQLSfqL9XjnqZUIwLOz4K9Oxm8-Ce246IRP51-vZa7HOrofJT9rA/viewform]).

	Write a blog post about Chainer Chemistry or its use case.

Development policy

In this section, we describe the development policy that the core developers follow.
Developers who are thinking to send PRs to the repository are encouraged to read the following sections
before starting implementation.

Versioning policy

Basically, we follow the semantic versioning v2.0.0 [https://semver.org/spec/v2.0.0.html].
In Chainer Chemistry, public APIs in the sense of semantic versioning are ones in the document [http://chainer-chemistry.readthedocs.io/en/latest/index.html].

We follow these rules about versioning during the major version zero in addition to ones described in the the semantic versioning:

	We do not plan any scheduled releases.

	We do not plan any pre releases.

	We release the minor version when the core development team agrees. Typically, we do so when (1) sufficient number of features are added since the last minor release (2) the latest release cannot run the example code in the master branch of the repository (3) critical bugs are found. But we are not restricted to them.

	If we find critical bugs, we should release a patch version or a minor version that fixes them. The core development team will determine which version to release.

We do not have a concrete plan about versioning strategy after v1.0.0.

Compatibiity policy

As an immediate consequence of the semantic versioning, we may break compatibility of public APIs including addition, deletion, and changes in their semantics anytime in the major version zero.
Since APIs of Chainer Chemistry are still immature and unstable, we expect introduction of new features can sometime involve compatibility break.
If we are faced with a dilemma between cost for backward compatibility and benefit of new features, we are likely to give up the former because we want to place importance on introducing new features as soon as possible. Of course, we care backward compatibility whenever it is easy and low-cost.

Like ChainerCV [https://twitter.com], Chainer Chemistry provides several off-the-shelf deep learning models (e.g. Neural Finger Print) whose papers are available in such as arXiv or conferences related to machine learning.
Although, most of published papers reports evaluation results of the models with publicly available datasets, we do NOT guarantee the reproducibility of experiments in the papers.

At some point, coding examples in the master branch of the official repository may not work even with the latest release. In that case, users are recommended to either use the example code of the latest release or update the library code to the master branch.

As of v0.3.0, we have introduced BaseForwardModel, which provides methods for serializing itself to and loading from a file.
As these methods intenally use pickle [https://docs.python.org/3/library/pickle.html], portability of the class depends on that of pickling.
Especially, serialized instances of BaseForwardModel made with older Chainer Chemistry may not be loaded with newer one, partly because we may change their internal structures for refactoring, performance improvement, and so on.
See the document of BaseForwardModel and their subclasses (e.g. Classifier, Regressor).

Branch strategy

The official repository of Chainer Chemistry is https://github.com/pfnet-research/chainer-chemistry.
We use the master branch of the repository for development. Therefore, developer who makes PRs should send them to the master branch.

During major version zero, we do not maintain any released versions.
When a bug is found, changes for the bug should be merged to the next version (either minor or patch). If the bug is critical, we will release the next version as soon as possible.

Coding guideline

We basically adopt PEP8 <https://www.python.org/dev/peps/pep-0008/>_ as a style guide.
You can check it with flake8, which we can install by:

$ pip install flake8

and run with flake8 command.

In addition to PEP8, we use upper camel case (e.g. FooBar) for class names and snake case (e.g. foo_bar) for function, method, variable and package names.
Although we recommend developers to follow these rules as well, they are not mandatory.

For documents, we follow the Google Python Style Guide [http://google.github.io/styleguide/pyguide.html#Comments]
and compile it with Napoleon [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/index.html],
which is an extension of Sphinx [http://www.sphinx-doc.org/en/stable/].

Testing guideline

Chainer Chemistry uses pytest [https://docs.pytest.org/en/latest/index.html] as a unit-test framework.
All unit tests are located in tests/ directory. We can run tests with normal usage of pytest.
For example, the following command runs all unit tests:

$ pytest tests

Some unit tests require GPUs, which are annotated with @pytest.mark.gpu.
Therefore, you can skip them with -m option:

$ pytest -m "not gpu" tests

If a develop who write a unit test that uses GPUs, you must anotate it with @pytest.mark.gpu.

Similarly, some unit tests take long time to complete.
We annotated them with @pytest.mark.slow and can skip them with -m option:

$ pytest -m "not slow" tests

Any unit test that uses GPUs muct be annotated with @pytest.mark.slow.

We can skip both GPU and slow tests with the following command:

$ pytest -m "not (gpu or slow)" tests

Terminology

In the context of machine learning, especially chemoinformatics, we use several terms such as feature, feature vectors, descriptor and so on
to indicate representation of inputs. To avoid disambiguity and align naming convention within the library code, we use these terms in the following way:

	Feature is a representation of a sample of interest (typically molecules in Chainer Chemistry).

	Label is a target value of we want to predict.

	Input feature is a representation of a sample from which we want to predict the target value.

For example, consider a suepervised learning task whose dataset consisting of input-output pairs ((x_1, y_1), ..., (x_N, y_N)), where N is the number of samples.
In Chainer Chemistry x_i` and ``y_i are called input feature and label, respectively and a pair of (x_i, y_i) is feature for each i.

Relation to Chainer

Chainer [https://chainer.org] is a deep learning framework written in Python that features dynamic
computational graph construction (the “define-by-run” paradigm) for flexible and intuitive model development.
As the name indicates, Chainer Chemistry is an extension library of Chainer built on top of it.
The core development team members of Chainer and that of Chainer Chemistry work together tightly.

API Reference

	Dataset

	Datasets

	Functions

	Iterators

	Links

	Models

	Utilities

	Training

Dataset

Converters

	chainer_chemistry.dataset.converters.concat_mols

	

Indexers

	chainer_chemistry.dataset.indexer.BaseIndexer

	

	chainer_chemistry.dataset.indexer.BaseFeatureIndexer

	

	chainer_chemistry.dataset.indexers.NumpyTupleDatasetFeatureIndexer

	

Parsers

	chainer_chemistry.dataset.parsers.BaseParser

	

	chainer_chemistry.dataset.parsers.CSVFileParser

	

	chainer_chemistry.dataset.parsers.SDFFileParser

	

	chainer_chemistry.dataset.parsers.DataFrameParser

	

	chainer_chemistry.dataset.parsers.SmilesParser

	

Preprocessors

Base preprocessors

	chainer_chemistry.dataset.preprocessors.BasePreprocessor

	

	chainer_chemistry.dataset.preprocessors.MolPreprocessor

	

Concrete preprocessors

	chainer_chemistry.dataset.preprocessors.AtomicNumberPreprocessor

	

	chainer_chemistry.dataset.preprocessors.ECFPPreprocessor

	

	chainer_chemistry.dataset.preprocessors.GGNNPreprocessor

	

	chainer_chemistry.dataset.preprocessors.NFPPreprocessor

	

	chainer_chemistry.dataset.preprocessors.SchNetPreprocessor

	

	chainer_chemistry.dataset.preprocessors.WeaveNetPreprocessor

	

Utilities

	chainer_chemistry.dataset.preprocessors.MolFeatureExtractionError

	

	chainer_chemistry.dataset.preprocessors.type_check_num_atoms

	

	chainer_chemistry.dataset.preprocessors.construct_atomic_number_array

	

	chainer_chemistry.dataset.preprocessors.construct_adj_matrix

	

Splitters

	chainer_chemistry.dataset.splitters.RandomSplitter

	

	chainer_chemistry.dataset.splitters.StratifiedSplitter

	

	chainer_chemistry.dataset.splitters.ScaffoldSplitter

	

Datasets

Dataset implementations

	chainer_chemistry.datasets.NumpyTupleDataset

	

Dataset loaders

	chainer_chemistry.datasets.tox21.get_tox21

	

	chainer_chemistry.datasets.qm9.get_qm9

	

	chainer_chemistry.datasets.molnet.get_molnet_dataset

	

	chainer_chemistry.datasets.molnet.get_molnet_dataframe

	

Functions

Function implementations

	chainer_chemistry.functions.matmul

	

	chainer_chemistry.functions.mean_squared_error

	

	chainer_chemistry.functions.mean_absolute_error

	

Iterators

Iterator Implementations

	chainer_chemistry.iterators.BalancedSerialIterator

	

	chainer_chemistry.iterators.IndexIterator

	

Links

Link implementations

	chainer_chemistry.links.EmbedAtomID

	

	chainer_chemistry.links.GraphLinear

	

Models

Model implementations

	chainer_chemistry.models.NFP

	

	chainer_chemistry.models.GGNN

	

	chainer_chemistry.models.MLP

	

	chainer_chemistry.models.SchNet

	

	chainer_chemistry.models.WeaveNet

	

Wrapper models

	chainer_chemistry.models.BaseForwardModel

	

	chainer_chemistry.models.Classifier

	

	chainer_chemistry.models.Regressor

	

Utilities

Training

Extensions

	chainer_chemistry.training.extensions.batch_evaluator.BatchEvaluator

	

	chainer_chemistry.training.extensions.roc_auc_evaluator.ROCAUCEvaluator

	

	chainer_chemistry.training.extensions.prc_auc_evaluator.PRCAUCEvaluator

	

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Chainer Chemistry: Chainer extension library for Biology and Chemistry

 		
 Installation

 		
 Dependency

 		
 Install via pip

 		
 Install from source

 		
 Run example training code

 		
 Tutorial

 		
 Abstract

 		
 Tested Environment

 		
 QM9 Dataset

 		
 HOMO prediction by NFP

 		
 Dataset Preparation

 		
 Model Definition

 		
 Run

 		
 Evaluation

 		
 Using your own dataset

 		
 Reference

 		
 Contribution guide

 		
 Development policy

 		
 Versioning policy

 		
 Compatibiity policy

 		
 Branch strategy

 		
 Coding guideline

 		
 Testing guideline

 		
 Terminology

 		
 Relation to Chainer

 		
 API Reference

 		
 Dataset

 		
 Converters

 		
 Indexers

 		
 Parsers

 		
 Preprocessors

 		
 Splitters

 		
 Datasets

 		
 Dataset implementations

 		
 Dataset loaders

 		
 Functions

 		
 Function implementations

 		
 Iterators

 		
 Iterator Implementations

 		
 Links

 		
 Link implementations

 		
 Models

 		
 Model implementations

 		
 Wrapper models

 		
 Utilities

 		
 Training

 		
 Extensions

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

