
CGold Documentation
Release 0.1

Ruslan Baratov

Jun 05, 2023

CONTENTS

1 Overview 3
1.1 What CMake can do . 3
1.2 What can’t be done with CMake . 15

2 First step 19
2.1 CMake Installation . 20
2.2 Native build tool . 28
2.3 Compiler . 40
2.4 Minimal example . 41
2.5 Generate native tool files . 42
2.6 Build and run executable . 62

3 Tutorials 71
3.1 CMake stages . 71
3.2 Out-of-source build . 77
3.3 Workflow . 78
3.4 Version and policies . 83
3.5 Project declaration . 91
3.6 Variables . 98
3.7 CMake listfiles . 146
3.8 Control structures . 163
3.9 Executables . 181
3.10 Tests . 183
3.11 Libraries . 188
3.12 Pseudo targets . 216
3.13 Collecting sources . 216
3.14 Usage requirements . 218
3.15 Build types . 218
3.16 configure_file . 218
3.17 Install . 218
3.18 Toolchain . 239
3.19 Generator expressions . 248
3.20 Properties . 248
3.21 Packing . 248
3.22 Continuous integration . 248

4 Platforms 249
4.1 iOS . 249
4.2 Android . 250

i

5 Generators 253
5.1 Ninja . 253

6 Compilers 255

7 Contacts 257
7.1 Public . 257
7.2 Private . 257

8 Rejected 259
8.1 ExternalProject_Add . 259
8.2 FindXXX.cmake . 259
8.3 macro . 260
8.4 Object libraries . 260
8.5 target_compile_features . 264
8.6 write_compiler_detection_header . 265

9 Glossary 267
9.1 -B . 267
9.2 -H . 267
9.3 -S . 268
9.4 CMake . 268
9.5 Git . 269
9.6 Native build tool . 269
9.7 VCS . 270
9.8 Binary tree . 270
9.9 Cache variables . 270
9.10 CMake module . 271
9.11 CMake variables . 271
9.12 CMakeCache.txt . 271
9.13 CMakeLists.txt . 271
9.14 Developer Command Prompt . 272
9.15 Listfile . 272
9.16 Multi-configuration generator . 273
9.17 One Definition Rule (ODR) . 273
9.18 Single-configuration generator . 274
9.19 Source tree . 274

ii

CGold Documentation, Release 0.1

Warning: The project is not under active development

Welcome to CGold!

This guide will show you how to use CMake and will help you to write elegant, correct and scalable projects. We’ll
start from the simple cases and add more features one by one. This tutorial covers only part of the CMake capabilities
- some topics are skipped intentionally in favor of better modern approaches1. This document is designed to be a good
tutorial for absolute beginners but also touches on some aspects in which advanced developers may be interested. Look
at this document as a skeleton/starting point for further CMake learning.

Enjoy!

1 See rejected section for list with detailed description

CONTENTS 1

CGold Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

OVERVIEW

1.1 What CMake can do

CMake is a meta build system. It can generate real native build tool files from abstracted text configuration. Usually
such code lives in CMakeLists.txt files.

What does it mean and how it can be useful?

1.1.1 Cross-platform development

Let’s assume you have some cross-platform project with C++ code shared along different platforms/IDEs. Say you use
Visual Studio on Windows, Xcode on OSX and Makefile for Linux:

What you will do if you want to add new bar.cpp source file? You have to add it to every tool you use:

3

CGold Documentation, Release 0.1

To keep the environment consistent you have to do the similar update several times. And the most important thing is
that you have to do it manually (arrow marked with a red color on the diagram in this case). Of course such approach
is error prone and not flexible.

CMake solve this design flaw by adding an extra step to the development process. You can describe your project in a
CMakeLists.txt file and use CMake to generate the cross-platform build tools:

4 Chapter 1. Overview

CGold Documentation, Release 0.1

Same action - adding new bar.cpp file, will be done in one step now:

1.1. What CMake can do 5

CGold Documentation, Release 0.1

Note that the bottom part of the diagram was not changed. I.e. you still can keep using your favorite tools like Visual
Studio/msbuild, Xcode/xcodebuild and Makefile/make!

See also:

• KDE moving from autotools to CMake

• Visual C++ Team Blog: Support for Android CMake projects in Visual Studio

• Android Studio: Add C and C++ code to Your Project

6 Chapter 1. Overview

http://lwn.net/Articles/188693/
https://blogs.msdn.microsoft.com/vcblog/2015/12/15/support-for-android-cmake-projects-in-visual-studio/
https://developer.android.com/studio/projects/add-native-code.html

CGold Documentation, Release 0.1

1.1.2 VCS friendly

Version Control (VCS) is used to share and save your code’s history of changes when you work in a team. However,
different IDEs use unique files to track project files (*.sln, *.pbxproj, *.vscode, etc) For example, here is the diff
after adding bar.cpp source file to the bar executable in Visual Studio:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/foo-old.sln
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/foo-new.sln
@@ -4,6 +4,8 @@
VisualStudioVersion = 14.0.25123.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "foo", "foo.vcxproj", "{C8F8C325-
→˓ACF3-460E-81DF-8515C72B334A}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bar", "..\bar\bar.vcxproj", "
→˓{D14B78EA-1ADA-487F-B1ED-42C2B919C000}"
EndProject
Global

GlobalSection(SolutionConfigurationPlatforms) = preSolution
@@ -21,6 +23,14 @@

{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x64.Build.0 = Release|x64
{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x86.ActiveCfg =␣

→˓Release|Win32
{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x86.Build.0 =␣

→˓Release|Win32
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x64.ActiveCfg = Debug|x64
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x64.Build.0 = Debug|x64
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x86.ActiveCfg = Debug|Win32
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x86.Build.0 = Debug|Win32
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x64.ActiveCfg =␣
→˓Release|x64
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x64.Build.0 = Release|x64
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x86.ActiveCfg =␣
→˓Release|Win32
+ {D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x86.Build.0 =␣
→˓Release|Win32

EndGlobalSection
GlobalSection(SolutionProperties) = preSolution

HideSolutionNode = FALSE

And new bar.vcxproj of 150 lines of code. Here are some parts of it:

<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/
→˓developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>

(continues on next page)

1.1. What CMake can do 7

CGold Documentation, Release 0.1

(continued from previous page)

</ProjectConfiguration>

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label=

→˓"Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>

</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label=

→˓"Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>

</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'==

→˓'Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition=

→˓"exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label=
→˓"LocalAppDataPlatform" />
</ImportGroup>

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</

→˓PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>

</Link>

<ItemGroup>
<ClCompile Include="bar.cpp" />

</ItemGroup>
(continues on next page)

8 Chapter 1. Overview

CGold Documentation, Release 0.1

(continued from previous page)

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>

When using Xcode:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/project-old.pbxproj
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/project-new.pbxproj
@@ -8,6 +8,7 @@

/* Begin PBXBuildFile section */
0FE79B881D22BAE400E38C27 /* main.cpp in Sources */ = {isa =␣

→˓PBXBuildFile; fileRef = 0FE79B871D22BAE400E38C27 /* main.cpp */; };
+ 0FE79B951D22BB5E00E38C27 /* bar.cpp in Sources */ = {isa = PBXBuildFile;
→˓ fileRef = 0FE79B941D22BB5E00E38C27 /* bar.cpp */; };
/* End PBXBuildFile section */

/* Begin PBXCopyFilesBuildPhase section */
@@ -20,15 +21,33 @@

);
runOnlyForDeploymentPostprocessing = 1;

};
+ 0FE79B901D22BB5E00E38C27 /* CopyFiles */ = {
+ isa = PBXCopyFilesBuildPhase;
+ buildActionMask = 2147483647;
+ dstPath = /usr/share/man/man1/;
+ dstSubfolderSpec = 0;
+ files = (
+);
+ runOnlyForDeploymentPostprocessing = 1;
+ };
/* End PBXCopyFilesBuildPhase section */

/* Begin PBXFileReference section */
0FE79B841D22BAE400E38C27 /* foo */ = {isa = PBXFileReference;␣

→˓explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = foo;␣
→˓sourceTree = BUILT_PRODUCTS_DIR; };

0FE79B871D22BAE400E38C27 /* main.cpp */ = {isa = PBXFileReference;␣
→˓lastKnownFileType = sourcecode.cpp.cpp; path = main.cpp; sourceTree = "<group>"; };
+ 0FE79B921D22BB5E00E38C27 /* bar */ = {isa = PBXFileReference;␣
→˓explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = bar;␣
→˓sourceTree = BUILT_PRODUCTS_DIR; };
+ 0FE79B941D22BB5E00E38C27 /* bar.cpp */ = {isa = PBXFileReference;␣
→˓lastKnownFileType = sourcecode.cpp.cpp; path = bar.cpp; sourceTree = "<group>"; };
/* End PBXFileReference section */

/* Begin PBXFrameworksBuildPhase section */
0FE79B811D22BAE400E38C27 /* Frameworks */ = {

+ isa = PBXFrameworksBuildPhase;
+ buildActionMask = 2147483647;

(continues on next page)

1.1. What CMake can do 9

CGold Documentation, Release 0.1

(continued from previous page)

+ files = (
+);
+ runOnlyForDeploymentPostprocessing = 0;
+ };
+ 0FE79B8F1D22BB5E00E38C27 /* Frameworks */ = {

isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (

@@ -42,6 +61,7 @@
isa = PBXGroup;
children = (

0FE79B861D22BAE400E38C27 /* foo */,
+ 0FE79B931D22BB5E00E38C27 /* bar */,

0FE79B851D22BAE400E38C27 /* Products */,
);
sourceTree = "<group>";

@@ -50,6 +70,7 @@
isa = PBXGroup;
children = (

0FE79B841D22BAE400E38C27 /* foo */,
+ 0FE79B921D22BB5E00E38C27 /* bar */,

);
name = Products;
sourceTree = "<group>";

@@ -60,6 +81,14 @@
0FE79B871D22BAE400E38C27 /* main.cpp */,

);
path = foo;

+ sourceTree = "<group>";
+ };
+ 0FE79B931D22BB5E00E38C27 /* bar */ = {
+ isa = PBXGroup;
+ children = (
+ 0FE79B941D22BB5E00E38C27 /* bar.cpp */,
+);
+ path = bar;

sourceTree = "<group>";
};

/* End PBXGroup section */
@@ -80,6 +109,23 @@

name = foo;
productName = foo;
productReference = 0FE79B841D22BAE400E38C27 /* foo */;

+ productType = "com.apple.product-type.tool";
+ };
+ 0FE79B911D22BB5E00E38C27 /* bar */ = {
+ isa = PBXNativeTarget;
+ buildConfigurationList = 0FE79B981D22BB5E00E38C27 /* Build␣
→˓configuration list for PBXNativeTarget "bar" */;
+ buildPhases = (
+ 0FE79B8E1D22BB5E00E38C27 /* Sources */,
+ 0FE79B8F1D22BB5E00E38C27 /* Frameworks */,

(continues on next page)

10 Chapter 1. Overview

CGold Documentation, Release 0.1

(continued from previous page)

+ 0FE79B901D22BB5E00E38C27 /* CopyFiles */,
+);
+ buildRules = (
+);
+ dependencies = (
+);
+ name = bar;
+ productName = bar;
+ productReference = 0FE79B921D22BB5E00E38C27 /* bar */;

productType = "com.apple.product-type.tool";
};

/* End PBXNativeTarget section */
@@ -94,6 +140,9 @@

0FE79B831D22BAE400E38C27 = {
CreatedOnToolsVersion = 7.3.1;

};
+ 0FE79B911D22BB5E00E38C27 = {
+ CreatedOnToolsVersion = 7.3.1;
+ };

};
};
buildConfigurationList = 0FE79B7F1D22BAE400E38C27 /* Build␣

→˓configuration list for PBXProject "foo" */;
@@ -109,6 +158,7 @@

projectRoot = "";
targets = (

0FE79B831D22BAE400E38C27 /* foo */,
+ 0FE79B911D22BB5E00E38C27 /* bar */,

);
};

/* End PBXProject section */
@@ -119,6 +169,14 @@

buildActionMask = 2147483647;
files = (

0FE79B881D22BAE400E38C27 /* main.cpp in Sources */,
+);
+ runOnlyForDeploymentPostprocessing = 0;
+ };
+ 0FE79B8E1D22BB5E00E38C27 /* Sources */ = {
+ isa = PBXSourcesBuildPhase;
+ buildActionMask = 2147483647;
+ files = (
+ 0FE79B951D22BB5E00E38C27 /* bar.cpp in Sources */,

);
runOnlyForDeploymentPostprocessing = 0;

};
@@ -220,6 +278,20 @@

};
name = Release;

};
+ 0FE79B961D22BB5E00E38C27 /* Debug */ = {
+ isa = XCBuildConfiguration;

(continues on next page)

1.1. What CMake can do 11

CGold Documentation, Release 0.1

(continued from previous page)

+ buildSettings = {
+ PRODUCT_NAME = "$(TARGET_NAME)";
+ };
+ name = Debug;
+ };
+ 0FE79B971D22BB5E00E38C27 /* Release */ = {
+ isa = XCBuildConfiguration;
+ buildSettings = {
+ PRODUCT_NAME = "$(TARGET_NAME)";
+ };
+ name = Release;
+ };
/* End XCBuildConfiguration section */

/* Begin XCConfigurationList section */
@@ -239,6 +311,15 @@

0FE79B8D1D22BAE400E38C27 /* Release */,
);
defaultConfigurationIsVisible = 0;

+ defaultConfigurationName = Release;
+ };
+ 0FE79B981D22BB5E00E38C27 /* Build configuration list for␣
→˓PBXNativeTarget "bar" */ = {
+ isa = XCConfigurationList;
+ buildConfigurations = (
+ 0FE79B961D22BB5E00E38C27 /* Debug */,
+ 0FE79B971D22BB5E00E38C27 /* Release */,
+);
+ defaultConfigurationIsVisible = 0;

};
/* End XCConfigurationList section */

};

As you can see, a lot of magic happens while doing a simple task like adding one new source file to a target. Additionally,

• Are you sure that all XML sections added on purpose and was not the result of accidental clicking?

• Are you sure all this x86/x64/Win32, Debug/Release configurations connected together in right order and you
haven’t break something while debugging?

• Are you sure all that magic numbers was not read from your environment while you have done non-trivial script-
ing and is in fact some private key, token or password?

• Do you think it will be easy to resolve conflict in this file?

Luckily we have CMake which helps us in a neat way. We haven’t touched any CMake syntax yet but I’m pretty sure
it’s quite obvious what’s happening here :)

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/CMakeLists-old.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓overview/snippets/CMakeLists-new.txt
@@ -2,3 +2,4 @@
project(foo)

(continues on next page)

12 Chapter 1. Overview

CGold Documentation, Release 0.1

(continued from previous page)

add_executable(foo foo.cpp)
+add_executable(bar bar.cpp)

What a relief! Having such human-readable form of build system commands actually making CMake a convenient tool
for development even if you’re using only one platform.

1.1.3 Experimenting

Even if your team has no plans to work with some native tools originally, this may change in the future. E.g. you
have worked with Makefile and want to try Ninja. What you will do? Convert manually? Find the converter? Write
converter from scratch? Write new Ninja configuration from scratch? With CMake you can change cmake -G 'Unix
Makefiles' to cmake -G Ninja - done!

This helps developers of new IDEs also. Instead of putting your IDE users into situations when they have to de-
cide should they use your SuperDuperIDE instead of their favorite one and probably writing endless number of
SuperDuperIDE <-> Xcode, SuperDuperIDE <-> Visual Studio, etc. converters, all you have to do is to add
new generator -G SuperDuperIDE to CMake.

1.1.4 Family of tools

CMake is a family of tools that can help you during all stages of sources for developers -> quality control
-> installers for users stack. Next activity diagram shows CMake, CTest and CPack connections:

1.1. What CMake can do 13

http://yed-uml.readthedocs.io/en/latest/activity-diagram.html

CGold Documentation, Release 0.1

Note:

• All stages will be described fully in Tutorials.

See also:

• CMake Workflow

14 Chapter 1. Overview

CGold Documentation, Release 0.1

1.1.5 Summary

• Human-readable configuration

• Single configuration for all tools

• Cross-platform/cross-tools friendly development

• Doesn’t force you to change your favorite build tool/IDE

• VCS friendly development

• Easy experimenting

• Easy development of new IDEs

1.2 What can’t be done with CMake

Good judgement comes from experience.
Experience comes from bad judgement.
– Mulla Nasrudin (?)

CMake has its strengths and weaknesses. Most of the drawbacks mentioned here can be worked around by using
approaches that may differ from your normal workflow, yet still reach the end goal. Try to look at them from another
angle; think of the picture as a whole and remember that the advantages definitely outweigh the disadvantages.

1.2.1 Language/syntax

This is probably the first thing you will be hit with. The CMake language is not something you can compare with what
you have likely used before. There are no classes, no maps, no virtual functions or lambdas. Even such tasks like
“parse the input arguments of a function” and “return result from a function” are quite tricky for the beginners. CMake
is definitely not a language you want to try to experiment with implementation of red-black tree or processing JSON
responses from a server. But it does handle regular development very efficiently and you probably will find it more
attractive than XML files, autotools configs or JSON-like syntax.

Think about it in this way: if you want to do some nasty non-standard thing then probably you should stop. If you think
it is something important, then it might be quite useful for other CMake users too. In this case you need to think about
implementing new feature in CMake itself. CMake is open-source project written in C++, and additional features are
always being introduced. You can also discuss any problems in the CMake mailing-list to see how you can help with
improving the current state.

CMake mailing list

• Wrapping CMake functionality with another language

1.2. What can’t be done with CMake 15

https://en.wikiquote.org/wiki/Jim_Horning
https://gyp.gsrc.io/docs/LanguageSpecification.md#Example
https://cmake.org/mailman/listinfo/cmake-developers
http://www.mail-archive.com/cmake-developers%40cmake.org/msg15199.html

CGold Documentation, Release 0.1

1.2.2 Affecting workflow

This might sound contradictory to the statement that you can keep using your favorite tools, but it’s not. You still can
work with your favorite IDE, but you must remember that CMake is now “in charge”.

Imagine you have C++ header version.h generated automatically by some script from template version.h.in. You
see version.h file in your IDE, you can update it and run build and new variables from version.h will be used in
binary, but you should never do it since you know that source is actually version.h.in.

Similarly, when you use CMake - you should never update your build configuration directly in the IDE. Instead, you
have to remember that any target files generated from CMakeLists.txt and all your project additions made directly
in the IDE will be lost next time you run CMake.

Wrong workflow:

Correct workflow:

16 Chapter 1. Overview

CGold Documentation, Release 0.1

It’s not enough to know that if you want to add a new library to your Visual Studio solution you can do:

• Add → New Project . . . → Visual C++ → Static Library

You have to know that this must instead be done by adding a new add_library command to CMakeLists.txt.

1.2.3 Incomplete functionality coverage

There are some missing features in CMake. Mapping of CMake functionality <-> native build tool functionality is
not always bijective. Often this can be worked around by generating different native tool files from the same CMake
code. For example, it’s possible using autotools to create two versions of a library (shared + static) in a single run.
However, this may affect performance, or be outright impossible for other platforms (e.g., Windows). With CMake,
you can generate two versions of a project from a single CMakeLists.txt file: one each for shared and static variants,
effectively running generate/build twice.

With Visual Studio you can have two variants, x86 and x64, in one solution file. With CMake you have to generate
project twice: once with Visual Studio generator and one more time with Visual Studio Win64 generator.

Similarly with Xcode. In general CMake can’t mix two different toolchains (at least for now) so it’s not possible to
generate an Xcode project with iOS and OSX targets—again, just generate code for each platform independently.

Note:

• Building universal iOS libraries

1.2. What can’t be done with CMake 17

CGold Documentation, Release 0.1

1.2.4 Unrelocatable projects

Internally, CMake saves the full paths to each of the sources, so it’s not possible to generate a project then share it
between several developers. In other words, you can’t be “the CMake person” who will generate separate projects for
those who use Xcode and those who use Visual Studio. All developers in the team should be aware of how to generate
projects using CMake. In practice it means they have to know which CMake arguments to use, some basic examples
being cmake -H. -B_builds -GXcode and cmake -H. -B_builds "-GVisual Studio 12 2013" for Xcode
and Visual Studio, respectively. Additionally, they must understand the changes they must make in their workflow. As
a general rule, developers should make an effort to learn the tools used in making the code they wish to utilize. Only
when providing an end product to users is it your responsibility to generate user-friendly installers like *.msi instead
of simply providing the project files.

CMake documentation

• CMAKE_USE_RELATIVE_PATHS removed since CMake 3.4

Even if support for relative paths will be re-implemented in the future, each developer in the team should have CMake
installed, as there are other tasks which CMake automatically takes care of that may be done incorrectly if done man-
ually. A few examples are:

• The automatic detection of changes to CMakeLists.txt and subsequent regeneration of the source tree.

• The inclusion of custom build steps with the built-in scripting mode.

• For doing internal stuff like searching for installed dependent packages

TODO

Link to relocatable packages

18 Chapter 1. Overview

https://cmake.org/cmake/help/latest/release/3.4.html#deprecated-and-removed-features

CHAPTER

TWO

FIRST STEP

Okay, time to run some code! Now we will check the tools we need, create a project with one executable, then build
and run it. Try to follow instructions accurately. The goal of this section is to run the simplest configuration with
commonly/widely used tools. After you’ve checked that everything is fine and feel comfortable you can find more
options in: Platforms, Generators and Compilers. Each command’s usage/pitfalls will be described in depth further
in Tutorials.

19

CGold Documentation, Release 0.1

2.1 CMake Installation

That’s it, ground.
I wonder if it will be friends with me?
Hello, ground!
– Whale

Obviously to use some tool you need to install it first. CMake can be installed using your default system package
manager or by getting binaries from Download page.

2.1.1 Ubuntu

CMake can be installed by apt-get:

> sudo apt-get -y install cmake
> which cmake
/usr/bin/cmake
> cmake --version
cmake version 2.8.12.2

Installing CMake GUI is similar:

> sudo apt-get -y install cmake-qt-gui
> which cmake-gui
/usr/bin/cmake-gui
> cmake-gui --version
cmake version 2.8.12.2

Binaries can be downloaded and unpacked manually to any location:

> wget https://cmake.org/files/v3.4/cmake-3.4.1-Linux-x86_64.tar.gz
> tar xf cmake-3.4.1-Linux-x86_64.tar.gz
> export PATH="`pwd`/cmake-3.4.1-Linux-x86_64/bin:$PATH" # save it in .bashrc if needed
> which cmake
/.../cmake-3.4.1-Linux-x86_64/bin/cmake
> which cmake-gui
/.../cmake-3.4.1-Linux-x86_64/bin/cmake-gui

Version:

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).
> cmake-gui --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake)

20 Chapter 2. First step

https://www.youtube.com/watch?v=h02a2HSB58M
https://cmake.org/download/

CGold Documentation, Release 0.1

2.1.2 OS X

CMake can be installed on Mac using brew:

> brew install cmake
> which cmake
/usr/local/bin/cmake
> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake)

Binaries can be downloaded and unpacked manually to any location:

> wget https://cmake.org/files/v3.4/cmake-3.4.1-Darwin-x86_64.tar.gz
> tar xf cmake-3.4.1-Darwin-x86_64.tar.gz
> export PATH="`pwd`/cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin:$PATH"
> which cmake
/.../cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin/cmake
> which cmake-gui
/.../cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin/cmake-gui

Version:

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).
> cmake-gui --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

DMG installer

Download cmake-*.dmg installer from Download page and run it.

Click Agree:

2.1. CMake Installation 21

http://brew.sh
https://cmake.org/download/

CGold Documentation, Release 0.1

Drag CMake.app to Applications folder (or any other location):

22 Chapter 2. First step

CGold Documentation, Release 0.1

Start Launchpad:

Find CMake and launch it:

2.1. CMake Installation 23

CGold Documentation, Release 0.1

2.1.3 Windows

Download cmake-*.exe installer from Download page and run it.

Click Next:

Click I agree:

24 Chapter 2. First step

https://cmake.org/download/

CGold Documentation, Release 0.1

Check one of the Add CMake to the system PATH ... if you want to have CMake in PATH. Check Create CMake
Desktop Icon to create icon on desktop:

2.1. CMake Installation 25

CGold Documentation, Release 0.1

Choose installation path. Add suffix with version in case you want to have several versions installed simultaneously:

Shortcut in Start Menu folder:

26 Chapter 2. First step

CGold Documentation, Release 0.1

Installing. . .

Click Finish:

2.1. CMake Installation 27

CGold Documentation, Release 0.1

Desktop icon created:

If you set Add CMake to the system PATH ... checkbox then CMake can be accessed via terminal (otherwise
you need to add ...\bin to PATH environment variable):

> where cmake
C:\soft\develop\cmake\3.4.1\bin\cmake.exe

> where cmake-gui
C:\soft\develop\cmake\3.4.1\bin\cmake-gui.exe

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

See also:

• Installing CMake

• How to install cmake 3.2 on ubuntu 14.04?

2.2 Native build tool

As already mentioned CMake is not designed to do the build itself - it generates files which can be used by a real native
build tool, hence you need to choose such a tool(s) and install it if needed. Option -G <generator-name> can be used
to specify what type of generator will be used. If no such option present CMake will use default generator (e.g. Unix
Makefiles on *nix platforms).

The list of available generators depends on the host OS (e.g. Visual Studio family generators are not available on
Linux). You can get this list by running cmake --help:

> cmake --help
...
Generators

The following generators are available on this platform:
Unix Makefiles = Generates standard UNIX makefiles.
Ninja = Generates build.ninja files (experimental).
Watcom WMake = Generates Watcom WMake makefiles.
CodeBlocks - Ninja = Generates CodeBlocks project files.
...

28 Chapter 2. First step

http://smallbusiness.chron.com/open-terminal-session-windows-7-56627.html
http://www.computerhope.com/issues/ch000549.htm
https://cmake.org/install/
http://askubuntu.com/questions/610291/how-to-install-cmake-3-2-on-ubuntu-14-04
https://cmake.org/cmake/help/v3.5/manual/cmake.1.html#options
https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html

CGold Documentation, Release 0.1

2.2.1 Visual Studio

Visual Studio is an IDE created by Microsoft. Here are the links to the community versions:

• Visual Studio Community 2017

• Visual Studio Community 2015

• Visual Studio Community 2013

See also:

• Official site

Wikipedia

• Visual Studio

Manage features

The installer will offer you a menu to manage the features you need. Don’t forget to add Programming Languages →
Visual C++:

2.2. Native build tool 29

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=532496&type=ISO&clcid=0x409
https://www.visualstudio.com/
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

CGold Documentation, Release 0.1

If you already have Visual Studio installed you can go to System → Apps & features → Modify:

30 Chapter 2. First step

CGold Documentation, Release 0.1

2.2. Native build tool 31

CGold Documentation, Release 0.1

See also:

• CMake Tools for Visual Studio

• VsVim

• Editor Guidelines

• Developer Command Prompt

32 Chapter 2. First step

http://cmaketools.codeplex.com/
https://visualstudiogallery.msdn.microsoft.com/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329
https://visualstudiogallery.msdn.microsoft.com/da227a0b-0e31-4a11-8f6b-3a149cf2e459

CGold Documentation, Release 0.1

2.2.2 Xcode

Xcode is an IDE for OSX/iOS development (Wikipedia).

Default install with App Store

Go to App Store:

Search for Xcode application:

2.2. Native build tool 33

https://en.wikipedia.org/wiki/Xcode

CGold Documentation, Release 0.1

Run install:

After successful installation run Launchpad:

34 Chapter 2. First step

CGold Documentation, Release 0.1

Search for Xcode and launch it:

Success!

2.2. Native build tool 35

CGold Documentation, Release 0.1

Note: Other developer tools are installed now too.

Several/custom Xcode versions

If you want to have several Xcode versions simultaneously for testing purposes or you want a specific version of Xcode
you can download/install it manually from Apple Developers site.

For example:

> ls /Applications/develop/ide/xcode
4.6.3/
5.0.2/
6.1/
6.4/
7.2/
7.2.1/
7.3.1/

The default directory and version can be checked with xcode-select/xcodebuild tools:

> xcode-select --print-path
/Applications/develop/ide/xcode/7.3.1/Xcode.app/Contents/Developer

> xcodebuild -version
Xcode 7.3.1
Build version 7D1014

The default version can be changed with xcode-select -switch:

36 Chapter 2. First step

https://developer.apple.com/download/more/

CGold Documentation, Release 0.1

> sudo xcode-select -switch /Applications/develop/ide/xcode/7.2/Xcode.app/Contents/
→˓Developer

> xcodebuild -version
Xcode 7.2
Build version 7C68

Or by using the environment variable DEVELOPER_DIR:

> export DEVELOPER_DIR=/Applications/develop/ide/xcode/7.3.1/Xcode.app/Contents/Developer
> xcodebuild -version
Xcode 7.3.1
Build version 7D1014

> export DEVELOPER_DIR=/Applications/develop/ide/xcode/7.2/Xcode.app/Contents/Developer
> xcodebuild -version
Xcode 7.2
Build version 7C68

See also:

• Polly iOS toolchains

2.2.3 Unix Makefiles

• CMake option: -G "Unix Makefiles"

CMake documentation

• Unix Makefiles

Wikipedia

• Make

Ubuntu Installation

> sudo apt-get -y install make
> make -v
GNU Make 3.81
...

2.2. Native build tool 37

https://github.com/ruslo/polly/wiki/Toolchain-list#ios
https://cmake.org/cmake/help/v3.5/generator/Unix%20Makefiles.html
https://en.wikipedia.org/wiki/Make_%28software%29

CGold Documentation, Release 0.1

OSX Installation

If you’re planning to install Xcode then install it first. make and other tools come with Xcode. Otherwise make can be
installed with Command line tools only.

Run Launchpad:

Find Terminal and launch it:

Try to execute make (or any other commands for development like GCC, git, clang, etc.). The following pop-up dialog
window will appear:

38 Chapter 2. First step

CGold Documentation, Release 0.1

Click Install. Wait until it has finished with the success message:

Check make
location and version:

> which make
/usr/bin/make

> make --version
GNU Make 3.81
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for i386-apple-darwin11.3.0

Clang will be installed too:

2.2. Native build tool 39

CGold Documentation, Release 0.1

> which clang
/usr/bin/clang

> clang --version
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

As well as GCC:

> which gcc
/usr/bin/gcc

> gcc --version
Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-
→˓dir=/usr/include/c++/4.2.1
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

CMake documentation

• CMake Generators

2.3 Compiler

The Native build tool will only orchestrate our builds but we need to have the compiler which will actually create
binaries from our C++ sources.

2.3.1 Visual Studio

The Visual Studio compiler (aka cl.exe) will be installed with the IDE, no additional steps are needed.

2.3.2 Ubuntu GCC

The GCC compiler is usually used on Linux OS. To install it on Ubuntu run:

> sudo apt-get install -y gcc

Check the location and version

> which gcc
/usr/bin/gcc

> gcc --version
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

40 Chapter 2. First step

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html

CGold Documentation, Release 0.1

2.3.3 OSX Clang

Clang compiler will be installed with Xcode or while installing make.

2.4 Minimal example

Create an empty directory and put foo.cpp and CMakeLists.txt files into it.

Examples on GitHub

• Repository

• Latest ZIP

foo.cpp is the C++ source of our executable:

// foo.cpp

#include <iostream> // std::cout

int main() {
std::cout << "Hello from CGold!" << std::endl;

}

CMakeLists.txt is a project configuration, i.e. source for CMake:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

2.4.1 Description

foo.cpp

Explanation of the foo.cpp content is out of the scope of this document, so it will be skipped.

CMakeLists.txt

The first line of CMakeLists.txt is a comment and will be ignored:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

The next line tells us about the CMake version for which this file is written:

2.4. Minimal example 41

https://github.com/cgold-examples/minimal-example
https://github.com/cgold-examples/minimal-example/archive/master.zip

CGold Documentation, Release 0.1

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

2.8 means we can use this configuration with CMake versions like 2.8, 2.8.7, 3.0, 3.5.1, etc. but not with 2.6.0
or 2.4.2.

With the declaration of the project foo, the Visual Studio solution will have name foo.sln, and the Xcode project
name will be foo.xcodeproj:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

Adding executable foo with source foo.cpp:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

CMake has some predefined settings so it will figure out the following things:

• *.cpp extension is for the C++ sources, so target foo will be built with the C++ compiler

• on Windows executables usually have the suffix .exe, so the resulting binary will be named foo.exe

• on Unix platforms like OSX or Linux executables usually have no suffixes, so the resulting binary will be named
foo

2.5 Generate native tool files

You can use the GUI or command-line version of CMake to generate native files.

2.5.1 GUI: Visual Studio

Open CMake GUI:

42 Chapter 2. First step

CGold Documentation, Release 0.1

Click Browse Source... and find directory with CMakeLists.txt and foo.cpp:

2.5. Generate native tool files 43

CGold Documentation, Release 0.1

Now we need to choose directory where to put all temporary files. Let’s create separate directory so we can keep our
original directory clean. Click Browse Build..:

44 Chapter 2. First step

CGold Documentation, Release 0.1

Find directory with CMakeLists.txt and click Make New Folder to create _builds directory:

2.5. Generate native tool files 45

CGold Documentation, Release 0.1

Check the resulted layout:

46 Chapter 2. First step

CGold Documentation, Release 0.1

Click on Configure to process CMakeLists.txt:

CMake will ask for the generator you want to use. Pick Visual Studio you have installed and add Win64 to have x64
target:

2.5. Generate native tool files 47

CGold Documentation, Release 0.1

After you click Finish CMake will run internal tests on build tool to check that everything works correctly. You can
see Configuring done message when finished:

48 Chapter 2. First step

CGold Documentation, Release 0.1

For now there was no native build tool files generated, on this step user is able to do additional tuning of project. We
don’t want such tuning now so will run Generate:

2.5. Generate native tool files 49

CGold Documentation, Release 0.1

Now if you take a look at _builds folder you can find generated Visual Studio solution file:

50 Chapter 2. First step

CGold Documentation, Release 0.1

Open foo.sln and run executable.

2.5. Generate native tool files 51

CGold Documentation, Release 0.1

2.5.2 GUI: Xcode

Open CMake GUI:

Click Browse Source... and find directory with CMakeLists.txt and foo.cpp:

52 Chapter 2. First step

CGold Documentation, Release 0.1

Now we need to choose directory where to put all temporary files. Let’s create separate directory so we can keep our
original directory clean. Click Browse Build..:

2.5. Generate native tool files 53

CGold Documentation, Release 0.1

Find directory with CMakeLists.txt and click New Folder to create _builds directory:

54 Chapter 2. First step

CGold Documentation, Release 0.1

Enter _builds and click Create:

Check the resulted layout:

Click on Configure to process CMakeLists.txt:

2.5. Generate native tool files 55

CGold Documentation, Release 0.1

CMake will ask for the generator you want to use, pick Xcode:

56 Chapter 2. First step

CGold Documentation, Release 0.1

After you click Done CMake will run internal tests on build tool to check that everything works correctly. You can see
Configuring done message when finished:

2.5. Generate native tool files 57

CGold Documentation, Release 0.1

For now there was no native build tool files generated, on this step user is able to do additional tuning of the project.
We don’t want such tuning now so will run Generate:

58 Chapter 2. First step

CGold Documentation, Release 0.1

Now if you take a look at _builds folder you can find generated Xcode project file:

2.5. Generate native tool files 59

CGold Documentation, Release 0.1

Open foo.xcodeproj and run executable.

2.5.3 CLI: Visual Studio

Run cmd.exe and go to the directory with sources:

> cd C:\cgold-example

[cgold-example]> dir

... CMakeLists.txt

... foo.cpp

Generate Visual Studio solution using CMake. Use -H. -B_builds for specifying paths and -G "Visual Studio 14
2015 Win64" for the generator:

[cgold-example]> cmake -H. -B_builds -G "Visual Studio 14 2015 Win64"
-- The C compiler identification is MSVC 19.0.23918.0
-- The CXX compiler identification is MSVC 19.0.23918.0
-- Check for working C compiler using: Visual Studio 14 2015 Win64
-- Check for working C compiler using: Visual Studio 14 2015 Win64 -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler using: Visual Studio 14 2015 Win64
-- Check for working CXX compiler using: Visual Studio 14 2015 Win64 -- works
-- Detecting CXX compiler ABI info

(continues on next page)

60 Chapter 2. First step

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: C:/cgold-example/_builds

You can start IDE by start _builds\foo.sln and run example from IDE or keep using command line.

2.5.4 CLI: Xcode

Open terminal and go to the directory with sources:

> cd cgold-example
[cgold-example]> ls
CMakeLists.txt foo.cpp

Generate Xcode project using CMake. Use -H. -B_builds for specifying paths and -GXcode for the generator:

[cgold-example]> cmake -H. -B_builds -GXcode
-- The C compiler identification is AppleClang 7.3.0.7030031
-- The CXX compiler identification is AppleClang 7.3.0.7030031
-- Check for working C compiler: /.../Xcode.app/Contents/Developer/Toolchains/
→˓XcodeDefault.xctoolchain/usr/bin/clang
-- Check for working C compiler: /.../Xcode.app/Contents/Developer/Toolchains/
→˓XcodeDefault.xctoolchain/usr/bin/clang -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /.../Xcode.app/Contents/Developer/Toolchains/
→˓XcodeDefault.xctoolchain/usr/bin/clang++
-- Check for working CXX compiler: /.../Xcode.app/Contents/Developer/Toolchains/
→˓XcodeDefault.xctoolchain/usr/bin/clang++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/ruslo/cgold-example/_builds

You can start IDE by open _builds/foo.xcodeproj (add -a to set the version of Xcode you need: open -a /
Applications/develop/ide/xcode/6.4/Xcode.app _builds/foo.xcodeproj) and run example from IDE or
keep using command line.

2.5. Generate native tool files 61

CGold Documentation, Release 0.1

2.5.5 CLI: Make

The instructions are the same for both Linux and OSX. Open a terminal and change to the directory with the sources:

> cd cgold-example
[cgold-example]> ls
CMakeLists.txt foo.cpp

Generate a Makefile using CMake. Use -H. -B_builds for specifying paths and -G "Unix Makefiles" for the gener-
ator (note that Unix Makefiles is usually the default generator so -G is probably not needed at all):

[cgold-example]> cmake -H. -B_builds -G "Unix Makefiles"
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cgold-example/_builds

The generated Makefile can be found in the _builds directory:

> ls _builds/Makefile
_builds/Makefile

Next let’s build and run the executable.

2.6 Build and run executable

In this section we will build and run the foo executable. You can do it by opening the project in an IDE or by using
the command line (it doesn’t matter how the project was generated earlier: by using either the GUI or CLI version of
CMake).

62 Chapter 2. First step

CGold Documentation, Release 0.1

2.6.1 IDE: Visual Studio

Since we used * Win64 generator, the target’s architecture is x64:

We need to tell Visual Studio that the target we want to run is foo. This can be done by right clicking on foo target in
Solution Explorer and choosing Set as StartUp Project:

2.6. Build and run executable 63

CGold Documentation, Release 0.1

To run the executable go to Debug → Start Without Debugging:

64 Chapter 2. First step

CGold Documentation, Release 0.1

Visual Studio will build the target first and then execute it:

Done!

2.6. Build and run executable 65

CGold Documentation, Release 0.1

2.6.2 IDE: Xcode

Choose the target you want to run:

Press the Run button:

The result will be shown in Debug area:

66 Chapter 2. First step

CGold Documentation, Release 0.1

Done!

2.6.3 CLI: Visual Studio

To build the Visual Studio solution from the command line, MSBuild.exe can be used. You must add the MSBuild.
exe location to your PATH or open Visual Studio Developer Prompt instead of cmd.exe (run where msbuild to
check) and run msbuild _builds\foo.sln

But CMake offers a cross-tool way to do exactly the same: cmake --build _builds (no need to have MSBuild.exe
in your PATH).

[cgold-example]> cmake --build _builds

...

Build succeeded.
0 Warning(s)
0 Error(s)

Time Elapsed 00:00:01.54

By default the Debug variant of foo.exe will be built, you can run it by:

[cgold-example]> ._builds\Debug\foo.exe
Hello from CGold!

Done!

2.6. Build and run executable 67

CGold Documentation, Release 0.1

2.6.4 CLI: Xcode

To build an Xcode project from the command line, xcodebuild can be used. Check it can be found:

> which xcodebuild
/usr/bin/xcodebuild

Go to the _builds directory and run the build tool:

> cd _builds
[cgold-example/_builds]> xcodebuild
...

echo Build\ all\ projects
Build all projects

** BUILD SUCCEEDED **

But CMake offers a cross-tool way to do exactly the same by running cmake --build _builds:

[cgold-example]> cmake --build _builds
...

echo Build\ all\ projects
Build all projects

** BUILD SUCCEEDED **

By default the Debug variant of foo will be built, you can run it by:

[cgold-example]> ./_builds/Debug/foo
Hello from CGold!

Done!

2.6.5 CLI: Make

Usually to build an executable with Make, you need to find the directory with the Makefile and run make in it:

> cd _builds
[cgold-example/_builds]> make
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

But CMake offers a cross-tool way to do exactly the same by cmake --build _builds:

[cgold-example]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

68 Chapter 2. First step

CGold Documentation, Release 0.1

Run foo:

[cgold-example]> ./_builds/foo
Hello from CGold!

Done!

2.6. Build and run executable 69

CGold Documentation, Release 0.1

70 Chapter 2. First step

CHAPTER

THREE

TUTORIALS

If you reached this section it means you can handle basic configuration. It’s time to see everything in detail and add
more features.

Note: In provided examples:

• CMake will be run in command-line format but CMake-GUI will work in a similar way, if behavior differs it will
be noted explicitly

• For the host platform Linux is chosen, use analogous commands if you use another host. E.g. use dir _builds
on Windows instead of ls _builds

• Unix Makefiles will be used as the generator. On *nix platforms this is the default generator. Peculiarities of
other generators will be described explicitly

3.1 CMake stages

We start with theory. Let’s introduce some terminology about CMake commands we have executed before.

3.1.1 Configure step

In this step CMake will parse the top level CMakeLists.txt of source tree and create a CMakeCache.txt file populated
with cache variables. Different types of variables will be described further in detail. For CMake-GUI this step is
triggered by clicking on the Configure button. For CMake command-line this step is combined with the generate step
so terms configure and generate will be used interchangeably. The end of this step is indicated by the Configuring
done message from CMake.

GUI + Xcode example

Let’s add a message command to the example:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

message("Processing CMakeLists.txt")

71

https://cmake.org/cmake/help/latest/command/message.html

CGold Documentation, Release 0.1

Examples on GitHub

• Repository

• Latest ZIP

The line Processing CMakeLists.txt will be printed by CMake when parsing the CMakeLists.txt file, i.e. on the
configure step. Open CMake-GUI, setup directories and hit Configure:

You can verify that there is no Xcode project generated yet, but only CMakeCache.txt with cache variables:

[minimal-with-message-master]> ls _builds
CMakeCache.txt CMakeFiles/

Let’s run configure one more time:

72 Chapter 3. Tutorials

https://github.com/cgold-examples/minimal-with-message
https://github.com/cgold-examples/minimal-with-message/archive/master.zip

CGold Documentation, Release 0.1

We still see the Process CMakeLists.txt message which means that CMakeLists.txt was parsed again but there is
no check/detect messages. This is because information about compiler and different tools detection results were saved
in CMake internal directories and reused. You may notice that the second run happens much faster than the first.

No surprises, there is still no Xcode project:

[minimal-with-message-master]> ls _builds
CMakeCache.txt CMakeFiles/

3.1. CMake stages 73

CGold Documentation, Release 0.1

3.1.2 Generate step

In this step CMake will generate native build tool files using information from CMakeLists.txt and variables from
CMakeCache.txt. For CMake-GUI this step triggered by clicking on the Generate button. For CMake command-line
this step is combined with the configure step. The end of this step is indicated by the Generating done message from
CMake.

GUI + Xcode example

Hit Generate now:

Now the Xcode project is created:

74 Chapter 3. Tutorials

CGold Documentation, Release 0.1

[minimal-with-message-master]> ls -d _builds/foo.xcodeproj
_builds/foo.xcodeproj/

Makefile example

An example of generating a Makefile on Linux:

[minimal-with-message-master]> rm -rf _builds
[minimal-with-message-master]> cmake -H. -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message-master/_builds

We see the Processing CMakeLists.txt, Configuring done and Generating done messages, meaning that
CMakeLists.txt was parsed and both configure/generate steps were combined into one action.

Verify the Makefile was generated:

[minimal-with-message-master]> ls _builds/Makefile
_builds/Makefile

If you run configure again CMakeLists.txt will be parsed one more time and Processing CMakeLists.txt will be
printed:

[minimal-with-message-master]> cmake -H. -B_builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message-master/_builds

3.1. CMake stages 75

CGold Documentation, Release 0.1

3.1.3 Build step

This step is orchestrated by the native build tool. In this step targets of your project will be built.

Xcode example

Run the native tool build:

[minimal-with-message-master]> cmake --build _builds

=== BUILD AGGREGATE TARGET ZERO_CHECK OF PROJECT foo WITH CONFIGURATION Debug ===

Check dependencies

...

=== BUILD TARGET foo OF PROJECT foo WITH CONFIGURATION Debug ===

...

/.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang -
→˓x c++ ...

-c /.../minimal-with-message-master/foo.cpp
-o /.../minimal-with-message-master/_builds/foo.build/Debug/foo.build/Objects-

→˓normal/x86_64/foo.o

...

/.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/
→˓clang++ ...

-o /Users/ruslo/minimal-with-message-master/_builds/Debug/foo

=== BUILD AGGREGATE TARGET ALL_BUILD OF PROJECT foo WITH CONFIGURATION Debug ===

...

Build all projects

** BUILD SUCCEEDED **

You can see that foo.cpp was compiled into foo.o and then the executable foo created. There is no Processing
CMakeLists.txt message in the output because during this stage CMake doesn’t parse CMakeLists.txt, however re-
configure may be triggered on the build step automatically, this will be shown in the workflow section.

76 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Makefile example

Run the native build tool:

[minimal-with-message-master]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

You can see that foo.cpp is compiled into foo.cpp.o and then the executable foo created. There is no Processing
CMakeLists.txt message in the output because during this stage CMake doesn’t parse CMakeLists.txt, however re-
configure may be triggered on the build step automatically, this will be shown in the workflow section.

3.2 Out-of-source build

The next important term is “out-of-source build”. “Out-of-source build” is a good practice of keeping separate the
generated files of the binary tree from the source files of the source tree. CMake does support the contrary “in-source
build” layout, but such an approach has no real benefit and is not recommended.

3.2.1 Multiple configurations

An out-of-source build allows you to have different configurations simultaneously without conflicts, e.g. Debug and
Release variants:

> cmake -H. -B_builds/Debug -DCMAKE_BUILD_TYPE=Debug
> cmake -H. -B_builds/Release -DCMAKE_BUILD_TYPE=Release

or any other kind of customization, e.g. options:

> cmake -H. -B_builds/feature-on -DFOO_FEATURE=ON
> cmake -H. -B_builds/feature-off -DFOO_FEATURE=OFF

generators:

> cmake -H. -B_builds/xcode -G Xcode
> cmake -H. -B_builds/make -G "Unix Makefiles"

platforms:

> cmake -H. -B_builds/osx -G Xcode
> cmake -H. -B_builds/ios -G Xcode -DCMAKE_TOOLCHAIN_FILE=/.../ios.cmake

3.2. Out-of-source build 77

CGold Documentation, Release 0.1

3.2.2 VCS friendly

An out-of-source build allows you to ignore temporary binaries by just adding the _builds directory to the no-tracking-
files list:

.gitignore

_builds

compare it with the entries required for an in-source build:

.gitignore

*.sln
*.vcxproj
*.vcxproj.filters
*.xcodeproj
CMakeCache.txt
CMakeFiles
CMakeScripts
Debug/*
Makefile
Win32/*
cmake_install.cmake
foo
foo.build/*
foo.dir/*
foo.exe
x64/*

3.2.3 Other notes

An in-source build at first glance may look more friendly for developers who are used to storing project/solution files
in VCS. But in fact an out-of-source build will remind you one more time that now your workflow has changed, CMake
is in charge and you should not edit your project settings in your IDE.

Another note is that using an out-of-source build means that not only do you need to set cmake -B_builds but also
remember that you have to put any kind of automatically generated files into _builds. E.g. if you have a C++ template
myproject.h.in which is used to generate myproject.h, then you need to keep myproject.h.in in the source tree
and put myproject.h in the binary tree.

3.3 Workflow

There is a nice feature in CMake that can greatly simplify a developer’s workflow: The native build tool will watch the
CMake sources for changes and re-run the configure step automatically. In command-line terms it means that you have
to run cmake -H. -B_builds only once, you don’t need to run configure again after modification of CMakeLists.txt
- you can simply use cmake --build.

78 Chapter 3. Tutorials

CGold Documentation, Release 0.1

3.3.1 Makefile example

Back to the example with message:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

message("Processing CMakeLists.txt")

Examples on GitHub

• Repository

• Latest ZIP

Generate the Makefile:

[minimal-with-message]> cmake -H. -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds

And run build:

[minimal-with-message]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

The executable foo is created from the foo.cpp source. The Make tool knows that if there are no changes in foo.cpp
then there is no need to build and link executable again. If you run build again there will be no compile and link stage:

[minimal-with-message]> cmake --build _builds
[100%] Built target foo

3.3. Workflow 79

https://github.com/cgold-examples/minimal-with-message
https://github.com/cgold-examples/minimal-with-message/archive/master.zip

CGold Documentation, Release 0.1

Let’s “modify” the foo.cpp source:

[minimal-with-message]> touch foo.cpp
[minimal-with-message]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Make detects that the executable foo is out-of-date and rebuilds it. Well, that’s what build systems are designed for :)

Now let’s “change” CMakeLists.txt. Do we need to run cmake -H. -B_builds again? The answer is NO - just keep
using cmake --build _builds. CMakeLists.txt is added as a dependent file to the Makefile:

[minimal-with-message]> touch CMakeLists.txt
[minimal-with-message]> cmake --build _builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds
[100%] Built target foo

You see Processing CMakeLists.txt, Configuring done and Generating done indicating that the CMake
code is parsed again and a new Makefile is generated. Since we didn’t change the way the target foo is built (like
adding any new build flags or compile definitions) there are no compile/link stages.

If you “modify” both the CMake and C++ code you will see the full configure/generate/build stack of commands:

[minimal-with-message]> touch CMakeLists.txt foo.cpp
[minimal-with-message]> cmake --build _builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

80 Chapter 3. Tutorials

CGold Documentation, Release 0.1

3.3.2 Visual Studio example

The same is true for other generators as well. For example when you touch CMakeLists.txt and try to run foo target in
Visual Studio:

The IDE will notify you about an update of the project. You can click “Reload All” to reload the new configuration:

3.3. Workflow 81

CGold Documentation, Release 0.1

3.3.3 UML activity diagram

Activity diagram for the workflow described above:

82 Chapter 3. Tutorials

http://yed-uml.readthedocs.io/en/latest/activity-diagram.html

CGold Documentation, Release 0.1

3.3.4 Suspicious behavior

If your workflow doesn’t match the configure-once approach then it may be a symptom of wrongly written CMake
code. Especially when you have to run cmake -H. -B_builds twice or when cmake --build _builds doesn’t
detect updates that have been made to the CMake code.

CMake issue

• XCode: Real targets do not depend on ZERO_CHECK

3.4 Version and policies

Like any other piece of software CMake evolves, effectively introducing new features and deprecating dangerous or
confusing behavior.

There are two entities that help you to manage difference between old and new versions of CMake:

• Command cmake_minimum_required: for checking what minimum version of CMake user should have to run
your configuration

• CMake policies: for fine tuning newly introduced behavior

If you just want to experiment without worrying about backward compatibility, policies, warnings, etc. just set first
line of CMakeLists.txt to cmake_minimum_required(VERSION a.b.c) where a.b.c is a current version of CMake
you’re using:

> cmake --version
cmake version 3.5.2

> cat CMakeLists.txt
cmake_minimum_required(VERSION 3.5.2)

3.4.1 cmake_minimum_required

CMake documentation

• cmake_minimum_required

What version to put into this command is mostly an executive decision. You need to know:

• what version is installed on users hosts?

• is it appropriate to ask them to install newer version?

• what features do they need?

• do you need to be backward compatible for one users and have fresh features for another?

The last case will fit most of them but will harder to maintain for developer and probably will require automatic testing
system with good coverage.

For example the code with version 2.8 as a minimum one and with 3.0 features will look like:

3.4. Version and policies 83

https://gitlab.kitware.com/cmake/cmake/issues/14297
https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html
https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html
https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html

CGold Documentation, Release 0.1

cmake_minimum_required(VERSION 2.8)

if(NOT CMAKE_VERSION VERSION_LESS "3.0") # means 'NOT version < 3.0', i.e. 'version >= 3.0'
Code with 3.0 features

endif()

Command cmake_minimum_required must be the first command in your CMakeLists.txt. If you’re planning to
support several versions of CMake then you need to put the smallest one in cmake_minimum_required and call it in
the first line of CMakeLists.txt.

Even if some commands look harmless, they might not be. For example, project is the place where a lot of checks
happens and where the toolchain is loaded. If you run this example on Cygwin platform:

project(foo) # BAD CODE! You should check version first!
cmake_minimum_required(VERSION 3.0)

message("Using CMake version ${CMAKE_VERSION}")

CMake will think that you’re running code with old policies and warns you:

[minimum-required-example]> cmake -Hbad -B_builds/bad
-- The C compiler identification is GNU 4.9.3
-- The CXX compiler identification is GNU 4.9.3
CMake Warning at /.../share/cmake-3.3.1/Modules/Platform/CYGWIN.cmake:15 (message):
CMake no longer defines WIN32 on Cygwin!

(1) If you are just trying to build this project, ignore this warning or
quiet it by setting CMAKE_LEGACY_CYGWIN_WIN32=0 in your environment or in
the CMake cache. If later configuration or build errors occur then this
project may have been written under the assumption that Cygwin is WIN32.
In that case, set CMAKE_LEGACY_CYGWIN_WIN32=1 instead.

(2) If you are developing this project, add the line

set(CMAKE_LEGACY_CYGWIN_WIN32 0) # Remove when CMake >= 2.8.4 is required

at the top of your top-level CMakeLists.txt file or set the minimum
required version of CMake to 2.8.4 or higher. Then teach your project to
build on Cygwin without WIN32.

Call Stack (most recent call first):
/.../share/cmake-3.3.1/Modules/CMakeSystemSpecificInformation.cmake:36 (include)
CMakeLists.txt:1 (project)

...
-- Detecting CXX compile features - done
Using CMake version 3.3.1
...

Fixed version:

cmake_minimum_required(VERSION 3.0)
project(foo)

message("Using CMake version ${CMAKE_VERSION}")

with no warnings:

84 Chapter 3. Tutorials

CGold Documentation, Release 0.1

[minimum-required-example]> cmake -Hgood -B_builds/good
-- The C compiler identification is GNU 4.9.3
-- The CXX compiler identification is GNU 4.9.3
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++.exe
-- Check for working CXX compiler: /usr/bin/c++.exe -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Using CMake version 3.3.1
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimum-required-example/_builds/good

See also:

• CMake issue #17712

Examples on GitHub

• Repository

• Latest ZIP

3.4.2 CMake policies

CMake documentation

• CMake policies

When a new version of CMake is released, there may be a list of policies describing cases when behavior changed
comparing to the previous CMake version.

Let’s see how it works in practice. In CMake 3.0 policy CMP0038 was introduced. Before version 3.0, a target could
be linked to itself, which make no sense and definitely is a bug:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Examples on GitHub

• Repository

3.4. Version and policies 85

https://gitlab.kitware.com/cmake/cmake/issues/17712#note_371862
https://github.com/cgold-examples/minimum-required-example
https://github.com/cgold-examples/minimum-required-example/archive/master.zip
https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html
https://cmake.org/cmake/help/latest/policy/CMP0038.html
https://github.com/cgold-examples/policy-examples

CGold Documentation, Release 0.1

• Latest ZIP

Works fine for CMake before 3.0:

[policy-examples]> cmake --version
cmake version 2.8.12.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hbug-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../policy-examples/_builds

For CMake version >= 3.0 warning will be reported:

[policy-examples]> cmake --version
cmake version 3.5.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hbug-2.8 -B_builds
...
-- Configuring done
CMake Warning (dev) at CMakeLists.txt:4 (add_library):
Policy CMP0038 is not set: Targets may not link directly to themselves.
Run "cmake --help-policy CMP0038" for policy details. Use the cmake_policy
command to set the policy and suppress this warning.

Target "foo" links to itself.
This warning is for project developers. Use -Wno-dev to suppress it.

-- Generating done
-- Build files have been written to: /.../policy-examples/_builds

Assume you want to drop support for the old version and more to some new 3.0 features. When you set
cmake_minimum_required(VERSION 3.0)

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/bug-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/set-3.0/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required(VERSION 2.8)
+cmake_minimum_required(VERSION 3.0)
project(foo)

add_library(foo foo.cpp)

86 Chapter 3. Tutorials

https://github.com/cgold-examples/policy-examples/archive/master.zip

CGold Documentation, Release 0.1

warning turns into error:

[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hset-3.0 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
CMake Error at CMakeLists.txt:4 (add_library):
Target "foo" links to itself.

-- Generating done
-- Build files have been written to: /.../policy-examples/_builds
[policy-examples]> echo $?
1

Two cases will be shown below. In the first case we want to keep support of version 2.8 so it will work with both
CMake 2.8 and CMake 3.0+. In the second case we decide to drop support of version 2.8 and move to CMake 3.0+.
We’ll see how it affects the policies. It will be shown that without using new features from CMake 3.0, it doesn’t
make sense to change cmake_minimum_required.

Keep using old

Our project works fine with CMake 2.8 however CMake 3.0+ emits warning. We don’t want to fix the error now but
want only to suppress warning and explain to CMake that it should behaves like CMake 2.8.

Note: This approach described in documentation:

It is possible to disable the warning by explicitly requesting the OLD, or
backward compatible behavior using the cmake_policy() command

Let’s add cmake_policy:

cmake_minimum_required(VERSION 2.8)
project(foo)

cmake_policy(SET CMP0038 OLD)

add_library(foo foo.cpp)
(continues on next page)

3.4. Version and policies 87

https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html#introduction
https://cmake.org/cmake/help/latest/command/cmake_policy.html

CGold Documentation, Release 0.1

(continued from previous page)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Looks good for CMake 3.0+:

[policy-examples]> cmake --version
cmake version 3.5.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hunknown-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done

Are we done? No, CMP0038 is introduced since CMake 3.0 so CMake 2.8 have no idea what this policy is about:

> cmake --version
cmake version 2.8.12.2
> rm -rf _builds
> cmake -Hunknown-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
CMake Error at CMakeLists.txt:4 (cmake_policy):
Policy "CMP0038" is not known to this version of CMake.

-- Configuring incomplete, errors occurred!

We should protect new code with if(POLICY CMP0038) condition:

cmake_minimum_required(VERSION 2.8)
project(foo)

if(POLICY CMP0038)
(continues on next page)

88 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

Policy CMP0038 introduced since CMake 3.0 so if we want to be compatible
with 2.8 (see cmake_minimum_required) we should put 'cmake_policy' under
condition.
cmake_policy(SET CMP0038 OLD)

endif()

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Of course you should find the time, apply real fix and remove policy logic since it will not be needed anymore:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/suppress-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/fix-2.8/CMakeLists.txt
@@ -1,13 +1,4 @@
cmake_minimum_required(VERSION 2.8)
project(foo)

-if(POLICY CMP0038)
- # Policy CMP0038 introduced since CMake 3.0 so if we want to be compatible
- # with 2.8 (see cmake_minimum_required) we should put 'cmake_policy' under
- # condition.
- cmake_policy(SET CMP0038 OLD)
-endif()
-
add_library(foo foo.cpp)
-
-target_link_libraries(foo foo) # BAD CODE! Make no sense

Final version:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

Moving to new version

With cmake_minimum_required updated to 3.0, the warning turns into an error. As a temporary solution, the error
can be suppressed by adding a cmake_policy directive:

cmake_minimum_required(VERSION 3.0)
project(foo)

cmake_policy(SET CMP0038 OLD)

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

3.4. Version and policies 89

CGold Documentation, Release 0.1

Note: We don’t need to protect cmake_policy with if(POLICY) condition since
cmake_minimum_required(VERSION 3.0) guarantee us that we are using CMake 3.0+.

This policy can then be removed once a better solution is found:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/suppress-3.0/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/fix-3.0/CMakeLists.txt
@@ -1,8 +1,4 @@
cmake_minimum_required(VERSION 3.0)
project(foo)

-cmake_policy(SET CMP0038 OLD)
-
add_library(foo foo.cpp)
-
-target_link_libraries(foo foo) # BAD CODE! Make no sense

Final version:

cmake_minimum_required(VERSION 3.0)
project(foo)

add_library(foo foo.cpp)

You may notice that final version for both cases differs only in cmake_minimum_required:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/fix-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/policy-examples/fix-3.0/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required(VERSION 2.8)
+cmake_minimum_required(VERSION 3.0)
project(foo)

add_library(foo foo.cpp)

It means that there is no much sense in changing cmake_minimum_required without using any new features.

3.4.3 Summary

• Policies can be used to control CMake behavior

• Policies can be used to suppress warnings/errors

• cmake_minimum_required describe features you use in CMake code

• For backward compatibility new features can be protected with if(CMAKE_VERSION ...) directive

90 Chapter 3. Tutorials

CGold Documentation, Release 0.1

3.5 Project declaration

Next must-have command is project. Command project(foo) will set languages to C and C++ (default), declare
some foo_* variables and run basic build tool checks.

CMake documentation

• project

3.5.1 Tools discovering

By default on calling project command CMake will try to detect compilers for default languages: C and C++. Let’s
add some variables and check where they are defined:

cmake_minimum_required(VERSION 2.8)

message("Before 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

project(Foo)

message("After 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

Examples on GitHub

• Repository

• Latest ZIP

Run test on Linux:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hset-compiler -B_builds
Before 'project':
C: ''
C++: ''

-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done

(continues on next page)

3.5. Project declaration 91

https://cmake.org/cmake/help/latest/command/project.html
https://cmake.org/cmake/help/latest/command/project.html
https://github.com/cgold-examples/project-examples
https://github.com/cgold-examples/project-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting CXX compile features
-- Detecting CXX compile features - done
After 'project':
C: '/usr/bin/cc'
C++: '/usr/bin/c++'

-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

CMake will run tests for other tools as well, so try to avoid checking of anything before project, place all checks after
project declared.

Also project is a place where toolchain file will be read.

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

message("Before 'project'")

project(Foo)

message("After 'project'")

toolchain.cmake

message("Processing toolchain")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Htoolchain -B_builds -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake
Before 'project'
Processing toolchain
Processing toolchain
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
Processing toolchain
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
Processing toolchain
-- Detecting C compiler ABI info - done
-- Detecting C compile features
Processing toolchain
Processing toolchain
Processing toolchain
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
Processing toolchain
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
Processing toolchain
-- Detecting CXX compiler ABI info - done

(continues on next page)

92 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting CXX compile features
Processing toolchain
Processing toolchain
Processing toolchain
-- Detecting CXX compile features - done
After 'project'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

Note: You may notice that toolchain read several times

3.5.2 Languages

If you don’t have or don’t need support for one of the default languages you can set language explicitly after name of
the project. This is how to setup C-only project:

cmake_minimum_required(VERSION 2.8)

message("Before 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

project(Foo C)

message("After 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

There is no checks for C++ compiler and variable with path to C++ compiler is empty now:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hc-compiler -B_builds
Before 'project':
C: ''
C++: ''

-- The C compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
After 'project':

C: '/usr/bin/cc'
C++: ''

-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

3.5. Project declaration 93

CGold Documentation, Release 0.1

Of course you will not be able to build C++ targets anymore. Since CMake thinks that *.cpp extension is for C++
sources (by default) there will be error reported if C++ is not listed (discovering of C++ tools will not be triggered):

cmake_minimum_required(VERSION 2.8)
project(Foo C)

add_library(foo foo.cpp)

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hcpp-not-found -B_builds
-- The C compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Configuring done
CMake Error: Cannot determine link language for target "foo".
CMake Error: CMake can not determine linker language for target: foo
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

We can save some time by using special language NONE when we don’t need any tools at all:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

No checks for C or C++ compiler as you can see:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hno-language -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

Note: Such form will be used widely in examples in cases when we don’t need to build targets.

Note: For CMake 3.0+ sub-option LANGUAGES added, since it will be:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

94 Chapter 3. Tutorials

CGold Documentation, Release 0.1

3.5.3 Variables

Command project declare *_{SOURCE,BINARY}_DIR variables. Since version 3.0 you can add VERSION which
additionally declare *_VERSION_{MAJOR,MINOR,PATCH,TWEAK} variables:

cmake_minimum_required(VERSION 3.0)

message("Before project:")
message(" Source: ${PROJECT_SOURCE_DIR}")
message(" Binary: ${PROJECT_BINARY_DIR}")
message(" Version: ${PROJECT_VERSION}")
message(" Version (alt): ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}.${PROJECT_
→˓VERSION_PATCH}")

project(Foo VERSION 1.2.7)

message("After project:")
message(" Source: ${PROJECT_SOURCE_DIR}")
message(" Binary: ${PROJECT_BINARY_DIR}")
message(" Version: ${PROJECT_VERSION}")
message(" Version (alt): ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}.${PROJECT_
→˓VERSION_PATCH}")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hvariables -B_builds
Before project:
Source:
Binary:
Version:
Version (alt): ..

-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
After project:
Source: /.../project-examples/variables
Binary: /.../project-examples/_builds
Version: 1.2.7
Version (alt): 1.2.7

-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

You can use alternative foo_{SOURCE,BINARY}_DIRS/ foo_VERSION_{MINOR,MAJOR,PATCH} synonyms. This is

3.5. Project declaration 95

CGold Documentation, Release 0.1

useful when you have hierarchy of projects:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

message("From top level:")
message(" Source (general): ${PROJECT_SOURCE_DIR}")
message(" Source (foo): ${foo_SOURCE_DIR}")

add_subdirectory(boo)

CMakeLists.txt from 'boo' directory

cmake_minimum_required(VERSION 2.8)
project(boo)

message("From subdirectory 'boo':")
message(" Source (general): ${PROJECT_SOURCE_DIR}")
message(" Source (foo): ${foo_SOURCE_DIR}")
message(" Source (boo): ${boo_SOURCE_DIR}")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hhierarchy -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
From top level:
Source (general): /.../project-examples/hierarchy
Source (foo): /.../project-examples/hierarchy

From subdirectory 'boo':
Source (general): /.../project-examples/hierarchy/boo
Source (foo): /.../project-examples/hierarchy
Source (boo): /.../project-examples/hierarchy/boo

-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

As you can see we are still able to use foo_* variables even if new command project(boo) called.

96 Chapter 3. Tutorials

CGold Documentation, Release 0.1

3.5.4 When not declared

CMake will implicitly declare project in case there is no such command in top-level CMakeLists.txt. This
will be equal to calling project before any other commands. It means that project will be called before
cmake_minimum_required so can lead to problems described in previous section:

Top level CMakeLists.txt

message("Before 'cmake_minimum_required'")
cmake_minimum_required(VERSION 2.8)

add_subdirectory(boo)

CMakeLists.txt in directory 'boo'

cmake_minimum_required(VERSION 2.8)
project(boo)

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hnot-declared -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Before 'cmake_minimum_required'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

3.5.5 Summary

• You must have project command in your top-level CMakeLists.txt

• Use project to declare non divisible monolithic hierarchy of targets

• Try to minimize the number of instructions before project and verify that variables are declared in such block
of CMake code

3.5. Project declaration 97

CGold Documentation, Release 0.1

3.6 Variables

There are only two kinds of languages: the ones people complain about and
the ones nobody uses.
– Bjarne Stroustrup

We have touched already some simple syntax like dereferencing variable A by ${A} in message command:
message("This is A: ${A}"). Cache variables was mentioned in CMake stages. Here is an overview of different
types of variables with examples.

CMake documentation

• Language: variables

Examples on GitHub

• Repository

• Latest ZIP

3.6.1 Regular variables

Regular vs cache

Unlike cache variables regular (normal) CMake variables have scope and don’t outlive CMake runs.

If in the next example you run the CMake configure step twice, without removing the cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Regular variable (before): ${abc}")
message("Cache variable (before): ${xyz}")

set(abc "123")
set(xyz "321" CACHE STRING "")

message("Regular variable (after): ${abc}")
message("Cache variable (after): ${xyz}")

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

(continues on next page)

98 Chapter 3. Tutorials

https://en.wikiquote.org/wiki/Bjarne_Stroustrup
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables
https://github.com/cgold-examples/usage-of-variables
https://github.com/cgold-examples/usage-of-variables/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

You can see that the regular CMake variable abc is created from scratch each time

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

And the cache variable xyz is created only once and reused on second run

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6. Variables 99

CGold Documentation, Release 0.1

You can find cache variable xyz in CMakeCache.txt:

[usage-of-variables]> grep xyz _builds/CMakeCache.txt
xyz:STRING=321

Unlike regular abc:

[usage-of-variables]> grep abc _builds/CMakeCache.txt
[usage-of-variables]> echo $?
1

Scope of variable

Each variable is linked to the scope where it was defined. Commands add_subdirectory and function introduce their
own scopes:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123")

message("Top level scope (before): ${abc}")

add_subdirectory(boo)

message("Top level scope (after): ${abc}")

CMakeLists.txt from 'boo' directory

set(abc "456")

message("Directory 'boo' scope: ${abc}")

There are two variables abc defined. One in top level scope and another in scope of boo directory:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdirectory-scope -B_builds
Top level scope (before): 123
Directory 'boo' scope: 456
Top level scope (after): 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

100 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://cmake.org/cmake/help/latest/command/function.html

CGold Documentation, Release 0.1

New scope

When a new scope is created it will be initialized with the variables of the parent scope. Command unset can remove
a variable from the current scope. If a variable is not found in the current scope it will be dereferenced to an empty
string:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo)
message("[foo]: Scope for function 'foo' copied from parent 'boo': { abc = '${abc}',␣

→˓xyz = '${xyz}' }")
unset(abc)
message("[foo]: Command 'unset(abc)' will remove variable from current scope: { abc = '

→˓${abc}', xyz = '${xyz}' }")
endfunction()

function(boo)
message("[boo]: Scope for function 'boo' copied from parent: { abc = '${abc}', xyz = '$

→˓{xyz}' }")
set(abc "789")
message("[boo]: Command 'set(abc ...)' modify current scope, state: { abc = '${abc}',␣

→˓xyz = '${xyz}' }")
foo()

endfunction()

set(abc "123")
set(xyz "456")

message("Top level scope state: { abc = '${abc}', xyz = '${xyz}' }")

boo()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Htake-from-parent-scope -B_builds
Top level scope state: { abc = '123', xyz = '456' }
[boo]: Scope for function 'boo' copied from parent: { abc = '123', xyz = '456' }
[boo]: Command 'set(abc ...)' modify current scope, state: { abc = '789', xyz = '456' }
[foo]: Scope for function 'foo' copied from parent 'boo': { abc = '789', xyz = '456' }
[foo]: Command 'unset(abc)' will remove variable from current scope: { abc = '', xyz =
→˓'456' }
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6. Variables 101

https://cmake.org/cmake/help/latest/command/unset.html

CGold Documentation, Release 0.1

Same scope

include and macro don’t introduce a new scope, so commands like set and unset will affect the current scope:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123")

message("abc (before): ${abc}")
include("./modify-abc.cmake")
message("abc (after): ${abc}")

macro(modify_xyz)
set(xyz "789")

endmacro()

set(xyz "336")

message("xyz (before): ${xyz}")
modify_xyz()
message("xyz (after): ${xyz}")

modify-abc.cmake module

set(abc "456")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hsame-scope -B_builds
abc (before): 123
abc (after): 456
xyz (before): 336
xyz (after): 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Parent scope

A variable can be set to the parent scope by specifying PARENT_SCOPE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "") # clear

function(scope_2)
message("Scope 2 (before): '${abc}'")
set(abc "786" PARENT_SCOPE)
message("Scope 2 (after): '${abc}'")

(continues on next page)

102 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

endfunction()

function(scope_1)
message("Scope 1 (before): '${abc}'")
scope_2()
message("Scope 1 (after): '${abc}'")

endfunction()

message("Top level (before): '${abc}'")
scope_1()
message("Top level (after): '${abc}'")

Variable will only be set to parent scope:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Current scope will not be affected:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As well as parent of the parent:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6. Variables 103

CGold Documentation, Release 0.1

From cache

If variable is not found in the current scope, it will be taken from the cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "789" CACHE STRING "")
set(a "123")

message("Regular variable from current scope: ${a}")

unset(a)

message("Cache variable if regular not found: ${a}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hfrom-cache -B_builds
Regular variable from current scope: 123
Cache variable if regular not found: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Cache unset regular

Note that the order of commands is important because set(... CACHE ...) will remove the regular variable with
the same name from current scope:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "123")
set(a "789" CACHE STRING "")

message("Regular variable unset, take from cache: ${a}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-remove-regular -B_builds
Regular variable unset, take from cache: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

104 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Confusing

This may lead to a quite confusing behavior:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(set_abc_globally)
message("Function scope before cache modify = ${abc}")
set(abc "789" CACHE STRING "")
message("Function scope after cache modify = ${abc}")

endfunction()

set(abc "123")

set_abc_globally()

message("Parent scope is not affected, take variable from current scope, not cache = $
→˓{abc}")

In this example set(... CACHE ...) will remove abc only from scope of function and not from top level scope:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-confuse -B_builds
Function scope before cache modify = 123
Function scope after cache modify = 789
Parent scope is not affected, take variable from current scope, not cache = 123
-- Configuring done
-- Generating done
-- build files have been written to: /.../usage-of-variables/_builds

This will be even more confusing if you run this example one more time without removing cache:

[usage-of-variables]> cmake -Hcache-confuse -B_builds
Function scope before cache modify = 123
Function scope after cache modify = 123
Parent scope is not affected, take variable from current scope, not cache = 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Since variable abc already stored in cache command set(... CACHE ...) has no effect and will not remove regular
abc from scope of function.

Names

Variable names are case-sensitive:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "123")
set(b "567")

(continues on next page)

3.6. Variables 105

CGold Documentation, Release 0.1

(continued from previous page)

set(aBc "333")

set(A "321")
set(B "765")
set(ABc "777")

message("a: ${a}")
message("b: ${b}")
message("aBc: ${aBc}")

message("A: ${A}")
message("B: ${B}")
message("ABc: ${ABc}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcase-sensitive -B_builds
a: 123
b: 567
aBc: 333
A: 321
B: 765
ABc: 777
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Name of variable may consist of any characters:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set("abc" "123")
set("ab c" "456")
set("ab?c" "789")
set("/usr/bin/bash" "987")
set("C:\\Program Files\\" "654")
set(" " "321")

function(print_name varname)
message("Variable name: '${varname}', value: '${${varname}}'")

endfunction()

print_name("abc")
print_name("ab c")
print_name("ab?c")
print_name("/usr/bin/bash")
print_name("C:\\Program Files\\")
print_name(" ")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hany-names -B_builds
Variable name: 'abc', value: '123'

(continues on next page)

106 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

Variable name: 'ab c', value: '456'
Variable name: 'ab?c', value: '789'
Variable name: '/usr/bin/bash', value: '987'
Variable name: 'C:\Program Files\', value: '654'
Variable name: ' ', value: '321'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Quotes

In the previous example, the quote character " was used to create a name containing a space - this is called quoted ar-
gument. Note that the argument must start and end with a quote character, otherwise it becomes an unquoted argument.
In this case, the quote character will be treated as part of the string:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "Quoted argument")
set(b x-"Unquoted argument")
set(c x"a;b;c")

message("a = '${a}'")
message("b = '${b}'")

message("c =")
foreach(x ${c})
message(" '${x}'")

endforeach()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hquotes -B_builds
a = 'Quoted argument'
b = 'x-"Unquoted argument"'
c =
'x"a'
'b'
'c"'

-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As you can see the variable b contains quotes now and for list c quotes are part of the elements: x"a, c".

CMake documentation

• Quoted argument

• Unquoted argument

3.6. Variables 107

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#quoted-argument
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#unquoted-argument

CGold Documentation, Release 0.1

Dereferencing

Dereferenced variable can be used in creation of new variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Or new variable name:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Or even both:

108 Chapter 3. Tutorials

CGold Documentation, Release 0.1

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Nested dereferencing

Dereferencing of variable by ${...} will happen as many times as needed:

cmake_minimum_required(VERSION 2.8)
project(foo)

foreach(lang C CXX)
message("Compiler for language ${lang}: ${CMAKE_${lang}_COMPILER}")
foreach(build_type DEBUG RELEASE RELWITHDEBINFO MINSIZEREL)
message("Flags for language ${lang} + build type ${build_type}: ${CMAKE_${lang}_

→˓FLAGS_${build_type}}")
endforeach()

endforeach()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hnested-dereference -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done

(continues on next page)

3.6. Variables 109

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting CXX compile features
-- Detecting CXX compile features - done
Compiler for language C: /usr/bin/cc
Flags for language C + build type DEBUG: -g
Flags for language C + build type RELEASE: -O3 -DNDEBUG
Flags for language C + build type RELWITHDEBINFO: -O2 -g -DNDEBUG
Flags for language C + build type MINSIZEREL: -Os -DNDEBUG
Compiler for language CXX: /usr/bin/c++
Flags for language CXX + build type DEBUG: -g
Flags for language CXX + build type RELEASE: -O3 -DNDEBUG
Flags for language CXX + build type RELWITHDEBINFO: -O2 -g -DNDEBUG
Flags for language CXX + build type MINSIZEREL: -Os -DNDEBUG
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Types of variable

Variables always have type string but some commands can interpret them differently. For example the command if
can treat strings as boolean, path, target name, etc.:

cmake_minimum_required(VERSION 2.8)
project(foo)

set(condition_a "TRUE")
set(condition_b "NO")

set(path_to_this "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt")

set(target_name foo)
add_library("${target_name}" foo.cpp)

if(condition_a)
message("condition_a")

else()
message("NOT condition_a")

endif()

if(condition_b)
message("condition_b")

else()
message("NOT condition_b")

endif()

if(EXISTS "${path_to_this}")
message("File exists: ${path_to_this}")

else()
message("File not exist: ${path_to_this}")

endif()

if(TARGET "${target_name}")
(continues on next page)

110 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

message("Target exists: ${target_name}")
else()
message("Target not exist: ${target_name}")

endif()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Htypes-of-variable -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
condition_a
NOT condition_b
File exists: /.../usage-of-variables/types-of-variable/CMakeLists.txt
Target exists: foo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

• if

Create list

Some commands can treat a variable as list. In this case the string value is split into elements separated by ;. The
command set can create such lists:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(l0 a b c)
set(l1 a;b;c)
set(l2 "a b" "c")
set(l3 "a;b;c")
set(l4 a "b;c")

message("l0 = 'a' + 'b' + 'c' = '${l0}'")
message("l1 = 'a;b;c' = '${l1}'")
message("l2 = 'a b' + 'c' = '${l2}'")

(continues on next page)

3.6. Variables 111

https://cmake.org/cmake/help/latest/command/if.html

CGold Documentation, Release 0.1

(continued from previous page)

message("l3 = \"'a;b;c'\" = '${l3}'")
message("l4 = 'a' + 'b;c' = '${l4}'")

message("print by message: " ${l3})
message("print by message: " "a" "b" "c")

set creates string from elements and puts the ; between them:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

In case you want to add an element with space you can protect the element with ":

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As seen with l4 variable protecting ; with " doesn’t have any effect:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

We are concatenating string a with string b;c and putting ; between them. Final result is the string a;b;c. When a
command interprets this string as list, such list has 3 elements. Hence it’s not a list with two elements a and b;c.

112 Chapter 3. Tutorials

CGold Documentation, Release 0.1

The command message interprets l3 as list with 3 elements, so in the end 4 arguments (value of type string) passed as
input: print by message:_, a, b, c. Command message will concatenate them without any separator, hence string
print by message: abc will be printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

• set

Operations with list

The list command can be used to calculate length of list, get element by index, remove elements by index, etc.:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(l0 "a;b;c")
set(l1 "a" "b;c")
set(l2 "a" "b c")

list(LENGTH l0 l0_len)
list(LENGTH l1 l1_len)
list(LENGTH l2 l2_len)

message("length of '${l0}' (l0) = ${l0_len}")
message("length of '${l1}' (l1) = ${l1_len}")
message("length of '${l2}' (l2) = ${l2_len}")

list(GET l1 2 l1_2)
message("l1[2] = ${l1_2}")

message("Removing first item from l1 list: '${l1}'")
list(REMOVE_AT l1 0)
message("l1 = '${l1}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist-operations -B_builds
length of 'a;b;c' (l0) = 3
length of 'a;b;c' (l1) = 3

(continues on next page)

3.6. Variables 113

https://cmake.org/cmake/help/latest/command/set.html

CGold Documentation, Release 0.1

(continued from previous page)

length of 'a;b c' (l2) = 2
l1[2] = c
Removing first item from l1 list: 'a;b;c'
l1 = 'b;c'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

• list

List with one empty element

Since list is really just a string there is no such object as “list with one empty element”. Empty string is a list with no
elements - length is 0. String ; is a list with two empty elements - length is 2.

Historically result of appending empty element to an empty list is an empty list:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(add_element list_name element_name)
message("Add '${${element_name}}' to list '${${list_name}}'")
list(APPEND "${list_name}" "${${element_name}}")
list(LENGTH "${list_name}" list_len)
message("Result: '${${list_name}}' (length = ${list_len})\n")
set("${list_name}" "${${list_name}}" PARENT_SCOPE)

endfunction()

message("\nAdding non-empty element to non-empty list.\n")
set(mylist "a;b")
set(element "c")
foreach(i RANGE 3)
add_element(mylist element)

endforeach()

message("\nAdding empty element to non-empty list.\n")
set(mylist "a;b")
set(element "")
foreach(i RANGE 3)
add_element(mylist element)

endforeach()

message("\nAdding empty element to empty list.\n")
set(mylist "")
set(element "")
foreach(i RANGE 3)
add_element(mylist element)

endforeach()

114 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/command/list.html

CGold Documentation, Release 0.1

[examples]> rm -rf _builds
[examples]> cmake -Husage-of-variables/empty-list -B_builds

Adding non-empty element to non-empty list.

Add 'c' to list 'a;b'
Result: 'a;b;c' (length = 3)

Add 'c' to list 'a;b;c'
Result: 'a;b;c;c' (length = 4)

Add 'c' to list 'a;b;c;c'
Result: 'a;b;c;c;c' (length = 5)

Add 'c' to list 'a;b;c;c;c'
Result: 'a;b;c;c;c;c' (length = 6)

Adding empty element to non-empty list.

Add '' to list 'a;b'
Result: 'a;b;' (length = 3)

Add '' to list 'a;b;'
Result: 'a;b;;' (length = 4)

Add '' to list 'a;b;;'
Result: 'a;b;;;' (length = 5)

Add '' to list 'a;b;;;'
Result: 'a;b;;;;' (length = 6)

Adding empty element to empty list.

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds

3.6. Variables 115

CGold Documentation, Release 0.1

Recommendation

Use short laconic lower-case names (a, i, mylist, objects, etc.) for local variables that used only by the current
scope. Use long detailed upper-case names (FOO_FEATURE, BOO_ENABLE_SOMETHING, etc.) for variables that used
by several scopes.

For example it make no sense to use long names in function since function has it’s own scope:

function(foo_something)
set(FOO_SOMETHING_A 1)
...

endfunction()

Using just a will be fine:

function(foo_something)
set(a 1)
...

endfunction()

Same with scope of CMakeLists.txt:

Foo/CMakeLists.txt

message("Files:")
foreach(FOO_FILES_ITERATOR ${files})
message(" ${FOO_FILES_ITERATOR}")

endforeach()

Prefer instead:

Foo/CMakeLists.txt

message("Files:")
foreach(x ${files})
message(" ${x}")

endforeach()

See also:

• Cache names

Compare it with C++ code:

// pretty bad idea
#define a

// good one
#define MYPROJECT_ENABLE_A

// does it make sense?
for (int array_iterator = 0; array_iterator < array.size(); ++array_iterator) {
// use 'array_iterator'

}

(continues on next page)

116 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

// good one
for (int i = 0; i < array.size(); ++i) {
// use 'i'

}

Summary

• All variables have a string type

• List is nothing but string, elements of list separated by ;

• The way how variables are interpreted depends on the command

• Do not give same names for cache and regular variables

• add_subdirectory and function create new scope

• include and macro work in the current scope

3.6.2 Cache variables

Cache variables saved in CMakeCache.txt file:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "687" CACHE STRING "")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-cmakecachetxt -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=687

No scope

Unlike regular variables CMake cache variables have no scope and are set globally:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

add_subdirectory(boo)

message("A: ${A}")

CMakeLists.txt from 'boo' directory

set(A "123" CACHE STRING "")

3.6. Variables 117

CGold Documentation, Release 0.1

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-no-scope -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Double set

If variable is already in cache then command set(... CACHE ...) will have no effect - old variable will be used
still:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123" CACHE STRING "")
message("Variable from cache: ${abc}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cp double-set/1/CMakeLists.txt double-set/
[usage-of-variables]> cmake -Hdouble-set -B_builds
Variable from cache: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=123

Update CMakeLists.txt (don’t remove cache!):

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/usage-of-variables/double-set/1/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/usage-of-variables/double-set/2/CMakeLists.txt
@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 2.8)
project(foo NONE)

-set(abc "123" CACHE STRING "")
+set(abc "789" CACHE STRING "")
message("Variable from cache: ${abc}")

[usage-of-variables]> cp double-set/2/CMakeLists.txt double-set/
[usage-of-variables]> cmake -Hdouble-set -B_builds
Variable from cache: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=123

118 Chapter 3. Tutorials

CGold Documentation, Release 0.1

-D

Cache variable can be set by -D command line option. Variable that set by -D option take priority over set(... CACHE
...) command.

[usage-of-variables]> cmake -Dabc=444 -Hdouble-set -B_builds
Variable from cache: 444
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=444

Initial cache

If there are a lot of variables to set it’s not so convenient to use -D. In this case user can define all variables in separate
file and load it by -C:

cache.cmake

set(A "123" CACHE STRING "")
set(B "456" CACHE STRING "")
set(C "789" CACHE STRING "")

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("A: ${A}")
message("B: ${B}")
message("C: ${C}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -C initial-cache/cache.cmake -Hinitial-cache -B_builds
loading initial cache file initial-cache/cache.cmake
A: 123
B: 456
C: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6. Variables 119

CGold Documentation, Release 0.1

Force

If you want to set cache variable even if it’s already present in cache file you can add FORCE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "123" CACHE STRING "" FORCE)
message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -DA=456 -Hforce -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

This is quite surprising behavior for user and conflicts with the nature of cache variables that was designed to store
variable once and globally.

Warning: FORCE usually is an indicator of badly designed CMake code.

Force as a workaround

FORCE can be used to fix the problem that described earlier:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "123")
set(A "456" CACHE STRING "")

message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hno-force-confuse -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake -Hno-force-confuse -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

With FORCE variable will be set even it’s already present in cache, so regular variable with the same name will be unset
too each time:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

(continues on next page)

120 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

set(A "123")
set(A "456" CACHE STRING "" FORCE)

message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hforce-workaround -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake -Hforce-workaround -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Cache type

Though type of any variable is always string you can add some hints which will be used by CMake-GUI:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "YES" CACHE BOOL "Variable A")
set(FOO_B "boo/info.txt" CACHE FILEPATH "Variable B")
set(FOO_C "boo/" CACHE PATH "Variable C")
set(FOO_D "abc" CACHE STRING "Variable D")

message("FOO_A (bool): ${FOO_A}")
message("FOO_B (file path): ${FOO_B}")
message("FOO_C (dir path): ${FOO_C}")
message("FOO_D (string): ${FOO_D}")

Run configure:

3.6. Variables 121

CGold Documentation, Release 0.1

Variable FOO_A will be treated as boolean. Uncheck box and run configure:

122 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Variable FOO_B will be treated as path to the file. Click on ...:

3.6. Variables 123

CGold Documentation, Release 0.1

Select file:

124 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Run configure:

3.6. Variables 125

CGold Documentation, Release 0.1

Variable FOO_C will be treated as path to directory. Click on ...:

126 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Select directory:

3.6. Variables 127

CGold Documentation, Release 0.1

Run configure:

128 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Variable FOO_D will be treated as string. Click near variable name and edit:

3.6. Variables 129

CGold Documentation, Release 0.1

Run configure:

130 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Description of variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "YES" CACHE BOOL "Variable A")
set(FOO_B "boo/info.txt" CACHE FILEPATH "Variable B")
set(FOO_C "boo/" CACHE PATH "Variable C")
set(FOO_D "abc" CACHE STRING "Variable D")

message("FOO_A (bool): ${FOO_A}")
message("FOO_B (file path): ${FOO_B}")
message("FOO_C (dir path): ${FOO_C}")
message("FOO_D (string): ${FOO_D}")

Will pop-up as a hint for users:

3.6. Variables 131

CGold Documentation, Release 0.1

CMake documentation

• Cache entry

Enumerate

Selection widget can be created for variable of string type:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_CRYPTO "OpenSSL" CACHE STRING "Backend for cryptography")

set_property(CACHE FOO_CRYPTO PROPERTY STRINGS "OpenSSL;Libgcrypt;WinCNG")

132 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/command/set.html#set-cache-entry

CGold Documentation, Release 0.1

CMake documentation

• STRINGS property

Internal

Variable with type INTERNAL will not be shown in CMake-GUI (again, real type is a string still):

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE STRING "")
set(FOO_B "456" CACHE INTERNAL "")
set(FOO_C "789" CACHE STRING "")

3.6. Variables 133

https://cmake.org/cmake/help/latest/prop_cache/STRINGS.html

CGold Documentation, Release 0.1

Also such type of variable implies FORCE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE INTERNAL "")
set(FOO_A "456" CACHE INTERNAL "")
set(FOO_A "789" CACHE INTERNAL "")

set(FOO_B "123" CACHE STRING "")
set(FOO_B "456" CACHE STRING "")
set(FOO_B "789" CACHE STRING "")

message("FOO_A (internal): ${FOO_A}")
message("FOO_B (string): ${FOO_B}")

Variable FOO_A will be set to 123 then rewritten to 456 because behavior is similar to variable with FORCE, then
one more time to 789, so final result is 789. Variable FOO_B is a cache variable with no FORCE so first 123 will be
set to cache, then since FOO_B is already in cache 456 and 789 will be ignored, so final result is 123:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hinternal-force -B_builds
FOO_A (internal): 789
FOO_B (string): 123
-- Configuring done

(continues on next page)

134 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Advanced

If variable is marked as advanced:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE STRING "")
set(FOO_B "456" CACHE STRING "")
set(FOO_C "789" CACHE STRING "")

mark_as_advanced(FOO_B)

it will not be shown in CMake-GUI if Advanced checkbox is not set:

3.6. Variables 135

CGold Documentation, Release 0.1

CMake documentation

• mark_as_advanced

Use case

The ability of cache variables respect user’s settings fits perfectly for creating project’s customization option:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "Default value for A" CACHE STRING "")
set(FOO_B "Default value for B")

message("FOO_A: ${FOO_A}")
message("FOO_B: ${FOO_B}")

Default value:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hproject-customization -B_builds
FOO_A: Default value for A
FOO_B: Default value for B

(continues on next page)

136 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/command/mark_as_advanced.html

CGold Documentation, Release 0.1

(continued from previous page)

-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

User’s value:

[usage-of-variables]> cmake -DFOO_A=User -Hproject-customization -B_builds
FOO_A: User
FOO_B: Default value for B
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Note that such approach doesn’t work for regular CMake variable FOO_B:

[usage-of-variables]> cmake -DFOO_B=User -Hproject-customization -B_builds
FOO_A: User
FOO_B: Default value for B
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Option

Command option can be used for creating boolean cache entry:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

option(FOO_A "Option A" OFF)
option(FOO_B "Option B" ON)

message("FOO_A: ${FOO_A}")
message("FOO_B: ${FOO_B}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hoption -B_builds
FOO_A: OFF
FOO_B: ON
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep FOO_ _builds/CMakeCache.txt
FOO_A:BOOL=OFF
FOO_B:BOOL=ON

CMake documentation

• option

3.6. Variables 137

https://cmake.org/cmake/help/latest/command/option.html

CGold Documentation, Release 0.1

Unset

If you want to remove variable X from cache you need to use unset(X CACHE). Note that unset(X) will remove
regular variable from current scope and have no effect on cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(X "123" CACHE STRING "X variable")
set(X "456")
message("[0] X = ${X}")

unset(X)
message("[1] X = ${X}")

unset(X CACHE)
message("[2] X = ${X}")

option(Y "Y option" ON)
set(Y OFF)
message("[0] Y = ${Y}")

unset(Y)
message("[1] Y = ${Y}")

unset(Y CACHE)
message("[2] Y = ${Y}")

When we have both cache and regular X variables regular variable has higher priority and will be printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Command unset(X) will remove regular variable so cache variable will be printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done

(continues on next page)

138 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Build files have been written to: /.../usage-of-variables/_builds

Command unset(X CACHE) will remove cache variable too. Now no variables left:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Since option do modify cache same logic applied here:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(X "123" CACHE STRING "X variable")
set(X "456")
message("[0] X = ${X}")

unset(X)
message("[1] X = ${X}")

unset(X CACHE)
message("[2] X = ${X}")

option(Y "Y option" ON)
set(Y OFF)
message("[0] Y = ${Y}")

unset(Y)
message("[1] Y = ${Y}")

unset(Y CACHE)
message("[2] Y = ${Y}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6. Variables 139

CGold Documentation, Release 0.1

Recommendation

Because of the global nature of cache variables and options (well it’s cache too) you should do prefix it with the name
of the project to avoid clashing in case several projects are mixed together by add_subdirectory:

top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(zoo)

add_subdirectory(boo)
add_subdirectory(foo)

foo/CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

option(FOO_FEATURE_1 "Enable feature 1" OFF)
option(FOO_FEATURE_2 "Enable feature 2" OFF)

boo/CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(boo)

option(BOO_FEATURE_1 "Enable feature 1" ON)
option(BOO_FEATURE_2 "Enable feature 2" ON)

See also:

• Module names

• Function names

Besides the fact that both features can be set independently now also CMake-GUI will group them nicely:

140 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Summary

• Use cache to set global variables

• Cache variables fits perfectly for expressing customized options: default value and respect user’s value

• Type of cache variable helps CMake-GUI users

• Prefixes should be used to avoid clashing because of the global nature of cache variables

3.6.3 Environment variables

Read

Environment variable can be read by using $ENV{...} syntax:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hread-env -B_builds

(continues on next page)

3.6. Variables 141

CGold Documentation, Release 0.1

(continued from previous page)

Environment variable USERNAME: ruslo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Set

By using set(ENV{...}) syntax CMake can set environment variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{USERNAME} "Jane Doe")
message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hset-env -B_builds
Environment variable USERNAME: Jane Doe
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Unset

Unset environment variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

unset(ENV{USERNAME})
message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hunset-env -B_builds
Environment variable USERNAME:
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

142 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Inheriting

Child process will inherit environment variables of parent:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Set environment variable")

set(ENV{ABC} "This is ABC")

message("Top level ABC: $ENV{ABC}")

set(level1 "${CMAKE_CURRENT_LIST_DIR}/level1.cmake")

execute_process(
COMMAND "${CMAKE_COMMAND}" -P "${level1}" RESULT_VARIABLE result

)

if(NOT result EQUAL 0)
Error

endif()

message("Unset environment variable")

unset(ENV{ABC})

message("Top level ABC: $ENV{ABC}")

execute_process(
COMMAND "${CMAKE_COMMAND}" -P "${level1}" RESULT_VARIABLE result

)

if(NOT result EQUAL 0)
Error

endif()

'level1.cmake' script

message("Environment variable from level1: $ENV{ABC}")

set(level2 "${CMAKE_CURRENT_LIST_DIR}/level2.cmake")

execute_process(
COMMAND "${CMAKE_COMMAND}" -P "${level2}" RESULT_VARIABLE result

)

if(NOT result EQUAL 0)
Error

endif()

3.6. Variables 143

CGold Documentation, Release 0.1

'level2.cmake' script

message("Environment variable from level2: $ENV{ABC}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Henv-inherit -B_builds
Set environment variable
Top level ABC: This is ABC
Environment variable from level1: This is ABC
Environment variable from level2: This is ABC
Unset environment variable
Top level ABC:
Environment variable from level1:
Environment variable from level2:
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Configure step

Note that in previous examples variable was set on configure step:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{ABC} "123")

message("Environment variable ABC: $ENV{ABC}")

add_custom_target(
foo
ALL
"${CMAKE_COMMAND}" -P "${CMAKE_CURRENT_LIST_DIR}/script.cmake"

)

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Henv-configure -B_builds
Environment variable ABC: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

But environment variable remains the same on build step:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{ABC} "123")

message("Environment variable ABC: $ENV{ABC}")

(continues on next page)

144 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

add_custom_target(
foo
ALL
"${CMAKE_COMMAND}" -P "${CMAKE_CURRENT_LIST_DIR}/script.cmake"

)

script.cmake

message("Environment variable from script: $ENV{ABC}")

[usage-of-variables]> cmake --build _builds
Scanning dependencies of target foo
Environment variable from script:
Built target foo

No tracking

CMake doesn’t track changes of used environment variables so if your CMake code depends on environment variable
and you’re planning to change it from time to time it will break normal workflow:

cmake_minimum_required(VERSION 2.8)
project(foo)

set(target_name "$ENV{ABC}-tgt")
add_executable("${target_name}" foo.cpp)

Warning: Do not write code like that!

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> export ABC=abc
[usage-of-variables]> cmake -Henv-depends -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

(continues on next page)

3.6. Variables 145

CGold Documentation, Release 0.1

(continued from previous page)

[usage-of-variables]> cmake --build _builds
Scanning dependencies of target abc-tgt
[50%] Building CXX object CMakeFiles/abc-tgt.dir/foo.cpp.o
[100%] Linking CXX executable abc-tgt
[100%] Built target abc-tgt

Let’s update environment variable:

[usage-of-variables]> export ABC=123

Name of the target was not changed:

[usage-of-variables]> cmake --build _builds
[100%] Built target abc-tgt

You have to run configure manually yourself:

[usage-of-variables]> cmake -Henv-depends -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake --build _builds
Scanning dependencies of target 123-tgt
[50%] Building CXX object CMakeFiles/123-tgt.dir/foo.cpp.o
[100%] Linking CXX executable 123-tgt
[100%] Built target 123-tgt

Summary

• CMake can set, unset and read environment variables

• Check carefully configure-build steps where you set environment variables

• Child processes will inherit environment variables of parent

• Do not make your CMake code depends on environment variable if that variable may change

3.7 CMake listfiles

There are several places where CMake code can live:

• CMakeLists.txt listfiles loaded by add_subdirectory command will help you to create source/binary tree.
This is a skeleton of your project.

• *.cmake modules help you to organize/reuse CMake code.

• CMake scripts can be executed by cmake -P and help you to solve problems in cross-platform fashion without
relying on system specific tools like bash or without introducing external tool dependency like Python.

Examples on GitHub

• Repository

• Latest ZIP

146 Chapter 3. Tutorials

https://github.com/cgold-examples/cmake-sources
https://github.com/cgold-examples/cmake-sources/archive/master.zip

CGold Documentation, Release 0.1

3.7.1 Subdirectories

Tree

CMakeLists.txt loaded by add_subdirectory command creates a node in a source tree:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree -B_builds
Top level CMakeLists.txt
Processing foo/CMakeList.txt
Processing boo/CMakeList.txt
Processing boo/baz/CMakeLists.txt
Processing boo/bar/CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

3.7. CMake listfiles 147

CGold Documentation, Release 0.1

Source variables

CMAKE_CURRENT_SOURCE_DIR variable will hold a full path to a currently processed node. Root of the tree is always
available in CMAKE_SOURCE_DIR (see -H):

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")
(continues on next page)

148 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree-source-vars -B_builds
Top level CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
Processing foo/CMakeList.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/foo
Processing boo/CMakeList.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo
Processing boo/baz/CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo/baz
Processing boo/bar/CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo/bar
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

• CMAKE_SOURCE_DIR

• CMAKE_CURRENT_SOURCE_DIR

Binary tree

Same structure will be replicated in a binary tree. Information can be taken from CMAKE_BINARY_DIR (see -B) and
CMAKE_CURRENT_BINARY_DIR variables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

(continues on next page)

3.7. CMake listfiles 149

https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_SOURCE_DIR.html

CGold Documentation, Release 0.1

(continued from previous page)

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree-binary-vars -B_builds
Top level CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds
Processing foo/CMakeList.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/foo
Processing boo/CMakeList.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo
Processing boo/baz/CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo/baz
Processing boo/bar/CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo/bar
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

150 Chapter 3. Tutorials

CGold Documentation, Release 0.1

See also:

• Project variables

CMake documentation

• CMAKE_BINARY_DIR

• CMAKE_CURRENT_BINARY_DIR

3.7.2 Include modules

CMake modules is a common way to reuse code.

Include standard

CMake comes with a set of standard modules:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

3.7. CMake listfiles 151

https://cmake.org/cmake/help/latest/variable/CMAKE_BINARY_DIR.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_BINARY_DIR.html
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

CGold Documentation, Release 0.1

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hinclude-processor-count -B_builds
Number of processors: 4
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

• ProcessorCount

Warning: Do not include Find*.cmake modules such way. Find*.cmake modules designed to be used via
find_package.

Include custom

You can modify a CMAKE_MODULE_PATH variable to add the path with your custom CMake modules:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules")

include(MyModule)

modules/MyModule.cmake

message("Hello from MyModule!")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hinclude-users -B_builds
Hello from MyModule!
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

• CMAKE_MODULE_PATH

152 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/module/ProcessorCount.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/variable/CMAKE_MODULE_PATH.html

CGold Documentation, Release 0.1

Recommendation

To avoid conflicts of your modules with modules from other projects (if they are mixed together by
add_subdirectory) do “namespace” their names with the project name:

cmake_minimum_required(VERSION 2.8)
project(foo)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake/Modules")

include(tool_verifier) # BAD! What if a parent project already has 'tool_verifier'?

include(foo_tool_verifier) # Good, includes "./cmake/Modules/foo_tool_verifier.cmake"

See also:

• OpenCV modules

See also:

• Function names

• Cache names

Modify correct

Note that the correct way to set this path is to append it to an existing value:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules")

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

For example when a user wants to use his own modules instead of standard for any reason:

standard/ProcessorCount.cmake

function(ProcessorCount varname)
message("Force processor count")
set("${varname}" 16 PARENT_SCOPE)

endfunction()

Works fine:

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hmodify-path -B_builds "-DCMAKE_MODULE_PATH=`pwd`/modify-path/
→˓standard"
Force processor count

(continues on next page)

3.7. CMake listfiles 153

https://github.com/opencv/opencv/tree/5f30a0a076e57c412509becd1fb618170cbfa179/cmake

CGold Documentation, Release 0.1

(continued from previous page)

Number of processors: 16
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

Modify incorrect

It’s not correct to set them ignoring current state:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules") # WRONG!

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

In this case if user want to use custom modules:

standard/ProcessorCount.cmake

function(ProcessorCount varname)
message("Force processor count")
set("${varname}" 16 PARENT_SCOPE)

endfunction()

They will not be loaded:

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hmodify-incorrect -B_builds "-DCMAKE_MODULE_PATH=`pwd`/modify-
→˓incorrect/standard"
Number of processors: 4
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

3.7.3 Common variables

Since every CMakeLists.txt is a listfile hence the common listfile variables like CMAKE_CURRENT_LIST_DIR or
CMAKE_CURRENT_LIST_FILE are available. For CMakeLists.txt added by add_subdirectory there will be no dif-
ference between CMAKE_CURRENT_LIST_DIR and CMAKE_CURRENT_SOURCE_DIR, also CMAKE_CURRENT_LIST_FILE
will be always a full path to CMakeLists.txt. However it’s not always true for other types of CMake listfiles.

CMake documentation

• CMAKE_CURRENT_LIST_DIR

154 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html

CGold Documentation, Release 0.1

• CMAKE_CURRENT_LIST_FILE

• CMAKE_CURRENT_LIST_LINE

CMAKE_CURRENT_LIST_*

Information about any kind of listfile can be taken from CMAKE_CURRENT_LIST_FILE and
CMAKE_CURRENT_LIST_DIR variables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")

include(mymodule)

cmake/mymodule.cmake

message("Full path to module: ${CMAKE_CURRENT_LIST_FILE}")
message("Module located in directory: ${CMAKE_CURRENT_LIST_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hpath-to-module -B_builds
Full path to module: /.../cmake-sources/path-to-module/cmake/mymodule.cmake
Module located in directory: /.../cmake-sources/path-to-module/cmake
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMAKE_CURRENT_LIST_DIR vs CMAKE_CURRENT_SOURCE_DIR

The difference between those two variables is about type of information they provide. A CMAKE_CURRENT_SOURCE_DIR
variable describes a source tree and should be read as a current source tree directory. Here is a list of sibling variables
describing source/binary trees:

• CMAKE_SOURCE_DIR

• CMAKE_BINARY_DIR

• PROJECT_SOURCE_DIR

• PROJECT_BINARY_DIR

• CMAKE_CURRENT_SOURCE_DIR

• CMAKE_CURRENT_BINARY_DIR

The next files always exist:

• ${CMAKE_SOURCE_DIR}/CMakeLists.txt

• ${CMAKE_BINARY_DIR}/CMakeCache.txt

• ${PROJECT_SOURCE_DIR}/CMakeLists.txt

3.7. CMake listfiles 155

https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_LINE.html

CGold Documentation, Release 0.1

• ${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt

A CMAKE_CURRENT_LIST_DIR variable describes a current listfile (it is not necessarily CMakeLists.txt, it can
be somemodule.cmake), and should be read as a directory of a currently processed listfile, i.e. directory of
CMAKE_CURRENT_LIST_FILE. Here is another list of sibling variables:

• CMAKE_CURRENT_LIST_FILE

• CMAKE_CURRENT_LIST_LINE

• CMAKE_CURRENT_LIST_DIR

• CMAKE_PARENT_LIST_FILE

Example

Assume we have an external CMake module that calculates SHA1 of CMakeLists.txt and saves it with some custom
info to a sha1 file in a current binary directory:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(

WRITE
"${CMAKE_CURRENT_BINARY_DIR}/sha1"
"${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"

)

mymodule.cmake uses some resource. Resource info/message.txt is a file with content:

Message from external module

To read this resource we must use CMAKE_CURRENT_LIST_DIR because file located in same external directory as
module:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(

WRITE
"${CMAKE_CURRENT_BINARY_DIR}/sha1"
"${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"

)

To read CMakeLists.txt we must use CMAKE_CURRENT_SOURCE_DIR because CMakeLists.txt located in source direc-
tory:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(

WRITE
"${CMAKE_CURRENT_BINARY_DIR}/sha1"

(continues on next page)

156 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

"${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"
)

Subdirectory boo uses this module:

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

include(mymodule)

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hwith-external-module/example -B_builds -DCMAKE_MODULE_
→˓PATH=`pwd`/with-external-module/external
Top level CMakeLists.txt
Processing foo/CMakeList.txt
Processing boo/CMakeList.txt
Processing boo/baz/CMakeLists.txt
Processing boo/bar/CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

Check a sha1 file created by the module:

[cmake-sources]> cat _builds/boo/sha1
Message from external module

sha1(CMakeLists.txt) = 9f0ceda4ca514a074589fc7591aad0635b6565eb

Verify a value manually:

[cmake-sources]> openssl sha1 with-external-module/example/boo/CMakeLists.txt
SHA1(with-external-module/example/boo/CMakeLists.txt)=␣
→˓9f0ceda4ca514a074589fc7591aad0635b6565eb

This diagram will make everything clear:

3.7. CMake listfiles 157

CGold Documentation, Release 0.1

Recommendation

Instead of keeping in a head all this information you can remember just two variables:

• CMAKE_CURRENT_LIST_DIR

• CMAKE_CURRENT_BINARY_DIR

Note that in functions a CMAKE_CURRENT_LIST_DIR variable is set to the directory where a function is used, not where
a function is defined (see function for details).

Use CMAKE_CURRENT_BINARY_DIR for storing generated files.

Warning: Do not use CMAKE_CURRENT_BINARY_DIR for figuring out the full path to objects that was build
by native tool, e.g. using ${CMAKE_CURRENT_BINARY_DIR}/foo.exe is a bad idea since for Linux executable

158 Chapter 3. Tutorials

CGold Documentation, Release 0.1

will be named ${CMAKE_CURRENT_BINARY_DIR}/foo and for multi-configuration generators it will be like
${CMAKE_CURRENT_BINARY_DIR}/Debug/foo.exe and really should be determined on a build step instead of
generate step. In such cases generator expressions is helpful. For example $<TARGET_FILE:tgt>.

Make sure you fully understand what each variable means in other scenarios:

• CMAKE_SOURCE_DIR/CMAKE_BINARY_DIR these variables point to the root of the source/binary trees. If
your project will be added to another project as a subproject by add_subdirectory, the locations
like ${CMAKE_SOURCE_DIR}/my-resource.txt will point to <top-level>/my-resource.txt instead of
<my-project>/my-resource.txt

• PROJECT_SOURCE_DIR/PROJECT_BINARY_DIR these variables are better then previous but still have kind
of a global nature. You should change all paths related to PROJECT_SOURCE_DIR if you decide to
move declaration of your project or decide to detach some part of the code and add new project com-
mand in the middle of the source tree. Consider using extra variable with clean separate purpose for
such job set(FOO_MY_RESOURCES "${CMAKE_CURRENT_LIST_DIR}/resources") instead of referring to
${PROJECT_SOURCE_DIR}/resources.

• CMAKE_CURRENT_SOURCE_DIR this is a directory with CMakeLists.txt. If you’re using this variable internally
you can substitute it with CMAKE_CURRENT_LIST_DIR. In case you’re creating module for external usage consider
moving all functionality to function.

With this recommendation previous example can be rewritten in next way:

External module: mymodule.cmake

This is not a part of the function so 'CMAKE_CURRENT_LIST_DIR' is the path
to the directory with 'mymodule.cmake'.
set(MYMODULE_PATH_TO_INFO "${CMAKE_CURRENT_LIST_DIR}/info/message.txt")

function(mymodule)
When we are inside function 'CMAKE_CURRENT_LIST_DIR' is the path to the
caller, i.e. path to directory with CMakeLists.txt in our case.
file(SHA1 "${CMAKE_CURRENT_LIST_DIR}/CMakeLists.txt" sha1)

file(READ "${MYMODULE_PATH_TO_INFO}" msg)
file(

WRITE
"${CMAKE_CURRENT_BINARY_DIR}/sha1"
"${msg}\nsha1(CMakeLists.txt) = ${sha1}\n"

)
endfunction()

Note: As you may notice we don’t have to use _long_variable names since function has it’s own scope.

And call a mymodule function instead of including a module:

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

(continues on next page)

3.7. CMake listfiles 159

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html#informational-expressions

CGold Documentation, Release 0.1

(continued from previous page)

mymodule()

Effect is the same:

[cmake-sources]> cat _builds/boo/sha1
Message from external module
sha1(CMakeLists.txt) = 36bcbf5f2f23995661ca4e6349e781160910b71f

[cmake-sources]> openssl sha1 with-external-module-good/example/boo/CMakeLists.txt
SHA1(with-external-module-good/example/boo/CMakeLists.txt)=␣
→˓36bcbf5f2f23995661ca4e6349e781160910b71f

3.7.4 Scripts

CMake can be used as a cross-platform scripting language.

CMake documentation

• CMake options

Example

Script for creating a file:

create-file.cmake

file(WRITE Hello.txt "Created by script")

Run the script by cmake -P:

[cmake-sources]> rm -f Hello.txt
[cmake-sources]> cmake -P script/create-file.cmake
[cmake-sources]> ls Hello.txt
Hello.txt
[cmake-sources]> cat Hello.txt
Created by script

Minimum required (bad)

We should use cmake_minimum_required as the first command in a script just like with the regular CMakeLists.txt.
Lack of cmake_minimum_required may lead to problems:

script.cmake

set("Jane Doe" "")
set(MYNAME "Jane Doe")

(continues on next page)

160 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/manual/cmake.1.html#options

CGold Documentation, Release 0.1

(continued from previous page)

message("MYNAME: ${MYNAME}")

if("${MYNAME}" STREQUAL "")
message("MYNAME is empty!")

endif()

[cmake-sources]> cmake -P minimum-required-bad/script.cmake
MYNAME: Jane Doe
CMake Warning (dev) at minimum-required-bad/script.cmake:6 (if):
Policy CMP0054 is not set: Only interpret if() arguments as variables or
keywords when unquoted. Run "cmake --help-policy CMP0054" for policy
details. Use the cmake_policy command to set the policy and suppress this
warning.

Quoted variables like "Jane Doe" will no longer be dereferenced when the
policy is set to NEW. Since the policy is not set the OLD behavior will be
used.

This warning is for project developers. Use -Wno-dev to suppress it.

MYNAME is empty!

Minimum required (good)

Same example with cmake_minimum_required works correctly and without warning:

script.cmake

cmake_minimum_required(VERSION 3.1)

set("Jane Doe" "")
set(MYNAME "Jane Doe")

message("MYNAME: ${MYNAME}")

if("${MYNAME}" STREQUAL "")
message("MYNAME is empty!")

endif()

[cmake-sources]> cmake -P minimum-required-good/script.cmake
MYNAME: Jane Doe

3.7. CMake listfiles 161

CGold Documentation, Release 0.1

cmake -E

Example of using cmake -E remove_directory instead of native rm/rmdir commands:

CMake documentation

• Command-Line Tool Mode

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(dir_to_remove "${CMAKE_CURRENT_BINARY_DIR}/__temp")

if(WIN32)
'rmdir' will exit with error if directory doesn't exist
so we have to put 'if' here
if(EXISTS "${dir_to_remove}")
need to convert to windows-style path
file(TO_NATIVE_PATH "${dir_to_remove}" native_path)
execute_process(

COMMAND cmd /c rmdir "${native_path}" /S /Q
RESULT_VARIABLE result

)
endif()

else()
no need to put 'if', 'rm -rf' produce no error if directory doesn't exist
execute_process(

COMMAND rm -rf "${dir_to_remove}"
RESULT_VARIABLE result

)
endif()

if(NOT result EQUAL 0)
Error

endif()

Same code with cmake -E:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

execute_process(
COMMAND "${CMAKE_COMMAND}" -E remove_directory "${CMAKE_CURRENT_BINARY_DIR}/__temp"
RESULT_VARIABLE result

)

if(NOT result EQUAL 0)
Error

endif()

Note: It’s easier to use file(REMOVE_RECURSE ...) in this particular example

162 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/manual/cmake.1.html#command-line-tool-mode

CGold Documentation, Release 0.1

3.8 Control structures

Examples on GitHub

• Repository

• Latest ZIP

3.8.1 Conditional blocks

Simple examples

Example of using an if command with NO/YES constants and variables with NO/YES values:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

if(YES)
message("Condition 1")

endif()

if(NO)
message("Condition 2")

endif()

set(A "YES")
set(B "NO")

if(A)
message("Condition 3")

endif()

if(B)
message("Condition 4")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hif-simple -B_builds
Condition 1
Condition 3
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

Adding else/elseif:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "TRUE")
set(B "FALSE")

(continues on next page)

3.8. Control structures 163

https://github.com/cgold-examples/control-structures
https://github.com/cgold-examples/control-structures/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

if(A)
message("Condition 1")

else()
message("Condition 2")

endif()

if(B)
message("Condition 3")

else()
message("Condition 4")

endif()

set(C "OFF")
set(D "ON")

if(C)
message("Condition 5")

elseif(D)
message("Condition 6")

else()
message("Condition 7")

endif()

set(E "0")
set(F "0")

if(E)
message("Condition 8")

elseif(F)
message("Condition 9")

else()
message("Condition 10")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hif-else -B_builds
Condition 1
Condition 4
Condition 6
Condition 10
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

164 Chapter 3. Tutorials

CGold Documentation, Release 0.1

CMP0054

Some of the if commands accept <variable|string> arguments. This may lead to quite surprising behavior.

For example if we have a variable A and it is set to an empty string we can check it with:

set(A "")
if(A STREQUAL "")
message("Value of A is empty string")

endif()

You can save the name of the variable in another variable and do the same:

set(A "")
set(B "A") # save name of the variable
if(${B} STREQUAL "")
message("Value of ${B} is an empty string")

endif()

If a CMake policy CMP0054 is set to OLD or not present at all (before CMake 3.1), this operation ignores quotes:

set(A "")
set(B "A") # save name of the variable
if("${B}" STREQUAL "") # same as 'if(${B} STREQUAL "")'

message("Value of ${B} is an empty string")
endif()

It means an operation depends on the context: is a variable with the name ${B} present in current scope or not?

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set(A "Jane Doe")

message("A = ${A}")

if("${A}" STREQUAL "")
message("A is empty")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-confuse -B_builds
A = Jane Doe
A is empty
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8. Control structures 165

CGold Documentation, Release 0.1

Try fix

Since CMake accepts any names of the variables you can’t filter out <variable> from <variable|string> by adding
“reserved” symbols:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")

message("A = ${A}")

if("x${A}" STREQUAL "x")
message("A is empty (1)")

endif()

if("!${A}" STREQUAL "!")
message("A is empty (2)")

endif()

if(" ${A}" STREQUAL " ")
message("A is empty (3)")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Htry-fix -B_builds
A = Jane Doe
A is empty (1)
A is empty (2)
A is empty (3)
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

Fix

To avoid such issues you should use CMake 3.1 and a CMP0054 policy:

cmake_minimum_required(VERSION 3.1)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")
(continues on next page)

166 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

message("A = ${A}")

if("x${A}" STREQUAL "x")
message("A is empty (1)")

endif()

if("!${A}" STREQUAL "!")
message("A is empty (2)")

endif()

if(" ${A}" STREQUAL " ")
message("A is empty (3)")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-fix -B_builds
A = Jane Doe
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

Workaround

For CMake before 3.1 as a workaround you can use a string(COMPARE EQUAL ...) command:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")

message("A = ${A}")

string(COMPARE EQUAL "${A}" "" is_empty)
if(is_empty)
message("A is empty")

else()
message("A is not empty")

endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-workaround -B_builds
A = Jane Doe
A is not empty
-- Configuring done

(continues on next page)

3.8. Control structures 167

CGold Documentation, Release 0.1

(continued from previous page)

-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.2 Loops

foreach

CMake documentation

• foreach

Example of a foreach(<variable> <list>) command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Explicit list:")
foreach(item "A" "B" "C")
message(" ${item}")

endforeach()

message("Dereferenced list:")
set(mylist "foo" "boo" "bar")
foreach(x ${mylist})
message(" ${x}")

endforeach()

message("Empty list")
foreach(x)
message(" ${x}")

endforeach()

message("Dereferenced empty list")
set(empty_list)
foreach(x ${empty_list})
message(" ${x}")

endforeach()

message("List with empty element:")
foreach(i "")
message(" '${i}'")

endforeach()

message("Separate lists:")
set(mylist a b c)
foreach(x "${mylist}" "x;y;z")
message(" ${x}")

endforeach()

message("Combined list:")
(continues on next page)

168 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/command/foreach.html

CGold Documentation, Release 0.1

(continued from previous page)

set(combined_list "${mylist}" "x;y;z")
foreach(x ${combined_list})
message(" ${x}")

endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hforeach -B_builds
Explicit list:
A
B
C

Dereferenced list:
foo
boo
bar

Empty list
Dereferenced empty list
List with empty element:
''

Separate lists:
a;b;c
x;y;z

Combined list:
a
b
c
x
y
z

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

As you may notice foreach(x "${mylist}" "x;y;z") is not treated as a single list but as a list with two elements:
${mylist} and x;y;z. If you want to merge two lists you should do it explicitly set(combined_list "${mylist}"
"x;y;z") or use foreach(x ${mylist} x y z) form.

foreach with range

Example of usage of a foreach(... RANGE ...) command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Simple range:")
foreach(x RANGE 10)
message(" ${x}")

endforeach()

message("Range with limits:")
foreach(x RANGE 3 8)

(continues on next page)

3.8. Control structures 169

CGold Documentation, Release 0.1

(continued from previous page)

message(" ${x}")
endforeach()

message("Range with step:")
foreach(x RANGE 10 14 2)
message(" ${x}")

endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hforeach-range -B_builds
Simple range:
0
1
2
3
4
5
6
7
8
9
10

Range with limits:
3
4
5
6
7
8

Range with step:
10
12
14

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

while

Example of usage of a while command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "")
set(condition TRUE)

message("Loop with condition as variable:")
while(condition)
set(a "${a}x")
message(" a = ${a}")

(continues on next page)

170 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

string(COMPARE NOTEQUAL "${a}" "xxxxx" condition)
endwhile()

set(a "")

message("Loop with explicit condition:")
while(NOT a STREQUAL "xxxxx")
set(a "${a}x")
message(" a = ${a}")

endwhile()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hwhile -B_builds
Loop with condition as variable:
a = x
a = xx
a = xxx
a = xxxx
a = xxxxx

Loop with explicit condition:
a = x
a = xx
a = xxx
a = xxxx
a = xxxxx

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

break

CMake documentation

• break

Exit from a loop with a break command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Stop 'while' loop:")
set(a "")
while(TRUE)
set(a "${a}x")
message(" ${a}")
string(COMPARE EQUAL "${a}" "xxx" done)
if(done)
break()

endif()
endwhile()

(continues on next page)

3.8. Control structures 171

https://cmake.org/cmake/help/latest/command/break.html

CGold Documentation, Release 0.1

(continued from previous page)

message("Stop 'foreach' loop:")
foreach(x RANGE 10)
message(" ${x}")
if(x EQUAL 4)
break()

endif()
endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hbreak -B_builds
Stop 'while' loop:
x
xx
xxx

Stop 'foreach' loop:
0
1
2
3
4

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

continue

Since CMake 3.2 it’s possible to continue the loop:

cmake_minimum_required(VERSION 3.2)
project(foo NONE)

message("Loop with 'continue':")
foreach(x RANGE 10)
if(x EQUAL 2 OR x EQUAL 5)
message(" skip ${x}")
continue()

endif()
message(" process ${x}")

endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcontinue -B_builds
Loop with 'continue':
process 0
process 1
skip 2
process 3
process 4
skip 5

(continues on next page)

172 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

process 6
process 7
process 8
process 9
process 10

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

CMake documentation

• CMake 3.2 release notes

3.8.3 Functions

CMake documentation

• function

Simple

Function without arguments:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo)
message("Calling 'foo' function")

endfunction()

foo()
foo()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hsimple-function -B_builds
Calling 'foo' function
Calling 'foo' function
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8. Control structures 173

https://cmake.org/cmake/help/v3.2/release/3.2.html#commands
https://cmake.org/cmake/help/latest/command/function.html

CGold Documentation, Release 0.1

With arguments

Function with arguments and example of ARGV*, ARGC, ARGN usage:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo x y z)
message("Calling function 'foo':")
message(" x = ${x}")
message(" y = ${y}")
message(" z = ${z}")

endfunction()

function(boo x y z)
message("Calling function 'boo':")
message(" x = ${ARGV0}")
message(" y = ${ARGV1}")
message(" z = ${ARGV2}")
message(" total = ${ARGC}")

endfunction()

function(bar x y z)
message("Calling function 'bar':")
message(" All = ${ARGV}")
message(" Unexpected = ${ARGN}")

endfunction()

foo("1" "2" "3")
boo("4" "5" "6")
bar("7" "8" "9" "10" "11")

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hfunction-args -B_builds
Calling function 'foo':
x = 1
y = 2
z = 3

Calling function 'boo':
x = 4
y = 5
z = 6
total = 3

Calling function 'bar':
All = 7;8;9;10;11
Unexpected = 10;11

-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

174 Chapter 3. Tutorials

CGold Documentation, Release 0.1

CMake style

CMake documentation

• CMakeParseArguments

cmake_parse_arguments function can be used for parsing:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(CMakeParseArguments) # cmake_parse_arguments

function(foo)
set(optional FOO BOO)
set(one X Y Z)
set(multiple L1 L2)

Introduce:
* x_FOO
* x_BOO
* x_X
* x_Y
* x_Z
* x_L1
* x_L2
cmake_parse_arguments(x "${optional}" "${one}" "${multiple}" "${ARGV}")

string(COMPARE NOTEQUAL "${x_UNPARSED_ARGUMENTS}" "" has_unparsed)
if(has_unparsed)
message(FATAL_ERROR "Unparsed arguments: ${x_UNPARSED_ARGUMENTS}")

endif()

message("FOO: ${x_FOO}")
message("BOO: ${x_BOO}")
message("X: ${x_X}")
message("Y: ${x_Y}")
message("Z: ${x_Z}")

message("L1:")
foreach(item ${x_L1})
message(" ${item}")

endforeach()

message("L2:")
foreach(item ${x_L2})
message(" ${item}")

endforeach()
endfunction()

function(boo)
set(optional "")

(continues on next page)

3.8. Control structures 175

https://cmake.org/cmake/help/latest/module/CMakeParseArguments.html

CGold Documentation, Release 0.1

(continued from previous page)

set(one PARAM1 PARAM2)
set(multiple "")

Introduce:
* foo_PARAM1
* foo_PARAM2
cmake_parse_arguments(foo "${optional}" "${one}" "${multiple}" "${ARGV}")

string(COMPARE NOTEQUAL "${foo_UNPARSED_ARGUMENTS}" "" has_unparsed)
if(has_unparsed)
message(FATAL_ERROR "Unparsed arguments: ${foo_UNPARSED_ARGUMENTS}")

endif()

message("{ param1, param2 } = { ${foo_PARAM1}, ${foo_PARAM2} }")
endfunction()

message("*** Run (1) ***")
foo(L1 item1 item2 item3 X value FOO)

message("*** Run (2) ***")
foo(L2 item1 item3 Y abc Z 123 FOO BOO)

message("*** Run (3) ***")
foo(L1 item1 L1 item2 L1 item3)

message("*** Run (4) ***")
boo(PARAM1 123 PARAM2 888)

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmake-style -B_builds
*** Run (1) ***
FOO: TRUE
BOO: FALSE
X: value
Y:
Z:
L1:
item1
item2
item3

L2:
*** Run (2) ***
FOO: TRUE
BOO: TRUE
X:
Y: abc
Z: 123
L1:
L2:
item1
item3

*** Run (3) ***
(continues on next page)

176 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

FOO: FALSE
BOO: FALSE
X:
Y:
Z:
L1:
item1
item2
item3

L2:
*** Run (4) ***
{ param1, param2 } = { 123, 888 }
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

CMake style limitations

Since it’s not possible to create a list with one empty element and because of internal CMakeParseArguments limita-
tions next calls will have equivalent results:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(CMakeParseArguments) # cmake_parse_arguments

function(foo)
set(optional "")
set(one X)
set(multiple "")

Introduce:
* x_X
cmake_parse_arguments(x "${optional}" "${one}" "${multiple}" "${ARGV}")

string(COMPARE NOTEQUAL "${x_UNPARSED_ARGUMENTS}" "" has_unparsed)
if(has_unparsed)
message(FATAL_ERROR "Unparsed arguments: ${x_UNPARSED_ARGUMENTS}")

endif()

if(DEFINED x_X)
set(is_defined YES)

else()
set(is_defined NO)

endif()

message("X is defined: ${is_defined}")
message("X value: '${x_X}'")

endfunction()

message("*** Run (1) ***")
(continues on next page)

3.8. Control structures 177

CGold Documentation, Release 0.1

(continued from previous page)

foo(X "")

message("*** Run (2) ***")
foo(X)

message("*** Run (3) ***")
foo()

[examples]> rm -rf _builds
[examples]> cmake -Hcontrol-structures/cmake-style-limitations -B_builds
*** Run (1) ***
X is defined: NO
X value: ''
*** Run (2) ***
X is defined: NO
X value: ''
*** Run (3) ***
X is defined: NO
X value: ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds

Return value

There is no special command to return a value from a function. You can set a variable to the parent scope instead:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(boo)
set(A "123" PARENT_SCOPE)

endfunction()

set(A "333")
message("Before 'boo': ${A}")
boo()
message("After 'boo': ${A}")

function(bar arg1 result)
set("${result}" "ABC-${arg1}-XYZ" PARENT_SCOPE)

endfunction()

message("Calling 'bar' with arguments: '123' 'var_out'")
bar("123" var_out)
message("Output: ${var_out}")

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hreturn-value -B_builds
Before 'boo': 333

(continues on next page)

178 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

After 'boo': 123
Calling 'bar' with arguments: '123' 'var_out'
Output: ABC-123-XYZ
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

Return

CMake documentation

• return

You can exit from a function using a return command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo A B)
if(A)
message("Exit on A")
return()

endif()

if(B)
message("Exit on B")
return()

endif()

message("Exit")
endfunction()

foo(YES NO)
foo(NO YES)
foo(NO NO)

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hreturn -B_builds
Exit on A
Exit on B
Exit
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8. Control structures 179

https://cmake.org/cmake/help/latest/command/return.html

CGold Documentation, Release 0.1

CMAKE_CURRENT_LIST_DIR

Value of CMAKE_CURRENT_LIST_FILE and CMAKE_CURRENT_LIST_DIR is set to the file/directory from where the
function is called, not the file where the function is defined:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake/Modules")

include(foo_run)

foo_run("123")

add_subdirectory(boo)

boo/CMakeLists.txt

foo_run("abc")

Module cmake/Modules/foo_run.cmake

set(FOO_RUN_FILE_PATH "${CMAKE_CURRENT_LIST_FILE}")
set(FOO_RUN_DIR_PATH "${CMAKE_CURRENT_LIST_DIR}")

function(foo_run value)
message("foo_run(${value})")

message("Called from: ${CMAKE_CURRENT_LIST_DIR}")
message("Defined in file: ${FOO_RUN_FILE_PATH}")
message("Defined in directory: ${FOO_RUN_DIR_PATH}")

endfunction()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hfunction-location -B_builds
foo_run(123)
Called from: /.../control-structures/function-location
Defined in file: /.../control-structures/function-location/cmake/Modules/foo_run.cmake
Defined in directory: /.../control-structures/function-location/cmake/Modules
foo_run(abc)
Called from: /.../control-structures/function-location/boo
Defined in file: /.../control-structures/function-location/cmake/Modules/foo_run.cmake
Defined in directory: /.../control-structures/function-location/cmake/Modules
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

CMake documentation

• CMAKE_CURRENT_LIST_DIR

180 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html

CGold Documentation, Release 0.1

• CMAKE_CURRENT_LIST_FILE

Recommendation

To avoid function name clashing with functions from another modules do prefix name with the project name. In case
if function name will match name of the module you can verify that module used in your code just by simple in-file
search (and of course delete it if not):

include(foo_my_module_1)
include(foo_my_module_2)

foo_my_module_1(INPUT1 "abc" INPUT2 123 RESULT result)
foo_my_module_2(INPUT1 "${result}" INPUT2 "xyz")

See also:

• Module names

• Cache names

3.9 Executables

Examples on GitHub

• Repository

• Latest ZIP

CMake documentation

• add_executable

3.9.1 Simple

Building executable from main.cpp:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo main.cpp)

[executable-examples]> rm -rf _builds
[executable-examples]> cmake -Hsimple -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info

(continues on next page)

3.9. Executables 181

https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html
https://github.com/cgold-examples/executable-examples
https://github.com/cgold-examples/executable-examples/archive/master.zip
https://cmake.org/cmake/help/latest/command/add_executable.html

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../executable-examples/_builds
[executable-examples]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/main.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

[executable-examples]> ./_builds/foo
Hello from CGold!

3.9.2 Duplicates

Targets are global, you can’t declare two targets with the same name even if they are declared in different CMakeLists.
txt:

top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(boo)
add_subdirectory(bar)

boo/CMakeLists.txt

add_executable(foo main.cpp)

bar/CMakeLists.txt

add_executable(foo main.cpp)

[examples]> rm -rf _builds
[examples]> cmake -Hexecutable-examples/duplicates -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done

(continues on next page)

182 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at bar/CMakeLists.txt:1 (add_executable):
add_executable cannot create target "foo" because another target with the
same name already exists. The existing target is an executable created in
source directory
"/.../executable-examples/duplicates/boo".
See documentation for policy CMP0002 for more details.

3.10 Tests

In previous section we have checked that executable is working by finding it in binary tree and running it explicitly. If
we have several executables or want to run the same executable with different parameters we can organize everything
into test suite driven by CTest tool.

CMake documentation

• ctest

• add_test

• enable_testing

Examples on GitHub

• Repository

• Latest ZIP

Creating two executables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

3.10. Tests 183

https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://cmake.org/cmake/help/latest/command/add_test.html
https://cmake.org/cmake/help/latest/command/enable_testing.html
https://github.com/cgold-examples/test-examples
https://github.com/cgold-examples/test-examples/archive/master.zip

CGold Documentation, Release 0.1

Executable boo:

#include <iostream> // std::cout

int main() {
std::cout << "boo" << std::endl;

}

Executable bar:

#include <iostream> // std::cout

int main(int argc, char** argv) {
std::cout << "bar argc: " << argc << std::endl;
for (int i=1; i<argc; ++i) {
std::cout << "argv[" << i << "]: " << argv[i] << std::endl;

}
}

Testing allowed by enable_testing directive which must be called in the root directory:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

Come up with some tests name and specify executable arguments if needed:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

Configure and build project:

184 Chapter 3. Tutorials

CGold Documentation, Release 0.1

[examples]> rm -rf _builds
[examples]> cmake -Htest-examples/simple -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target boo
[25%] Building CXX object CMakeFiles/boo.dir/boo.cpp.o
[50%] Linking CXX executable boo
[50%] Built target boo
Scanning dependencies of target bar
[75%] Building CXX object CMakeFiles/bar.dir/bar.cpp.o
[100%] Linking CXX executable bar
[100%] Built target bar

Enter _builds directory and use ctest tool to run all tests:

[examples]> cd _builds
[examples/_builds]> ctest
Test project /.../examples/_builds

Start 1: boo
1/3 Test #1: boo Passed 0.00 sec

Start 2: bar
2/3 Test #2: bar Passed 0.00 sec

Start 3: bar-with-args
3/3 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.02 sec

3.10. Tests 185

CGold Documentation, Release 0.1

3.10.1 Multi-config testing

Note that for the multi-configuration generators you have to specify build type while running ctest. Otherwise no
tests will be run. Example of Visual Studio project:

[examples_builds]> ctest
Test project C:/.../examples/_builds

Start 1: boo
Test not available without configuration. (Missing "-C <config>"?)
1/3 Test #1: boo***Not Run 0.00 sec

Start 2: bar
Test not available without configuration. (Missing "-C <config>"?)
2/3 Test #2: bar***Not Run 0.00 sec

Start 3: bar-with-args
Test not available without configuration. (Missing "-C <config>"?)
3/3 Test #3: bar-with-args***Not Run 0.00 sec

0% tests passed, 3 tests failed out of 3

Total Test time (real) = 0.02 sec

The following tests FAILED:
1 - boo (Not Run)
2 - bar (Not Run)
3 - bar-with-args (Not Run)

Errors while running CTest

Just add -C Debug to test with Debug build type:

[examples_builds]> ctest -C Debug
Test project C:/.../examples/_builds

Start 1: boo
1/3 Test #1: boo Passed 0.04 sec

Start 2: bar
2/3 Test #2: bar Passed 0.02 sec

Start 3: bar-with-args
3/3 Test #3: bar-with-args Passed 0.01 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.09 sec

3.10.2 Verbose output

By default only Passed/Failed information is shown. You can control tests output by -V/-VV options:

[examples/_builds]> ctest -VV
...
test 1

Start 1: boo

1: Test command: /.../examples/_builds/boo
(continues on next page)

186 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

1: Test timeout computed to be: 9.99988e+06
1: boo
1/3 Test #1: boo Passed 0.00 sec
test 2

Start 2: bar

2: Test command: /.../examples/_builds/bar
2: Test timeout computed to be: 9.99988e+06
2: bar argc: 1
2/3 Test #2: bar Passed 0.00 sec
test 3

Start 3: bar-with-args

3: Test command: /.../examples/_builds/bar "arg1" "arg2" "arg3"
3: Test timeout computed to be: 9.99988e+06
3: bar argc: 4
3: argv[1]: arg1
3: argv[2]: arg2
3: argv[3]: arg3
3/3 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.01 sec

3.10.3 Subset of tests

It is possible to run only subset of tests instead of all suite. For example running all tests with bar pattern in name by
using regular expression:

[examples/_builds]> ctest -R bar
Test project /.../examples/_builds

Start 2: bar
1/2 Test #2: bar Passed 0.00 sec

Start 3: bar-with-args
2/2 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.01 sec

Or only bar test:

[examples/_builds]> ctest -R '^bar$'
Test project /.../examples/_builds

Start 2: bar
1/1 Test #2: bar Passed 0.00 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.01 sec

3.10. Tests 187

CGold Documentation, Release 0.1

3.11 Libraries

3.11.1 Static

3.11.2 Shared

3.11.3 Static + shared

Those users who has worked with autotools knows that it’s possible to build both static and shared libraries at one go.
Here is an overview how it should be done in CMake.

Examples on GitHub

• Repository

• Latest ZIP

Right way

We will start with the right one. Command add_library should be used without STATIC or SHARED specifier, type of
the library will be determined by value of BUILD_SHARED_LIBS variable (default type is static):

cmake_minimum_required(VERSION 3.4)
project(foo)

set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS YES CACHE BOOL "Export all symbols")

add_library(foo foo.cpp)

install(
TARGETS foo
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib
RUNTIME DESTINATION bin

)

Note: STATIC/SHARED/MODULE specifiers should be used only in cases when other type of library is by design not
possible for any reasons. That’s not our case of course since we are trying to build both variants, hence library designed
to be used as static or shared.

Libraries should be installed to separate directories. So there will be two builds and two root directories. Out of
source will kindly help us:

> cd library-examples
[library-examples]> rm -rf _builds _install
[library-examples]> cmake -Hright-way -B_builds/shared -DBUILD_SHARED_LIBS=ON -DCMAKE_
→˓INSTALL_PREFIX="`pwd`/_install/configuration-A"
[library-examples]> cmake --build _builds/shared --target install
Scanning dependencies of target foo

(continues on next page)

188 Chapter 3. Tutorials

https://github.com/cgold-examples/library-examples
https://github.com/cgold-examples/library-examples/archive/master.zip
https://cmake.org/cmake/help/latest/command/add_library.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html

CGold Documentation, Release 0.1

(continued from previous page)

[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX shared library libfoo.so
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../library-examples/_install/configuration-A/lib/libfoo.so

[library-examples]> cmake -Hright-way -B_builds/static -DCMAKE_INSTALL_PREFIX="`pwd`/_
→˓install/configuration-B"
[library-examples]> cmake --build _builds/static --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../library-examples/_install/configuration-B/lib/libfoo.a

Autotools two builds

Note that autotools do build library twice too under the hood, so performance is the same:

> mkdir temp
> cd temp
[temp]> wget http://www.x.org/releases/individual/lib/libpciaccess-0.13.4.tar.bz2
[temp]> tar xf libpciaccess-0.13.4.tar.bz2
[temp]> cd libpciaccess-0.13.4
[libpciaccess-0.13.4]> ./configure --enable-shared --enable-static
[libpciaccess-0.13.4]> make V=1
...
libtool: compile: gcc ... -c linux_devmem.c -fPIC -o .libs/linux_devmem.o
libtool: compile: gcc ... -c linux_devmem.c -o linux_devmem.o

Install to one directory

Another autotools feature is that both libraries will be installed to the one directory. That’s works fine on Linux since
libraries names will be libfoo.so and libfoo.a, works fine for OSX since libraries names will be libfoo.dylib
and libfoo.a, but not for Windows. Static build will produce foo.lib:

> cd library-examples
[library-examples]> rmdir _builds _install /S /Q
[library-examples]> cmake -Hright-way -B_builds\static -G "Visual Studio 14 2015" -
→˓DCMAKE_INSTALL_PREFIX=%cd%_install
[library-examples]> cmake --build _builds\static --config Release --target install
...
-- Install configuration: "Release"
-- Installing: C:/.../library-examples/_install/lib/foo.lib

But shared build will produce both foo.lib and foo.dll, effectively overwriting static library and making it unus-
able:

3.11. Libraries 189

CGold Documentation, Release 0.1

[library-examples]> cmake -Hright-way -B_builds\shared -G "Visual Studio 14 2015" -
→˓DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=%cd%_install
[library-examples]> cmake --build _builds\shared --config Release --target install
...
-- Install configuration: "Release"
-- Installing: C:/.../library-examples/_install/lib/foo.lib
-- Installing: C:/.../library-examples/_install/bin/foo.dll

Configs

Even if libraries doesn’t conflict on file level their configs will conflict:

> cd library-examples
[library-examples]> rm -rf _install _builds
[library-examples]> cmake -Hbar -B_builds/shared -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_
→˓TYPE=Release -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds/shared --target install
[library-examples]> grep lib/libbar.so -IR _install
_install/lib/cmake/bar/barTargets-release.cmake: IMPORTED_LOCATION_RELEASE "${_IMPORT_
→˓PREFIX}/lib/libbar.so"
_install/lib/cmake/bar/barTargets-release.cmake:list(APPEND _IMPORT_CHECK_FILES_FOR_
→˓bar::bar "${_IMPORT_PREFIX}/lib/libbar.so")

Config for static variant will have the same barTargets-release.cmake name:

[library-examples]> cmake -Hbar -B_builds/static -DCMAKE_BUILD_TYPE=Release -DCMAKE_
→˓INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds/static --target install
[library-examples]> grep lib/libbar.a -IR _install
_install/lib/cmake/bar/barTargets-release.cmake: IMPORTED_LOCATION_RELEASE "${_IMPORT_
→˓PREFIX}/lib/libbar.a"
_install/lib/cmake/bar/barTargets-release.cmake:list(APPEND _IMPORT_CHECK_FILES_FOR_
→˓bar::bar "${_IMPORT_PREFIX}/lib/libbar.a")

Now since configuration files for shared variant are overwritten there is no way to load libbar.so using
find_package(bar CONFIG REQUIRED).

[library-examples]> grep lib/libbar.so -IR _install
[library-examples]> echo $?
1

Two targets

Problems with two versions of library described in previous section can be solved by using two different targets. This
section cover building of two targets simultaneously. One target build at the time is equivalent to this code:

add_library(foo foo.cpp)

Even if names differs, e.g. by using option:

190 Chapter 3. Tutorials

CGold Documentation, Release 0.1

option(FOO_STATIC_LIB "Build static library" ON)

if(FOO_STATIC_LIB)
add_library(foo_static STATIC foo.cpp)

else()
add_library(foo_shared SHARED foo.cpp)

endif()

Warning: This is logically equivalent to the add_library(foo foo.cpp) + BUILD_SHARED_LIBS functionality
so should not be used. Use standard CMake features!

So assuming we have code like this:

Don't do that!
add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

Philosophical

CMake code describe abstract configuration. User can choose how this abstraction used on practice. Let’s run this
example on OSX:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)
add_executable(boo boo.cpp)

target_link_libraries(boo PUBLIC foo)

By default we will build executable and static library:

> cd library-examples
[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds
[library-examples]> cmake --build _builds
[library-examples]> ls _builds/libfoo.a _builds/boo
_builds/libfoo.a
_builds/boo

But we are free to switch to shared library:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DBUILD_SHARED_LIBS=ON
[library-examples]> cmake --build _builds
[library-examples]> ls _builds/libfoo.dylib _builds/boo
_builds/libfoo.dylib
_builds/boo

Create bundle:

3.11. Libraries 191

CGold Documentation, Release 0.1

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DCMAKE_MACOSX_BUNDLE=ON
[library-examples]> cmake --build _builds
[library-examples]> ls -d _builds/libfoo.a _builds/boo.app
_builds/libfoo.a
_builds/boo.app

Or do the both:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DCMAKE_MACOSX_BUNDLE=ON -DBUILD_SHARED_
→˓LIBS=ON
[library-examples]> cmake --build _builds
[library-examples]> ls -d _builds/libfoo.dylib _builds/boo.app
_builds/libfoo.dylib
_builds/boo.app

Forcing any of this violates customization principle.

Non-default behavior

Let’s see how two targets approach will be used on user’s side:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(boo) # 3rd party library

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC boo)

Targets defined in directory boo:

boo/CMakeLists.txt

Don't do that!
add_library(boo STATIC boo.cpp)
add_library(boo_shared SHARED boo.cpp)

User builds library and link by default static libboo.a to foo executable:

> cd library-examples
[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
[library-examples]> cmake --build _builds
...
/usr/bin/c++ -o foo ... boo/libboo.a

User knows that there is BUILD_SHARED_LIBS variable that change type of library, so he expects shared in next con-
figuration:

192 Chapter 3. Tutorials

CGold Documentation, Release 0.1

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON -DBUILD_
→˓SHARED_LIBS=ON

But of course he still got static because type of library is forced:

[library-examples]> cmake --build _builds
/usr/bin/c++ -o foo ... boo/libboo.a

Build time

Note that in previous example time of compilation of boo library is doubled. We are building boo.cpp twice even if
we are not planning to use one of the variants:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds
[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[16%] Building CXX object boo/CMakeFiles/boo.dir/boo.cpp.o
[33%] Linking CXX static library libboo.a
[33%] Built target boo
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[66%] Linking CXX executable foo
[66%] Built target foo
Scanning dependencies of target boo_shared
[83%] Building CXX object boo/CMakeFiles/boo_shared.dir/boo.cpp.o
[100%] Linking CXX shared library libboo_shared.so
[100%] Built target boo_shared

User of such library pays for something he doesn’t really need.

PIC conflicts

Assume we want to build everything statically but some part of out code force library to be shared:

cmake_minimum_required(VERSION 2.8)
project(use_bar)

find_package(bar CONFIG REQUIRED)

add_library(use_bar_static STATIC use_bar.cpp)
target_link_libraries(use_bar_static PUBLIC bar::bar)

add_library(use_bar_shared SHARED use_bar.cpp)
target_link_libraries(use_bar_shared PUBLIC bar::bar)

If bar is static we will have problem with target use_bar_shared which in fact we don’t really interested in:

> cd library-examples
[library-examples]> rm -rf _builds _install

(continues on next page)

3.11. Libraries 193

CGold Documentation, Release 0.1

(continued from previous page)

[library-examples]> cmake -Hbar -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds --target install

[library-examples]> rm -rf _builds
[library-examples]> cmake -Huse_bar -B_builds -DCMAKE_PREFIX_PATH="`pwd`/_install"
[library-examples]> cmake --build _builds
Scanning dependencies of target use_bar_shared
[25%] Building CXX object CMakeFiles/use_bar_shared.dir/use_bar.cpp.o
[50%] Linking CXX shared library libuse_bar_shared.so
/usr/bin/ld: /.../library-examples/_install/lib/libbar.a(bar.cpp.o):

relocation R_X86_64_PC32 against symbol `_Z4bar1v' can not be used when
making a shared object; recompile with -fPIC

Note: Such issue can’t be solved by library usage requirements since library bar doesn’t know a priori if will it be
linked to shared library or not.

Scalability

Two targets approach doesn’t scale. If we have add_library(foo foo.cpp) we can do control of such code:

add_library(foo foo.cpp)
add_executable(boo boo.cpp)
target_link_libraries(boo PUBLIC foo)

Using BUILD_SHARED_LIBS:

• ON - executable linked with shared library

• OFF - executable linked with static library

In this code:

add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

What should we do? Create two targets?

add_executable(boo_static boo.cpp)
target_link_libraries(boo_static PUBLIC foo_static)

add_executable(boo_shared boo.cpp)
target_link_libraries(boo_shared PUBLIC foo_shared)

What if there will be more dependencies?

add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

add_library(bar_static STATIC foo.cpp)
add_library(bar_shared SHARED foo.cpp)

(continues on next page)

194 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

1 - shared, 0 - static
add_executable(boo_0_0 boo.cpp)
add_executable(boo_0_1 boo.cpp)
add_executable(boo_1_0 boo.cpp)
add_executable(boo_1_1 boo.cpp)

target_link_libraries(boo_0_0 PUBLIC foo_static boo_static)
target_link_libraries(boo_0_1 PUBLIC foo_static boo_shared)
target_link_libraries(boo_1_0 PUBLIC foo_shared boo_static)
target_link_libraries(boo_1_1 PUBLIC foo_shared boo_shared)

Duplication

Additionally to scalability problems in previous example we have a risk to have same code repeated twice for system
with complex dependencies. Assume we have library bar in two variants simultaneously:

bar/CMakeLists.txt

Don't do that!
add_library(bar_static STATIC bar.cpp)
add_library(bar_shared SHARED bar.cpp)

And target baz that for some reason decide that shared variant of linkage is preferable:

baz/CMakeLists.txt

add_library(baz SHARED baz.cpp)
target_link_libraries(baz PUBLIC bar_shared)

Our executable links to both libraries. Probably we don’t know/not interested in fact that baz use bar too. We decide
that static linkage is preferable for any reason:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(bar)
add_subdirectory(baz)

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC bar_static baz)

Let’s build it:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hdup -B_builds
[library-examples]> cmake --build _builds

We are linked to the libbaz.so and we do linked to libbar_shared.so because it’s dependency of baz:

> ldd _builds/foo
...

(continues on next page)

3.11. Libraries 195

CGold Documentation, Release 0.1

(continued from previous page)

libbaz.so => /.../library-examples/_builds/baz/libbaz.so (0x00007f6d2f2a4000)
libbar_shared.so => /.../library-examples/_builds/bar/libbar_shared.so␣

→˓(0x00007f6d2e927000)

At the same time we have bar linked statically:

> objdump -d _builds/foo | grep -A5 'barv.*:'
0000000000400c12 <_Z3barv>:
400c12: 55 push %rbp
400c13: 48 89 e5 mov %rsp,%rbp
400c16: b8 42 00 00 00 mov $0x42,%eax
400c1b: 5d pop %rbp
400c1c: c3 retq

So effectively code of function bar present in our dependencies twice! First time in executable and second time in
linked shared library:

> objdump -d _builds/bar/libbar_shared.so | grep -A5 'barv.*:'
0000000000000610 <_Z3barv>:
610: 55 push %rbp
611: 48 89 e5 mov %rsp,%rbp
614: b8 42 00 00 00 mov $0x42,%eax
619: 5d pop %rbp
61a: c3 retq

Summary

• Use STATIC/SHARED/MODULE only if library designed to have no other types

• Use no specifiers if library designed to be used as static or shared. Respect BUILD_SHARED_LIBS variable

• Install static and shared libraries to separate directories

CMake mailing list

• Static & shared library

3.11.4 Symbols

In case of diagnosing linker errors or hiding some functions from public usage it may be helpful to know the table of
symbols of library.

196 Chapter 3. Tutorials

https://cmake.org/pipermail/cmake/2005-August/007030.html

CGold Documentation, Release 0.1

Tools

The tool for listing symbols differs for different platforms.

Examples on GitHub

• Repository

• Latest ZIP

Example

Here is an example of library which has both defined and undefined symbols:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(boo Boo.hpp Boo.cpp Foo.hpp)

Method Boo::boo declared and will be defined:

// Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
public:
int boo(int, char);

};

#endif // BOO_HPP_

// Boo.cpp

#include "Boo.hpp"

#include "Foo.hpp"

int Boo::boo(int x, char a) {
Foo foo;

return foo.foo(a, 1.0 + x);
}

Method Foo::foo declared, will be used but will not be defined:

// Foo.hpp

#ifndef FOO_HPP_
(continues on next page)

3.11. Libraries 197

https://github.com/cgold-examples/library-examples
https://github.com/cgold-examples/library-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

#define FOO_HPP_

class Foo {
public:
int foo(char, double);

};

#endif // FOO_HPP_

// Boo.cpp

#include "Boo.hpp"

#include "Foo.hpp"

int Boo::boo(int x, char a) {
Foo foo;

return foo.foo(a, 1.0 + x);
}

Build library:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlibrary-symbols -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[50%] Building CXX object CMakeFiles/boo.dir/Boo.cpp.o
[100%] Linking CXX static library libboo.a
[100%] Built target boo

[library-examples]> ls _builds/libboo.a
_builds/libboo.a

198 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Linux

Use nm for Linux:

> which nm
/usr/bin/nm

Install instructions for Ubuntu:

> sudo apt-get install binutils

nm --defined-only will show symbols defined by current module. Add --demangle to beautify output:

[library-examples]> nm --defined-only --demangle _builds/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, char)

nm --undefined-only will show undefined:

[library-examples]> nm --undefined-only --demangle _builds/libboo.a

Boo.cpp.o:
U __stack_chk_fail
U Foo::foo(char, double)

OSX

Same nm tool with --defined-only/--undefined-only options can be used on OSX platform. However
--demangle is not available, c++filt can be used instead:

> which nm
/usr/bin/nm

> which c++filt
/usr/bin/c++filt

Defined symbols:

> nm --defined-only _builds/libboo.a | c++filt

_builds/libboo.a(Boo.cpp.o):
0000000000000000 T Boo::boo(int, char)

Undefined symbols:

> nm --undefined-only _builds/libboo.a | c++filt

_builds/libboo.a(Boo.cpp.o):
Foo::foo(char, double)

3.11. Libraries 199

CGold Documentation, Release 0.1

Windows

DUMPBIN tool can help to discover symbols on Windows platform. It’s available via Developer Command Prompt:

> where dumpbin
...\msvc\2015\VC\bin\dumpbin.exe

Add /SYMBOLS to see the table. Defined symbols can be filtered by External + SECT:

[library-examples]> dumpbin /symbols _builds\Debug\boo.lib | findstr "External" |␣
→˓findstr "SECT"
00A 00000000 SECT4 notype () External | ?boo@Boo@@QAEHHD@Z (public: int __
→˓thiscall Boo::boo(int,char))
01C 00000000 SECT7 notype External | __real@3ff0000000000000

Undefined by External + UNDEF:

[library-examples]> dumpbin /symbols _builds\Debug\boo.lib | findstr "External" |␣
→˓findstr "UNDEF"
00B 00000000 UNDEF notype () External | ?foo@Foo@@QAEHDN@Z (public: int __
→˓thiscall Foo::foo(char,double))
00C 00000000 UNDEF notype () External | @_RTC_CheckStackVars@8
00D 00000000 UNDEF notype () External | __RTC_CheckEsp
00E 00000000 UNDEF notype () External | __RTC_InitBase
00F 00000000 UNDEF notype () External | __RTC_Shutdown
019 00000000 UNDEF notype External | __fltused

See also:

• DUMPBIN reference

• DUMPBIN /SYMBOLS

Use /EXPORTS if you want to see the symbols available in DLL:

[library-examples]> dumpbin /exports _builds\Release\boo.dll | findstr "Boo"
1 0 00001000 ?boo@Boo@@QAEHHD@Z

Use undname to demangle:

[library-examples]> undname ?boo@Boo@@QAEHHD@Z
Microsoft (R) C++ Name Undecorator
Copyright (C) Microsoft Corporation. All rights reserved.

Undecoration of :- "?boo@Boo@@QAEHHD@Z"
is :- "public: int __thiscall Boo::boo(int,char)"

See also:

• DUMPBIN /EXPORTS

• Viewing Decorated Names

200 Chapter 3. Tutorials

https://msdn.microsoft.com/en-us/library/c1h23y6c.aspx
https://msdn.microsoft.com/en-us/library/b842y285.aspx
https://msdn.microsoft.com/en-us/library/30e78zd0.aspx
https://msdn.microsoft.com/en-us/library/5x49w699.aspx

CGold Documentation, Release 0.1

Simple error

Examples on GitHub

• Repository

• Latest ZIP

Here is an example of trivial “undefined reference” error with diagnostic and, of course, fix instructions.

Library boo:

boo/CMakeLists.txt

add_library(boo Boo.hpp Boo.cpp)

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
public:
int boo(int, int);

};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

int Boo::boo(int, int) {
return 0x42;

}

Library foo use library boo but since we are trying to trigger an error the target_link_libraries directive is
intentionally missing:

foo/CMakeLists.txt

add_library(foo Foo.cpp Foo.hpp)

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
public:
int foo(int, char);

};
(continues on next page)

3.11. Libraries 201

https://github.com/cgold-examples/library-examples
https://github.com/cgold-examples/library-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

#endif // FOO_HPP_

// foo/Foo.cpp

#include "foo/Foo.hpp"
#include "boo/Boo.hpp"

int Foo::foo(int, char) {
Boo boo;
return boo.boo(14, 15);

}

Final baz executable:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(baz)

include_directories(${CMAKE_CURRENT_LIST_DIR}) # for '#include <boo/Boo.hpp>'

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz main.cpp)
target_link_libraries(baz foo)

#include "foo/Foo.hpp"

int main() {
Foo foo;
return foo.foo(144, 'x');

}

Generate project:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features

(continues on next page)

202 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

First let’s build library boo:

[library-examples]> cmake --build _builds --target boo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds
Scanning dependencies of target boo
[50%] Building CXX object boo/CMakeFiles/boo.dir/Boo.cpp.o
[100%] Linking CXX static library libboo.a
[100%] Built target boo

An attempt to build executable baz will fail with link error:

> cmake --build _builds --target baz
Scanning dependencies of target foo
[25%] Building CXX object foo/CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo(int, char)':
Foo.cpp:(.text+0x35): undefined reference to `Boo::boo(int, int)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:95: recipe for target 'baz' failed
make[3]: *** [baz] Error 1
CMakeFiles/Makefile2:67: recipe for target 'CMakeFiles/baz.dir/all' failed
make[2]: *** [CMakeFiles/baz.dir/all] Error 2
CMakeFiles/Makefile2:79: recipe for target 'CMakeFiles/baz.dir/rule' failed
make[1]: *** [CMakeFiles/baz.dir/rule] Error 2
Makefile:118: recipe for target 'baz' failed
make: *** [baz] Error 2

Use nm tool to verify that symbol is indeed undefined:

> nm --undefined-only --demangle _builds/foo/libfoo.a

Foo.cpp.o:
U __stack_chk_fail
U Boo::boo(int, int)

Library boo has it:

> nm --defined-only --demangle _builds/boo/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, int)

3.11. Libraries 203

CGold Documentation, Release 0.1

So library foo depends on library boo, every time we are linking foo we have to link boo too. This can be expressed
by target_link_libraries command. Fix:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error/foo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error-fix/foo/CMakeLists.txt
@@ -1,3 +1,4 @@
foo/CMakeLists.txt

add_library(foo Foo.cpp Foo.hpp)
+target_link_libraries(foo PUBLIC boo)

Should work now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-fix -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[16%] Building CXX object boo/CMakeFiles/boo.dir/Boo.cpp.o
[33%] Linking CXX static library libboo.a
[33%] Built target boo
Scanning dependencies of target foo
[50%] Building CXX object foo/CMakeFiles/foo.dir/Foo.cpp.o
[66%] Linking CXX static library libfoo.a
[66%] Built target foo
Scanning dependencies of target baz
[83%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
[100%] Built target baz

204 Chapter 3. Tutorials

CGold Documentation, Release 0.1

ODR violation (local)

Examples on GitHub

• Repository

• Latest ZIP

The next example is about scenario when badly written CMake code leads to ODR violation.

Assume we have library boo:

boo/CMakeLists.txt

add_definitions(-DBOO_USE_SHORT_INT) # This is wrong!
add_library(boo Boo.hpp Boo.cpp)

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
public:
#ifdef BOO_USE_SHORT_INT
typedef short int value_type;

#else
typedef unsigned long long value_type;

#endif

static void boo(int, value_type);
};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

void Boo::boo(int, value_type) {
}

Methods of boo used in library foo:

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
public:
static void foo(int, int);

};
(continues on next page)

3.11. Libraries 205

https://github.com/cgold-examples/library-examples
https://github.com/cgold-examples/library-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

#endif // FOO_HPP_

// foo/Foo.cpp

#include "foo/Foo.hpp"
#include "boo/Boo.hpp"

void Foo::foo(int, int) {
Boo::value_type x(2);
return Boo::boo(1, x);

}

foo/CMakeLists.txt

add_library(foo Foo.hpp Foo.cpp)
target_link_libraries(foo PUBLIC boo)

And final executable baz:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(baz)

include_directories(${CMAKE_CURRENT_LIST_DIR}) # for '#include <boo/Boo.hpp>'

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz main.cpp)
target_link_libraries(baz foo)

#include "foo/Foo.hpp"

int main() {
Foo::foo(0, 0);

}

Let’s build the project now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-odr-local -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
...
[library-examples]> cmake --build _builds

Link will fail with “undefined reference” error:

/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Boo.cpp
...
/usr/bin/c++ /.../Foo.cpp
...

(continues on next page)

206 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

/usr/bin/c++ -rdynamic CMakeFiles/baz.dir/main.cpp.o -o baz foo/libfoo.a boo/libboo.a
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo(int, int)':
Foo.cpp:(.text+0x23): undefined reference to `Boo::boo(int, unsigned long long)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:99: recipe for target 'baz' failed
make[2]: *** [baz] Error 1

Check symbols we need:

[library-examples]> nm --defined-only --demangle _builds/boo/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, short)

Indeed that’s not what we are looking for:

[library-examples]> nm --undefined-only --demangle _builds/foo/libfoo.a

Foo.cpp.o:
U Boo::boo(int, unsigned long long)

The reason of the failure is that we use BOO_USE_SHORT_INTwhile building boo library and not using it while building
library foo. Since in both cases we are loading boo/Boo.hpp header (which depends on BOO_USE_SHORT_INT) we
should define BOO_USE_SHORT_INT in both cases too. target_compile_definitions can help us to solve the issue:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error-odr-local/boo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error-odr-local-fix/boo/CMakeLists.txt
@@ -1,4 +1,4 @@
boo/CMakeLists.txt

-add_definitions(-DBOO_USE_SHORT_INT) # This is wrong!
add_library(boo Boo.hpp Boo.cpp)
+target_compile_definitions(boo PUBLIC "BOO_USE_SHORT_INT")

Links fine now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-odr-local-fix -B_builds -DCMAKE_VERBOSE_
→˓MAKEFILE=ON
...
[library-examples]> cmake --build _builds
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Boo.cpp
...
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Foo.cpp
...
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../main.cpp
...
/usr/bin/c++ -rdynamic CMakeFiles/baz.dir/main.cpp.o -o baz foo/libfoo.a boo/libboo.a
...
> nm --defined-only --demangle _builds/boo/libboo.a
Boo.cpp.o:

(continues on next page)

3.11. Libraries 207

https://cmake.org/cmake/help/latest/command/target_compile_definitions.html

CGold Documentation, Release 0.1

(continued from previous page)

0000000000000000 T Boo::boo(int, short)
> nm --undefined-only --demangle _builds/foo/libfoo.a
Foo.cpp.o:

U Boo::boo(int, short)

ODR violation (global)

Examples on GitHub

• Repository

• Latest ZIP

Next code shows the ODR violation example based on the same #ifdef technique but the reason and solution will be
different.

Assume we have library boo which can be used with both C++98 and C++11 standards:

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

#if __cplusplus >= 201103L
include <thread> // std::thread
#endif

class Boo {
public:
#if __cplusplus >= 201103L
typedef std::thread thread_type;

#else
class InternalThread {
};
typedef InternalThread thread_type;

#endif
static void boo(thread_type&);

};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

#include <iostream> // std::cout

void Boo::boo(thread_type&) {
#if __cplusplus >= 201103L
std::cout << "Boo: 2011" << std::endl;

#else
(continues on next page)

208 Chapter 3. Tutorials

https://github.com/cgold-examples/library-examples
https://github.com/cgold-examples/library-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

std::cout << "Boo: 1998" << std::endl;
#endif
}

boo/CMakeLists.txt

add_library(boo Boo.hpp Boo.cpp)

Library foo depends on boo:

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
public:
static int foo();

};

#endif // FOO_HPP_

// foo/Foo.cpp

#include <foo/Foo.hpp>

#include <boo/Boo.hpp>

int Foo::foo() {
Boo::thread_type t;
Boo::boo(t);
return 0;

}

Assuming that library foo use some C++11 features (this fact is not reflected in C++ code though) first that came to
mind is to modify CXX_STANDARD property:

foo/CMakeLists.txt

add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)

set_target_properties(foo PROPERTIES CXX_STANDARD 11)

Final executable:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

include_directories("${CMAKE_CURRENT_LIST_DIR}") # for '#include <boo/Boo.hpp>'
(continues on next page)

3.11. Libraries 209

CGold Documentation, Release 0.1

(continued from previous page)

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz baz.cpp)
target_link_libraries(baz PUBLIC foo)

// baz.cpp

#include <iostream> // std::cout
#include <foo/Foo.hpp>

int main() {
std::cout << "Foo: " << Foo::foo() << std::endl;

}

Link will fail for the same reason as with previous example. We are not using C++11 flags while building boo library
but using C++11 flags while building foo and C++11 flag is analyzed in boo/Boo.hppwhich is loaded by both targets:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global -B_builds
...
[examples]> cmake --build _builds
...
[100%] Linking CXX executable baz
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo()':
Foo.cpp:(.text+0x52): undefined reference to `Boo::boo(std::thread&)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:96: recipe for target 'baz' failed
make[2]: *** [baz] Error 1

Can this issue be fixed using the same approach as target_compile_definitions(boo PUBLIC
"BOO_USE_SHORT_INT")? Note that if we set set_target_properties(boo PROPERTIES CXX_STANDARD
11) we can’t use boo with the C++98 targets for the exact same reason, even if boo is designed to work with both
standards.

The main difference here is that BOO_USE_SHORT_INT is local to the library boo and hence should be controlled locally
(as shown before in CMakeLists.txt of boo library). Meanwhile C++98/C++11 flags are global and hence should
be declared globally somewhere. In our simple case where all targets connected together in one project, we can add
CMAKE_CXX_STANDARD to the configure step.

Removing local modification of CXX_STANDARD:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error-odr-global/foo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-error-odr-global-fix/foo/CMakeLists.txt
@@ -2,5 +2,3 @@

add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)
-
-set_target_properties(foo PROPERTIES CXX_STANDARD 11)

210 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Building C++11 variant:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global-fix -B_builds -DCMAKE_CXX_
→˓STANDARD=11
...
[examples]> cmake --build _builds
...
[examples]> ./_builds/baz
Boo: 2011

Building C++98 variant:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global-fix -B_builds -DCMAKE_CXX_
→˓STANDARD=98
...
[examples]> cmake --build _builds
...
[examples]> ./_builds/baz
Boo: 1998

If we have more complex hierarchy of targets which are sequentially build/installed, we have to use same
CMAKE_CXX_STANDARD value for each participating project. CMAKE_CXX_STANDARD is not the only property with
global nature, it might be helpful to set all such properties/flags in one place - toolchain.

If you still want to set global flags locally for any reason then at least put the code under if condition. For example
let’s set C++11 for all targets in the project and C++14 for target boo:

if(NOT EXISTS "${CMAKE_TOOLCHAIN_FILE}")
set(CMAKE_CXX_STANDARD 11) # set a global minimum standard
set_target_properties(boo PROPERTIES CXX_STANDARD 14) # set a standard for a target
...

endif()

Link order

GNU linker

This problem occurs only when you’re using GNU linker. From man ld on Linux:

The linker will search an archive only once, at the location where it is
specified on the command line. If the archive defines a symbol which was
undefined in some object which appeared before the archive on the command
line, the linker will include the appropriate file(s) from the archive.
However, an undefined symbol in an object appearing later on the command
line will not cause the linker to search the archive again.

There is no such issue on OSX for example, quote from man ld:

ld will only pull .o files out of a static library if needed to resolve
some symbol reference. Unlike traditional linkers, ld will continually
search a static library while linking. There is no need to specify a
static library multiple times on the command line.

3.11. Libraries 211

CGold Documentation, Release 0.1

Example tested on Linux with GCC compiler and standard ld linker:

> ld --version
GNU ld (GNU Binutils for Ubuntu) 2.26.1
Copyright (C) 2015 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License version 3 or (at your option) a later version.
This program has absolutely no warranty.

> gcc --version
gcc (Ubuntu 5.4.1-2ubuntu1~16.04) 5.4.1 20160904
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Problem

Example with two libraries bar, boo and executable foo:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(bar bar.cpp)
add_library(boo boo.cpp)

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC bar boo)

Library bar doesn’t depend on anything and define function int bar():

// bar.cpp

int bar() {
return 0x42;

}

Library boo depends on bar and define function int boo():

// boo.cpp

int bar();

int boo() {
return bar();

}

Executable foo depends on boo:

// foo.cpp

int boo();
(continues on next page)

212 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

int main() {
return boo();

}

Build will fail with linker error:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-order-bad -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
...
[16%] Building CXX object CMakeFiles/bar.dir/bar.cpp.o
/usr/bin/c++ -o CMakeFiles/bar.dir/bar.cpp.o -c /.../examples/library-examples/link-
→˓order-bad/bar.cpp
[33%] Linking CXX static library libbar.a
...
/usr/bin/ar qc libbar.a CMakeFiles/bar.dir/bar.cpp.o
/usr/bin/ranlib libbar.a
[33%] Built target bar
...
[50%] Building CXX object CMakeFiles/boo.dir/boo.cpp.o
/usr/bin/c++ -o CMakeFiles/boo.dir/boo.cpp.o -c /.../examples/library-examples/link-
→˓order-bad/boo.cpp
[66%] Linking CXX static library libboo.a
...
/usr/bin/ar qc libboo.a CMakeFiles/boo.dir/boo.cpp.o
/usr/bin/ranlib libboo.a
[66%] Built target boo
...
[83%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
/usr/bin/c++ -o CMakeFiles/foo.dir/foo.cpp.o -c /.../examples/library-examples/link-
→˓order-bad/foo.cpp
[100%] Linking CXX executable foo
...
/usr/bin/c++ -rdynamic CMakeFiles/foo.dir/foo.cpp.o -o foo libbar.a libboo.a

(continues on next page)

3.11. Libraries 213

CGold Documentation, Release 0.1

(continued from previous page)

libboo.a(boo.cpp.o): In function `boo()':
boo.cpp:(.text+0x5): undefined reference to `bar()'
collect2: error: ld returned 1 exit status
...

Note that linker can’t find symbol int bar() from bar library even if libbar.a is present in command line.

To understand the reason of error you have to understand how linker works:

• All files passed to linker processed from left to right

• Linker collects undefined symbols from files to the pool of undefined symbols

• If object from archive doesn’t resolve any symbols from pool of undefined symbols, then it dropped

Next thing happens in example above:

• 3 files passed to linker to create final foo executable:

– object CMakeFiles/foo.dir/foo.cpp.o

– archive libbar.a

– archive libboo.a

• CMakeFiles/foo.dir/foo.cpp.o has undefined symbol int boo(). Current pool of undefined symbols is
int boo()

• Archive libbar.a defines int bar(), doesn’t have any undefined symbols and doesn’t resolve any symbols
from pool. Hence we drop it. Current pool of undefined symbols is int boo()

• Archive libboo.a defines int boo() and has undefined symbol int bar(). int boo() removed from pool
and int bar() added. Current pool of undefined symbols is int bar()

• No files left. Pool of undefined symbols is not empty and error about unresolved int bar() symbol reported.

Fix

To fix this you should declare dependency between boo and bar:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-order-bad/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/
→˓examples/library-examples/link-order-fix/CMakeLists.txt
@@ -5,6 +5,7 @@

add_library(bar bar.cpp)
add_library(boo boo.cpp)
+target_link_libraries(boo PUBLIC bar)

add_executable(foo foo.cpp)
-target_link_libraries(foo PUBLIC bar boo)
+target_link_libraries(foo PUBLIC boo)

This approach both clean (foo doesn’t explicitly depends on bar, why target_link_libraries(foo PUBLIC bar)
used?) and correct - CMake will control the right order of files:

214 Chapter 3. Tutorials

CGold Documentation, Release 0.1

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-order-fix -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
...
/usr/bin/c++ -rdynamic CMakeFiles/foo.dir/foo.cpp.o -o foo libboo.a libbar.a
make[2]: Leaving directory '/.../examples/_builds'
[100%] Built target foo
make[1]: Leaving directory '/.../examples/_builds'
/.../bin/cmake -E cmake_progress_start /.../examples/_builds/CMakeFiles 0

Summary

• If one library depends on symbols from other library you have to express it by target_link_libraries com-
mand. Even if you may not have problems in current setup they may appear later or on another platform.

• If you have “undefined reference” error even if library with missing symbols is present in command line, then it
may means that the order is not correct. Fix it by adding target_link_libraries(boo PUBLIC bar), where
boo is library with unresolved symbols and bar is library which defines those symbols.

3.11. Libraries 215

CGold Documentation, Release 0.1

3.12 Pseudo targets

3.12.1 Imported targets

3.12.2 Alias targets

3.12.3 Interface targets

3.13 Collecting sources

3.13.1 Avoid globbing

3.13.2 Project layout

Examples on GitHub

• Repository

• Latest ZIP

lib/ <project>/ <project>.hpp
<target>/ CMakeLists.txt with target <project>_<target>

<target>.hpp
app/ <project>/ <target>/ CMakeLists.txt with target <project>_<target>
test/ <project>/ <target>/ CMakeLists.txt with target <project>_<target>
example/ <project>/ <target>/ CMakeLists.txt with target <project>_<target>
cmake/ module/ <project>_<module>.cmake

template/ *.cmake.in
script/ *.cmake
include/ *.cmake
try_compile/ *.cpp

See also:

• Install layout

CMakeLists.txt
lib/

CMakeLists.txt
fruits/

CMakeLists.txt
fruits.hpp
rosaceae/

CMakeLists.txt
rosaceae.hpp
Pear.cpp
Pear.hpp
Plum.cpp
Plum.hpp

(continues on next page)

216 Chapter 3. Tutorials

https://github.com/cgold-examples/fruits
https://github.com/cgold-examples/fruits/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

unittest/
Pear.cpp

tropical/
CMakeLists.txt
tropical.hpp
Avocado.cpp
Avocado.hpp
Pineapple.cpp
Pineapple.hpp
unittest/

Avocado.cpp
Pineapple.cpp

app/
CMakeLists.txt
fruits/

CMakeLists.txt
breakfast/

CMakeLists.txt
flatware/

Teaspoon.cpp
Teaspoon.hpp

main.cpp
dinner/

CMakeLists.txt
main.cpp

example/
CMakeLists.txt
fruits/

CMakeLists.txt
quick_meal/

CMakeLists.txt
main.cpp

vegan_party/
CMakeLists.txt
main.cpp

test/
CMakeLists.txt
fruits/

CMakeLists.txt
check_tropical/

CMakeLists.txt
data/

avocado.ini
skin_off/

CMakeLists.txt

3.13. Collecting sources 217

CGold Documentation, Release 0.1

3.14 Usage requirements

3.14.1 Compile definitions

3.14.2 Include directories

3.14.3 Link libraries

3.15 Build types

3.15.1 Detect Multi/Single

string(COMPARE EQUAL "${CMAKE_CFG_INTDIR}" "." is_single)
if(is_single)
message("Single-configuration generator")

else()
message("Multi-configuration generator")

endif()

CMake documentation

• CMAKE_CFG_INTDIR

Warning: if(XCODE OR MSVC) condition doesn’t work because MSVC defined for NMake single-configuration
generator too.

Warning: if(XCODE OR MSVC_IDE) condition doesn’t work because MSVC_IDE is not defined for Visual Studio
MDD toolchain.

3.16 configure_file

3.17 Install

The next step in chain of Configure → Generate → Build → Test stages is install: final step of development pro-
cess which often require privilege escalation (make vs sudo make install). Installation is an important part of
the ecosystem: results of the project installation allows to integrate it into another project using find_package and
unlike add_subdirectory doesn’t pollute current scope with unnecessary targets and variables. Packing use install
procedure under the hood.

See also:

• CMake stages

• Stages diagram

218 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/variable/CMAKE_CFG_INTDIR.html

CGold Documentation, Release 0.1

Examples on GitHub

• Repository

• Latest ZIP

3.17.1 Library

TODO

ALIAS: Unify interface for both find_package and add_subdirectory

3.17.2 Header-only library

TODO

INTERFACE

3.17.3 Library with dependencies

TODO

find_dependency in Config.cmake.in

3.17.4 Optional dependencies

TODO

find_dependency(baz CONFIG) under condition if("@FOO_WITH_BAZ@")

3.17.5 CMake modules

3.17.6 Export header

CMake documentation

• GenerateExportHeader

3.17. Install 219

https://github.com/cgold-examples/install-examples
https://github.com/cgold-examples/install-examples/archive/master.zip
https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html

CGold Documentation, Release 0.1

3.17.7 RPATH

CMake wiki

• RPATH handling

Wikipedia

• RPATH

3.17.8 Version

CMake documentation

• write_basic_package_version_file

3.17.9 CMAKE_INSTALL_PREFIX

CMake documentation

• CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX variable can be used to control destination directory of install procedure:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=_install/config-A
[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-A/lib/libfoo.a

[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=_install/config-B
[install-examples]> cmake --build _builds --target install
[100%] Built target foo
Install the project...

(continues on next page)

220 Chapter 3. Tutorials

https://cmake.org/Wiki/CMake_RPATH_handling
https://en.wikipedia.org/wiki/Rpath
https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html

CGold Documentation, Release 0.1

(continued from previous page)

-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-B/lib/libfoo.a

Modify

This variable is designed to be modified on user side. Do not force it in code!

cmake_minimum_required(VERSION 2.8)
project(foo)

set(CMAKE_INSTALL_PREFIX "${CMAKE_CURRENT_BINARY_DIR}/3rdParty/root") # BAD CODE!

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hmodify-bad -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

Library unexpectedly installed to 3rdparty/root instead of _install:

[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_builds/3rdParty/root/lib/libfoo.a

Note: Use CACHE in such case

3.17. Install 221

CGold Documentation, Release 0.1

On the fly

Make do support changing of install directory on the fly by DESTDIR:

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=""
[install-examples]> make -C _builds DESTDIR="`pwd`/_install/config-A" install
...
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-A/lib/libfoo.a
make: Leaving directory '/.../install-examples/_builds'

[install-examples]> make -C _builds DESTDIR="`pwd`/_install/config-B" install
...
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-B/lib/libfoo.a
make: Leaving directory '/.../install-examples/_builds'

Read

Because of the DESTDIR feature, CPack functionality, different nature of build and install stages often usage of
CMAKE_INSTALL_PREFIX variable on configure step is an indicator of wrongly written code:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

BAD CODE!
file(

COPY
"${CMAKE_CURRENT_LIST_DIR}/README"
DESTINATION
"${CMAKE_INSTALL_PREFIX}/share/foo"

)

include(CPack)

User may not want to install such project at all, so copying of file to root is something unintended and quite surprising.
If you’re lucky you will get problems with permissions on configure step instead of a silent copy:

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hwrong-usage -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done

(continues on next page)

222 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at CMakeLists.txt:9 (file):
file COPY cannot copy file
"/.../install-examples/wrong-usage/README"
to "/usr/local/share/foo/README".

-- Configuring incomplete, errors occurred!
See also "/.../install-examples/_builds/CMakeFiles/CMakeOutput.log".

CPack will use separate directory for install so README will not be included in archive:

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hwrong-usage -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/lib/libfoo.a

Implicit read

All work should be delegated to install command instead, in such case CMAKE_INSTALL_PREFIX will be read im-
plicitly:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)
install(FILES README DESTINATION share/foo)

include(CPack)

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hright-usage -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc

(continues on next page)

3.17. Install 223

CGold Documentation, Release 0.1

(continued from previous page)

-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

Correct install directory:

[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/lib/libfoo.a
-- Installing: /.../install-examples/_install/share/foo/README

Correct packing:

[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/share/foo/README
foo-0.1.1-Linux/lib/libfoo.a

Install script

Same logic can be applied if CMAKE_INSTALL_PREFIX used in script created by configure_file command:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

set(script "${CMAKE_CURRENT_BINARY_DIR}/script.cmake")
(continues on next page)

224 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

configure_file(script.cmake.in "${script}" @ONLY)

install(SCRIPT "${script}")

include(CPack)

script.cmake.in

cmake_minimum_required(VERSION 2.8)

set(correct "$ENV{DESTDIR}${CMAKE_INSTALL_PREFIX}")

message("Incorrect value: '@CMAKE_INSTALL_PREFIX@'")
message("Correct value: '${correct}'")

file(WRITE "${correct}/share/foo/info" "Some info")

Configure for DESTDIR usage:

[install-examples]> rm -rf _builds _install foo-0.1.1-Linux
[install-examples]> cmake -Hconfigure -B_builds -DCMAKE_INSTALL_PREFIX=""
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

DESTDIR read correctly:

[install-examples]> make DESTDIR="`pwd`/_install/config-A" -C _builds install
make: Entering directory '/.../install-examples/_builds'
Install the project...
-- Install configuration: ""
Incorrect value: ''
Correct value: '/.../install-examples/_install/config-A'
make: Leaving directory '/.../install-examples/_builds'
[install-examples]> find _install/config-A -type f
_install/config-A/share/foo/info

Changing directory on the fly:

3.17. Install 225

CGold Documentation, Release 0.1

[install-examples]> make DESTDIR="`pwd`/_install/config-B" -C _builds install
make: Entering directory '/.../install-examples/_builds'
Install the project...
-- Install configuration: ""
Incorrect value: ''
Correct value: '/.../install-examples/_install/config-B'
make: Leaving directory '/.../install-examples/_builds'
[install-examples]> find _install/config-B -type f
_install/config-B/share/foo/info

Regular install:

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hconfigure -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds
[install-examples]> cmake --build _builds --target install
Install the project...
-- Install configuration: ""
Incorrect value: '/.../install-examples/_install'
Correct value: '/.../install-examples/_install'
[install-examples]> find _install -type f
_install/share/foo/info

Packing:

[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
Incorrect value: '/.../install-examples/_install'
Correct value: '/.../install-examples/_builds/_CPack_Packages/Linux/TGZ/foo-0.1.1-Linux'
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/share/foo/info

226 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Summary

• Do not force value of CMAKE_INSTALL_PREFIX

• Use of CMAKE_INSTALL_PREFIX on configure, generate, build steps is an indicator of badly designed code

• Use install instead of CMAKE_INSTALL_PREFIX

• Respect DESTDIR

3.17.10 Layout

include/ <project>/ <project>.hpp
lib*/ <project>_<target>

cmake/ <project>/ <project>Config.cmake
bin/ <project>_<target>
cmake/ module/ <project>_<module>.cmake

template/ <project>/ *.cmake.in
script/ <project>/ *.cmake
include/ <project>/ *.cmake

include(GNUInstallDirs)

install(
TARGETS <project>_<target>_1 <project>_<target>_2
EXPORT <project>Targets
LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}"
ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}"
RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}"
INCLUDES DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}"

)

See also:

• Project layout

CMake documentation

• GNUInstallDirs

Linux layout after installation of example project:

bin
fruits_breakfast*
fruits_dinner*

include
fruits

fruits.hpp
FRUITS_ROSACEAE_EXPORT.h
FRUITS_TROPICAL_EXPORT.h
rosaceae

Pear.hpp
(continues on next page)

3.17. Install 227

https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html
https://github.com/cgold-examples/fruits

CGold Documentation, Release 0.1

(continued from previous page)

Plum.hpp
rosaceae.hpp

tropical
Avocado.hpp
Pineapple.hpp
tropical.hpp

lib
cmake

fruits
fruitsConfig.cmake
fruitsConfigVersion.cmake
fruitsTargets.cmake
fruitsTargets-release.cmake

libfruits_rosaceae.a
libfruits_tropical.a

Windows layout after installation of example project:

bin
fruits_breakfast.exe
fruits_dinner.exe

include
fruits

fruits.hpp
FRUITS_ROSACEAE_EXPORT.h
FRUITS_TROPICAL_EXPORT.h
rosaceae

Pear.hpp
Plum.hpp
rosaceae.hpp

tropical
Avocado.hpp
Pineapple.hpp
tropical.hpp

lib
cmake

fruits
fruitsConfig.cmake
fruitsConfigVersion.cmake
fruitsTargets.cmake
fruitsTargets-release.cmake

fruits_rosaceae.lib
fruits_tropical.lib

Windows Debug + DLL:

bin
fruits_breakfast.exe
fruits_breakfast.pdb
fruits_dinner.exe
fruits_dinner.pdb
fruits_rosaceaed.dll

(continues on next page)

228 Chapter 3. Tutorials

https://github.com/cgold-examples/fruits

CGold Documentation, Release 0.1

(continued from previous page)

fruits_rosaceaed.pdb
fruits_tropicald.dll
fruits_tropicald.pdb

include
fruits

fruits.hpp
FRUITS_ROSACEAE_EXPORT.h
FRUITS_TROPICAL_EXPORT.h
rosaceae

Pear.hpp
Plum.hpp
rosaceae.hpp

tropical
Avocado.hpp
Pineapple.hpp
tropical.hpp

lib
cmake

fruits
fruitsConfig.cmake
fruitsConfigVersion.cmake
fruitsTargets.cmake
fruitsTargets-debug.cmake

fruits_rosaceaed.lib
fruits_tropicald.lib

3.17.11 Samples

• Install library. TODO: adapt https://github.com/forexample/package-example

• Header-only library

• Install library, optional dependencies (system ZLIB)

• https://github.com/cgold-examples/fruits

– optional dependencies

– version

– CMake modules

3.17.12 Managing dependencies

There are a lot of different ways to deal with dependencies. We start with widely used anti-patterns and explain why
they are anti-patterns. The second part will contain an examples of good approaches and list of requirements that any
other package manager should satisfy.

3.17. Install 229

https://github.com/forexample/package-example
https://github.com/cgold-examples/fruits

CGold Documentation, Release 0.1

Bad way

Merge sources

Assume we have library foo:

src
foo

foo.cpp
foo.hpp

Library foo depends on library boo:

src
boo

boo.cpp
boo.hpp

The worst thing you can do is to merge both sources by copying boo to the directory with foo:

src
boo

boo.cpp
boo.hpp

foo
foo.cpp
foo.hpp

C++ directive #include <foo/foo.hpp> means that directory src/ should be in list of paths to headers (in terms
of compilers like GCC: -I/.../src). We want our local directory to have highest priority if there are several paths
(e.g. if there are system wide paths and another copy of library foo installed system wide, then we want local copy to
take a priority). Hence whatever the rest of header paths is, the #include <boo/boo.hpp> of dependent library boo
will always fall to our local copy. If somebody want to try to use another version of boo the only choice you left to
him is to remove src/boo directory.

Copy to “third_party” directory

Instead of copying to the same directory you can copy dependent library to third_party directory:

src
foo

foo.cpp
foo.hpp

third_party
boo

boo.cpp
boo.hpp

There will be two independent paths to headers (at least): -I/.../src and -I/.../third_party hence if somebody
want to try to use another version of boo it’s enough to modify CMake code without changing project structure.

Assuming that both libraries are under VCS control, by doing plain copy operation you’re losing information about
version of boo. Also if you want to modify boo sources locally, then merging them with update of boo from upstream
might be not a trivial operation.

230 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Git submodule

Using same structure you can keep information about version of boo by adding it as a Git submodule instead of raw
copying. Git functionality will help to track modification of third party code and merging it with future releases.

Git submodules will work well for:

• Adding sources that are extension of your project, hence it makes no sense to add these sources to another project.
I.e. submodule is used as a dependency exactly for one node in dependency tree.

• Managing dependencies in the project that can’t be used as another dependency, i.e. your project is the leaf in
dependency tree, like executable. Though this still may raise the question of size optimization when package
manager is used, it will be better to use dependencies as a shared libraries.

• Short period of development when you’re actively modifying third party code.

Submodule is not a good long term solution for managing dependencies that can be reused. It leads to conflicts like
this:

Note: If we are talking about reusable library then you can’t control final structure of dependency tree. If you are not
experiencing such issue it doesn’t mean the same will be true for somebody else.

At first you will simply get target names conflict:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-conflict -B_builds
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++

(continues on next page)

3.17. Install 231

https://git-scm.com/book/en/v2/Git-Tools-Submodules

CGold Documentation, Release 0.1

(continued from previous page)

-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at third_party/b/third_party/x/CMakeLists.txt:4 (add_library):
add_library cannot create target "x" because another target with the same
name already exists. The existing target is a static library created in
source directory "/.../third_party/a/third_party/x".

You can protect including of third party code by condition:

if(NOT TARGET x::x)
add_subdirectory(third_party/x)

endif()

It will solve target name conflict however it may lead to tricky behavior. Effectively it will introduce “first win” strategy
while doing dependency resolution, mixing two separate concepts:

• Project structure

– foo depends on a and b

– a depends on x

– b depends on x

• Versions

– Some a version available

– Some b version available

– Two versions of x available: v1.0 and v2.0

Options is a common way to customize your CMake code, often it’s involve the change of used dependencies and
change of project structure. Let’s add option FOO_WITH_A to the example to control optional dependency foo -> a:

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_A "Use 'a' module" ON)

add_executable(foo foo.cpp)

if(FOO_WITH_A)
add_subdirectory(third_party/a)
target_link_libraries(foo PUBLIC a::a)
target_compile_definitions(foo PUBLIC FOO_WITH_A)

endif()

add_subdirectory(third_party/b)
target_link_libraries(foo PUBLIC b::b)

enable_testing()
add_test(NAME foo COMMAND foo)

232 Chapter 3. Tutorials

CGold Documentation, Release 0.1

When option FOO_WITH_A is enabled the x dependency from a subdirectory will proceed first, hence v1.0 will be
used. And if FOO_WITH_A is disabled the x dependency from b subdirectory will proceed first, hence v2.0 will be
used.

From user perspective it can be quite surprising and may look like some a functionality is leaking into module b:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=ON
...
[examples]> cmake --build _builds
...
[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../examples/_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: x say: nice
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

Disable module a and behavior of b changed!

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=OFF
...
[examples]> cmake --build _builds
...
[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../examples/_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: (Module 'a' disabled)
1: Running 'b' module
1: x say: good
1/1 Test #1: foo Passed 0.00 sec

Note: Such behavior can be “stabilized” by adding foo -> x dependency:

before 'a' and 'b'
add_subdirectory(third_party/x)

if(FOO_WITH_A)
add_subdirectory(third_party/a)

endif()
add_subdirectory(third_party/b)

But this obviously doesn’t scale well since x is an implicit dependency and we have no control over whether it will be
used in future a/b releases or more dependencies will be introduced or on which options/platforms they depends, etc.

Since version of x tied to project structure every time you switch option FOO_WITH_A the whole project will rebuild:

3.17. Install 233

CGold Documentation, Release 0.1

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=ON

Build everything from scratch first time:

[examples]> cmake --build _builds
Scanning dependencies of target x
[12%] Building CXX object third_party/a/third_party/x/CMakeFiles/x.dir/x/x.cpp.o
[25%] Linking CXX static library libx.a
[25%] Built target x
Scanning dependencies of target b
[37%] Building CXX object third_party/b/CMakeFiles/b.dir/b/b.cpp.o
[50%] Linking CXX static library libb.a
[50%] Built target b
Scanning dependencies of target a
[62%] Building CXX object third_party/a/CMakeFiles/a.dir/a/a.cpp.o
[75%] Linking CXX static library liba.a
[75%] Built target a
Scanning dependencies of target foo
[87%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Second time just checking:

[examples]> cmake --build _builds
[25%] Built target x
[50%] Built target b
[75%] Built target a
[100%] Built target foo

Disable component a:

[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=OFF

Whole project rebuild!

[examples]> cmake --build _builds
Scanning dependencies of target x
[16%] Building CXX object third_party/b/third_party/x/CMakeFiles/x.dir/x/x.cpp.o
[33%] Linking CXX static library libx.a
[33%] Built target x
Scanning dependencies of target b
[50%] Building CXX object third_party/b/CMakeFiles/b.dir/b/b.cpp.o
[66%] Linking CXX static library libb.a
[66%] Built target b
Scanning dependencies of target foo
[83%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

234 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Summary

The best way to introduce bundled dependency is to add it to the separate directory like third_party as a submodule.

The downsides of such approach:

• add_subdirectory is not a shareable solution. Each add_subdirectory(third_party/x) block
from different projects has it’s own copy of x artifacts. Every time you start new project and add
add_subdirectory(third_party/x) you’re building x from scratch. It’s not convenient if such build takes
a long time.

• Dependency resolution is not option friendly.

See also:

• Why not bundle dependencies

Good way

Package manager

Use system package manager to manage a and b dependencies. Install them to your system and then integrate into
CMake using find_package:

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_A "Use 'a' module" ON)

add_executable(foo foo.cpp)

if(FOO_WITH_A)
find_package(a CONFIG REQUIRED)
target_link_libraries(foo PUBLIC a::a)
target_compile_definitions(foo PUBLIC FOO_WITH_A)

endif()

find_package(b CONFIG REQUIRED)
target_link_libraries(foo PUBLIC b::b)

enable_testing()
add_test(NAME foo COMMAND foo)

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DFOO_WITH_A=ON
[examples]> cmake --build _builds

Result of running test with module a enabled:

[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module

(continues on next page)

3.17. Install 235

https://wiki.gentoo.org/wiki/Why_not_bundle_dependencies
https://cmake.org/cmake/help/latest/command/find_package.html

CGold Documentation, Release 0.1

(continued from previous page)

1: x say: nice
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

With module a disabled:

[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DFOO_WITH_A=OFF

Third parties remains the same of course, only foo executable rebuild:

[examples]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Behavior of module b is the same:

[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: (Module 'a' disabled)
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

Pros:

• Locally shareable. Root directory with libraries can be reused by any number of local project.

• Globally shareable. Usually dependencies distributed as binaries shared across many local machines. You don’t
have to build all dependencies from sources.

• Option friendly. Whatever options you’ve enabled the same set of third parties will be used.

Cons:

• Not much customization over third party dependencies

• Different system package managers have different set of packages and available versions

• Usually only one root directory

ExternalProject_Add

With the help of ExternalProject_Add module you can create so-called “super-build” project with dependencies:

cmake_minimum_required(VERSION 3.2)
project(super-build-example)

include(ExternalProject)

(continues on next page)

236 Chapter 3. Tutorials

https://cmake.org/cmake/help/latest/module/ExternalProject.html

CGold Documentation, Release 0.1

(continued from previous page)

ExternalProject_Add(
x
URL https://github.com/cgold-examples/x/archive/v1.0.tar.gz
URL_HASH SHA1=3c15777fddee4fbf41a57241effc59a821562f65
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}

)

ExternalProject_Add(
a
URL https://github.com/cgold-examples/a/archive/v1.0.tar.gz
URL_HASH SHA1=9adb3574369cf3c186b4984eb6778fca5866e347
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
DEPENDS x

)

ExternalProject_Add(
b
URL https://github.com/cgold-examples/b/archive/v1.0.tar.gz
URL_HASH SHA1=7ef127ddc31d6a9b510d9cdc318c68c7709a8204
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
DEPENDS x

)

Using such project you can install all dependencies to some custom root _ep_install directory:

[examples]> rm -rf _ep_build
[examples]> cmake -Hdep-examples/deps-super-build -B_ep_build -DCMAKE_INSTALL_PREFIX=_ep_
→˓install
[examples]> cmake --build _ep_build
...
-- Downloading...

dst='/.../examples/_ep_build/x-prefix/src/v1.0.tar.gz'
timeout='none'

-- Using src='https://github.com/cgold-examples/x/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/libx.a
-- Installing: /.../_ep_install/include/x/x.hpp
-- Installing: /.../_ep_install/lib/cmake/x/xConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/x/xTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/x/xTargets-noconfig.cmake
...
-- Downloading...

dst='/.../examples/_ep_build/a-prefix/src/v1.0.tar.gz'
timeout='none'

-- Using src='https://github.com/cgold-examples/a/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/liba.a
-- Installing: /.../_ep_install/include/a/a.hpp

(continues on next page)

3.17. Install 237

CGold Documentation, Release 0.1

(continued from previous page)

-- Installing: /.../_ep_install/lib/cmake/a/aConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/a/aTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/a/aTargets-noconfig.cmake
...
-- Downloading...

dst='/.../examples/_ep_build/b-prefix/src/v1.0.tar.gz'
timeout='none'

-- Using src='https://github.com/cgold-examples/b/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/libb.a
-- Installing: /.../_ep_install/include/b/b.hpp
-- Installing: /.../_ep_install/lib/cmake/b/bConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/b/bTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/b/bTargets-noconfig.cmake

Now you can use same deps-find-package example and inject _ep_install root directory with your custom
dependencies instead of system dependencies:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DCMAKE_PREFIX_PATH=/.../
→˓examples/_ep_install -DCMAKE_VERBOSE_MAKEFILE=ON
[examples]> cmake --build _builds
/usr/bin/c++ ... -o foo

/.../_ep_install/lib/liba.a
/.../_ep_install/lib/libb.a
/.../_ep_install/lib/libx.a

Pros:

• Locally shareable. Root directory with libraries can be reused by any number of local project.

• Option friendly. Whatever options you’ve enabled the same set of third parties will be used.

• Third party customization. You have full control over your dependencies.

• Same set of packages across all platforms.

• You can create as many independent root directories as you need.

Cons:

• Only build from sources. There is no built-in mechanism for supporting distribution of binaries and meta
information. Usually user have to build everything from scratch on new machine.

• You have to know everything about your dependencies and carefully manage the build order, including implicit
dependencies. For example if project a depends on x optionally you have to do something like this:

option(EP_A_WITH_X "Enable A_WITH_X for 'a' package" ON)

if(EP_A_WITH_X)
We need 'x' project
ExternalProject_Add(

x
...

(continues on next page)

238 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

)
set(a_dependencies x)

endif()

ExternalProject_Add(
a
...
CMAKE_ARGS -DA_WITH_X=${EP_A_WITH_X}
DEPENDS ${a_dependencies}

)

If dependency tree is complex it can be hard to maintain such super-build.

• Writing correct customizable ExternalProject_Add rules is not a trivial task.

Requirements

Good dependency management system should satisfy next requirements:

• Locally shareable. Root directory with libraries should be easily reused by any number of local project. CMake
has find_package facility for injecting code into project and semi-automatic generation of XXXConfig.cmake
configs for consumer (see Creating packages). Dependency management system should be friendly to this ap-
proach.

• Globally shareable. For the performance purposes there should be an ability to reuse binaries without building
them from sources.

• Option friendly. Whatever options you’ve enabled the same set of third parties should be used.

• Third party customization. You should have an ability to control the way how third party code built: CMake
options, CMake build types, compiler flags, etc.

3.18 Toolchain

CMake documentation

• CMake toolchains

3.18.1 Globals

Even if toolchain is originally designed to help with cross-compiling and usually containing fancy variables like
CMAKE_SYSTEM_NAME or CMAKE_FIND_ROOT_PATH in practice it can help you with holding compiler set-
tings that logically doesn’t belong to some particular local CMakeLists.txt but rather should be shared across various
projects.

3.18. Toolchain 239

https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-packages
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/latest/variable/CMAKE_SYSTEM_NAME.html
https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_ROOT_PATH.html

CGold Documentation, Release 0.1

C++ standard

C++ standard flags should be set globally. You should avoid using any commands that set it locally for target or project.

Note: Example tested with GCC 5.4.1 on Linux. Different compilers may work with C++ standards differently.

Examples on GitHub

• Repository

• Latest ZIP

Example

Let’s assume we have header-only library boo implemented by Boo.hpp which can work with both C++98 and C++11:

// Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

#if __cplusplus >= 201103L
include <thread>
#endif

class Boo {
public:
#if __cplusplus >= 201103L
typedef std::thread thread_type;
static void call(thread_type&) {
}

#else
class InternalThread {
};
typedef InternalThread thread_type;
static void call(thread_type&) {
}

#endif
};

#endif // BOO_HPP_

Library foo that depends on boo and use C++11 internally:

// Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

#include <Boo.hpp>
(continues on next page)

240 Chapter 3. Tutorials

https://github.com/cgold-examples/toolchain-usage-examples
https://github.com/cgold-examples/toolchain-usage-examples/archive/master.zip

CGold Documentation, Release 0.1

(continued from previous page)

class Foo {
public:
static int optimize(Boo::thread_type&);

};

#endif // FOO_HPP_

// Foo.cpp

#include <Foo.hpp>

constexpr int foo_helper_value() {
return 0x42;

}

int Foo::optimize(Boo::thread_type&) {
return foo_helper_value();

}

Executable baz knows nothing about standards and just use API of Boo and Foo classes, Foo is optional:

// main.cpp

#include <iostream> // std::cout

#include <Boo.hpp>

#ifdef WITH_FOO
include <Foo.hpp>
#endif

int main() {
Boo::thread_type t;

std::cout << "C++ standard: " << __cplusplus << std::endl;

#ifdef WITH_FOO
std::cout << "With Foo support" << std::endl;
Foo::optimize(t);

#endif

Boo::call(t);
}

Graphically it will look like this:

3.18. Toolchain 241

CGold Documentation, Release 0.1

CMake project :

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)
target_link_libraries(baz PUBLIC foo)
target_compile_definitions(baz PUBLIC WITH_FOO)

endif()

Overview:

• boo provide same API for both C++11 and C++98 configuration so user don’t have to worry about standards.

• foo use some C++11 feature but only internally.

• baz don’t know anything about used standards, interested only in boo or foo API.

Imagine that baz for the long time relies only on boo, it’s important to keep this functionality even for old C++98
configuration. But there is foo library that use C++11 and allow us to introduce some optimization.

We want:

• C++11 with foo

• C++11 without foo

• C++98 with foo should produce error message as soon as possible

• C++98 without foo

242 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Bad

The first thing that comes to mind after looking at C++ code is that since foo use constexpr feature internally we
should do:

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
add_library(foo Foo.cpp Foo.hpp)
target_compile_features(foo PRIVATE cxx_constexpr)
target_link_libraries(foo PUBLIC boo)
target_link_libraries(baz PUBLIC foo)
target_compile_definitions(baz PUBLIC WITH_FOO)

endif()

This is not correct and will end with error on link stage after successful generation and compilation:

[examples]> rm -rf _builds
[examples]> cmake -Htoolchain-usage-examples/globals/cxx-standard/bad -B_builds -DWITH_
→˓FOO=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
...
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target foo
[25%] Building CXX object CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
CMakeFiles/baz.dir/main.cpp.o: In function `main':
main.cpp:(.text+0x64): undefined reference to `Foo::optimize(Boo::InternalThread&)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:95: recipe for target 'baz' failed
make[2]: *** [baz] Error 1
CMakeFiles/Makefile2:104: recipe for target 'CMakeFiles/baz.dir/all' failed
make[1]: *** [CMakeFiles/baz.dir/all] Error 2
Makefile:83: recipe for target 'all' failed
make: *** [all] Error 2

The reason is violation of ODR rule, similar example have been described before. Effectively we are having two

3.18. Toolchain 243

CGold Documentation, Release 0.1

different libraries boo_11 and boo_98 with the same symbols:

Toolchain

Let’s create toolchain file cxx11.cmake instead so we can use it to set standard globally for all targets in project:

cxx11.cmake

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED YES)

You can add it with -DCMAKE_TOOLCHAIN_FILE=/path/to/cxx11.cmake:

[examples]> rm -rf _builds
[examples]> cmake -Htoolchain-usage-examples/globals/cxx-standard/toolchain -B_builds -
→˓DCMAKE_TOOLCHAIN_FILE=cxx11.cmake -DWITH_FOO=YES
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target foo
[25%] Building CXX object CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o

(continues on next page)

244 Chapter 3. Tutorials

CGold Documentation, Release 0.1

(continued from previous page)

[100%] Linking CXX executable baz
[100%] Built target baz
[examples]> ./_builds/baz
C++ standard: 201103
With Foo support

Looks better now!

try_compile

The next thing we need to improve is early error detection. Note that now if we try to specify WITH_FOO=ON with
C++98 there will be no errors reported on generation stage. Build will failed while trying to compile foo target.

To do this you can create C++ file and add few samples of features you are planning to use:

// features_used_by_foo.cpp

constexpr int value() {
return 0x42;

}

int main() {
return value();

}

Use CMake module with try_compile to test this code:

features_used_by_foo.cmake

set(bindir "${CMAKE_CURRENT_BINARY_DIR}/foo/try_compile")
set(saved_output "${bindir}/output.txt")
set(srcfile "${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cpp")
try_compile(

FOO_IS_FINE
"${bindir}"
"${srcfile}"
OUTPUT_VARIABLE output

)
if(NOT FOO_IS_FINE)
file(WRITE "${saved_output}" "${output}")
message(

FATAL_ERROR
"Can't compile test file:\n"
" ${srcfile}\n"
"Error log:\n"
" ${saved_output}\n"
"Please check that your compiler supports C++11 features and C++11 standard␣

→˓enabled."
)

endif()

Include this check before creating target foo:

3.18. Toolchain 245

CGold Documentation, Release 0.1

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
include("${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cmake")
add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)
target_link_libraries(baz PUBLIC foo)
target_compile_definitions(baz PUBLIC WITH_FOO)

endif()

Defaults

As usual cache variables allow us to set default values if needed:

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)

set(
CMAKE_TOOLCHAIN_FILE
"${CMAKE_CURRENT_LIST_DIR}/cxx11.cmake"
CACHE
FILEPATH
"Default toolchain"

)

project(foo)

option(WITH_FOO "Enable Foo optimization" ON)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
include("${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cmake")
add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)
target_link_libraries(baz PUBLIC foo)
target_compile_definitions(baz PUBLIC WITH_FOO)

endif()

246 Chapter 3. Tutorials

CGold Documentation, Release 0.1

Note:

• Toolchain should be set before first project command, see Project: Tools discovering

See also:

• Cache variables: Use case

Scalability

If this example looks simple and used approach look like an overkill just imagine next situation:

• boo is external library that supports C++98, C++11, C++14, etc. standards and consists of 1000+ source files

• foo is external library that supports only few modern standards and tested with C++11 and C++17. Consist of
1000+ source files and non-trivially interacts with boo

• Your project baz has boo requirement and optional foo, should works correctly in all possibles variations

The worst that may happen if you will use toolchain approach is that foo will fail with compile error instead of error
on generation stage. The error will be plain, such as Can't use 'auto', -std=c++11 is missing?. This can be
easily improved with try_compile.

If you will keep using locally specified standard like modifying CXX_STANDARD property and conflict will occur:

• there will be no warning messages on generate step

• there will be no warning messages on compile step

• link will fail with opaque error pointing to some implementation details inside boo library while your usage of
boo API will look completely fine

When you will try to find error elsewhere:

• stand-alone version of boo will work correctly with all examples and standards

• stand-alone version of foo will interact correctly with boo with all examples and supported standards

• your project baz will work correctly with boo if you will use configuration without foo

Summary

• Use toolchain if you need to specify standard, set default toolchain if needed

• Avoid using CXX_STANDARD in your code

• Avoid using CMAKE_CXX_STANDARD anywhere except toolchain

• Avoid using target_compile_features module

• If you have to use them for any reason at least protect it with if:

if(NOT EXISTS "${CMAKE_TOOLCHAIN_FILE}")
set_target_properties(boo PROPERTIES CXX_STANDARD 14)
target_compile_features(foo PUBLIC cxx_constexpr)

endif()

3.18. Toolchain 247

CGold Documentation, Release 0.1

3.19 Generator expressions

3.20 Properties

3.21 Packing

3.22 Continuous integration

3.22.1 Travis

3.22.2 AppVeyor

248 Chapter 3. Tutorials

CHAPTER

FOUR

PLATFORMS

4.1 iOS

4.1.1 Errors

Validate

Stackoverflow

• Missing iOS Distribution signing identity for <username>

Upload to App Store

Stackoverflow

• Getting ITMS-4238 “Redundant Binary Upload” (in terms of CMake you have to change CFBundleVersion-
String, e.g. 1.0 to 1.1)

4.1.2 Universal binaries

4.1.3 Using dynamic frameworks

Examples on GitHub

• Repository

• Latest ZIP

249

http://stackoverflow.com/questions/32821189
http://stackoverflow.com/questions/25981890
https://github.com/cgold-examples/copy-framework-to-bundle
https://github.com/cgold-examples/copy-framework-to-bundle/archive/master.zip

CGold Documentation, Release 0.1

4.2 Android

4.2.1 General Hints

Prepare device

You have to prepare your device for debugging. For Android 4.2+ tap Build number seven times:

• Settings → About phone → Build number

Developer options appears now:

• Settings → Developer options

See also:

• Enabling On-device Developer Options

Note:

• On practice instructions may differ for different devices. E.g. it may be Android version or MIUI version
instead of Build number (http://en.miui.com/thread-24025-1-1.html)

Go to Developer options and turn it ON:

• Settings → Developer options → Developer options

Also turn ON debug mode when USB is connected. Otherwise adb will not be able to discover the device:

• Settings → Developer options → USB debugging

Get Android NDK

Polly

• Script install-ci-dependencies.py will install Android NDK if environment variable TOOLCHAIN set to
android-*.

Android NDK contains compilers and other tools for C++ development.

Get Android SDK

Android SDK tools used for development on Android platform: adb, android, emulator, etc.

250 Chapter 4. Platforms

https://developer.android.com/studio/run/device.html#developer-device-options
http://en.miui.com/thread-24025-1-1.html
https://github.com/ruslo/polly/blob/d71cc9ad1c68f78b12a33ad91e171f5b82fcc65b/bin/install-ci-dependencies.py
https://developer.android.com/ndk/downloads/index.html
https://developer.android.com/studio/index.html#downloads

CGold Documentation, Release 0.1

Verify

Connect device with USB and verify it’s visible by adb service:

> adb devices
List of devices attached
MTPxxx device

If service is not started there will be extra messages:

> adb devices
List of devices attached
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
MTPxxx device

SDK version on device

The needed version of SDK can be get by reading ro.build.version.sdk:

> adb -d shell getprop ro.build.version.sdk
19

Means you need to use API 19.

Note:

• -d is for real device

• -e is for emulator

CPU architecture

Run next command to determine CPU architecture of emulator:

> adb -e shell getprop ro.product.cpu.abi
x86

And this one for device:

> adb -d shell getprop ro.product.cpu.abi
armeabi-v7a

4.2. Android 251

CGold Documentation, Release 0.1

Log

See also:

• logcat

Clear log:

> adb logcat -c

Filter only Info (I) messages from SimpleApp, ignore others and exit:

> adb logcat -d SimpleApp:I '*:S'
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/SimpleApp(9015): Hello from Android! (Not debug)
>

Any messages from SimpleApp, ignore others:

> adb logcat -d 'SimpleApp:*' '*:S'
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/SimpleApp(9015): Hello from Android! (Not debug)
>

252 Chapter 4. Platforms

https://developer.android.com/studio/command-line/logcat.html

CHAPTER

FIVE

GENERATORS

5.1 Ninja

• CMake option: -G Ninja

• Website

• Sources on GitHub

CMake documentation

• Ninja

5.1.1 Installation

Ubuntu

> sudo apt-get install ninja-build
> ninja -h
usage: ninja [options] [targets...]
...
> ninja --version
1.3.4

253

https://ninja-build.org/
https://github.com/ninja-build/ninja
https://cmake.org/cmake/help/v3.4/generator/Ninja.html

CGold Documentation, Release 0.1

254 Chapter 5. Generators

CHAPTER

SIX

COMPILERS

255

CGold Documentation, Release 0.1

256 Chapter 6. Compilers

CHAPTER

SEVEN

CONTACTS

7.1 Public

• Feel free to open a new issue if you want to ask a question

7.2 Private

• Write me at x@ruslo.dev

• Private chat room on Gitter: https://gitter.im/ruslo

257

https://github.com/ruslo/CGold/issues/new
mailto:x@ruslo.dev
https://gitter.im/ruslo

CGold Documentation, Release 0.1

258 Chapter 7. Contacts

CHAPTER

EIGHT

REJECTED

There are topics that will be intentionally not covered by this document. Some features are obsolete - there are better
clean and modern approaches. Other features lead to error-prone code and should not be used. Also I want to keep
document straight/focused and avoid creating too broad tutorial.

8.1 ExternalProject_Add

There will be no hints about writing a super-build project using ExternalProject because the same can be done nicely
with a package manager.

8.2 FindXXX.cmake

There are no instructions for writing FindXXX.cmake files like FindZLIB.cmake because it’s easier to add some code
to generate ZLIBConfig.cmake automatically.

Quote from CMake wiki:

If creating a Find* module for a library that already uses CMake as its build
system, please create a *Config.cmake instead, and submit it upstream. This
solution is much more robust.

CMake documentation

• Creating packages

Examples on GitHub

• Package example

259

https://cmake.org/cmake/help/latest/module/ExternalProject.html
https://cmake.org/Wiki/CMake:Improving_Find*_Modules
https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-packages
https://github.com/forexample/package-example

CGold Documentation, Release 0.1

8.3 macro

Unlike function command the macro command doesn’t create scope so it does modify variables from scope where it
called.

Note:

• Use function instead

CMake documentation

• macro

8.4 Object libraries

CMake documentation

• Object Libraries

• add_library(. . . OBJECT . . .)

As documentation states OBJECT library is a non-archival collection of object files. OBJECT libraries have few limita-
tions which makes them harder to use.

8.4.1 target_link_libraries

Note: This limitation was removed in CMake 3.12

OBJECT library can’t be used on the right hand side of target_link_libraries command. In practice it means that
you will not be able to make a hierarchy of targets as you do with regular add_library command.

Example:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)

add_library(foo OBJECT foo.cpp)
target_link_libraries(foo PUBLIC boo)

add_executable(baz $<TARGET_OBJECTS:foo> baz.cpp)

Will produce an error:

260 Chapter 8. Rejected

https://cmake.org/cmake/help/latest/command/macro.html
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#object-libraries
https://cmake.org/cmake/help/latest/command/add_library.html#object-libraries
https://cmake.org/cmake/help/v3.17/release/3.12.html#commands

CGold Documentation, Release 0.1

CMake Error at CMakeLists.txt:8 (target_link_libraries):
Object library target "foo" may not link to anything.

You should put all dependent components to add_executable explicitly:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)

add_library(foo OBJECT foo.cpp)

add_executable(
baz
$<TARGET_OBJECTS:foo>
List all 'foo' dependencies explicitly
$<TARGET_OBJECTS:boo>
...
baz.cpp

)

If this component is optional:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_BOO "With 'boo' component" ON)

if(FOO_WITH_BOO)
add_library(boo OBJECT boo.cpp)
set(boo_objects $<TARGET_OBJECTS:boo>)

else()
set(boo_objects "")

endif()

add_library(foo OBJECT foo.cpp)

add_executable(
baz
$<TARGET_OBJECTS:foo>
${boo_objects}
baz.cpp

)

8.4. Object libraries 261

CGold Documentation, Release 0.1

8.4.2 Target name

Even if an OBJECT library is not a “real” target you will still have to name it carefully as a regular target since it will
occupy slot in pool of names. As a result you can’t use it as a local temporary helper tool:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_subdirectory(boo)
add_subdirectory(bar)

boo/CMakeLists.txt

add_library(core OBJECT x1.cpp x2.cpp)
add_executable(boo $<TARGET_OBJECTS:core> boo.cpp)

bar/CMakeLists.txt

add_library(core OBJECT y1.cpp y2.cpp)
add_executable(bar $<TARGET_OBJECTS:core> bar.cpp)

Error:

CMake Error at bar/CMakeLists.txt:1 (add_library):
add_library cannot create target "core" because another target with the
same name already exists. The existing target is created in source
directory "/.../boo". See documentation
for policy CMP0002 for more details.

8.4.3 Usage requirements

Usage requirements will not be propagated:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

include_directories("${CMAKE_CURRENT_LIST_DIR}")

add_library(boo OBJECT boo.cpp boo.hpp)
target_compile_definitions(boo PUBLIC FOO_WITH_BOO)

add_executable(baz $<TARGET_OBJECTS:boo> baz.cpp)

// boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

(continues on next page)

262 Chapter 8. Rejected

CGold Documentation, Release 0.1

(continued from previous page)

#if !defined(FOO_WITH_BOO)
error "FOO_WITH_BOO is not defined!"
#endif

#endif // BOO_HPP_

// baz.cpp

#include <boo.hpp>

int main() {
}

boo.cpp source will compile fine because FOO_WITH_BOO will be added:

/usr/bin/g++ -DFOO_WITH_BOO ... -o CMakeFiles/boo.dir/boo.cpp.o -c /.../boo.cpp

But not baz.cpp:

/usr/bin/g++ ... -o CMakeFiles/baz.dir/baz.cpp.o -c /.../baz.cpp
In file included from /.../baz.cpp:3:0:
/.../boo.hpp:7:3: error: #error "FOO_WITH_BOO is not defined!"
error "FOO_WITH_BOO is not defined!"
^

8.4.4 No real sources

As mentioned in documentation you can’t have target with only OBJECT files. E.g. this code will not work with Xcode:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)
add_executable(foo $<TARGET_OBJECTS:boo>)

enable_testing()
add_test(NAME foo COMMAND foo)

No warnings or build errors but when you will try to test it:

1: Test command:
Unable to find executable: /.../_builds/Release/foo
1/1 Test #1: foo***Not Run 0.00 sec

Note: As a workaround you can add dummy source file to the executable.

8.4. Object libraries 263

CGold Documentation, Release 0.1

8.4.5 Name conflict

You can’t have two source files with the same names even if they are located in different directories. This code will not
work with Xcode generator:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT x.cpp boo/x.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo>)

As a workaround source files can be renamed:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT x.1.cpp boo/x.2.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo>)

Or additional target can be introduced:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo.1 OBJECT x.cpp)
add_library(boo.2 OBJECT boo/x.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo.1> $<TARGET_OBJECTS:boo.2>)

8.5 target_compile_features

CMake documentation

• CMake compile features

• target_compile_features

This function sets locally something that belongs to global settings. Such behavior can lead to nontrivial errors. See
for details:

• ODR violation (global)

• C++ standard

264 Chapter 8. Rejected

https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html
https://cmake.org/cmake/help/latest/command/target_compile_features.html

CGold Documentation, Release 0.1

8.6 write_compiler_detection_header

CMake documentation

• WriteCompilerDetectionHeader

This module doesn’t provide enough abstraction. You have to specify supported compilers explicitly. From documen-
tation:

Compilers which are known to CMake, but not specified are detected and a
preprocessor #error is generated for them.

Meaning that this code:

CMakeLists.txt

cmake_minimum_required(VERSION 3.10)
project(foo)

include(WriteCompilerDetectionHeader)

set(gen_include "${CMAKE_CURRENT_BINARY_DIR}/generated/")
write_compiler_detection_header(

FILE "${gen_include}/${PROJECT_NAME}/detection.hpp"
PREFIX ${PROJECT_NAME}
COMPILERS Clang MSVC
FEATURES cxx_variadic_templates
VERSION 3.10

)

add_executable(foo foo.cpp)
target_include_directories(

foo PUBLIC "$<BUILD_INTERFACE:${gen_include}>"
)

// foo.cpp
#include <foo/detection.hpp>

int main() {
}

Will return error while compiling with GCC:

/usr/bin/g++ ... -c /.../foo.cpp
In file included from /.../foo.cpp:2:0:
/.../generated/foo/detection.hpp:192:6: error: #error Unsupported compiler
error Unsupported compiler

^

Compiler identification relies on CMAKE_<LANG>_COMPILER_ID which is not guaranteed to be set by CMake. From
documentation:

8.6. write_compiler_detection_header 265

https://cmake.org/cmake/help/latest/module/WriteCompilerDetectionHeader.html
https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER_ID.html

CGold Documentation, Release 0.1

This variable is not guaranteed to be defined for all compilers or languages.

266 Chapter 8. Rejected

CHAPTER

NINE

GLOSSARY

9.1 -B

Add -B<path-to-binary-tree> to set the path to directory where CMake will store generated files. There must be
no spaces between -B and <path-to-binary-tree>. Always must be used with -H option.

Path to this directory will be saved in CMAKE_BINARY_DIR variable.

Note: Starting with CMake 3.13, -B is an officially supported flag, can handle spaces correctly and can be used
independently of the -S or -H options.

cmake -B _builds .

See also:

• Binary tree

• -S

• -H

9.2 -H

Note: Has been replaced in 3.13 with the official source directory flag of -S.

Add -H<path-to-source-tree> to set directory with CMakeLists.txt. This internal option is not documented but
widely used by community. There must be no spaces between -H and <path-to-source-tree> (otherwise option
will be interpreted as synonym to --help). Always must be used with -B option. Example:

cmake -H. -B_builds

Use current directory as a source tree (i.e. start with ./CMakeLists.txt) and put generated files to the ./_builds
folder.

Path to this directory will be saved in CMAKE_SOURCE_DIR variable.

Warning: PowerShell will modify arguments and put the space between -H and .. You can protect argument by
quoting it:

267

https://cmake.org/cmake/help/latest/variable/CMAKE_BINARY_DIR.html
https://github.com/search?q=%22cmake+-H%22&ref=searchresults&type=Code&utf8=%E2%9C%93
https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html

CGold Documentation, Release 0.1

cmake '-H.' -B_builds

See also:

• -S

• -B

• Source tree

CMake mailing list

• Document -H/-B

9.3 -S

Add -S <path-to-source-tree> to set directory with CMakeLists.txt. This option was added in CMake 3.13
and replaces the the undocumented and internal variable -H. This option can be used independently of -B.

cmake -S . -B _builds

Use current directory as a source tree (i.e. start with ./CMakeLists.txt) and put generated files to the ./_builds
folder.

Path to this directory will be saved in CMAKE_SOURCE_DIR variable.

See also:

• -B

• Source tree

9.4 CMake

CMake is a cross-platform build system generator. Well this document entirely about CMake :)

CMake documentation

• CMake

Wikipedia

• CMake

268 Chapter 9. Glossary

http://www.mail-archive.com/cmake-developers@cmake.org/msg16693.html
https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html
https://cmake.org/cmake/help/latest/index.html
https://en.wikipedia.org/wiki/CMake

CGold Documentation, Release 0.1

9.5 Git

As a man page states Git is the stupid content tracker originally started by Linus Torvalds. At the time of the writing this,
Git used to manage current documents and most of the projects related to CGold. In all cases when VCS functionality
mentioned to show the practical example Git is used but similar cases can be applied to other VCS’s as well.

See also:

• Official site

Wikipedia

• Git

9.6 Native build tool

Native build tool (also known as native tool or native build system) is the real tool (collection of tools such
as compiler+IDE) used to build your software. CMake is not a build tool itself since it can’t build your projects or help
with development like IDE do. CMake responsibility is to generate native build tool files from abstracted configuration
code.

Examples of native build tools:

• Xcode

• Visual Studio

• Ninja

• Make

9.6.1 Quotes

Quote from CMAKE_OBJECT_PATH_MAX:

Maximum object file full-path length allowed by native build tools

Quote from CMake:

Users build a project by using CMake to generate a build system for a native
tool on their platform

Quote from CMake options:

CMake may support multiple native build systems on certain platforms

9.5. Git 269

https://github.com/torvalds
https://git-scm.com/
https://en.wikipedia.org/wiki/Git_(software)
https://cmake.org/cmake/help/latest/variable/CMAKE_OBJECT_PATH_MAX.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html#description
https://cmake.org/cmake/help/latest/manual/cmake.1.html#options

CGold Documentation, Release 0.1

9.7 VCS

Version control system. Quote from wikipedia:

A component of software configuration management, version control, also known
as revision control or source control, is the management of changes to
documents, computer programs, large web sites, and other collections of
information

Example of such software:

• Git

• Subversion (SVN)

• Mercurial

• Bazaar

9.8 Binary tree

This is hierarchy of directories where CMake will store generated files and where native build tool will store it’s tem-
porary files. Directory will contain variables/paths which are specific to your environment so they doesn’t mean to be
shareable. E.g. you should never store files from this directory to VCS. Keeping binary tree in a separate directory
from source tree is a good practice and called out-of-source build.

Directory can be specified by -B option from command line or by Browse Build... in CMake-GUI.

See also:

• Source tree

• -B

• GUI + Visual Studio

• GUI + Xcode

• Files generated by CMake is not designed to be relocatable

9.9 Cache variables

For optimization purposes there are special type of variables which lifetime is not limited with one CMake run (e.g.
like regular cmake variables). Variables saved in CMakeCache.txt file and persist across multiple runs within a project
build tree1.

1 Quote from documentation.

270 Chapter 9. Glossary

https://en.wikipedia.org/wiki/Version_control
http://subversion.apache.org/
https://www.mercurial-scm.org/
http://bazaar.canonical.com/en/
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables

CGold Documentation, Release 0.1

9.10 CMake module

Listfiles located in directories specified by CMAKE_MODULE_PATH and having extension .cmake called modules.
They can be loaded by include command. Unlike add_subdirectory command include(<modulename>) doesn’t
create new node in a source/binary tree hierarchies and doesn’t introduce new scope for variables.

Note: In general by include you can load file with any name, not only *.cmake. For example:

include(some/file/abc.tt) # file with extension '.tt'
include(another/file/XYZ) # file without extension

Or even CMakeLists.txt:

include(foo/bar/CMakeLists.txt)

Though it is confusing, doesn’t make sense and should be avoided.

CMake documentation

• Modules

• include

9.11 CMake variables

Regular CMake variables. Unlike cache variables lifetime of regular variables limited with CMake run.

CMake documentation

• Variables

9.12 CMakeCache.txt

File with CMake cache variables.

9.13 CMakeLists.txt

CMakeLists.txt is a listfile which plays the role of entry point for current source directory. CMake processing will start
from top level CMakeLists.txt in source tree and continue with other dependent CMakeLists.txt files added by
add_subdirectory directive. Each add_subdirectory will create new node in the source/binary tree hierarchy and
introduce new scope for variables.

CMake documentation

• Directories

9.10. CMake module 271

https://cmake.org/cmake/help/latest/variable/CMAKE_MODULE_PATH.html
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#modules
https://cmake.org/cmake/help/latest/command/include.html
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables
https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#directories

CGold Documentation, Release 0.1

9.14 Developer Command Prompt

Developer Command Prompt is a Command Prompt with Visual Studio development tools available in environment:

> where msbuild
C:\Program Files (x86)\MSBuild\14.0\Bin\MSBuild.exe
C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe

> where cl
...\msvc\2015\VC\bin\cl.exe

> where dumpbin
...\msvc\2015\VC\bin\dumpbin.exe

Similar test on regular Command Prompt cmd.exe:

> where msbuild
INFO: Could not find files for the given pattern(s).

> where cl
INFO: Could not find files for the given pattern(s).

> where dumpbin
INFO: Could not find files for the given pattern(s).

Note: There is no need to use Developer Command Prompt for running CMake with Visual Studio generators,
corresponding environment will be loaded automatically by CMake. But for other generators like NMake or Ninja you
should start CMake from Developer Command Prompt.

See also:

• Visual Studio

• Developer Command Prompt for Visual Studio

9.15 Listfile

A file with CMake code. Usually (but not always) it’s a CMakeLists.txt that is loaded by add_subdirectory command
or module *.cmake loaded by include command.

CMake documentation

• CMAKE_CURRENT_LIST_DIR

• CMAKE_CURRENT_LIST_FILE

• CMAKE_CURRENT_LIST_LINE

272 Chapter 9. Glossary

https://msdn.microsoft.com/en-us/library/ms229859(v=vs.110).aspx
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_LINE.html

CGold Documentation, Release 0.1

9.16 Multi-configuration generator

Generator that allows to use several build types on build step while doing only one configure step. List of available build
types can be specified by CMAKE_CONFIGURATION_TYPES. Default value for CMAKE_CONFIGURATION_TYPES
is a list of:

• Debug

• Release

• MinSizeRel

• RelWithDebInfo

Example of configuring Debug + Release project and building Debug variant:

> cmake -H. -B_builds -DCMAKE_CONFIGURATION_TYPES=Release;Debug -GXcode
> cmake --build _builds --config Debug

It is legal to use same _builds directory to build Release variant without rerunning configure again:

> cmake --build _builds --config Release

Multi-configuration generators:

• Xcode

• Visual Studio

CGold

• Single-configuration generator

9.17 One Definition Rule (ODR)

ODR is a rule for C++ programs that forbids declarations of the entities with same name but by different C++ code.
Better/exact description is out of the scope of this document, please visit the links below for details if needed.

As a brief overview you can’t do things like:

// Boo.hpp

class Foo {
int a;

};

// Bar.hpp

class Foo {
double a; // ODR violation, defined differently!

};

Though this code looks trivial and violation is obvious, there are scenarios when it’s no so easy to detect such kind of
errors, e.g. see examples from Library Symbols section.

See also:

9.16. Multi-configuration generator 273

https://cmake.org/cmake/help/latest/variable/CMAKE_CONFIGURATION_TYPES.html
https://cmake.org/cmake/help/latest/generator/Xcode.html
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators

CGold Documentation, Release 0.1

• One Definition Rule

9.18 Single-configuration generator

Generator that allows to have only single build type while configuring project. Build type defined by
CMAKE_BUILD_TYPE on configure step and can’t be changed on build step.

Example of building Debug variant:

> cmake -H. -B_builds -DCMAKE_BUILD_TYPE=Debug
> cmake --build _builds

To use another build type like Release use out-of-source feature.

All generators that are not multi-configuration are single-configuration. Typical example of such generator is a Unix
Makefiles generator.

9.19 Source tree

Hierarchy of directories with source files such as CMake/C++ sources. CMake starts with the CMakeLists.txt from top
of the source tree. This directory can be set by -H in command line or by Browse Source... in CMake-GUI.

This directory is mean to be shareable. E.g. probably you should not store hard-coded paths specific to your local
environment in this code. This is directory that you want to be managed with VCS.

See also:

• -H

• Binary tree

• GUI + Visual Studio

• GUI + Xcode

274 Chapter 9. Glossary

http://en.cppreference.com/w/cpp/language/definition
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://cmake.org/cmake/help/latest/generator/Unix%20Makefiles.html
https://cmake.org/cmake/help/latest/generator/Unix%20Makefiles.html

	Overview
	What CMake can do
	Cross-platform development
	VCS friendly
	Experimenting
	Family of tools
	Summary

	What can’t be done with CMake
	Language/syntax
	Affecting workflow
	Incomplete functionality coverage
	Unrelocatable projects

	First step
	CMake Installation
	Ubuntu
	OS X
	DMG installer

	Windows

	Native build tool
	Visual Studio
	Manage features

	Xcode
	Default install with App Store
	Several/custom Xcode versions

	Unix Makefiles
	Ubuntu Installation
	OSX Installation

	Compiler
	Visual Studio
	Ubuntu GCC
	OSX Clang

	Minimal example
	Description
	foo.cpp
	CMakeLists.txt

	Generate native tool files
	GUI: Visual Studio
	GUI: Xcode
	CLI: Visual Studio
	CLI: Xcode
	CLI: Make

	Build and run executable
	IDE: Visual Studio
	IDE: Xcode
	CLI: Visual Studio
	CLI: Xcode
	CLI: Make

	Tutorials
	CMake stages
	Configure step
	GUI + Xcode example

	Generate step
	GUI + Xcode example
	Makefile example

	Build step
	Xcode example
	Makefile example

	Out-of-source build
	Multiple configurations
	VCS friendly
	Other notes

	Workflow
	Makefile example
	Visual Studio example
	UML activity diagram
	Suspicious behavior

	Version and policies
	cmake_minimum_required
	CMake policies
	Keep using old
	Moving to new version

	Summary

	Project declaration
	Tools discovering
	Languages
	Variables
	When not declared
	Summary

	Variables
	Regular variables
	Regular vs cache
	Scope of variable
	New scope
	Same scope
	Parent scope
	From cache
	Cache unset regular
	Confusing
	Names
	Quotes
	Dereferencing
	Nested dereferencing
	Types of variable
	Create list
	Operations with list
	List with one empty element
	Recommendation
	Summary

	Cache variables
	No scope
	Double set
	-D
	Initial cache
	Force
	Force as a workaround
	Cache type
	Enumerate
	Internal
	Advanced
	Use case
	Option
	Unset
	Recommendation
	Summary

	Environment variables
	Read
	Set
	Unset
	Inheriting
	Configure step
	No tracking
	Summary

	CMake listfiles
	Subdirectories
	Tree
	Source variables
	Binary tree

	Include modules
	Include standard
	Include custom
	Recommendation

	Modify correct
	Modify incorrect

	Common variables
	CMAKE_CURRENT_LIST_*
	CMAKE_CURRENT_LIST_DIR vs CMAKE_CURRENT_SOURCE_DIR
	Example
	Recommendation

	Scripts
	Example
	Minimum required (bad)
	Minimum required (good)
	cmake -E

	Control structures
	Conditional blocks
	Simple examples
	CMP0054
	Try fix
	Fix
	Workaround

	Loops
	foreach
	foreach with range
	while
	break
	continue

	Functions
	Simple
	With arguments
	CMake style
	CMake style limitations
	Return value
	Return
	CMAKE_CURRENT_LIST_DIR
	Recommendation

	Executables
	Simple
	Duplicates

	Tests
	Multi-config testing
	Verbose output
	Subset of tests

	Libraries
	Static
	Shared
	Static + shared
	Right way
	Autotools two builds

	Install to one directory
	Configs

	Two targets
	Philosophical
	Non-default behavior
	Build time
	PIC conflicts
	Scalability
	Duplication

	Summary

	Symbols
	Tools
	Example
	Linux
	OSX
	Windows

	Simple error
	ODR violation (local)
	ODR violation (global)
	Link order
	GNU linker
	Problem
	Fix
	Summary

	Pseudo targets
	Imported targets
	Alias targets
	Interface targets

	Collecting sources
	Avoid globbing
	Project layout

	Usage requirements
	Compile definitions
	Include directories
	Link libraries

	Build types
	Detect Multi/Single

	configure_file
	Install
	Library
	Header-only library
	Library with dependencies
	Optional dependencies
	CMake modules
	Export header
	RPATH
	Version
	CMAKE_INSTALL_PREFIX
	Modify
	On the fly
	Read
	Implicit read
	Install script
	Summary

	Layout
	Samples
	Managing dependencies
	Bad way
	Merge sources
	Copy to “third_party” directory
	Git submodule
	Summary

	Good way
	Package manager
	ExternalProject_Add
	Requirements

	Toolchain
	Globals
	C++ standard
	Example
	Bad
	Toolchain
	try_compile
	Defaults
	Scalability
	Summary

	Generator expressions
	Properties
	Packing
	Continuous integration
	Travis
	AppVeyor

	Platforms
	iOS
	Errors
	Validate
	Upload to App Store

	Universal binaries
	Using dynamic frameworks

	Android
	General Hints
	Prepare device
	Get Android NDK
	Get Android SDK
	Verify
	SDK version on device
	CPU architecture
	Log

	Generators
	Ninja
	Installation
	Ubuntu

	Compilers
	Contacts
	Public
	Private

	Rejected
	ExternalProject_Add
	FindXXX.cmake
	macro
	Object libraries
	target_link_libraries
	Target name
	Usage requirements
	No real sources
	Name conflict

	target_compile_features
	write_compiler_detection_header

	Glossary
	-B
	-H
	-S
	CMake
	Git
	Native build tool
	Quotes

	VCS
	Binary tree
	Cache variables
	CMake module
	CMake variables
	CMakeCache.txt
	CMakeLists.txt
	Developer Command Prompt
	Listfile
	Multi-configuration generator
	One Definition Rule (ODR)
	Single-configuration generator
	Source tree

