

Welcome to CGRA PnR’s documentation!

Contents:

	Thunder
	Install

	Usage

	Cyclone

Indices and tables

	Index

	Module Index

	Search Page

Thunder

Thunder is part of CGRA PnR that takes mapped netlist and place each
computation node to each CGRA tiles. It is designed to be domain-specific and
can connect to Amazon Web Service (AWS) Lambda for more parallelism.

	Install

	Usage
	Global Placement

	Detailed Placement

Install

For now Thunder doesn’t have standalone binary to use. You have to
install its Python binding to do the placement. To install, simply do

pip install thunder/

You will need a modern C++ compiler and cmake.

Usage

place.py in the root folder shows some examples of how to use
pythunder, Thunder’s python binding. The overall placement flow is
as follows:

	global placement for each computation kernels

	detailed placement within each kernels

	global refinement

Depends on what kind of architecture file, you need to use different
arguments to specify. -c means cgra_info.txt, which is used from
CGRAGenerator; -l means layout file, which can be obtained from
garnet.

python place.py -i netlist.packed -c cgra_info.txt -o netlist.placed --no-vis

Here we use --no-vis to turn off visualization.

Global Placement

First you need to partition the netlist into computation kernels. The
default algorithm is provided by leidenalg:

clusters = partition_netlist(netlists)

You can see more details in community.py to see how to use
leidenalg to partition the netlist into multiple computation
kernels.

Once we have the partitions, we can then proceed to call the global
placer:

gp = pythunder.GlobalPlacer(clusters, netlists, fixed_blk_pos, layout)
gp.solve()
gp.anneal()

The constructor takes cluster in form of Dict[str, Set[str]]. The
key is cluster ID and the value is a set of block IDs. netlists is
in form of Dict[std, List[Tuple[str, str]]], where the key is net ID
and the value is a list of block IDS and ports. fixed_blk_pos is for
fixed blocks, such as IOs, and layout is the layout class.

Detailed Placement

By default the detailed placement is carried within the C++ with
multi-processing. It is because Python’s GIL is very tricky to deal with
when you have multi-processing with C++ runtime. Notice that in detailed
placement, since we need to approximate the kernel location, we need to
provide extra centroid information for each clusters.

pythunder.detailed_placement(clusters, cells, netlists, fixed_blocks,
 clb_type,
 fold_reg,
 seed)

Global Refinement

This stage is essentially a detailed placement where the scope is the
entire board and no hill-climbing.

Cyclone

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to CGRA PnR’s documentation!

 		
 Thunder

 		
 Install

 		
 Usage

 		
 Global Placement

 		
 Detailed Placement

 		
 Cyclone

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

