

    
      
          
            
  
CFFI documentation

C Foreign Function Interface for Python.  Interact with almost any C
code from Python, based on C-like declarations that you can often
copy-paste from header files or documentation.
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Goals

The interface is based on LuaJIT’s FFI [http://luajit.org/ext_ffi.html], and follows a few principles:


	The goal is to call C code from Python without learning a 3rd language:
existing alternatives require users to learn domain specific language
(Cython [http://www.cython.org], SWIG [http://www.swig.org/]) or API (ctypes [http://docs.python.org/library/ctypes.html]). The CFFI design requires users to know
only C and Python, minimizing the extra bits of API that need to be learned.


	Keep all the Python-related logic in Python so that you don’t need to
write much C code (unlike CPython native C extensions [http://docs.python.org/extending/extending.html]).


	The preferred way is to work at the level of the API (Application
Programming Interface): the C compiler is called from the declarations
you write to validate and link to the C language constructs.
Alternatively, it is also possible to work at the ABI level
(Application Binary Interface), the way ctypes [http://docs.python.org/library/ctypes.html] work.
However, on non-Windows platforms, C libraries typically
have a specified C API but not an ABI (e.g. they may
document a “struct” as having at least these fields, but maybe more).


	Try to be complete.  For now some C99 constructs are not supported,
but all C89 should be, including macros (and including macro “abuses”,
which you can manually wrap in saner-looking C functions).


	Attempt to support both PyPy and CPython, with a reasonable path
for other Python implementations like IronPython and Jython.


	Note that this project is not about embedding executable C code in
Python, unlike Weave [http://wiki.scipy.org/Weave].  This is about calling existing C libraries
from Python.


	There is no C++ support.  Sometimes, it is reasonable to write a C
wrapper around the C++ code and then call this C API with CFFI.
Otherwise, look at other projects.  I would recommend cppyy [http://cppyy.readthedocs.io/en/latest/], which
has got some similarities (and also works efficiently on both CPython
and PyPy).




Get started by reading the overview.




Comments and bugs

The best way to contact us is on the IRC #pypy channel of
irc.freenode.net.  Feel free to discuss matters either there or in
the mailing list [https://groups.google.com/forum/#!forum/python-cffi].  Please report to the issue tracker [https://bitbucket.org/cffi/cffi/issues] any bugs.

As a general rule, when there is a design issue to resolve, we pick the
solution that is the “most C-like”.  We hope that this module has got
everything you need to access C code and nothing more.

— the authors, Armin Rigo and Maciej Fijalkowski





          

      

      

    

  

    
      
          
            
  
What’s New


v1.12.3


	Fix for nested struct types that end in a var-sized array (#405).


	Add support for using U and L characters at the end of integer
constants in ffi.cdef() (thanks Guillaume).


	More 3.8 fixes.







v1.12.2


	Added temporary workaround to compile on CPython 3.8.0a2.







v1.12.1


	CPython 3 on Windows: we again no longer compile with Py_LIMITED_API
by default because such modules still cannot be used with virtualenv.
The problem is that it doesn’t work in CPython <= 3.4, and for
technical reason we can’t enable this flag automatically based on the
version of Python.

Like before, Issue #350 [https://bitbucket.org/cffi/cffi/issues/350/] mentions a workaround if you still want
the Py_LIMITED_API flag and either you are not concerned about
virtualenv or you are sure your module will not be used on CPython
<= 3.4: pass define_macros=[("Py_LIMITED_API", None)] to the
ffibuilder.set_source() call.








v1.12


	Direct support for pkg-config.


	ffi.from_buffer() takes a new optional first argument that gives
the array type of the result.  It also takes an optional keyword argument
require_writable to refuse read-only Python buffers.


	ffi.new(), ffi.gc() or ffi.from_buffer() cdata objects
can now be released at known times, either by using the with
keyword or by calling the new ffi.release().


	Windows, CPython 3.x: cffi modules are linked with python3.dll
again.  This makes them independant on the exact CPython version,
like they are on other platforms.  It requires virtualenv 16.0.0.


	Accept an expression like ffi.new("int[4]", p) if p is itself
another cdata int[4].


	CPython 2.x: ffi.dlopen() failed with non-ascii file names on Posix


	CPython: if a thread is started from C and then runs Python code (with
callbacks or with the embedding solution), then previous versions of
cffi would contain possible crashes and/or memory leaks.  Hopefully,
this has been fixed (see issue #362 [https://bitbucket.org/cffi/cffi/issues/362/]).


	Support for ffi.cdef(..., pack=N) where N is a power of two.
Means to emulate #pragma pack(N) on MSVC.  Also, the default on
Windows is now pack=8, like on MSVC.  This might make a difference
in corner cases, although I can’t think of one in the context of CFFI.
The old way ffi.cdef(..., packed=True) remains and is equivalent
to pack=1 (saying e.g. that fields like int should be aligned
to 1 byte instead of 4).







Older Versions


v1.11.5


	Issue #357 [https://bitbucket.org/cffi/cffi/issues/357/]: fix ffi.emit_python_code() which generated a buggy
Python file if you are using a struct with an anonymous union
field or vice-versa.


	Windows: ffi.dlopen() should now handle unicode filenames.


	ABI mode: implemented ffi.dlclose() for the in-line case (it used
to be present only in the out-of-line case).


	Fixed a corner case for setup.py install --record=xx --root=yy
with an out-of-line ABI module.  Also fixed Issue #345 [https://bitbucket.org/cffi/cffi/issues/345/].


	More hacks on Windows for running CFFI’s own setup.py.


	Issue #358 [https://bitbucket.org/cffi/cffi/issues/358/]: in embedding, to protect against (the rare case of)
Python initialization from several threads in parallel, we have to use
a spin-lock.  On CPython 3 it is worse because it might spin-lock for
a long time (execution of Py_InitializeEx()).  Sadly, recent
changes to CPython make that solution needed on CPython 2 too.


	CPython 3 on Windows: we no longer compile with Py_LIMITED_API
by default because such modules cannot be used with virtualenv.
Issue #350 [https://bitbucket.org/cffi/cffi/issues/350/] mentions a workaround if you still want that and are not
concerned about virtualenv: pass a define_macros=[("Py_LIMITED_API",
None)] to the ffibuilder.set_source() call.







v1.11.4


	Windows: reverted linking with python3.dll, because
virtualenv does not make this DLL available to virtual environments
for now.  See Issue #355 [https://bitbucket.org/cffi/cffi/issues/355/].  On Windows only, the C extension
modules created by cffi follow for now the standard naming scheme
foo.cp36-win32.pyd, to make it clear that they are regular
CPython modules depending on python36.dll.







v1.11.3


	Fix on CPython 3.x: reading the attributes __loader__ or
__spec__ from the cffi-generated lib modules gave a buggy
SystemError.  (These attributes are always None, and provided only to
help compatibility with tools that expect them in all modules.)


	More Windows fixes: workaround for MSVC not supporting large
literal strings in C code (from
ffi.embedding_init_code(large_string)); and an issue with
Py_LIMITED_API linking with python35.dll/python36.dll instead
of python3.dll.


	Small documentation improvements.







v1.11.2


	Fix Windows issue with managing the thread-state on CPython 3.0 to 3.5







v1.11.1


	Fix tests, remove deprecated C API usage


	Fix (hack) for 3.6.0/3.6.1/3.6.2 giving incompatible binary extensions
(cpython issue #29943 [https://bugs.python.org/issue29943])


	Fix for 3.7.0a1+







v1.11


	Support the modern standard types char16_t and char32_t.
These work like wchar_t: they represent one unicode character, or
when used as charN_t * or charN_t[] they represent a unicode
string.  The difference with wchar_t is that they have a known,
fixed size.  They should work at all places that used to work with
wchar_t (please report an issue if I missed something).  Note
that with set_source(), you need to make sure that these types are
actually defined by the C source you provide (if used in cdef()).


	Support the C99 types float _Complex and double _Complex.
Note that libffi doesn’t support them, which means that in the ABI
mode you still cannot call C functions that take complex numbers
directly as arguments or return type.


	Fixed a rare race condition when creating multiple FFI instances
from multiple threads.  (Note that you aren’t meant to create many
FFI instances: in inline mode, you should write ffi =
cffi.FFI() at module level just after import cffi; and in
out-of-line mode you don’t instantiate FFI explicitly at all.)


	Windows: using callbacks can be messy because the CFFI internal error
messages show up to stderr—but stderr goes nowhere in many
applications.  This makes it particularly hard to get started with the
embedding mode.  (Once you get started, you can at least use
@ffi.def_extern(onerror=...) and send the error logs where it
makes sense for your application, or record them in log files, and so
on.)  So what is new in CFFI is that now, on Windows CFFI will try to
open a non-modal MessageBox (in addition to sending raw messages to
stderr).  The MessageBox is only visible if the process stays alive:
typically, console applications that crash close immediately, but that
is also the situation where stderr should be visible anyway.


	Progress on support for callbacks in NetBSD [https://bitbucket.org/cffi/cffi/issues/321/cffi-191-segmentation-fault-during-self].


	Functions returning booleans would in some case still return 0 or 1
instead of False or True.  Fixed.


	ffi.gc() now takes an optional third parameter, which gives an
estimate of the size (in bytes) of the object.  So far, this is only
used by PyPy, to make the next GC occur more quickly (issue #320 [https://bitbucket.org/cffi/cffi/issues/320/improve-memory_pressure-management]).
In the future, this might have an effect on CPython too (provided
the CPython issue 31105 [http://bugs.python.org/issue31105] is addressed).


	Add a note to the documentation: the ABI mode gives function objects
that are slower to call than the API mode does.  For some reason it
is often thought to be faster.  It is not!







v1.10.1

(only released inside PyPy 5.8.0)


	Fixed the line numbers reported in case of cdef() errors.
Also, I just noticed, but pycparser always supported the preprocessor
directive # 42 "foo.h" to mean “from the next line, we’re in file
foo.h starting from line 42”, which it puts in the error messages.







v1.10


	Issue #295: use calloc() directly instead of
PyObject_Malloc()+memset() to handle ffi.new() with a default
allocator.  Speeds up ffi.new(large-array) where most of the time
you never touch most of the array.


	Some OS/X build fixes (“only with Xcode but without CLT”).


	Improve a couple of error messages: when getting mismatched versions
of cffi and its backend; and when calling functions which cannot be
called with libffi because an argument is a struct that is “too
complicated” (and not a struct pointer, which always works).


	Add support for some unusual compilers (non-msvc, non-gcc, non-icc,
non-clang)


	Implemented the remaining cases for ffi.from_buffer.  Now all
buffer/memoryview objects can be passed.  The one remaining check is
against passing unicode strings in Python 2.  (They support the buffer
interface, but that gives the raw bytes behind the UTF16/UCS4 storage,
which is most of the times not what you expect.  In Python 3 this has
been fixed and the unicode strings don’t support the memoryview
interface any more.)


	The C type _Bool or bool now converts to a Python boolean
when reading, instead of the content of the byte as an integer.  The
potential incompatibility here is what occurs if the byte contains a
value different from 0 and 1.  Previously, it would just return it;
with this change, CFFI raises an exception in this case.  But this
case means “undefined behavior” in C; if you really have to interface
with a library relying on this, don’t use bool in the CFFI side.
Also, it is still valid to use a byte string as initializer for a
bool[], but now it must only contain \x00 or \x01.  As an
aside, ffi.string() no longer works on bool[] (but it never
made much sense, as this function stops at the first zero).


	ffi.buffer is now the name of cffi’s buffer type, and
ffi.buffer() works like before but is the constructor of that type.


	ffi.addressof(lib, "name")  now works also in in-line mode, not
only in out-of-line mode.  This is useful for taking the address of
global variables.


	Issue #255: cdata objects of a primitive type (integers, floats,
char) are now compared and ordered by value.  For example, <cdata
'int' 42> compares equal to 42 and <cdata 'char' b'A'>
compares equal to b'A'.  Unlike C, <cdata 'int' -1> does not
compare equal to ffi.cast("unsigned int", -1): it compares
smaller, because -1 < 4294967295.


	PyPy: ffi.new() and ffi.new_allocator()() did not record
“memory pressure”, causing the GC to run too infrequently if you call
ffi.new() very often and/or with large arrays.  Fixed in PyPy 5.7.


	Support in ffi.cdef() for numeric expressions with + or
-.  Assumes that there is no overflow; it should be fixed first
before we add more general support for arbitrary arithmetic on
constants.







v1.9


	Structs with variable-sized arrays as their last field: now we track
the length of the array after ffi.new() is called, just like we
always tracked the length of ffi.new("int[]", 42).  This lets us
detect out-of-range accesses to array items.  This also lets us
display a better repr(), and have the total size returned by
ffi.sizeof() and ffi.buffer().  Previously both functions
would return a result based on the size of the declared structure
type, with an assumed empty array.  (Thanks andrew for starting this
refactoring.)


	Add support in cdef()/set_source() for unspecified-length arrays
in typedefs: typedef int foo_t[...];.  It was already supported
for global variables or structure fields.


	I turned in v1.8 a warning from cffi/model.py into an error:
'enum xxx' has no values explicitly defined: refusing to guess which
integer type it is meant to be (unsigned/signed, int/long).  Now I’m
turning it back to a warning again; it seems that guessing that the
enum has size int is a 99%-safe bet.  (But not 100%, so it stays
as a warning.)


	Fix leaks in the code handling FILE * arguments.  In CPython 3
there is a remaining issue that is hard to fix: if you pass a Python
file object to a FILE * argument, then os.dup() is used and
the new file descriptor is only closed when the GC reclaims the Python
file object—and not at the earlier time when you call close(),
which only closes the original file descriptor.  If this is an issue,
you should avoid this automatic convertion of Python file objects:
instead, explicitly manipulate file descriptors and call fdopen()
from C (…via cffi).







v1.8.3


	When passing a void * argument to a function with a different
pointer type, or vice-versa, the cast occurs automatically, like in C.
The same occurs for initialization with ffi.new() and a few other
places.  However, I thought that char * had the same
property—but I was mistaken.  In C you get the usual warning if you
try to give a char * to a char ** argument, for example.
Sorry about the confusion.  This has been fixed in CFFI by giving for
now a warning, too.  It will turn into an error in a future version.







v1.8.2


	Issue #283: fixed ffi.new() on structures/unions with nested
anonymous structures/unions, when there is at least one union in
the mix.  When initialized with a list or a dict, it should now
behave more closely like the { } syntax does in GCC.







v1.8.1


	CPython 3.x: experimental: the generated C extension modules now use
the “limited API”, which means that, as a compiled .so/.dll, it should
work directly on any version of CPython >= 3.2.  The name produced by
distutils is still version-specific.  To get the version-independent
name, you can rename it manually to NAME.abi3.so, or use the very
recent setuptools 26.


	Added ffi.compile(debug=...), similar to python setup.py build
--debug but defaulting to True if we are running a debugging
version of Python itself.







v1.8


	Removed the restriction that ffi.from_buffer() cannot be used on
byte strings.  Now you can get a char * out of a byte string,
which is valid as long as the string object is kept alive.  (But
don’t use it to modify the string object!  If you need this, use
bytearray or other official techniques.)


	PyPy 5.4 can now pass a byte string directly to a char *
argument (in older versions, a copy would be made).  This used to be
a CPython-only optimization.







v1.7


	ffi.gc(p, None) removes the destructor on an object previously
created by another call to ffi.gc()


	bool(ffi.cast("primitive type", x)) now returns False if the
value is zero (including -0.0), and True otherwise.  Previously
this would only return False for cdata objects of a pointer type when
the pointer is NULL.


	bytearrays: ffi.from_buffer(bytearray-object) is now supported.
(The reason it was not supported was that it was hard to do in PyPy,
but it works since PyPy 5.3.)  To call a C function with a char *
argument from a buffer object—now including bytearrays—you write
lib.foo(ffi.from_buffer(x)).  Additionally, this is now supported:
p[0:length] = bytearray-object.  The problem with this was that a
iterating over bytearrays gives numbers instead of characters.
(Now it is implemented with just a memcpy, of course, not actually
iterating over the characters.)


	C++: compiling the generated C code with C++ was supposed to work,
but failed if you make use the bool type (because that is rendered
as the C _Bool type, which doesn’t exist in C++).


	help(lib) and help(lib.myfunc) now give useful information,
as well as dir(p) where p is a struct or pointer-to-struct.







v1.6


	ffi.list_types()


	ffi.unpack()


	extern “Python+C”


	in API mode, lib.foo.__doc__ contains the C signature now.  On
CPython you can say help(lib.foo), but for some reason
help(lib) (or help(lib.foo) on PyPy) is still useless; I
haven’t yet figured out the hacks needed to convince pydoc to
show more.  (You can use dir(lib) but it is not most helpful.)


	Yet another attempt at robustness of ffi.def_extern() against
CPython’s interpreter shutdown logic.







v1.5.2


	Fix 1.5.1 for Python 2.6.







v1.5.1


	A few installation-time tweaks (thanks Stefano!)


	Issue #245: Win32: __stdcall was never generated for
extern "Python" functions


	Issue #246: trying to be more robust against CPython’s fragile
interpreter shutdown logic







v1.5.0


	Support for using CFFI for embedding.







v1.4.2

Nothing changed from v1.4.1.




v1.4.1


	Fix the compilation failure of cffi on CPython 3.5.0.  (3.5.1 works;
some detail changed that makes some underscore-starting macros
disappear from view of extension modules, and I worked around it,
thinking it changed in all 3.5 versions—but no: it was only in
3.5.1.)







v1.4.0


	A better way to do callbacks has been added (faster and more
portable, and usually cleaner).  It is a mechanism for the
out-of-line API mode that replaces the dynamic creation of callback
objects (i.e. C functions that invoke Python) with the static
declaration in cdef() of which callbacks are needed.  This is
more C-like, in that you have to structure your code around the idea
that you get a fixed number of function pointers, instead of
creating them on-the-fly.


	ffi.compile() now takes an optional verbose argument.  When
True, distutils prints the calls to the compiler.


	ffi.compile() used to fail if given sources with a path that
includes "..".  Fixed.


	ffi.init_once() added.  See docs.


	dir(lib) now works on libs returned by ffi.dlopen() too.


	Cleaned up and modernized the content of the demo subdirectory
in the sources (thanks matti!).


	ffi.new_handle() is now guaranteed to return unique void *
values, even if called twice on the same object.  Previously, in
that case, CPython would return two cdata objects with the same
void * value.  This change is useful to add and remove handles
from a global dict (or set) without worrying about duplicates.
It already used to work like that on PyPy.
This change can break code that used to work on CPython by relying
on the object to be kept alive by other means than keeping the
result of ffi.new_handle() alive.  (The corresponding warning in
the docs of ffi.new_handle() has been here since v0.8!)







v1.3.1


	The optional typedefs (bool, FILE and all Windows types) were
not always available from out-of-line FFI objects.


	Opaque enums are phased out from the cdefs: they now give a warning,
instead of (possibly wrongly) being assumed equal to unsigned int.
Please report if you get a reasonable use case for them.


	Some parsing details, notably volatile is passed along like
const and restrict.  Also, older versions of pycparser
mis-parse some pointer-to-pointer types like char * const *: the
“const” ends up at the wrong place.  Added a workaround.







v1.3.0


	Added ffi.memmove().


	Pull request #64: out-of-line API mode: we can now declare
floating-point types with typedef float... foo_t;.  This only
works if foo_t is a float or a double, not long double.


	Issue #217: fix possible unaligned pointer manipulation, which crashes
on some architectures (64-bit, non-x86).


	Issues #64 and #126: when using set_source() or verify(),
the const and restrict keywords are copied from the cdef
to the generated C code; this fixes warnings by the C compiler.
It also fixes corner cases like typedef const int T; T a;
which would previously not consider a as a constant.  (The
cdata objects themselves are never const.)


	Win32: support for __stdcall.  For callbacks and function
pointers; regular C functions still don’t need to have their calling
convention declared.


	Windows: CPython 2.7 distutils doesn’t work with Microsoft’s official
Visual Studio for Python, and I’m told this is not a bug [https://bugs.python.org/issue23246].  For
ffi.compile(), we removed a workaround [https://bitbucket.org/cffi/cffi/pull-requests/65/remove-_hack_at_distutils-which-imports/diff] that was inside cffi but
which had unwanted side-effects.  Try saying import setuptools
first, which patches distutils…







v1.2.1

Nothing changed from v1.2.0.




v1.2.0


	Out-of-line mode: int a[][...]; can be used to declare a structure
field or global variable which is, simultaneously, of total length
unknown to the C compiler (the a[] part) and each element is
itself an array of N integers, where the value of N is known to the
C compiler (the int and [...] parts around it).  Similarly,
int a[5][...]; is supported (but probably less useful: remember
that in C it means int (a[5])[...];).


	PyPy: the lib.some_function objects were missing the attributes
__name__, __module__ and __doc__ that are expected e.g. by
some decorators-management functions from functools.


	Out-of-line API mode: you can now do from _example.lib import x
to import the name x from _example.lib, even though the
lib object is not a standard module object.  (Also works in from
_example.lib import *, but this is even more of a hack and will fail
if lib happens to declare a name called __all__.  Note that
* excludes the global variables; only the functions and constants
make sense to import like this.)


	lib.__dict__ works again and gives you a copy of the
dict—assuming that lib has got no symbol called precisely
__dict__.  (In general, it is safer to use dir(lib).)


	Out-of-line API mode: global variables are now fetched on demand at
every access.  It fixes issue #212 (Windows DLL variables), and also
allows variables that are defined as dynamic macros (like errno)
or __thread -local variables.  (This change might also tighten
the C compiler’s check on the variables’ type.)


	Issue #209: dereferencing NULL pointers now raises RuntimeError
instead of segfaulting.  Meant as a debugging aid.  The check is
only for NULL: if you dereference random or dead pointers you might
still get segfaults.


	Issue #152: callbacks: added an argument ffi.callback(...,
onerror=...).  If the main callback function raises an exception
and onerror is provided, then onerror(exception, exc_value,
traceback) is called.  This is similar to writing a try:
except: in the main callback function, but in some cases (e.g. a
signal) an exception can occur at the very start of the callback
function—before it had time to enter the try: except: block.


	Issue #115: added ffi.new_allocator(), which officializes
support for alternative allocators.







v1.1.2


	ffi.gc(): fixed a race condition in multithreaded programs
introduced in 1.1.1







v1.1.1


	Out-of-line mode: ffi.string(), ffi.buffer() and
ffi.getwinerror() didn’t accept their arguments as keyword
arguments, unlike their in-line mode equivalent.  (It worked in PyPy.)


	Out-of-line ABI mode: documented a restriction of ffi.dlopen()
when compared to the in-line mode.


	ffi.gc(): when called several times with equal pointers, it was
accidentally registering only the last destructor, or even none at
all depending on details.  (It was correctly registering all of them
only in PyPy, and only with the out-of-line FFIs.)







v1.1.0


	Out-of-line API mode: we can now declare integer types with
typedef int... foo_t;.  The exact size and signedness of foo_t
is figured out by the compiler.


	Out-of-line API mode: we can now declare multidimensional arrays
(as fields or as globals) with int n[...][...].  Before, only the
outermost dimension would support the ... syntax.


	Out-of-line ABI mode: we now support any constant declaration,
instead of only integers whose value is given in the cdef.  Such “new”
constants, i.e. either non-integers or without a value given in the
cdef, must correspond to actual symbols in the lib.  At runtime they
are looked up the first time we access them.  This is useful if the
library defines extern const sometype somename;.


	ffi.addressof(lib, "func_name") now returns a regular cdata object
of type “pointer to function”.  You can use it on any function from a
library in API mode (in ABI mode, all functions are already regular
cdata objects).  To support this, you need to recompile your cffi
modules.


	Issue #198: in API mode, if you declare constants of a struct
type, what you saw from lib.CONSTANT was corrupted.


	Issue #196: ffi.set_source("package._ffi", None) would
incorrectly generate the Python source to package._ffi.py instead
of package/_ffi.py.  Also fixed: in some cases, if the C file was
in build/foo.c, the .o file would be put in build/build/foo.o.







v1.0.3


	Same as 1.0.2, apart from doc and test fixes on some platforms.







v1.0.2


	Variadic C functions (ending in a “…” argument) were not supported
in the out-of-line ABI mode.  This was a bug—there was even a
(non-working) example doing exactly that!







v1.0.1


	ffi.set_source() crashed if passed a sources=[..] argument.
Fixed by chrippa on pull request #60.


	Issue #193: if we use a struct between the first cdef() where it is
declared and another cdef() where its fields are defined, then this
definition was ignored.


	Enums were buggy if you used too many “…” in their definition.







v1.0.0


	The main news item is out-of-line module generation:


	for ABI level, with ffi.dlopen()


	for API level, which used to be with ffi.verify(), now deprecated






	(this page will list what is new from all versions from 1.0.0
forward.)












          

      

      

    

  

    
      
          
            
  
Installation and Status

Quick installation for CPython (cffi is distributed with PyPy):


	pip install cffi


	or get the source code via the Python Package Index [http://pypi.python.org/pypi/cffi].




In more details:

This code has been developed on Linux, but should work on any POSIX
platform as well as on Windows 32 and 64.  (It relies occasionally on
libffi, so it depends on libffi being bug-free; this may not be fully
the case on some of the more exotic platforms.)

CFFI supports CPython 2.6, 2.7, 3.x (tested with 3.2 to 3.4); and is
distributed with PyPy (CFFI 1.0 is distributed with and requires
PyPy 2.6).

The core speed of CFFI is better than ctypes, with import times being
either lower if you use the post-1.0 features, or much higher if you
don’t.  The wrapper Python code you typically need to write around the
raw CFFI interface slows things down on CPython, but not unreasonably
so.  On PyPy, this wrapper code has a minimal impact thanks to the JIT
compiler.  This makes CFFI the recommended way to interface with C
libraries on PyPy.

Requirements:


	CPython 2.6 or 2.7 or 3.x, or PyPy (PyPy 2.0 for the earliest
versions of CFFI; or PyPy 2.6 for CFFI 1.0).


	in some cases you need to be able to compile C extension modules.
On non-Windows platforms, this usually means installing the package
python-dev.  Refer to the appropriate docs for your OS.


	on CPython, on non-Windows platforms, you also need to install
libffi-dev in order to compile CFFI itself.


	pycparser >= 2.06: https://github.com/eliben/pycparser (automatically
tracked by pip install cffi).


	py.test [http://pypi.python.org/pypi/pytest] is needed to run the tests of CFFI itself.




Download and Installation:


	https://pypi.python.org/pypi/cffi


	Checksums of the “source” package version 1.12.3:



	MD5: 35ad1f9e1003cac9404c1493eb10d7f5


	SHA: ccc49cf31bc3f4248f45b9ec83685e4e8090a9fa


	SHA256: 041c81822e9f84b1d9c401182e174996f0bae9991f33725d059b771744290774









	Or grab the most current version from the Bitbucket page [https://bitbucket.org/cffi/cffi]:
hg clone https://bitbucket.org/cffi/cffi


	python setup.py install or python setup_base.py install
(should work out of the box on Linux or Windows; see below for
MacOS X or Windows 64.)


	running the tests: py.test  c/  testing/ (if you didn’t
install cffi yet, you need first python setup_base.py build_ext -f
-i)




Demos:


	The demo [https://bitbucket.org/cffi/cffi/src/default/demo] directory contains a number of small and large demos
of using cffi.


	The documentation below might be sketchy on details; for now the
ultimate reference is given by the tests, notably
testing/cffi1/test_verify1.py [https://bitbucket.org/cffi/cffi/src/default/testing/cffi1/test_verify1.py] and testing/cffi0/backend_tests.py [https://bitbucket.org/cffi/cffi/src/default/testing/cffi0/backend_tests.py].





Platform-specific instructions

libffi is notoriously messy to install and use — to the point that
CPython includes its own copy to avoid relying on external packages.
CFFI does the same for Windows, but not for other platforms (which should
have their own working libffi’s).
Modern Linuxes work out of the box thanks to pkg-config.  Here are some
(user-supplied) instructions for other platforms.


MacOS X

Homebrew (Thanks David Griffin for this)


	Install homebrew: http://brew.sh


	Run the following commands in a terminal




brew install pkg-config libffi
PKG_CONFIG_PATH=/usr/local/opt/libffi/lib/pkgconfig pip install cffi





Alternatively, on OS/X 10.6 (Thanks Juraj Sukop for this)

For building libffi you can use the default install path, but then, in
setup.py you need to change:

include_dirs = []





to:

include_dirs = ['/usr/local/lib/libffi-3.0.11/include']





Then running python setup.py build complains about “fatal error: error writing to -: Broken pipe”, which can be fixed by running:

ARCHFLAGS="-arch i386 -arch x86_64" python setup.py build





as described here [http://superuser.com/questions/259278/python-2-6-1-pycrypto-2-3-pypi-package-broken-pipe-during-build].




Windows (regular 32-bit)

Win32 works and is tested at least each official release.

The recommended C compiler compatible with Python 2.7 is this one:
http://www.microsoft.com/en-us/download/details.aspx?id=44266
There is a known problem with distutils on Python 2.7, as
explained in https://bugs.python.org/issue23246, and the same
problem applies whenever you want to run compile() to build a dll with
this specific compiler suite download.
import setuptools might help, but YMMV

For Python 3.4 and beyond:
https://www.visualstudio.com/en-us/downloads/visual-studio-2015-ctp-vs




Windows 64

Win64 received very basic testing and we applied a few essential
fixes in cffi 0.7. The comment above applies for Python 2.7 on
Windows 64 as well. Please report any other issue.

Note as usual that this is only about running the 64-bit version of
Python on the 64-bit OS.  If you’re running the 32-bit version (the
common case apparently), then you’re running Win32 as far as we’re
concerned.




Linux and OS/X: UCS2 versus UCS4

This is about getting an ImportError about _cffi_backend.so with a
message like Symbol not found: _PyUnicodeUCS2_AsASCIIString.  This
error occurs in Python 2 as soon as you mix “ucs2” and “ucs4” builds of
Python.  It means that you are now running a Python compiled with
“ucs4”, but the extension module _cffi_backend.so was compiled by a
different Python: one that was running “ucs2”.  (If the opposite problem
occurs, you get an error about _PyUnicodeUCS4_AsASCIIString
instead.)

If you are using pyenv, then see
https://github.com/yyuu/pyenv/issues/257.

More generally, the solution that should always work is to download the
sources of CFFI (instead of a prebuilt binary) and make sure that you
build it with the same version of Python than the one that will use it.
For example, with virtualenv:


	virtualenv ~/venv


	cd ~/path/to/sources/of/cffi


	~/venv/bin/python setup.py build --force # forcing a rebuild to
make sure


	~/venv/bin/python setup.py install




This will compile and install CFFI in this virtualenv, using the
Python from this virtualenv.




NetBSD

You need to make sure you have an up-to-date version of libffi, which
fixes some bugs.









          

      

      

    

  

    
      
          
            
  
Overview
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The first section presents a simple working
example of using CFFI to call a C function in a compiled shared object
(DLL) from Python. CFFI is
flexible and covers several other use cases presented in the second
section. The third section shows how to export Python functions
to a Python interpreter embedded in a C or C++ application. The last
two sections delve deeper in the CFFI library.

Make sure you have cffi installed.


Main mode of usage

The main way to use CFFI is as an interface to some already-compiled
shared object which is provided by other means.  Imagine that you have a
system-installed shared object called piapprox.dll (Windows) or
libpiapprox.so (Linux and others) or libpiapprox.dylib (OS X),
exporting a function float pi_approx(int n); that computes some
approximation of pi given a number of iterations. You want to call
this function from Python. Note this method works equally well with a
static library piapprox.lib (Windows) or libpiapprox.a.

Create the file piapprox_build.py:

from cffi import FFI
ffibuilder = FFI()

# cdef() expects a single string declaring the C types, functions and
# globals needed to use the shared object. It must be in valid C syntax.
ffibuilder.cdef("""
    float pi_approx(int n);
""")

# set_source() gives the name of the python extension module to
# produce, and some C source code as a string.  This C code needs
# to make the declarated functions, types and globals available,
# so it is often just the "#include".
ffibuilder.set_source("_pi_cffi",
"""
     #include "pi.h"   // the C header of the library
""",
     libraries=['piapprox'])   # library name, for the linker

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)





Execute this script.  If everything is OK, it should produce
_pi_cffi.c, and then invoke the compiler on it.  The produced
_pi_cffi.c contains a copy of the string given in set_source(),
in this example the #include "pi.h". Afterwards, it contains glue code
for all the functions, types and globals declared in the cdef() above.

At runtime, you use the extension module like this:

from _pi_cffi import ffi, lib
print(lib.pi_approx(5000))





That’s all!  In the rest of this page, we describe some more advanced
examples and other CFFI modes.  In particular, there is a complete
example if you don’t have an already-installed C library to call.

For more information about the cdef() and set_source() methods
of the FFI class, see Preparing and Distributing modules.

When your example works, a common alternative to running the build
script manually is to have it run as part of a setup.py.  Here is
an example using the Setuptools distribution:

from setuptools import setup

setup(
    ...
    setup_requires=["cffi>=1.0.0"],
    cffi_modules=["piapprox_build:ffibuilder"], # "filename:global"
    install_requires=["cffi>=1.0.0"],
)








Other CFFI modes

CFFI can be used in one of four modes: “ABI” versus “API” level,
each with “in-line” or “out-of-line” preparation (or compilation).

The ABI mode accesses libraries at the binary level, whereas the
faster API mode accesses them with a C compiler.  We explain the
difference in more details below.

In the in-line mode, everything is set up every time you import
your Python code.  In the out-of-line mode, you have a separate
step of preparation (and possibly C compilation) that produces a
module which your main program can then import.


Simple example (ABI level, in-line)

May look familiar to those who have used ctypes [http://docs.python.org/library/ctypes.html].

>>> from cffi import FFI
>>> ffi = FFI()
>>> ffi.cdef("""
...     int printf(const char *format, ...);   // copy-pasted from the man page
... """)
>>> C = ffi.dlopen(None)                     # loads the entire C namespace
>>> arg = ffi.new("char[]", b"world")        # equivalent to C code: char arg[] = "world";
>>> C.printf(b"hi there, %s.\n", arg)        # call printf
hi there, world.
17                                           # this is the return value
>>>





Note that char * arguments expect a bytes object.  If you have a
str (or a unicode on Python 2) you need to encode it explicitly
with somestring.encode(myencoding).

Python 3 on Windows: ffi.dlopen(None) does not work.  This problem
is messy and not really fixable.  The problem does not occur if you try
to call a function from a specific DLL that exists on your system: then
you use ffi.dlopen("path.dll").

This example does not call any C compiler.  It works in the so-called
ABI mode, which means that it will crash if you call some function or
access some fields of a structure that was slightly misdeclared in the
cdef().

If using a C compiler to install your module is an option, it is highly
recommended to use the API mode instead.  (It is also faster.)




Struct/Array Example (minimal, in-line)

from cffi import FFI
ffi = FFI()
ffi.cdef("""
    typedef struct {
        unsigned char r, g, b;
    } pixel_t;
""")
image = ffi.new("pixel_t[]", 800*600)

f = open('data', 'rb')     # binary mode -- important
f.readinto(ffi.buffer(image))
f.close()

image[100].r = 255
image[100].g = 192
image[100].b = 128

f = open('data', 'wb')
f.write(ffi.buffer(image))
f.close()





This can be used as a more flexible replacement of the struct [http://docs.python.org/library/struct.html] and
array [http://docs.python.org/library/array.html] modules, and replaces ctypes [http://docs.python.org/library/ctypes.html].  You could also call ffi.new("pixel_t[600][800]")
and get a two-dimensional array.

This example does not call any C compiler.

This example also admits an out-of-line equivalent.  It is similar to
the first example Main mode of usage above,
but passing None as the second argument to
ffibuilder.set_source().  Then in the main program you write
from _simple_example import ffi and then the same content as the
in-line example above starting from the line image =
ffi.new("pixel_t[]", 800*600).




API Mode, calling the C standard library

# file "example_build.py"

# Note: we instantiate the same 'cffi.FFI' class as in the previous
# example, but call the result 'ffibuilder' now instead of 'ffi';
# this is to avoid confusion with the other 'ffi' object you get below

from cffi import FFI
ffibuilder = FFI()

ffibuilder.set_source("_example",
   r""" // passed to the real C compiler,
        // contains implementation of things declared in cdef()
        #include <sys/types.h>
        #include <pwd.h>

        // We can also define custom wrappers or other functions
        // here (this is an example only):
        static struct passwd *get_pw_for_root(void) {
            return getpwuid(0);
        }
    """,
    libraries=[])   # or a list of libraries to link with
    # (more arguments like setup.py's Extension class:
    # include_dirs=[..], extra_objects=[..], and so on)

ffibuilder.cdef("""
    // declarations that are shared between Python and C
    struct passwd {
        char *pw_name;
        ...;     // literally dot-dot-dot
    };
    struct passwd *getpwuid(int uid);     // defined in <pwd.h>
    struct passwd *get_pw_for_root(void); // defined in set_source()
""")

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)





You need to run the example_build.py script once to generate
“source code” into the file _example.c and compile this to a
regular C extension module.  (CFFI selects either Python or C for the
module to generate based on whether the second argument to
set_source() is None or not.)

You need a C compiler for this single step.  It produces a file called
e.g. _example.so or _example.pyd.  If needed, it can be distributed in
precompiled form like any other extension module.

Then, in your main program, you use:

from _example import ffi, lib

p = lib.getpwuid(0)
assert ffi.string(p.pw_name) == b'root'
p = lib.get_pw_for_root()
assert ffi.string(p.pw_name) == b'root'





Note that this works independently of the exact C layout of struct
passwd (it is “API level”, as opposed to “ABI level”).  It requires
a C compiler in order to run example_build.py, but it is much more
portable than trying to get the details of the fields of struct
passwd exactly right.  Similarly, in the cdef() we declared
getpwuid() as taking an int argument; on some platforms this
might be slightly incorrect—but it does not matter.

Note also that at runtime, the API mode is faster than the ABI mode.

To integrate it inside a setup.py distribution with Setuptools:

from setuptools import setup

setup(
    ...
    setup_requires=["cffi>=1.0.0"],
    cffi_modules=["example_build.py:ffibuilder"],
    install_requires=["cffi>=1.0.0"],
)








API Mode, calling C sources instead of a compiled library

If you want to call some library that is not precompiled, but for which
you have C sources, then the easiest solution is to make a single
extension module that is compiled from both the C sources of this
library, and the additional CFFI wrappers.  For example, say you start
with the files pi.c and pi.h:


/* filename: pi.c*/
# include <stdlib.h>
# include <math.h>

/* Returns a very crude approximation of Pi
   given a int: a number of iteration */
float pi_approx(int n){

  double i,x,y,sum=0;

  for(i=0;i<n;i++){

    x=rand();
    y=rand();

    if (sqrt(x*x+y*y) < sqrt((double)RAND_MAX*RAND_MAX))
      sum++; }

  return 4*(float)sum/(float)n; }





/* filename: pi.h*/
float pi_approx(int n);








Create a script named pi_extension_build.py, building
the C extension:


from cffi import FFI
ffibuilder = FFI()

ffibuilder.cdef("float pi_approx(int n);")

ffibuilder.set_source("_pi",  # name of the output C extension
"""
    #include "pi.h"',
""",
    sources=['pi.c'],   # includes pi.c as additional sources
    libraries=['m'])    # on Unix, link with the math library

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)








Build the extension:


python pi_extension_build.py








Observe, in the working directory, the generated output files:
_pi.c, _pi.o and the compiled C extension (called _pi.so on
Linux for example).  It can be called from Python:


from _pi.lib import pi_approx

approx = pi_approx(10)
assert str(pi_approximation).startswith("3.")

approx = pi_approx(10000)
assert str(approx).startswith("3.1")











Purely for performance (API level, out-of-line)

A variant of the section above where the goal is not to call an
existing C library, but to compile and call some C function written
directly in the build script:

# file "example_build.py"

from cffi import FFI
ffibuilder = FFI()

ffibuilder.cdef("int foo(int *, int *, int);")

ffibuilder.set_source("_example",
r"""
    static int foo(int *buffer_in, int *buffer_out, int x)
    {
        /* some algorithm that is seriously faster in C than in Python */
    }
""")

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)





# file "example.py"

from _example import ffi, lib

buffer_in = ffi.new("int[]", 1000)
# initialize buffer_in here...

# easier to do all buffer allocations in Python and pass them to C,
# even for output-only arguments
buffer_out = ffi.new("int[]", 1000)

result = lib.foo(buffer_in, buffer_out, 1000)





You need a C compiler to run example_build.py, once.  It produces a
file called e.g. _example.so or _example.pyd.  If needed, it can be
distributed in precompiled form like any other extension module.




Out-of-line, ABI level

The out-of-line ABI mode is a mixture of the regular (API) out-of-line
mode and the in-line ABI mode.  It lets you use the ABI mode, with its
advantages (not requiring a C compiler) and problems (crashes more
easily).

This mixture mode lets you massively reduces the import times, because
it is slow to parse a large C header.  It also allows you to do more
detailed checkings during build-time without worrying about performance
(e.g. calling cdef() many times with small pieces of declarations,
based on the version of libraries detected on the system).

# file "simple_example_build.py"

from cffi import FFI

ffibuilder = FFI()
# Note that the actual source is None
ffibuilder.set_source("_simple_example", None)
ffibuilder.cdef("""
    int printf(const char *format, ...);
""")

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)





Running it once produces _simple_example.py.  Your main program
only imports this generated module, not simple_example_build.py
any more:

from _simple_example import ffi

lib = ffi.dlopen(None)      # Unix: open the standard C library
#import ctypes.util         # or, try this on Windows:
#lib = ffi.dlopen(ctypes.util.find_library("c"))

lib.printf(b"hi there, number %d\n", ffi.cast("int", 2))





Note that this ffi.dlopen(), unlike the one from in-line mode,
does not invoke any additional magic to locate the library: it must be
a path name (with or without a directory), as required by the C
dlopen() or LoadLibrary() functions.  This means that
ffi.dlopen("libfoo.so") is ok, but ffi.dlopen("foo") is not.
In the latter case, you could replace it with
ffi.dlopen(ctypes.util.find_library("foo")).  Also, None is only
recognized on Unix to open the standard C library.

For distribution purposes, remember that there is a new
_simple_example.py file generated.  You can either include it
statically within your project’s source files, or, with Setuptools,
you can say in the setup.py:

from setuptools import setup

setup(
    ...
    setup_requires=["cffi>=1.0.0"],
    cffi_modules=["simple_example_build.py:ffibuilder"],
    install_requires=["cffi>=1.0.0"],
)





In summary, this mode is useful when you wish to declare many C structures but
do not need fast interaction with a shared object. It is useful for parsing
binary files, for instance.




In-line, API level

The “API level + in-line” mode combination exists but is long
deprecated.  It used to be done with lib = ffi.verify("C header").
The out-of-line variant with set_source("modname", "C header") is
preferred and avoids a number of problems when the project grows in
size.






Embedding

New in version 1.5.

CFFI can be used for embedding: creating a standard
dynamically-linked library (.dll under Windows, .so elsewhere)
which can be used from a C application.

import cffi
ffibuilder = cffi.FFI()

ffibuilder.embedding_api("""
    int do_stuff(int, int);
""")

ffibuilder.set_source("my_plugin", "")

ffibuilder.embedding_init_code("""
    from my_plugin import ffi

    @ffi.def_extern()
    def do_stuff(x, y):
        print("adding %d and %d" % (x, y))
        return x + y
""")

ffibuilder.compile(target="plugin-1.5.*", verbose=True)





This simple example creates plugin-1.5.dll or plugin-1.5.so as
a DLL with a single exported function, do_stuff().  You execute
the script above once, with the interpreter you want to have
internally used; it can be CPython 2.x or 3.x or PyPy.  This DLL can
then be used “as usual” from an application; the application doesn’t
need to know that it is talking with a library made with Python and
CFFI.  At runtime, when the application calls int do_stuff(int,
int), the Python interpreter is automatically initialized and def
do_stuff(x, y): gets called.  See the details in the documentation
about embedding.




What actually happened?

The CFFI interface operates on the same level as C - you declare types
and functions using the same syntax as you would define them in C.  This
means that most of the documentation or examples can be copied straight
from the man pages.

The declarations can contain types, functions, constants
and global variables. What you pass to the cdef() must not
contain more than that; in particular, #ifdef or #include
directives are not supported.  The cdef in the above examples are just
that - they declared “there is a function in the C level with this
given signature”, or “there is a struct type with this shape”.

In the ABI examples, the dlopen() calls load libraries manually.
At the binary level, a program is split into multiple namespaces—a
global one (on some platforms), plus one namespace per library.  So
dlopen() returns a <FFILibrary> object, and this object has
got as attributes all function, constant and variable symbols that are
coming from this library and that have been declared in the
cdef().  If you have several interdependent libraries to load,
you would call cdef() only once but dlopen() several times.

By opposition, the API mode works more closely like a C program: the C
linker (static or dynamic) is responsible for finding any symbol used.
You name the libraries in the libraries keyword argument to
set_source(), but never need to say which symbol comes
from which library.
Other common arguments to set_source() include library_dirs and
include_dirs; all these arguments are passed to the standard
distutils/setuptools.

The ffi.new() lines allocate C objects.  They are filled
with zeroes initially, unless the optional second argument is used.
If specified, this argument gives an “initializer”, like you can use
with C code to initialize global variables.

The actual lib.*() function calls should be obvious: it’s like C.




ABI versus API

Accessing the C library at the binary level (“ABI”) is fraught
with problems, particularly on non-Windows platforms.

The most immediate drawback of the ABI level is that calling functions
needs to go through the very general libffi library, which is slow
(and not always perfectly tested on non-standard platforms).  The API
mode instead compiles a CPython C wrapper that directly invokes the
target function.  It can be massively faster (and works
better than libffi ever will).

The more fundamental reason to prefer the API mode is that the C
libraries are typically meant to be used with a C compiler. You are not
supposed to do things like guess where fields are in the structures.
The “real example” above shows how CFFI uses a C compiler under the
hood: this example uses set_source(..., "C source...") and never
dlopen().  When using this approach,
we have the advantage that we can use literally “...” at various places in
the cdef(), and the missing information will be completed with the
help of the C compiler.  CFFI will turn this into a single C source file,
which contains the “C source” part unmodified, followed by some
“magic” C code and declarations derived from the cdef().  When
this C file is compiled, the resulting C extension module will contain
all the information we need—or the C compiler will give warnings or
errors, as usual e.g. if we misdeclare some function’s signature.

Note that the “C source” part from set_source() can contain
arbitrary C code.  You can use this to declare some
more helper functions written in C.  To export
these helpers to Python, put their signature in the cdef() too.
(You can use the static C keyword in the “C source” part,
as in static int myhelper(int x) { return x * 42; },
because these helpers are only
referenced from the “magic” C code that is generated afterwards in the
same C file.)

This can be used for example to wrap “crazy” macros into more standard
C functions.  The extra layer of C can be useful for other reasons
too, like calling functions that expect some complicated argument
structures that you prefer to build in C rather than in Python.  (On
the other hand, if all you need is to call “function-like” macros,
then you can directly declare them in the cdef() as if they were
functions.)

The generated piece of C code should be the same independently on the
platform on which you run it (or the Python version), so in simple cases
you can directly distribute the pre-generated C code and treat it as a
regular C extension module (which depends on the _cffi_backend
module, on CPython).  The special Setuptools lines in the example
above are meant for the more complicated cases where we need to
regenerate the C sources as well—e.g. because the Python script that
regenerates this file will itself look around the system to know what it
should include or not.
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Working with pointers, structures and arrays

The C code’s integers and floating-point values are mapped to Python’s
regular int, long and float.  Moreover, the C type char
corresponds to single-character strings in Python.  (If you want it to
map to small integers, use either signed char or unsigned char.)

Similarly, the C type wchar_t corresponds to single-character
unicode strings.  Note that in some situations (a narrow Python build
with an underlying 4-bytes wchar_t type), a single wchar_t character
may correspond to a pair of surrogates, which is represented as a
unicode string of length 2.  If you need to convert such a 2-chars
unicode string to an integer, ord(x) does not work; use instead
int(ffi.cast('wchar_t', x)).

New in version 1.11: in addition to wchar_t, the C types
char16_t and char32_t work the same but with a known fixed size.
In previous versions, this could be achieved using uint16_t and
int32_t but without automatic conversion to Python unicodes.

Pointers, structures and arrays are more complex: they don’t have an
obvious Python equivalent.  Thus, they correspond to objects of type
cdata, which are printed for example as
<cdata 'struct foo_s *' 0xa3290d8>.

ffi.new(ctype, [initializer]): this function builds and returns a
new cdata object of the given ctype.  The ctype is usually some
constant string describing the C type.  It must be a pointer or array
type.  If it is a pointer, e.g. "int *" or struct foo *, then
it allocates the memory for one int or struct foo.  If it is
an array, e.g. int[10], then it allocates the memory for ten
int.  In both cases the returned cdata is of type ctype.

The memory is initially filled with zeros.  An initializer can be given
too, as described later.

Example:

>>> ffi.new("int *")
<cdata 'int *' owning 4 bytes>
>>> ffi.new("int[10]")
<cdata 'int[10]' owning 40 bytes>

>>> ffi.new("char *")          # allocates only one char---not a C string!
<cdata 'char *' owning 1 bytes>
>>> ffi.new("char[]", "foobar")  # this allocates a C string, ending in \0
<cdata 'char[]' owning 7 bytes>





Unlike C, the returned pointer object has ownership on the allocated
memory: when this exact object is garbage-collected, then the memory is
freed.  If, at the level of C, you store a pointer to the memory
somewhere else, then make sure you also keep the object alive for as
long as needed.  (This also applies if you immediately cast the returned
pointer to a pointer of a different type: only the original object has
ownership, so you must keep it alive.  As soon as you forget it, then
the casted pointer will point to garbage!  In other words, the ownership
rules are attached to the wrapper cdata objects: they are not, and
cannot, be attached to the underlying raw memory.)  Example:

global_weakkeydict = weakref.WeakKeyDictionary()

def make_foo():
    s1   = ffi.new("struct foo *")
    fld1 = ffi.new("struct bar *")
    fld2 = ffi.new("struct bar *")
    s1.thefield1 = fld1
    s1.thefield2 = fld2
    # here the 'fld1' and 'fld2' object must not go away,
    # otherwise 's1.thefield1/2' will point to garbage!
    global_weakkeydict[s1] = (fld1, fld2)
    # now 's1' keeps alive 'fld1' and 'fld2'.  When 's1' goes
    # away, then the weak dictionary entry will be removed.
    return s1





Usually you don’t need a weak dict: for example, to call a function with
a char * * argument that contains a pointer to a char * pointer,
it is enough to do this:

p = ffi.new("char[]", "hello, world")    # p is a 'char *'
q = ffi.new("char **", p)                # q is a 'char **'
lib.myfunction(q)
# p is alive at least until here, so that's fine





However, this is always wrong (usage of freed memory):

p = ffi.new("char **", ffi.new("char[]", "hello, world"))
# WRONG!  as soon as p is built, the inner ffi.new() gets freed!





This is wrong too, for the same reason:

p = ffi.new("struct my_stuff")
p.foo = ffi.new("char[]", "hello, world")
# WRONG!  as soon as p.foo is set, the ffi.new() gets freed!





The cdata objects support mostly the same operations as in C: you can
read or write from pointers, arrays and structures.  Dereferencing a
pointer is done usually in C with the syntax *p, which is not valid
Python, so instead you have to use the alternative syntax p[0]
(which is also valid C).  Additionally, the p.x and p->x
syntaxes in C both become p.x in Python.

We have ffi.NULL to use in the same places as the C NULL.
Like the latter, it is actually defined to be ffi.cast("void *",
0).  For example, reading a NULL pointer returns a <cdata 'type *'
NULL>, which you can check for e.g. by comparing it with
ffi.NULL.

There is no general equivalent to the & operator in C (because it
would not fit nicely in the model, and it does not seem to be needed
here).  There is ffi.addressof(), but only for some cases.  You
cannot take the “address” of a number in Python, for example; similarly,
you cannot take the address of a CFFI pointer.  If you have this kind
of C code:

int x, y;
fetch_size(&x, &y);

opaque_t *handle;      // some opaque pointer
init_stuff(&handle);   // initializes the variable 'handle'
more_stuff(handle);    // pass the handle around to more functions





then you need to rewrite it like this, replacing the variables in C
with what is logically pointers to the variables:

px = ffi.new("int *")
py = ffi.new("int *")              arr = ffi.new("int[2]")
lib.fetch_size(px, py)    -OR-     lib.fetch_size(arr, arr + 1)
x = px[0]                          x = arr[0]
y = py[0]                          y = arr[1]

p_handle = ffi.new("opaque_t **")
lib.init_stuff(p_handle)   # pass the pointer to the 'handle' pointer
handle = p_handle[0]       # now we can read 'handle' out of 'p_handle'
lib.more_stuff(handle)





Any operation that would in C return a pointer or array or struct type
gives you a fresh cdata object.  Unlike the “original” one, these fresh
cdata objects don’t have ownership: they are merely references to
existing memory.

As an exception to the above rule, dereferencing a pointer that owns a
struct or union object returns a cdata struct or union object
that “co-owns” the same memory.  Thus in this case there are two
objects that can keep the same memory alive.  This is done for cases where
you really want to have a struct object but don’t have any convenient
place to keep alive the original pointer object (returned by
ffi.new()).

Example:

# void somefunction(int *);

x = ffi.new("int *")      # allocate one int, and return a pointer to it
x[0] = 42                 # fill it
lib.somefunction(x)       # call the C function
print x[0]                # read the possibly-changed value





The equivalent of C casts are provided with ffi.cast("type", value).
They should work in the same cases as they do in C.  Additionally, this
is the only way to get cdata objects of integer or floating-point type:

>>> x = ffi.cast("int", 42)
>>> x
<cdata 'int' 42>
>>> int(x)
42





To cast a pointer to an int, cast it to intptr_t or uintptr_t,
which are defined by C to be large enough integer types (example on 32
bits):

>>> int(ffi.cast("intptr_t", pointer_cdata))    # signed
-1340782304
>>> int(ffi.cast("uintptr_t", pointer_cdata))   # unsigned
2954184992L





The initializer given as the optional second argument to ffi.new()
can be mostly anything that you would use as an initializer for C code,
with lists or tuples instead of using the C syntax { .., .., .. }.
Example:

typedef struct { int x, y; } foo_t;

foo_t v = { 1, 2 };            // C syntax
v = ffi.new("foo_t *", [1, 2]) # CFFI equivalent

foo_t v = { .y=1, .x=2 };                // C99 syntax
v = ffi.new("foo_t *", {'y': 1, 'x': 2}) # CFFI equivalent





Like C, arrays of chars can also be initialized from a string, in
which case a terminating null character is appended implicitly:

>>> x = ffi.new("char[]", "hello")
>>> x
<cdata 'char[]' owning 6 bytes>
>>> len(x)        # the actual size of the array
6
>>> x[5]          # the last item in the array
'\x00'
>>> x[0] = 'H'    # change the first item
>>> ffi.string(x) # interpret 'x' as a regular null-terminated string
'Hello'





Similarly, arrays of wchar_t or char16_t or char32_t can be initialized
from a unicode string,
and calling ffi.string() on the cdata object returns the current unicode
string stored in the source array (adding surrogates if necessary).
See the Unicode character types section for more details.

Note that unlike Python lists or tuples, but like C, you cannot index in
a C array from the end using negative numbers.

More generally, the C array types can have their length unspecified in C
types, as long as their length can be derived from the initializer, like
in C:

int array[] = { 1, 2, 3, 4 };           // C syntax
array = ffi.new("int[]", [1, 2, 3, 4])  # CFFI equivalent





As an extension, the initializer can also be just a number, giving
the length (in case you just want zero-initialization):

int array[1000];                  // C syntax
array = ffi.new("int[1000]")      # CFFI 1st equivalent
array = ffi.new("int[]", 1000)    # CFFI 2nd equivalent





This is useful if the length is not actually a constant, to avoid things
like ffi.new("int[%d]" % x).  Indeed, this is not recommended:
ffi normally caches the string "int[]" to not need to re-parse
it all the time.

The C99 variable-sized structures are supported too, as long as the
initializer says how long the array should be:

# typedef struct { int x; int y[]; } foo_t;

p = ffi.new("foo_t *", [5, [6, 7, 8]]) # length 3
p = ffi.new("foo_t *", [5, 3])         # length 3 with 0 in the array
p = ffi.new("foo_t *", {'y': 3})       # length 3 with 0 everywhere





Finally, note that any Python object used as initializer can also be
used directly without ffi.new() in assignments to array items or
struct fields.  In fact, p = ffi.new("T*", initializer) is
equivalent to p = ffi.new("T*"); p[0] = initializer.  Examples:

# if 'p' is a <cdata 'int[5][5]'>
p[2] = [10, 20]             # writes to p[2][0] and p[2][1]

# if 'p' is a <cdata 'foo_t *'>, and foo_t has fields x, y and z
p[0] = {'x': 10, 'z': 20}   # writes to p.x and p.z; p.y unmodified

# if, on the other hand, foo_t has a field 'char a[5]':
p.a = "abc"                 # writes 'a', 'b', 'c' and '\0'; p.a[4] unmodified





In function calls, when passing arguments, these rules can be used too;
see Function calls.




Python 3 support

Python 3 is supported, but the main point to note is that the char C
type corresponds to the bytes Python type, and not str.  It is
your responsibility to encode/decode all Python strings to bytes when
passing them to or receiving them from CFFI.

This only concerns the char type and derivative types; other parts
of the API that accept strings in Python 2 continue to accept strings in
Python 3.




An example of calling a main-like thing

Imagine we have something like this:

from cffi import FFI
ffi = FFI()
ffi.cdef("""
   int main_like(int argv, char *argv[]);
""")
lib = ffi.dlopen("some_library.so")





Now, everything is simple, except, how do we create the char** argument
here?
The first idea:

lib.main_like(2, ["arg0", "arg1"])





does not work, because the initializer receives two Python str objects
where it was expecting <cdata 'char *'> objects.  You need to use
ffi.new() explicitly to make these objects:

lib.main_like(2, [ffi.new("char[]", "arg0"),
                  ffi.new("char[]", "arg1")])





Note that the two <cdata 'char[]'> objects are kept alive for the
duration of the call: they are only freed when the list itself is freed,
and the list is only freed when the call returns.

If you want instead to build an “argv” variable that you want to reuse,
then more care is needed:

# DOES NOT WORK!
argv = ffi.new("char *[]", [ffi.new("char[]", "arg0"),
                            ffi.new("char[]", "arg1")])





In the above example, the inner “arg0” string is deallocated as soon
as “argv” is built.  You have to make sure that you keep a reference
to the inner “char[]” objects, either directly or by keeping the list
alive like this:

argv_keepalive = [ffi.new("char[]", "arg0"),
                  ffi.new("char[]", "arg1")]
argv = ffi.new("char *[]", argv_keepalive)








Function calls

When calling C functions, passing arguments follows mostly the same
rules as assigning to structure fields, and the return value follows the
same rules as reading a structure field.  For example:

# int foo(short a, int b);

n = lib.foo(2, 3)     # returns a normal integer
lib.foo(40000, 3)     # raises OverflowError





You can pass to char * arguments a normal Python string (but don’t
pass a normal Python string to functions that take a char *
argument and may mutate it!):

# size_t strlen(const char *);

assert lib.strlen("hello") == 5





You can also pass unicode strings as wchar_t * or char16_t * or
char32_t * arguments.  Note that
the C language makes no difference between argument declarations that
use type * or type[].  For example, int * is fully
equivalent to int[] (or even int[5]; the 5 is ignored).  For CFFI,
this means that you can always pass arguments that can be converted to
either int * or int[].  For example:

# void do_something_with_array(int *array);

lib.do_something_with_array([1, 2, 3, 4, 5])    # works for int[]





See Reference: conversions for a similar way to pass struct foo_s
* arguments—but in general, it is clearer in this case to pass
ffi.new('struct foo_s *', initializer).

CFFI supports passing and returning structs and unions to functions and
callbacks.  Example:

# struct foo_s { int a, b; };
# struct foo_s function_returning_a_struct(void);

myfoo = lib.function_returning_a_struct()
# `myfoo`: <cdata 'struct foo_s' owning 8 bytes>





For performance, non-variadic API-level functions that you get by
writing lib.some_function are not <cdata>
objects, but an object of a different type (on CPython, <built-in
function>).  This means you cannot pass them directly to some other C
function expecting a function pointer argument.  Only ffi.typeof()
works on them.  To get a cdata containing a regular function pointer,
use ffi.addressof(lib, "name").

There are a few (obscure) limitations to the supported argument and
return types.  These limitations come from libffi and apply only to
calling <cdata> function pointers; in other words, they don’t
apply to non-variadic cdef()-declared functions if you are using
the API mode.  The limitations are that you cannot pass directly as
argument or return type:


	a union (but a pointer to a union is fine);


	a struct which uses bitfields (but a pointer to such a struct is
fine);


	a struct that was declared with “...” in the cdef().




In API mode, you can work around these limitations: for example, if you
need to call such a function pointer from Python, you can instead write
a custom C function that accepts the function pointer and the real
arguments and that does the call from C.  Then declare that custom C
function in the cdef() and use it from Python.




Variadic function calls

Variadic functions in C (which end with “...” as their last
argument) can be declared and called normally, with the exception that
all the arguments passed in the variable part must be cdata objects.
This is because it would not be possible to guess, if you wrote this:

lib.printf("hello, %d\n", 42)   # doesn't work!





that you really meant the 42 to be passed as a C int, and not a
long or long long.  The same issue occurs with float versus
double.  So you have to force cdata objects of the C type you want,
if necessary with ffi.cast():

lib.printf("hello, %d\n", ffi.cast("int", 42))
lib.printf("hello, %ld\n", ffi.cast("long", 42))
lib.printf("hello, %f\n", ffi.cast("double", 42))





But of course:

lib.printf("hello, %s\n", ffi.new("char[]", "world"))





Note that if you are using dlopen(), the function declaration in the
cdef() must match the original one in C exactly, as usual — in
particular, if this function is variadic in C, then its cdef()
declaration must also be variadic.  You cannot declare it in the
cdef() with fixed arguments instead, even if you plan to only call
it with these argument types.  The reason is that some architectures
have a different calling convention depending on whether the function
signature is fixed or not.  (On x86-64, the difference can sometimes be
seen in PyPy’s JIT-generated code if some arguments are double.)

Note that the function signature int foo(); is interpreted by CFFI
as equivalent to int foo(void);.  This differs from the C standard,
in which int foo(); is really like int foo(...); and can be
called with any arguments.  (This feature of C is a pre-C89 relic: the
arguments cannot be accessed at all in the body of foo() without
relying on compiler-specific extensions.  Nowadays virtually all code
with int foo(); really means int foo(void);.)




Memory pressure (PyPy)

This paragraph applies only to PyPy, because its garbage collector (GC)
is different from CPython’s.  It is very common in C code to have pairs
of functions, one which performs memory allocations or acquires other
resources, and the other which frees them again.  Depending on how you
structure your Python code, the freeing function is only called when the
GC decides a particular (Python) object can be freed.  This occurs
notably in these cases:


	If you use a __del__() method to call the freeing function.


	If you use ffi.gc() without also using ffi.release().


	This does not occur if you call the freeing function at a
deterministic time, like in a regular try: finally: block.  It
does however occur inside a generator— if the generator is not
explicitly exhausted but forgotten at a yield point, then the code
in the enclosing finally block is only invoked at the next GC.




In these cases, you may have to use the built-in function
__pypy__.add_memory_pressure(n).  Its argument n is an estimate
of how much memory pressure to add.  For example, if the pair of C
functions that we are talking about is malloc(n) and free() or
similar, you would call __pypy__.add_memory_pressure(n) after
malloc(n).  Doing so is not always a complete answer to the problem,
but it makes the next GC occur earlier, which is often enough.

The same applies if the memory allocations are indirect, e.g. the C
function allocates some internal data structures.  In that case, call
__pypy__.add_memory_pressure(n) with an argument n that is an
rough estimation.  Knowing the exact size is not important, and memory
pressure doesn’t have to be manually brought down again after calling
the freeing function.  If you are writing wrappers for the allocating /
freeing pair of functions, you should probably call
__pypy__.add_memory_pressure() in the former even if the user may
invoke the latter at a known point with a finally: block.

In case this solution is not sufficient, or if the acquired resource is
not memory but something else more limited (like file descriptors), then
there is no better way than restructuring your code to make sure the
freeing function is called at a known point and not indirectly by the
GC.

Note that in PyPy <= 5.6 the discussion above also applies to
ffi.new().  In more recent versions of PyPy, both ffi.new() and
ffi.new_allocator()() automatically account for the memory pressure
they create.  (In case you need to support both older and newer PyPy’s,
try calling __pypy__.add_memory_pressure() anyway; it is better to
overestimate than not account for the memory pressure.)




Extern “Python” (new-style callbacks)

When the C code needs a pointer to a function which invokes back a
Python function of your choice, here is how you do it in the
out-of-line API mode.  The next section about Callbacks describes the
ABI-mode solution.

This is new in version 1.4.  Use old-style Callbacks if backward
compatibility is an issue.  (The original callbacks are slower to
invoke and have the same issue as libffi’s callbacks; notably, see the
warning.  The new style described in the present section does not
use libffi’s callbacks at all.)

In the builder script, declare in the cdef a function prefixed with
extern "Python":

ffibuilder.cdef("""
    extern "Python" int my_callback(int, int);

    void library_function(int(*callback)(int, int));
""")
ffibuilder.set_source("_my_example", r"""
    #include <some_library.h>
""")





The function my_callback() is then implemented in Python inside
your application’s code:

from _my_example import ffi, lib

@ffi.def_extern()
def my_callback(x, y):
    return 42





You obtain a <cdata> pointer-to-function object by getting
lib.my_callback.  This <cdata> can be passed to C code and
then works like a callback: when the C code calls this function
pointer, the Python function my_callback is called.  (You need
to pass lib.my_callback to C code, and not my_callback: the
latter is just the Python function above, which cannot be passed to C.)

CFFI implements this by defining my_callback as a static C
function, written after the set_source() code.  The <cdata>
then points to this function.  What this function does is invoke the
Python function object that is, at runtime, attached with
@ffi.def_extern().

The @ffi.def_extern() decorator should be applied to global
functions, one for each extern "Python" function of the same
name.

To support some corner cases, it is possible to redefine the attached
Python function by calling @ffi.def_extern() again for the same
name—but this is not recommended!  Better attach a single global
Python function for this name, and write it more flexibly in the first
place.  This is because each extern "Python" function turns into
only one C function.  Calling @ffi.def_extern() again changes this
function’s C logic to call the new Python function; the old Python
function is not callable any more.  The C function pointer you get
from lib.my_function is always this C function’s address, i.e. it
remains the same.


Extern “Python” and void * arguments

As described just before, you cannot use extern "Python" to make a
variable number of C function pointers.  However, achieving that
result is not possible in pure C code either.  For this reason, it is
usual for C to define callbacks with a void *data argument.  You
can use ffi.new_handle() and ffi.from_handle() to pass a
Python object through this void * argument.  For example, if the C
type of the callbacks is:

typedef void (*event_cb_t)(event_t *evt, void *userdata);





and you register events by calling this function:

void event_cb_register(event_cb_t cb, void *userdata);





Then you would write this in the build script:

ffibuilder.cdef("""
    typedef ... event_t;
    typedef void (*event_cb_t)(event_t *evt, void *userdata);
    void event_cb_register(event_cb_t cb, void *userdata);

    extern "Python" void my_event_callback(event_t *, void *);
""")
ffibuilder.set_source("_demo_cffi", r"""
    #include <the_event_library.h>
""")





and in your main application you register events like this:

from _demo_cffi import ffi, lib

class Widget(object):
    def __init__(self):
        userdata = ffi.new_handle(self)
        self._userdata = userdata     # must keep this alive!
        lib.event_cb_register(lib.my_event_callback, userdata)

    def process_event(self, evt):
        print "got event!"

@ffi.def_extern()
def my_event_callback(evt, userdata):
    widget = ffi.from_handle(userdata)
    widget.process_event(evt)





Some other libraries don’t have an explicit void * argument, but
let you attach the void * to an existing structure.  For example,
the library might say that widget->userdata is a generic field
reserved for the application.  If the event’s signature is now this:

typedef void (*event_cb_t)(widget_t *w, event_t *evt);





Then you can use the void * field in the low-level
widget_t * like this:

from _demo_cffi import ffi, lib

class Widget(object):
    def __init__(self):
        ll_widget = lib.new_widget(500, 500)
        self.ll_widget = ll_widget       # <cdata 'struct widget *'>
        userdata = ffi.new_handle(self)
        self._userdata = userdata        # must still keep this alive!
        ll_widget.userdata = userdata    # this makes a copy of the "void *"
        lib.event_cb_register(ll_widget, lib.my_event_callback)

    def process_event(self, evt):
        print "got event!"

@ffi.def_extern()
def my_event_callback(ll_widget, evt):
    widget = ffi.from_handle(ll_widget.userdata)
    widget.process_event(evt)








Extern “Python” accessed from C directly

In case you want to access some extern "Python" function directly
from the C code written in set_source(), you need to write a
forward declaration.  (By default it needs to be static, but see
next paragraph.)  The real implementation of this function
is added by CFFI after the C code—this is needed because the
declaration might use types defined by set_source()
(e.g. event_t above, from the #include), so it cannot be
generated before.

ffibuilder.set_source("_demo_cffi", r"""
    #include <the_event_library.h>

    static void my_event_callback(widget_t *, event_t *);

    /* here you can write C code which uses '&my_event_callback' */
""")





This can also be used to write custom C code which calls Python
directly.  Here is an example (inefficient in this case, but might be
useful if the logic in my_algo() is much more complex):

ffibuilder.cdef("""
    extern "Python" int f(int);
    int my_algo(int);
""")
ffibuilder.set_source("_example_cffi", r"""
    static int f(int);   /* the forward declaration */

    static int my_algo(int n) {
        int i, sum = 0;
        for (i = 0; i < n; i++)
            sum += f(i);     /* call f() here */
        return sum;
    }
""")








Extern “Python+C”

Functions declared with extern "Python" are generated as
static functions in the C source.  However, in some cases it is
convenient to make them non-static, typically when you want to make
them directly callable from other C source files.  To do that, you can
say extern "Python+C" instead of just extern "Python".  New
in version 1.6.







	if the cdef contains

	then CFFI generates



	extern "Python" int f(int);

	static int f(int) { /* code */ }



	extern "Python+C" int f(int);

	int f(int) { /* code */ }






The name extern "Python+C" comes from the fact that we want an
extern function in both senses: as an extern "Python", and as a
C function that is not static.

You cannot make CFFI generate additional macros or other
compiler-specific stuff like the GCC __attribute__.  You can only
control whether the function should be static or not.  But often,
these attributes must be written alongside the function header, and
it is fine if the function implementation does not repeat them:

ffibuilder.cdef("""
    extern "Python+C" int f(int);      /* not static */
""")
ffibuilder.set_source("_example_cffi", r"""
    /* the forward declaration, setting a gcc attribute
       (this line could also be in some .h file, to be included
       both here and in the other C files of the project) */
    int f(int) __attribute__((visibility("hidden")));
""")








Extern “Python”: reference

extern "Python" must appear in the cdef().  Like the C++ extern
"C" syntax, it can also be used with braces around a group of
functions:

extern "Python" {
    int foo(int);
    int bar(int);
}





The extern "Python" functions cannot be variadic for now.  This
may be implemented in the future.  (This demo [https://bitbucket.org/cffi/cffi/src/default/demo/extern_python_varargs.py] shows how to do it
anyway, but it is a bit lengthy.)

Each corresponding Python callback function is defined with the
@ffi.def_extern() decorator.  Be careful when writing this
function: if it raises an exception, or tries to return an object of
the wrong type, then the exception cannot be propagated.  Instead, the
exception is printed to stderr and the C-level callback is made to
return a default value.  This can be controlled with error and
onerror, described below.

The @ffi.def_extern() decorator takes these optional arguments:


	name: the name of the function as written in the cdef.  By default
it is taken from the name of the Python function you decorate.





	error: the returned value in case the Python function raises an
exception.  It is 0 or null by default.  The exception is still
printed to stderr, so this should be used only as a last-resort
solution.


	onerror: if you want to be sure to catch all exceptions, use
@ffi.def_extern(onerror=my_handler).  If an exception occurs and
onerror is specified, then onerror(exception, exc_value,
traceback) is called.  This is useful in some situations where you
cannot simply write try: except: in the main callback function,
because it might not catch exceptions raised by signal handlers: if
a signal occurs while in C, the Python signal handler is called as
soon as possible, which is after entering the callback function but
before executing even the try:.  If the signal handler raises,
we are not in the try: except: yet.

If onerror is called and returns normally, then it is assumed
that it handled the exception on its own and nothing is printed to
stderr.  If onerror raises, then both tracebacks are printed.
Finally, onerror can itself provide the result value of the
callback in C, but doesn’t have to: if it simply returns None—or
if onerror itself fails—then the value of error will be
used, if any.

Note the following hack: in onerror, you can access the original
callback arguments as follows.  First check if traceback is not
None (it is None e.g. if the whole function ran successfully but
there was an error converting the value returned: this occurs after
the call).  If traceback is not None, then
traceback.tb_frame is the frame of the outermost function,
i.e. directly the frame of the function decorated with
@ffi.def_extern().  So you can get the value of argname in
that frame by reading traceback.tb_frame.f_locals['argname'].










Callbacks (old style)

Here is how to make a new <cdata> object that contains a pointer
to a function, where that function invokes back a Python function of
your choice:

>>> @ffi.callback("int(int, int)")
>>> def myfunc(x, y):
...    return x + y
...
>>> myfunc
<cdata 'int(*)(int, int)' calling <function myfunc at 0xf757bbc4>>





Note that "int(*)(int, int)" is a C function pointer type, whereas
"int(int, int)" is a C function type.  Either can be specified to
ffi.callback() and the result is the same.


Warning

Callbacks are provided for the ABI mode or for backward
compatibility.  If you are using the out-of-line API mode, it is
recommended to use the extern “Python” mechanism instead of
callbacks: it gives faster and cleaner code.  It also avoids several
issues with old-style callbacks:


	On less common architecture, libffi is more likely to crash on
callbacks (e.g. on NetBSD [https://github.com/pyca/pyopenssl/issues/596]);


	On hardened systems like PAX and SELinux, the extra memory
protections can interfere (for example, on SELinux you need to
run with deny_execmem set to off).


	On Mac OS X, [https://bitbucket.org/cffi/cffi/issues/391/] you need to give your application the entitlement
com.apple.security.cs.allow-unsigned-executable-memory.




Note also that a cffi fix for this issue was attempted—see
the ffi_closure_alloc branch—but was not merged because it
creates potential memory corruption [https://bugzilla.redhat.com/show_bug.cgi?id=1249685] with fork().

In other words: yes, it is dangerous to allow write+execute memory in your
program; that’s why the various “hardening” options above exist.  But at
the same time, these options open wide the door to another attack: if the
program forks and then attempts to call any of the ffi.callback(), then
this immediately results in a crash—or, with a minimal amount of work
from an attacker, arbitrary code execution.  To me it sounds even more
dangerous than the original problem, and that’s why cffi is not playing
along.

To fix the issue once and for all on the affected platforms, you need
to refactor the involved code so that it no longer uses ffi.callback().



Warning: like ffi.new(), ffi.callback() returns a cdata that has
ownership of its C data.  (In this case, the necessary C data contains
the libffi data structures to do a callback.)  This means that the
callback can only be invoked as long as this cdata object is alive.
If you store the function pointer into C code, then make sure you also
keep this object alive for as long as the callback may be invoked.
The easiest way to do that is to always use @ffi.callback() at
module-level only, and to pass “context” information around with
ffi.new_handle(), if possible.  Example:

# a good way to use this decorator is once at global level
@ffi.callback("int(int, void *)")
def my_global_callback(x, handle):
    return ffi.from_handle(handle).some_method(x)


class Foo(object):

    def __init__(self):
        handle = ffi.new_handle(self)
        self._handle = handle   # must be kept alive
        lib.register_stuff_with_callback_and_voidp_arg(my_global_callback, handle)

    def some_method(self, x):
        print "method called!"





(See also the section about extern “Python” above, where the same
general style is used.)

Note that callbacks of a variadic function type are not supported.  A
workaround is to add custom C code.  In the following example, a
callback gets a first argument that counts how many extra int
arguments are passed:

# file "example_build.py"

import cffi

ffibuilder = cffi.FFI()
ffibuilder.cdef("""
    int (*python_callback)(int how_many, int *values);
    void *const c_callback;   /* pass this const ptr to C routines */
""")
ffibuilder.set_source("_example", r"""
    #include <stdarg.h>
    #include <alloca.h>
    static int (*python_callback)(int how_many, int *values);
    static int c_callback(int how_many, ...) {
        va_list ap;
        /* collect the "..." arguments into the values[] array */
        int i, *values = alloca(how_many * sizeof(int));
        va_start(ap, how_many);
        for (i=0; i<how_many; i++)
            values[i] = va_arg(ap, int);
        va_end(ap);
        return python_callback(how_many, values);
    }
""")
ffibuilder.compile(verbose=True)





# file "example.py"

from _example import ffi, lib

@ffi.callback("int(int, int *)")
def python_callback(how_many, values):
    print ffi.unpack(values, how_many)
    return 0
lib.python_callback = python_callback





Deprecated: you can also use ffi.callback() not as a decorator but
directly as ffi.callback("int(int, int)", myfunc).  This is
discouraged: using this a style, we are more likely to forget the
callback object too early, when it is still in use.

The ffi.callback() decorator also accepts the optional argument
error, and from CFFI version 1.2 the optional argument onerror.
These two work in the same way as described above for extern “Python”.




Windows: calling conventions

On Win32, functions can have two main calling conventions: either
“cdecl” (the default), or “stdcall” (also known as “WINAPI”).  There
are also other rare calling conventions, but these are not supported.
New in version 1.3.

When you issue calls from Python to C, the implementation is such that
it works with any of these two main calling conventions; you don’t
have to specify it.  However, if you manipulate variables of type
“function pointer” or declare callbacks, then the calling convention
must be correct.  This is done by writing __cdecl or __stdcall
in the type, like in C:

@ffi.callback("int __stdcall(int, int)")
def AddNumbers(x, y):
    return x + y





or:

ffibuilder.cdef("""
    struct foo_s {
        int (__stdcall *MyFuncPtr)(int, int);
    };
""")





__cdecl is supported but is always the default so it can be left
out.  In the cdef(), you can also use WINAPI as equivalent to
__stdcall.  As mentioned above, it is mostly not needed (but doesn’t
hurt) to say WINAPI or __stdcall when declaring a plain
function in the cdef().  (The difference can still be seen if you
take explicitly a pointer to this function with ffi.addressof(),
or if the function is extern "Python".)

These calling convention specifiers are accepted but ignored on any
platform other than 32-bit Windows.

In CFFI versions before 1.3, the calling convention specifiers are not
recognized.  In API mode, you could work around it by using an
indirection, like in the example in the section about Callbacks
("example_build.py").  There was no way to use stdcall callbacks
in ABI mode.




FFI Interface

(The reference for the FFI interface has been moved to the next page.)
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FFI Interface

This page documents the runtime interface of the two types “FFI” and
“CompiledFFI”.  These two types are very similar to each other.  You get
a CompiledFFI object if you import an out-of-line module.  You get a FFI
object from explicitly writing cffi.FFI().  Unlike CompiledFFI, the type
FFI has also got additional methods documented on the next page.


ffi.NULL

ffi.NULL: a constant NULL of type <cdata 'void *'>.




ffi.error

ffi.error: the Python exception raised in various cases.  (Don’t
confuse it with ffi.errno.)




ffi.new()

ffi.new(cdecl, init=None):
allocate an instance according to the specified C type and return a
pointer to it.  The specified C type must be either a pointer or an
array: new('X *') allocates an X and returns a pointer to it,
whereas new('X[n]') allocates an array of n X’es and returns an
array referencing it (which works mostly like a pointer, like in C).
You can also use new('X[]', n) to allocate an array of a
non-constant length n.  See the detailed documentation for other
valid initializers.

When the returned <cdata> object goes out of scope, the memory is
freed.  In other words the returned <cdata> object has ownership of
the value of type cdecl that it points to.  This means that the raw
data can be used as long as this object is kept alive, but must not be
used for a longer time.  Be careful about that when copying the
pointer to the memory somewhere else, e.g. into another structure.
Also, this means that a line like x = ffi.new(...)[0] is always
wrong: the newly allocated object goes out of scope instantly, and so
is freed immediately, and x is garbage.

The returned memory is initially cleared (filled with zeroes), before
the optional initializer is applied.  For performance, see
ffi.new_allocator() for a way to allocate non-zero-initialized
memory.

New in version 1.12: see also ffi.release().




ffi.cast()

ffi.cast(“C type”, value): similar to a C cast: returns an
instance of the named C type initialized with the given value.  The
value is casted between integers or pointers of any type.




ffi.errno, ffi.getwinerror()

ffi.errno: the value of errno received from the most recent C call
in this thread, and passed to the following C call.  (This is a thread-local
read-write property.)

ffi.getwinerror(code=-1): on Windows, in addition to errno we
also save and restore the GetLastError() value across function
calls.  This function returns this error code as a tuple (code,
message), adding a readable message like Python does when raising
WindowsError.  If the argument code is given, format that code into
a message instead of using GetLastError().
(Note that it is also possible to declare and call the GetLastError()
function as usual.)




ffi.string(), ffi.unpack()

ffi.string(cdata, [maxlen]): return a Python string (or unicode
string) from the ‘cdata’.


	If ‘cdata’ is a pointer or array of characters or bytes, returns the
null-terminated string.  The returned string extends until the first
null character.  The ‘maxlen’ argument limits how far we look for a
null character.  If ‘cdata’ is an
array then ‘maxlen’ defaults to its length.  See ffi.unpack() below
for a way to continue past the first null character.  Python 3: this
returns a bytes, not a str.


	If ‘cdata’ is a pointer or array of wchar_t, returns a unicode string
following the same rules.  New in version 1.11: can also be
char16_t or char32_t.


	If ‘cdata’ is a single character or byte or a wchar_t or charN_t,
returns it as a byte string or unicode string.  (Note that in some
situation a single wchar_t or char32_t may require a Python unicode
string of length 2.)


	If ‘cdata’ is an enum, returns the value of the enumerator as a string.
If the value is out of range, it is simply returned as the stringified
integer.




ffi.unpack(cdata, length): unpacks an array of C data of the given
length, returning a Python string/unicode/list.  The ‘cdata’ should be
a pointer; if it is an array it is first converted to the pointer
type.  New in version 1.6.


	If ‘cdata’ is a pointer to ‘char’, returns a byte string.  It does
not stop at the first null.  (An equivalent way to do that is
ffi.buffer(cdata, length)[:].)


	If ‘cdata’ is a pointer to ‘wchar_t’, returns a unicode string.
(‘length’ is measured in number of wchar_t; it is not the size in
bytes.)  New in version 1.11: can also be char16_t or char32_t.


	If ‘cdata’ is a pointer to anything else, returns a list, of the
given ‘length’.  (A slower way to do that is [cdata[i] for i in
range(length)].)







ffi.buffer(), ffi.from_buffer()

ffi.buffer(cdata, [size]): return a buffer object that references
the raw C data pointed to by the given ‘cdata’, of ‘size’ bytes.  What
Python calls “a buffer”, or more precisely “an object supporting the
buffer interface”, is an object that represents some raw memory and
that can be passed around to various built-in or extension functions;
these built-in functions read from or write to the raw memory directly,
without needing an extra copy.

The ‘cdata’ argument
must be a pointer or an array.  If unspecified, the size of the
buffer is either the size of what cdata points to, or the whole size
of the array.

Here are a few examples of where buffer() would be useful:


	use file.write() and file.readinto() with
such a buffer (for files opened in binary mode)


	overwrite the content of a struct: if p is a cdata pointing to
it, use ffi.buffer(p)[:] = newcontent, where newcontent is
a bytes object (str in Python 2).




Remember that like in C, you can use array + index to get the pointer
to the index’th item of an array.  (In C you might more naturally write
&array[index], but that is equivalent.)

The returned object’s type is not the builtin buffer nor memoryview
types, because these types’ API changes too much across Python versions.
Instead it has the following Python API (a subset of Python 2’s buffer)
in addition to supporting the buffer interface:


	buf[:] or bytes(buf): copy data out of the buffer, returning a
regular byte string (or buf[start:end] for a part)


	buf[:] = newstr: copy data into the buffer (or buf[start:end]
= newstr)


	len(buf), buf[index], buf[index] = newchar: access as a sequence
of characters.




The buffer object returned by ffi.buffer(cdata) keeps alive the
cdata object: if it was originally an owning cdata, then its
owned memory will not be freed as long as the buffer is alive.

Python 2/3 compatibility note: you should avoid using str(buf),
because it gives inconsistent results between Python 2 and Python 3.
(This is similar to how str() gives inconsistent results on regular
byte strings).  Use buf[:] instead.

New in version 1.10: ffi.buffer is now the type of the returned
buffer objects; ffi.buffer() actually calls the constructor.

ffi.from_buffer([cdecl,] python_buffer, require_writable=False):
return an array cdata (by default a <cdata 'char[]'>) that
points to the data of the given Python object, which must support the
buffer interface.  Note that ffi.from_buffer() turns a generic
Python buffer object into a cdata object, whereas ffi.buffer() does
the opposite conversion.  Both calls don’t actually copy any data.

ffi.from_buffer() is meant to be used on objects
containing large quantities of raw data, like bytearrays
or array.array or numpy
arrays.  It supports both the old buffer API (in Python 2.x) and the
new memoryview API.  Note that if you pass a read-only buffer object,
you still get a regular <cdata 'char[]'>; it is your responsibility
not to write there if the original buffer doesn’t expect you to.
In particular, never modify byte strings!

The original object is kept alive (and, in case
of memoryview, locked) as long as the cdata object returned by
ffi.from_buffer() is alive.

A common use case is calling a C function with some char * that
points to the internal buffer of a Python object; for this case you
can directly pass ffi.from_buffer(python_buffer) as argument to
the call.

New in version 1.10: the python_buffer can be anything supporting
the buffer/memoryview interface (except unicode strings).  Previously,
bytearray objects were supported in version 1.7 onwards (careful, if you
resize the bytearray, the <cdata> object will point to freed
memory); and byte strings were supported in version 1.8 onwards.

New in version 1.12: added the optional first argument cdecl, and
the keyword argument require_writable:


	cdecl defaults to "char[]", but a different array type can be
specified for the result.  A value like "int[]" will return an array of
ints instead of chars, and its length will be set to the number of ints
that fit in the buffer (rounded down if the division is not exact).  Values
like "int[42]" or "int[2][3]" will return an array of exactly 42
(resp. 2-by-3) ints, raising a ValueError if the buffer is too small.  The
difference between specifying "int[]" and using the older code p1 =
ffi.from_buffer(x); p2 = ffi.cast("int *", p1) is that the older code
needs to keep p1 alive as long as p2 is in use, because only p1
keeps the underlying Python object alive and locked.  (In addition,
ffi.from_buffer("int[]", x) gives better array bound checking.)


	if require_writable is set to True, the function fails if the buffer
obtained from python_buffer is read-only (e.g. if python_buffer is
a byte string).  The exact exception is raised by the object itself, and
for things like bytes it varies with the Python version, so don’t rely on
it.  (Before version 1.12, the same effect can be achieved with a hack:
call ffi.memmove(python_buffer, b"", 0).  This has no effect if the
object is writable, but fails if it is read-only.)  Please keep in mind
that CFFI does not implement the C keyword const: even if you set
require_writable to False explicitly, you still get a regular
read-write cdata pointer.




New in version 1.12: see also ffi.release().




ffi.memmove()

ffi.memmove(dest, src, n): copy n bytes from memory area
src to memory area dest.  See examples below.  Inspired by the
C functions memcpy() and memmove()—like the latter, the
areas can overlap.  Each of dest and src can be either a cdata
pointer or a Python object supporting the buffer/memoryview interface.
In the case of dest, the buffer/memoryview must be writable.
New in version 1.3.  Examples:


	ffi.memmove(myptr, b"hello", 5) copies the 5 bytes of
b"hello" to the area that myptr points to.


	ba = bytearray(100); ffi.memmove(ba, myptr, 100) copies 100
bytes from myptr into the bytearray ba.


	ffi.memmove(myptr + 1, myptr, 100) shifts 100 bytes from
the memory at myptr to the memory at myptr + 1.




In versions before 1.10, ffi.from_buffer() had restrictions on the
type of buffer, which made ffi.memmove() more general.




ffi.typeof(), ffi.sizeof(), ffi.alignof()

ffi.typeof(“C type” or cdata object): return an object of type
<ctype> corresponding to the parsed string, or to the C type of the
cdata instance.  Usually you don’t need to call this function or to
explicitly manipulate <ctype> objects in your code: any place that
accepts a C type can receive either a string or a pre-parsed ctype
object (and because of caching of the string, there is no real
performance difference).  It can still be useful in writing typechecks,
e.g.:

def myfunction(ptr):
    assert ffi.typeof(ptr) is ffi.typeof("foo_t*")
    ...





Note also that the mapping from strings like "foo_t*" to the
<ctype> objects is stored in some internal dictionary.  This
guarantees that there is only one <ctype 'foo_t *'> object, so you
can use the is operator to compare it.  The downside is that the
dictionary entries are immortal for now.  In the future, we may add
transparent reclamation of old, unused entries.  In the meantime, note
that using strings like "int[%d]" % length to name a type will
create many immortal cached entries if called with many different
lengths.

ffi.sizeof(“C type” or cdata object): return the size of the
argument in bytes.  The argument can be either a C type, or a cdata object,
like in the equivalent sizeof operator in C.

For array = ffi.new("T[]", n), then ffi.sizeof(array) returns
n * ffi.sizeof("T").  New in version 1.9: Similar rules apply for
structures with a variable-sized array at the end.  More precisely, if
p was returned by ffi.new("struct foo *", ...), then
ffi.sizeof(p[0]) now returns the total allocated size.  In previous
versions, it used to just return ffi.sizeof(ffi.typeof(p[0])), which
is the size of the structure ignoring the variable-sized part.  (Note
that due to alignment, it is possible for ffi.sizeof(p[0]) to return
a value smaller than ffi.sizeof(ffi.typeof(p[0])).)

ffi.alignof(“C type”): return the natural alignment size in bytes of
the argument.  Corresponds to the __alignof__ operator in GCC.




ffi.offsetof(), ffi.addressof()

ffi.offsetof(“C struct or array type”, *fields_or_indexes): return the
offset within the struct of the given field.  Corresponds to offsetof()
in C.

You can give several field names in case of nested structures.  You
can also give numeric values which correspond to array items, in case
of a pointer or array type.  For example, ffi.offsetof("int[5]", 2)
is equal to the size of two integers, as is ffi.offsetof("int *", 2).

ffi.addressof(cdata, *fields_or_indexes): limited equivalent to
the ‘&’ operator in C:

1. ffi.addressof(<cdata 'struct-or-union'>) returns a cdata that
is a pointer to this struct or union.  The returned pointer is only
valid as long as the original cdata object is; be sure to keep it
alive if it was obtained directly from ffi.new().

2. ffi.addressof(<cdata>, field-or-index...) returns the address
of a field or array item inside the given structure or array.  In case
of nested structures or arrays, you can give more than one field or
index to look recursively.  Note that ffi.addressof(array, index)
can also be expressed as array + index: this is true both in CFFI
and in C, where &array[index] is just array + index.

3. ffi.addressof(<library>, "name") returns the address of the
named function or global variable from the given library object.
For functions, it returns a regular cdata
object containing a pointer to the function.

Note that the case 1. cannot be used to take the address of a
primitive or pointer, but only a struct or union.  It would be
difficult to implement because only structs and unions are internally
stored as an indirect pointer to the data.  If you need a C int whose
address can be taken, use ffi.new("int[1]") in the first place;
similarly, for a pointer, use ffi.new("foo_t *[1]").




ffi.CData, ffi.CType

ffi.CData, ffi.CType: the Python type of the objects referred to
as <cdata> and <ctype> in the rest of this document.  Note
that some cdata objects may be actually of a subclass of
ffi.CData, and similarly with ctype, so you should check with
if isinstance(x, ffi.CData).  Also, <ctype> objects have
a number of attributes for introspection: kind and cname are
always present, and depending on the kind they may also have
item, length, fields, args, result, ellipsis,
abi, elements and relements.

New in version 1.10: ffi.buffer is now a type as well.




ffi.gc()

ffi.gc(cdata, destructor, size=0):
return a new cdata object that points to the
same data.  Later, when this new cdata object is garbage-collected,
destructor(old_cdata_object) will be called.  Example of usage:
ptr = ffi.gc(lib.custom_malloc(42), lib.custom_free).
Note that like objects
returned by ffi.new(), the returned pointer objects have ownership,
which means the destructor is called as soon as this exact returned
object is garbage-collected.

New in version 1.12: see also ffi.release().

ffi.gc(ptr, None, size=0):
removes the ownership on a object returned by a
regular call to ffi.gc, and no destructor will be called when it
is garbage-collected.  The object is modified in-place, and the
function returns None.  New in version 1.7: ffi.gc(ptr, None)

Note that ffi.gc() should be avoided for limited resources, or (with
cffi below 1.11) for large memory allocations.  This is particularly
true on PyPy: its GC does not know how much memory or how many resources
the returned ptr holds.  It will only run its GC when enough memory
it knows about has been allocated (and thus run the destructor possibly
later than you would expect).  Moreover, the destructor is called in
whatever thread PyPy is at that moment, which might be a problem for
some C libraries.  In these cases, consider writing a wrapper class with
custom __enter__() and __exit__() methods, allocating and
freeing the C data at known points in time, and using it in a with
statement.  In cffi 1.12, see also ffi.release().

New in version 1.11: the size argument.  If given, this should be
an estimate of the size (in bytes) that ptr keeps alive.  This
information is passed on to the garbage collector, fixing part of the
problem described above.  The size argument is most important on
PyPy; on CPython, it is ignored so far, but in the future it could be
used to trigger more eagerly the cyclic reference GC, too (see CPython
issue 31105 [http://bugs.python.org/issue31105]).

The form ffi.gc(ptr, None, size=0) can be called with a negative
size, to cancel the estimate.  It is not mandatory, though:
nothing gets out of sync if the size estimates do not match.  It only
makes the next GC start more or less early.

Note that if you have several ffi.gc() objects, the corresponding
destructors will be called in a random order.  If you need a particular
order, see the discussion in issue 340 [https://bitbucket.org/cffi/cffi/issues/340/resources-release-issues].




ffi.new_handle(), ffi.from_handle()

ffi.new_handle(python_object): return a non-NULL cdata of type
void * that contains an opaque reference to python_object.  You
can pass it around to C functions or store it into C structures.  Later,
you can use ffi.from_handle(p) to retrieve the original
python_object from a value with the same void * pointer.
Calling ffi.from_handle(p) is invalid and will likely crash if
the cdata object returned by new_handle() is not kept alive!

See a typical usage example below.

(In case you are wondering, this void * is not the PyObject *
pointer.  This wouldn’t make sense on PyPy anyway.)

The ffi.new_handle()/from_handle() functions conceptually work
like this:


	new_handle() returns cdata objects that contains references to
the Python objects; we call them collectively the “handle” cdata
objects.  The void * value in these handle cdata objects are
random but unique.


	from_handle(p) searches all live “handle” cdata objects for the
one that has the same value p as its void * value.  It then
returns the Python object referenced by that handle cdata object.
If none is found, you get “undefined behavior” (i.e. crashes).




The “handle” cdata object keeps the Python object alive, similar to
how ffi.new() returns a cdata object that keeps a piece of memory
alive.  If the handle cdata object itself is not alive any more,
then the association void * -> python_object is dead and
from_handle() will crash.

New in version 1.4: two calls to new_handle(x) are guaranteed to
return cdata objects with different void * values, even with the
same x.  This is a useful feature that avoids issues with unexpected
duplicates in the following trick: if you need to keep alive the
“handle” until explicitly asked to free it, but don’t have a natural
Python-side place to attach it to, then the easiest is to add() it
to a global set.  It can later be removed from the set by
global_set.discard(p), with p any cdata object whose void *
value compares equal.

Usage example: suppose you have a C library where you must call a
lib.process_document() function which invokes some callback.  The
process_document() function receives a pointer to a callback and a
void * argument.  The callback is then invoked with the void
*data argument that is equal to the provided value.  In this typical
case, you can implement it like this (out-of-line API mode):

class MyDocument:
    ...

    def process(self):
        h = ffi.new_handle(self)
        lib.process_document(lib.my_callback,   # the callback
                             h,                 # 'void *data'
                             args...)
        # 'h' stays alive until here, which means that the
        # ffi.from_handle() done in my_callback() during
        # the call to process_document() is safe

    def callback(self, arg1, arg2):
        ...

# the actual callback is this one-liner global function:
@ffi.def_extern()
def my_callback(arg1, arg2, data):
    return ffi.from_handle(data).callback(arg1, arg2)








ffi.dlopen(), ffi.dlclose()

ffi.dlopen(libpath, [flags]): opens and returns a “handle” to a
dynamic library, as a <lib> object.  See Preparing and
Distributing modules.

ffi.dlclose(lib): explicitly closes a <lib> object returned
by ffi.dlopen().

ffi.RLTD_…: constants: flags for ffi.dlopen().




ffi.new_allocator()

ffi.new_allocator(alloc=None, free=None, should_clear_after_alloc=True):
returns a new allocator.  An “allocator” is a callable that behaves like
ffi.new() but uses the provided low-level alloc and free
functions.  New in version 1.2.

alloc() is invoked with the size as sole argument.  If it returns
NULL, a MemoryError is raised.  Later, if free is not None, it will
be called with the result of alloc() as argument.  Both can be either
Python function or directly C functions.  If only free is None, then no
free function is called.  If both alloc and free are None, the
default alloc/free combination is used.  (In other words, the call
ffi.new(*args) is equivalent to ffi.new_allocator()(*args).)

If should_clear_after_alloc is set to False, then the memory
returned by alloc() is assumed to be already cleared (or you are
fine with garbage); otherwise CFFI will clear it.  Example: for
performance, if you are using ffi.new() to allocate large chunks of
memory where the initial content can be left uninitialized, you can do:

# at module level
new_nonzero = ffi.new_allocator(should_clear_after_alloc=False)

# then replace `p = ffi.new("char[]", bigsize)` with:
    p = new_nonzero("char[]", bigsize)





NOTE: the following is a general warning that applies particularly
(but not only) to PyPy versions 5.6 or older (PyPy > 5.6 attempts to
account for the memory returned by ffi.new() or a custom allocator;
and CPython uses reference counting).  If you do large allocations, then
there is no hard guarantee about when the memory will be freed.  You
should avoid both new() and new_allocator()() if you want to be
sure that the memory is promptly released, e.g. before you allocate more
of it.

An alternative is to declare and call the C malloc() and free()
functions, or some variant like mmap() and munmap().  Then you
control exactly when the memory is allocated and freed.  For example,
add these two lines to your existing ffibuilder.cdef():

void *malloc(size_t size);
void free(void *ptr);





and then call these two functions manually:

p = lib.malloc(n * ffi.sizeof("int"))
try:
    my_array = ffi.cast("int *", p)
    ...
finally:
    lib.free(p)





In cffi version 1.12 you can indeed use ffi.new_allocator() but use the
with statement (see ffi.release()) to force the free function to be
called at a known point.  The above is equivalent to this code:

my_new = ffi.new_allocator(lib.malloc, lib.free)  # at global level
...
with my_new("int[]", n) as my_array:
    ...








ffi.release() and the context manager

ffi.release(cdata): release the resources held by a cdata object from
ffi.new(), ffi.gc(), ffi.from_buffer() or
ffi.new_allocator()().  The cdata object must not be used afterwards.
The normal Python destructor of the cdata object releases the same resources,
but this allows the releasing to occur at a known time, as opposed as at an
unspecified point in the future.
New in version 1.12.

ffi.release(cdata) is equivalent to cdata.__exit__(), which means that
you can use the with statement to ensure that the cdata is released at the
end of a block (in version 1.12 and above):

with ffi.from_buffer(...) as p:
    do something with p





The effect is more precisely as follows:


	on an object returned from ffi.gc(destructor), ffi.release() will
cause the destructor to be called immediately.


	on an object returned from a custom allocator, the custom free function
is called immediately.


	on CPython, ffi.from_buffer(buf) locks the buffer, so ffi.release()
can be used to unlock it at a known time.  On PyPy, there is no locking
(so far); the effect of ffi.release() is limited to removing the link,
allowing the original buffer object to be garbage-collected even if the
cdata object stays alive.


	on CPython this method has no effect (so far) on objects returned by
ffi.new(), because the memory is allocated inline with the cdata object
and cannot be freed independently.  It might be fixed in future releases of
cffi.


	on PyPy, ffi.release() frees the ffi.new() memory immediately.  It is
useful because otherwise the memory is kept alive until the next GC occurs.
If you allocate large amounts of memory with ffi.new() and don’t free
them with ffi.release(), PyPy (>= 5.7) runs its GC more often to
compensate, so the total memory allocated should be kept within bounds
anyway; but calling ffi.release() explicitly should improve performance
by reducing the frequency of GC runs.




After ffi.release(x), do not use anything pointed to by x any longer.
As an exception to this rule, you can call ffi.release(x) several times
for the exact same cdata object x; the calls after the first one are
ignored.




ffi.init_once()

ffi.init_once(function, tag): run function() once.  The
tag should be a primitive object, like a string, that identifies
the function: function() is only called the first time we see the
tag.  The return value of function() is remembered and
returned by the current and all future init_once() with the same
tag.  If init_once() is called from multiple threads in parallel,
all calls block until the execution of function() is done.  If
function() raises an exception, it is propagated and nothing is
cached (i.e. function() will be called again, in case we catch the
exception and try init_once() again).  New in version 1.4.

Example:

from _xyz_cffi import ffi, lib

def initlib():
    lib.init_my_library()

def make_new_foo():
    ffi.init_once(initlib, "init")
    return lib.make_foo()





init_once() is optimized to run very quickly if function() has
already been called.  (On PyPy, the cost is zero—the JIT usually
removes everything in the machine code it produces.)

Note: one motivation [https://bitbucket.org/cffi/cffi/issues/233/] for init_once() is the CPython notion of
“subinterpreters” in the embedded case.  If you are using the
out-of-line API mode, function() is called only once even in the
presence of multiple subinterpreters, and its return value is shared
among all subinterpreters.  The goal is to mimic the way traditional
CPython C extension modules have their init code executed only once in
total even if there are subinterpreters.  In the example above, the C
function init_my_library() is called once in total, not once per
subinterpreter.  For this reason, avoid Python-level side-effects in
function() (as they will only be applied in the first
subinterpreter to run); instead, return a value, as in the following
example:

def init_get_max():
    return lib.initialize_once_and_get_some_maximum_number()

def process(i):
    if i > ffi.init_once(init_get_max, "max"):
        raise IndexError("index too large!")
    ...








ffi.getctype(), ffi.list_types()

ffi.getctype(“C type” or <ctype>, extra=”“): return the string
representation of the given C type.  If non-empty, the “extra” string is
appended (or inserted at the right place in more complicated cases); it
can be the name of a variable to declare, or an extra part of the type
like "*" or "[5]".  For example
ffi.getctype(ffi.typeof(x), "*") returns the string representation
of the C type “pointer to the same type than x”; and
ffi.getctype("char[80]", "a") == "char a[80]".

ffi.list_types(): Returns the user type names known to this FFI
instance.  This returns a tuple containing three lists of names:
(typedef_names, names_of_structs, names_of_unions).  New in
version 1.6.






Conversions

This section documents all the conversions that are allowed when
writing into a C data structure (or passing arguments to a function
call), and reading from a C data structure (or getting the result of a
function call).  The last column gives the type-specific operations
allowed.









	C type

	writing into

	reading from

	other operations





	integers
and enums
[5]

	an integer or anything
on which int() works
(but not a float!).
Must be within range.

	a Python int or
long, depending
on the type
(ver. 1.10: or a
bool)

	int(), bool()
[6],
<



	char

	a string of length 1
or another <cdata char>

	a string of
length 1

	int(), bool(),
<



	wchar_t,
char16_t,
char32_t
[8]

	a unicode of length 1
(or maybe 2 if
surrogates) or
another similar <cdata>

	a unicode of
length 1
(or maybe 2 if
surrogates)

	int(),
bool(), <



	float,
double

	a float or anything on
which float() works

	a Python float

	float(), int(),
bool(), <



	long double

	another <cdata> with
a long double, or
anything on which
float() works

	a <cdata>, to
avoid loosing
precision [3]

	float(), int(),
bool()



	float
_Complex,
double
_Complex

	a complex number
or anything on which
complex() works

	a Python complex
number

	complex(),
bool()
[7]



	pointers

	another <cdata> with
a compatible type (i.e.
same type
or void*, or as an
array instead) [1]

	a <cdata>

	[] [4],
+, -,
bool()



	void *

	another <cdata> with
any pointer or array
type



	pointers to
structure or
union

	same as pointers

	[], +,
-, bool(),
and read/write
struct fields



	function
pointers

	same as pointers

	bool(),
call [2]



	arrays

	a list or tuple of
items

	a <cdata>

	len(), iter(),
[] [4],
+, -



	char[],
un/signed
char[],
_Bool[]

	same as arrays, or a
Python byte string

	len(), iter(),
[], +,
-



	wchar_t[],
char16_t[],
char32_t[]

	same as arrays, or a
Python unicode string

	len(), iter(),
[],
+, -



	structure

	a list or tuple or
dict of the field
values, or a same-type
<cdata>

	a <cdata>

	read/write
fields



	union

	same as struct, but
with at most one field

	read/write
fields






[1] item * is item[] in function arguments:


In a function declaration, as per the C standard, a item *
argument is identical to a item[] argument (and ffi.cdef()
doesn’t record the difference).  So when you call such a function,
you can pass an argument that is accepted by either C type, like
for example passing a Python string to a char * argument
(because it works for char[] arguments) or a list of integers
to a int * argument (it works for int[] arguments).  Note
that even if you want to pass a single item, you need to
specify it in a list of length 1; for example, a struct point_s
* argument might be passed as [[x, y]] or [{'x': 5, 'y':
10}].

As an optimization, CFFI assumes that a
function with a char * argument to which you pass a Python
string will not actually modify the array of characters passed in,
and so passes directly a pointer inside the Python string object.
(On PyPy, this optimization is only available since PyPy 5.4
with CFFI 1.8.)




[2] C function calls are done with the GIL released.


Note that we assume that the called functions are not using the
Python API from Python.h.  For example, we don’t check afterwards
if they set a Python exception.  You may work around it, but mixing
CFFI with Python.h is not recommended.  (If you do that, on
PyPy and on some platforms like Windows, you may need to explicitly
link to libpypy-c.dll to access the CPython C API compatibility
layer; indeed, CFFI-generated modules on PyPy don’t link to
libpypy-c.dll on their own.  But really, don’t do that in the
first place.)




[3] long double support:


We keep long double values inside a cdata object to avoid
loosing precision.  Normal Python floating-point numbers only
contain enough precision for a double.  If you really want to
convert such an object to a regular Python float (i.e. a C
double), call float().  If you need to do arithmetic on
such numbers without any precision loss, you need instead to define
and use a family of C functions like long double add(long double
a, long double b);.




[4] Slicing with x[start:stop]:


Slicing is allowed, as long as you specify explicitly both start
and stop (and don’t give any step).  It gives a cdata
object that is a “view” of all items from start to stop.
It is a cdata of type “array” (so e.g. passing it as an argument to a
C function would just convert it to a pointer to the start item).
As with indexing, negative bounds mean really negative indices, like in
C.  As for slice assignment, it accepts any iterable, including a list
of items or another array-like cdata object, but the length must match.
(Note that this behavior differs from initialization: e.g. you can
say chararray[10:15] = "hello", but the assigned string must be of
exactly the correct length; no implicit null character is added.)




[5] Enums are handled like ints:


Like C, enum types are mostly int types (unsigned or signed, int or
long; note that GCC’s first choice is unsigned).  Reading an enum
field of a structure, for example, returns you an integer.  To
compare their value symbolically, use code like if x.field ==
lib.FOO.  If you really want to get their value as a string, use
ffi.string(ffi.cast("the_enum_type", x.field)).




[6] bool() on a primitive cdata:


New in version 1.7.  In previous versions, it only worked on
pointers; for primitives it always returned True.

New in version 1.10:  The C type _Bool or bool converts to
Python booleans now.  You get an exception if a C _Bool happens
to contain a value different from 0 and 1 (this case triggers
undefined behavior in C; if you really have to interface with a
library relying on this, don’t use _Bool in the CFFI side).
Also, when converting from a byte string to a _Bool[], only the
bytes \x00 and \x01 are accepted.




[7] libffi does not support complex numbers:


New in version 1.11: CFFI now supports complex numbers directly.
Note however that libffi does not.  This means that C functions that
take directly as argument types or return type a complex type cannot
be called by CFFI, unless they are directly using the API mode.




[8] wchar_t, char16_t and char32_t


See Unicode character types below.





Support for FILE

You can declare C functions taking a FILE * argument and
call them with a Python file object.  If needed, you can also do c_f
= ffi.cast("FILE *", fileobj) and then pass around c_f.

Note, however, that CFFI does this by a best-effort approach.  If you
need finer control over buffering, flushing, and timely closing of the
FILE *, then you should not use this special support for FILE *.
Instead, you can handle regular FILE * cdata objects that you
explicitly make using fdopen(), like this:

ffi.cdef('''
    FILE *fdopen(int, const char *);   // from the C <stdio.h>
    int fclose(FILE *);
''')

myfile.flush()                    # make sure the file is flushed
newfd = os.dup(myfile.fileno())   # make a copy of the file descriptor
fp = lib.fdopen(newfd, "w")       # make a cdata 'FILE *' around newfd
lib.write_stuff_to_file(fp)       # invoke the external function
lib.fclose(fp)                    # when you're done, close fp (and newfd)





The special support for FILE * is anyway implemented in a similar manner
on CPython 3.x and on PyPy, because these Python implementations’ files are
not natively based on FILE *.  Doing it explicity offers more control.




Unicode character types

The wchar_t type has the same signedness as the underlying
platform’s.  For example, on Linux, it is a signed 32-bit integer.
However, the types char16_t and char32_t (new in version 1.11)
are always unsigned.

Note that CFFI assumes that these types are meant to contain UTF-16 or
UTF-32 characters in the native endianness.  More precisely:


	char32_t is assumed to contain UTF-32, or UCS4, which is just the
unicode codepoint;


	char16_t is assumed to contain UTF-16, i.e. UCS2 plus surrogates;


	wchar_t is assumed to contain either UTF-32 or UTF-16 based on its
actual platform-defined size of 4 or 2 bytes.




Whether this assumption is true or not is unspecified by the C language.
In theory, the C library you are interfacing with could use one of these
types with a different meaning.  You would then need to handle it
yourself—for example, by using uint32_t instead of char32_t in
the cdef(), and building the expected arrays of uint32_t
manually.

Python itself can be compiled with sys.maxunicode == 65535 or
sys.maxunicode == 1114111 (Python >= 3.3 is always 1114111).  This
changes the handling of surrogates (which are pairs of 16-bit
“characters” which actually stand for a single codepoint whose value is
greater than 65535).  If your Python is sys.maxunicode == 1114111,
then it can store arbitrary unicode codepoints; surrogates are
automatically inserted when converting from Python unicodes to UTF-16,
and automatically removed when converting back.   On the other hand, if
your Python is sys.maxunicode == 65535, then it is the other way
around: surrogates are removed when converting from Python unicodes
to UTF-32, and added when converting back.  In other words, surrogate
conversion is done only when there is a size mismatch.

Note that Python’s internal representations is not specified.  For
example, on CPython >= 3.3, it will use 1- or 2- or 4-bytes arrays
depending on what the string actually contains.  With CFFI, when you
pass a Python byte string to a C function expecting a char*, then
we pass directly a pointer to the existing data without needing a
temporary buffer; however, the same cannot cleanly be done with
unicode string arguments and the wchar_t* / char16_t* /
char32_t* types, because of the changing internal
representation.  As a result, and for consistency, CFFI always allocates
a temporary buffer for unicode strings.

Warning: for now, if you use char16_t and char32_t with
set_source(), you have to make sure yourself that the types are
declared by the C source you provide to set_source().  They would be
declared if you #include a library that explicitly uses them, for
example, or when using C++11.  Otherwise, you need #include
<uchar.h> on Linux, or more generally something like typedef
uint16_t char16_t;.  This is not done automatically by CFFI because
uchar.h is not standard across platforms, and writing a typedef
like above would crash if the type happens to be already defined.









          

      

      

    

  

    
      
          
            
  
Preparing and Distributing modules


Contents


	Preparing and Distributing modules


	ffi/ffibuilder.cdef(): declaring types and functions


	ffi.dlopen(): loading libraries in ABI mode


	ffibuilder.set_source(): preparing out-of-line modules


	Letting the C compiler fill the gaps


	ffibuilder.compile() etc.: compiling out-of-line modules


	ffi/ffibuilder.include(): combining multiple CFFI interfaces


	ffi.cdef() limitations


	Debugging dlopen’ed C libraries


	ffi.verify(): in-line API-mode


	Upgrading from CFFI 0.9 to CFFI 1.0










There are three or four different ways to use CFFI in a project.
In order of complexity:


	The “in-line”, “ABI mode”:

import cffi

ffi = cffi.FFI()
ffi.cdef("C-like declarations")
lib = ffi.dlopen("libpath")

# use ffi and lib here










	The “out-of-line”, but still “ABI mode”, useful to organize
the code and reduce the import time:

# in a separate file "package/foo_build.py"
import cffi

ffibuilder = cffi.FFI()
ffibuilder.set_source("package._foo", None)
ffibuilder.cdef("C-like declarations")

if __name__ == "__main__":
    ffibuilder.compile()





Running python foo_build.py produces a file _foo.py, which
can then be imported in the main program:

from package._foo import ffi
lib = ffi.dlopen("libpath")

# use ffi and lib here










	The “out-of-line”, “API mode” gives you the most flexibility
and speed to access a C library at the level of C, instead of at the
binary level:

# in a separate file "package/foo_build.py"
import cffi

ffibuilder = cffi.FFI()
ffibuilder.set_source("package._foo", r"""real C code""")   # <=
ffibuilder.cdef("C-like declarations with '...'")

if __name__ == "__main__":
    ffibuilder.compile(verbose=True)





Running python foo_build.py produces a file _foo.c and
invokes the C compiler to turn it into a file _foo.so (or
_foo.pyd or _foo.dylib).  It is a C extension module which
can be imported in the main program:

from package._foo import ffi, lib
# no ffi.dlopen()

# use ffi and lib here










	Finally, you can (but don’t have to) use CFFI’s Distutils or
Setuptools integration when writing a setup.py.  For
Distutils (only in out-of-line API mode):

# setup.py (requires CFFI to be installed first)
from distutils.core import setup

import foo_build   # possibly with sys.path tricks to find it

setup(
    ...,
    ext_modules=[foo_build.ffibuilder.distutils_extension()],
)





For Setuptools (out-of-line, but works in ABI or API mode;
recommended):

# setup.py (with automatic dependency tracking)
from setuptools import setup

setup(
    ...,
    setup_requires=["cffi>=1.0.0"],
    cffi_modules=["package/foo_build.py:ffibuilder"],
    install_requires=["cffi>=1.0.0"],
)





Note again that the foo_build.py example contains the following
lines, which mean that the ffibuilder is not actually compiled
when package.foo_build is merely imported—it will be compiled
independently by the Setuptools logic, using compilation parameters
provided by Setuptools:

if __name__ == "__main__":    # not when running with setuptools
    ffibuilder.compile(verbose=True)







	Note that some bundler tools that try to find all modules used by a
project, like PyInstaller, will miss _cffi_backend in the
out-of-line mode because your program contains no explicit import
cffi or import _cffi_backend.  You need to add
_cffi_backend explicitly (as a “hidden import” in PyInstaller,
but it can also be done more generally by adding the line import
_cffi_backend in your main program).




Note that CFFI actually contains two different FFI classes.  The
page Using the ffi/lib objects describes the common functionality.
It is what you get in the from package._foo import ffi lines above.
On the other hand, the extended FFI class is the one you get from
import cffi; ffi_or_ffibuilder = cffi.FFI().  It has the same
functionality (for in-line use), but also the extra methods described
below (to prepare the FFI).  NOTE: We use the name ffibuilder
instead of ffi in the out-of-line context, when the code is about
producing a _foo.so file; this is an attempt to distinguish it
from the different ffi object that you get by later saying
from _foo import ffi.

The reason for this split of functionality is that a regular program
using CFFI out-of-line does not need to import the cffi pure
Python package at all.  (Internally it still needs _cffi_backend,
a C extension module that comes with CFFI; this is why CFFI is also
listed in install_requires=.. above.  In the future this might be
split into a different PyPI package that only installs
_cffi_backend.)

Note that a few small differences do exist: notably, from _foo import
ffi returns an object of a type written in C, which does not let you
add random attributes to it (nor does it have all the
underscore-prefixed internal attributes of the Python version).
Similarly, the lib objects returned by the C version are read-only,
apart from writes to global variables.  Also, lib.__dict__ does
not work before version 1.2 or if lib happens to declare a name
called __dict__ (use instead dir(lib)).  The same is true
for lib.__class__, lib.__all__ and lib.__name__ added
in successive versions.


ffi/ffibuilder.cdef(): declaring types and functions

ffi/ffibuilder.cdef(source): parses the given C source.
It registers all the functions, types, constants and global variables in
the C source.  The types can be used immediately in ffi.new() and
other functions.  Before you can access the functions and global
variables, you need to give ffi another piece of information: where
they actually come from (which you do with either ffi.dlopen() or
ffi.set_source()).

The C source is parsed internally (using pycparser).  This code
cannot contain #include.  It should typically be a self-contained
piece of declarations extracted from a man page.  The only things it
can assume to exist are the standard types:


	char, short, int, long, long long (both signed and unsigned)


	float, double, long double


	intN_t, uintN_t (for N=8,16,32,64), intptr_t, uintptr_t, ptrdiff_t,
size_t, ssize_t


	wchar_t (if supported by the backend).  New in version 1.11:
char16_t and char32_t.


	_Bool and bool (equivalent).  If not directly supported by the C
compiler, this is declared with the size of unsigned char.


	FILE.  See here.


	all common Windows types [http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751%28v=vs.85%29.aspx] are defined if you run
on Windows (DWORD, LPARAM, etc.).  Exception:
TBYTE TCHAR LPCTSTR PCTSTR LPTSTR PTSTR PTBYTE PTCHAR are
not automatically defined; see ffi.set_unicode().


	the other standard integer types from
stdint.h, like intmax_t, as long as they map to integers of 1,
2, 4 or 8 bytes.  Larger integers are not supported.




The declarations can also contain “...” at various places; these are
placeholders that will be completed by the compiler.  More information
about it below in Letting the C compiler fill the gaps.

Note that all standard type names listed above are handled as
defaults only (apart from the ones that are keywords in the C
language).  If your cdef contains an explicit typedef that
redefines one of the types above, then the default described above is
ignored.  (This is a bit hard to implement cleanly, so in some corner
cases it might fail, notably with the error Multiple type specifiers
with a type tag.  Please report it as a bug if it does.)

Multiple calls to ffi.cdef() are possible.  Beware that it can be
slow to call ffi.cdef() a lot of times, a consideration that is
important mainly in in-line mode.

The ffi.cdef() call optionally takes an extra argument: either
packed or pack.  If you pass packed=True,
then all structs declared within
this cdef are “packed”.  (If you need both packed and non-packed
structs, use several cdefs in sequence.)  This
has a meaning similar to __attribute__((packed)) in GCC.  It
specifies that all structure fields should have an alignment of one
byte.  (Note that the packed attribute has no effect on bit fields so
far, which mean that they may be packed differently than on GCC.
Also, this has no effect on structs declared with "...;"—more
about it later in Letting the C compiler fill the gaps.)
New in version 1.12:  In ABI mode, you can also pass pack=n,
with an integer n which must be a power of two.  Then the
alignment of any field is limited to n if it would otherwise be
greater than n.  Passing pack=1 is equivalent to passing
packed=True.  This is meant to emulate #pragma pack(n) from
the MSVC compiler.  On Windows, the default is pack=8 (from cffi
1.12 onwards); on other platforms, the default is pack=None.

Note that you can use the type-qualifiers const and restrict
(but not __restrict or __restrict__) in the cdef(), but
this has no effect on the cdata objects that you get at run-time (they
are never const).  The effect is limited to knowing if a global
variable is meant to be a constant or not.  Also, new in version
1.3: when using set_source() or verify(), these two
qualifiers are copied from the cdef to the generated C code; this
fixes warnings by the C compiler.

Note a trick if you copy-paste code from sources in which there are
extra macros (for example, the Windows documentation uses SAL
annotations like _In_ or _Out_).  These hints must be removed
in the string given to cdef(), but it can be done programmatically
like this:

ffi.cdef(re.sub(r"\b(_In_|_Inout_|_Out_|_Outptr_)(opt_)?\b", " ",
  """
    DWORD WINAPI GetModuleFileName(
      _In_opt_ HMODULE hModule,
      _Out_    LPTSTR  lpFilename,
      _In_     DWORD   nSize
    );
  """))





Note also that pycparser, the underlying C parser, recognizes
preprocessor-like directives in the following format: # NUMBER
"FILE".  For example, if you put # 42 "foo.h" in the middle of the
string passed to cdef() and there is an error two lines later, then
it is reported with an error message that starts with foo.h:43: (the
line which is given the number 42 is the line immediately after the
directive).  New in version 1.10.1:  CFFI automatically puts the line
# 1 "<cdef source string>" just before the string you give to
cdef().

ffi.set_unicode(enabled_flag): Windows: if enabled_flag is
True, enable the UNICODE and _UNICODE defines in C, and
declare the types TBYTE TCHAR LPCTSTR PCTSTR LPTSTR PTSTR PTBYTE
PTCHAR to be (pointers to) wchar_t.  If enabled_flag is
False, declare these types to be (pointers to) plain 8-bit characters.
(These types are not predeclared at all if you don’t call
set_unicode().)

The reason behind this method is that a lot of standard functions have
two versions, like MessageBoxA() and MessageBoxW().  The
official interface is MessageBox() with arguments like
LPTCSTR.  Depending on whether UNICODE is defined or not, the
standard header renames the generic function name to one of the two
specialized versions, and declares the correct (unicode or not) types.

Usually, the right thing to do is to call this method with True.  Be
aware (particularly on Python 2) that, afterwards, you need to pass unicode
strings as arguments instead of byte strings.




ffi.dlopen(): loading libraries in ABI mode

ffi.dlopen(libpath, [flags]): this function opens a shared library and
returns a module-like library object.  Use this when you are fine with
the limitations of ABI-level access to the system (dependency on ABI
details, getting crashes instead of C compiler errors/warnings, and
higher overhead to call the C functions).  In case of doubt, read again
ABI versus API in the overview.

You can use the library object to call the functions previously
declared by ffi.cdef(), to read constants, and to read or write
global variables.  Note that you can use a single cdef() to
declare functions from multiple libraries, as long as you load each of
them with dlopen() and access the functions from the correct one.

The libpath is the file name of the shared library, which can
contain a full path or not (in which case it is searched in standard
locations, as described in man dlopen), with extensions or not.
Alternatively, if libpath is None, it returns the standard C library
(which can be used to access the functions of glibc, on Linux).  Note
that libpath cannot be None [http://bugs.python.org/issue23606] on Windows with Python 3.

Let me state it again: this gives ABI-level access to the library, so
you need to have all types declared manually exactly as they were
while the library was made.  No checking is done.  Mismatches can
cause random crashes.  API-level access, on the other hand, is safer.
Speed-wise, API-level access is much faster (it is common to have
the opposite misconception about performance).

Note that only functions and global variables live in library objects;
the types exist in the ffi instance independently of library objects.
This is due to the C model: the types you declare in C are not tied to a
particular library, as long as you #include their headers; but you
cannot call functions from a library without linking it in your program,
as dlopen() does dynamically in C.

For the optional flags argument, see man dlopen (ignored on
Windows).  It defaults to ffi.RTLD_NOW.

This function returns a “library” object that gets closed when it goes
out of scope.  Make sure you keep the library object around as long as
needed.  (Alternatively, the out-of-line FFIs have a method
ffi.dlclose(lib).)

Note: the old version of ffi.dlopen() from the in-line ABI mode
tries to use ctypes.util.find_library() if it cannot directly find
the library.  The newer out-of-line ffi.dlopen() no longer does it
automatically; it simply passes the argument it receives to the
underlying dlopen() or LoadLibrary() function.  If needed, it
is up to you to use ctypes.util.find_library() or any other way to
look for the library’s filename.  This also means that
ffi.dlopen(None) no longer work on Windows; try instead
ffi.dlopen(ctypes.util.find_library('c')).




ffibuilder.set_source(): preparing out-of-line modules

ffibuilder.set_source(module_name, c_header_source, [**keywords…]):
prepare the ffi for producing out-of-line an external module called
module_name.

ffibuilder.set_source() by itself does not write any file, but merely
records its arguments for later.  It can therefore be called before or
after ffibuilder.cdef().

In ABI mode, you call ffibuilder.set_source(module_name, None).  The
argument is the name (or dotted name inside a package) of the Python
module to generate.  In this mode, no C compiler is called.

In API mode, the c_header_source argument is a string that
will be pasted into the .c file generated.  Typically, it is specified as
r""" ...multiple lines of C code... """ (the r prefix allows these
lines to contain a literal \n, for example).  This piece of C code
typically contains some #include, but may also contain more,
like definitions for custom “wrapper” C functions.  The goal is that
the .c file can be generated like this:

// C file "module_name.c"
#include <Python.h>

...c_header_source...

...magic code...





where the “magic code” is automatically generated from the cdef().
For example, if the cdef() contains int foo(int x); then the
magic code will contain logic to call the function foo() with an
integer argument, itself wrapped inside some CPython or PyPy-specific
code.

The keywords arguments to set_source() control how the C compiler
will be called.  They are passed directly to distutils [http://docs.python.org/distutils/setupscript.html#describing-extension-modules] or setuptools [https://pythonhosted.org/setuptools/setuptools.html]
and include at least sources, include_dirs, define_macros,
undef_macros, libraries, library_dirs, extra_objects,
extra_compile_args and extra_link_args.  You typically need at
least libraries=['foo'] in order to link with libfoo.so or
libfoo.so.X.Y, or foo.dll on Windows.  The sources is a
list of extra .c files compiled and linked together (the file
module_name.c shown above is always generated and automatically added as the
first argument to sources).  See the distutils documentations for
more information about the other arguments [http://docs.python.org/distutils/setupscript.html#library-options].

An extra keyword argument processed internally is
source_extension, defaulting to ".c".  The file generated will
be actually called module_name + source_extension.  Example for
C++ (but note that there are still a few known issues of C-versus-C++
compatibility):

ffibuilder.set_source("mymodule", r'''
extern "C" {
    int somefunc(int somearg) { return real_cpp_func(somearg); }
}
''', source_extension='.cpp')





ffibuilder.set_source_pkgconfig(module_name, pkgconfig_libs,
c_header_source, [**keywords…]):

New in version 1.12.  This is equivalent to set_source() but it
first calls the system utility pkg-config with the package names
given in the list pkgconfig_libs.  It collects the information
obtained in this way and adds it to the explicitly-provided
**keywords (if any).  This should probably not be used on Windows.

If the pkg-config program is not installed or does not know about
the requested library, the call fails with cffi.PkgConfigError.  If
necessary, you can catch this error and try to call set_source()
directly.  (Ideally, you should also do that if the ffibuilder
instance has no method set_source_pkgconfig(), to support older
versions of cffi.)




Letting the C compiler fill the gaps

If you are using a C compiler (“API mode”), then:


	functions taking or returning integer or float-point arguments can be
misdeclared: if e.g. a function is declared by cdef() as taking a
int, but actually takes a long, then the C compiler handles the
difference.


	other arguments are checked: you get a compilation warning or error
if you pass a int * argument to a function expecting a long *.


	similarly, most other things declared in the cdef() are checked,
to the best we implemented so far; mistakes give compilation
warnings or errors.




Moreover, you can use “...” (literally, dot-dot-dot) in the
cdef() at various places, in order to ask the C compiler to fill
in the details.  These places are:


	structure declarations: any struct { } that ends with “...;” as
the last “field” is
partial: it may be missing fields and/or have them declared out of order.
This declaration will be corrected by the compiler.  (But note that you
can only access fields that you declared, not others.)  Any struct
declaration which doesn’t use “...” is assumed to be exact, but this is
checked: you get an error if it is not correct.


	integer types: the syntax “typedef
int... foo_t;” declares the type foo_t as an integer type
whose exact size and signedness is not specified.  The compiler will
figure it out.  (Note that this requires set_source(); it does
not work with verify().)  The int... can be replaced with
long... or unsigned long long... or any other primitive
integer type, with no effect.  The type will always map to one of
(u)int(8,16,32,64)_t in Python, but in the generated C code,
only foo_t is used.


	New in version 1.3: floating-point types: “typedef
float... foo_t;” (or equivalently “typedef double... foo_t;”)
declares foo_t as a-float-or-a-double; the compiler will figure
out which it is.  Note that if the actual C type is even larger
(long double on some platforms), then compilation will fail.
The problem is that the Python “float” type cannot be used to store
the extra precision.  (Use the non-dot-dot-dot syntax typedef long
double foo_t; as usual, which returns values that are not Python
floats at all but cdata “long double” objects.)


	unknown types: the syntax “typedef ... foo_t;” declares the type
foo_t as opaque.  Useful mainly for when the API takes and returns
foo_t * without you needing to look inside the foo_t.  Also
works with “typedef ... *foo_p;” which declares the pointer type
foo_p without giving a name to the opaque type itself.  Note that
such an opaque struct has no known size, which prevents some operations
from working (mostly like in C).  You cannot use this syntax to
declare a specific type, like an integer type!  It declares opaque
struct-like types only.  In some cases you need to say that
foo_t is not opaque, but just a struct where you don’t know any
field; then you would use “typedef struct { ...; } foo_t;”.


	array lengths: when used as structure fields or in global variables,
arrays can have an unspecified length, as in “int n[...];”.  The
length is completed by the C compiler.
This is slightly different from “int n[];”, because the latter
means that the length is not known even to the C compiler, and thus
no attempt is made to complete it.  This supports
multidimensional arrays: “int n[...][...];”.

New in version 1.2: “int m[][...];”, i.e. ... can be used
in the innermost dimensions without being also used in the outermost
dimension.  In the example given, the length of the m array is
assumed not to be known to the C compiler, but the length of every
item (like the sub-array m[0]) is always known the C compiler.
In other words, only the outermost dimension can be specified as
[], both in C and in CFFI, but any dimension can be given as
[...] in CFFI.



	enums: if you don’t know the exact order (or values) of the declared
constants, then use this syntax: “enum foo { A, B, C, ... };”
(with a trailing “...”).  The C compiler will be used to figure
out the exact values of the constants.  An alternative syntax is
“enum foo { A=..., B, C };” or even
“enum foo { A=..., B=..., C=... };”.  Like
with structs, an enum without “...” is assumed to
be exact, and this is checked.


	integer constants and macros: you can write in the cdef the line
“#define FOO ...”, with any macro name FOO but with ... as
a value.  Provided the macro
is defined to be an integer value, this value will be available via
an attribute of the library object.  The
same effect can be achieved by writing a declaration
static const int FOO;.  The latter is more general because it
supports other types than integer types (note: the C syntax is then
to write the const together with the variable name, as in
static char *const FOO;).




Currently, it is not supported to find automatically which of the
various integer or float types you need at which place—except in the
following case: if such a type is explicitly named.  For an integer
type, use typedef int... the_type_name;, or another type like
typedef unsigned long... the_type_name;.  Both are equivalent and
replaced by the real C type, which must be an integer type.
Similarly, for floating-point types, use typedef float...
the_type_name; or equivalently typedef double...  the_type_name;.
Note that long double cannot be detected this way.

In the case of function arguments or return types, when it is a simple
integer/float type, you can simply misdeclare it.  If you misdeclare a
function void f(long) as void f(int), it still works (but you
have to call it with arguments that fit an int).  It works because the C
compiler will do the casting for us.  This C-level casting of arguments
and return types only works for regular function, and not for function
pointer types; currently, it also does not work for variadic functions.

For more complex types, you have no choice but be precise.  For example,
you cannot misdeclare a int * argument as long *, or a global
array int a[5]; as long a[5];.  CFFI considers all types listed
above as primitive (so long long a[5]; and int64_t a[5] are
different declarations).  The reason for that is detailed in a comment
about an issue. [https://bitbucket.org/cffi/cffi/issues/265/cffi-doesnt-allow-creating-pointers-to#comment-28406958]




ffibuilder.compile() etc.: compiling out-of-line modules

You can use one of the following functions to actually generate the
.py or .c file prepared with ffibuilder.set_source() and
ffibuilder.cdef().

Note that these function won’t overwrite a .py/.c file with exactly
the same content, to preserve the mtime.  In some cases where you need
the mtime to be updated anyway, delete the file before calling the
functions.

New in version 1.8: the C code produced by emit_c_code() or
compile() contains #define Py_LIMITED_API.  This means that on
CPython >= 3.2, compiling this source produces a binary .so/.dll that
should work for any version of CPython >= 3.2 (as opposed to only for
the same version of CPython x.y).  However, the standard distutils
package will still produce a file called e.g.
NAME.cpython-35m-x86_64-linux-gnu.so.  You can manually rename it to
NAME.abi3.so, or use setuptools version 26 or later.  Also, note
that compiling with a debug version of Python will not actually define
Py_LIMITED_API, as doing so makes Python.h unhappy.

New in version 1.12: Py_LIMITED_API is now defined on Windows too.
If you use virtualenv, you need a recent version of it: versions
older than 16.0.0 forgot to copy python3.dll into the virtual
environment.  In case upgrading virtualenv is a real problem, you
can manually edit the C code to remove the first line # define
Py_LIMITED_API.

ffibuilder.compile(tmpdir=’.’, verbose=False, debug=None):
explicitly generate the .py or .c file,
and (if .c) compile it.  The output file is (or are) put in the
directory given by tmpdir.  In the examples given here, we use
if __name__ == "__main__": ffibuilder.compile() in the build scripts—if
they are directly executed, this makes them rebuild the .py/.c file in
the current directory.  (Note: if a package is specified in the call
to set_source(), then a corresponding subdirectory of the tmpdir
is used.)

New in version 1.4: verbose argument.  If True, it prints the
usual distutils output, including the command lines that call the
compiler.  (This parameter might be changed to True by default in a
future release.)

New in version 1.8.1: debug argument.  If set to a bool, it
controls whether the C code is compiled in debug mode or not.  The
default None means to use the host Python’s sys.flags.debug.
Starting with version 1.8.1, if you are running a debug-mode Python, the
C code is thus compiled in debug mode by default (note that it is anyway
necessary to do so on Windows).

ffibuilder.emit_python_code(filename): generate the given .py file (same
as ffibuilder.compile() for ABI mode, with an explicitly-named file to
write).  If you choose, you can include this .py file pre-packaged in
your own distributions: it is identical for any Python version (2 or
3).

ffibuilder.emit_c_code(filename): generate the given .c file (for API
mode) without compiling it.  Can be used if you have some other method
to compile it, e.g. if you want to integrate with some larger build
system that will compile this file for you.  You can also distribute
the .c file: unless the build script you used depends on the OS or
platform, the .c file itself is generic (it would be exactly the same
if produced on a different OS, with a different version of CPython, or
with PyPy; it is done with generating the appropriate #ifdef).

ffibuilder.distutils_extension(tmpdir=’build’, verbose=True): for
distutils-based setup.py files.  Calling this creates the .c file
if needed in the given tmpdir, and returns a
distutils.core.Extension instance.

For Setuptools, you use instead the line
cffi_modules=["path/to/foo_build.py:ffibuilder"] in setup.py.  This
line asks Setuptools to import and use a helper provided by CFFI,
which in turn executes the file path/to/foo_build.py (as with
execfile()) and looks up its global variable called ffibuilder.  You
can also say cffi_modules=["path/to/foo_build.py:maker"], where
maker names a global function; it is called with no argument and
is supposed to return a FFI object.




ffi/ffibuilder.include(): combining multiple CFFI interfaces

ffi/ffibuilder.include(other_ffi): includes the typedefs, structs, unions,
enums and constants defined in another FFI instance.  This is meant
for large projects where one CFFI-based interface depends on some
types declared in a different CFFI-based interface.

Note that you should only use one ffi object per library; the intended
usage of ffi.include() is if you want to interface with several
inter-dependent libraries.  For only one library, make one ffi
object.  (You can write several cdef() calls over the same ffi
from several Python files, if one file would be too large.)

For out-of-line modules, the ffibuilder.include(other_ffibuilder)
line should
occur in the build script, and the other_ffibuilder argument should be
another FFI instance that comes from another build script.  When the two build
scripts are turned into generated files, say _ffi.so and
_other_ffi.so, then importing _ffi.so will internally cause
_other_ffi.so to be imported.  At that point, the real
declarations from _other_ffi.so are combined with the real
declarations from _ffi.so.

The usage of ffi.include() is the cdef-level equivalent of a
#include in C, where a part of the program might include types and
functions defined in another part for its own usage.  You can see on
the ffi object (and associated lib objects on the including
side) the types and constants declared on the included side.  In API
mode, you can also see the functions and global variables directly.
In ABI mode, these must be accessed via the original other_lib
object returned by the dlopen() method on other_ffi.




ffi.cdef() limitations

All of the ANSI C declarations should be supported in cdef(),
and some of C99.  (This excludes any #include or #ifdef.)
Known missing features that are either in C99, or are GCC or MSVC
extensions:


	Any __attribute__ or #pragma pack(n)


	Additional types: special-size floating and fixed
point types, vector types, and so on.


	The C99 types float _Complex and double _Complex are supported
by cffi since version 1.11, but not libffi: you cannot call C
functions with complex arguments or return value, except if they are
directly API-mode functions.  The type long double _Complex is not
supported at all (declare and use it as if it were an array of two
long double, and write wrapper functions in C with set_source()).


	
	__restrict__ or __restrict are extensions of, respectively,

	GCC and MSVC.  They are not recognized.  But restrict is a C
keyword and is accepted (and ignored).









Note that declarations like int field[]; in
structures are interpreted as variable-length structures.  Declarations
like int field[...]; on the other hand are arrays whose length is
going to be completed by the compiler.  You can use int field[];
for array fields that are not, in fact, variable-length; it works too,
but in this case, as CFFI
believes it cannot ask the C compiler for the length of the array, you
get reduced safety checks: for example, you risk overwriting the
following fields by passing too many array items in the constructor.

New in version 1.2:
Thread-local variables (__thread) can be accessed, as well as
variables defined as dynamic macros (#define myvar  (*fetchme())).
Before version 1.2, you need to write getter/setter functions.

Note that if you declare a variable in cdef() without using
const, CFFI assumes it is a read-write variable and generates two
pieces of code, one to read it and one to write it.  If the variable
cannot in fact be written to in C code, for one reason or another, it
will not compile.  In this case, you can declare it as a constant: for
example, instead of foo_t *myglob; you would use foo_t *const
myglob;.  Note also that const foo_t *myglob;  is a variable; it
contains a variable pointer to a constant foo_t.




Debugging dlopen’ed C libraries

A few C libraries are actually hard to use correctly in a dlopen()
setting.  This is because most C libraries are intended for, and tested
with, a situation where they are linked with another program, using
either static linking or dynamic linking — but from a program written
in C, at start-up, using the linker’s capabilities instead of
dlopen().

This can occasionally create issues.  You would have the same issues in
another setting than CFFI, like with ctypes or even plain C code that
calls dlopen().  This section contains a few generally useful
environment variables (on Linux) that can help when debugging these
issues.

export LD_TRACE_LOADED_OBJECTS=all


provides a lot of information, sometimes too much depending on the
setting.  Output verbose debugging information about the dynamic
linker. If set to all prints all debugging information it has, if
set to help prints a help message about which categories can be
specified in this environment variable




export LD_VERBOSE=1


(glibc since 2.1) If set to a nonempty string, output symbol
versioning information about the program if querying information
about the program (i.e., either LD_TRACE_LOADED_OBJECTS has been set,
or --list or --verify options have been given to the dynamic
linker).




export LD_WARN=1


(ELF only)(glibc since 2.1.3) If set to a nonempty string, warn
about unresolved symbols.







ffi.verify(): in-line API-mode

ffi.verify() is supported for backward compatibility, but is
deprecated.  ffi.verify(c_header_source, tmpdir=.., ext_package=..,
modulename=.., flags=.., **kwargs) makes and compiles a C file from
the ffi.cdef(), like ffi.set_source() in API mode, and then
immediately loads and returns the dynamic library object.  Some
non-trivial logic is used to decide if the dynamic library must be
recompiled or not; see below for ways to control it.

The c_header_source and the extra keyword arguments have the
same meaning as in ffi.set_source().

One remaining use case for ffi.verify() would be the following
hack to find explicitly the size of any type, in bytes, and have it
available in Python immediately (e.g. because it is needed in order to
write the rest of the build script):

ffi = cffi.FFI()
ffi.cdef("const int mysize;")
lib = ffi.verify("const int mysize = sizeof(THE_TYPE);")
print lib.mysize





Extra arguments to ffi.verify():


	tmpdir controls where the C
files are created and compiled. Unless the CFFI_TMPDIR environment
variable is set, the default is
directory_containing_the_py_file/__pycache__ using the
directory name of the .py file that contains the actual call to
ffi.verify().  (This is a bit of a hack but is generally
consistent with the location of the .pyc files for your library.
The name __pycache__ itself comes from Python 3.)


	ext_package controls in which package the
compiled extension module should be looked from.  This is
only useful after distributing ffi.verify()-based modules.


	The tag argument gives an extra string inserted in the
middle of the extension module’s name: _cffi_<tag>_<hash>.
Useful to give a bit more context, e.g. when debugging.


	The modulename argument can be used to force a specific module
name, overriding the name _cffi_<tag>_<hash>.  Use with care,
e.g. if you are passing variable information to verify() but
still want the module name to be always the same (e.g. absolute
paths to local files).  In this case, no hash is computed and if
the module name already exists it will be reused without further
check.  Be sure to have other means of clearing the tmpdir
whenever you change your sources.


	source_extension has the same meaning as in ffibuilder.set_source().


	The optional flags argument (ignored on Windows) defaults to
ffi.RTLD_NOW; see man dlopen.  (With
ffibuilder.set_source(), you would use sys.setdlopenflags().)


	The optional relative_to argument is useful if you need to list
local files passed to the C compiler:

ext = ffi.verify(..., sources=['foo.c'], relative_to=__file__)





The line above is roughly the same as:

ext = ffi.verify(..., sources=['/path/to/this/file/foo.c'])





except that the default name of the produced library is built from
the CRC checkum of the argument sources, as well as most other
arguments you give to ffi.verify() – but not relative_to.
So if you used the second line, it would stop finding the
already-compiled library after your project is installed, because
the '/path/to/this/file' suddenly changed.  The first line does
not have this problem.





Note that during development, every time you change the C sources that
you pass to cdef() or verify(), then the latter will create a
new module file name, based on two CRC32 hashes computed from these
strings.  This creates more and more files in the __pycache__
directory.  It is recommended that you clean it up from time to time.
A nice way to do that is to add, in your test suite, a call to
cffi.verifier.cleanup_tmpdir().  Alternatively, you can manually
remove the whole __pycache__ directory.

An alternative cache directory can be given as the tmpdir argument
to verify(), via the environment variable CFFI_TMPDIR, or by
calling cffi.verifier.set_tmpdir(path) prior to calling
verify.




Upgrading from CFFI 0.9 to CFFI 1.0

CFFI 1.0 is backward-compatible, but it is still a good idea to
consider moving to the out-of-line approach new in 1.0.  Here are the
steps.

ABI mode if your CFFI project uses ffi.dlopen():

import cffi

ffi = cffi.FFI()
ffi.cdef("stuff")
lib = ffi.dlopen("libpath")





and if the “stuff” part is big enough that import time is a concern,
then rewrite it as described in the out-of-line but still ABI mode
above.  Optionally, see also the setuptools integration paragraph.

API mode if your CFFI project uses ffi.verify():

import cffi

ffi = cffi.FFI()
ffi.cdef("stuff")
lib = ffi.verify("real C code")





then you should really rewrite it as described in the out-of-line,
API mode above.  It avoids a number of issues that have caused
ffi.verify() to grow a number of extra arguments over time.  Then
see the distutils or setuptools paragraph.  Also, remember to
remove the ext_package=".." from your setup.py, which was
sometimes needed with verify() but is just creating confusion with
set_source().

The following example should work both with old (pre-1.0) and new
versions of CFFI—supporting both is important to run on old
versions of PyPy (CFFI 1.0 does not work in PyPy < 2.6):

# in a separate file "package/foo_build.py"
import cffi

ffi = cffi.FFI()
C_HEADER_SRC = r'''
    #include "somelib.h"
'''
C_KEYWORDS = dict(libraries=['somelib'])

if hasattr(ffi, 'set_source'):
    ffi.set_source("package._foo", C_HEADER_SRC, **C_KEYWORDS)

ffi.cdef('''
    int foo(int);
''')

if __name__ == "__main__":
    ffi.compile()





And in the main program:

try:
    from package._foo import ffi, lib
except ImportError:
    from package.foo_build import ffi, C_HEADER_SRC, C_KEYWORDS
    lib = ffi.verify(C_HEADER_SRC, **C_KEYWORDS)





(FWIW, this latest trick can be used more generally to allow the
import to “work” even if the _foo module was not generated.)

Writing a setup.py script that works both with CFFI 0.9 and 1.0
requires explicitly checking the version of CFFI that we can have—it
is hard-coded as a built-in module in PyPy:

if '_cffi_backend' in sys.builtin_module_names:   # PyPy
    import _cffi_backend
    requires_cffi = "cffi==" + _cffi_backend.__version__
else:
    requires_cffi = "cffi>=1.0.0"





Then we use the requires_cffi variable to give different arguments to
setup() as needed, e.g.:

if requires_cffi.startswith("cffi==0."):
    # backward compatibility: we have "cffi==0.*"
    from package.foo_build import ffi
    extra_args = dict(
        ext_modules=[ffi.verifier.get_extension()],
        ext_package="...",    # if needed
    )
else:
    extra_args = dict(
        setup_requires=[requires_cffi],
        cffi_modules=['package/foo_build.py:ffi'],
    )
setup(
    name=...,
    ...,
    install_requires=[requires_cffi],
    **extra_args
)
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You can use CFFI to generate C code which exports the API of your choice
to any C application that wants to link with this C code.  This API,
which you define yourself, ends up as the API of a .so/.dll/.dylib
library—or you can statically link it within a larger application.

Possible use cases:


	Exposing a library written in Python directly to C/C++ programs.


	Using Python to make a “plug-in” for an existing C/C++ program that is
already written to load them.


	Using Python to implement part of a larger C/C++ application (with
static linking).


	Writing a small C/C++ wrapper around Python, hiding the fact that the
application is actually written in Python (to make a custom
command-line interface; for distribution purposes; or simply to make
it a bit harder to reverse-engineer the application).




The general idea is as follows:


	You write and execute a Python script, which produces a .c file
with the API of your choice (and optionally compile it into a
.so/.dll/.dylib).  The script also gives some Python code to be
“frozen” inside the .so.


	At runtime, the C application loads this .so/.dll/.dylib (or is
statically linked with the .c source) without having to know that
it was produced from Python and CFFI.


	The first time a C function is called, Python is initialized and
the frozen Python code is executed.


	The frozen Python code defines more Python functions that implement the
C functions of your API, which are then used for all subsequent C
function calls.




One of the goals of this approach is to be entirely independent from
the CPython C API: no Py_Initialize() nor PyRun_SimpleString()
nor even PyObject.  It works identically on CPython and PyPy.

This is entirely new in version 1.5.  (PyPy contains CFFI 1.5 since
release 5.0.)


Usage

See the paragraph in the overview page for a quick introduction.
In this section, we explain every step in more details.  We will use
here this slightly expanded example:

/* file plugin.h */
typedef struct { int x, y; } point_t;
extern int do_stuff(point_t *);





/* file plugin.h, Windows-friendly version */
typedef struct { int x, y; } point_t;

/* When including this file from ffibuilder.set_source(), the
   following macro is defined to '__declspec(dllexport)'.  When
   including this file directly from your C program, we define
   it to 'extern __declspec(dllimport)' instead.

   With non-MSVC compilers we simply define it to 'extern'.
   (The 'extern' is needed for sharing global variables;
   functions would be fine without it.  The macros always
   include 'extern': you must not repeat it when using the
   macros later.)
*/
#ifndef CFFI_DLLEXPORT
#  if defined(_MSC_VER)
#    define CFFI_DLLEXPORT  extern __declspec(dllimport)
#  else
#    define CFFI_DLLEXPORT  extern
#  endif
#endif

CFFI_DLLEXPORT int do_stuff(point_t *);





# file plugin_build.py
import cffi
ffibuilder = cffi.FFI()

with open('plugin.h') as f:
    # read plugin.h and pass it to embedding_api(), manually
    # removing the '#' directives and the CFFI_DLLEXPORT
    data = ''.join([line for line in f if not line.startswith('#')])
    data = data.replace('CFFI_DLLEXPORT', '')
    ffibuilder.embedding_api(data)

ffibuilder.set_source("my_plugin", r'''
    #include "plugin.h"
''')

ffibuilder.embedding_init_code("""
    from my_plugin import ffi

    @ffi.def_extern()
    def do_stuff(p):
        print("adding %d and %d" % (p.x, p.y))
        return p.x + p.y
""")

ffibuilder.compile(target="plugin-1.5.*", verbose=True)
# or: ffibuilder.emit_c_code("my_plugin.c")





Running the code above produces a DLL, i,e, a dynamically-loadable
library.  It is a file with the extension .dll on Windows,
.dylib on Mac OS/X, or .so on other platforms.  As usual, it
is produced by generating some intermediate .c code and then
calling the regular platform-specific C compiler.  See below for
some pointers to C-level issues with using the produced library.

Here are some details about the methods used above:


	ffibuilder.embedding_api(source): parses the given C source, which
declares functions that you want to be exported by the DLL.  It can
also declare types, constants and global variables that are part of
the C-level API of your DLL.

The functions that are found in source will be automatically
defined in the .c file: they will contain code that initializes
the Python interpreter the first time any of them is called,
followed by code to call the attached Python function (with
@ffi.def_extern(), see next point).

The global variables, on the other hand, are not automatically
produced.  You have to write their definition explicitly in
ffibuilder.set_source(), as regular C code (see the point after next).



	ffibuilder.embedding_init_code(python_code): this gives
initialization-time Python source code.  This code is copied
(“frozen”) inside the DLL.  At runtime, the code is executed when
the DLL is first initialized, just after Python itself is
initialized.  This newly initialized Python interpreter has got an
extra “built-in” module that can be loaded magically without
accessing any files, with a line like “from my_plugin import ffi,
lib”.  The name my_plugin comes from the first argument to
ffibuilder.set_source().  This module represents “the caller’s C world”
from the point of view of Python.

The initialization-time Python code can import other modules or
packages as usual.  You may have typical Python issues like needing
to set up sys.path somehow manually first.

For every function declared within ffibuilder.embedding_api(), the
initialization-time Python code or one of the modules it imports
should use the decorator @ffi.def_extern() to attach a
corresponding Python function to it.

If the initialization-time Python code fails with an exception, then
you get a traceback printed to stderr, along with more information
to help you identify problems like wrong sys.path.  If some
function remains unattached at the time where the C code tries to
call it, an error message is also printed to stderr and the function
returns zero/null.

Note that the CFFI module never calls exit(), but CPython itself
contains code that calls exit(), for example if importing
site fails.  This may be worked around in the future.



	ffibuilder.set_source(c_module_name, c_code): set the name of the
module from Python’s point of view.  It also gives more C code which
will be included in the generated C code.  In trivial examples it
can be an empty string.  It is where you would #include some
other files, define global variables, and so on.  The macro
CFFI_DLLEXPORT is available to this C code: it expands to the
platform-specific way of saying “the following declaration should be
exported from the DLL”.  For example, you would put “extern int
my_glob;” in ffibuilder.embedding_api() and “CFFI_DLLEXPORT int
my_glob = 42;” in ffibuilder.set_source().

Currently, any type declared in ffibuilder.embedding_api() must also
be present in the c_code.  This is automatic if this code
contains a line like #include "plugin.h" in the example above.



	ffibuilder.compile([target=…] [, verbose=True]): make the C code and
compile it.  By default, it produces a file called
c_module_name.dll, c_module_name.dylib or
c_module_name.so, but the default can be changed with the
optional target keyword argument.  You can use
target="foo.*" with a literal * to ask for a file called
foo.dll on Windows, foo.dylib on OS/X and foo.so
elsewhere.  One reason for specifying an alternate target is to
include characters not usually allowed in Python module names, like
“plugin-1.5.*”.

For more complicated cases, you can call instead
ffibuilder.emit_c_code("foo.c") and compile the resulting foo.c
file using other means.  CFFI’s compilation logic is based on the
standard library distutils package, which is really developed
and tested for the purpose of making CPython extension modules; it
might not always be appropriate for making general DLLs.  Also, just
getting the C code is what you need if you do not want to make a
stand-alone .so/.dll/.dylib file: this C file can be compiled
and statically linked as part of a larger application.








More reading

If you’re reading this page about embedding and you are not familiar
with CFFI already, here are a few pointers to what you could read
next:


	For the @ffi.def_extern() functions, integer C types are passed
simply as Python integers; and simple pointers-to-struct and basic
arrays are all straightforward enough.  However, sooner or later you
will need to read about this topic in more details here.


	@ffi.def_extern(): see documentation here, notably on what
happens if the Python function raises an exception.


	To create Python objects attached to C data, one common solution is
to use ffi.new_handle().  See documentation here.


	In embedding mode, the major direction is C code that calls Python
functions.  This is the opposite of the regular extending mode of
CFFI, in which the major direction is Python code calling C.  That’s
why the page Using the ffi/lib objects talks first about the
latter, and why the direction “C code that calls Python” is
generally referred to as “callbacks” in that page.  If you also
need to have your Python code call C code, read more about
Embedding and Extending below.


	ffibuilder.embedding_api(source): follows the same syntax as
ffibuilder.cdef(), documented here.  You can use the “...”
syntax as well, although in practice it may be less useful than it
is for cdef().  On the other hand, it is expected that often the
C sources that you need to give to ffibuilder.embedding_api() would be
exactly the same as the content of some .h file that you want to
give to users of your DLL.  That’s why the example above does this:

with open('foo.h') as f:
    ffibuilder.embedding_api(f.read())





Note that a drawback of this approach is that ffibuilder.embedding_api()
doesn’t support #ifdef directives.  You may have to use a more
convoluted expression like:

with open('foo.h') as f:
    lines = [line for line in f if not line.startswith('#')]
    ffibuilder.embedding_api(''.join(lines))





As in the example above, you can also use the same foo.h from
ffibuilder.set_source():

ffibuilder.set_source('module_name', r'''
    #include "foo.h"
''')












Troubleshooting


	The error message


cffi extension module ‘c_module_name’ has unknown version 0x2701




means that the running Python interpreter located a CFFI version older
than 1.5.  CFFI 1.5 or newer must be installed in the running Python.



	On PyPy, the error message


debug: pypy_setup_home: directories ‘lib-python’ and ‘lib_pypy’ not
found in pypy’s shared library location or in any parent directory




means that the libpypy-c.so file was found, but the standard library
was not found from this location.  This occurs at least on some Linux
distributions, because they put libpypy-c.so inside /usr/lib/,
instead of the way we recommend, which is: keep that file inside
/opt/pypy/bin/ and put a symlink to there from /usr/lib/.
The quickest fix is to do that change manually.








Issues about using the .so

This paragraph describes issues that are not necessarily specific to
CFFI.  It assumes that you have obtained the .so/.dylib/.dll file as
described above, but that you have troubles using it.  (In summary: it
is a mess.  This is my own experience, slowly built by using Google and
by listening to reports from various platforms.  Please report any
inaccuracies in this paragraph or better ways to do things.)


	The file produced by CFFI should follow this naming pattern:
libmy_plugin.so on Linux, libmy_plugin.dylib on Mac, or
my_plugin.dll on Windows (no lib prefix on Windows).


	First note that this file does not contain the Python interpreter
nor the standard library of Python.  You still need it to be
somewhere.  There are ways to compact it to a smaller number of files,
but this is outside the scope of CFFI (please report if you used some
of these ways successfully so that I can add some links here).


	In what we’ll call the “main program”, the .so can be either
used dynamically (e.g. by calling dlopen() or LoadLibrary()
inside the main program), or at compile-time (e.g. by compiling it
with gcc -lmy_plugin).  The former case is always used if you’re
building a plugin for a program, and the program itself doesn’t need
to be recompiled.  The latter case is for making a CFFI library that
is more tightly integrated inside the main program.


	In the case of compile-time usage: you can add the gcc
option -Lsome/path/ before -lmy_plugin to describe where the
libmy_plugin.so is.  On some platforms, notably Linux, gcc
will complain if it can find libmy_plugin.so but not
libpython27.so or libpypy-c.so.  To fix it, you need to call
LD_LIBRARY_PATH=/some/path/to/libpypy gcc.


	When actually executing the main program, it needs to find the
libmy_plugin.so but also libpython27.so or libpypy-c.so.
For PyPy, unpack a PyPy distribution and you get a full directory
structure with libpypy-c.so inside a bin subdirectory, or on
Windows pypy-c.dll inside the top directory; you must not move
this file around, but just point to it.  One way to point to it is by
running the main program with some environment variable:
LD_LIBRARY_PATH=/some/path/to/libpypy on Linux,
DYLD_LIBRARY_PATH=/some/path/to/libpypy on OS/X.


	You can avoid the LD_LIBRARY_PATH issue if you compile
libmy_plugin.so with the path hard-coded inside in the first
place.  On Linux, this is done by gcc -Wl,-rpath=/some/path.  You
would put this option in ffibuilder.set_source("my_plugin", ...,
extra_link_args=['-Wl,-rpath=/some/path/to/libpypy']).  The path can
start with $ORIGIN to mean “the directory where
libmy_plugin.so is”.  You can then specify a path relative to that
place, like extra_link_args=['-Wl,-rpath=$ORIGIN/../venv/bin'].
Use ldd libmy_plugin.so to look at what path is currently compiled
in after the expansion of $ORIGIN.)

After this, you don’t need LD_LIBRARY_PATH any more to locate
libpython27.so or libpypy-c.so at runtime.  In theory it
should also cover the call to gcc for the main program.  I wasn’t
able to make gcc happy without LD_LIBRARY_PATH on Linux if
the rpath starts with $ORIGIN, though.



	The same rpath trick might be used to let the main program find
libmy_plugin.so in the first place without LD_LIBRARY_PATH.
(This doesn’t apply if the main program uses dlopen() to load it
as a dynamic plugin.)  You’d make the main program with gcc
-Wl,-rpath=/path/to/libmyplugin, possibly with $ORIGIN.  The
$ in $ORIGIN causes various shell problems on its own: if
using a common shell you need to say gcc
-Wl,-rpath=\$ORIGIN.  From a Makefile, you need to say
something like gcc -Wl,-rpath=\$$ORIGIN.


	On some Linux distributions, notably Debian, the .so files of
CPython C extension modules may be compiled without saying that they
depend on libpythonX.Y.so.  This makes such Python systems
unsuitable for embedding if the embedder uses dlopen(...,
RTLD_LOCAL).  You get an undefined symbol error.  See
issue #264 [https://bitbucket.org/cffi/cffi/issues/264/].  A workaround is to first call
dlopen("libpythonX.Y.so", RTLD_LAZY|RTLD_GLOBAL), which will
force libpythonX.Y.so to be loaded first.







Using multiple CFFI-made DLLs

Multiple CFFI-made DLLs can be used by the same process.

Note that all CFFI-made DLLs in a process share a single Python
interpreter.  The effect is the same as the one you get by trying to
build a large Python application by assembling a lot of unrelated
packages.  Some of these might be libraries that monkey-patch some
functions from the standard library, for example, which might be
unexpected from other parts.




Multithreading

Multithreading should work transparently, based on Python’s standard
Global Interpreter Lock.

If two threads both try to call a C function when Python is not yet
initialized, then locking occurs.  One thread proceeds with
initialization and blocks the other thread.  The other thread will be
allowed to continue only when the execution of the initialization-time
Python code is done.

If the two threads call two different CFFI-made DLLs, the Python
initialization itself will still be serialized, but the two pieces of
initialization-time Python code will not.  The idea is that there is a
priori no reason for one DLL to wait for initialization of the other
DLL to be complete.

After initialization, Python’s standard Global Interpreter Lock kicks
in.  The end result is that when one CPU progresses on executing
Python code, no other CPU can progress on executing more Python code
from another thread of the same process.  At regular intervals, the
lock switches to a different thread, so that no single thread should
appear to block indefinitely.




Testing

For testing purposes, a CFFI-made DLL can be imported in a running
Python interpreter instead of being loaded like a C shared library.

You might have some issues with the file name: for example, on
Windows, Python expects the file to be called c_module_name.pyd,
but the CFFI-made DLL is called target.dll instead.  The base name
target is the one specified in ffibuilder.compile(), and on Windows
the extension is .dll instead of .pyd.  You have to rename or
copy the file, or on POSIX use a symlink.

The module then works like a regular CFFI extension module.  It is
imported with “from c_module_name import ffi, lib” and exposes on
the lib object all C functions.  You can test it by calling these
C functions.  The initialization-time Python code frozen inside the
DLL is executed the first time such a call is done.




Embedding and Extending

The embedding mode is not incompatible with the non-embedding mode of
CFFI.

You can use both ffibuilder.embedding_api() and
ffibuilder.cdef() in the
same build script.  You put in the former the declarations you want to
be exported by the DLL; you put in the latter only the C functions and
types that you want to share between C and Python, but not export from
the DLL.

As an example of that, consider the case where you would like to have
a DLL-exported C function written in C directly, maybe to handle some
cases before calling Python functions.  To do that, you must not put
the function’s signature in ffibuilder.embedding_api().  (Note that this
requires more hacks if you use ffibuilder.embedding_api(f.read()).)
You must only write the custom function definition in
ffibuilder.set_source(), and prefix it with the macro CFFI_DLLEXPORT:

CFFI_DLLEXPORT int myfunc(int a, int b)
{
    /* implementation here */
}





This function can, if it wants, invoke Python functions using the
general mechanism of “callbacks”—called this way because it is a
call from C to Python, although in this case it is not calling
anything back:

ffibuilder.cdef("""
    extern "Python" int mycb(int);
""")

ffibuilder.set_source("my_plugin", r"""

    static int mycb(int);   /* the callback: forward declaration, to make
                               it accessible from the C code that follows */

    CFFI_DLLEXPORT int myfunc(int a, int b)
    {
        int product = a * b;   /* some custom C code */
        return mycb(product);
    }
""")





and then the Python initialization code needs to contain the lines:

@ffi.def_extern()
def mycb(x):
    print "hi, I'm called with x =", x
    return x * 10





This @ffi.def_extern is attaching a Python function to the C
callback mycb(), which in this case is not exported from the DLL.
Nevertheless, the automatic initialization of Python occurs when
mycb() is called, if it happens to be the first function called
from C.  More precisely, it does not happen when myfunc() is
called: this is just a C function, with no extra code magically
inserted around it.  It only happens when myfunc() calls
mycb().

As the above explanation hints, this is how ffibuilder.embedding_api()
actually implements function calls that directly invoke Python code;
here, we have merely decomposed it explicitly, in order to add some
custom C code in the middle.

In case you need to force, from C code, Python to be initialized
before the first @ffi.def_extern() is called, you can do so by
calling the C function cffi_start_python() with no argument.  It
returns an integer, 0 or -1, to tell if the initialization succeeded
or not.  Currently there is no way to prevent a failing initialization
from also dumping a traceback and more information to stderr.
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