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Chainer Chemistry is a collection of tools to train and run neural networks for tasks in biology and chemistry using
Chainer .
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CHAPTER 1

Features

• State-of-the-art deep learning neural network models (especially graph convolutions) for chemical molecules
(NFP, GGNN, Weave, SchNet etc.)

• Preprocessors of molecules tailored for these models

• Parsers for several standard file formats (CSV, SDF etc.)

• Loaders for several well-known datasets (QM9, Tox21 etc.)

1.1 Installation

1.1.1 Dependency

Following packages are required to install Chainer Chemistry and are automatically installed when you install the
library by pip command.

• chainer

• pandas

• tqdm

Also, it uses following library, which you need to manually install.

• rdkit

See the official document for installation. If you have setup anaconda, you may install rdkit by following com-
mand:

$ conda install -c rdkit rdkit
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1.1.2 Install via pip

It can be installed by pip command:

$ pip install chainer-chemistry

1.1.3 Install from source

The tarball of the source tree is available via pip download chainer-chemistry. You can use setup.py
to install Chainer Chemistry from the tarball:

$ tar zxf chainer-chemistry-x.x.x.tar.gz
$ cd chainer-chemistry-x.x.x
$ python setup.py install

Install from the latest source from the master branch:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git
$ pip install -e chainer-chemistry

1.1.4 Run example training code

The official repository provides examples of training several graph convolution networks. The code can be obtained
by cloning the repository:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git

The following code is how to train Neural Fingerprint (NFP) with the Tox21 dataset on CPU:

$ cd chainer-chemistry/examples/tox21
$ python train_tox21.py --method=nfp --gpu=-1 # set --gpu=0 if you have GPU

1.2 Tutorial

1.2.1 Abstract

In this tutorial, we predict Highest Occupied Molecular Orbital (HOMO) level of the molecules in QM9 dataset [1][2]
by Neural Finger Print (NFP) [3][4]. We concentrate on exaplaining library usage briefly and do not look over the
detail of NFP implementation.

1.2.2 Tested Environment

• this library >= 0.0.1 (See Installation)

• Chainer >= 2.0.2

• CUDA == 8.0, CuPy >= 1.0.3 (Required only when using GPU)

– For CUDA 9.0, CuPy >= 2.0.0 is required

• sklearn >= 0.17.1 (Only for preprocessing)
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1.2.3 QM9 Dataset

QM9 is a publicly available dataset of small organic molecule structures and their simulated properties for data driven
researches of material property prediction and chemical space exploration. It contains 133,885 stable small organic
molecules made up of CHONF. The available properties are geometric, energetic, electronic, and thermodynamic ones.

In this tutorial, we predict HOMO level in the properties. Physically, we need quantum chemical calculations to
compute HOMO level. From mathematical viewpoint it requires a solution of an internal eigenvalue problem for a
Hamiltonian matrix. It is a big challenge to predict HOMO level accurately by a neural network, because the network
should approximate both calculating the Hamiltonian matrix and solving the internal eigenvalue problem.

1.2.4 HOMO prediction by NFP

At first you should clone the library repository from GitHub. There is a Python script examples/qm9/
train_qm9.py in the repository. It executes a whole training procedure, that is, downloads QM9 dataset, preprocess
it, define an NFP model and run trainning on them.

Execute the following commands on a machine satisfying the tested environment in environment.

~$ git clone git@github.com:pfnet-research/chainer-chemistry.git
~$ cd chainer-chemistry/examples/qm9/

Hereafter all shell commands should be executed in this directory.

If you are a beginner for Chainer, Chainer handson will greatly help you. Especially the explanation of inclusion
relationship of Chainer classes in Sec. 4 in Chap. 2 is helpful when you read the sample script.

Next the dataset preparation part and the model definition part in train_qm9.py are explained. If you are not
interested in them, skip Dataset Preparation and Model Definition, and jump to Run.

Dataset Preparation

This library accepts the same dataset type with Chainer, such as chainer.datasets.SubDataset. In this
section we learn how to download QM9 dataset and use it as a Chainer dataset.

The following Python script downloads and saves the dataset in .npz format.

#!/usr/bin/env python
from chainer_chemistry import datasets as D
from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

preprocessor = preprocess_method_dict['nfp']()
dataset = D.get_qm9(preprocessor, labels='homo')
cache_dir = 'input/nfp_homo/'
os.makedirs(cache_dir)
NumpyTupleDataset.save(cache_dir + 'data.npz', dataset)

The last two lines save the dataset to input/nfp_homo/data.npz and we need not to download the dataset next
time.

The following Python script read the dataset from the saved .npz file and split the data points into training and
validation sets.

#!/usr/bin/env python
from chainer.datasets import split_dataset_random
from chainer_chemistry import datasets as D
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from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

cache_dir = 'input/nfp_homo/'
dataset = NumpyTupleDataset.load(cache_dir + 'data.npz')
train_data_ratio = 0.7
train_data_size = int(len(dataset) * train_data_ratio)
train, val = split_dataset_random(dataset, train_data_size, 777)
print('train dataset size:', len(train))
print('validation dataset size:', len(val))

The function split_dataset_random() returns a tuple of two chainer.datasets.SubDataset objects
(training and validation set). Now you have prepared training and validation data points and you can construct
chainer.iterator.Iterator objects, needed for updaters in Chainer.

Model Definition

In Chainer, a neural network model is defined as a chainer.Chain object.

Graph convolutional networks such as NFP are generally connection of graph convolution layers and multi perceptron
layers. Therefore it is convenient to define a class which inherits chainer.Chain and compose two chainer.
Chain objects corresponding to the two kind of layers.

Execute the following Python script and check you can define such a class. NFP and MLP are already defined
chainer.Chain classes.

#!/usr/bin/env python
import chainer
from chainer_chemistry.models import MLP, NFP

class GraphConvPredictor(chainer.Chain):

def __init__(self, graph_conv, mlp):
super(GraphConvPredictor, self).__init__()
with self.init_scope():

self.graph_conv = graph_conv
self.mlp = mlp

def __call__(self, atoms, adjs):
x = self.graph_conv(atoms, adjs)
x = self.mlp(x)
return x

n_unit = 16
conv_layers = 4
model = GraphConvPredictor(NFP(n_unit, n_unit, conv_layers),

MLP(n_unit, 1))

Run

You have defined the dataset and the NFP model on Chainer. There are no other procedures specific to this library.
Hereafter you should just follow the usual procedures in Chainer to execute training.

The sample script examples/qm9/train_qm9.py contains all the procedures and you can execute training just
by invoking the script. The following command starts training for 20 epochs and reports loss and accuracy during
training. They are reported for each of main (dataset for training) and validation (dataset for validation).
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The --gpu 0 option is to utilize a GPU with device id = 0. If you do not have a GPU, set --gpu -1 or just drop
--gpu 0 to use CPU for all the calculation. In most cases, calculation with GPU is much faster than that only with
CPU.

~/chainer-chemistry/examples/qm9$ python train_qm9.py --method nfp --label homo --gpu
→˓0 # If GPU is unavailable, set --gpu -1

Train NFP model...
epoch main/loss main/accuracy validation/main/loss validation/main/accuracy
→˓ elapsed_time
1 0.746135 0.0336724 0.680088 0.0322597
→˓ 58.4605
2 0.642823 0.0311715 0.622942 0.0307055
→˓ 113.748
(...)
19 0.540646 0.0277585 0.532406 0.0276445
→˓ 1052.41
20 0.537062 0.0276631 0.551695 0.0277499
→˓ 1107.29

After finished, you will find log file in result/ directory.

Evaluation

In the loss and accuracy report, we are mainly interested in validation/main/accuracy. Although it decreases
during training, the accuracy field is actually mean absolute error. The unit is Hartree. Therefore the last line means
validation mean absolute error is 0.0277499 Hartree. See scaled_abs_error() function in train_qm9.py for
the detailed definition of mean absolute error.

You can also train other type models like GGNN, SchNet or WeaveNet, and other target values like LUMO, dipole
moment and internal energy, just by changing --model and --label options, respectively. See output of python
train_qm9.py --help.

1.2.5 Reference
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in the chemical universe database GDB-17, J. Chem. Inf. Model. 52, 2864–2875, 2012.

[2] R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry structures and properties of 134
kilo molecules, Scientific Data 1, 140022, 2014.

[3] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P.
(2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information
processing systems (pp. 2224-2232).
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1.3 API Reference

1.3.1 Dataset

Converters

chainer_chemistry.dataset.converters.
concat_mols

Indexers

chainer_chemistry.dataset.indexer.
BaseIndexer
chainer_chemistry.dataset.indexer.
BaseFeatureIndexer
chainer_chemistry.dataset.indexers.
NumpyTupleDatasetFeatureIndexer

Parsers

chainer_chemistry.dataset.parsers.
BaseParser
chainer_chemistry.dataset.parsers.
CSVFileParser
chainer_chemistry.dataset.parsers.
SDFFileParser

Preprocessors

Base preprocessors

chainer_chemistry.dataset.
preprocessors.BasePreprocessor
chainer_chemistry.dataset.
preprocessors.MolPreprocessor

Concrete preprocessors

chainer_chemistry.dataset.
preprocessors.AtomicNumberPreprocessor
chainer_chemistry.dataset.
preprocessors.ECFPPreprocessor
chainer_chemistry.dataset.
preprocessors.GGNNPreprocessor
chainer_chemistry.dataset.
preprocessors.NFPPreprocessor

Continued on next page
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Table 1.5 – continued from previous page
chainer_chemistry.dataset.
preprocessors.SchNetPreprocessor
chainer_chemistry.dataset.
preprocessors.WeaveNetPreprocessor

Utilities

chainer_chemistry.dataset.
preprocessors.MolFeatureExtractionError
chainer_chemistry.dataset.
preprocessors.type_check_num_atoms
chainer_chemistry.
dataset.preprocessors.
construct_atomic_number_array
chainer_chemistry.dataset.
preprocessors.construct_adj_matrix

1.3.2 Datasets

Dataset implementations

chainer_chemistry.datasets.
NumpyTupleDataset

Dataset loaders

chainer_chemistry.datasets.tox21.
get_tox21
chainer_chemistry.datasets.qm9.get_qm9

1.3.3 Functions

Function implementations

chainer_chemistry.functions.matmul

1.3.4 Links

Link implementations

chainer_chemistry.links.EmbedAtomID
chainer_chemistry.links.GraphLinear
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1.3.5 Models

Model implementations

chainer_chemistry.models.NFP
chainer_chemistry.models.GGNN
chainer_chemistry.models.MLP
chainer_chemistry.models.SchNet
chainer_chemistry.models.WeaveNet

1.3.6 Utilities
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Indices and tables

• genindex

• modindex

• search
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